In this paper the homotopy type of the group of diffeomorphism of sufficiently large irreducible three-dimensional manifolds is described and the space of incompressible surfaces in such manifolds is studied.

1. Notation and Definitions

We use differential-topological $C^{\text {oa }}$-terminology. Let V be a compact manifold, F a submanifold of it, N and A closed sets in V and F, respectively. We denote by Diff(V,N) the group of all diffeomorphisms of the manifold V, fixed on ∂V and N, by Em, (F, V) the set of imbeddings of the manifold F in V, which coincide on ∂F and A with the inclusion, and by $H(V)$ the set of homotopy equivalences of the manifold V, fixed on ∂V : $J i f f(V, N)$ and $E m_{A}(F, V)$ are given the C^{∞}-topology, and $H(V)$ the compact-open topology, We set $\operatorname{Diff}(V)=\operatorname{Diff}(V, \varnothing)$.

Let V be a compact three-dimensional manifold. A surface (a compact two-dimensional submanifold) F in V is called proper if $\partial F=\partial V \cap F$ and F is transverse to ∂V. It is called incompressible if: (i) F is connected, proper, and lies two-sidedly in V; (ii) F is not the boundary of a contractible submanifold and either F is not a disk or the inclusion $(F, \partial F) \rightarrow(V, \partial V)$ does not admit a homotopy into a map with image lying in V; (iin) the inclusion homomorphism $\pi_{1}(F) \rightarrow \pi_{1}(V)$ is a monomorphism.

The manifold V is called irreducible if any two-dimensional sphere imbedded in V bounds a ball in V. It is called a Waldhausen manifold if V is irreducible, contains an incompressible surface, and $\mathbb{R} P^{2}$ cannot be imbedded two-sidedly in V.
2. History of the Question

If N is a submanifold of the manifold V, then $\operatorname{Diff}(V, N)$ has the structure of a Frechet manifold; cf. Leslie [9]. In particular, in this case Jiff(V,N) has the homotopy type of a countable cellular space (countable " CW-complex") and is determined by its homotopy type up to homeomorphism; cf. Burghelea and Kuiper [3]. The homotopy type of Diff(V) has been studied in a series of papers. The first were the results of Milnor on $\pi_{0} J i f f\left(S^{n}\right)$ (cf. [7, 10]). On the basis of them it was proved by Novikov [11], Antonelli, Burghelea, and Kahn [1], and other authors that a large number of homotopy groups $\pi_{i} D_{i f f}(V)$ for $V=J^{n}$ and some other V were nontrivial.

One has complete information on the homotopy type of $J i f f(V)$ only in a few cases. Essentially they reduce to the following. It is well known (and easily proved) that

[^0]$\operatorname{Diff}\left(S^{1}\right) \approx S^{1}$. Smale [12] proved that $\operatorname{Diff}\left(S^{\prime 2}\right) \approx 0(3)$, and for the remaining closed surfaces, the homotopy type of the group of diffeomorphisms was calculated by Eells and Earle [5]. As to the three-dimensional case, Akiba [2] announced a proof of Smale's conjecture according to which Diff $\left(g^{3}\right)$ is contractible (the author is not familiar with it, so Theorems 2 and 3 below are formulated with caution).

In addition, in the three-dimensional case there are partial results. Laudenbach obtained significant information about $\pi_{0} D_{i f f}\left(S^{11} \times S^{2} \# \ldots \# S^{1} \times S^{2}\right)$. In the case when V is a Waldhausen manifold, Waldhausen and Laudenbach reduced the calculation of $\pi_{0} D i f f(V)$ to a homotopy problem, and Laudenbach proved that $\pi_{1} D_{i f f}(V,\{v\})=0$, where $v \in V$. There is an account of these results in Laudenbach [8].

3. Basic Result

Let V be a Waldhausen manifold.
THEOREM 1. (Separation Theorem). Let F be an incompressible surface in V and F^{\prime} be the result of a small motion of F along a normal field. If $v \in F$, then the inclusion

$$
\operatorname{Em}_{\{v\}}\left(F, V F^{\prime}\right) \subset E m_{\{v\}}(F, V)
$$

induces an isomorphism of homotopy groups.
Now let us assume that Smale's conjecture is true.
THEOREM 2 (Basic Theorem). If $\partial V \neq \varnothing$, then the components of the group Diff (V) are contractible. If $\partial V \neq \emptyset$ and $v \in V$, then the components of the group $\operatorname{Diff}(V,\{v\})$ are contractible.

THEOREM 3. The inclusion $D i f f(V) \subset H(V)$ is a homotopy equivalence.
Theorem 3 is an easy consequence of Theorem 2. Theorem 2 is derived without great difficulty from Theorem 1 and the existence of Haken hierarchies on Waldhausen manifolds [6]. The main difficulty is the separation theorem which is of independent interest. Section 4 is devoted to a sketch of its proof. It can be interpreted as the assertion that any finite-parametric family of imbeddings $F \rightarrow V$ can be pushed off F^{\prime}. A special case of it was proved by Laudenbach [8], who constructed pushings for 0 and I-parameter families.

4. Basic Steps in the Proof of the Separation Theorem

The proof consists of two parts. The first constructs a more or less canonical pushing isotopy for one imbedding. Then from several such isotopies, the pushing of a whole family is glued together.

4a. Covering. We denote by $p:\left(V^{\sim}, w\right) \rightarrow(V, v)$ the covering associated with the image of the group $\pi_{1}(F, v)$ in $\pi_{1}(V, v)$. We set $F^{\prime \prime}=P^{-1}(F)$ and we denote by II the set of components of the manifold $F^{\prime \prime}$. Each surface C from II divides V^{\sim} into two parts X_{c} and Y_{c}; by X_{c} we denote that parts which contains w. The relation $Y_{c} \subset Y_{D}$ determines an order relation $D<C$ on I.

Laudenbach [8] suggested using this construction to prove the separation theorem.
4b. Imbedding of General Form. We call a point y of F singular for the imbedding $f: F \rightarrow V$, if f is not transverse to F^{\prime} at y. A singular point y of an imbedding f will be called of finite multiplicity, if the germ at $f(y)$ of the quadruple $\left(V, F^{\prime} ; f(F), f(y)\right)$ is diffeomorphic with the germ at 0 of some quadruple of the form $\left(\mathbb{R}^{2} \times \mathbb{R}, \mathbb{R}^{2} \times 0, \Gamma, 0\right)$ with Γ being the graph of a function $\mathbb{R}^{2} \rightarrow \mathbb{R}$ such that 0 is a critical point of finite multiplicity of it. One says that the imbedding f is of general form if all its singular points are of finite multiplicity.

The complement in $E m_{\{v\}}(F, V)$ to the set of imbeddings of general form has codimension ∞ and hence to prove the separation theorem it suffices to prove that finite-parametric families of imbeddings of general form can be pushed off F^{\prime}.

4c. Basic Lemma. Let $f: F \rightarrow T$ be an imbedding of general form, isotopically connected at v to the inclusion $F G V, f^{\sim}: F \rightarrow V$ be a lifting of it such that $f^{\sim}(v)-w$, A be a closed set in V^{\sim} and let C be a component of the manifold $F^{\prime \prime}$. If $A \cap f^{\sim}(F)=\varnothing, C \cap f^{\sim}(F) \neq \varnothing$ and $D \cap f^{\sim}(F)=\emptyset$ for $C<D$, then there exist an imbedding $g: F \rightarrow V^{\sim}$ transverse to $F^{\prime \prime}$, a component G of the set $g(F) \backslash F^{\prime \prime}$, and a compact manifold with corners W in V such that: (i) $g(v)=W$ is an imbedding; (ii) \bar{G} intersects exactly one component of the manifold $F^{\prime \prime}$ and $\partial W=G \cup\left(\partial W \cap F^{\prime \prime}\right)$; $(i i i) \bar{G} \cap\left(A \cup f^{2}(F)=\phi, \partial W \cap F^{\prime \prime} \cap f^{2}(F) \neq \phi ;\right.$ (iv) either $\partial \bar{G} \subset C$ and $W \subset Y_{c}$ or there exists a disk E such that $G \subset E \subset G(F)$; (V) if the component S of the manifold $\partial \bar{G}$ bounds a disk $F^{\prime \prime}$ in D_{0}, then either $J_{\rho} \cap W=S$, or there exists a disk E_{f} such that $\partial E_{s}=\$$ and $G \subset E_{5} \subset g(F)$.
[A disk $E_{\}}$with $\partial E_{j}=S$ and $G \subset E_{3} \subset g(F)$ exists for not more than one component S of the manifold $\partial \bar{G})$.

The proof is based on the study of the approximation of the imbedding f by imbeddings transverse to F^{\prime}.

4d. Pushing Isotopies. In the situation of the basic lemma, the restriction P_{W} is an imbedding. We choose an imbedding $\varphi: F^{\prime} \times[0,1] \rightarrow V$ such that $\varphi^{-1}(\rho(\bar{G}))=P(Q G) \times[0,1]$.

For each components S of the manifold $p(\partial \bar{G})$ bounding a disk F^{\prime} in D_{s} such that $D_{3} \cap p(W)=S$, we add to the manifold $p(W)$ the cylinder $\varphi\left(D_{5} \times\left[0, \varepsilon_{j}\right]\right)$, where $0<\varepsilon_{3}<1$, and we smooth the corners of the manifold obtained which do not lie on F^{\prime}. As a result, we get a manifold Z, which is a trivial cobordism between $\partial Z \cap F^{\prime}$ and $\overline{\partial Z \backslash F^{\prime}}$. With its help, one can construct an isotopy of the manifold V, carrying $\overline{\partial Z \backslash F}$ into $\partial Z \cap F^{\prime}$. It follows from (iii) that if the number ε_{3} is sufficiently small, then this isotopy in some sense (which we will not make precise here) simplifies the intersection of the image of the imbedding f with F^{\prime}. Hence, performing several such isotopies in succession, we push the imbedding off F^{\prime}.

4e. Pushing Families. We restrict ourselves to the case of a one-parameter family (cf. Laudenbach [8]); the general case is analogous but rather awkward. We construct a pushing isotopy for each imbedding of the family. The isotopy pushing a cercain imbedding also
pushes all close imbeddings. Hence one can choose several isotopies λ^{i} and a partition $\left\{T_{i}\right\}$ of the domain of definition of the family into closed segments such that λ^{i} pushes f_{t} for $t \in T_{i}$, where $\left\{f_{t}: t \in T\right\}$ is the family considered. If $t \in T_{i} \cap T_{j}$ and $i \neq j$, then there are two isotopies pushing f_{t}. They can be considered as a map $\lambda: I \times 0 \cup 0 \times I \rightarrow \operatorname{Diff}(\mathrm{~V})$. In order to construct the pushing needed, it suffices to extend this map to I^{2} so that $\lambda(x) \circ f_{t} \in$ $E m_{\{0\}}\left(F, V F^{\prime}\right)$ for $x \in I \times 1 \cup\left\{\times I\right.$. Such an extension consists of a map $\sigma: I^{2} \rightarrow \operatorname{Diff}(V)$ of the form $\sigma\left(t_{1}, t_{2}\right)=\lambda_{1}\left(t_{1}\right) \cdot \lambda_{2}\left(t_{2}\right)$, where λ_{1} and λ_{2} are either constructed with the help of the basic lemma as in 4 d or leave F^{\prime} fixed.
[In the case of a multiparametric family one requires maps of the form $\sigma\left(t_{1}, \ldots, t_{n}\right)=$ $\left.\lambda_{1}\left(t_{1}\right) \cdot \ldots \cdot \lambda_{n}\left(t_{n}\right).\right]$
5. The author thanks his guiding professor V. A. Rokhlin for posing the problem and for his attention to the work.

LITERATURE CITED

1. P. Antonelli, D. Burghelea, and P. J. Kahn, "The nonfinite homotopy of some Diff.," Topology, 11, No. 1, 1-49 (1972).
2. T. Akiba, "Homotopy types of some PL-complexes," Bull. Am. Math. Soc., 77, No. 6, 1060-1062 (1971).
3. D. Burghelea and N. Kuiper, "Hilbert manifolds," Ann. Math., 90, No. 2, 379-417 (1969).
4. J. Cerf, "Sur les diffeomorphismes de la sphere de dimension trois ($\Gamma_{4}=0$)," Lect. Notes Math., No. 53.
5. J. Eells and C. J. Earle, "A fiber bundle description of Teichmuller theory," J. Diff. Geom., 3, No. 1, 19-43 (1969).
6. W. Haken, "Uber das Homeomorphie Problem der 3-Mannigfaltigkeiten I," Math. Z., 80, No. 2, 89-120 (1962).
7. M. A. Kervaire and J. W. Milnor, "Groups of homotopy spheres I," Ann. Math., 77, No. 2, 504-573 (1963).
8. F. Laudenbach, "Topologie de la dimension trois homotopie et isotopie," Asterisque, 12, (1974).
9. J. Leslie, "On a differential structure for the group of diffeomorphism," Topology, 6, 263-271 (1967).
10. J. W. Milnor, "On manifolds homeomorphic to the seven-sphere," Ann. Math., 64, No. 2, 399-405 (1956).
11. S. P. Novikov, "Differentiable sphere bundles," Izv. Akad. Nauk SSSR, Ser. Mat., 29, No. 1, 71-96 (1965).
12. S. Smale, "Diffeomorphism of the two-sphere," Proc. Am. Math. Soc., 10, No. 4, 621-629 (1959).

[^0]: Translated from Zapiski Nauchnykh Seminarov Leningradskogo Otdeleniya Matematicheskogo Instituta im. V. A. Steklova AN SSSR, Vol. 66, Pp. 172-176, 1976.

