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In this paper the homotopy type of the group of diffeomorphism of sufficiently 

large irreducible three-dimensional manifolds is described and the space of in- 

compressible surfaces in such manifolds is studied. 

i. Notation and Definitions 

We use differential-topological C ~-terminology, Let V be a compact manifold, F a 

submanifold of it, N and A closed sets in V and ~, respectively. We denote by ~(~,N) 

the group of all diffeomorphisms of the manifold V ~, fixed on ~V and N, by ~A(~,V) the 

set of imbeddings of the manifold ~ in V, which coincide on ~ and A with the inclusion, 

and by HI~ the set ,of homotopy equivalences of the manifold V, fixed on ~V; ~(%~) 

and E.~A(F,V) are given the ~-topology, and ~(V)the compact-open topology. We set 

Let V be a compact three-dimensional manifold. A surface (a compact two-dimensional 

submanifold) ~ in V is called proper if 8~=@V ~ F and ~ is transverse to @-~. It is 

called incompressible if: (~) ~ is connected, proper, and lies two-sidedly in V; (~) F is 

not the boundary of a contractible submanifold and either ~ is not a disk or the inclusion 

(~F)--~(V, aV) does not admit a homotopy into a map with image lying in V; (~) the in- 

clusion homomorphism ~I(F)----~(V)is a monomorphism. 

The manifold ~ is called irreducible if any two-dimensional sphere imbedded in V 

bounds a ball in ~f. It is called a Waldhausen manifold if V is irreducible, contains an 

incompressible surface, and ~P% cannot be imbedded two-sidedly in V. 

2. History of the Question 

If N is a submanifold of the manifold ~ , then ~H(V,N)has the structure of a 

Frechet manifold; cf. Leslie [9]. In particular, in this case ~(V,~) has the homotopy type 

of a countable cellular space (countable " ~-complex") and is determined by its homotopy 

type up to homeomorphism; of. Burghelea and Kuiper [3]. The homotopy type of ~%~(V)has 

been studied in a series of papers. The first were the results of Milnor on ~o~(~ ~) (cf. 

[7, i0]). On the basis of them it was proved by Novikov [Ii], Antonelli, Burghelea, and 

Kahn [i], and other authors that a large number of homotopy groups ~r167 for ~= ~ 

and some other V were nontrivial. 

One has complete information on the homotopy type of ~(~) only in a few cases. 

Essentially they reduce to the following. It is well known (and easily proved) that 
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~H(~)~ ~4. Smale [12] proved that ~f(~)~O(3), and for the remaining closed surfaces, 

the homotopy type of the group of dlffeomorphisms was calculated by Eells and Earle [5]. As 

to the three-dimensional case, Akiba [2] announced a proof of Smale's conjecture according 

to which ~ff (~s) is contractible (the author is not familiar with it, so Theorems 2 and 3 

below are formulated with caution). 

In addition, in the three-dimensional case there are partial results. Laudenbach ob- 

tained significant information about ~0~(~Ix~# ..-=~Ix ~). In the case when V is a 

Waldhausen manifold, Waldhausen and Laudenbach reduced the calculation of ~0~{{(~) to a 

homotopy problem, and Laudenbach proved that ~H(V,~v})=0, where veV. There is an 

account of theseresults in Laudenbaeh [8]. 

3. Basic Result 

Let V be a Waldhausen manifold. 

THEOREM i. (Separation Theorem). Let F be an incompressible surface in~ and ~t 

be the result of a small motion of ~ along a normal field. If ~, then the inclusion 

E~{,~C ~V ~ ~') ~ E~](~V) 
induces an isomorphism of homotopy groups. 

Now let us assume that Smale'sconjecture is true. 

THEOREM 2 (Basic Theorem). If 8V~, then the components of the group ~H(~) are 

contractible. If ~V@# and veV, then the components of the group ~w are con- 

tractible. 

THEOREM 3. The inclusion ~%~(V)~(~)is a homotopy equivalence. 

Theorem 3 is an easy consequence of Theorem 2. Theorem 2 is derived without great 

difficulty from Theorem 1 and the existence of Haken hierarchies on Waldhausen manifolds 

[6]. The main difficulty is the separation theorem which is of independent interest. Sec- 

tion 4 is devoted to a sketch of its proof. It can be interpreted as the assertion that any 

finite-parametric family of imbeddings ~-~ can be pushed off ~r. A special case of it 

was p~oved by Laudenbach [8], who constructed pushings for 0 and I -parameter families. 

4. Basic Steps in the Proof of the Separation Theorem 

The proof consists of two parts. The first constructs a more or less canonical pushing 

isotopy for one imbedding. Then from several such isotopies, the pushing of a whole family 

is glued together. 

4a. Covering. We denote by p :[~)-.-(~,@) the covering associated with the image 

of the group ~4(~ v) in ~{(V,~). We set ~F= ~4(~)and we denote by H the set of components 

of the manifold ~ . Each surface C from ~ divides V ~ into two parts Xc and ~r 

by X c we denote that parts which contains ~ . The relation ~ c ~D determines an order 

relation ~ < C on ~ . 
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Laudenbach [8] suggested using this construction to prove the separation theorem, 

4b. Imbedding of General Form. We call a point ~ of ~ singular for the imbedding 

~: ~--~, if $ is not transverse to Ff at ~ . A singular point ~ of an imbedding ~ will 

be called of finite multiplicity, if the germ at ~(~)of the quadruple ~ ~(~,~(~)) is 

diffeomorphic with the germ at 0 of some quadruple of the form (~ ~ O~ C,O) with P be- 

ing the graph of a function ~'-~ such that 0 is a critical point of finite multiplicity 

of it. One says that the imbedding I is of general form if all its singular points are of 

finite multiplicity. 

The complement in ~(F,V) to the set of imbeddings of general form has codimenslon 

oo and hence to prove the separation theorem it suffices to prove that finite-parametric 

families of imbeddings of general form can be pushed off ~f. 

4c. Basic Lemma. Let ~: ~__,.~r be an imbedding of general form, isotopically connected 

at ~ to the inclusion ~ ,  {~: ~--'-V be a lifting of it such that ~)-~, A be a closed 

set in V ~ and let C be a component of the manifold ~s. If An {~(~) =~ , C~'(W) ~ and 

~(~) = ~ for C<~, then there exist an imbedding ~: ~-~V ~ transverse to ~, a com- 

ponent & of the set ~[F)\ F ~, and a compact manifold with corners ~ in ~ such that: 

(~) ~(~)----~ is an imbedding; (W) ~ intersects exactly one component of the manifold ~ and 

~-~u(~Wn F~; (~)~(Au~=~, ~ n ~ ) ~  ~ (~v) either 8~=g and ~cY c or there 

exists a disk E such that ~r162 (V) if the component ~ of the manifold ~ bounds 

a disk ~ in ~, then either ~=~, or there exists a disk E~ such that ~E~=~ and 

~cE~cg(F) �9 

[A disk E~ with ~= ~ and G~E~= ~(F) exists for not more than one component ~ of 

the manifold @~).] 

The proof is based on the study of the approximation of the imbedding ~ by imbeddings 

transverse to ~t. 

4d. Pushing Isotopies. In the situation of the basic lemma, the restriction PIW is 

an imbedding. We choose an imbedding q: FGfO,~]-~V such that q-~(p(~))-p(8~)x[~1]. 

For each components ~ of the manifold p(@~) bounding a disk ~f in ~ such that 

2~np(~l = ~ , we add to the manifold p(~) the cylinder q(~x[0,8~), where 0<~I, and we 

smooth the corners of the manifold obtained which do not lie on PP. As a result~ we get 

a manifold E , which is a trivial cobordism between 8% n ~r and ~r. With its help, one 

can construct an isotopy of the manifold V, carrying 8-~-~ f into @~n F f. It follows from 

(iii) that if the number ~ is sufficiently small, then this isotopy in some sense (which we 

will not make precise here) simplifies the intersection of the image of the imbedding ~ with 

~( Hence, performing several such isotopies in succession, we push the imbedding off ~f. 

4e. Pushing Families. We restrict ourselves to the case of a one-parameter family 

(cf. Laudenbach [8]); the general case is analogous but rather awkward. We construct a push- 

ing isotopy for each imbedding of the family. The isotopy pushing a certain imbedding also 
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pushes all close imbeddings. Hence one can choose several isotopies ~ and a partition 

{T&} of the domain of definition of the family into closed segments such that ~ pushes 

for %eT{, where {~ :~T} is the family considered. If ~eT~nTj and { ~ }, then there 

are two isotopies pushing ~ . They can be considered as a map ~:I x 0u0,1-~3~(V). In 

order to construct the pushing needed, it suffices to extend this map to 1% so that ~(=)o ~ 

~,~{~}(~Vk~5 for xEI~4u4 ~ I. Such an extension consists of a map ~:IZ--~&~f(~/) of the form 

~(~4,#~) = ~4(~)o i~} , where A4 and Az are either constructed with the help of the basic 

lemma as in 4d or leave F r fixed. 

[In the case of a multiparametric family one requires maps of the form ~(~,..',~a)= 

5. The author thanks his guiding professor V. A. Rokhlin for posing the problem and 

for his attention to the work. 
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