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The goal of the paper is to calculate the homotopy type of the space of diffeomor- 
phisms for most orientable three-dimensional manifolds with finite fundamental 
group containing the Klein bottle. The fundamental group of such a manifold Q has 
the form <a, blab~b -I = I, amb 2n = I>. As m and n one can have any relatively 
prime natural numbers; these numbers m, n determine the manifold Q up to diffeo- 
morphism. Let K be a Klein bottle lying in Q and let P be a closed tubular neigh- 

borhood in Q of this Klein bottle K. We denote by ])~o(~) the connected component 
of the space of diffeomorphisms Q § Q containing idQ, and by E0(K, Q) the con- 
nected component of the space of imbeddings K § Q containing the inclusion K --~ Q; 
analogously we define E0(K, P). The main results of the paper are the following 
two theorems. THEOREM I. If m, n ~ I, then the space fl)g~#o(Q)is homotopy equiva- 

lent with a circle. THEOREM 2. If m, n ~ I, then the inclusion E0(K, P) C E0(K, 
Q) is a homotopy equivalence. With the help of familiar results on spaces of dif- 
feomorphisms of irreducible manifolds which are sufficiently large, Theorem I re- 
duces without difficultytoTheorem 2. The main difficulty is the proof of Theorem 
2. This proof develops a technique of Hatcher and the author which deals with 
spaces of PL-homeomorphisms and diffeomorphisms of irreducible manifolds which are 
sufficiently large. In the paper we use a different structure definition of the 
class of manifolds considered. It is easy to verify that these definitions are 

equivalent. 

I. Introduction 

(1.1) The study of the homotopy type of spaces of diffeomorphisms of compact smooth 
manifolds attracts more and more attention. A survey of recent results in this area can be 
found in Proc. Symp. in Pure Math., Vol. 32, Part I; cf. [3, 7, 9, 25]. At the same time in 
only a small number of cases has there been success up to now in calculating completely the 
homotopy type of spaces of diffeomorphisms. Namely, such a calculation has been made for 
manifolds of dimension I and 2 and for certain three-dimensional manifolds. 

The case of one-dimensional manifolds is simple and is well known. The homotopy type 
of the space of diffeomorphisms of surfaces was calculated by Eells and Earle [6], and their 
paper was preceded by Smale's paper [24], in which the cases of the two-dimensional sphere 
and the two-dimensional disk were considered. As to three-dimensional manifolds, here the 
homotopy type of the space of diffeomorphisms is known in the following cases. Firstly, ac- 
cording to the famous "Smale conjecture," recently proved by Hatcher [10, 11], the space of 
diffeomorphisms of the sphere S 3 is homotopy equivalent with 0(4), and the space of diffeo- 
morphisms of the disk D 3 is homotopy equivalent with 0(3) (the cases of S ~ and D 3 reduce to 
one another easily). Further, the homotopy type of the space of diffeomorphisms has been 
calculated for the case of Waldhausen manifolds, i.e., irreducible compact three-dimensional 
manifolds containing a noncontractible surface and not admitting a two-sided imbedding of the 
projective plane. This calculation was made independently by Hatcher [8] and the author [13, 
14]; it is based on the Smale conjecture. (Hatcher [8] is devoted to the corresponding piece- 
wise-linear problem; in order to get differential results from it, it suffices to use the 
PL/Diff comparison theorem of Burghelea--Lashof--Morley [4] and the Smale conjecture). Finally, 
Hatcher [12] calculated the homotopy type of the space of diffeomorphisms of the manifold 
S l x S 2 and certain other reducible manifolds. (In [5] a series of results were announced 
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dealing with reducible manifolds, but according to [12], Laudenbach discovered an essential 
lacuna in the proof of the results of [5].) There is a more detailed discussion of these 

results in Hatcher's report to the congress in Helsinki [10]. 

The goal of the present paper is to calculate the homotopy type of the space of dif- 
feomorphisms for a certain infinite family of irreducible three-dimensional manifolds with 
finite fundamental group (we note that all Waldhausen manifolds have infinite fundamental 
group). These manifolds are defined in (1.2), and the main results of the paper are for- 
mulated in (1.3). 

We note that all these results, including the results of the present paper, have analogs 
dealing with spaces of homeomorphisms and with spaces of piecewise-linear homeomorphisms. In 
fact, as is well kno~n, for manifolds of dimension ~3, all three spaces: of diffeomorphisms, 
homeomorphisms, and piecewise-linear homeomorphisms, are homotopy equivalent. In dimension 
3 this fact depends on the Smale conjecture. Here in most cases the results on spaces of 
homeomorphisms and piecewise-linear homeomorphisms can be obtained directly, without turning 
to the differential results. 

(1.2) The manifolds with which we shall be concerned in the present paper are defined 
as follows. Let K be a Klein bottle, ~:T § K be the orienting covering, so that T is a torus, 

and let P=T x IuK~,0)~(~ , where I is the segment [0, I], be the mapping cylinder of ~. 
It is clear that P is a three-dimensional manifold with boundary T, containing K as a defor- 
mation retract. The manifolds of interest to us are obtained by gluing on the solid torus 

~x~ i to P by all diffeomorphisms ~(~x~)---~T. 

it is easy to list these manifolds. In fact, the result of gluing ~x ~ to P is de- 

termined up to a diffeomorphism by the isotopy class of the image of the meridian ~• , 
where x is (any) point of the circle S I, and in addition its homotopy class (since homotopic 
curves on the torus are isotopic). Let ~ and b be standard generators of the group ~l(K), so 
that Vl(K) = <a, bI~bgb -l = I>. Then a and b 2 generate the image of the group ~l(T) in ~l(K), 
which we shall identify with the group ~l(T) itself. Thus, the homotopy class of the image 
of the meridian has the form ~mb2n, and thus the two numbers m and n are defined. Since the 
class ~mb2n contains an imbedded circle, the numbers m and n are relatively prime. Actually, 
the result of gluing depends up to a diffeomorphism only on Iml, Lnf (cf. the following para- 
graph). The result of gluing corresponding to positive relatively prime m and n will be 
denoted by Q(m, n). 

The fact that the result of gluing depends only on !ml, Inl follows from the existence 
of a diffeomorphism P § P acting on ~l(T) by the formula ~ § ~-l, b 2 § b 2 and a diffeomor- 
phism acting on ~l(T) by the formula a § ~, b 2 § b -2. For example, in order to get the first 
diffeomorphism, it suffices to take a diffeomorphism K § K acting on ~l(K) by the formula 

§ a -l, b § b, take a covering diffeomorphism T § T of it, and finally take the diffeomor- 
phism P § P induced by the latter. The diffeomorphisms K § K which are needed are induced by 
symmetries of the standard model of the Klein bottle as a rectangle with sides identified. 

(1.3) Now we formulate the main results of the paper, Theorems I and 2. As usual, we 

denote by ~ (~) the space of diffeomorphisms of the manifold j~ , and by ~0(~) the 

component of the space ~(~) containing ~. For a submanifold N of the manifold M, 

we denote by E(N,~) the space of imbeddings N § M, and by E~(N,~) the component of the 
space E(N, M) containing the inclusion N ~ M. 

THEOREM I. If m, n ~ I, then the space ~0(~(~)) is homotopy equivalent with a cir- 
cle. 

THEOREM 2. If m, n ~ I, then the inclusion E0(K, P) (-~ E0(K, Q(m, n)) is a homotopy 
equivalence. 

Theorem 2 can be considered as a "separation theorem": it is easy to verify that the 
image of the imbedding K § Q(m, n) lies in int P if and only if this image does not intersect 
~P. With the help of the results on Waldhausen manifolds mentioned in (1.1), Theorem ! can 
be reduced without difficulty to Theorem 2. This is one of the main sources of interest in 
Theorem 2. 

The technique of the proof of these theorems can be supplemented so as to include the 
case of the manifolds Q(I, n) with n ~ I. Since the manifolds Q(I, n) are lens spaces 
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[namely, Q(I, n) is diffeomorphic with L(4n, 2n -- I)], this case is of particular interest. 
A separate paper of the author will be devoted to it. The main result here is that ~6~0 
(Q(I, n)) for n ~ I is homotopy equivalent with the two-dimensional torus. Probably the meth- 
ods of this paper can be extended to the remaining manifolds Q(m, n) also. Of the others the 
most interesting is the manifold Q(2, I), which is diffeomorphic with the quaternion space, 
i.e., the quotient-space of the sphere S 3 by the action of the group of eight unit quater- 
nions. 

The proof of Theorems I and 2 recounted in the present paper is based on the Smale con- 
jecture, whose proof, obtained by Hatcher [10, 11], is very difficult. The use of the Smale 
conjecture in the proof of Theorem I is apparently necessary. However, Theorem 2 can also be 
proved without using the Smale conjecture. Namely, such a proof was originally obtained by 
the author. The proof given in the present paper is based on the combination of the ideas 
of this original proof and the ideas of Hatcher [8]. It is essentially simpler in technical 
terms than the original proof. The use of the Smale conjecture allows us to concentrate on 
the difficulties connected with the fact that K lies in a one-sided way in Q(m, n). At the 
same time, essentially all the ideas needed to prove Theorem 2 without being based on the 
Smale conjecture are contained in the present paper and [14]. 

Theorem I can be supplemented by the calculation of the group ~0(~(~(~))i . It is 

equal to (~/~,)~ for m ~ I, 2 and n ~ I and is equal to ~ / ~  , where $3 is the sym- 
metric group, for m = 2 and n z I. For other m and n this group is also known; cf. the fol- 
lowing subsection. 

(1.4) Theorems I and 2 were announced by the author in [15, 16] along with the calcula- 

tion of the groups ~0~(~(~,~))) for m ~ I, 2 and n ~ I. The manifolds Q(m, n) were also 
introduced there. The manifolds Q(m, n) were also introduced independently by Kim [17], 
Rubinstein [22] and Asano [2]. Kim [17] and Rubinstein [22] applied the manifolds Q(m, n) 
to the study of the actions of some finite groups on S 3. Rubinstein [22], Asano [2], and 

Cappel and Shaneson (unpublished) calculated the groups ~(~(~(~))) for all m and n. 
These papers also contain a series of elementary facts about the manifolds Q(m, n): the cal- 
culation of the groups ~l(Q(m, n)) and HI(Q(m, n)) - it shows that the manifolds Q(m, n) are 
pairwise homotopically inequivalent; the identification of the manifolds Q(I, n) with the 
lens spaces and of the manifold Q(2, I) with the quaternionic space; the fact that the sphere 
is the universal covering of all the manifolds Q(m, n), from which it follows that these mani- 
folds are irreducible. We shall not repeat the proofs of these results here, or the calcu- 

lation of the groups ~0(~(~))), referring the reader to the papers cited. 

The splitting of the quaternion space into two parts, diffeomorphic with P and ~x~ , 
from which it is evident that it is diffeomorphic with Q(2, I), is already contained in Price 
[21]. Thinking about this paper led the author to the definition of the manifolds Q(m, n) 
and was the initial point in the study of their spaces of diffeomorphisms. 

(1.5) The rest of the paper is devoted to the proof of Theorems I and 2. They are com- 
pleted in Secs. 10 and 9, respectively. One of the main steps in the proof is the Basic lem- 
ma, proved in Sec. 8. Sections 3 and 4 are devoted to specific questions connected with the 
manifolds Q(m, n). Sections 5, 6, and 7 contain a series of general constructions needed in 
the proof of Theorems I and 2. Finally, Sec. 2 has an auxiliary character. It contains, in 
particular, the conventions and terminology used throughout the entire paper. 

2. Preliminary Material 

(2.1) We uge differential-topological terminology. Manifolds, diffeomorphisms, etc. are 
assumed to be of class C ~. The spaces of diffeomorphisms and embeddings are provided with 

the C~-topology as usual. 

(2.2) As usual, we denote by I the segment [0, I], by ~ and S n-l, respectively, the 

unit ball a~d Sphere in ~ A manifold which is diffeomorphic with I, ~ ~ , or S 2, re- 
spectively, will be called a segment, circle, disk, or sphere. By a disk with holes we mean 
a manifold diffeomorphic with a disk with the interiors of some pairwise disjoint disks 
lying in its interior discarded. By a ring we mean a manifold diffeomorphic with S I • I. 

A manifold diffeomorphic with ~Bx~! is called a solid torus. A circle Y, lying in 
the boundary SX of a solid torus X, is said to be a parallel of the solid torus X if the 
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inclusion Y r X is a homotopy equivalence, and a meridian of the solid torus X if it is 
null-homotopic in X and not null-homotopic in 8X. The intersection index (in ~X) of a merid- 
ian with a parallel is always equal to • 

By a surface we mean a compact two-dimensional manifold. A surface F imbedded in a 
three-dimensional manifold V is called a regular surface in V if ~F = ~V ~ F and F is trans- 
verse to ~V in V. 

By ~ we shall denote the half-disk ~ ~ , where ~ is the half-space {(~)~: 

the segment ~ N ~+ , so ~0~. By S% we shall denote the semicircle ~' ~ ~ , and by S! 

that 8~ ~- ~ ~ It is clear that ~ is a smooth manifold with corners. 

(2.3) In what follows we assume fixed the relatively prime natural numbers m and n such 
that m, n ~ I and we shall denote the manifold Q(m, n) simply by Q. 

The notation and conventions of (1.2) are used for the duration of the paper, in par- 
ticular, the group wi(T) can be identified with its image in ~i(K); a and b e can be con- 

sidered as its standard generators. The boundary ~(~x~ ~) of the solid torus ~ 4  will 
be identified with the boundary T of the manifold P by means of the gluing diffeomorphism 

[corresponding to Q = Q(m, n)].. We note that a meridian of the solid torus ~• has in T 
the homotopy class amb 2n. 

(2.4) The Covering q:Q~ § Q. We recall that P = v K/(%0)- where ~:T § K is 
the orienting covering. Let p:T x I + P be the canonical map and T:T § T be the involution 
permuting the sheets of the covering ~:T § K. We set P~ = T x [--I, I] and we define the map 
p:P~ § P by 

= 0. 

It is clear that p is a covering. Here p-i(K) = T x 0 and the map T x 0 + K, induced by p, 

is obviously the orienting covering. Moreover, p induces a homeomorphism between each of the 

components of the boundary~P~and the boundary~P. Hence one can glue toP- two copies of the solid 

torus ~ ; ~  so that the manifold Q~ obtained isatwo-sheeted covering of Qo Let q:Q~+Qbe 
the covering obtained. It is clear that Q~ {s a lens space. The torus p-i(K) divides Q~ 
into two solid tori, which we denote by R and R'. Further, we set r = q]R and r' = qlR'. 
The map r:R § Q obviously induces a homeomorphism R \ DR § Q \ K and a two-sheeted covering 
DR § K; this covering is orienting. 

3. Klein Bottles in Q 

(3.1) LE~IMA. A circle lying in a Klein bottle either bounds a disk in K or is isotopic 
with one of the four circles a~ ~, a~, B 2 indicated in Fig. I: in Fig. la there is shown the 
identification of sides of a rectangle giving K; in Fig. Ib the circles are indicated~ 

There is a proof in [21]; cf. [21, Lemma 2.1]. 

We note that the circle a (respectively, $, ~5, B 2) is isotopic with the image of some 
loop of the homotopy class a (respectively, b, ab, b2). This explains our notation. We note 
in addition that the circles isotopic with 5 or a5 lie in K in a one-sided fashion, and the 
others in a two-sided fashion~ 

(3.2) LEMMA. A connected, orientable surface A, lying in K, is a disk with holes~ Here 
either all components of the boundary ~A are contractible in K, or exactly two components are 
not contractible in K. 

For the proof we apply Lemma (3.1) to the components of the boundary ~A and we consider 
the possibilities which arise. We get that A is isotopic in K with either a tubular neigh- 
borhood of the curve ~ with some holes, or a tubular neighborhood of the curve 52 with holes. 

(3.3) In the rest of this section L denotes a Klein bottle in Q, isotopic with K. 

(3.4) LEMMA. If a circle on L is null-homotopic in Q, then it bounds a disk in L. 

Proof. It suffices to consider the case L = K. 
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Applying van Kampen's theorem to the subdivision of the manifold Q into P and ~ ~ ~ , we 

get the following representation of the group ~I(Q) by generators and relations: ~I(Q) = 
<a, blab~b -l = I, amb 2n = I>. From this one gets a representation of the group HI(Q) by gen- 
erators and relations: HI(Q) = <~, blab = ha, ~2 = I, amb 2n = I>. These a and b are the 
images of the generators ~ and b of the group ~l(K). Since m, n ~ I, one has that ~, b, ab, 
and b 2 are not equal to one in HI(Q). From this it follows that the circles ~, @, ~@, and @ 2 
are not nuli-homotopic (or even null-homologous) in Q. To complete the proof it remains to 
apply Lemma (3.1). 

(3.5) LEMMA. If L is transverse to K, then any component of the surface r-](L) is a 
disk with holes. 

[We recall that r:R + Q is defined in (2.4).] 

Proof. Since L is isotopic with K, one has q-](L) is a torus. Since %'I~)-----~'1~L~ ~ ~ , 
it follows that the surface r-](L) is orientable. On the other hand, a slight reduction of 
the surface r-l(L) can be imbedded in the Klein bottle L. By (3.2) it follows from this that 
r-](L) is a disk with holes. 

(3.6) LEMMA. If L is transverse to K, then no component of the boundary ~r-1(L) is 
either a parallel or a meridian of the solid torus R. 

Proof. We can assume that ~ is a tubular neighborhood in L of the intersection 

~ ~ . In this case the pairs (R, r-l(L)) and (~Bx~ ~O~x~ {) are obviously diffeomorphic. 

Hence it suffices for us to show that no component of the intersection LnT [which coin- 

cides with ~(~n~1) ] is either a parallel or a meridian of the solid torus ~Io 

It is clear that each component of the intersection ~oT is isotopic in T with a curve 

covering (under the covering ~:T § K) some component of the intersection ~ ~ . Using Lemma 

(3.1), we see that each component of the intersection L~T lies in one of the following 

homotopy classes: ~,~I (~)~I . Since m, n ~ I, none of these classes coincides with ~he 

homotopy class @~{~ of a meridian of the solid torus ~x~ Hence none of the compo- 

nents of the intersection ~T is a meridian of the solid torus ~ 4  Further, since 

m, n ~ I, the intersection index in T of any of the classes ~ ~I ~ with the class 

a~ ~ of a meridian is equal to • Hence, none of the components of the intersection b~T 

is a parallel of the solid torus ~ .  

(3.7) LEMMA. Let L be transverse to K and let A be a component of the surface r-~(L). 
Then either all components of the boundary ~A are contractible in ~R, or exactly two compo- 

nents are not contractible (in ~R). 

Proof. It is clear that ~r ~) and that each component S of the boundary ~A 

covers a component r(S) of the intersection ~ . Here S is contractible in ~R if and only 
if r(S) is contractible in K. In fact, in case r(S) either bounds a disk in K or is one of 
the standard curves ~, B, ~@, 82, this assertion is obvious (we recall that ~R § K is an 
orienting covering); the general case reduces to this by (3.1). 

Further, by (3.4), r(S) is contractible in K if and only if r(S) is contractible in L. 

Now let B be a slight reduction of the surface A; more precisely, let B be obtained by 
imbedding in A the interior of some collar of the boundary. Let S' be the component of the 
boundary ~B, corresponding to the component S of the boundary ~A. It is clear that either 
r(S) and r(S') bound a ring in L and thus are isotopic in L, or r(S') is the boundary of a 
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MSbius strip with axis r(S) lying in L. From this it is clear that r(S) is contractible 

in L if and only if r(S') is contractible in L. 

Combining the equivalences obtained, we see that S is contractible in DR if and only if 
r(S') is contractible in L. By (3.5), the surface A, and hence the surface r(B) also, is a 
disk with holes. It remains to use Lemma (3.2)~ 

(3.8) LEMMA. If L is transverse to K, then at least one of the components of the bound- 
ary ~r-• is not contractible in DR. 

Proof. Obviously it suffices to show that if L is transverse to K, then at least one of 

the components of the intersection ~n~ is not contractible in Ko Let us assume the con- 

trary. Then by Lemma (3.4) each component of the intersection ~N ~ is contractible not 
only in K, but also in L. Standard arguments (cf.~ e.g., [19, Chap. 2, Sec. 5~ show that 

then L is isotopic with a surface L' such that ~fN[-~- ~ . Thus we get an imbedding of a 

Klein bottle in Q \ K. Since Q \ K is diffeomorphic with ~ g X ~  I , this is impossible. 
The contradiction obtained completes the proof. 

4. Admissible Surfaces in a Solid Torus 

(4.1) Let X be a solid torus and A be a surface in X. We shall say that A is an ~U- 
missible surface in X if the following conditions hold: 

(4.1.1) A is a regular surface in X; 

(4.1.2) A is a disk with holes; 

(4.1.3) none of the components of the boundary DA is either a parallel or a meridian o[ 
the solid torus X; 

(4.1.4) either all components of the boundary DA are contractible in DX, or exactly two 
components are not contractible in DX. 

We shall call an admissible surface A in X inessential if all components of the boundary 
DA are contractible in DX, and essential in the opposite case~ 

The following lemma shows how admissible surfaces arise from Klein bottles in Q. 

(4.2) LEMMA. Let L be a Klein bottle in Q, isotopic with K. If L is transverse to K, 
then any component of the surface r-l(L) is an admissible surface in R. 

This is a consequence of Lemmas (3.5), (3.6), and (3~ 

(4.3) Let A be an essential admissible surface in X. In addition, let no component of 
the boundary DA be contractible in DX~ Then obviously A is a ring and A is not contractible 
in X [i.e., the inclusion homomorphism ~(A) + ~I(X) is a monomorphism]. As is well known, 
a regularly imbedded noncontractible ring in a solid torus is a parallel of the boundary, 
more precisely, of a part of the boundary. In other words, A divides X into two parts, at 
least one of which, say W, has standard form: the triple (W; A, SX ~ W) is diffeomorphic with 

the triple (~ ~I; ~x~fj~ X~I) Since the components of the boundary DA are not parallels 
of the solid torus X, only one of these parts has standard form~ We shall denote this part 
by Wx(A) or simply W(A). 

(4.4) LEMMA. Let A be an essential admissible surface in X. Let ~{;~:~ ~ ~ be 
two imbeddings such that: 

~$(~) is transverse to A and to DX; 

the two points which constitute hi(~SJ ) lie on two different components of the boundary 
DA which are not contractible in DX~ 

Then and lie on one side of A. 

Proof. We set ~4~-~{(~) , i = I, 2. We glue disks to all components of the boundary 
~A which are contractible in DX; we denote the surface obtained by A +. Obviously A + is a 
ring. The inclusion A r X obviously extends to a map A + § X; let i be some extension~ 
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Each of the segments ~{~ A, ~N A joins two components of the boundary SA +, and hence these 
segments are homotopic in A + in the class of segments joining two components of the boundary. 

Let h:l • I § A + be the corresponding homotopy, so that h induces homeomorphisms IX 0-~4~ 

A, IX ~'~'~A and ~(0xl}j ~(~Xl)C ~A § we glue ~ and ~ to I • I by means of 

these homeomorphisms Ix0 ~-~NA ,Ix~--~N~ ; let~ be the space obtained. Ob- 

viously ~ is homeomorphic with a disk. The inclusions ~{<~-X~ ~ c_~ ~ together with the 

composition ~oZ:I~I , X determine a map ~--->- X , which we denote by j. If ~{ and ~$ 

lie on different sides of A, then the intersection index in ~X of the loop } I~ with any 

component of the boundary ~A + is equal to • (cf. Fig. 2). Since the loop ~I ~ is null- 
homotopic in X (j defines the homotopy), it follows that in this case the components of the 
boundary ~A + are parallels of the solid torus X. Since these components are simultaneously 
components of the boundary ~A, this contradicts the admissibility of A. 

(4.5) LEMMA. Let A and B be essential admissible surfaces in X. Suppose none of the 
components of the boundary ~A and none of the components of the boundary ~B is contractible 

in ~X. If ~O~=~ , then either ~(A]N~(B)~-~ , or W(~)r W(B) , or W(~)r 

Proof. We note first that obviously the components of the boundary ~A are isotopic with 

components of the boundary ~B. If W(~) N ~(B) =~= @ , then either ~N~) =#= r or BN~(~) 

~. In the first case obviously ~r and OAcW<B)n 8K Here ~A bounds some ring C 

in ~)~X Moreover, A divides W(B) into two solid tori. Let Y be the one which con- 

tains C. It is clear that ~-~N~ and that the triple (Y; A, C) is homeomorphic with the 

triple ~$x~{~ ~x~{~ ~ ; ~) �9 Hence Y = W(A) and ~(~)G ~). Analogously, if ~N ~(~) =f= 

~, then ~)C~(~). 
5. General Position 

(5.1) Let M and N be closed surfaces in the closed three-dimensional manifold Z. We 

shall say that the point z~NN is a singular point of intersection of M with ~ if M is not 

transverse to N at x. In this case the germ at x of the triple (Z; N, M) is obviously dif- 

feomorphic with the germ at 0 of some triple of the form (~x~x0, F) such that F is the 

graph of some function ~ZL_~. ~ having 0 as a critical point. 

If this function has 0 as a critical point of finite multiplicity (this circumstance 

does not depend on the choice of triple (~X~ , ~x 0, ~ )), then we shall say that x is a 
singular point of finite multiplicity. (For the definition of critical points of finite mul- 
tiplicity, cf., e.g., [I].) We shall say that M is in general position with N if all singu- 
lar points of the intersection of M with N are of finite multiplicity. 

Let F be some closed surface. We shall say that the imbedding F § Z is in general posi- 
tion with N if its image is in general position with N. 

(5.2) LEMMA. Any finite-parametric family of imbeddings F § Z admits an approximation 
by a family of imbeddings in general position with N. 

This follows from the Thom transversality theorem and the fact that the set of all ~- 
jets of fUnctions at critical points of infinite multiplicity has codimension ~ in the space 
of all jets of functions (cf. [I]). 

(5.3) For a function ~:~ ~ ~,~ we shall denote by Ff its graph; ~r [-~]. 

Let ~ be a singular point of finite multiplicity of the intersection of M with N. By 

definition, for some neighborhood U of the point ~ in Z the quadruple (Z,NN~, ~,~) is 

diffeomorphic with some quadruple of the form (~x0, ~, ~x~,~] ), where ~:@~-~-(-~) is a 
function having 0 as a critical point of finite multiplicity. If here 0 is the unique criti- 
cal point of the function f and f-z(0) is a union of several segments joining 0 with ~ , 
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Fig. 2 Fig. 3 

transverse to ~ , and intersecting only at 0 (cf. Fig~ 3), then we shall say that U is a 
regular neighborhood of the point ~. 

We shall show that ~ always has a regular neighborhood. Firstly, since a critical point 
of finite multiplicity is isolated in the set of all critical points (cf. [I]), we can assume 

that 0 is the unique critical point of the function f. Further, since for a function ~:~--+- 

with critical point of finite multiplicity at 0 there exists a diffeomorphism ~:(~0)-~ 

(~0) such that the germ of the function g o h at 0 is polynomial (cf. [I]), one can assume 
in addition that the function f is polynomial. Then by Theorem 2.10 of [20] for a disk ~ 

of sufficiently small radius with center at 0 the pair ~n$'~(0)) is homeomorphic with 

the pair (~0~C~'~(0~)) , where con is a rectilinear cone with vertex at 0o Moreover, as 

is evident from the proof of this theorem, the homeomorphism (~O~'~(0)) (~J~Y~(~'~0))) 
can be chosen so that it is a diffeomorphism away from 0. From this it is evident that the 

image of the cylinder ~X [-1,1] under the diffeomorphism ~X [-~,~] ~ ~ is a regular 
neighborhood of the point ~. 

We note for what follows that if the function ~:~--~-(-1,1) satisfies the conditions 

from the definition of regular neighborhood, then 0 is a regular value of the function ~ �9 

moreover, ~'f(0)~ consists of an even number of points. The second assertion obviously 
follows from the first. The first, in its own right, follows from the fact that f has no 

critical points on ~ and f-l(0) is transverse to ~ ~ 

(5.4) LEMMA. Let M be in general position with N; ~ C ~  Let ~:~[-~]--~ 

be an imbedding such that ~~---~ ~(~x0) �9 Then for all sufficiently small u the disk 

~(~;~) is transverse to M. 

Proof~ Let ~ $  If ~(~0) is not a singular point of the intersection of M with N, 

then for some neighborhood Uy of the point y, obviously ~(~X~) is transverse to M for all 
sufficiently small u. Now let ~(~j0) be a singular point. ~If Uy is a sufficiently small 

neighborhood of the point y and s is sufficiently small, then ~-~(~)n~xf-~] is the graph 
of some function Uy + (--e, ~). This function has y as a critical point of finite multiplicity~ 
Since critical points of finite multiplicity are isolated in the set of all critical points, 
we can assume that y is the unique critical point of this function. Then ~(~ ~) is trans- 

verse to M for Iul < ~. In order to complete the proof, it suffices to note that from the 

family ~ ~  one can choose a finite covering of the disk ~@. 

6. Reconstruction along the Boundary 

(6.~) Let M be a regular surface in the three-dimensional manifold Z. Let ~:~X~ ~ 

be an imbedding such that and #(~xl)=~n~(~XI) . Let M~ be the 

result of smoothing corners in the surface (~\~(~~I))~ ~(~I) . In this situation we 
shall say that M' is obtained from M by reconstruction along the boundary in Z by means of 
the imbedding h. See Fig. 4. 
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It is clear that M' is a regular surface in Z. The boundary ~M' is obtained from SM 
by Morse reconstruction of index ]: h(S! • I) is the corresponding handle. 

(6.2) Let M' be obtained from M by reconstruction (along the boundary) by means of h, 
and M" be obtained from M' by reconstruction by means of h'. If the images of the imbed- 
dings h and h' do not intersect, then obviously these reconstructions can be commuted: M" 
can be obtained from M by first reconstructing by means of h' and then reconstructing by 
means of h. Actually, these reconstructions can be done simultaneously. 

More generally, if several imbeddings such as in (6.1) are given, and their images are 
pairwise disjoint, then reconstruction by means of these imbeddings can be done simulta- 
neously. 

7. Special Approximations of Surfaces 

(7.1) Let N be a closed surface in the closed three-dimensional manifold Z. Each sur- 
face M in Z can be approximated by a surface transverse to N. In case M is in general posi- 
tion with N [in the sense of (5.1)], there is a particularly convenient class of such ap- 
proximations, the class of special approximations. This section is devoted to defining it. 

Let M be a closed surface in Z, in general position with N. Let ~ be a singular point 
of intersection of M with N. We choose a regular neighborhood U of the point ~ and a corre- 

sponding function f, such that the quadruples A---(~jNN ~, MN~) and B~{~0, ~,~r 
are diffeomorphic and f satisfies the conditions from the definition of regular neighbor- 
hood [cf. (5.3)]. In particular, the preimage f-l(O) is the union of some segments joining 

0 to ~ , and since ~-~0)n~ ~ consists of an even number of points [cf. (5.3)], the 

number of these segments is even. Cf. Fig. 5a. Let ~:~- > ~) be some function co- 

inciding with f near ~ , having 0 as a regular value, and such that the preimage g-l(0) 
consists of several pairwise disjoint segments, each of which joins two neighboring points 

of the intersection ~-4(0) N ~ , so that up to an isotopy which is the identity on ~, 
one has two possibilities for g-1(O), which are pictured in Fig. 5b and c. Since 0 is a 

regular value of the function ~I ~% [cf. (5.3)], such functions g obviously exist. It is 

clear that for such a function g the graph Fg is transverse to the disk ~x 0 in ~;[-~,~] 

In the surface M we replace the piece MN ~ by the surface corresponding to the graph Fg 
under the diffeomorphism of quadruples A § B. We perform the analogous operation for the 
remaining singular points of intersection of M with N. The surface obtained is obviously 
transverse to N; by the choice of the functions g, we can arrange that it will be arbitrarily 
close to M. We shall call surfaces obtained from M in the way indicated special approxima- 
tions of the surface M (with respect to N). 

We note that for the quadruple (0,~0,~x~1])-- , where g is a function par- (7.2) 
ticipating in the construction of a special approximation of the surface M near some singu- 

lar point, there are, up to an isotopy which is the identity on ~(~x[-IJ1J) , two possibili- 
ties for the preimage g-l(0). Hence, close to a given singular point a special approximation 
M' of the surface M can be constructed in only two essentially different ways. If U is a 
regular neighborhood of a singular point, taking part in the construction of a special approx- 
imation, and U0 is one of the two halves into which N divides U, then these two ways are ob- 

viously distinguished by whether ~gN~ 0 is connected or disconnected. 
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(773) Now let the surface N divide Z into two parts Z0 and Zl, so that Z-----~U ~I and 

~--~Z0=~ �9 Let M v be a special approximation of the surface M such that for any singular 

point ~ the intersection ~ f ~  Zv is disconnected, where U~ is the regular neighbor- 
hood of the point z taking part in the construction of M'. Let M" be some other special ap- 

proximation of the surface M. It is clear that ~f~Z0 and ~ff~ Ze are regular surfaces in 
Z0. 

_(7,4) LEF~4A. Under the conditions of (7.3), one can get from the surface ~ffN~ by 
simultaneous realization of several reconstructions along the boundary in Z0 [by means of im- 

beddings withpairwisedisjointimages; cf. (6.2)] asurface isotopic with the surface .~0 
in the class of regular surfaces in Z0. 

Proof~ We can assume that in the construction of the approximations M' and M" the same 

regu la r  neighborhoods and the same diffeomorphisms of quadruples (g ;N~g ,  ~,t~)--~O,  
~,~%~{,~]) from (7.]) are used. In fact, the choice of other regular neighborhoods and dif- 

feomorphisms in the construction of the approximation M ~ leads to replacement of the surface 

~fnZ~ by a surface which is isotopic (in the class of regular surfaces in Z0)o (The same 
is true for M".) 

Thanks to this, it suffices to consider our situation in a regular neighborhood of a 

singular point and even the corresponding situation in ~x [-~,~] The latter is pictured 

in Fig. 6. By F we denote the homeomorphism of quadruples (g, ~ n ~ 8 ~  ~)~ (~0~ 

@~[-~,~]) of (7.1). Here it is assumed that ~(~n~o)=~• (this obviously does not re- 

strict the generality) and only those parts of the surfaces are pictured which lie in ~x 
[0, I] (it is precisely these in which we are interested). It is clear from the figure that 
the reconstructions and isotopies needed exist. 

8. Basic Le~m 

(8.1) Let UC(0'I] �9 We denote by Pu the image of the product T x [0~ u] under the 
canonical map T • I § P [of. (1.2)], so that Pu is diffeomorphicwithP and P~ =P. We setR u = 
C~(Q \ Pu); it is clear that R u is a solid torus, 

(8.2) Basic Lemma. Let L be a Klein bottle in Q, isotopic with K and in general posi- 
tion with K. If u is sufficiently small, then each component of the surface L ~ ~a is an 
admissible surface in the solid torus Ru. 

The rest of this section is devoted to the proof of this len~a. 

(8.3) We recall that q:Q~ + Q is the standard two-sheeted covering from (2.4)~ We set 

L ~ = q-1(L) and Ru = r-l(Ru ) [where r = qlR; cf. (2.4)]. It is clear that the pair { ~  

R u) is diffeomorphic with the pair (~; ~ )  Hence it suffices for us to prove that 

for sufficiently small u each component of the surface ~~~ ~ is an admissible surface in 

Further, let L~ be a special approximation of the surface L ~ with respect to q-1(K), 

such that for any singular point the intersection ~]N ~ N ~ is not connected, where Uz 
is the regular neighborhood of the point z which takes par~ in the construction of L[. 
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F i g .  6 

O b v i o u s l y  f o r  s u f f i c i e n t l y  smal l  u the  p a i r s  (R,L~nB) and (~,gnB~] a r e  d i f f e o m o r p h i c .  

Thus i t  s u f f i c e s  f o r  us to  show t h a t  each component  of  the  i n t e r s e c t i o n  ~t ~ ~ i s  an admis -  
s i b l e  s u r f a c e  in R. 

(8 .4 )  Let  L0 be some s p e c i a l  a p p r o x i m a t i o n  of  the  s u r f a c e  L wi th  r e s p e c t  to  K and l e t  

go= ~-4(~o). It is clear that L~ is a special approximation of the surface L ~ [with respect 

to q-l(K)]. We set H0~---L~N ~ and H =~IN ~ The surfaces H0 and H are regular surfaces 
in R. By Lemma (7.4), from H0 one can get, by simultaneous realization of several reconstruc- 
tions along the boundary in R, a surface which is isotopic with H in the class of regular sur- 
faces in R. Let this be reconstructions by means of the imbeddings hl,...,hm; the images of 
these imbeddings are pairwise disjoint. Let HI be the result of reconstruction of the sur- 
face H0 by means of hl, H2 be the result of reconstruction of the surface Hi by means of 
h2,...,Hm be the result of reconstruction of the surface Hm-1 by means of hm; H m is isotopic 
with H. Changing the indexing of the imbeddings hi, if necessary, we can assume that for 
some n < m one has the following: 

(8.4.1) for i = 1,...,n the image Imh i intersects no more than one component of the 
boundary ~H i which is not contractible in ~R; 

(8.4.2) for i = n + 1,...,m the image Imh i intersects two components of the boundary 
~H n which are not contractible in ~R [we stress that (8.4.2) is concerned with 

~Hn, and not ~H i as in (8.4.1)]. 

(8.5) We shall show that for i = 0,...,n, each component of the surface H i is an admis- 
sible surface (in R). We shall prove this by induction on i simultaneously with the follow- 
ing assertion: 

(8.5.1) at least one of the components of the boundary ~H i is not contractible in ~R. 

For i = 0 this assertion is valid by Lemma (3.8), and moreover, each component of the 
surface H0 is admissible by Lemma (4.2). Now let our assertions be valid for i ~ k and k < 
n. Obviously each component of the surface Hk+1 is a regular surface in R. Since recon- 
struction along the boundary obviously carries a disk with holes into one or two disks with 
holes, each component of the surface Hk+l is a disk with holes. Further, since each compo- 
nent of the surface Hk is admissible, it follows from (8.5.1) that at least two components 
of the boundary ~Hk are not contractible in ~R. Hence, by (8o4.1) the image Imhk+l does 
not intersect some component S of the boundary ~H k which is not contractible in ~R. It is 
clear that S is also a component of the boundary ~Hk+l and that all components of the bound- 
ary ~Hk+l which are not contractible in 8R are isotopic with S. Since S is neither a parallel 
nor a meridian (by the inductive hypothesis), no component of the boundary ~Hk+1 is either a 
parallel or a meridian. To justify the inductive step it remains for us to verify that each 
component of the surface Hk+l either has exactly two components of the boundary which are not 
contractible in 8R, or has no such component. 
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We shall prove this. For a regular surface F in R we shall denote by n(F) the number 
of components of the boundary DF which are not contractible in DR. Let G be a component of 
the surface H k which intersects Imhk+l, and let G' be the result of reconstruction of the 
surface G by means of h k. Since each component of the surface Hk+ I is obviously either a 
component of the surface H k or a component of the surface G', it suffices for us to show 

that n(G") = 0 or 2 for any component G" of the surface G'. 

If Imhk+1 intersects two components of the boundary DG, then obviously the surface G' 
is connected. Here if Imh k intersects two components which are not contractible in DR, then 
n(G') = 0, while in the opposite case n(G') = n(G) = 0 or 2 (by the inductive hypothesis). 

Now let Imhk+1 intersect only one component S of the boundary DG and let So, Sl be com- 
ponents of the boundary DG' obtained [by some Morse reconstruction; cf. (6.1)] from S. In 
this case obviously G' consists of two components Go and GI containing So and Sl, respec- 
tively. We note that n(G i) ~ I, i = 0, I. In fact, if DGi has exactly one component which 
is not contractible in DR, then this component is contractible in R (since Gi is a disk with 
holes) and hence is a meridian, which contradicts what has been proved already. If S is con- 
tractible in DR, then obviously the circles So and Sl are either both contractible in DR, or 
are both not contractible. Thus in this case either n(G') = n(G), or n(G') = n(G) + 2, and 
hence n(G') = 0, 2, or 4. Combining this with the fact that n(G') = n(G0) + n(Gl) and n(G0), 
n(G1) ~ I, we get that n(G i) = 0 or 2, i = 0, !. It remains to consider the case when S is 
not contractible in DR. Let S' be a second component of the boundary DG which is not con- 
tractible in DR (it exists, since Hk, and thus G, is an admissible surface). Since k < n, 

one has In ~+~ ~r=~ If we cut R along S', then we get some ring C. The circle S divides 

C into two rings (since S is isotopic with S' in DR). It is clear that hk+l(S! • I) lies 

entirely in one of these rings. Since ~o u$i is obtained from S by Morse reconstruction by 
means of the handle hk+1(S! x I), it is evident that one of the circles So, $I is contract- 
ible in DR, and the other is not. Thus n(G') = n(G) = 0 or 2. Combining this, as above, 
with the fact that n(G') = n(G0) + n(Gl) and n(G0), n(Gl) ~ I, we ge t that n(Gi) = 0 or 2, 
i = 0, I. 

This completes the justification of the inductive step. Thus, we can conclude that each 
component of the surface H i with i = 0,...,n is an admissible surface. 

(8.6) Now we show that each component of the surface Hm is admissible. Since Hm is iso- 
topic with H, this completes the proof of the basic lemma. 

If m = n, then everything is already proved. Let m > n. Let G be some component of 
the surface Hn, and let the images of the imbeddings hn+1,.o.,h~ intersect with G, and those 
of the imbeddings h1+7,...,h m not (this can alreays be achieved by changing the indexing of 
the imbeddings). Let G' be obtained from G by simultaneous realization of the reconstructions 
by means of hn+l,...,h ~. It is clear that G' is the union of several components of the sur- 
face H m. By (8.5), G is an admissible surface. In view of (8.4.2), Lemma (4.4) is applicable 

to all pairs of imbeddings ~{I ~x0~ ~I~X 0, ~ ~ It follows from this learns that 

the images Im hn+ ~ .... ,Imh~lie on the side of G. Since in addition each of these images 
intersects two components of the boundary DG which are incontractible in ( )* (and there 
are always two such components), it follows that all components of the boundary DG' are con- 
tractible in DR. Since the surface G' is obviously regular and is a union of several disks 
with holes, it is evident that each component of the surface G' is an admissible surface. 

Since each component of the surface Hm is obtained from some component of the surface 
Hn, we see that each component of the surface H m is admissible. This concludes the proof of 
the Basic Lemma. 

9. Proof of Theorem 2 

(9.1) We recall [cf. (8.1)], that for ~E(0;~] we denote by Pu the image of the product 
T • [0, u] in P, and by Pu we denote Cl(Q \ Pu)- By T u we denote the torus DR u. 

If L is a surface in Q which is in general position with K, then for all sufficiently 
small u, the torus T u is transverse to L. This follows from Lemma (5.4). 

*A symbol was missing in the Russian original -- Publisher. 
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(9.2) To prove Theorem 2 it suffices for us to show that ~'~(E0(~,~), E0(~,~))-~-0 for all 

n. Let the family of imbeddings [ ~ : ~ } ~ m  represent some element of ~(E0(K,~), E0(K~ 

P)). We need to show that this element is equal to zero~ Using Lermna (5.2), we can assume 

that all surfaces ~), ~ are in general position with K. Moreover, we can assume that 

~e.b(,K)c~l;~) for " ~ '  . We set ~=~(~J,~. 

Let ~ . Since K t is in general position with K, one has that K t is transverse to 

T u for all sufficiently small u, say for ~,~(~)<I [cf. (9.1)]. It is clear that all 

pairs ( ~ , ~ )  with ~U~) are diffeomorphic. We choose a closed spherical neigh- 

borhood U~ of the point t in ~ , such that K s is transverse to Tun(t) for ~ .  

The collection of neighborhoods ~ , ~E~ ~ forms a covering of the ball ~ . We 

choose a triangulation ~n of the ball ~ subordinate to this covering, i.e., such that 
n 

each closed simplex o of T n lies in the neighborhood Ut(o) for some point ~(~)~. We set 

u(o) =Un(t(o)) and we denote by A n the collection of (closed) n-dimensional simplices of the 
triangulation n. 

Let X n_ ~ be the (n -- 1)-dimensional skeleton of the triangulation T n, Let ~ ~.~ 

We choose a number Un_~(t ) such that 0 < Un(t) < u(o)for ~6~f~ ~ and K t is transverse 
n-i to T u for 1&~.~(~) We choose a closed spherical neighborhood U t of the point t in ~', 

such that K s is transverse to ~.~(~ for ~ ' ~  

The triangulation ~n induces a triangulation of the skeleton Xn_ ~. We refine this tri- 
angulation to a triang, lation ~n-~ of the skeleton Xn_ ~ having the following property: for each 
(n - l)-dimensional simplex ~ of the triangulation T n the restriction of the triangulation ~n-~ to 

o is subordinate to the covering ~ of the simplexo. Thus, for each simplex~ of ~n-~ 

one can find a point ~(~)~ X~.~ such that ~ ( ~  and if o lies in the (n- 1)-dimen- 

siona! simplex o' of the triangulation ~n, then ~(~)6 ~'f. We set u(o) = Un-l(t(o)). Let An_ ~ 

be the collection of (n- ~)-dimensional simplices of the triangulation ~n--~" It is clear 

that if ~.~ , ~f~f~ and 0~ ~f then u (~)~ ~(~f) 

Now we consider the (n -- 2)-skeleton Xn_2 of the triangulation ~n-~ and with it we make 
the analogous construction (to that made with Xn-i); now ~n-~ will play the role of ~n~ Then 
we make the analogous construction with the (n--3)-dimensional skeletonXn_ ~ of the triangulation 
~n-~ obtained, etc. As aresult, weget asequence of triangulations ~n,..-, ~o such that ~i-~ 
is a triangulation of the (i- ~)-dimensional skeleton Xi-~ of the triangulation ~i (i = 
n,...,1). We denote by A i the collection of i-dimensional simplices of the triangulation 
~i, and by A the union A~;... ~0 . For each simplex @'~ there are defined a number 

$ 
u(o) and a point t(o). Here if ~6 ~J~(~-) , then K s ~s transverse to Tu(o ) and if ~(~) , 

then T u is transverse to Kt(o). Moreover, if ~'~.~ , ~s and ~'~'~ , then ~{~')~/ 

and ~(6"~'H,(~r) . For ~ we set ~ = ~ ,  T~=r.tl,(.o...9, ~,.=~1,,~(~,,) and t ) ~ . ~ ( ~ ' )  " 
(9.3) LEMIViA. For ~6~ each component of the surface~f~is an admissible surface in R o. 

Proof. Firstly, K t is transverse to T o for ~ and hence all pairs (~g,K~8 ~) with 

~ .  are diffeomorphic. In particular, these pairs are diffeomorphic with the pair (~ 

~9 8~)" Further, Kt(o) is transverse to T u for ~$~(s and hence all pairs ~ ~0~ 

R u) with $~(~) , in their own right, are diffeomorphic. Thus for ~$~ and ~(s the 

pairs (~ ~ s  and (.'~,~'~(@j ~ ~ )  are diffeomorphic (we recall that ~ -----~'} ). 

By the Basic Lemma (8.2), for sufficiently small u, each component of the surface [$(~)8 ~ 

is an admissible surface in Ru. Hence also each component of the subspace [~ ~ ~ for ~ 
is an admissible surface in R o. 
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(9.4) Let ~ For ~A such that ~ ~s we denote by ~ the collection of 

components of the intersection K~N bounding a disk in Too We set ~-----0s163 By 

Lemma (3.4), each circle from ~+ bounds a disk in Kt also. Hence there is a standard iso- 

topy [ ~ I  , fixing the components of the intersection ~$~Tp belonging to ~$ (cf., 

Cog., [8, Sec. I] or [19, Chap. 2, Paragraph 5.2]). In more detail, for ~E~$s we denote 

by ~T(~) and ~K(~) disks bounded by the circle S in T o and Kt, respectively. If the 

disk ~T(~!~ with ~ is minimal with respect to inclusion among disks ~q~(~) with 

~e~, then the union ~(ff0).~K(.~Q)7: is obviously a sphere. Since Q is irreducible, 

this sphere bounds a ball in Q. This ball defines an isotopy carrying ~K(~) into ~T(~0) . 

Extending this isotopy slightly farther, we make the image of the disk ~.K(ff0) encounter 

the disk ~. (if0) and thus we get an isotopy of the Klein bottle Kt, fixing the component 

So of the intersection with T o . Successively realizing several such isotopies, we get an 

isotopy {~}~e]~ such that ~0= ~ and ~IfIT~ has no component bounding a disk in T o 

(for ~6~ ). Obviously if ~ C ~  , for example, if ~:~N , then all of this isotopy 

takes place in intP, i.e., ~ C ~  for all ~I. 

We look at what happens with the components of the surface ~[l~F (for ~ ) under 

the isotopy described. Each such component is an admissible surface by (9.3). If it is a 
nonessential [cf. (4.1)] admissible surface, then it obviously disappears under the isotopy. 
Now if it is an essential admissible surface, then as a result of the isotopy it becomes some 
new admissible surface. The boundary of this new admissible surface is the union of those 
components of the boundary of the original surface (components of the surface Kt ~ Ro) which 
do not bound a disk in T O . Thus the boundary of this new surface consists of two components 
and the surface itself is a ring. 

On the other hand, obviously each component of the surface ~4N ~ comes from some com- 

ponent of the surface ~$ N ~. In particular, all components of the surface ~n~ are 
admissible. 

(9.5) Now we want to put the isotopies [~}~61 of the preceding paragraph together 

into a continuous family [~}~e~,~l For t~is we use Hatcher's construction from [8, 

Sec. ~]. We already have almost everything we need to apply this construction. It is only 
necessary to note that we obviously can enlarge each ball U o slightly and get a ball U o such 

that K t is transverse to T O for $~- and ~ = ~  ~ . We apply Hatchet's construction to 

the family ~ ] ~  , the coverings {~}@~A~ [~}~&, the tori T O and the family{~}~ 
f in the roles, respectively, of the family {~}~$~ , the coverings {~{~}, the slices 

hi, and the family {~. Hatchet's construction (recounted in [8, Sec. i] in the 

simplest special case) works in our situation, requiring only one essential change: since 
we are working in the differential category, instead of Alexander's method one needs to use 
the Smale conjecture, proved by Hatcher [~0, ~I]. As a result we get a family ~ , ~ I  

such that: ~-~ for all ~ ; ~ has no component bounding a disk in T o for ~ 

~; each component of the surface ~ ~. is an admissible surface in R o and simulta- 

neously a ring (for ~ ); ~C~P for ~ .  

(9.6) Let ~ . Let A~,...,A~ be the collection of components of the surface ~ 

Roo Since each surface A i is admissible [cf. (9.5)], the manifolds W(A i) = WRo(Ai) are de- 

fined. By Lerm~a (4.5), for any i, j, either ~(~) ~W{~ ------~ , or ~(~ C ~(~) , or W 

~$) c~(~. From which it follows that the manifold ~=!~(~)W..oO~(~} is a trivial co- 

bordism between ~ ~ and ~(~N~s ). It follows from this, in its own right, that 
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the manifold C.~--Pc, uW is a tubular neighborhood of the Klein bottle K in Q. Obviously 

~t~c0~s . Moreover, if ~G~ ~ , then C~r (since K~4C~j~) 

Now we want to get from the tubular neighborhoods Cto a continuous family ~0~}1~e~ 

of tubular neighborhoods of the Klein bottle K in Q, such that t~t1r ~ for all ~e~ ~ and 

C t = P for ~E~ ~ Paragraphs (9.7)-(9.9) are devoted to this problem. 

(9.7) LEMMA. Let ~ N ~r , while ~r ~=/= ~-. Then C~ r C~f~. 

Proof. Let C' be a slightly enlarged tubular neighborhood of CtT such that C~r162 O [ 

Obviously, it suffices to prove that C~cC f for any such C'. Since ~ 17 one has u(o) < 

u(O) and hence ~cjp~ ; in particular, ~r Let A1 .... ,A l be the components of the 

surface ~ n ~ , as in (9.6). Since ~,= O r,, it remains for us to show that W(~)c C[ 

for all i. Since ~W(~)r uTs , one has ~(~)r ! . Hence either ~(~)r , 

or ~(~)~ ~0 f . However the inclusion ~(~)~ ~0 f is impossible: since A i is an admis- 

sible ring, the inclusion homomorphism ~(~(~))--~(~s is not an epimorphism; on the other 

hand, the inclusion homomorphism ~4(0~6 --~ ~4(~) , andwith it the inclusion homomorphism 

~4(~O!)--~-~'~),is obviously an epimorphism. Thus W(~$)=~ 0 ~ , which completes the proof. 

In view of this lemma the existence of the family [ 0 ~  needed is essentially ob- 

vious. The reader who does not doubt this can skip Paragraphs (9.8) and (9.9), which are 
devoted to the formal proof. 

(9.8) LEMMA. Let X0 and XI be two polyhedra, where ~r and let ~ o (~ } '~  X~ and 

{C$}I~X ~ be two families of tubular neighborhoods of the Klein bottole K in Q. If intC~ m 

C~ for all ~ , then there exists a family ~C~}~X~ of tubular neighborhoods such that 

Ct = C t for ~X4 and ~ C~= ~ for ~Xo 

lit is clear that the pair (Q, K) can be replaced by a pair consisting of an arbitrary 
manifold and a compact submanifold of it.] 

Proof. If we cut Q and C~ along K, then C~ becomes a collar of the boundary of the 
manifold obtained by cutting Q. Applying to the family of collars obtained in this way the 
uniqueness theorem for collars (cf., e.g., [18, Essay I, Appendix A]) we see that the family 

{~}~X~ is isotopic with the constant family. Applying the collar uniqueness theorem again, 

C ~ we can reduce the lemma to the case of constant families ~ ~}~e~. and {~}I~X~ �9 In this case 

the lemma obviously follows from ~he fact that C~4+~ is diffeomorphic with ~Oix T 

(which, in its own right, is a consequence of the collar uniqueness theorem). 

(9.9) This paragraph completes the proof of the existence of a family ~ i ~  ~ of 

tubular neighborhoods such that KT~ r for all ~P~ and Ct = P for ~ .  

It is well known (cf., e.g., [23]) that with each triangulation of a piecewise-linear 
manifold there is connected a subdivision of this manifold into handles in which to a simplex 

of dimension i there corresponds a handle of index i. We need, in the case of the ball ~m , 

a small generalization of this construction, in which to handles there correspond simplices 

of A not lying in ~ In more detail, we set ~f__--~'~A:~ ~}. We need a subdivi- 

sion into handles ~=Cu U~[ H~ of the ball ~ with respect to the boundary ~ , 

in which C is a collar of the boundary ~ and to each simplex ~A ~ corresponds a handle 

Ho of index dim~, where H~,~-~s ' . Such a subdivision into handles can be constructed by 

induction on dimo: first as C one takes a sufficiently small collar of the boundary ~ 

and as H o with dimo = 0 one takes sufficiently small balls containing o; then these balls 
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are combined with one another and with C by sufficiently small handles Ho of index I, going 

along one-dimensional simplices s f ; etc. Cf. Fig~ 7. Since ~C{,~P for ~e~n~ 

~A, the collar C can be chosen so small that C~c~P for ~e~n~ ~{~ 

We set ~ { ~ - - ~ u ~ ~  ~=~...,0 . We define Ct for ~ as follows: for ~6~ 

we set Ct = P; for ~ with ~-----~ we take as Ct a slight enlargement of Cto , so that 

~@= C~. Let us assu~ that the neighborhoods Ct are already constructed for ~e~ and 

have the following property: 44~= ~9r for }eHs [6A~ ~ ~ .  Let Te~f,~-~-{ 

Then { ~  C9~ for ~ ~flH~ In fact, if ~ E ~  ~ then {~-----{~P~O9~ Now if 

~ r  with ~ ~  ~ then ~m~ (by virtue of the construction of the handle decom- 

position) and by Lemma (9.7) g~G~}r162 ~ 0} Thanks to this we can use Lemma (9.8) and 

extend the family {C t} to H~ so that ~ = ~  for ~ . Doing the same thing with the 

remaining simplices of dimension i -- ], we extend the family {C t} to Fi-~ so that ~}~=~}s 

for }~ and ~ ~Aq~s Applying (descending) induction on i, we get a family 

~ } ~  , such that ~ =  ~ for ~ . Moreover, ~=~ for ~ , in particular, 

for ~ Since ~9~= ~{ for ~ (we recall that ~ ~  )~ one has 09= ~9~ 

for all t. Thus we have gotten the family needed. 

(9.~0) Now we can complete the proof of Theorem 2. 

Cutting Q and C t along K, we turn C t into a collar of the boundary of the manifold ob- 
tained by cutting Q [as in the proof of Lemma (9.8)]. From the parametric theorem on unique- 
ness of collars (cf., e.g., [18, Essay I, Appendix A]), it follows that the space of collars 

is weakly homotopy equivalent with a point. Hence the family { ~ } ~  can be deformed into 

a constant family, all of whose terms coincide with P, while the deformation can be chosen to 

be the identity on ~ ~ . The deformation of the family of tubular neighborhoods induces a 

deformation of the family {~}~}~ of Klein bottles~ Thus we get a family [~}~,~,~] 

of Klein bottles in Q such that [T~ for all t. 

Let Sm(K , Q) be the space of Klein bottles in Q. The canonical map E(K, Q) § Sm(K , Q) 
is a locally trivial fibration with fiber Diff (K). Applying the covering homotopy theorem 

to this fibration~ we see that the family {[~}~[0~] of Klein bottles lifts to a family 

of imbeddings ~{}~:~--r , such that ft0 = ft for all t [we recall that {~}%~ 

is introduced in (9.2)]. Since obviously ~9~([) ~ ~ for all t~ it is evident that the ele- 

ment of the group ~{g~)~(~,~))represented by the family [~%}~ is equal to zero. 
Thus Theorem 2 is proved. 

I0. Proof of Theorem ] 

(I0.I) The proof of Theorem I is based on Theorem 2 and the calculation of the homotopy 
type of spaces of diffeomorphisms of certain Waldhausen manifolds. The results on Waldhausen 
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manifolds we need are the following~ 

For a smooth manifold M we denote by ~J~{~,~) the space of diffeomorphisms M § M 
which are the identity on the boundary and by G(M, D) the space of homotopy equivalences 
M § M which are the identity on DM. If M is a Waldhausen manifold, then the inclusion 

~+~(~,~]r is a homotopy equivalence. This follows from results of [14] and the 
validity of the "Smale conjecture" [10, 11]. Instead of [14] one can use the corresponding 
piecewise-linear results of Hatcher [8] and the PL/Diff-comparison theorem of Burghelea-- 
Lashof--Morley [4]. If M is a Waldhausen manifold with nonempty boundary, DM z ~, then the 

components of the space G(M, D), and hence the components of the space ~(~,~) , are con- 
tractible. This follows from elementary obstruction theory and the fact that Waldhausen 
manifolds are aspherical. 

We need these results for ~=~r ~ ,T~ I and P. Obviously ~x ~ and T x T are Wald- 
hausen manifolds. As to P, it is obviously irreducible, does not contain two-sided projec- 
tive planes (since it is orientable), and the image of the surface -!(~) x I under the ca- 
nonical map T x I § P [we recall that ~ is defined in (3.1), and ~ in (1.2)] is obviously a 
nonshrinkable surface in P. Thus P is also a Waldhausen manifold. 

The space ~(~x~ ~, ~J is connected. This follows from the fact that the space G 

(~x ~ ~) is connected, which in its own right follows from obstruction theory. Thus the 

space ~+~(~x ~, ~) is contractible. 

We shall list the components of the space ~{~(TxI~) Let ~eT . We note that a 
homotopy equivalence T x I § T x I, which is the identity on D(T x I), is determined, up to 
a homotopy bound on ~(T x I), by its restriction to the segment ~ x I, considered up to a 
homotopy bound at the ends. This follows from elementary obstruction theory, since T x I 
is an aspherical space and has a cellular subdivision in which the only one-dimensinal cell, 
not lying in D(T x I), is ~ x I. The projection T x I § T identifies the homotopy classes 
considered (of maps of segment ~ x T) with elements of the group ~I(T, ~). Since the in- 

clusion ~(TxI,~J ~-~ @cT~I, 8) is a homotopy equivalence, we get a one-to-one corre- 

spondence between the components of the space ~CT~I,8) and the elements of the group 
~l(T, ~) �9 

(10.2) Let R be the solid torus from (2.4) and let T0:DR § DR be the involution which 
permutes the sheets of the covering DR + K of (2.4). We need the space ~ of diffeomor- 
phisms R § R which coincide on DR with either idDR or ~0. Obviously ~ is a (topological) 

group and hence all components of the space ~o are homeomorphic. Moreover, since R is dif- 

feomorphic with ~x ~ , one has that ~0 consists of two components, each of which is 

homeomorphic with ~ ( ~ ) i  and hence is contractible. 

Suppose further ~l:T § T is the involution permuting the sheets of the covering ~:T § K 

of (1.2). We need along with ~o the space ~I of diffeomorphisms T x I § T x I, which coin- 

cide on T x I with idTx~ and on T x 0 with either idTx0 or TI. Just as in the case of ~o , 

all components of the space ~ are homeomorphic, while those of them which contain idTxI, 

coincide with the components of the space ~(~; ~ ~) which contain idTx I. 

Now we shall list components of the space ~ Just as in the case o~ diffeomorphisms 

from ~(T,~, ~) , a diffeomorphism from ~ is determined up to a homotopy bound on D 
(T x i) [and hence, up to an isotopy bound on D(T x I)] by its restriction to the segment 

x I [cf. (10.1)], considered up to a homotopy bound at the ends. The composition T x 

~> ~ ~= ~ identifies the homotopy classes considered with elements of the group ~(K). 

Obviously under these identifications of with ~(T) and of ~.(~)with 

~(K) the inclusion ~-~(~(Tx~,~))r goes into the homomorphism ~,:~(T) + ~(K). 

(10.3) Now we can turn directly to the proof of Theorem I. 

We consider the canonical map ~0(~} ~ E#(K,O): ~ ~--~- ~I ~ As is well known, it is a 
locally trivial fibration. Its fiber over the inclusion K ~-~ Q can be identified naturally 
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with ~0 (since the result of cutting the manifold Q along K can be identified naturally with 
R). If E0(K, Q) is homotopy equivalent with a circle, then since ~0 consists of two con- 

tractible components, ~0(@] is homotopy equivalent with the connected two-sheeted cover- 
ing of the circle, i.eo, is homotopy equivalent with a circle. On the other hand, by Theorem 
2, the spaces E0(K, Q) and E0(K, P) are homotopy equivalent. Thus, it suffices for us to 
prove that E0(K, P) is homotopy equivalent with a circle. 

We consider the canonical map ~ o ~  ~)'-~'~:)); ~ "  ~1 ~ It is a locally trivial 

fibration, like the map ~$~o(~E0~). Its fiber over the inclusion can be identified 

naturally with the union of some components of the space ~4 (since the result of cutting the 
manifold P along K can be identified naturally with T • I). 

We shall clarify which components these are. Let 7 be the image in P of the union ~ 

~(~)X~. It is clear that ~ is a segment with ends on 8Po Maps ~ § P, which coincide on 
~ with the inclusion, considered up to a homotopy bound on ~, can be identified with ele- 
ments of the group ~i(K) (with the help of the natural map P + K). Let ~I and let f lie 

in the component of the space ~I corresponding to the element ~rbs of the group ~I(K) [each 
element of the group ~i(K) can be written in this form]. Let f:P + P be a diffeomorphism 
corresponding to f. One can verify directly that the segment ~(~) lies in the homotopy class 

~~'~e~(~) . Since ~~'~=/= ~ for r ~ 0, one has for r ~ 0 that the diffeomorphism 
is not hom0topic (bound on ~P) with idp. On the other hand, if r = O, then ~ is isotopic 

with idp. We shall show this. The torus T can be identified in a natural way with the stan- 
dard torus S i • S i so that the generators ~ and b 2 of the group ~i(T) will be represented by 
the circles S 1 x I and I x S i, and the involution Ti will be defined by the comolex~ formula 
(x, y) § (x, --y). Using this identification, we define the isotopy {i~:T § T}~G I by the 

complex formula i~(x, y) = (x, e~iSty). Obviously this isotopy covers some isotopy ~:~--~ 

~}~6~, where j~ = id K [as is known, ~0~) is contractible to the circle ~$~:~I} ]. 

We extend the isotopy {~I~GI to some isotopy [~'~-~'~}~el fixed on ~P and starting 

with h~ = idp. The diffeomorphism h~ induces a diffeomorphism T • I + T • Iwhieh~ as one can 

verify directly, lies in the component of the space ~I corresponding to b s. Thus, this 
diffeomorphism is isotopic with f (we recall that now r = 0) and ~ is isotopic with idp. 
Thus, the components of the space ~I of interest to us correspond to elements of the in- 

finite cyclic subgroup of the group ~i(K) generated by b. 

Combining this fact with the fact that ~,(P,~) and the components of the space ~ 

are contractible, and using the homotopy sequence of the fibration ~ ~ ~ ( ~ # ~ ]  , 

we get that E0(K, P) is homotopy equivalent with a circle~ In addition E0(K, P) is contract- 

ible onto the circle [~e~.~iI ' where ~ : ~ ~ is the inclusion. 
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QUADRATIC FORMS OF CLOSED MANIFOLDS 

O. A. Ivanov UDC 515.164.11 

In this paper it is shown that for any integral-valuedunimodular quadratic form 
and any number n of the form 8k + 4 (where k ~ I), there exists a smooth closed 
n-dimensional manifold with this quadratic form. The proof is based on the con- 
struction (with the help of the "plumbing" construction) of smooth closed three- 
connected eight-dimensional manifolds with given form. 

I. The terminology of the paper is differential-topological. All manifolds are as- 
sumed to be compact and oriented. By the quadratic form (or simply form) of a 4k-dimensional 
manifold W is meant the form on the group H2k(W)/TorsH2k(W) defined by the intersection in- 
dex. 

THEOREM I. Let E be a seven-dimensional homotopy sphere. Any unimodular integer-valued 
quadratic form of rank no less than three can be realized as the form of a three-connected 
eight-dimensional manifold whose boundary is diffeomorphic with g. 

Translated from Zapiski Nauchnykh Seminarov Leningradskogo Otdeleniya Matematicheskogo 
Instituta im. V. A. Steklova AN SSSR, Vol. 122, pp. 104-108, 1982. 
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