On the Wh'-obstruction and Pseudo-isotopies of Manifolds of
T

dimension 3 and 4.

by Bjosrn Jahren,

This is a preliminary report on a method to construct pseudo-
isotopies that also works for many manifolds of dimension 3 and 4.
For example, P(M) is not even finitely generated if M is a connected
sum of at least two copies of SB(SZ, and I conjecture that it is

nontriviagl for every 3-manifold with?fzzzo, except possibly SB{SQ.

Introduction. Let M be compact, connected, orientable manifold, and

let P(M) be the space of pseudoisotopies of M. Recall from [] ][ 2]

that there is an exact sequence (if dim(M) is>6):
ﬁ~ )] + . —~ o 7[ Z —
(1) Ky (2fre)]) = mi@);2,0 () = TT(p(M)) S wWh (M) =0 .

2 is defined also for low-dimensional manifolds, but so far there
is no way of constructing nonzero elements in W;(M) that can be
detected this way,for M of dimension 3 or 4. Besides, Wh2 is very
difficult to compute, in general.

8 on the other hand, is only defined for high-dimensional manifolds
Therefore we must suspend befare we can detect anything, so the
question we ask is: If dim(M) is 3 or 4, can we construct elements x
in quM) such that j,(X) is in the image of O for some

2k “Lt(M -;l(b(P,(MxI )which is a combination of positive and
negative suspensions?

If j,(x) =B(y), we say that x represents y.(Note that x may not be
unique. ) |
Before stating the main theorem, let us recall the definition of
Wh:: ,

(2) Wh (T1,(1) ;2,0 TL(M)) =(Z,0 (1) )anj/(pq | oy~ oyt
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(Here ﬂE(M) actstrivially on Z, and by the usual action on Z&(m).)

Theorem 1. a) If dim(M) = 4, Wh1+(727(1v1); ), (M)) can be represented

by elements inﬂ P(M). If there is a map f:82-§>M‘such that

£TM is non—tri%ial, then WhT(ﬁi(M);ZQ) can also be represented,
b) If dim(M) = 3, we can represent the subgroup generated

by all elements of the fom[@'ﬂ, where 19 is represented by

an embedded sphere which does not intersect)”.

+

1
comes from a certain framed cobordism group, but from our point of

The proof of Theorem 1 is by a new interpretation of 6. In[lj, Wh

view it derives from the fundamental group of a mapping space.

This group we compute completely, and give very explicit description
of its elements. Now the realization problem becomes the problem

of realizing loops of mappings by loops of embeddings, and Theorem 1

tells to what extent this can be solved in dimension % and 4.



1. P(M) and deformation of handles,

In MxI, we fix an embedded, cancelling pair of (n-k,n-k+1)-handles,
The (n-k)-handle is represented by an embedding

(Dk+B<Dn_k,Dk+1XSn—k-1) —» (MxI,M»1), and we denote its image
by}l . Let W = c1(MXxI-D), and let f be the map SXD™¥ —s3w
defined by restriction of F.

Composition with f defines a fibration (over a union of components)
. ] —E> k. n-k
lef+(w) Emb(S™XxD 7, 3+W), where

Diff+ means diffeomorphisms fixed on MXOLﬁMXI,

O, = W = (Mx0 UHMAT)
The fiber of p is Diff+(W,rel(im f)), and extension by the identity
over X defines an inclusion of this into P(M). (There is, strictly
speaking, a smoothing problem here, but this can easily be solved,
e.g. by replacing Diff+(W,rel(im f)) by diffeomorphisms which are
the identity near im f. This does not change the homotopy type.)

Hence we obtain a map
_O.Embf(SkXDn_k, o, W) = p(M),
and we let wbe the induced homomorphism
o : JL(Emb,) — 7, (P(1))
(Embf is the component containing f.)

Let Cf be the space of mappings Sk—a-W in the homotopy class of
flSk%O. restriction gives an obvious map Embf - Cf, S0 we can

compare TgﬂEmbf) to ﬂa(cf), which is much easier to compute.

Proposition 2, There is a homomorphism

T(ce) = (Zpe L a)[T] /(T0)-1) o T (w)

which is an isomorphism if k 23, and surjective if k> 2.

The proof is deferred to the next section.
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Note that WhT(i?JM);ZZ®7Q(M)) is a quotient of the second group

in Prop.2, so we get a homomorphism

0 ¢ 70 (Emby) = WhT(Tcl(M); Z,0 T, (1)),

Theorem 3. If 24 k& n-3, W= (-1)k9o0', and 0 is surjective.

Proof of the factorization:

That such factorization exists, is almost obvious from the definitions.,
In fact, O is defined by constructing a one-parameter family of
functions on MxI with at most two critical points, and studying

how the stable and-unstable manifolds intersect in a level surface
between the critical points. But given an element g:SkXDn-EXI —_ 5+W

in ﬂaﬂEmbf), we can construct such a family as follows:

k+1, ~n=k

Let V tel, be the manifold WU_ D™ XD . Then there is an

t? g

obvious diffeomorphism VO & MxI f which can be included in a
continuous family of diffeomorphisms G, : Vt = MxI , rel MxO.,

In fact, since 8p=81 this way we obtain two diffeomorphisms
between V1=VO and MXI , and the difference is a pseudo-isotopy of
M which represents(D(g)e7§3(P(M)) .

Now let P M¥I — I be a Morse function with one critical point
of index k in W, and one of index k+1 in 2¢ , and with a+W as a
level surface between them. (Note that we do not require that
?'1(1)=MX1 , only that gradient lines should be transverse to Mxl.)

Then, clearly, ?]W andcpb(also define a Morse function on V_ for all 1,

t
and via Gt we get a one-parameter family of Morse functions on MXI.
Cancel the critical points the same way for t=0 and t=1 to obtain a
family of functions P withxfo a_nd.cF1 nonsingular. By Cerf's
functional approach to pseudo-isotopies, this defines an element in
T,(P(M)) which is the same as@(g). But then it follows from[1] that
it comes from ,an element in Wh,T The proof that this element is
('41)]%' is" postponed to section 3, as is the proof of the surjectivity

of G
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2. Proof of proposition 2.

~
Temmg, 4—. 7Tk+1(W) == ﬂ

Choose basepoints % in Sk and W such that-x= f(¥), and let C;C-Cf

be the subspace of basepoint- preserving maps. Then evaluation
at % defines a fibration Cf = W with fiber C§, and we get

a long, exact sequence
P — ¥* —_ —_—

(We use % and f as base-points.) But ﬂi(c;) is isomorphic to

—

//i+k(W), hence we obtain the sequence

- § -
00 ST () =T (Cp) = T (W) = o o

But (?(p) =[_FJ-3£](Whitehead product, see[3]), so we need to
compute these products for i = 1 and 2.

Now W can also be thought of as MxI with a k<handle attached, hence

there is a homotopy equivalence W ¥ Mvse.

reaq ) @ (2,0 T,(u))[70, (Y] if k2> 3.

Proof: (i) Assume first 771(M) = O, hence also?E(MVSk) = Qe

k

The homotopy exact sequence for the pair (MxS ,MVSk) splits

naturally into split, short exact sequences

k

_ k. — k
0 — uk+2(st JMvsT) = /ck+1 (MvS™) = Kt (MXS

k

k ~ ko N .
But Hj(MXS ,MVS™) = Hj(}: M) = Hj_k(M) = 0 for j-k<2,

Hence, by the Hurewicz theurem:

k k

- , . K k ot —
Iy o (MXSTy MVS™T) = HK+2(st JMVST) = H2(M) =/<2(M)

Thus ”k”(Mvsk) =ﬁk+1 (M) Fk+1(sk) @Wz(M),

end the homomorphism 7 ,(M) =377, ,,(Mvs®) is given as follows:
Letlneﬁé(M) be represented by a map (D2,S1) > (M,*), also
denoted by h, and let c:(Dk,Sk—1) - (Sk,x) be collapse of the



boundary. The image of h in '/TkH(MVSk) is represented by the
boundary of hxe: (D?xDX, 2(D%DX)) —> (MxsK,Mvs¥). But this is
clearly the same as [h,SkJ, where we also use Sk to denote the

embedding .x\/Skc MvSk.

(ii) Let now M be arbitrary. Then

,\/
/(k+1(Mvsk) T, 1(Mvs ) _/(kﬂ(m\/l(\(/; )) ¢ i 7, 1(M\/(\/s ),
1

where the limit is taken over all finite subsets F of 771(M).

But from (i) we get by induction that

'/Tk+1(MV(}./Sk) ) T () 6 (0(2,07(m))

The result follows.

In fact, a specific isomorphism
Ty (M) @ (2,07, (u))[T, (1)) =T, , (uvs)

is given by:

on 'ITkH(M): Induced by the inclusion Mec MvsE ;
'd
on Z2[_7T1(M)J 29 )’ —> (S 6’7) , where Xe/( (M) and f7e/(k 1(s ) =

on YZ(M)[TZ; (M)] (8 Y —é,f@y(SkJ (Whitehead product) .

Lemna 5. 70, (W) = T (M) © 2 [T, (M)] (for k1)

Proof: Similar to the proof of lemma 4, using that if X is simply
connected, then Wk(XVSk) ='/Tk(X) ® Z . The homomorphism

Z[7Z'1(M_)7 —eTgt(M\/sk) is given by y —> (Sk)r.

It Xe'lq(M) ’ [x,Sk_] = (Sk)(— Sk, hence it follows from lemma 5

that 8 in (4) for i=0 is injective. Thus

1(Cp) = coker(§: 7 o (W) =T, (W) ,
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and the proposition for k 23 follows from lemma 4.

We could try to make similar computations for k=2 , but this is
more complicated - mainly because now 7?2(W) #:UE(M) . Instead,

we only get a surjective map in lemma 4, and the kernel contains

the image under S of the "ZEVH(M}"-part of772(MVS2) .(Cfr., lemma 5.)

Therefore we get a surjective map as in proposition 2.

Formulae (6) now provide a way of representing elements in

WhT(W&(M); ZQQWE(M)) by elements iIl%}(Cf). Here is an explicit
description of an elementrrepresenting ('? eaf?)b/ , where 7622,ﬁ6g(m)
and KGWH(M):

Start with f(Sk), and pull the basepoint along a path representing y -
When we are back again, we wrap a neighborhood of the basepoint

around f(Sk) such that we finally cover it twice, once with each
orientation. At this point we think of the mapping as in the following

picture:

Note that the two cylinders B and D are squeezed to lines b and d,
which are mapped to x’and the basepoint of f(Sk),respectively.

Now let d move around a map rebresentingfg and rotate E to generate
the element ez, = J,(S0(k+1)). When we are back to the situation of

(7) again, we can reverse the first moves and get back to f(Sk).

Remark: We also need to computethe image in WhT of an element in

Z}(Cf). This we get by mapping to MVSk’and considering the preimage
k

of a point on,S", different from the basepoint. This consists of a
AN
disjoint unioﬁgof\01rcles, which bound discsin b1XSk Choosing paths

from the basepoint to each component, the disc and the path map to an
element of ﬁ2(M)[ﬁ%(Mﬂc The Z,-component comes from the induced framings.



%3+ End of proof of Theorem 2.

To finish the proof of the factorization, it now suffices to obscrve
that Hatcher and Wagoner's method of associating a WhT - invariant

to the one- parameter family of functions(pJc in section 1, gives
precisely (—1)%V(g). But this follows from a careful comparison of
definitions, using the remark at the end of section 2. The sign serves
the purpose of making the definition of © independent of the index

of the critical pointse.

Surjectivity of 00 will be proved in two steps. The first step is to
approximate the represepting family of maps constructed in section 2
by a family of embeddinggz ?gvfact, most of the procedure can be done
with embeddings only using general position. The only trouble is that
after we have run the tube (D in figure (7)) around g and rotated by
the element 7, the tube D may have a twist on it, thus preventing us
to go back. But this twist can be thought of as an element of
ﬁ}(k-frames in (n-1)-space) §7T1(SO(n-1)/SO(n—1—k)) , which is O for
n-1-k »2, or n-k2 3. Therefore, in this codimension the twisting can
be undone, and we can deform back via embeddings.

The next step is to thicken this loop of embeddings of Sk in_a+W to

a loop of embeddings of SKXDn_k. We can easily thicken to a path of
such embeddings, and the problem is to decide if the end maps coincide.
They differ by an element in 7Zk(SO(n—k)), and we have to show that

this element is zero.

Consider the following diagram:

ko K I+ 1
so(n-k)® Iy S0(n-k)° & 50(n-k)?

i |

k__n-k ; k -k -
o, EMD(STXDTTT, QW) > Emb (5D T, MXI) £~ Emb(DXT DK MxT)

e l | |

I — (s W) > Bun(s¥, unI) & Emb (DX yix1 )

(8)



TC -part of Whi

9.
where the lower vertical maps and the maps pointing to the left are
fibrations. It follows that &(1)e€ S0(n-k)> is the restriction of

k+1
an element in SO(n—k)D s hence it is trivial up to homotopy.

4. Proof of Theorem 1. Applications.

Let j+(j_) denote the 'positive' ('negative') suspension map

Wb(P(M)) ~¢Vﬂb(P(MXI)) o If dim(M)=n=4, we then have the commutative

.
e T (Bub,) % To(p))
(= 1)Ul g l Jy

Wh;r — T, (P(MXI))

for k = 2 or 3. Let now k=2. We shall prove that o maps onto the
o 1 » SO we go back to the proof of the surjectivity of
in higher dimensions. This time, we get into trouble both with the

twisting and with the isotopy of the tube over the?fz-element, Let

us study the isotopy first.
Claim: Eveny??z-element can be represented by an immersed sphere.,
Proof: Hirsch-Smale immersion theorem. In fact, all we need to do

2

is to embed T82 linearly in g*TM for an arbitrary map g:5° - M.

*
But g ™ is classified by an element in 7?1(SO(4)) =12, .

If it is trivial, it follows by stable triviality of Ts2.

It not, &' ¥ 1cp?)s2, which also has @Q;ﬁ;%urally included.
(Alternative proof: By general position, the only singularities are
at isolated points, and there they look like a cone over a knot in SB.
But such knots also bound immersed d\os in D4 )

Using this , we can assume that ouI'ﬁé-element is represented by an
immersed sphere where the self-intersections occur at isolated points.
But then we can move a small tube by an isotopy along the immersed

sphere, only making sure that we cross the two points of a self-

intersection at different times.
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Then, what about the twisting? Well, going back to g TH, we see
that we can always split off a trivial rank 2-bundle. If we keep
the S1-factor of the tube in these two directions, we can make sure
that we come back without a twist. Hence, if we do not rotate, we
can go back as before. This proves the first part of a).

To. get the second part, observe that if there is such a map f, we
can go around the sphere as before, but this time making sure that
we do come back with a twist. But this can be undone by an app-

ropriate rotation - hence we get an element of the Z,-component.

2
By a combination of isotopies with and without twists, we can

obtain all elements of Wh;r(fq (M) 2,67,(10)). (%)

It remains to prove b). To this end we want to use k=1, but then
we have not defined U . We shall extend the definition to this

case, using the idea of the 'negative' suspension.

k
- (M\rsk)S

Observe first that ¢ is defined via maps Emb. < C

f hid
sk k+1, ¥+ , .
) by product with I, and

Now define j_: (Mvs©)® 5 (mvs

collapse of MXI\JS§0I to M!. Using this with k=1, we obtain a

homomorphism G : ﬁH(Embf) ~$>Wh;
Claim: The diagram
T, (Emb,) =5 T (P(M))
Gu’ | L Jyd_
Wy = T
e

To(R(UXI?))

is commutative.

In fact, this follows from the description of (o in terms of functions

in section 1.

Now observe that the construction of the representing family of
maps in prop.l makes sense also for k=1, except for the rotation.
The ﬂé—part of the construction for k=2 can actually be realized as

the suspension (inthe above sense) of the one for k=1. Hence

(*) This idea is due to Igusa.
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all of WhT(R&(M);722(M)) can be realized by elements of 7Z1(Cf)
even for k=1. That the elements in theorem 1,b) can be realized by

elements in ﬁ71(Embf) is now obvious.

Theorem 1 provides many candidates for nontrivial elements in??O(P(M)),
but so far little is known about the kernel of . However, Igusa has
shown that the7 ,-part of Wh] injects if the first k-invariant of

is trivial.(Seel2]). The only 3-manifolds having this property
with'ﬁé(é/o are connected sums of SB(SQ'S, and to get examples with
elements of the type in theorem 1,b) we need at least two of them.

But then we actually get an infinitely generated group this way -

e.g. from the elements P-ti s 1eZ, where @ 1is the 82 of one copy,

and t is the generator of ﬁ1 of the other copy.

In dimension 4, we similarly get examples of the type S1><S1><S2 , (S1)4,
or connected sums of such . To get an example where all of

WhT(Yﬁ(M); ZZ$Wb(M)) can be realized and injects into ﬁb(P(M)),

take cP%(sh)%.
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