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Stable classification of 4-manifolds with 3-manifold
fundamental groups

Daniel Kasprowski, Markus Land, Mark Powell and Peter Teichner

Abstract

We study closed, oriented 4-manifolds whose fundamental group is that of a closed, oriented,
aspherical 3-manifold. We show that two such 4-manifolds are stably diffeomorphic if and only
if they have the same w2-type and their equivariant intersection forms are stably isometric. We
also find explicit algebraic invariants that determine the stable classification for spin manifolds
in this class.

1. Introduction

Two smooth 4-manifolds M,N are called stably diffeomorphic if there exist integers m,n ∈ Z

such that stabilising M,N with copies of S2 × S2 yields diffeomorphic manifolds:

M#m(S2 × S2) ∼= N#n(S2 × S2).

In this paper we study the stable diffeomorphism classification of closed, oriented 4-manifolds
whose fundamental group is that of some closed, oriented, aspherical 3-manifold. We give
explicit, algebraically defined invariants of 4-manifolds that detect the place of a 4-manifold in
the classification, working with orientation preserving diffeomorphisms.

We will also indicate the results for topological manifolds up to stable homeomorphism.
Special cases of the stable diffeomorphism classification have been investigated in Cavicchioli,

Hegenbarth and Repovš [3], Spaggiari [23] and Davis [6]. The stable classification for manifolds
with finite fundamental group was intensively studied by Hambleton and Kreck in [10], as well
as in the PhD thesis of the fourth author [25]. The case of geometrically two-dimensional
groups was solved by Hambleton, Kreck and the last author in [11].

Conventions

All manifolds are assumed to be smooth, closed, connected and oriented if not otherwise stated.
All diffeomorphisms are orientation preserving.

We call a group π a COAT group if it is the fundamental group of some closed oriented
aspherical 3-manifold. Note that an irreducible 3-manifold with infinite fundamental group
is aspherical by the Sphere theorem and the Hurewicz theorem. For a space X with a
homomorphism π1(X) → π, usually an isomorphism, we will denote any continuous map that
induces the homomorphism by c : X → Bπ.

1.1. Stable classification of 4-manifolds with COAT fundamental group

The normal 1-type of a manifold M is a 2-coconnected fibration ξ : B → BSO which admits a
2-connected lift ν̃M : M → B, a normal 1-smoothing, of the stable normal bundle
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νM : M → BSO (see Section 2 for more details). The following fundamental result is a straight-
forward consequence of M. Kreck’s modified surgery theory, in particular [14, Theorem C] (see
[25, p. 4] for the discussion of the action of Aut(ξ)). The last author also observed a direct
proof in terms of handle structures [14, End of Section 4].

Theorem 1.1. The stable diffeomorphism classes of 4-manifolds with normal 1-type ξ are
in one-to-one correspondence with Ω4(ξ)/Aut(ξ).

The stable diffeomorphism classification programme therefore begins by determining the
possible normal 1-types ξ. Since normal 1-smoothings are 2-connected, ξ determines the
fundamental group. For a fixed fundamental group π, the normal 1-types are represented by
elements

w ∈ H2(Bπ; Z/2) ∪ {∞}.
An oriented manifold M is said to be totally non-spin if w2(M̃) �= 0; in this case we set
w = ∞. Otherwise, there is a unique element w ∈ H2(Bπ; Z/2) such that c∗(w) = w2(M) (see
Lemma 3.17). A 4-manifold M is spin if w = 0 and we call M almost spin if w /∈ {0,∞}. We
remark that some authors use the terminology almost spin for the case w �= ∞, but since the
behaviour of the stable diffeomorphism classification differs when w = 0, we chose nomenclature
that differentiates this case.

We will use the fact (see, for example, [25]) that isomorphism classes of such pairs (π,w)
are in one-to-one correspondence with the fibre homotopy types of normal 1-smoothings.

The totally non-spin case w = ∞ corresponds to ξ = pr2 : B = Bπ ×BSO → BSO, where
pr2 denotes the projection onto the second factor. The spin case w = 0 corresponds to ξ : B =
Bπ ×BSpin → BSpin → BSO, the projection followed by the canonical map BSpin → BSO.
The almost spin cases are twisted versions of the latter.

The main work in the stable classification comprises the computation of the bordism
group Ω4(ξ) with the action of the automorphism group Aut(ξ), for each normal 1-type ξ.
Finally, one tries to determine stable diffeomorphism invariants that detect all the possibilities.
The signature is an example of such an invariant; in the case of totally non-spin 4-manifolds with
fundamental group π having H4(Bπ) = 0, such as COAT groups, the signature is a complete
invariant.

The next theorem results from our successful application of all the above steps for COAT
fundamental groups. The resulting invariants are explained in detail in Section 3. They take
values in a finite set, except for the signature, which in all three cases determines the image of
a 4-manifold in the various subgroups of Z.

Theorem 1.2. For a COAT group π and w ∈ H2(Bπ; Z/2) ∪ {∞}, stable diffeomorphism
classes of closed oriented 4-manifolds with normal 1-type isomorphic to (π,w) are in bijection
with the following sets:

(1) the set of integers Z in the totally non-spin case w = ∞;
(2) the set 16 · Z × (H2(Bπ; Z/2)/Out(π) ∪ {odd}) in the spin case w = 0; and
(3) for almost spin, that is w /∈ {0,∞}, the set{

(n, ϕ) ∈ 8 · Z × (H2(Bπ; Z/2)/Out(π)w)
∣∣ n/8 ≡ 〈w,ϕ〉 mod 2

}
,

where 〈w,−〉 denotes the evaluation on H2(Bπ; Z/2), and Out(π)w denotes the set of
outer automorphisms of π whose induced action on H2(Bπ; Z/2) fixes w.

Here the set {odd} consists of a single element. The nomenclature arises from some
clairvoyance: as described in detail in the next section, for fixed signature, this element
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is represented by the (stable diffeomorphism class of a) spin 4-manifold M with odd
equivariant intersection form λM on π2(M). This notion differs significantly from saying that
the ordinary intersection form on H2(M ; Z) is odd, which would mean that M is totally
non-spin.

In the topological case the result is almost identical. The deduction of Theorem 1.3 from
Theorem 1.2 can be found in Section 4.

Theorem 1.3. For a COAT group π and w ∈ H2(Bπ; Z/2) ∪ {∞}, stable homeomorphism
classes of closed oriented 4-manifolds with normal 1-type isomorphic to (π,w) are in bijection
with the following sets.

(1) The set Z × Z/2 in the totally non-spin case, where the map to Z/2 is the Kirby–
Siebenmann invariant. It is non-trivial because of the existence of the sister projective space
∗CP2.

(2) The set 8 · Z × (H2(Bπ; Z/2)/Out(π) ∪ {odd}) in the spin case w = 0. Here the E8

manifold is a topological spin manifold with signature 8 and the Kirby–Siebenmann invariant
is the signature divided by 8.

(3) In the almost spin case w /∈ {0,∞}, we have the set

8 · Z ×H2(Bπ; Z/2)/Out(π)w,

on which the Kirby–Siebenmann invariant is given by the signature divided by 8 plus evaluation
of w on the element of H2(Bπ; Z/2).

In each normal 1-type, the smooth classification occurs as the kernel of the Kirby–
Siebenmann invariant.

1.2. Explicit invariants for spin 4-manifolds

Next, in the case of spin 4-manifolds with COAT fundamental group π, we describe a complete
set of invariants that are defined independently of a normal 1-smoothing. The first invariant
besides the signature is the parity of the equivariant intersection form

λM : π2(M) × π2(M) → Zπ.

This is a sesquilinear, hermitian form. An intersection form λM : π2(M) → π2(M)∗ is called
even if there exists a Zπ-linear map q : π2(M) → π2(M)∗ such that λM = q + q∗. If no such q
exists then we say that λM is odd. We refer to λ being even or odd as its parity.

It turns out that the Zπ-module π2(M) is stably isomorphic to Iπ ⊕ Zπk for some k ∈ N,
where Iπ denotes the augmentation ideal of Zπ. Since λM admits a quadratic refinement
(see Definition 7.3), in order to determine the parity, it suffices to restrict to the (non-free) Iπ
summand; this assertion is explained in Lemma 7.4. If λM is odd then the signature determines
the stable diffeomorphism type of such spin manifolds.

If the intersection form λM is even, we can arrange its restriction to Iπ to vanish, after some
stabilisation and a change of basis. In this case, the self-intersection number μM also vanishes
on Iπ and one can compute the first-order intersection number τ1 on Iπ, which takes values
in a quotient of Z[π × π]; compare [21].

In this paper we only need a Z/2-valued version of τ1, defined on spherically characteristic
classes in π2(M). This invariant first appeared in Kirby and Freedman [8, p. 93] and Mat-
sumoto [16], and a similar invariant was later used by Freedman and Quinn [9, Definition 10.8].
A detailed definition is given in Section 8, but here is a rough outline.

Let [S] ∈ π2(M) be a spherically characteristic element (see Definition 8.1) with μM (S) = 0.
Pair up the self-intersection points of the immersed 2-sphere S with framed Whitney discs, and
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count the intersection points of the Whitney discs with S, modulo 2. This defines τ(S) ∈ Z/2.
We show that this descends to an invariant

τM ∈ Hom(H2(Bπ; Z/2),Z/2) ∼= H2(Bπ; Z/2),

as discussed in Lemma 8.11. Then we obtain the following theorem, giving the promised
classification for spin 4-manifolds in terms of explicit invariants.

Theorem 1.4. Closed spin 4-manifolds M and M ′ with fundamental groups isomorphic to
a COAT group π are stably homeomorphic if and only if

(1) their signatures agree: σ(M) = σ(M ′);
(2) their equivariant intersection forms λM and λM ′ have the same parity; and
(3) for even parity, their first-order intersection invariants agree:

[τM ] = [τM ′ ] ∈ H2(Bπ; Z/2)/Out(π).

The smooth result is exactly the same. In the smooth case, the signature lies in 16 · Z, whereas
in the topological case the signature is divisible by 8.

Note that the intersection and self-intersection numbers λM , μM are considered as lying at
order zero, whereas τM is of order one. There are invariants of all orders (with large indeter-
minacies in their target groups), defined in an inductive way, as described by Schneiderman
and the fourth author [22, Definition 9]. The idea is as follows: if some algebraic count of
intersections vanishes, pair these intersections up by Whitney discs, and count how these new
Whitney discs intersect the previous surfaces. The order of the invariant is the number of layers
of Whitney discs present.

However only order one intersections are relevant in the stable setting. It follows directly
from [21, Theorem 2] that an element [S] ∈ π2(M) is represented by an embedding S : S2 ↪→
M#k(S2 × S2) for some k if and only if μ(S) = 0 and τ1(S) = 0. Here τ1 is the full first-order
intersection invariant of [21].

1.3. The stable HAN1-type

We consider the following data for a closed oriented 4-manifold M which we will refer to as its
hermitian augmented normal 1-type:

HAN1(M) = (π1(M), wM , π2(M), λM ).

Here π2(M) is considered as a Z[π1(M)]-module, λM is the equivariant intersection form on
π2(M) and wM ∈ H2(Bπ1(M); Z/2) ∪ {∞} gives the normal 1-type (π1(M), wM ) of M .

Connected sum with copies of S2 × S2 leaves the normal 1-type unchanged and induces
stabilisation of (π2(M), λM ) by hyperbolic forms. There is a notion of stable isomorphism,
denoted ∼=s, given by a pair of maps between fundamental groups and their modules, preserving
w and λ (see Section 9 for the details).

Note that in previous discussions of similar quadratic 2-types, one needed to add an invariant
kM ∈ H3(Bπ1(M);π2(M)), the k-invariant classifying the second Postnikov section of M . Our
result implies indirectly that this k-invariant is determined stably by the other invariants.

Theorem 1.5. For closed oriented 4-manifolds M and M ′ with COAT fundamental group,
any stable isomorphism HAN1(M) ∼=s HAN1(M ′) is realised by a stable diffeomorphism.

The spin case of this theorem says that the H2(Bπ; Z/2) part of the spin classification above,
which we identified with a τM -invariant, can also be seen from the equivariant intersection form.
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This is extremely surprising and reveals a new feature of stable classification that has not been
previously observed.

As a corollary of Theorem 1.5, we recover the following special case of Davis’ theorem [6]
that homotopy equivalent 4-manifolds with torsion-free fundamental group satisfying the strong
Farrell–Jones conjecture are stably diffeomorphic.

Corollary 1.6. Let M,M ′ be closed oriented 4-manifolds with COAT fundamental groups
that are homotopy equivalent. Then M and M ′ are stably diffeomorphic.

In particular, it follows that the τM -invariant as in Theorem 1.4 is a homotopy invariant. We
remark that this contrasts with the case of finite groups, where there are homotopy equivalent
(almost spin) 4-manifolds that are not stably diffeomorphic, as detected by the H2(Bπ; Z/2)
part of the bordism group [25, Example 5.2.4].

In Theorem 9.6 we will describe precisely which stable isomorphism classes of forms are
realised as the intersection forms of 4-manifolds with a COAT fundamental group.

1.4. Concluding remarks

The case of COAT groups is particularly attractive because models for all stable spin
diffeomorphism classes can be constructed, starting from the given 3-manifold. All invariants
can be computed explicitly, leading to simple algebraic results.

The main new aspect of our classification, not discussed in any previously known examples,
is how the order one intersection invariant τM enters into the picture, determining most of the
finite part of the classification.

Even though Theorem 1.5 tells us that τM is determined by the intersection form λM , this
can turn out to be a red herring. For example, one does not need to know the equivariant
intersection form on the entire Z[π1(M)]-module π2(M), which can be huge, in order to decide
whether two 4-manifolds are stably diffeomorphic. Instead, the τM -invariants can be computed
on the much smaller vector space H2(Bπ; Z/2).

Organisation of the paper

In Section 2 we recall the basic definitions needed for the theory. Section 3 computes the
bordism groups and the action of the automorphisms of the normal 1-types on the bordism
groups, from which the proof of Theorem 1.2 is derived. Section 4 briefly describes how to
adapt the computations of Section 3 to the stable homeomorphism classification of topological
manifolds with COAT fundamental group. Section 5 uses the topological bordism groups to
complete the computation of the stable classification of almost spin 4-manifolds, first computing
in the topological category, then deducing the smooth result from the topological result. In
Section 6 we present some examples, computing the set of stable diffeomorphism classes of
spin manifolds whose fundamental group π is a central extension of Z2 by Z. Sections 7
and 8 give the proof of Theorem 1.4. In Section 7 we discuss the parity of the equivariant
intersection form of a spin manifold and show that it detects a Z/2 invariant in the bordism
group corresponding to the element {odd} in Theorem 1.2(2). In Section 8 we introduce the
τ -invariant of a spin manifold and show that it detects the invariants in the bordism group
that come from H2(π; Z/2). We show that these same invariants from the bordism group can
also be seen in the equivariant intersection form in Section 9.

2. Normal 1 type and the James spectral sequence

Notation 2.1. A map has the same degree of connectedness as its homotopy cofibre and the
same degree of coconnectedness as its homotopy fibre. Concretely, a map of spaces is called
k-connected if it induces an isomorphism of homotopy groups πi for i < k and a surjection on
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πk. A map is called k-coconnected if it induces an isomorphism on πi for i > k and is injective
on πk.

Definition 2.2. Let M be a closed manifold of dimension n. A normal k-type for M is
a fibration over BSO, denoted by ξ : B → BSO through which a map representing the stable
normal bundle νM : M → BSO factors as follows:

with ν̃M a (k + 1)-connected map and ξ a (k + 1)-coconnected map. A choice of ν̃M is called
a normal k-smoothing of M .

All the normal k-types of M are fibre-homotopy equivalent to one another. Frequently we only
specify the normal k-type up to fibre-homotopy equivalence. For example, B = BSpin×Bπ →
BSO is not a fixed space until one chooses models for the classifying spaces Bπ, BSpin
and BSO. Note that the fibre-homotopy class of a normal 1-type is an invariant of stable
diffeomorphism since S2 × S2 has trivial stable normal bundle.

Remark 2.3. If M is a closed n-dimensional manifold, and ξ : B → BSO is its normal
k-type, then the automorphisms Aut(ξ) of this fibration act transitively on the set of homotopy
classes of normal k-smoothings of M .

Theorem 2.4 [14, Theorem C]. Two closed 2q-dimensional manifolds with the same Euler
characteristic and the same normal (q − 1)-type, admitting bordant normal (q − 1)-smoothings,
are diffeomorphic after connected sum with r copies of Sq × Sq for some r.

Note that two closed orientable connected 4-manifolds with the same fundamental groups
have the same Betti numbers βi for i �= 2. A necessary condition for stable diffeomorphism
of two 4-manifolds is that they have the same signature, since connect summing S2 × S2 just
adds a hyperbolic summand to the intersection form. Two 4-manifolds with the same signature
have second Betti numbers differing by a multiple of 2. It is then easy to see that the Euler
characteristics can be made to coincide by stabilising one of the 4-manifolds. Theorem 1.1
from the introduction follows from this observation, Theorem 2.4, and the fact that stably
diffeomorphic 4-manifolds are bordant over their normal 1-types (see [5, Lemma 2.3(ii)] for a
proof). Recall that Theorem 1.1 states that stable diffeomorphism classes of 4-manifolds with
normal 1-type ξ are in one-to-one correspondence with Ω4(ξ)/Aut(ξ).

Next, we want to recall how to compute the bordism groups Ω4(ξ). For a vector bundle
E : Y → BSO(n), let Th(E) be the Thom space given by the unit disc bundle modulo the unit
sphere bundle. Given a stable vector bundle η : Y → BSO, let Mη be the Thom spectrum.
For the convenience of the reader we recall the construction of the Thom spectrum. Let Yn be
given by the following pullback diagram:

Then the nth space in the spectrum Mη is given by

(Mη)n = Th(ηn).
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It follows immediately from the definition that ηn+1|Yn
= ηn ⊕ R and hence we obtain canonical

structure maps

(Mη)n ∧ S1 = Th(ηn) ∧ Th(R) = Th(ηn ⊕ R) → Th(ηn+1) = (Mη)n+1.

Normal 1-types of a 4-manifold N with COAT fundamental group π are given by

B =

⎧⎪⎨⎪⎩
BSO ×Bπ

pr1−−→ BSO in the totally non-spin case,
BSpin×Bπ

γ◦pr1−−−→ BSO in the spin case and

BSpin×Bπ
γ×E−−−→ BSO in the almost spin case,

where E is a certain complex line bundle over Bπ and γ is the tautological stable vector bundle
over BSpin (see Lemmas 3.1, 3.5 and 3.18).

Recall from above that a stable bundle over a space gives rise to a Thom spectrum, and in
the case of the normal 1-types as just described, this gives the Thom spectrum Mξ, where we
obtain (from the construction of that spectrum) that

Mξ =

⎧⎨⎩
MSO ∧Bπ+ in the totally non-spin case,
MSpin ∧Bπ+ in the spin case and
Σ−2(MSpin ∧ Th(E)) in the almost spin case.

Note that in the almost spin case there is a shift by two in the indexing of the spectrum
corresponding to the dimension of the vector bundle E. The Pontrjagin–Thom construction
Ω4(ξ) ∼= π4(Mξ) yields isomorphisms:

Ω4(ξ) ∼=
⎧⎨⎩
π4(MSO ∧Bπ+) in the totally non-spin case,
π4(MSpin ∧Bπ+) in the spin case and
π6(MSpin ∧ Th(E)) in the almost spin case.

Recall that the homotopy groups of a spectrum E are defined by πn(E) = colimπn+k(Ek).
Note that Bπ+ = Bπ 
 {∗} is the Thom space of the canonical rank 0 bundle over Bπ, and
thus the spin case can be viewed as a special case of the almost spin case (in which the bundle
E may be chosen to be the rank 0 bundle).

To compute the bordism group Ω4(ξ), we apply the James spectral sequence
[25, Theorem 3.1.1] with homology theory being stable homotopy theory πs

∗, to the diagram

where B is the normal 1-type and F is thus either BSO or BSpin.
The E2-page of the James spectral sequence reads as

E2
p,q = Hp(Bπ;πq(Mξ|F )) =⇒ πp+q(Mξ).

A priori this is to be interpreted with twisted coefficients. However it turns out that, since the
fibration F → B → Bπ is trivial (that is, B = F ×Bπ), the spectral sequence is not twisted.
Furthermore Mξ|F is either MSO or MSpin.

The homotopy groups π∗(Mξ) can also be computed by a standard Atiyah–Hirzebruch
spectral sequence (for MSpin or MSO). It turns out that the James spectral sequence is
the same as the Atiyah–Hirzebruch spectral sequence in the first two cases above (totally
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non-spin and spin case). In the almost spin case the E2-pages of the James spectral sequence
and the Atiyah–Hirzebruch spectral sequence are isomorphic using the Thom isomorphism

H̃p+2(Th(E);A) ∼= Hp(Bπ;A)

for all abelian groups A.
Denote the filtration on the abutment of an Atiyah–Hirzebruch spectral sequence by

0 ⊂ F0,n ⊂ F1,n−1 ⊂ · · · ⊂ Fn−q,q ⊂ · · · ⊂ Fn,0 = Ωn(ξ).

Recall that Fn−q,q/Fn−q−1,q+1
∼= E∞

n−q,q.
Denote the restriction of the fibration f : B → Bπ to the p-skeleton of Bπ by B|p, and let

ξ|p : B|p → BSO be the restriction of ξ to B|p. An element of Ωn(ξ) lies in Fp,n−p if and only if
it is in the image of the map Ωn(ξ|p) → Ωn(ξ). This follows from the naturality of the spectral
sequence applied to the map of fibrations induced by the inclusion of Bπ(p) → Bπ.

The following key lemma allows us to interpret the E2 page in terms of transverse inverse
images.

Let X be a CW-complex and let X(p) be its p-skeleton. Let E : X → BSO be a stable
vector bundle and let ξ = (E, γ) : X ×BSpin → BSO. For a subset Y of X, let ξ|Y denote
the restriction of ξ to Y ×BSpin. Denote the barycentres of the p-cells {epi } of X by {bpi }i∈I .
Given an element [f : M → X(p) ×BSpin] ∈ ΩSpin

n (ξ|X(p)), denote the regular preimages of
the barycentre {bpi } ∈ X(p) under pr1 ◦f by Ni ⊂ M . Note that [Ni] ∈ ΩSpin

n−p , since the normal
bundle of Ni in M is trivial and so is (pr2 ◦f)∗E restricted to Ni, and hence Ni inherits
a spin structure from f : M → X(p) ×BSpin. For spin 4-manifolds, we will use the case of
the following theorem when E is the trivial bundle. For almost spin manifolds, E will be a
non-trivial bundle depending on the second Stiefel–Whitney class.

Lemma 2.5. The canonical map Ωn(ξ|X(p)) → Hp(X(p); ΩSpin
n−p ) that comes from the spectral

sequence coincides with the map

Ωn(ξ|X(p)) → Hp(X(p); ΩSpin
n−p )

[M → X(p)] �→
[∑
i∈I

[Ni] · epi
]
.

The map Ωn(ξ|X(p)) → Hp(X(p); ΩSpin
n−p ), which is sometimes called an edge homomorphism,

arises as follows. The abutment of the James spectral sequence Ωn(ξ|X(p)) = Fn,0 maps to its
quotient by the first filtration step Fp,n−p that differs from Fn,0. This term is indeed Fp,n−p,
since the homology of X(p) vanishes in degrees greater than p, therefore E2

s,t = E∞
s,t = 0 for

all s > p and all r � 3. We have Fn,0/Fp,n−p
∼= E∞

p,n−p. The target, Hp(X(p); ΩSpin
n−p ) in the

left-most column, is the E2
p,n−p term of the spectral sequence. Since no differentials have image

in E2
p,n−p, we have that E∞

p,n−p ⊆ E2
p,n−p = Hp(X(p); ΩSpin

n−p ), and so the composition

Ωn(ξ|X(p)) = Fn,0 → Fn,0/Fp,n−p
�−→ E∞

p,n−p → E2
p,n−p = Hp(X(p); ΩSpin

n−p )

gives the desired map.

Proof of Lemma 2.5. The case where p = 0 is trivial and therefore we can assume p � 1 and
consider reduced homology instead. The case that n < p is also trivial, so we assume for the
rest of the proof that n � p.

Consider the following diagram, which is induced by the maps of pairs

(X(p), ∅) → (X(p), X(p) \ D̊p
i ) ← (Dp

i , ∂D
p
i ),
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where the first map picks out one single p-cell Dp
i and note that an element in Hp(X(p); ΩSpin

n−p )
is determined by its image in ΩSpin

n−p , ranging over all p-cells.

An element of the relative bordism group Ωn(ξ|X(p) , ξ|X(p)\D̊p
i
) is represented by an

n-dimensional manifold with boundary M , together with a diagram

The addition is, as ever, disjoint union, and we quotient by bordisms respecting the bundle
structure. This is just the unreduced homology theory arising from the reduced theory
corresponding to the spectrum MSpin ∧ Th(E) discussed above.

Now we explain the maps in the diagram above. The first and second horizontal maps
are from the long exact sequences of the appropriate pairs. The second horizontal maps are
isomorphisms by excision. The third isomorphism follows since ∂Dp → Dp is a cofibration, so
homology of a pair is isomorphic to the corresponding reduced homology of the quotient Sp.
The vertical maps (not including the bottom-right vertical map) are edge homomorphisms that
arise in the James spectral sequence, analogous to the map in the statement of the theorem
(which is the left-most vertical map). The diagram commutes by naturality of the James
spectral sequence.

By commutativity, it suffices to check that the right-then-down composition is determined
by inverse images as described above the statement of the lemma. Note that the right vertical
composite is the (inverse of the) suspension isomorphism in spin bordism (because suspension
isomorphisms are natural in the homology theory, and the bottom-right vertical map is,
by definition, the suspension isomorphism in singular homology, after identifying ΩSpin

n−p
∼=

H̃0(S0; ΩSpin
n−p )). But suspension isomorphisms in bordism theories are given by transverse

inverse images. This follows from the description of the suspension isomorphism Ω̃n(Sq) ∼=
Ω̃n−1(Sq−1) as the boundary map of the Mayer–Vietoris sequence in reduced bordism theory
associated to the decomposition Sq = ΣSq−1 = Dq ∪Sq−1 Dq. A proof that this boundary map
can be described in terms of inverse images may be found in [2, Section II.3]. This completes
the proof of the lemma. �

3. Stable diffeomorphism classification from bordism groups

Throughout this section, all results will hold for π a COAT group. With potential future use in
mind, for many lemmas we will try to give the most general hypotheses under which the given



836 D. KASPROWSKI, M. LAND, M. POWELL AND P. TEICHNER

proof holds. All manifolds called either M or X will be smooth, oriented and have fundamental
group π.

Recall that a manifold M is called totally non-spin if its universal cover M̃ is not spin, and
M is called almost spin if M is not spin but its universal cover is. The normal 1-type of M is
determined by w2(M) and w2(M̃). We investigate the totally non-spin case in Section 3.1, the
spin case in Section 3.2 (and also in Sections 7 and 8) and the almost spin case in Section 3.3.
In each case we compute the bordism group of the relevant vector bundle ξ, and the action of
Aut(ξ) on the bordism group.

3.1. Totally non-spin 4-manifolds

Lemma 3.1. Let π be a finitely presented group. The normal 1-type of a totally non-spin
manifold with fundamental group π is given by

ξ : Bπ ×BSO
pr2−−−−→ BSO,

where the map is given by the projection onto BSO.

Proof. Since M has fundamental group π there is a canonical map c : M → Bπ classifying
the universal cover of M . The orientation of M gives a factorisation

M
c×νM−−−−→ Bπ ×BSO

pr2−−−−→ BSO.

The map Bπ ×BSO → BSO is 2-coconnected since Bπ has no higher homotopy groups.
Moreover the map M → Bπ ×BSO induces an isomorphism on fundamental groups. It
remains for us to verify that the map M → BSO induces a surjection on π2. For this we
note that w2 : BSO → K(Z/2, 2) induces an isomorphism on π2, so it suffices to see that
π2(M) → π2(K(Z/2, 2)) is surjective.

The composition M̃ → BSO → K(Z/2, 2) determines a cohomology class equal to w2(M̃) in
H2(M̃ ; Z/2) ∼= Hom(H2(M̃ ; Z),Z/2). The isomorphism here is given by the universal coefficient
theorem, and uses that H1(M̃ ; Z) = 0. Consider the following diagram:

The right-up-right composition starting at H2(M̃ ; Z) is w2(M̃), according to the identification

[M̃,K(Z/2, 2)] ∼= H2(M̃ ; Z/2)

and the universal coefficient theorem. The vertical maps are isomorphisms by the Hurewicz
theorem and the diagram commutes because the Hurewicz homomorphism is a natural trans-
formation. Since M̃ is not spin, w2(M̃) �= 0, from which it follows that π2(M) → π2(K(Z/2, 2))
is surjective. �

Lemma 3.2. Let π be a finitely presented group and let ξ : Bπ ×BSO
pr2−−→ BSO. Then the

automorphisms of ξ are given by Aut(ξ) ∼= Out(π).

Proof. An automorphism of ξ is given by a map Bπ ×BSO → Bπ. Since BSO is simply
connected, we have

[Bπ ×BSO,Bπ] ∼= [Bπ,Bπ].



4-MANIFOLDS WITH 3-MANIFOLD FUNDAMENTAL GROUPS 837

Restrict to the homotopy equivalences Bπ → Bπ, the (unbased) homotopy classes of which are
in one-to-one correspondence with the outer automorphisms Out(π) of π. This is because inner
automorphisms correspond to base point changes and an element of [Bπ,Bπ] is independent
of base points. �

Theorem 3.3. Let π be a COAT group. For ξ : Bπ ×BSO → BSO as above we have

Ω4(ξ) ∼= Z

detected by the signature. Moreover the action of Out(π) on Ω4(ξ) is trivial.

Proof. Since the oriented bordism groups ΩSO
q are trivial for q = 1, 2, 3, this follows from the

James spectral sequence for the fibration BSO → Bπ ×BSO → Bπ, so that Ωq(ξ|F ) = ΩSO
q

is oriented bordism. The result is true for all groups π with H4(Bπ; Z) = 0, in particular
for aspherical 3-manifold groups. The assertion that the action of Out(π) is trivial is
straightforward. �

From this we obtain the following corollary, which is Theorem 1.2 (1).

Corollary 3.4. Two oriented, totally non-spin 4-manifolds with COAT fundamental group
π are stably diffeomorphic if and only if their signatures are equal.

Thus the signature of the ordinary intersection form is a complete invariant for totally non-
spin 4-manifolds. Note that we do not need to look at equivariant intersection forms in this
case.

3.2. Spin 4-manifolds

Lemma 3.5. Let π be a finitely presented group. A normal 1-type of a spin manifold M with
fundamental group π is given by

Bπ ×BSpin
γ◦pr2−−−−→ BSO,

where pr2 is the projection onto BSpin and γ is the canonical map BSpin → BSO.

Proof. The map γ ◦ pr2 is 2-coconnected since Bπ has trivial higher homotopy groups
πi(Bπ) = 0 for i � 2 and BSpin → BSO is 2-coconnected.

Since M has fundamental group π there is a canonical map c : M → Bπ classifying the
universal cover of M . Let ν̃M be the lift of νM : M → BSO to BSpin given by the spin
structure on M . Then a normal 1-smoothing of M is given by

M
c×ν̃M−−−−→ Bπ ×BSpin.

By definition of c the map c× ν̃M is an isomorphism on π1 and since we have π2(Bπ ×
BSpin) = 0, it is therefore 2-connected. �

Lemma 3.6. Let π be a finitely presented group and let ξ : B → BSO be γ ◦ pr2 : Bπ ×
BSpin → BSO. Then

Aut(ξ) ∼= H1(Bπ; Z/2) � Out(π),

where the action of Out(π) on H1(Bπ; Z/2) in the definition of the multiplication in the semi-
direct product is the canonical one, obtained as follows. An element of Out(π) determines a
homotopy class of maps Bπ → Bπ. An element of H1(Bπ,Z/2) determines a homotopy class
of maps Bπ → K(Z/2, 1). Then [Bπ,Bπ] acts on [Bπ,K(Z/2, 1)] by precomposition.
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Proof. Any automorphism of ξ gives a map Bπ ×BSpin → Bπ and a lift of Bπ ×BSpin →
BSO to BSpin. Let us first consider the map [Bπ ×BSpin,Bπ]. Since BSpin is simply
connected, we have

[Bπ ×BSpin,Bπ] ∼= [Bπ,Bπ].

The homotopy classes of homotopy equivalences in [Bπ,Bπ] are in bijective correspondence
with Out(π). This determines a map Aut(ξ) → Out(π).

Since a possible lift of γ ◦ pr2 : Bπ ×BSpin → BSO to BSpin is given by the projection to
the second factor, any other lift is determined by a map the homotopy fibre of γ : BSpin →
BSO, which is a K(Z/2, 1). Thus a lift corresponds to an element of

H1(Bπ ×BSpin,Z/2) ∼= H1(Bπ; Z/2).

Thus the kernel of the map Aut(ξ) → Out(π) is identified with H1(Bπ; Z/2) and so we have a
short exact sequence

1 → H1(Bπ; Z/2) → Aut(ξ) → Out(π) → 1.

It remains to prove that Aut(ξ) is a semi-direct product as claimed. First, that the sequence
splits is straightforward. This can be seen as follows: an outer automorphism ρ ∈ Out(π)
determines a homotopy class of maps ρ : Bπ → Bπ, by a slight abuse of notation, and so gives
rise to a homotopy class of maps (ρ, IdBSpin) : Bπ ×BSpin → Bπ ×BSpin, and thus produces
an element of Aut(ξ). It is not too hard to see that this map is a group homomorphism. Thus
the sequence splits and Aut(ξ) is indeed a semi-direct product.

Finally, we argue that the action, in the group law of the semi-direct product, of ρ ∈ Out(π)
on H1(Bπ; Z/2) ∼= [Bπ,BZ/2], is that given by precomposition with the map in [Bπ,Bπ]
determined by ρ. To see this, consider the following diagram, where m1 and m2 are maps
Bπ → BSpin such that γ ◦mi : Bπ → BSO is null homotopic, corresponding to elements of
H1(Bπ; Z/2).

The composition is precisely the claimed product on Aut(ξ). �

Theorem 3.7. Let π be a COAT group and let ξ : B → BSO be p ◦ pr2 : Bπ ×BSpin →
BSO. Then

Ω4(ξ) ∼= H0(Bπ; ΩSpin
4 ) ⊕H2(Bπ; ΩSpin

2 ) ⊕H3(Bπ; ΩSpin
1 ) ∼= 16 · Z ⊕ Hom(π; Z/2) ⊕ Z/2.

Here, the 16 · Z-factor is given by the signature.

Proof. Consider the James spectral sequence associated to the fibration

BSpin −−−→ Bπ ×BSpin −−−→ Bπ, (3.1)

with generalised homology theory h∗ = πs
∗, the stable homotopy groups. The E2 page consists

of the groups Hp(Bπ; ΩSpin
q ). There are non-trivial terms with p + q = 4 for p = 0, 2, 3, namely

H0(Bπ; ΩSpin
4 ) ∼= Z, H3(Bπ; ΩSpin

1 ) ∼= Z/2 and

H2(Bπ; ΩSpin
2 ) ∼= H2(Bπ; Z/2) ∼= H1(Bπ; Z/2) ∼= Hom(π,Z/2),

with the latter two isomorphisms given by Poincaré duality and universal coefficients.
There can be at most two non-zero differentials that contribute to the 4-line, that is, the terms

E∞
p,q with p + q = 4. All other possible differentials start or end at 0 since (i) Hp(Bπ;A) = 0
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for p > 3, for any choice of coefficient group A, (ii) ΩSpin
3 = 0 and (iii) it is a first quadrant

spectral sequence. One of the possibly non-trivial differentials is

d2 : H3(Bπ; Z/2) → H1(Bπ; Z/2).

However, this differential is dual to Sq2, according to [25, Theorem 3.1.3], and hence vanishes
since Sqq : Hn → Hn+q is zero whenever n < q. The other potentially non-trivial differential
is

d3 : H3(Bπ; ΩSpin
2 ) → H0(Bπ; ΩSpin

4 ).

However H3(Bπ; ΩSpin
2 ) ∼= Z/2 and H0(Bπ; ΩSpin

4 ) ∼= 16 · Z, so there can be no non-trivial
homomorphism. (The vanishing of this differential is also a consequence of the claim below.)
Thus all of the 4-line on E2 page survives to the E∞ page, and we obtain a filtration

0 ⊂ F1 ⊂ F2 ⊂ F3 = Ω4(ξ)

with F1
∼= 16 · Z, F2/F1

∼= H2(Bπ; Z/2) and F3/F2
∼= Z/2.

Claim 1. The subset F1
∼= 16 · Z is a direct summand of Ω4(ξ).

To prove the claim we argue as follows. We can restrict the fibration (3.1) to a base point
in Bπ. The resulting fibration is a retract of (3.1) which commutes with the maps to BSO,
and hence the naturality of the James spectral sequence implies that in the James spectral
sequence for (3.1), the y-axis splits as a direct summand of Ω∗(ξ). This completes the proof of
the claim.

The intersection of the 4-line and the y-axis is precisely ΩSpin
4 , which is isomorphic to 16 · Z

by taking the signature. In particular, as noted above, the claim implies that all differentials
with image in H0(Bπ; ΩSpin

4 ) are trivial.
It remains to argue why F2 is also a direct summand in Ω4(ξ). This will follow from the next

claim. Denote the quotient Ω4(ξ)/F1 by Ω̃4(ξ); this is sometimes called the reduced bordism
group.

Claim 2. The subset F2/F1
∼= H2(Bπ; Z/2) is a direct summand of Ω̃4(ξ).

We have a short exact sequence

0 −−−→ H2(Bπ; Z/2) −−−→ Ω̃4(ξ) −−−→ H3(Bπ; Z/2) −−−→ 0. (3.2)

We will construct a splitting of this sequence in Lemma 3.12, but one can also abstractly see
that this sequence must split, which will prove the claim. We have seen that Ω∗(ξ) ∼= ΩSpin

∗ (Bπ),
so the bordism group we want to compute is the ordinary spin bordism of Bπ. Since Bπ has a
model which is a closed orientable 3-manifold X, and orientable 3-manifolds are parallelisable,
it follows that the stable normal bundle is trivial. In particular the Spivak fibration of X is
trivial. Also from the fact that X is a manifold, it follows that X has a CW-structure with
a unique 3-cell. From Lemma 3.8, it follows that the top (three-dimensional) cell of X, in a
CW-structure on X with only one 3-cell, splits stably, by which we mean that the attaching
map S2 → X(2) is stably null homotopic. Here stably means after suspending the attaching
map sufficiently many times. The naturality of the Atiyah–Hirzebruch spectral sequence for
spin bordism thus implies that the contribution of the 3-cell of X is a direct summand because
reduced homology theories (such as Ω̃Spin

∗ ) satisfy Ω̃Spin
i (Y ) ∼= Ω̃Spin

i+1 (ΣY ) and send wedges of
spaces to direct sums of abelian groups. This completes the proof of the claim that F2/F1 is a
direct summand of Ω̃4(ξ). Since F2/F1 is identified with Hom(π,Z/2), this completes the proof
of Theorem 3.7. �
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The next lemma may be of some independent interest.

Lemma 3.8. Suppose that X is an n-dimensional Poincaré complex with a CW-structure
that has precisely one n-dimensional cell. Let ϕ : Sn−1 → X(n−1) be the attaching map of this
cell. Then ϕ is stably null homotopic if and only if the Spivak normal fibration of X is trivial.

Proof. Denote the Spivak normal fibration of X by SF (X). From the uniqueness property
of the Spivak normal fibration of an n-dimensional Poincaré complex [24; 4, Definition 3.57
and Theorem 3.59], it follows that SF (X) is trivial if and only if there exists a k � 0 and a
map e : Sk+n → Sk ∧X+ such that the composite

Sk+n e−−−−−−−−→ Sk ∧X+
Sk∧collapse−−−−−−−−→ Sk+n

has degree 1. Here collapse denotes the map that collapses the (n− 1)-skeleton of X.
Assume that the Spivak normal fibration SF (X) is trivial. Observe that we have a

factorisation

Sk ∧X+ → Sk ∧X
Sk∧collapse−−−−−−−−→ Sk+n,

where the first map is the quotient by Sk × {∗X}, with ∗X the base point of X. Therefore
triviality of the Spivak normal fibration implies the existence of a map e′ : Sk+n → Sk ∧X
that yields a degree 1 map when composed with the collapse map Sk ∧X → Sk+n.

Recall that having precisely one n-cell in X amounts to the fact that there is a cofibration
sequence

Sn−1 ϕ−−−−−−−−→ X(n−1) −−−−−−−→ X
collapse−−−−−−−→ Sn

which fits (after suspending k times) into a diagram

in which the composition of any two horizontal maps is null homotopic. In particular the
composition

Sk+n e′−−−→ Sk ∧X −−−→ Sk+n Sk+1∧ϕ−−−−−→ Sk+1 ∧X(n−1)

is null homotopic. Since the composition of the first two maps has degree 1, it follows that
Sk+1 ∧ ϕ is null homotopic as claimed.

For the converse, suppose now that ϕ is stably null homotopic. Then there is a k � 0 such that
Sk ∧X is homotopy equivalent to Sk ∧X(n−1) ∨ Sn+k. We thus obtain a map Sn+k → Sk ∧X
whose composite with the suspended collapse map

Sk ∧X → Sk ∧X(n−1) ∨ Sn+k → Sn+k

has degree 1, possibly after precomposing with a degree −1 map Sn+k → Sn+k to arrange that
the degree be positive. Now observe that there is a homotopy equivalence

Sk ∧X+ � (Sk ∧X) ∨ Sk.

Use this equivalence to obtain a map

e : Sk+n → Sk ∧X → (Sk ∧X) ∨ Sk → Sk ∧X+

as desired. �
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Remark 3.9. Sometimes it is written in the literature that the top cell of a framed manifold
splits off stably. This lemma tells us that this is true, but the proof does not require the full
tangential structure of a framed manifold. Really only the underlying Poincaré complex is
relevant.

For the rest of this subsection we restrict our attention to COAT fundamental groups.
We can say more than asserting the existence of an abstract direct sum decomposition of
Ω̃4(ξ). A better understanding of the invariants representing the H2(Bπ; Z/2) summand will be
crucial for computing the action of Aut(ξ). The Kronecker evaluation map κ : H2(Bπ; Z/2) →
Hom(H2(Bπ; Z),Z/2) is an isomorphism since H3(Bπ; Z) ∼= Z is free. Next we will define a
map

Φ: Ω̃Spin
4 (Bπ) → Hom(H2(Bπ; Z),Z/2).

Let X be an aspherical 3-manifold such that X � Bπ. In fact, by JSJ decomposition and the
geometrisation theorem, any two such manifolds are diffeomorphic, but we do not need this
fact. Let [M c−→ X] be an element of Ω̃Spin

4 (Bπ) and let σ be a spin structure on X. We define
a map ψc,σ : H1(X; Z) → Z/2 in the following way. Represent x ∈ H1(X; Z) by an embedding
S =

∐
S1 → X and consider the spin structure on S that makes each connected component

of S a spin null-bordant surface. Let F ⊆ M be a regular preimage of S under c. The spin
structures on X and S induce a spin structure on the normal bundle of S in X, and this pulls
back to a spin structure on the normal bundle of F in M . Together with the spin structure
on M this determines a spin structure on F , so we can view [Fx] ∈ ΩSpin

2 (∗). A spin structure
on a surface F determines a quadratic refinement μ : H1(F ; Z/2) → Z/2 of the intersection
form on H1(F ; Z/2) (see Definition 7.3). The Arf invariant of a quadratic form is an element of
Z/2 (see Kirby [12, Appendix] for a concise treatment). We define ψc,σ(x) := Arf([F ]) ∈ Z/2.

Lemma 3.10. The map ψc,σ : H1(X; Z) → Z/2 is a well-defined homomorphism.

Proof. First we will show that ψc,σ only depends on the bordism class of [M c−→ X]. For
any spin bordism g : W → X, the regular preimage of an embedding S → X is a spin bordism
between the regular preimages in the two boundaries of the cobordism, and the Arf invariant
is an isomorphism from two-dimensional spin bordism to Z/2.

To see that ψ is well defined, we also have to check that ψc,σ(x) does not depend on the
choice of the embedding S ↪→ X. Any two choices S0, S1 are bordant, since they represent
the same homology class in a 3-manifold, and the component-wise null-bordant spin structure
on both ends can be extended over the cobordism. Embed the cobordism in X × [0, 1] and
take a regular preimage in M × [0, 1] under c× Id[0,1], to yield a spin cobordism between the
preimages F0 and F1 of S0 and S1. Therefore, Arf([F0]) = Arf([F1]) and ψc,σ(x) is well defined.

It remains to check that ψc,σ is a homomorphism. A class x + y ∈ H1(X; Z) can be
represented by the union of disjoint embeddings Sx → X and Sy → X which represent x and
y, respectively. Taking null-bordant spin structures on Sx and Sy also gives a null-bordant spin
structure on the union. Let Fx and Fy be the preimages of Sx and Sy, respectively. By the
additivity of the Arf invariant we obtain

ψc,σ(x + y) = Arf([Fx + Fy]) = Arf([Fx]) + Arf([Fy]) = ψc,σ(x) + ψc,σ(y).

This completes the proof of Lemma 3.10. �

Now we can define

Ω̃Spin
4 (Bπ) Φ−→ Hom(H2(Bπ; Z),Z/2)

[c : M → X] �→ ψc,σ ◦ PD,
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where PD denotes Poincaré duality. In the next lemma we show that the map Φ gives us the
desired splitting.

Remark 3.11. The construction of Φ depends on the choice of a spin structure on X.
We remark that set of the spin structures on X are in bijective correspondence with the
possible splittings of the sequence under consideration, since both sets are (non-canonically)
isomorphic to H1(X;Z/2). We conjecture that the Φ construction gives rise to an explicit such
correspondence.

Lemma 3.12. The map

Φ: Ω̃Spin
4 (Bπ) → Hom(H2(Bπ; Z),Z/2)

splits the short exact sequence (3.2), where we identify

H2(Bπ; Z/2)
∼=−→ Hom(H2(Bπ; Z); Z/2)

via the Kronecker evaluation map κ.

Proof. We have a diagram

The map p is described via Lemma 2.5 as follows. In a CW-structure on Bπ as a 3-complex
with only one 3-cell, the differential in the cellular cochain complex

C2
cell(Bπ) δ2−→ C3

cell(Bπ) ∼= Z

is trivial. A 2-cell determines a 2-cochain, e∗k ∈ C2
cell(Bπ) = HomZ(Ccell

2 (Bπ),Z) by e∗k(e
2
j ) =

δkj . Since the coboundary map δ2 = 0, every 2-cell e2
k determines an element [e∗k] in H2(Bπ; Z)

and the inclusion Bπ(2) ⊂ Bπ induces an isomorphism on second cohomology.
The map p sends a class [M c−→ Bπ(2)] to the map in HomZ/2(H2(Bπ; Z/2),Z/2) that sends

[e∗k] to the Arf invariant Arf(c−1(b2k)), where b2k ∈ e2
k denotes the barycentre of the kth 2-cell

(which we can assume after a small homotopy of c to be a regular point). Since p is surjective
the lemma follows if we can show the following.

Claim 3. We have

p = Φ ◦ i∗ : Ω̃Spin
4 (Bπ) → Hom(H2(Bπ; Z),Z/2).

For each cell e2
k there is an embedding αk : S1 → X that intersects the 2-skeleton only in b2k

and there only once. To see this, join up two of the intersection points of the boundary of the
3-cell with b2k using a path in the 3-cell. Thus, PD−1([αk]) = [e∗k] and c−1(αk(S1)) = c−1(b2k).
Furthermore, the spin structure on the normal bundle of the (equal) preimages agree and we
have

p([M c−→ Bπ(2)])([e∗k]) = Arf(c−1(b2k)) = Arf(c−1(αk(S1))) = ψc,σ([αk])

= (ψc,σ ◦ PD)(e∗k) = Φ(i∗[M
c−→ Bπ(2)])([e∗k]).

This completes the proof of Lemma 3.12. �
To describe the action of Aut(ξ) on Ω4(ξ) we need the following lemma.
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Lemma 3.13. Given a surface F with a spin structure and a map f : F → S1, the map f
induces a spin structure on a regular preimage f−1(∗). We denote the spin bordism class of

f−1(∗) by μ(f−1(∗)) ∈ ΩSpin
1

∼= Z/2. Let 0 �= x ∈ H1(S1; Z/2). Then

Arf(F ) + Arf(f∗(x) · F ) = μ(f−1(∗)) ∈ Z/2,

where f∗(x) · F denotes the surface F with the spin structure changed by f∗(x).

Proof. First note that [f−1(∗)] = PD(f∗(x)) ∈ H1(F ; Z/2).

Case 1. The map f∗ : H1(F ; Z/2) → H1(S1; Z/2) is trivial. Then for any y ∈ H1(F ; Z/2) we
have

f∗(x) ∩ y = x ∩ f∗y = 0 ∈ H0(F ; Z/2) = Z/2

and thus f∗(x) = 0 and [f−1(∗)] = PD(f∗(x)) = 0. This implies

μ(f−1(∗)) = 0 = Arf(F ) + Arf(F ) = Arf(F ) + Arf(f∗(x) · F ).

Case 2. The map f∗ : H1(F ; Z/2) → H1(S1; Z/2) is non-trivial. Let α := PD(f∗(x)) ∈
H1(F ; Z/2) and choose β ∈ H1(F ; Z/2) with f∗(β) �= 0. Then, again identifying H0(F ; Z/2)
with Z/2, we have

λ(α, β) = f∗(x) ∩ β = x ∩ f∗β = 1 ∈ Z/2.

We can extend {α, β} to a basis {α, β, γ1, δ1, . . . , γg−1, δg−1} with

λ(γi, δj) =
{

1 i = j
0 else

and all other intersections being zero. With these choices we have seen that the action of f∗(x)
on the spin structure gives μ(f∗(x) · β) = 1 + μ(β) ∈ ΩSpin

1 , and f∗(x) does not change the
spin bordism classes of the other basis elements. Therefore,

Arf(f∗(x) · F ) = μ(f∗(x) · α)μ(f∗(x) · β) +
∑
i

μ(f∗(x) · γi)μ(f∗(x) · δi)

= μ(α) + μ(α)μ(β) +
∑
i

μ(γi)μ(δi) = μ(α) + Arf(F ).

The proof is completed by noting that μ(α) = μ(f−1(∗)) by definition. �

Next we use our understanding of the splitting map Φ to compute the action of Aut(ξ)
on Ω4(ξ). Let σ : X → BSpin denote the spin structure on X used for the definition of the
splitting Φ. For an element ρ ∈ Out(π), view ρ as a homotopy equivalence X → X, and denote
the difference between the spin structures σ and σ ◦ ρ by mρ ∈ H1(X; Z/2).

Theorem 3.14. The action of Aut(ξ) on Ω4(ξ) is given in the following way. Let (z, ϕ, ε) ∈
16 · Z ⊕ Hom(π; Z/2) ⊕ Z/2 be given.

(i) An element m ∈ H1(Bπ; Z/2) ∼= Hom(π; Z/2) acts on (z, ϕ, ε) by

m · (z, ϕ, ε) = (z, ϕ + εm, ε).

(ii) An outer automorphism ρ ∈ Out(π) acts by

ρ · (z, ϕ, ε) = (z, ϕ ◦ ρ−1 + εmρ, ε).
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Proof. The elements in the 16 · Z summand can be represented by connected sums of K3
surfaces. On these the action of Aut(ξ) is trivial, since they have a unique spin structure and
the map to Bπ factors through a point up to homotopy.

(i) Recall that X denotes a 3-manifold model for Bπ, and recall that the splitting

Φ: Ω̃Spin
4 (Bπ) → Hom(H2(Bπ; Z),Z/2)

from Lemma 3.12 is given in the following way. Consider a diagram

where i : S1 → X is an embedding, Fi is its regular preimage under c and f = c|Fi
. The

embedding i : S1 → X represents an element of H1(X; Z) ∼= H2(X; Z). Then Φ([M c−→ Bπ])
sends [i : S1 → X] to Arf(Fi).

Changing the spin structure of M by c∗(m) ∈ H1(M ; Z/2) changes the induced spin structure
on Fi by (c|Fi

)∗(m) = j∗c∗(m). On the other hand, changing the spin structure σ of X by m
changes the spin structure on the normal bundle of S1 ⊆ X by m|S1 = i∗(m) ∈ H1(S1; Z/2)
and hence this change also alters the induced spin structure on Fi by f∗i∗(m) = j∗c∗(m).
Therefore, the action of m on the bordism group can be described by letting it act on the spin
structure of X.

By Lemma 3.13, this action of m ∈ H1(X; Z/2) on the spin structure of X changes the Arf
invariant by [f−1(∗)] ∈ ΩSpin

1
∼= Z/2 if i∗(m) �= 0. By Lemma 2.5, we have that ε = [f−1(∗)] ∈

ΩSpin
1 , and thus if ε = 0 the element m ∈ H1(Bπ; Z/2) acts trivially. On the other hand if

ε = 1, then m changes the Arf invariant associated to the element [i : S1 → X] ∈ H1(X; Z) if
and only if m(i) = i∗(m) �= 0.

(ii) An automorphism of π induces an automorphism of H3(Bπ; Z/2) ∼= Z/2. However there
is only one automorphism of the group Z/2, hence ε is unchanged by ρ.

As in (i), the element in Hom(π; Z/2) associated to M is computed by considering the Arf
invariants of surfaces Fi = c−1(i(S1)). For an element g ∈ π, represent g by an embedding
i : S1 → X, and compute Arf(Fi). When applying ρ, for an embedding i : S1 → X, we have
to compute the Arf invariant of the surface (ρ ◦ c)−1(i(S1)) = c−1((ρ−1 ◦ i)(S1)) = Fρ−1◦i.
Hence one might suspect that ρ acts by sending ϕ to ϕ ◦ ρ−1. But applying ρ also changes,
by mρ, the spin structure on X that is used to compute the Arf invariant of Fρ−1◦i.
Therefore, the argument of (i) applies, with m = mρ, to show that we have an extra summand
εmρ. �

From the results of this section we obtain the following corollary, which is Theorem 1.2 (2).
Before stating the corollary we collect the notation that will appear in the statement. As above,
let X be a closed oriented aspherical 3-manifold with fundamental group π. For a 4-manifold
M , an isomorphism π1(M) → π determines, up to homotopy, a map c : M → X. The following
two inverse image constructions, together with the signature, will be used to state the spin
classification in Corollary 3.15.

The inverse image of a regular point c−1(pt) ∈ M determines an element S ∈ ΩSpin
1

∼= Z/2.
Now choose a spin structure σ on X. The map Φ: H1(X; Z) → Z/2, defined above using the
Arf invariants of certain inverse images, determines an element of H2(Bπ,Z/2) by universal
coefficients and Poincaré duality.
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Corollary 3.15. The stable diffeomorphism classes of spin 4-manifolds with COAT
fundamental group π are in one-to-one correspondence with

16 · Z × (H2(Bπ; Z/2)/Out(π) ∪ {∗}) .
The 16 · Z entry is detected by the signature. The extra element {∗} corresponds to the case

that S = 1 ∈ ΩSpin
1 . If S = 0, the element in H2(Bπ; Z/2)/Out(π) is determined by the Arf

invariants via the map Φ.

The element {∗} was called {odd} in Theorem 1.2 in the introduction.

Example 3.16. For π ∼= Z3 two elements (n, ϕ, ε), (n′, ϕ′, ε′) ∈ Ω4(ξ) ∼= 16 · Z ⊕
Hom(Z3; Z/2) ⊕ Z/2 with the same signature, that is, n = n′, correspond to stably
diffeomorphic 4-manifolds if and only if⎧⎨⎩

ε = ε′ = 1 or
ε = ε′ = 0, ϕ = ϕ′ = 0 or
ε = ε′ = 0, ϕ �= 0 �= ϕ′.

We used the fact that the canonical map GLn(Z) → GLn(Z/2) is surjective, in particular for
n = 3.

3.3. Almost spin 4-manifolds

We begin our investigation of almost spin 4-manifolds by producing a unique lift w ∈
H2(Bπ; Z/2) of w2(M). The first part of this section applies for a larger class of groups than
3-manifold groups; we will point out when we restrict to COAT groups.

Lemma 3.17. Let π be a group, let M be an almost spin 4-manifold and let c : M →
Bπ induce an isomorphism on fundamental groups. Then there exists a unique element w ∈
H2(Bπ; Z/2) such that c∗(w) = w2(M). If π is such that H3(Bπ; Z) is 2-torsion free, then
w = w2(E) for some complex line bundle E over Bπ.

Proof. The first part follows if we can establish the following exact sequence

0 −−−→ H2(Bπ; Z/2) c∗−−−→ H2(M ; Z/2)
p∗

−−−→ H2(M̃ ; Z/2)π

where the superscript π denotes the fixed-point set of the π-action. This is because by
assumption 0 = w2(M̃) = p∗(w2(M)) since p∗(TM) = TM̃ .

To see why this sequence is exact, consider the Serre spectral sequence applied to the
fibration

M̃
p−→ M

c−→ Bπ.

Its E2-term is

Hp(Bπ;Hq(M̃ ; Z/2)) =⇒ Hp+q(M ; Z/2),

where Hq(M̃ ; Z/2) is to be understood as module over π. On the 2-line the non-vanishing
terms are H2(Bπ; Z/2) and H0(Bπ;H2(M̃ ; Z/2)) ∼= H2(M̃ ; Z/2)π. Since H1(M̃ ; Z/2) = 0, the
only potentially non-zero differential which can affect the E∞-page is d3 : H2(M̃ ; Z/2)π →
H3(Bπ;H0(M̃ ; Z/2)). Thus the exact sequence exists as claimed.

From the Bockstein sequence associated to 0 → Z
2−→ Z → Z/2 → 0, we see that the map

H2(Bπ; Z) red2−−−→ H2(Bπ; Z/2)
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is surjective, because multiplication by 2 on coefficients induces an injection on H3(Bπ; Z) by
assumption.

To prove the second statement of the lemma, choose a complex line bundle E → Bπ
whose first Chern class c1(E) is a lift of w to H2(Bπ; Z) (recall that complex line bundles
are classified by their first Chern class). Furthermore the second Stiefel–Whitney class of
the underlying two-dimensional real vector bundle is the reduction of the first Chern class:
w2(E) = red2(c1(E)). �

Now let π be a group for which H3(Bπ; Z) is 2-torsion free, fix a choice of complex line
bundle E provided by Lemma 3.17 and consider it as a two-dimensional real vector bundle.

Lemma 3.18. The normal 1-type of an almost spin manifold M with fundamental group π
is given by

ξ : Bπ ×BSpin
E×p−−−−→ BSO ×BSO

⊕−−−→ BSO

where E → Bπ is a stable vector bundle such that c∗(w2(E)) = w2(M) and ⊕ refers to the
H-space structure on BSO that comes from the Whitney sum of stable vector bundles.

Proof. To see that the map ξ is 2-coconnected note that since Bπ has vanishing higher
homotopy groups, πi(Bπ ×BSpin) ∼= πi(BSpin) for i > 1, and ξ restricted to BSpin is the
canonical map, which is 2-coconnected.

For simplicity denote the bundle over M given by νM ⊕ c∗(−E) by ν(E). Here −E is the
stable inverse bundle to E. The bundle ν(E) has a spin structure as, by design, w2(ν(E)) = 0.
Denote some choice of lift of the classifying map ν(E) : M → BSO to BSpin by ν̃(E) : M →
BSpin. Now consider the following diagram

This diagram commutes because it commutes up to homotopy (the composition ξ ◦ (c× ν̃(E))
classifies the bundle νM ⊕ c∗(−E) ⊕ c∗(E) ∼= νM ). Since ξ is a fibration we can use the
homotopy lifting property to change the map c× ν̃(E) in its homotopy class to make the
diagram commute strictly. The map M → Bπ ×BSpin described is 2-connected since c induces
an isomorphism on π1 and π2(Bπ ×BSpin) = 0. This completes the proof of the lemma. �

Definition 3.19. Let Out(π)w be the subgroup of Out(π) given by those elements
f ∈ Out(π) such that f∗(w) = w ∈ H2(π; Z/2), where w is as in Lemma 3.17.

Lemma 3.20. Let ξ : Bπ ×BSpin → BSO be as in Lemma 3.18. We have a short exact
sequence

0 → H1(Bπ; Z/2) → Aut(ξ) → Out(π)w → 1.

Proof. Consider an automorphism Φ ∈ Aut(ξ) which is, in particular, a pair of maps
(ϕ,ψ) := (p1 ◦ Φ, p2 ◦ Φ), where p1 and p2 are the projections, making the diagram
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commute up to homotopy, where E is the two-dimensional real vector bundle associated to
the complex line bundle from Lemma 3.17 and γ denotes the tautological oriented bundle over
BSpin. We again denote w2(E) by w. Since BSpin is simply connected, we can factor ϕ as
follows:

The commutativity of the above two diagrams give rise to the following isomorphisms of stable
bundles. The first diagram above gives the first isomorphism in the sequence below, while the
second diagram gives the translation between the second and third isomorphisms.

E × γ ∼= (ϕ,ψ)∗(E × γ)

⇔ p∗1(E) ⊕ p∗2(γ) ∼= ϕ∗(E) ⊕ ψ∗(γ)

⇔ p∗1(E − ϕ̂∗(E)) ⊕ p∗2(γ) ∼= ψ∗(γ)

⇔ (E − ϕ̂∗(E)) × γ ∼= ψ∗(γ).

(3.3)

This just says that ψ is a spin structure on the stable vector bundle (E − ϕ̂∗(E)) × γ over
Bπ ×BSpin. That is, we have a commutative triangle

In particular it follows that

0 = w2((E − ϕ̂∗(E)) × γ) = w2((E − ϕ̂∗(E))) × 1 = (w − ϕ̂∗(w)) × 1,

which precisely means that ϕ̂ ∈ Out(π)w.
The map Aut(ξ) → Out(π)w given by (ϕ,ψ) �→ ϕ̂ := ϕ ◦ p1 is a group homomorphism. It is

surjective by the following argument.
Starting with ϕ̂ ∈ Out(π)w, choose a spin structure m : Bπ → BSpin on E − ϕ̂∗(E). The

maps

ϕ = ϕ̂ ◦ p1 : Bπ ×BSpin → Bπ

and

ψ : Bπ ×BSpin
(m,Id)−−−−→ BSpin×BSpin

⊕−→ BSpin

define an element (ϕ,ψ) ∈ Aut(ξ), which is a preimage of ϕ̂.
The kernel of the above homomorphism Aut(ξ) → Out(π)w can be identified with

H1(Bπ; Z/2) as follows. By the argument at the beginning of the proof, an element in Aut(ξ)
is determined by an element ϕ̂ ∈ Out(π)w and a spin structure ψ on (E − ϕ̂∗(E)) × γ. When ϕ̂
is the identity, (E − ϕ̂∗(E)) is the trivial bundle and the projection p2 : Bπ ×BSpin → BSpin
is a spin structure on (E − ϕ̂∗(E)) × γ. Hence we can identify the kernel of Aut(ξ) → Out(π)w
with H1(Bπ; Z/2) by comparing the spin structure ψ to p2. �

From now on in this section π will be a COAT group.
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Theorem 3.21. Let π be a COAT group and let ξ : Bπ ×BSpin → BSO be as in
Lemma 3.18. Then we have a non-split short exact sequence

0 → 16 · Z → Ω4(ξ) → H2(Bπ; Z/2) → 0.

Proof. Consider the following morphism of fibrations

Claim 4. The bordism group Ω4(ξ) sits in a short exact sequence

0 −−−→ ΩSpin
4 −−−→ Ω4(ξ) −−−→ H2(Bπ; Z/2) −−−→ 0.

To prove the claim apply the James spectral sequence to the upper fibration. We need to
see that the surviving terms in the E∞ page of the 4-line are ΩSpin

4 and H2(Bπ; Z/2). First,
all differentials with ΩSpin

4 as target have a torsion group as domain. Moreover there is a
differential

H3(Bπ; Z/2) d2−−−→ H1(Bπ; Z/2),

which according to [25, Theorem 3.1.3] is dual to the map

H1(Bπ; Z/2)
Sq2

w−−−→ H3(Bπ; Z/2)

x �→ Sq2(x) + x ∪ w.

The Sq2 summand vanishes, since as in the previous section Sqn is trivial on Hm for m < n.
Then as 0 �= w ∈ H2(Bπ; Z/2), it follows from Poincaré duality on Bπ that this differential is
not trivial. Hence the E∞-terms in the spectral sequence on the 4-line are exactly as claimed.

Claim 5. The short exact sequence from the previous claim does not split.

This is an immediate consequence of [26, Main Theorem 3], but for the convenience of the
reader we give a proof here. For this we see that the above sequence of fibrations induces a
map of James spectral sequences. Then we observe that the James spectral sequence for the
lower fibration BSpin → BSO → K(Z/2, 2) has E2-page

Hp(K(Z/2, 2); ΩSpin
q ) =⇒ ΩSO

p+q.

Looking at the 4-line of the spectral sequence, we obtain a short exact sequence

0 −−−→ ΩSpin
4 −−−→ F2 −−−→ H2(K(Z/2, 2); Z/2) ∼= Z/2 = E∞

2,2 −−−→ 0

Since F2 ⊆ Z ∼= ΩSO
4 , and is non-trivial, F2 is therefore itself isomorphic to Z. Thus this short

exact sequence does not split. From the morphism of spectral sequences we obtain a morphism
of sequences
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The morphism w∗ from Lemma 3.17 is surjective because 0 �= w ∈ H2(Bπ; Z/2). This prevents
the upper sequence from splitting, since a choice of lift of w∗ and a splitting of the upper
sequence would induce a splitting of the lower sequence. This completes the proof of the claim.

From this diagram it also follows that, as an abstract abelian group, we have a decomposition
Ω4(ξ) ∼= 8 · Z ⊕ ker(〈w,−〉) and the map ΩSpin

4 → Ω4(ξ) is identified with multiplication by 2
on the Z summand and is zero on the other summand. Hence the 8 · Z summand in Ω4(ξ) is
given by the signature. Note however that the splitting of Ω4(ξ) into the direct sum is not
canonical. �

In particular we obtain the following corollary.

Corollary 3.22. An almost spin 4-manifold M with COAT fundamental group π has
signature divisible by 8.

Remark 3.23. For a manifold with H1(M ; Z) 2-primary torsion free, for example, when
π ∼= Z3, this is rather interesting. An orientable 4-manifold M has even intersection form if and
only if w2 maps to zero in Hom(H2(M,Z),Z/2), that is, if it lies in Ext1

Z
(H1(M,Z),Z/2) [26,

p. 754, part (4)]. But if H1(M ; Z) ∼= H1(Bπ; Z) contains no 2-primary torsion, then this Ext-
group vanishes, so the intersection form cannot be even in the case of almost spin manifolds
(where w2 �= 0). So this is ruled out as an explanation for the divisibility of the signature.
Contrast Corollary 3.22 with the existence of almost spin 4-manifolds with fundamental group
Z/2 × Z/2 with signature 4 (see [26]) which arise as a quotient of an Enriques surface by a
free antiholomorphic involution. Certainly such a manifold is almost spin (its universal cover
is a K3 surface) and has signature 4 (because 4 · 2 · 2 = 16 = sign(K3)).

We postpone the discussion of the action of the automorphisms on the normal 1-type on
the bordism set until after the treatment of the stable homeomorphism question in the next
section, since we use the action in the topological case to understand the action in the smooth
case.

4. Stable homeomorphism classification

The topological classification runs along similar lines to the smooth classification. First we
need to identify the possible normal 1-types of closed topological 4-manifolds with fundamental
group π and then calculate their respective automorphism and bordism groups, together with
the action of the automorphisms on the bordism group.

Proposition 4.1. Let M be a closed oriented topological 4-manifold with fundamental
group π.

(1) If M is totally non-spin, then its normal 1-type is given by

Bπ ×BSTOP −−−→ BSTOP

where the map projects onto the second factor.
(2) If M is spin, then its normal 1-type is given by

Bπ ×BTOPSpin −−−→ BSTOP

where the map is given by projecting BTOPSpin to BSTOP .
(3) If M is almost spin and H3(Bπ; Z) is 2-torsion free, then its normal 1-type is given by

Bπ ×BTOPSpin
E×p−−−−→ BSTOP ×BSTOP

⊕−−−→ BSTOP
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Here again ⊕ refers to the H-space structure on BSTOP that corresponds to the Whitney
sum of TOP -bundles and E is again a complex line bundle with c∗(w2(E)) = w2(M).

Proof. Mainly all the arguments of the smooth case go through in the topological case. The
following points need to be observed.

(1) We have π2(BSTOP ) ∼= Z/2, and the map M → BSTOP that classifies the normal
bundle induces a surjection on π2, since M is assumed to be totally non-spin. This is because
H2(BSTOP ; Z/2) = Z/2〈w2〉 and w2 detects the non-zero element in π2(BSTOP ), as in the
smooth case.

(2) The classifying space BTOPSpin is 2-connected, hence in the latter two cases the
1-smoothing of M is automatically surjective on π2.

(3) The proof of the existence of the bundle E is the same as in the smooth case; we just
consider the complex line bundle as a TOP -bundle. �

We can therefore compute the bordism groups relevant for the stable homeomorphism
classification. This will prove Theorem 1.3 in the totally non-spin and spin cases. We will
deal with the almost spin case in the next section.

Proposition 4.2. Let π be a COAT group. The bordism groups Ω4(ξ) are given as follows.

(1) For totally non-spin, ΩSTOP
4 (Bπ) ∼= Z ⊕ Z/2, where the Z factor is given by the signature

and the Z/2 factor is given by the Kirby–Siebenmann invariant.

(2) For spin, ΩTOPSpin
4 (Bπ) ∼= 8 · Z ⊕H2(Bπ; Z/2) ⊕H3(Bπ; Z/2). The Kirby–Siebenmann

invariant is given by the signature divided by 8.
(3) For almost spin, Ω4(ξ) ∼= 8 · Z ⊕H2(Bπ; Z/2). The Kirby–Siebenmann invariant is given

by the signature divided by 8 plus evaluation of w on the element of H2(Bπ; Z/2).

Proof. The James spectral sequence also exists in the topological case. The relevant bordism
theories are no longer ΩSO and ΩSpin, but ΩSTOP and ΩTOPSpin, respectively. We have that

ΩSTOP
i

∼=
⎧⎨⎩

Z i = 0
0 i ∈ {1, 2, 3}
Z ⊕ Z/2 i = 4

and the Z ⊕ Z/2 in degree 4 is given by the signature and the Kirby–Siebenmann invariant.
Furthermore we have

ΩSpin
i

∼= ΩTOPSpin
i for i < 4

and the forgetful map 16 · Z ∼= ΩSpin
4 → ΩTOPSpin

4
∼= 8 · Z is the canonical inclusion. The

Kirby–Siebenmann invariant does not enter as a separate Z/2 summand in ΩTOPSpin
4 , as Kirby

and Siebenmann [13, p. 325, Theorem 13.1] have proven the formula

ks(M) = sign(M)
8 mod 2.

Since the signature is always divisible by 8 in the smooth case, in the topological case the
signature is still divisible by 8 by [26, Main Theorem 9]. Therefore, the signature provides a
splitting of the extension

0 → 8 · Z → Ω4(ξ) → H2(Bπ; Z/2) → 0

that occurs in the spectral sequence for the topological almost spin case. To see this note that
the map 8 · Z → Ω4(ξ) sends 8 ·m to the bordism class of m copies of E8.
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The statement about the Kirby–Siebenmann invariant in (2) is Rochlin’s theorem and in (3)
it follows from [11, Theorem 6.11]. Note that this theorem also holds if the intersection form
λM is not even. �

The stable homeomorphism classifications of 4-manifolds with COAT fundamental group
differ in the totally non-spin and spin cases from the smooth case as follows.

(1) In the totally non-spin case, the topological classification is altered from the smooth
classification by the introduction of the Z/2 Kirby–Siebenmann invariant.

(2) In the spin case, the signature can be any multiple of 8 in the topological case, instead
of a multiple of 16 in the smooth case. The rest of the classification is unchanged. In particular
the material of Sections 7 and 8 is independent of categories.

The almost spin classification, involving the action of the automorphisms Aut(ξ) on the
bordism group Ω4(ξ), will be considered, in both smooth and topological cases, in the next
section.

5. The almost spin classification

Recall that we have short exact sequences, in both smooth case

0 → 16 · Z → Ω4(ξ) → H2(Bπ; Z/2) → 0

and in the topological case

0 → 8 · Z → Ω4(ξ) → H2(Bπ; Z/2) → 0.

In both cases we have the exact sequence

0 → H1(Bπ; Z/2) → Aut(ξ) → Out(π)w → 1.

Moreover, in the previous section we saw that in the topological case

ΩTOP
4 (ξ) ∼= 8 · Z ⊕H2(Bπ; Z/2),

whereas in the smooth case the sequence does not split. We look at the topological case first,
since this will be easier.

Theorem 5.1. Let π be a COAT group and let ξ be as in Lemma 3.18, an almost spin
normal 1-type. The action of Aut(ξ) on ΩTOP

4 (ξ) is given as follows.

(1) The action of H1(Bπ; Z/2) on ΩTOP
4 (ξ) is trivial, so the action factors through the map

Aut(ξ) → Out(π)w.
(2) An element ρ in the subgroup Out(π)w of the outer automorphisms acts on (z, ϕ) ∈

8 · Z ⊕H2(Bπ; Z/2) by

ρ · (z, ϕ) �→ (z, ρ · ϕ),

where Out(π)w acts by functoriality on H2(Bπ; Z/2).

Proof. First we prove that the action of H1(Bπ; Z/2) is trivial. Recall from the James
spectral sequence, that every class [M c−→ Bπ] ∈ Ω4(ξ) is represented by a map c which factors
through the 2-skeleton of Bπ. First assume that M is smooth. By Lemma 2.5, the preimage in
H2(Bπ(2); Zπ) is given by

∑
i μ(Fi)[ei], where ei ranges over the 2-cells of Bπ, Fi is a regular

preimage of the midpoint of ei and μ(Fi) = Arf(Fi) denotes the class of Fi in ΩSpin
2 . The

action of x ∈ H1(Bπ; Z/2) on μ(Fi) is given by pulling the element x back to H1(Fi; Z/2) using
Fi → M

c−→ Bπ, and changing the spin structure with the resulting element of H1(Fi; Z/2). But
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since the map Fi → Bπ(2) factors through a point, x pulls back to 0 ∈ H1(Fi; Zπ). Therefore
the action of H1(Bπ; Z/2) on [M c−→ Bπ] is trivial.

The bordism class represented by the E8 manifold is also invariant under the action of
H1(Bπ; Z/2) since the map E8 → Bπ is null-homotopic. Every element in the topological
bordism group can be represented by a smooth manifold or a smooth manifold connect summed
with E8, therefore the action of H1(Bπ; Z/2) is trivial.

It now follows that the action of Aut(ξ) on H2(Bπ; Z/2) factors through the map Aut(ξ) →
Out(π)w. Since the entry in the 8 · Z-summand can be changed by connected sums with the
E8 manifold together with the trivial map to Bπ, it follows that the action of Out(π)w on the
8 · Z-summand is trivial.

We now compute the action of ρ ∈ Out(π)w on the H2(Bπ; Z/2) summand. Taking connected
sum with E8 if necessary, we can again assume that M is smooth. As above, the entry in
the H2(Bπ; Z/2) summand is given by Arf invariants of point preimages. The action of ρ on
c : M → Bπ only permutes these preimages. Thus the action of Out(π)w is the canonical action
of Out(π) on H2(Bπ; Z/2). �

We have proved the following corollary, which is Theorem 1.3 (3).

Corollary 5.2. The stable homeomorphism classes of almost spin 4-manifolds with COAT
fundamental group π are in one-to-one correspondence with

8 · Z × (H2(Bπ; Z/2)/Out(π)w) .

The 8 · Z is detected by the signature and the second part is detected by Arf invariants
computed using Lemma 2.5.

Now we turn to the stable diffeomorphism classification of almost spin manifolds with COAT
fundamental group. We describe the set of stable diffeomorphism classes as the kernel of the
Kirby–Siebenmann invariant.

Corollary 5.3. The stable diffeomorphism classes of almost spin 4-manifolds with COAT
fundamental group π are in one-to-one correspondence with

ker
(
KS : 8 · Z × (H2(Bπ; Z/2)/Out(π)w) → Z/2

)
(n, ϕ) �→ n

8
+ w(ϕ),

The 8 · Z is detected by the signature and the second part is detected by Arf invariants
computed using Lemma 2.5.

6. Some examples

In this section we calculate the stable classification for the class of 3-manifold groups π arising
as a central extension

1 −−−→ Z −−−→ π −−−→ Z2 −−−→ 1.

Such extensions are classified by an element z ∈ H2(Z2; Z) ∼= Z. Geometrically these arise as
the fundamental groups of the total spaces of the principal S1-bundles over T 2 with first Chern
class z ∈ H2(T 2; Z). It follows from the long exact sequence in homotopy groups that these
total spaces are aspherical, since S1 and T 2 are aspherical. In particular the groups we consider
are aspherical 3-manifold groups.
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Lemma 6.1. If z �= 0 then we have that Z = Z(π), the centre of π. In particular, every
automorphism of π descends to an automorphism of Z2. This defines a map (−̂) : Aut(π) →
GL2(Z).

Proof. This follows from the fact that π has the following presentation:

P = 〈a, x, y | xax−1a−1, yay−1a−1, xyx−1y−1a−z〉. �

Lemma 6.2. The map Aut(π) → GL2(Z) defined by Lemma 6.1 is surjective.

Proof. We claim that we can lift elements of SL2(Z) to Aut(π) and that there exists an
automorphism of π that is sent to the matrix A = (0 1

1 0). Since any element ϕ ∈ GL2(Z) has
the property that either ϕ or A · ϕ is in SL2(Z), the lemma follows once we establish the above
claims. So let ϕ ∈ SL2(Z). Consider the following diagram:

where π′ is by definition the pullback of π along ϕ. The upper row is again a central extension
with invariant ϕ∗(z) ∈ H2(Z2; Z). Since ϕ ∈ SL2(Z) it follows that ϕ∗(z) = z and hence there
is an isomorphism of extensions Θ as indicated in the following diagram:

By construction the composite

π
Θ−−−→ π′ ψ−−−→ π

is an automorphism of π over ϕ.
The presentation π given in the proof of Lemma 6.1 shows that there is a well-defined

automorphism π → π given by a �→ a−1, x �→ y and y �→ x, which induces (0 1
1 0) ∈ GL2(Z). �

Lemma 6.3. For z �= 0 the cohomology of π is given by

Hn(π; Z) ∼=
⎧⎨⎩

Z if n ∈ {0, 3},
Z2 if n = 1,
Z2 ⊕ Z/z if n = 2.

Proof. We consider the Gysin sequence associated to the fibration

S1 −−−→ Bπ
p−−−−→ T 2

which reads as

0 −−−→ H1(T 2; Z)
p∗

−−−→ H1(Bπ; Z) −−−→ H0(T 2; Z) −∪z−−−−→ H2(T 2; Z)
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because the Euler class of the underlying oriented bundle of a complex line bundle is given by
the first Chern class. In particular it follows that

p∗ : H1(Bπ; Z)
∼=−→ H1(T 2; Z)

is an isomorphism. Therefore the action of Aut(π) on H1(Bπ; Z) is given through the map
Aut(π) → GL2(Z). The sequence continues as follows:

H0(T 2; Z) −∪z−−−−→ H2(T 2; Z) −−−→ H2(Bπ; Z) −−−→ H1(T 2; Z) −−−→ 0

which implies that there is a short exact sequence

0 −−−→ Z/z −−−→ H2(Bπ; Z) −−−→ H1(T 2; Z) −−−→ 0

which implies

H2(Bπ; Z) ∼= Z2 ⊕ Z/z.

We have already argued that there is a model for Bπ which is an orientable closed 3-manifold,
hence also H3(Bπ; Z) ∼= Z follows and the lemma is proven. �

Proposition 6.4. Let π be a central extension of Z2 by Z with 0 �= z ∈ H2(Z2; Z). Then
we have that

(1) if z is odd there are three stable diffeomorphism classes of spin manifolds with
fundamental group π and fixed signature;

(2) if z is even there are four stable diffeomorphism classes of spin manifolds with
fundamental group π and fixed signature.

We already saw in Example 3.16 that if z = 0 there are three stable diffeomorphism classes
with fixed signature.

Proof. Recall (Theorem 1.1) that we need to show that

Ω̃Spin
4 (Bπ)/

(
Out(π) ×H1(π; Z/2)

)
has three (respectively, four) elements. We have that

Ω̃Spin
4 (Bπ) ∼= H2(π; Z/2) ⊕H3(π; Z/2)

and thus

Ω̃Spin
4 (Bπ) ∼=

{
(Z/2)2 ⊕ Z/2 if z is odd(
(Z/2)2 ⊕ Z/2

)⊕ Z/2 if z is even.

According to Theorem 3.14, given any two classes x, y ∈ H2(Bπ; Z/2) we see that

(x, 1) ∼ (y, 1)

and furthermore

(x, 1) �∼ (y, 0).

Now assume that z is odd. To show that there are exactly three orbits of the action it suffices
to see that (x, 0) ∼ (y, 0) if and only if x = 0 = y or x �= 0 �= y. But this follows easily since

H2(Bπ; Z/2) ∼= H2(Bπ; Z) ⊗ Z/2 ∼= (Z/2)2

by the universal coefficient theorem, the action is given by the morphism

Aut(π) → GL2(Z) → GL2(Z/2),

and the map Aut(π) → GL2(Z) → GL2(Z/2) is surjective.
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For the case that z is even we want to show that the action of Aut(π) on H2(Bπ; Z/2) has
exactly three orbits. We write

H2(Bπ; Z/2) ∼= H2(Bπ; Z) ⊗ Z/2 ⊕ TorZ1 (H1(Bπ; Z),Z/2)

∼= H2(Bπ; Z) ⊗ Z/2 ⊕ Z/2

(Z/2)2 ⊕ Z/2

and elements as pairs (x, ρ). It follows from our previous arguments that

(x, 0) ∼ (y, 0)

if and only if x = 0 = y or x �= 0 �= y and that (x, 1) �∼ (y, 0) for any choice of x, y because any
automorphism acts trivially on the extra Z/2-factor. It remains to show that (x, 1) ∼ (y, 1) for
all x, y ∈ H2(Bπ; Z) ⊗ Z/2. For this we interpret

H2(Bπ; Z/2) ∼= Hom(H1(Bπ; Z),Z/2) ∼= (Z/2)3,

where the last isomorphism sends a morphism ϕ to the triple (ϕ(u), ϕ(v), ϕ(w)), where
u = (1, 0, 0), v = (0, 1, 0) and w = (0, 0, 1) under a choice of identification of H1(Bπ; Z) with
Z ⊕ Z ⊕ Z/z. The statement that (x, 1) ∼ (y, 1) for all such x, y then translates to the statement
that for any two functions ϕ,ψ : H1(Bπ; Z) ∼= Z2 ⊕ Z/z → Z/2 with ϕ(w) = 1 = ψ(w), there
exists an automorphism Θ: π → π such that ϕ = ψ ◦ Θ. This automorphism is defined as
follows. First, define Θ(w) = w. Next, if ϕ(u) = ψ(u), define Θ(u) = u, and similarly for
ϕ(v) = ψ(v). Finally if ϕ(u) �= ψ(u), define Θ(u) = wu. We obtain

ψ(Θ(u)) = ψ(wu) = ψ(w) + ψ(u) = 1 + ψ(u) = ϕ(u).

Again from the presentation of Lemma 6.1, it follows that Θ is a well-defined automorphism
of π. This concludes the proof of the proposition. �

7. Parity of equivariant intersection forms

Now we move on to giving the proof of Theorem 1.4. Section 7 proves part (2) of that theorem
and Section 8 proves part (3).

In this section, as before, X denotes a closed, oriented, aspherical 3-manifold and π denotes
its fundamental group. We want to construct representatives for all the stable diffeomorphism
classes of spin 4-manifolds with fundamental group π and zero signature, and compute their
intersection forms. To realise non-zero signatures just take connected sums with the K3 surface,
whose spin bordism class generates ΩSpin

4 .
The purpose of performing such detailed computation with models for each stable diffeomor-

phism class is to prove that the last Z/2 summand of ΩSpin
4 (Bπ) ∼= Z ⊕H2(Bπ; Z/2) ⊕ Z/2 is

determined by the parity of the intersection form on π2 (see 7.4). In the stable diffeomorphism
classification of Corollary 3.15, this Z/2 corresponds to the extra {odd}. The model 4-manifolds
will also be used in Section 8.

7.1. Algebra of even forms

We consider the group ring Zπ as a ring with involution, where the involution is given on group
elements by g �→ g := g−1. For a left Zπ-module N define N∗ := HomZπ(N,Zπ). We consider
N∗ as a left Zπ-module via the involution: (a · f)(n) := f(n) · a.

There is an involution on HomZπ(N,N∗) which sends a map f to its adjoint f∗. By definition,
this is the dual of f , a map N∗∗ → N∗, precomposed with the Zπ-module homomorphism
e : N → N∗∗, n �→ (f �→ f(n)).
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A map f : N → N∗ gives a pairing λ : N ⊗N → Zπ via λ(m,n) := f(n)(m). This slightly
awkward assignment has the property that f is Zπ-linear if and only if λ satisfies the usual
sesquilinearity conditions

λ(a ·m,n) = a · λ(m,n) and λ(m, a · n) = λ(m,n) · ā.
One can also check that f∗ leads to the form λ∗(m,n) = λ(n,m). In particular, the condition
f = f∗ translates into

λ(m,n) = λ(n,m)

In the future, we will not distinguish between f and its associated form λ and we will call λ
hermitian if it satisfies the last condition.

Definition 7.1. Let N be a left Zπ-module. A hermitian form λ ∈ HomZπ(N,N∗) is even
if there exists q ∈ HomZπ(N,N∗) such that λ = q + q∗. If λ is not even, we sometimes also call
it odd. This dichotomy is the parity of λ. The parity of a 4-manifold M is the parity of its
intersection form λ : π2(M) × π2(M) → Zπ.

Lemma 7.2. The parity of a 4-manifold is a stable homotopy invariant.

Proof. The parity of the intersection forms of homotopy equivalent 4-manifolds are the
same. Thus it suffices to show that the parities of M and M#(S2 × S2) agree.

We remark that the direct sum of two forms is even if and only if both forms are individually
even. Moreover we have that

λM#(S2×S2)
∼= λM ⊕ (Zπ ⊗Z λS2×S2) .

Since λS2×S2 is hyperbolic and thus even, the lemma follows. �

Lemma 7.2 immediately implies that parity is a stable diffeomorphism invariant.

Definition 7.3 (Quadratic refinement [27, Theorem 5.2]). A quadratic refinement of a
sesquilinear hermitian form λ : N ×N → Zπ on a left Zπ-module N is a group homomorphism
μ : N → Zπ/{g − g} such that

(i) λ(x, x) = μ(x) + μ(x) for all x ∈ N ;
(ii) μ(x + y) = μ(x) + μ(y) + λ(x, y) ∈ Zπ/{g − g} for all x, y ∈ N ;
(iii) μ(ax) = aμ(x)a for all x ∈ N and for all a ∈ Zπ.

A quadratic form is a triple (N,λ, μ) as above. It is called even if the underlying hermitian
form λ is even, that is, if there exists a q ∈ HomZπ(N,N∗) such that λ = q + q∗.

Note that, since we are working in the oriented case, that is with the involution on Zπ given
by g = g−1, for a quadratic form (N,λ, μ), the quadratic refinement μ is uniquely determined
by the hermitian form λ.

The existence of a quadratic refinement is a necessary condition for a hermitian form to
be even. More precisely, if λ = q + q∗ then μ(x) := q(x, x) has all properties above. We will
see that the converse is not true, even for intersection forms of spin 4-manifolds with COAT
fundamental groups. The first such examples were given in the last author’s PhD thesis [25]
for 4-manifolds with quaternion fundamental groups.

Note that the intersection form on π2(M) of an (almost) spin 4-manifold M admits a
quadratic refinement, as follows. Represent a class in π2(M) by an immersed sphere, and add
cusps to arrange that the normal bundle is trivial, and then count self-intersections with sign
and π1(M) elements, as in Wall [27, Chapter 5]. Adding a local cusp changes the Euler number
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of the normal bundle of an immersed 2-sphere by ±2. We use the (almost) spin condition, which
implies that the Euler numbers of the normal bundles of all immersed 2-spheres are even, to
guarantee that all Euler numbers can be killed by cusps, and hence the normal bundles can be
made trivial.

Lemma 7.4. A hermitian form on a free Zπ-module F has a quadratic refinement if and only
if it is even. Moreover, a quadratic form (λ, μ) on N ⊕ F is even if and only if the restriction
of λ to N is even.

Proof. First we show that every quadratic form (λ, μ) on F is even. Let fi be a basis of F
and μi ∈ Zπ be a lift of μ(fi). We define

q(fi, fi) := μi, q(fi, fj) := λ(fi, fj) for i < j and q(fi, fj) := 0 for i > j

and extend linearly to get q : F → F ∗. Then one simply checks the relation λ = q + q∗ on
the generators fi. As remarked above every even form has a quadratic refinement defined by
μ(x) := q(x, x), so we have proven the first sentence of the lemma.

Now let a quadratic form (λ, μ) on N ⊕ F be given and set

q((m, a), (n, b)) := λ((m, 0), (0, b)).

We see that

λ((m, a), (n, b))

= λ((m, 0), (n, 0)) + λ((0, a), (0, b)) + λ((m, 0), (0, b)) + λ((n, 0), (0, a))

= λ((m, 0), (n, 0)) + λ((0, a), (0, b)) + q((m, a), (n, b)) + q∗((m, a), (n, b)).

Since the form (a, b) �→ λ((0, b), (0, a)) extends via μ|F to a quadratic form on F , it is even by
the previous argument. This shows that λ and its restriction to N differ by an even form. �

Lemma 7.5. For any group π, the boundary map Exti
Zπ(Iπ,Zπ) → Hi+1(π; Zπ) is an

isomorphism for i � 1. Moreover, if π is an infinite group with H1(π; Zπ) = 0 then the canonical
map

HomZπ(Zπ,Zπ) −→ HomZπ(Iπ,Zπ) = Iπ∗

is an isomorphism. In particular, Iπ∗ ∼= Zπ∗ ∼= Zπ is a free Zπ-module, where the latter
isomorphism takes ϕ �→ ϕ(1).

Proof. Consider the canonical short exact sequence

0 −−−→ Iπ
i−−−−→ Zπ

ε−−−−→ Z −−−→ 0

where ε : Zπ → Z denotes the augmentation. We apply the functor HomZπ(−,Zπ) to this
sequence to obtain a long exact sequence in Ext-groups. For i � 0 we have

Exti+1
Zπ (Zπ,Zπ) = 0 and Exti

Zπ(Z,Zπ) = Hi(π; Zπ)

by definition of group cohomology. The first part of the lemma follows.
The second part follows by the same long exact sequence of Ext groups because under our

assumptions the two relevant terms around our groups vanish. Recall that H0(π;N) ∼= Nπ is
the fixed-point set of the π-action for any Zπ-module N . This fixed-point set vanishes for free
Zπ-modules if and only if π has infinite order. �

Corollary 7.6. If π is an infinite group with H1(π; Zπ) = 0, then Zπ ∼= End(Iπ), with
the isomorphism given by sending x ∈ Zπ to the endomorphism b �→ bx.
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Proof. Every endomorphism Iπ → Iπ can be extended to Iπ → Zπ and thus can be uniquely
described by an element in Zπ by Lemma 7.5. �

If π is a Poincaré duality group of dimension n � 2, we observe that it is infinite and satisfies
the assumption on first cohomology in Lemma 7.5:

H1(π; Zπ) ∼= Hn−1(π; Zπ) = 0.

Lemma 7.7. The involution a �→ ā on Zπ is taken to f �→ f∗ under the maps

Zπ ∼= HomZπ(Zπ,Zπ∗) → HomZπ(Iπ, Iπ∗).

If π is infinite and H1(π; Zπ) = 0 the second map is an isomorphism, so any pairing on Iπ
extends uniquely to a pairing on Zπ.

Proof. The isomorphism Zπ∗ → Iπ∗ from Lemma 7.5 is sufficient to obtain the isomorphism
claimed under the assumptions made. The compatibility of the two involutions works as follows:
The group in the middle consists of pairings on Zπ and the map to the right just restricts the
pairing to Iπ. This restriction preserves the involution f → f∗. Given a pairing λ on Zπ,
the map to the left just takes the value λ(1, 1) ∈ Zπ. Our claim follows from the fact that
λ∗(1, 1) = λ(1, 1). �

7.2. Surgery on X × S1

Now we proceed to construct the promised representatives for the stable diffeomorphism classes.
Let ν̃X×S1 : X × S1 → BSpin be a choice of lift of νX×S1 . Then

X × S1
pr1×ν̃X×S1−−−−−−−→ X ×BSpin

defines an element of ΩSpin
4 (X). In 3 we computed that there is an isomorphism

Θ: ΩSpin
4 (X)

∼=−→ Z ⊕H2(X; Z/2) ⊕ Z/2.

Given x0 ∈ X, the composition

S1 x0×Id−−−−→ X × S1
pr1×ν̃X×S1−−−−−−−→ X ×BSpin

pr2−−−−→ BSpin

defines an element σ of ΩSpin
1

∼= Z/2 which by Lemma 2.5 agrees with the image of X × S1

under Θ followed by projection onto the third factor.

Lemma 7.8. If σ = 0, then X × S1 also goes to zero under Θ followed by the projection
onto the second factor. If σ = 1 then any element of H2(X; Z/2) can be realised by different
choices of the lift ν̃X×S1 .

Proof. When σ = 0, the original manifold X × S1 is null-bordant over Bπ ×BSpin, with
null bordism X ×D2.

When σ = 1, the action of the automorphisms of Bπ ×BSpin from Theorem 3.14 enables
the choice of another 1-smoothing so that any element is realised. �

We can do a surgery along x0 × S1 to produce a manifold with fundamental group π. This
will be a surgery over X ×BSpin, to convert pr1 × ν̃X×S1 to a 2-connected map. Since the
cobordism produced as the trace of the surgery will also be over X ×BSpin, the element of
ΩSpin

4 (X) is unchanged by the surgery. Therefore we realise the elements of ΩSpin
4 (X) allowed

by Lemma 7.8 by 4-manifolds with fundamental group π. The remaining elements, that is,
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those not realised when σ = 0, will be constructed by a more complicated procedure in the
next subsection.

Let D3 ⊆ X denote a small ball around x0. Fix an identification of ∂ cl(X \D3) with S2.
Then define

Mσ := (cl(X \D3) × S1) ∪f S2 ×D2.

Here f : S2 × S1 → S2 × S1 is the identity if σ = 0, whereas if σ = 1, define the diffeomorphism
f as follows. Give S2 coordinates using the standard embedding in R3 as the boundary of the
unit ball, and Euler angles:

(ϕ,ψ) �→ (cos(ϕ), sin(ϕ) cos(ψ), sin(ϕ) sin(ψ)).

(For a fixed point in S2, there are multiple choices for (ϕ,ψ). The upcoming proscription of f
is independent of these choices.) Then define f by

((ϕ,ψ), eiθ) �→ ((ϕ,ψ + θ), eiθ).

The twist in the glueing map f arranges that the spin structure extends across the cobordism
X × S1 × I ∪f D3 ×D2. The spin structure can then be restricted to the new boundary to
give a spin structure on Mσ. By Lemma 7.8, for σ = 1 every element (0, γ, 1) ∈ ΩSpin

4 (X)
with γ ∈ H2(X; Z/2) can be realised by M1 with an appropriate spin structure. If we want to
consider M1 not just as a smooth manifold, but as a spin manifold realising (0, γ, 1), we denote
it by M1,γ .

We state the computation of π2 as a lemma so that we can refer to it in subsequent similar
computations.

Lemma 7.9. Let X be an oriented aspherical 3-manifold (with possibly non-empty bound-
ary) and fundamental group π. Define Mσ as above, for σ = 0, 1. Then π2(Mσ) ∼= Zπ ⊕ Iπ,
where Iπ is the augmentation ideal of Zπ, that is, the kernel of the augmentation map Zπ → Z.

Proof. Let N ∼= π ×D3 denote the preimage of D3 ⊆ X in X̃. By assumption, X̃ is
contractible. We will compute π2(Mσ) by computing H2(M̃σ), using the Mayer–Vietoris
sequences

0 → H2(∂N × S1) → H2(N × S1) ⊕H2(cl(X̃ \N) × S1) → H2(X̃ × S1) = 0

and

H2(∂N × S1) → H2(π × S2 ×D2) ⊕H2(cl(X̃ \N) × S1) → H2(M̃σ)

→ H1(∂N × S1) → 0 ⊕H1(cl(X̃ \N) × S1) → 0.

The first sequence computes the effect of removing D3 × S1 from X × S1 and the second
sequence glues in S2 ×D2 in its stead. Since H2(N × S1) = 0, from the first sequence we
see that H2(cl(X̃ \N) × S1) ∼= H2(∂N × S1) ∼= Zπ. As a Z[π]-module, H2(cl(X̃ \D3) × S1) is
generated by ∂D3 × {0}.

In the second sequence the maps from H2(∂N × S1) to H2(π × S2 ×D2) and H2(cl(X̃ \
N) × S1) are both isomorphisms. Furthermore, we have H1(∂N × S1) ∼= Zπ, H1(cl(X̃ \N) ×
S1) ∼= Z and the map between them is the augmentation map. Thus, we obtain a short exact
sequence

0 → Zπ → H2(M̃σ) → Iπ → 0,

where Iπ is the augmentation ideal ker(Zπ → Z). Lemma 7.5 says that

Ext1
Zπ(Iπ,Zπ) = 0
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so this sequence splits. This proves the lemma since π2(Mσ) ∼= H2(M̃σ) by the Hurewicz
theorem. �

Since we will need it later, we will also geometrically construct a splitting of the short exact
sequence in the above proof. Let g1, . . . , gm be generators of π and let {sji}1�i�m,j∈{0,1} be a set
of disjoint points in ∂D3 ⊆ cl(X \D3). Choose x0 ∈ ∂D3 and for every 1 � i � m, 0 � j � 1
let ωj

i be a path in ∂D3 from x0 to sji and let wi be a path in X \D3 from s0
i to s1

i such that
(ω1

i )
−1 ◦ wi ◦ ω0

i represents gi ∈ π ∼= π1(cl(X \D3), x0). We can assume that all paths wi are
disjointly embedded. If σ = 0 we can define elements in π2(Mσ) by

αi := [({s0
i } ×D2) ∪ (wi × S1) ∪ ({s1

i } ×D2)].

Under the boundary map H2(M̃σ) → H1(∂N × S1), the element αi is mapped to [{s0
i } × S1] −

gi[{s1
i } × S1]. For σ = 1, let sji be given by (ϕj

i , ψ
j
i ) in Euler coordinates. The image of {sji} ×

S1 ⊆ cl(X̃ \N) × S1 in S2 ×D2 is no longer (ϕj
i , ψ

j
i ) × S1, but gets rotated around the S2,

by definition of f . Therefore, to cap off the cylinder wi × S1, we have to construct more
complicated caps. We can define elements in π2(Mσ) by

αi := [C0
i ∪ (wi × S1) ∪ C1

i ],

where Cj
i is the image of the map D2 → S2 ×D2 defined by

teiθ �→ ((tϕj
i , ψ

j
i + θ), teiθ).

Note that the image of the point {t = 0} is (north pole of S2, centre of D2). Under the boundary
map H2(M̃σ) → H1(∂N × S1), the element αi is again mapped to [{s0

i } × S1] − gi[{s1
i } × S1].

Thus 1 − gi �→ αi defines a splitting map Iπ → H2(M̃σ) as promised.
We can also compute the intersection form. In the case σ = 0 we see that the representatives

for the αi are disjointly embedded and that they intersect the generator β := ∂D3 of the free
summand transversely in {sji}j=0,1 × {0}. We therefore have

λ(αi, β) = 1 − gi ∈ Zπ.

When σ = 1, the terms λ(αi, β) are unchanged, but the representatives of the αi have additional
intersections amongst each other; they intersect transversely in the midpoints of the discs Cj

i ,
so we have

λ(αi, α�) = (1 − gi)(1 − g−1
� ) ∈ Zπ.

Make a small perturbation of the points sji , for j = 0, 1, and the path wi between them.
Denote the new path by w′

i. This can be done so that wi and w′
i are disjoint. It fol-

lows that the homological self-intersections λ(αi, αi) are also given by the formula above
with i = �.

Use the identification from Lemma 7.7 to write the intersection form on π2(Mσ) as

Iπ Zπ( )
Iπ σ 1
Zπ 1 0

.

In particular, the intersection between α, β ∈ Iπ is zero if σ = 0 and λ((α, 0), (β, 0)) = αβ if
σ = 1.

This completes the construction of elements in the bordism group representing (0, 0, 0) and
(0, γ, 1) in Z ⊕H2(X; Z/2) ⊕ Z/2 ∼= ΩSpin

4 (X), and the computation of their intersection forms.
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7.3. Surgery on a connected sum of two copies of M1

So far we have constructed elements in the bordism group representing (0, 0, 0) and (0, γ, 1) in

Z ⊕H2(X; Z/2) ⊕ Z/2 ∼= ΩSpin
4 (X).

In this subsection we construct elements representing the remaining signature zero elements
(0, γ, 0) (as noted above the signature can be changed by repeatedly connect summing with
the K3 surface).

In this section, for a space Z, we use Z̃ to denote the universal cover. If the fundamental
group is not π, but we nevertheless have a map Z → Bπ, we can construct the π-cover, which
we denote by Z. If Z has a handle decomposition, we will denote the union of the handles of
index less than or equal to k by Z(k), and call this the k-skeleton of Z, that is, we use the same
notation as for cell complexes.

Let M1,γ
pγ−→ X ×BSpin denote the manifold representing (0, γ, 1) as above. To represent the

elements (0, γ, 0) we can take the connected sum M1,γ#M1,0. We have π1(M1,γ#M1,0) ∼= π ∗ π,
and we can do surgeries, over B = Bπ ×BSpin, along curves representing (gi, g−1

i ) to obtain
a 2-connected map to B, that is, a manifold P with fundamental group π. Here the gi again
denote generators of π as above. Since all surgeries are over B, the resulting manifold P
represents the desired element in Ω4(ξ).

Next we will perform this construction in detail, and compute π2(P ) and the intersection
form λ : π2(P ) × π2(P ) → Zπ of the output. In what follows we often omit the subscript from
M1,γ , and denote both M1,γ and M1,0 by M , where the distinction is not important. Until we
glue in copies of S2 ×D2, the distinction is purely in the map to BSpin. Only in ensuring that
the map to BSpin extends over these new parts does the difference between M1,γ and M1,0

emerge.
Choose a handle decomposition of the 3-manifold X with one 0-handle and one 3-handle,

n 1-handles and n 2-handles. We will construct the manifold P once again, incrementally,
computing π2 carefully as we go. We begin, however, with a digression on the chain complex
of X̃, which we will need to refer to throughout the construction. Let g1, . . . , gn denote
generators of π corresponding to the 1-handles of X, as before. Let h1, . . . , hn be generators
of π corresponding to the cocores of the 2-handles of X; use a path from the centre of the
3-handle to the centre of the 0-handle, so that this latter centre is the base point for all loops.
Let R1, . . . , Rn be relations in a presentation of π corresponding to the handle decomposition
of X, namely the words in the gi which describe the attaching maps of the 2-handles.

Recall that given generators g1, . . . , gn the Fox derivative [7] with respect to gi is a map ∂
∂gi

=
Di : Fn → ZFn which is defined by the following: ∂e

∂gi
= 0, ∂gi

∂gj
= δij and ∂uv

∂gi
= ∂u

∂gi
+ u ∂v

∂gi
.

Taking the quotient this defines a map Fn → Zπ, which extends to a map ZFn → Zπ by
linearity.

The chain complex C∗ = C∗(X̃) ∼= C∗(X; Zπ) of X̃ comprises free Zπ-modules

C3 = Zπ
∂

˜X
3−−→ C2 = (Zπ)n

∂
˜X
2−−→ C1 = (Zπ)n

∂
˜X
1−−→ C0 = Zπ

with boundary maps given by ∂
˜X
1 = (g1 − 1 · · · gn − 1)T , (∂ ˜X

2 )ij = ∂Ri

∂gj
and ∂

˜X
3 =

(h1 − 1 · · · hn − 1). Here we use the convention that elements of free modules are
represented as row vectors and matrices act on the right.

Let X2,3 denote X with 0- and 1-handles removed; X2,3 = X \X(1). Take S1 ×X, and
perform surgery on the S1 factor. That is, remove S1 ×D3 ⊂ S1 ×X where the 3-ball lies in
the interior of the 3-handle of X, and attach D2 × S2 with

f((ϕ,ψ), eiθ) = ((ϕ,ψ + θ), eiθ)
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as in the previous subsection. The rotation in the glueing map ensures, as before, that map to
BSpin extends to the outcome of surgery, which is M .

Let Y 2,3 = M \ S1 ×X(1) be the result of performing this surgery on X2,3 only. The surgery
takes place in the interior of the 3-handle of X. So

Y 2,3 =
(
S1 ×X2,3 \ S1 ×D3

) ∪f S2 ×D2.

Lemma 7.10. We have π2(Y 2,3) ∼= (ZFn)n+1 and H2(Y 2,3) ∼= (Zπ)n+1.

Proof. Removing the 0- and 1-handles from X is the same as removing the 2- and
3-handles from the dual handle decomposition. Thus π1(X2,3) is a free group Fn with generators
represented by the cocores of the 2-handles of X. Since X2,3 is aspherical, by Lemma 7.9 we
have that π2(Y 2,3) ∼= ZFn ⊕ IFn

∼= (ZFn)n+1. This proves the first part of the claim. Recall
that Y 2,3 denotes the pullback of the covering M̃ → M to Y 2,3, that is, the π-covering. We
identify H2(Y 2,3) ∼= H2(Y 2,3; Zπ). We compute this using the universal coefficient spectral
sequence:

Ep,q
2 = TorZFn

p (Hq(Y 2,3; ZFn),Zπ) ⇒ Hp+q(Y 2,3; Zπ).

Here H1(Y 2,3; ZFn) = 0 and ZFn has homological dimension 1, so that all Torq groups with
q � 2 vanish. Therefore

H2(Y 2,3; Zπ) ∼= TorZFn
0 (H2(Y 2,3; ZFn),Zπ) ∼= Zπ ⊗ZFn

H2(Y 2,3; ZFn) ∼= (Zπ)n+1

which completes the proof of the lemma. �

For later use we describe and give names to generators of H2(Y 2,3) ∼= (Zπ)1+n. The first
Zπ summand, arising from ZFn ⊗ Zπ, is represented by Σ1 := ∂(pt ×D3), where pt ×D3 ⊂
S1 ×D3, the S1 ×D3 which was removed during the surgery. Next, IFn ⊗ Zπ ∼= (ZFn)n ⊗
Zπ ∼= (Zπ)n. The basis element ei of (Zπ)n is represented by the sphere αi corresponding to
1 − hi ∈ IFn; recall that hi is the generator corresponding to the cocore of the ith 2-handle,
and αi was constructed just after the proof of Lemma 7.9. Call these spheres Σ2, . . . ,Σn+1,
respectively.

Write S1 = D1 ∪S0 D1, and take the product of this decomposition with X(1) to split S1 ×
X(1) into two copies of D1 ×X(1). Let

M2,3 = Y 2,3 ∪D1×∂X(1) (D1 ×X(1)) = M \ ((S1 \D1) ×X(1)) = M \ (D1 ×X(1)).

Let X(1) denote the π-cover: the pullback of the universal cover X̃ → X along the inclusion
X(1) → X. Similarly let M2,3 denote the pullback of M̃ → M along the inclusion M2,3 → M .

Lemma 7.11. We have an isomorphism H2(M2,3) ∼= H2(Y 2,3).

Proof. Note that ∂X(1) is a connected, non-compact surface. Consider the sequence

H2(D1 × ∂(X(1))) = 0 → H2(Y 2,3) ⊕ 0 → H2(M2,3)

→ H1(D1 × ∂(X(1))) → H1(Y 2,3) ⊕H1(D1 ×X(1)).

The kernel of H1(D1 × ∂(X(1))) → H1(D1 ×X(1)) is generated by the cocore spheres of the
1-handles of X. These circles are the attaching spheres of the 2-handles in the dual handle
decomposition. Therefore we can identify this kernel with the image of (∂ ˜X

2 )∗ : C1(X̃) →
C2(X̃), which is isomorphic to C1(X̃)/ im((∂ ˜X

1 )∗). On the other hand H1(X2,3) is also given
by C1(X̃)/ im((∂ ˜X

1 )∗). Crossing with S1 yields H1(X2,3 × S1) ∼= H1(X2,3) ⊕ Z. Then surgery
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on this S1 to obtain Y 2,3 kills the Z summand, without changing the homology of the first
summand. Thus H1(Y 2,3) ∼= coker((∂ ˜X

1 )∗) and the map

H1(D1 × ∂(X(1))) → H1(Y 2,3)

induces an isomorphism when restricted to

ker
(
H1(D1 × ∂(X(1))) → H1(X(1))

)
→ H1(Y 2,3).

In particular, the map

H1(D1 × ∂(X(1))) → H2(Y 2,3) ⊕H1(D1 ×X(1))

is injective, and so H2(Y 2,3)
∼=−→ H2(M2,3). This completes the proof of the lemma. �

Let M0,2,3 denote M \ (D1 ×X1), where X1 = X(1) \X(0) ∼=∐n
D1 ×D2 denotes the

union of the 1-handles of X. Note that π1(M0,2,3) ∼= π1(M) ∼= π, therefore M̃0,2,3 = M
0,2,3

.

Lemma 7.12. We have that H2(M̃0,2,3) ∼= Zπ ⊕ Iπ.

Proof. Let N be the preimage of X1 ×D1 ∼=∐n
D4 in M̃ . Then from the Mayer–Vietoris

sequence associate to the decomposition M̃ = M̃0,2,3 ∪N , namely

H2(∂N) = 0 → H2(M̃0,2,3) ⊕ 0 → H2(M̃) → H1(∂N) = 0,

we see that H2(M̃0,2,3)
∼=−→ H2(M̃) ∼= Zπ ⊕ Iπ; recall that the second isomorphism was shown

in Lemma 7.9. This proves the lemma. �

Note that M0,2,3 can also be obtained from M2,3 by glueing in the product D1 ×X(0) of D1

with the 0-handle of X. In fact

M0,2,3 = M \ (D1 ×X1) = M \
(

n∐
D1 ×D3

)
= M2,3 ∪ (D1 ×X(0)) = M2,3 ∪D4.

The final glueing is performed along ∂D4 \ (
∐2n

S0 ×D3), where the removed 3-balls corre-
spond to the feet of the n 1-handles. Let M ′ denote two copies of M2,3 glued together along
this same S3 \∐2n

D3, and let M ′ denote the π-covering.

Lemma 7.13. We have H2(M ′) ∼= (Zπ)n+2 ⊕ Iπ and H1(M ′) ∼= Iπ.

Proof. From the decomposition M0,2,3 = M2,3 ∪D4 we obtain a Mayer–Vietoris sequence

H2(π ×
(
S3 \

2n∐
D3)

)
→ H2(M2,3) ⊕ 0 → H2(M̃0,2,3) → 0.

Then we have

H2(π ×
(
S3 \

2n∐
D3)

)
→

2⊕
H2(M2,3) → H2(M ′) → 0

and from the above we see that H2(M ′) ∼= H2(M2,3) ⊕H2(M̃0,2,3). This follows from the
general fact that given a homomorphism A → B of modules, and the corresponding diagonal
morphism Δ: A → B ×B, the quotient (B ×B)/Δ(A) is isomorphic to B × (B/A); the map
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(b, b′)Δ(A) �→ (b′ − b, b′A) is an isomorphism with inverse (b, b′A) �→ (b′ − b, b′)Δ(A). In our
case A = H2(π × (S3 \∐2n

D3)) and

B = H2(M2,3) ∼= H2(Y 2,3) ∼= (Zπ)n+1

generated by the spheres Σ1
1, . . . ,Σ

1
n+1, as can be seen by combining Lemmas 7.10 and 7.11,

where Σj
i denotes the ith sphere Σi in the jth copy of M2,3. Lemma 7.12 therefore implies

B/A = H2(M̃0,2,3) ∼= Zπ ⊕ Iπ

generated by the diagonal elements Σ1
i ∪ Σ2

i . Here Σ1
1 ∪ Σ2

1 represents (1, 0) ∈ Zπ ⊕ Iπ, while
Σ1

i+1 ∪ Σ2
i+1 represents (0, 1 − hi) ∈ Zπ ⊕ Iπ (here a union of spheres can be replaced by the

connected sum if desired). This completes the proof of the first part of the lemma.
To see the second part of the lemma we need to compute H1(M ′). Since removing

D3 × S1 from a 4-manifold does not change the fundamental group, we have π1(M ′) ∼=
π1(M1,γ#M1,0) ∼= π ∗ π. We can compute the homology H1(M ′) using the Mayer–Vietoris
sequence for M ′ = M̃ \ (π ×D4) ∪π×S3 M̃ \ (π ×D4). This yields

0 =
⊕

2

H1(M̃ \ (π ×D4)) −−−→ H1(M ′) −−−→ H0(π × S3) ∼= Zπ
aug2

−−−→

⊕
2

H0(M̃ \ (π ×D4)) ∼= Z2

which easily implies the second part of the lemma. �

The manifold M ′ is homeomorphic to the manifold obtained from M#M (glued together by
taking out D1 ×X(0) from each copy and identifying the boundaries), by removing D1 ×X1

in each copy. The cores of these solid tori removed from M#M represent elements g−1
i · g′i of

π1(M#M) ∼= π ∗ π, where g′i is the same generator as gi in the second copy of M .
To obtain the closed manifold P we need to glue in n copies of S2 ×D2 to M ′. Using the same

identification of the boundary components S2 ×D1 ⊆ M2,3 in both copies, we have a unique
identification of the n boundary components of M ′ with S2 × S1. Use Poincaré duality to view
γ as a homomorphism H1(X; Z) → Z/2. Use a point in the 0-handle of X as a base point,
so that every 1-handle defines an element in π1(X). If this element is mapped to zero under
π1(X) h−→ H1(X; Z)

γ−→ Z/2, then glue S2 ×D2 to the torus corresponding to the 1-handle via
the identity on S2 × S1. Otherwise, glue using

f((ϕ,ψ), eiθ) = ((ϕ,ψ + θ), eiθ).

This completes our reconstruction of the 4-manifold P , whose intersection form we are trying
to compute.

Lemma 7.14. We have π2(P ) ∼= (Zπ)2n+1 ⊕ Iπ.

Proof. On the level of π-coverings we obtain the following Mayer–Vietoris sequence

H2

(
n∐

i=1

π × S2 × S1

)
→ H2(M ′) ⊕H2

(
n∐

i=1

π × S2 ×D2

)
→ H2(P̃ )

→ H1

(
n∐

i=1

π × S2 × S1

)
→ H1(M ′) ⊕ 0 → 0.
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Using the computations above, the Mayer–Vietoris sequences yields the following exact
sequence

0 → (Zπ)n+2 ⊕ Iπ → H2(P̃ ) δ−→ (Zπ)n → Iπ → 0.

The last map sends the generator of the jth summand to 1 − gj , where gj ∈ π denotes the
element represented by the jth 1-handle.

Let {bi}1�i�n denote the cores of the 2-handles of X. Take one copy of bi × {0} in each
copy of M2,3 in M ′. Their boundaries coincide where they lie on the 0-handle (which we used
to connect the two copies of M2,3). Thus, we obtain a two sphere with one D2 removed for
every time that the boundary of bi runs over a 1-handle. We can fill these copies of D2 in using
S2 ×D2. This produces an element Bi in H2(P̃ ) which is sent under the boundary map δ in
the Mayer–Vietoris sequence to the Fox derivatives; that is, if we identify the free submodule
of H2(P̃ ) generated by each of the Bi with Zπ ⊂ C2(X̃) then δ| = ∂

˜X
2 : Zπ → (Zπ)n. Also note

that we have the relation

[Σ1
1] + [Σ2

1] =
n∑

i=1

(pi ◦ ∂ ˜X
3 (1))[Bi] ∈ H2(P ; Zπ),

where pi : (Zπ)n → Zπ is projection onto the ith summand, since the Σj
1 sphere represents the

boundary of the 3-handle of X. The use of the surgery discs in the Bi cancel homologically.
In the following diagram let E := Iπ ⊕ (Zπ)n+1 so that H2(M ′) ∼= E ⊕ Zπ, with the Zπ

summand which has been separated out generated by Σ1
1 ∪ Σ2

1. The bottom row is the exact
sequence computed from the Mayer–Vietoris sequence above.

The central vertical map is defined as follows. Send E to H2(P̃ ) using the same map as in
the bottom row. Send the ith basis vector ei ∈ (Zπ)n to the class [Bi]. We can see from
the description of the Bi above that the diagram commutes. The five lemma then implies
that the middle vertical map is an isomorphism, so that π2(P ) ∼= H2(P̃ ) ∼= Iπ ⊕ (Zπ)2n+1 as
claimed. �

Next we describe the generators of

π2(P ) ∼= Zπ ⊕ Iπ ⊕ (Zπ)n ⊕ (Zπ)n

explicitly. The first Zπ summand is represented by Σ1
1. In the Iπ summand, gi − 1 is represented

by Σ1
i+1 ∪ Σ2

i+1. The first (Zπ)n summand has ei represented by Σ2
i+1. Here we choose Σ2

i+1

instead of Σ1
i+1, as can be achieved by a basis change, in order to obtain a simpler matrix

representing the intersection form in the next lemma. The last (Zπ)n summand is generated
by the Bi spheres. In each instance of i we have i = 1, . . . , n.
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Lemma 7.15. The intersection form on π2(P ) is given as follows:

Zπ Iπ (Zπ)n (Zπ)n⎛⎜⎜⎜⎝
⎞⎟⎟⎟⎠

Zπ 0 1 0 0

Iπ 1 2 (1 − g−1
j ) 0

(Zπ)n 0 (1 − gi) (1 − gi)(1 − g−1
j ) δij

(Zπ)n 0 0 δij
∑

k γ(gk)(DkRi)T (DkRj)

,

where the precise meaning of the entries is explained in the next two paragraphs.

The entries are interpreted as follows. In the bottom-right 2 × 2 block, each entry represents
an n× n matrix over Zπ, and we have written the (i, j) entry. The Kronecker delta symbols
δij correspond to n× n identity matrices. Recall that g1, . . . , gn are our chosen generators of
π. In the bottom-right entry, recall that γ ∈ Hom(π,Z/2), and then for each gk consider γ(gk)
as an element of Z via the natural inclusion Z/2 = {0, 1} ⊂ Z.

The (2, 3) and (3, 2) entries are row and column vectors, respectively, and we have written
the jth, ith entries. Intersections involving the Iπ summand should be interpreted via the
inclusion Iπ ⊂ Zπ and the identification of Lemma 7.7. For example, for ζ · ej , where ej
is the jth basis vector in the first Zπn, ζ ∈ Zπ, and for β ∈ Iπ, we have λ(β, ζ · ej) =
β(1 − g−1

j )ζ.

Proof of Lemma 7.15. The intersections between the Σj
i spheres have already been computed

in the previous subsection.
The spheres Σj

i use the cocore of the ith 2-handle of X in what was the jth copy of M1 of
the connected sum, before the final set of surgeries. This cocore of course intersects the core bi
of the ith 2-handle, which forms part of Bi. The entries in the last row and column, excluding
the bottom-right entry, follow.

It remains to compute the intersection form on the free summands corresponding to the
cores bi of the 2-handles. Let Bi, Bj denote the generators of the ith and jth summand,
respectively. They intersect only in the caps constructed in those copies of S2 ×D2 which were
attached using the non-trivial glueing, that is, we have λ(Bi, Bj) =

∑
k γ(gk)(DkRi)(DkRj);

recall that DkRi denotes the kth Fox derivative of the relation corresponding to the ith
2-handle. �

7.4. Parity of intersection forms detects the Z/2 summand of ΩSpin
4 (X)

We emphasise that the parity does not depend on a choice of spin structure; like the signature
it can be computed independently of the choice of normal 1-smoothing, from the intersection
form.

Theorem 7.16. Let [M c−→ X] ∈ ΩSpin
4 (X) with c∗ : π1(M)

∼=−→ π1(X) an isomorphism. Then

[M c−→ X] lies in the kernel of the projection to H3(X; Z/2) ∼= Z/2 if and only if the equivariant
intersection of M is even.

Remark 7.17. The proof of the theorem is identical for topological 4-manifolds considered
up to stable homeomorphism.

Proof. The parity of the equivariant intersection form is a stable diffeomorphism invariant
by Lemma 7.2, and thus it suffices to prove the statement of the theorem for the representatives
constructed above. As seen in Section 7.2, for every element [M c−→ X] as in the statement that
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does not lie in the kernel of the projection, M is stably diffeomorphic to a manifold M1 with
π2(M1) ∼= Zπ ⊕ Iπ and equivariant intersection form

Iπ Zπ( )Iπ 1 1
Zπ 1 0

.

By Lemma 7.7 this form is odd, since 1 does not lie in the image of Zπ
1+T−−−→ Zπ.

If [M c−→ X] lies in the kernel of the projection to Z/2, then by Section 7.3, M is stably
diffeomorphic to a manifold P with equivariant intersection form

Zπ Iπ (Zπ)n (Zπ)n⎛⎜⎜⎜⎝
⎞⎟⎟⎟⎠

Zπ 0 1 0 0

Iπ 1 2 (1 − g−1
j ) 0

(Zπ)n 0 (1 − gi) (1 − gi)(1 − g−1
j ) δij

(Zπ)n 0 0 δij
∑

k γ(gk)(DkRi)(DkRj)

.

See below the statement of Lemma 7.15 for an explanation of the meaning of the entries. By
Lemma 7.4 the form is even if and only if its restriction to Iπ is even, and this latter statement
is evident from the 2 in the above matrix. �

8. The τ -invariant of spin 4-manifolds

Recall that we denote the map given by augmentation composed with reduction modulo 2 by
ϕ : Zπ

ε−→ Z → Z/2.

Definition 8.1. An element α ∈ π2(M) is called spherically characteristic if ϕ(λ(α, β)) =
ϕ(λ(β, β)) ∈ Z/2 for all β ∈ π2(M). Note that the right-hand side vanishes identically if and
only if M has universal covering spin.

Let S : S2 � M be an immersed 2-sphere with vanishing self-intersection number μM (S) =
0. Then the self-intersection points of S can be paired up so that each pair consists of two
points having oppositely signed group elements. Therefore, one can choose a Whitney disc
Wi for each pair of self-intersections and arrange that all the boundary arcs are disjoint. The
normal bundle to Wi has a unique framing and the Whitney framing of Wi differs from this
framing by an integer ni ∈ Z.

If S is spherically characteristic, then the following expression is independent of the choice
of Whitney discs:

τ(S) :=
∑
i

|Wi ∩ S| + ni mod 2.

Moreover, τ(S) only depends on the regular homotopy class of the immersion. Restricting
to immersions with μM (S) = 0 fixes a regular homotopy class within a homotopy class: non-
regular cusp homotopies change the self-intersection number by (even) multiples of the identity
group element.

Remark 8.2. If S is not spherically characteristic then τ(S) is not well defined since adding
a sphere that intersects S in an odd number of points to one of the Whitney discs would change
the sum by one.
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y gy

Figure 1. Whenever y intersects a Whitney disc, so does gy. Following a standard convention for
diagram in dimension 4, some surfaces are shown as arcs, which we imagine to propagate through
time. The part of the horizontal surface that we see only lives in the present.

The invariant τ(S) first appeared in Freedman and Kirby [8, p. 93] and Mat-
sumoto [16] and a similar invariant was later used by Freedman and Quinn [9, Defini-
tion 10.8]. In [21], Schneiderman and the fourth author defined a generalisation τ1(S)
with values in a quotient of Z[π × π]. They considered primary and secondary group
elements, in analogy with the passage from the ordinary to the equivariant intersection
form.

Lemma 8.3. Let x, y ∈ π2(M) be such that λ(x, y) = 0, μ(x) and μ(y) are trivial and x
is spherically characteristic. Then for every element κ ∈ ker(ϕ : Zπ → Z/2), we have τ(x) =
τ(x + κy) ∈ Z/2.

Proof. First let κ = 1 ± g. Choose immersed representatives for x and y and take a
parallel copy of y together with a loop representing g as a representative for ±gy. Choose
framed Whitney discs with disjoint boundary arcs for the self-intersections of x, those
of y and the intersections between x and y. We denote these by Wx,x, Wx,y and Wy,y,
respectively.

Whitney discs Wx,gy for the intersection between x and ±gy can be obtained by taking a
parallel copy of each Whitney disc Wx,y for the intersections between x and y.

Take three parallel copies of the Whitney discs for the self-intersections of y to produce
Whitney discs Wgy,gy, Wy,gy and Wgy,y for the self-intersections of ±gy and for the intersections
between y and ±gy.

Whenever a Whitney disc intersects y, it also intersects ±gy, and therefore the total
contribution to τ vanishes modulo two (see Figure 1).

Thus for the computation of τ(x + (1 ± g)y) we only need to count the intersections of all
the Whitney discs with x. For every intersection of x with a Whitney disc Wy,y or Wx,y, there
are three or one further intersections, respectively, from the parallel copies. Therefore, these
intersections also cancel modulo 2 (see Figure 2).

The remaining intersections are those between x and the Whitney discs Wx,x for the self-
intersections of x. This proves the lemma for κ = 1 ± g.

For the general case, observe that every κ ∈ kerϕ can be written as a sum
κ =

∑n
i=1(1 ± gi)hi, and apply the first case successively with (1 ± gi)(hiy) as (1 ± g)y,

i = 1, . . . , n. �

Later we will need the following lemma.
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Wy,∗

Wgy,∗

x

y gy

∗

Figure 2. Whenever x intersects a Whitney disc Wy,∗, it also intersects the parallel copy Wgy,∗.

Lemma 8.4. Let Y be a finite two-dimensional CW-complex with fundamental group π.
Every element in the kernel of H2(Y ; Zπ) → H2(Y ; Z/2) can be written as

∑n
i=1 κixi with

κi ∈ kerϕ and xi ∈ H2(Y ; Zπ).

Proof. Let (C∗, δ∗) be the Zπ-module cellular cochain complex associated to Y . The lemma
follows from a diagram chase in the following diagram.

�

Conventions 8.5. From now on π denotes a COAT group, X denotes a oriented, closed,
connected aspherical 3-manifold with fundamental group π, M denotes a spin 4-manifold with
fundamental group π and c : M → X denotes a classifying map for the universal covering space
of M . Assume that M has signature zero and even equivariant intersection form.

Lemma 8.6. There exist n, k ∈ N and an isomorphism

ψ : Iπ ⊕ (Zπ)n
∼=−→ π2(M#k(S2 × S2))

such that λ(ψ(Iπ), ψ(Iπ)) = 0.

Proof. Since M is stably diffeomorphic to one of the examples constructed in Section 7, there
exist n1, k1 ∈ N such that there is an isomorphism ψ′ : Iπ ⊕ (Zπ)n1 → π2(M#k1(S2 × S2)). By
Lemma 7.7, the intersection form on ψ′(Iπ) is determined by an element α ∈ Zπ. Since, by the
assumptions above, the intersection form of M is even, there exists p ∈ Zπ with α = p + p. Let
k := k1 + 1, n := n1 + 2 and define

ψ1 : Iπ → π2(M#k(S2 × S2)) ∼= π2(M#k1(S2 × S2)) ⊕ (Zπ)2

β �→ (ψ′(β), βp,−β).
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It is not hard to see that the map ψ1 can be extended to an isomorphism

ψ : Iπ ⊕ (Zπ)n
∼=−→ π2(M#k(S2 × S2)).

For β, β′ ∈ Iπ we have

λ(ψ(β), ψ(β′)) = λ(ψ′(β), ψ′(β′)) + β(−p− p)β′ = βαβ′ − βαβ′ = 0.

Thus ψ is a map satisfying the desired properties. �

Lemma 8.7. For every isomorphism ψ as in Lemma 8.6, the elements in ψ(Iπ) are spherically
characteristic.

Proof. By Lemma 7.7 there exist (y, x1, . . . , xn) ∈ Zπn+1, that determine how elements of
ψ(Iπ) pair with all of π2(M#k(S2 × S2)), in the following sense: for all b, b′ ∈ Iπ, (a1, . . . , an) ∈
Zπn we have

λ(ψ(b, 0, . . . , 0), ψ(b′, a1, . . . , an)) = byb′ +
n∑

i=1

bxiai ∈ Zπ.

In particular, every summand contains b as a factor, so the sum lies in Iπ ⊂ Zπ and we have
that ϕ(λ((b, 0, . . . , 0), (b′, a1, . . . , an))) = 0. �

Lemma 8.8. For every isomorphism ψ as in Lemma 8.6, the τ invariant defines a map

Iπ
ψ−→ ψ(Iπ) τ−→ Z/2. This map factors through the map

Iπ
∼=−→ H2(X(2); Zπ) → H2(X(2); Z/2).

We denote the induced map H2(π; Z/2) ∼= H2(X; Z/2) i∗−→ H2(X(2); Z/2) → Z/2 by τψ.

Proof. Since the intersection form vanishes on ψ(Iπ) by assumption, μ vanishes on these
elements. It is not too hard to see that the self-intersection number μ, for a (+1)-hermitian
quadratic form, is determined by the intersection pairing λ. The elements of ψ(Iπ) are
spherically characteristic by Lemma 8.7, and thus the τ invariant gives a well-defined element
in Z/2.

An element in the kernel of Iπ → H2(X(2); Z/2) is given by
∑

i κiβi with βi ∈ Iπ and κi ∈
kerϕ by Lemma 8.4. For any β ∈ Iπ it follows from Lemma 8.3 that

τ(ψ

(
β +

∑
i

κiβi)

)
= τ

(
ψ(β) +

∑
i

κiψ(βi)

)
= τ(ψ(β)).

Therefore τ ◦ ψ factors through H2(X(2); Z/2) as claimed. �

Lemma 8.9. The map τψ from Lemma 8.8 is independent of ψ, and is a stable
diffeomorphism invariant.

Proof. For any two choices ψ,ψ′ : Iπ ⊕ (Zπ)n → π2(M#k(S2 × S2)), the map

f : Iπ inc−−−−→ Iπ ⊕ Zπn ψ−1◦ψ′
−−−−−−→ Iπ ⊕ Zπn

is uniquely determined by an (n + 1)-tuple (x, z1, . . . , zn) ∈ (Zπ)n+1.

Claim 6. We can write x = ±1 + y for some y ∈ Iπ.
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Since f is the inclusion of a direct summand, we can consider a map g : Iπ ⊕ (Zπ)n → Iπ with
g ◦ f = IdIπ. This is also determined by an (n + 1)-tuple (w1, . . . , wn+1) ∈ (Zπ)n+1. Here wi ∈
Iπ ⊂ Zπ for i � 2. The composite g ◦ f is therefore determined by U = w1x +

∑n
i=1 wi+1zi.

Since g ◦ f = Id we have that U = 1. For i � 2, we have ε(wi) = 0, where ε : Zπ → Z is the
augmentation. So

1 = ε

(
w1x +

n+1∑
i=1

wi+1zi

)
= ε(w1)ε(x).

Thus ε(x) = ±1 and x± 1 ∈ Iπ as claimed.
From now on we use the identification ψ : Iπ ⊕ (Zπ)n

∼=−→ π2(M#k(S2 × S2). Therefore, for
any β ∈ Iπ, we write ψ′(β, 0, . . . , 0) ∈ Iπ ⊕ (Zπ)n as β(±1 + y, z1, . . . , zn) as above. Let

Λ := λ((±1 + y, z1, . . . , zn), (−y,−z1, . . . ,−zn)) ∈ Zπ,

where we formally extend λ to (Zπ)n+1 using Lemma 7.7. Now we stabilise the manifold
M#k(S2 × S2) twice more and consider the following sequence of equations:

τ(ψ′(β, 0, . . . , 0))

= τ(β(±1 + y, z1, . . . , zn, 0, 0, 0, 0))

= τ(β(±1 + y, z1, . . . , zn, 1, 0, 0, 0))

= τ(β(±1 + y, z1, . . . , zn, 1, 0, 0, 0) + β(−y,−z1, . . . ,−zn, 0,−Λ, 1,Λ))

= τ(β(±1, 0, . . . , 0, 1,−Λ, 1,Λ))

= τ(β(±1, 0, . . . , 0, 0, 0, 0, 0)) = τ((β, 0, . . . , 0, 0, 0, 0, 0)).

The last equation uses the fact that τ(x) = τ(−x) whenever τ(x) is defined. The second, third
and fifth equations follow from Lemma 8.3. The application of Lemma 8.3 for the third equation
requires some justification, since the hypotheses of that lemma require that various intersection
and self-intersection numbers vanish. We will work with the intersection form λ, formally
extended to (Zπ)n+5, similarly to above. We also extend the domain of ψ′ to (Zπ)n+5. The
quantity Λ is defined in such a way that the intersection between (±1 + y, z1, . . . , zn, 1, 0, 0, 0)
and (−y,−z1, . . . ,−zn, 0,−Λ, 1,Λ) is trivial. Using the key property of ψ′ that the intersection
pairing vanishes on ψ′(Iπ), and denoting λ(x, x) = λ(x), we have

λ((±1 + y, z1, . . . , zn, 1, 0, 0, 0)) = λ (ψ′(1, 0, . . . , 0, 0, 0, 0, 0)) = 0.

We also use that the last 1 in the first tuple represents an embedded sphere in the first extra
copy of S2 × S2, so does not change the intersection number.

We also have that λ vanishes on the sum

λ
(
(±1 + y, z1, . . . , zn, 1, 0, 0, 0) + (−y,−z1, . . . ,−zn, 0,−Λ, 1,Λ)

)
= λ

(
(±1, 0, . . . , 0, 1,−Λ, 1,Λ)

)
= 0.

Therefore from the formula

λ(a + b, a + b) = λ(a, a) + λ(b, b) + λ(a, b) + λ(a, b),

we see that λ((−y,−z1, . . . ,−zn, 0,−Λ, 1,Λ)) = 0. As observed in the proof of Lemma 8.8,
λ(a, a) = 0 implies μ(a) = 0 for any a ∈ π2(M#(k + 2)(S2 × S2)). Also recall that μ(βa) =
βμ(a)β. This completes the justification of the application of Lemma 8.3 in the third equation
above. The sequence of equalities above shows that τψ is independent of ψ.
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Thus, τψ is invariant under stable diffeomorphism, since

ψ : Iπ ⊕ Zπn → π2(M#k(S2 × S2))

can be extended to an isomorphism Iπ ⊕ Zπn+2 → π2(M#(k + 1)(S2 × S2)), and this does
not change the computation of τ , as we only compute on an Iπ direct summand. �

Definition 8.10. Define τM := τψ : H2(Bπ; Z/2) → Z/2 for some choice of map ψ. This is
a well-defined stable diffeomorphism invariant by Lemma 8.9.

Lemma 8.11. Under Conventions 8.5 the following holds.

(1) The map τM : H2(Bπ; Z/2) → Z/2 of Definition 8.10 is a homomorphism.
(2) Under the identification HomZ/2(H2(Bπ; Z/2),Z/2) ∼= H2(Bπ; Z/2), the image of τM

agrees with the image of [M c−→ X] ∈ ΩSpin
4 (Bπ) in H2(Bπ; Z/2).

Proof. We will prove both parts of the lemma by computing in the model 4-manifolds that
we constructed in Sections 7.2 and 7.3.

In Section 7.2 we constructed a model M0 for the null-bordant element of ΩSpin
4 (X) =

ΩSpin
4 (Bπ) with π2(M0) ∼= Iπ ⊕ Zπ such that there exists an embedded sphere representing

each element of Iπ ⊂ π2(M0). It follows that τM0 ≡ 0, which in particular is a homomorphism
that agrees with the image of 0 = [M0 → Bπ] ∈ ΩSpin

4 (X) in H2(X; Z/2).
In Section 7.3 we constructed models P for all stable diffeomorphism classes with signature

zero and even intersection form described in Lemma 7.15. The intersection form vanishes on
the image of the map

Iπ → π2(P ) ∼= Zπ ⊕ Iπ ⊕ Zπn ⊕ Zπn

given by β �→ (−β, β, 0, 0) (to see this, compute using the matrix in the proof of Theorem 7.16).
Recall that the manifold M ′ was obtained in Section 7.3 from M1#M1 by removing

D1 ×X1 = D1 ×X(1) \X(0) in each copy. The cores of these solid tori removed from M1#M1

represent elements g−1
i · g′i of π1(M1#M1) ∼= π ∗ π, where g′i is the same generator as gi in the

second copy of M1. The closed manifold P was then obtained by glueing in copies of S2 ×D2

to M ′.
There exists an immersed sphere representing (−β, β, 0, 0) ∈ π2(P ) that lives in M ′ ⊂ P .

However μ only vanishes on all such spheres after passing to P . Thus the Whitney discs
witnessing that μ vanishes use the surgery discs, and the framing on the surgeries determines
whether the Whitney discs are framed. The details follow.

Let g1, . . . , gn be the generators of π on which the surgery on M#M was done. For β = 1 − gi,
the element (−(1 − gi), 1 − gi, 0, 0) ∈ π2(P ) is represented by the sphere

Σ1
i+1#Σ2

i+1#(gi − 1)Σ1
1 ⊂ M ′ ⊂ P,

where the summand spheres were defined in Section 7. The self-intersection number of this
sphere is gi − g′i. Therefore, all but two self-intersection points of this representative of (−(1 −
gi), 1 − gi, 0, 0) ∈ π2(M ′) can be paired up by Whitney discs in M ′.

The homotopy classes gi, g
′
i ∈ π1(M ′) have the same image in π1(P ), so that the self-

intersection number vanishes. The Whitney disc that pairs up the corresponding self-
intersections passes over the ith surgery disc D2 × {pt} ⊂ D2 × S2 precisely once.

The framing of this Whitney disc changes when the twisted surgery is used instead of the
untwisted one. Since we already know that τP = τM0 = 0 if P is null-bordant, and the twists for
the surgery precisely depend on the image of [P c−→ X] in Hom(H2(X; Z/2),Z/2), this shows
that τP changes in the same way, restricted to elements of the form (gi − 1, 1 − gi, 0, 0).
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For elements of the form (g − 1, 1 − g, 0, 0), for general g = g
εi1
i1

· · · gεikik
∈ π, εij ∈ {±1}, we

can argue in the same way. Represent (g − 1, 1 − g, 0, 0) by

(g − 1)Σ1
1#
(

#2
j=1#

n
i=1

∂g

∂gi
Σj

i+1

)
and observe that all but one pair of self-intersections can be paired up by Whitney discs in M ′.
The self-intersection number in M ′ is g − g′, which becomes zero after passing to P . The last
Whitney disc can now be chosen to use each of the ijth surgery discs exactly as they appear
in the word for g.

Since the elements 1 − g ∈ Iπ ∼= H2(X(2); Zπ) map surjectively onto H2(X; Z/2), this shows
that τP agrees with the image of [P c−→ X] in Hom(H2(X; Z/2),Z/2), and in particular is a
homomorphism. �

We are now in a position to prove Theorem 1.4.

Proof of Theorem 1.4. By Theorem 3.7, the bordism group Ω4(ξ) is isomorphic to Z ⊕
H2(X; Z/2) ⊕ Z/2, and the first summand is given by the signature. By Theorem 7.16, the
Z/2 summand is given by the parity of the equivariant intersection form. By Theorem 3.14,
in the case where the invariant in the Z/2 summand is 1, Out(ξ) acts transitively on the
second summand. Thus, two 4-manifolds with odd equivariant intersection form are stably
diffeomorphic if and only if they have the same signature. In the case where the invariant in
the Z/2 summand is trivial, Out(ξ) acts by Out(π) on the second summand and in light of
Lemma 8.11, the invariant there is given by [τM ] ∈ H2(X; Z/2)/Out(π).

9. Detecting the classification from equivariant intersection forms

In this section we prove Theorem 1.5 which says that the stable homeomorphism classification
is determined by the stable isomorphism class of the equivariant intersection form. We have
already proven Theorem 1.5 in Theorem 3.3 for totally non-spin manifolds, so we only need to
address the spin and almost spin cases, which is the content of Theorem 9.1 below.

Let π be a COAT group and let H be the standard hyperbolic form on (Zπ)2. Let w ∈
H2(Bπ; Z/2) and let Bw be the resulting normal 1-type of (almost) spin topological manifolds
from Proposition 4.1, with characteristic element w as in Lemma 3.17. Recall that this can be
defined via the pullback diagram

as in [25, Theorem 2.2.1]. Here w = 0 corresponds to the spin case.
Recall that the hermitian augmented normal 1-type of a 4-manifold M is the quadruple

HAN1(M) = (π1(M), wM , π2(M), λM ),

where π2(M) is considered as a module over the group ring Z[π1(M)] = Zπ and wM ∈
H2(Bπ; Z/2) ∪ {∞} corresponds to the normal 1-type. Fix π. We say that two HAN1 types
(π,w, π2, λ) and (π,w′, π′

2, λ
′) are stably isomorphic if there is an automorphism θ ∈ Out(π)

with θ∗(w′) = w, integers k, k′, and an isomorphism Υ: π2 ⊕ kH
∼=−→ π′

2 ⊕ k′H of Zπ-modules,
over θ, that respects λ and λ′. That is, Υ(gq) = θ(g)Υ(q) and λ′(Υ(p),Υ(q)) = θ(λ(p, q)) for
all g ∈ π and for all p, q ∈ π2 ⊕ kH.
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Theorem 9.1. Two closed 4-manifolds with COAT fundamental group and universal
covering spin are stably homeomorphic if and only if their HAN1-types

HAN1 := (π1, w, π2, λ)

are stably isomorphic.

In the totally non-spin case, the HAN1-types are determined simply by the fundamental
group and signature. One also needs the Kirby–Siebenmann invariants to coincide to deduce
that two such manifolds are stably homeomorphic. On the other hand, note that for
manifolds with universal covering spin, the Kirby–Siebenmann invariants are determined by
the (algebraic) HAN1-types. Since two smooth 4-manifolds are stably diffeomorphic if and only
if they are stably homeomorphic, we obtain the corresponding result in the smooth category.
It is easier to state due to the vanishing of the Kirby–Siebenmann invariant.

Corollary 9.2. Two closed smooth 4-manifolds with COAT fundamental group are stably
diffeomorphic if and only if their HAN1-types (π1, w, π2, λ) are stably isomorphic.

The only if direction of Theorem 9.1 is straightforward. For the other direction, observe that
the summand H3(Bπ; Z/2) ⊆ Ω4(B0) is detected by the parity of the equivariant intersection
form by Theorem 7.16. For w �= 0, we have Ω4(Bw) = F2,2 by Theorem 3.21. Therefore, it only
remains to show that elements in F2,2 ⊂ Ω4(Bw) are detected by their equivariant intersection
form. We begin with the following important lemma.

Lemma 9.3. Let N be a 4-manifold with fundamental group π, representing the trivial
element of Ω4(Bw). Then π2(N) is stably isomorphic to Iπ ⊕ Zπ and the canonical extension
of λN to (Zπ)2 is hyperbolic.

Proof. Any two null-bordant manifolds with the same normal 1-type are stably homeomor-
phic, thus it suffices to prove the lemma for one choice of null-bordant element N , having the
correct fundamental group, for each normal 1-type.

In the case w = 0, that is in the spin case, choose N to be M0 as constructed in Section 7.2.
It was calculated that π2(M0) ∼= Iπ ⊕ Zπ and that the intersection form becomes hyperbolic
when extended to (Zπ)2.

To show the lemma in the almost spin case we construct N as follows. Let X be a
3-manifold model for Bπ, and choose an element of H2(X; Z) whose reduction modulo 2 is
equal to w ∈ H2(Bπ; Z/2). Let E → X be the complex line bundle over X whose first Chern
class is the given element of H2(X; Z). The sphere bundle of the associated two-dimensional
real vector bundle is a circle bundle over X, which is a 4-manifold N ′ whose stable tangent
bundle fits into a pullback diagram of stable bundles

Using these bundle data, perform surgery on a fibre S1 ⊂ N ′ to obtain a new manifold N
c−→ X.

The stable tangent bundle of N is given by c∗(E) and c induces an isomorphism on fundamental
groups. In particular, it follows from Lemma 3.17, translated to the topological category, that
N has Bw as normal 1-type, because w2(N) = c∗(w2(E)) = c∗(w).

The resulting 4-manifold N is null-bordant because the trace of the surgery is a bordism
over the normal 1-type of N and the disc bundle is a null bordism of the sphere bundle, also
over the normal 1-type of N . The computation of the intersection form of N is similar to the
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computation of the intersection form of the null-bordant element in the spin case. In the proof
of Lemma 7.9, replace X × S1 by N ′. The π-covering N ′ defined by the pullback

is homeomorphic to X̃ × S1 since X̃ is contractible. Performing a surgery on an S1 fibre
corresponds to π-equivariant surgery on N ′. The computation of the second homotopy group
and the intersection form of M0 in the proof of Lemma 7.9 was entirely in terms of the π-cover.
Thus the same computation yields H2(N ; Zπ) ∼= Iπ ⊕ Zπ and

λN =
Iπ Zπ( )

Iπ 0 1
Zπ 1 0

.

The extended equivariant intersection form is therefore hyperbolic as claimed. �

Let N be a null-bordant (almost) spin 4-manifold with fundamental group π with normal
1-type Bw. For definiteness, take N to be the manifold constructed in Lemma 9.3. Next consider
the following diagram.

(9.1)

We will proceed by first defining the sets in the diagram, then the maps in the diagram,
before showing that the diagram commutes. We only define the dashed arrows as maps of sets.
Theorem 9.1 will follow from the commutativity of the diagram.

Here L = L(Z) is the quadratic L-theory spectrum of the integers [19, Section 13], whose
homotopy groups coincide with the L-theory of the integers; that is πn(L(Z)) ∼= Ln(Z). The
notation L〈1〉 refers to the 1-connected quadratic L-spectrum, obtained from L by killing the
non-positive homotopy groups.

The group L4(Zπ) is defined to be the Witt group of non-singular quadratic forms (on finitely
generated free Zπ-modules), considered up to stable isometry [27, Chapter 5].

The classifying map c : N → Bπ induces a map c∗ on L〈1〉-homology.
The top horizontal arrow arises from the assembly map in quadratic L-theory. Define this

map to be the composite

L〈1〉4(Bπ)
∼=−−−→ L4(Bπ)

∼=−→A L4(Zπ),

where the first map is induced by L〈1〉 → L and the second map is the assembly map [19],
which has been proven to be an isomorphism for COAT groups by Bartels, Farrell and Lück
[1, Corollary 1.3]. Furthermore, since COAT groups are three-dimensional, it follows that the
first map is also an isomorphism.

If Y is a closed oriented manifold, it satisfies Poincaré duality in L-theory (see, for example,
Ranicki [19, B9, p. 324]). This is due to the Sullivan–Ranicki orientation MSTOP → Lsym

which gives a fundamental class for Y in the symmetric theory Lsym. It follows that Y has
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Poincaré duality in any module spectrum over Lsym, such as L〈1〉. If Y is four-dimensional
this implies

L〈1〉4(Y ) ∼= L〈1〉0(Y ).

Now L〈1〉0(Y ) ∼= [Y,Ω∞L〈1〉]. But the infinite loop space Ω∞L〈1〉 of the 1-connective
L-spectrum is G/TOP , by the Poincaré conjecture combined with the surgery exact sequence
in the topological category. Therefore we have that

L〈1〉0(Y ) ∼= [Y,G/TOP ].

In particular, elements of L〈1〉4(Y ) can be identified with normal bordism classes of degree 1
normal maps X → Y for X a closed topological manifold (see, for example, [15, Theorem 3.45]).

After identifying L〈1〉4(N) with degree 1 normal maps, the up-then-right composition of
diagram (9.1) coincides with taking the surgery obstruction of a degree 1 normal map f : M →
N , again according to [19, B9, p. 324]. The operation of taking the surgery obstruction is
defined as follows. Perform surgery below the middle dimension to make the normal map
1-connected, then consider the intersection and self-intersection form on the surgery kernel
ker(f∗ : H2(M ; Zπ) → H2(N ; Zπ)). This yields a non-singular quadratic form κ(f) on a finitely
generated free Zπ-module [27, Lemma 2.2]. The equivariant intersection form of M decomposes
as

λM
∼= κ(f) ⊕ λN

because the Umkehr map f ! provides a splitting of the map f∗ : H2(M ; Zπ) → H2(N ; Zπ), and
the intersection form of M respects the splitting, for example, see [20, Proposition 10.21].

The identification of the surgery obstruction and assembly also involves the identification of
the Wall L-groups with the Ranicki L-group of quadratic Poincaré chain complexes [17, 18]
via the process of algebraic surgery below the middle dimension.

For the definition of the map Θ: L〈1〉4(N) → F2,2 we need the following observation.
Note that the map BSTOP

w2−−→ K(Z/2, 2) factors through the canonical map BSTOP →
BSG, where BSG denotes the classifying space for oriented stable spherical fibrations. Define
BSGw by the following pullback diagram:

Since the map Bπ → K(Z/2, 2) is 2-coconnected, so is the map BSGw → BSG.
We say that an n-dimensional Poincaré complex Y has Spivak normal 1-type B if there is a

2-coconnected fibration B → BSG such that the Spivak normal fibration SF (Y ) : Y → BSG

lifts to a 2-connected map S̃F (Y ) : Y → BSGw, called a Spivak normal 1-smoothing, such
that

commutes.

Lemma 9.4. Let Y → BSGw be a n-dimensional Poincaré complex, n � 4, with a normal
1-smoothing to BSGw, and let f : M → Y be a 2-connected degree 1 normal map from a closed
topological manifold M to Y . Then there is an induced normal 1-smoothing M → Bw.
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Proof. The datum of a degree 1 normal map consists of a pullback diagram

where ξ is some vector bundle lift of the Spivak fibration SF (Y ) of Y . Let S̃F (Y ) be the Spivak
1-smoothing. Then the following diagram commutes:

Furthermore, we can consider the diagram

in which the outer rectangle and the right square are pullbacks by definition. Thus by the
pullback lemma, the left square is also a pullback. By the universal property of this pullback
there is a unique map ξ̃ : Y → Bw that gives ξ an induced Bw-structure.

Since f̂∗(ξ) ∼= νX , now we have the following commutative diagram:

We claim that the composition ξ̃ ◦ f is a normal 1-smoothing. As BSTOP → BSG induces
an isomorphism on π1 and π2, by considering the homotopy fibres in the left-hand square of
the above rectangular diagram, we see that the Bw → BSGw also induces an isomorphism
on π1 and π2; here we use that the map Bw → BSTOP is 2-coconnected. The claim that
X → Bw is a normal 1-smoothing now follows from the fact that Y → BSGw is a Spivak normal
1-smoothing, the fact that f is 2-connected, and applying the functors π1 and π2 to the following
diagram:

�

Now we are in the position of being able to define the map Θ: L〈1〉4(N) → F2,2. This is very
similar to constructions by Davis [6, Theorems 3.10 and 3.12].

Represent an element of L〈1〉4(N) by a degree 1 normal map f : M → N . We can assume
that f induces an isomorphism on fundamental groups by performing surgeries on M within
the normal bordism class. By Lemma 9.4, the normal 1-smoothing of N induces a normal
1-smoothing of M . Moreover, we can apply Lemma 9.4 to a 2-connected normal bordism of
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normal maps, to obtain a Bw bordism of the resulting normal 1-smoothings. Thus we obtain
a well-defined element of Ω4(Bw).

For w �= 0 we have shown that F2,2 = Ω4(Bw) in Theorem 3.21. For w = 0, we have that
Ω4(Bw) = ΩTOPSpin

4 (Bπ), and F2,2 is given by elements whose reference maps to Bπ stably
factor through the 2-skeleton Bπ(2) of Bπ. In particular, since 0 = [N ] ∈ ΩTOPSpin

4 (Bπ), there
exists a representative of the null-bordant class such that the classifying map to Bπ factors
through the 2-skeleton, and any two null-bordant manifolds are stably homeomorphic, it follows
that up to stable homeomorphism and up to homotopy, the map c : N → Bπ factors through
the 2-skeleton of Bπ. Thus the composite c ◦ f : M → N → Bπ also stably factors through the
2-skeleton of Bπ, whence also M lies in F2,2.

Next we will define a map Λ̂ : Im(Θ) → L4(Zπ). In the proof of Theorem 9.1 we will see that
Im(Θ) = F2,2, so that in fact we define the map Λ̂ claimed in Diagram (9.1). An element of
Im(Θ) can be represented by a 4-manifold M which has a degree 1 normal map f : M → N
that induces an isomorphism on fundamental groups. We saw above that λM

∼= κ(f) ⊕ λN . By
Lemma 9.3 the intersection form λN on Iπ ⊕ Zπ extends to a hyperbolic form λ̂N on Zπ2.
Therefore, λM can be extended to a non-singular quadratic form

λ̂M = κ(f) + λ̂N

defined on a free Zπ-module and we define Λ̂([M ]) = [λ̂M ] ∈ L4(Zπ). In Lemma 9.5 we show
that this is independent of the choice of M . Since λ̂N is hyperbolic, Λ̂(M) = [κ(f)] ∈ L4(Zπ)
and it follows that Diagram (9.1) is commutative.

Lemma 9.5. The definition above determines a well-defined map Im(Θ) → L4(Zπ).

Proof. We need to see that [κ(f) ⊕ λ̂N ] = [κ(f ′) ⊕ λ̂N ] if Θ[M
f−→ N ] = Θ[M ′ f ′

−→ N ]. But
being the same element in F2,2 implies that M and M ′ are stably homeomorphic. In particular
we see that λM and λM ′ are stably isomorphic. Thus we obtain

κ(f) ⊕ λ̂N
∼= λ̂M

∼= λ̂M ′ ∼= κ(f ′) ⊕ λ̂N .

It follows that [κ(f)] = [κ(f ′)] ∈ L4(Zπ). �

Proof of Theorem 9.1. We will prove that the map Θ: L〈1〉4(N) → F2,2 is surjective and
the map Λ̂ : F2,2 → L4(Zπ) is injective. First we note that in the diagram

by Proposition 4.2, all groups contain a 8Z ∼= L4(Z) direct summand, which is detected by
the signature. The map c∗ respects this decomposition. Also the map Θ commutes with the
projections onto the 8Z-summands, because in L〈1〉-homology the projection takes a normal
invariant [f : M → N ] to σ(M) − σ(N) = σ(M). Here σ(N) = 0 because N is null-bordant.
Now we can perform connected sums of M with E8-manifolds to see surjectivity for the 8Z-
summands. Therefore we may consider the reduced version of the diagram:
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where now we view Im(Θ̃) ⊂ H2(Bπ; Z/2) ∼= F̃2,2.
It follows from the Atiyah–Hirzebruch spectral sequence that the map

c∗ : L̃〈1〉4(N) → L̃〈1〉4(Bπ)

is surjective if the map c∗ : H2(N ; Z/2) → H2(Bπ; Z/2) is surjective. This in turn follows from
the Serre spectral sequence associated to the fibration Ñ → N

c−→ Bπ, which, as in the proof
of Lemma 3.17, gives rise to an exact sequence

H0(π;H2(Ñ ; Z/2)) −−−→ H2(N ; Z/2) −−−→ H2(Bπ; Z/2) −−−→ 0.

In particular, it follows that the up-then-right composite in the diagram is surjective.
This implies Λ̂ : Im(Θ̃) → L̃4(Zπ) is surjective. Since Im(Θ̃) ⊂ H2(Bπ; Z/2) and L̃4(Zπ) ∼=
H2(Bπ; Z/2), a counting argument shows that Λ̂ can only be surjective if Im(Θ̃) = F̃2,2

∼=
H2(Bπ; Z/2) and Λ̂ is bijective. This, in particular the fact that Λ̂ is injective, completes the
proof of Theorem 9.1.

Finally, we describe exactly which stable isomorphism classes of intersection forms are
realised by stable diffeomorphism classes of spin 4-manifolds with COAT fundamental group.

Recall that for σ = 0, 1 we constructed, in Section 7.2, 4-manifolds M0,M1 with fundamental
group π1(Mσ) ∼= π, π2(Mσ) ∼= Iπ ⊕ Zπ, and intersection form

λMσ
=

Iπ Zπ( )
Iπ σ 1
Zπ 1 0

.

Theorem 9.6. Let π be a COAT group. The following constitutes a complete list of
non-singular hermitian forms on Iπ ⊕ (Zπ)n that occur as the stable isomorphism class of
the intersection form of some topological 4-manifold with fundamental group π and normal
1-type w.

(1) For w = ∞,

λM0 ⊕
(

Idm 0
0 − Idn

)
,

with identity matrices Idn, Idm of size m,n � 1 and signature = m− n.
(2) For w �= ∞, λM0 ⊕ λ, where λ is any form in L4(Zπ) ∼= 8 · Z ⊕H2(π; Z/2).
(3) For w = 0, in addition to part (2), λM1 ⊕ n · E8, where n ∈ Z is determined by the

signature 8 · n.

Note that by Theorem 9.1, within each normal 1-type, the equivariant intersection form
determines the stable homeomorphism type of a manifold. By the above result, each
fixed stable form λM0 ⊕ λ with λ ∈ L4(Zπ) is realised by multiple stable diffeomorphism
classes.

More precisely, each such form appears 2d times, d = dimH2(Bπ; Z/2), namely exactly once
for each normal 1-type w �= ∞. Note that within our class of COAT groups, this number d can
be arbitrarily large.
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