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Definition

Definition

A knot is a locally flat embedding of S1 ⊂ S3. It can be oriented
in one of two ways. An embedding is locally flat if it is locally
homeomorphic to a ball-arc pair.

Mark Powell, University of Edinburgh Knot Concordance



Definition

Definition

An oriented knot K : S1 ⊂ S3 is a slice knot if there is a locally flat
embedded oriented disk D2 ⊂ D4, ∂D4 = S3, with ∂D2 = K .

The knot −K is given by reversing the orientation of both the
string and the ambient space.

Two knots K1 and K2 are concordant if K1 ] − K2 is slice.
Equivalently, if K1 t −K2 = ∂(S1 × I ) ⊂ S3 × I .
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Motivation

Why is this interesting?

• Only the unknot bounds a disk in S3.
However, every knot in S3 can be unknotted in S4, and therefore
bounds a disc: there is no codimension 3 knotting (in this
dimension).
To see this we need to use both D4 hemispheres of S4. Why?

We can cross strands past one another using the 4th dimension.
What if we only have one side? i.e. Only D4? Some knots are slice
and some are not.
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Motivation

• Forming the quotient of the set of (isotopy classes of) knots by
slice knots makes knots into a group, C, under connected sum.

• Looking for a slice disk is related to the Whitney Trick, which
works in high-dimensions, but in 4-dimensions is difficult - it is the
centrepiece of Freedman’s classification of 4-manifolds.
Recall Casson’s Finger moves which kill commutators to get the
Whitney trick to work;
Knot Groups, and the groups of Knot Concordances, are typically
not solvable.
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Examples

A Slice Movie:

(Thanks to Julia Collins for this picture)
Here is a schematic of the resulting disc in D4:

saddle point

minima
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Examples

A ribbon knot, Trefoil ] (− Trefoil).
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Examples

Take the knot in the first example, but change the number of
twists.

n-
1

This is called the nth Twist Knot.
n = 0 → Unknot; n = 2 → Stevedore’s knot 61, the slice knot
from two slides before. n = −1 → Trefoil knot 31;
n = 1 → Figure Eight knot 41.
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Casson-Gordon

Theorem (Casson-Gordon (Slice Knots in Dimension 3, 1978))

The knots Kn are slice only for n = 0, 2.

The goal of this talk is to explain the Cochran-Orr-Teichner proof
of this result, which is motivated by work of Gilmer and D.Cooper.

The idea of the proof is to try to cut a Seifert surface up to make
it a disc.
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First Approximation to a Slice Disc

Definition

A Seifert Surface is a compact, connected, oriented surface F
embedded in S3 with ∂F = K .

Here is a Seifert Surface for the twist knots. It has genus 1.

n - 1

Clasp
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Seifert Form

Definition

The Seifert form on a Seifert Surface F is a pairing:

V : H1(F ;Z)× H1(F ;Z)→ Z

which is defined by:

(x , y) 7→ lk(x+, y)

where lk is the linking number in S3 and x+ is the push off of x
along a positive normal direction to F - both F and S3 are
oriented so this makes sense.
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Seifert Form - Example

With respect to the basis of curves shown the Seifert Surface is
given by:

V =

(
n 1
0 −1

)

a
b

n-1
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Knot Exterior and Zero-Surgery

We will return to the Seifert form after proving an important
characterisation of slice knots.

Definition

We define the knot exterior X :

X := cl(S3 \ (K × D2)),

and the zero-surgery:

MK := 0-framed surgery on K ⊂ S3

= cl(S3 \ (K × D2)) ∪S1×S1 D2 × S1

= X ∪ D2 × S1
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A Characterisation of Slice Knots

Theorem

A knot K is slice if and only MK is the boundary of a 4-manifold
W such that:

(i) H1(MK ;Z) ∼= H1(W ;Z) ∼= Z with the isomorphism
induced by the inclusion MK ⊆W ;

(ii) H2(W ) = 0, so H∗(W ;Z) ∼= H∗(S1;Z);

(iii) π1(W ) is normally generated by the meridian of the
knot.
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Proof of Characterisation

Proof: Suppose K is slice, and let W be the exterior of the slice
disc ∆ in D4.

W := cl(D4 \∆× D2).

Then ∂W = MK . Now do Mayer-Vietoris on
D4 = W ∪S1×D2 D2 × D2 with Z coefficients:

Hi+1(D4)
∂−→ Hi (S1 × D2)→ Hi (W )⊕ Hi (D2 × D2)→ Hi (D4)

which, for i ≥ 1 yields:

0→ Hi (S1)→ Hi (W )→ 0

Similarly the Seifert-Van Kampen theorem can be used to show
the statement about π1(W ).
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Proof of Characterisation

Now suppose that W is such that ∂W = MK and W satisfies
H∗(W ) ∼= H∗(S1) and π1(W ) is normally generated by a meridian.
Form a manifold B by gluing W to D2 × D2 along D2 × S1.
Then ∂B = S3 and

H∗(B) ∼= H∗(D4); π1(B) ∼= {1}.

So K is slice in a homotopy 4-ball.
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h-Cobordism Theorem

Theorem (Smale, 1960 and Freedman, 1983)

Let (W n+1; Mn,Nn) be an h-cobordism: that is a cobordism from
M to N with M ↪→W and N ↪→W homotopy equivalences, and
all manifolds simply-connected. If n ≥ 4 then W is homeomorphic
to M × [0, 1].

Smale proved this for diffeomorphisms for n ≥ 5; Freedman added
the case n = 4 in the topological category.
The crucial step in the proof of this is getting the Whitney Trick to
work.
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Proof of Characterisation

We continue with the proof: we want to show that our homotopy
4-ball B is homeomorphic to D4. Attach B ∪S3 D4.
This is a homotopy S4, which by the h-cobordism theorem is
homeomorphic to S4. We can then remove the image of D4 to get
a homeomorphism of B to D4 so that K is slice in D4.
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Seifert Form Metaboliser

Now we know Z ∼= H1(W ;Z) ∼= H1(W ;Z) ∼= [W ,S1], pick a
generator f : W → S1.

f −1({1}) = N, a 3-manifold with ∂N = F ∪K ∆ ⊂ ∂W = MK .

Theorem

P := ker(H1(F ∪∆;Q)→ H1(N;Q))

is a metaboliser for the Seifert form i.e. P = P⊥, P is a half-rank
direct summand such that V (x , y) = 0 for all x , y ∈ H1(F ∪∆;Q).

Use rational coefficients to remove problems with potential torsion
in H1(N;Z), or use:

Q := {x ∈ H1(F ∪∆;Z) | nx ∈ P for some n ∈ Z \ {0}}.
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Seifert Form Metaboliser

Theorem

P := ker(H1(F ∪∆;Q)→ H1(N;Q))

is a metaboliser for the Seifert form i.e. P = P⊥, P is a half-rank
direct summand such that V (x , y) = 0 for all x , y ∈ H1(F ∪∆;Q).

Idea of proof:

Main Idea: Linking in S3 = Intersections of bounding surfaces in
D4.

Now, moving x → x+ moves a bounding surface off N:
whence no intersections in D4.
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Algebraically Slice

Definition

A knot K is said to be algebraically slice if there is a Seifert
Surface F , and a basis for H1(F ;Z) such that V is represented by
a matrix of the form:

V =

(
0 A
B C

)
for some block matrices A,B,C , with C = CT and A− BT

invertible. A matrix of this form is called a null-concordant matrix.

Every such Seifert form is realised as the Seifert form of some knot.
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Algebraically Slice

We have just shown that K slice ⇒ K is algebraically slice.

We can use the algebraic condition to obstruct slice-ness. e.g. for
ω ∈ S1 ⊂ C, calculate the ω-signature:

σ((1− ω)V + (1− ω)V T ).

For each ω not a root of the Alexander polynomial
∆(t) := det(tV − V T ) this gives a well-defined homomorphism
C → Z.
We can show using this that many of the Twist Knots are not
slice: all those with 4n + 1 not a square number.
But the rest are algebraically slice, and we need some “higher
order” obstructions.
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Ambient Surgery

Take F ⊂ S3 and push it into D4:

D4

F

P = half basis of curves with zero linking numbers.
Hope: they bound disjointly embedded framed discs in D4;then we
can surger surface F to a disc D2 = ∆ ambiently.
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Ambient Surgery

Definition

Let g : S r ×Dn−r ↪→ Mn be a framed embedding of a sphere in an
n-dimensional manifold. The effect of surgery along g is:

M ′ := cl(M \ g(S r × Dn−r )) ∪S r×Sn−r−1 Dr+1 × Sn−r−1.

Here we would like to apply this to F ⊂ D4 with n = 2 and r = 1,
with the embedding of D2 × S0 at the end also required to be
embedded in D4.
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Gropes

In general however, the curves will not bound discs, merely
surfaces. This motivates the construction of a grope:

K

This is a grope of height 2, shown with a boring embedding.
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Gropes

The question then iterates: the algebraic slice condition obstructs
the existence of zero-linking curves on the Seifert surface, which
obstructs the existence of the second stage surfaces.

Once the second stage surfaces exist, we can then look for
zero-linking curves on these surfaces. We then ask whether these
bound discs, or perhaps just surfaces, and so on.

Definition

We say that a knot K is (n)-grope solvable if K bounds a framed
grope of height n in D4; n ∈ 1

2N ∪ {0}.
Half-integers correspond to just a half-basis of curves bounding
surfaces on the penultimate level.
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Obstructions

We need a second level obstruction theory to show that the
algebraically slice twist knots are not slice.
The first example of this was the work of Casson and Gordon.

Problem: we would have to investigate all possible gropes of a
certain height.
We need an approach which does not depend on such choices so
we can have an algebraic obstruction.
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Aside: High Dimensional Knots

An n-knot is an embedding Sn ⊂ Sn+2.

Theorem (Kervaire, 1965 and Levine, 1969)

An even dimensional knot is always slice. An odd dimensional knot
with n ≥ 3 is slice if and only if it is algebraically slice.
The group of high, odd dimensional knots is therefore isomorphic
to the group of Seifert matrices, with block sum as the addition,
modulo null-concordant matrices, which is itself isomorphic to
Z∞ ⊕ Z∞2 ⊕ Z∞4 .

Kervaire proved this for even-dimensional knots and Levine did the
odd-dimensional case.
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High-Dimensional Knots

Why?

• The dimension count works so that the Whitney trick works: the
surgeries can be embedded disks, so that the geometry corresponds
to the algebra.

• Every high-dimensional knot is concordant to a knot with
π1(Sn+2 \ K ) ∼= Z, so the algebra is more manageable.

• By contrast, in the classical case of S1 ⊂ S3 there is no avoiding
the fundamental group - by Dehn’s Lemma the unknot is detected
by π1(X ) ∼= Z.
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Linking Forms

We now define some intrinsic algebraic invariants: linking forms.

Let M3 be a 3-manifold with H1(M;Z) finite. We define:

L : H1(M)× H1(M)→ Q/Z; by: (x , y) 7→ z · y
n

where ∂z = nx for some n ∈ Z \ {0}.
e.g. M = RP3; H1(RP3) ∼= Z2

x = y 6= 0 in H1(RP3). Consider RP3 as
D3

a ∼ −a | a ∈ ∂D3

x

y

L(x , y) = 1
2 .
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Knot Exterior and Zero-Surgery

We recall the notation:

Definition

We define the knot exterior X :

X := cl(S3 \ (K × D2)),

and the zero-surgery:

MK := 0-framed surgery on K ⊂ S3

= cl(S3 \ (K × D2)) ∪S1×S1 D2 × S1

= X ∪ D2 × S1
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The Blanchfield Form

M̃K
//

��

R

��
MK

// S1

Infinite cyclic covering of MK .
The rational Alexander module H1(M̃K ;Q) ∼= H1(MK ;Q[Z]) (using
ρ : π1(MK )→ Z), as a module over the ring of Laurent
polynomials, Q[t, t−1] = Q[Z], is torsion.
Using the quotient field Q(Z) of Q[Z], there is a linking pairing
analogous to the Q/Z form just described:

Bl : H1(MK ;Q[Z])× H1(MK ;Q[Z])→ Q(Z)

Q[Z]
;

Bl(x , y) =

∑∞
i=−∞ 〈z · t iy〉t i

∆(t)
mod Q[Z];

where ∂z = ∆(t)x for some ∆(t) ∈ Q[Z].
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The Blanchfield Form

Advantages of the Blanchfield form: it does not depend on a
Seifert surface, and it can be defined for more interesting covering
spaces, i.e. those with a larger group of deck transformations than
Z, if we have the group ring of the deck transformations yields
coefficients which have a suitable non-commutative localisation.
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The Blanchfield Form

The Blanchfield form is non-singular. To see this, it is defined
using the following isomorphisms:

H1(MK ;Q[Z])
'−→ H2(MK ;Q[Z])

'−→ H1(MK ;Q(Z)/Q[Z])

'−→ HomQ[Z](H1(MK ;Q[Z]),Q(Z)/Q[Z])

given by Poincaré Duality, the Bockstein connecting
homomorphism associated to the short exact sequence

0→ Q[Z]→ Q(Z)→ Q(Z)

Q[Z]
→ 0,

and a Universal coefficient isomorphism (Q[Z] is a PID).

So the Blanchfield form is indeed non-singular.
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The Blanchfield Form

Theorem

Let K be a slice knot. Then
P := ker(H1(MK ;Q[Z])→ H1(W ;Q[Z])) is a metaboliser of the
Blanchfield form; i.e.

P = P⊥ = {x ∈ H1(MK ;Q[Z]) | Bl(x , y) = 0 for all y ∈ P.}

Proof: H∗(W ;Z) ∼= H∗(S1;Z). This implies that
Hi (W ;Q(Z)) ∼= 0, for i = 1, 2, or that Hi (W ;Q[Z]) is torsion,
since Q(Z) is flat.Q[Z] is a PID and Z is a torsion-free abelian
group: modules over Q[Z] are a sum of torsion and free parts. Free
parts would map to non-zero homology in Hi (W ;Q) under
augmentation on the chain level.
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The Blanchfield Form

For the rest of this proof coefficients are understood to be in
Q[Z] = Q[t, t−1]

H2(W )→ H2(W ,MK )→ H1(MK )

Since the outer two are torsion so is the middle one. There are
therefore similarly defined, non-singular, relative linking pairings:

β : H2(W ,MK )× H1(W )→ Q(Z)/Q[Z]
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The Blanchfield Form

We will show that P ⊆ P⊥. In what follows we use shorthand:
•∧ = HomQ[Z](•,Q(Z)/Q[Z]).

H2(W ,MK )
∂ //

β
��

H1(MK )
i∗ //

Bl
��

H1(W )

β
��

H1(W )∧
i∧
// H1(MK )∧ // H2(W ,MK )∧

The vertical maps are all isomorphisms.
Let P = ker i∗. Let x ∈ P, then x = ∂y . Bl(x) = i∧(β)(y) so for
p ∈ P, Bl(x)(p) = i∧(β)(y)(p) = β(y)(i∗(p)) = β(y)(0) = 0. So
P ⊆ P⊥ as claimed.
The other inclusion is also a consequence of duality and
non-singularity but we skip it.
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The Blanchfield Form

As was shown in Levine’s Knot Modules paper, this all works for
Z[Z] coefficients rather than Q[Z], but the arguments are harder
and do not generalise easily to other covering spaces.

Theorem

A knot K is algebraically slice iff its integral Blanchfield form is
metabolic iff it bounds a grope of height 2.5 in D4.

So far we have used abelian representations, associated with the
infinite cyclic or universal abelian cover of the zero-surgery.

ρ : π1(MK )→ π1(MK )

π1(MK )(1)
∼= Z =: Γ0

We obtain higher order invariants by considering the homology of
metabelian covers. More discerning coefficients see higher order
information.

Mark Powell, University of Edinburgh Knot Concordance



Metabelian Representations

Definition

For any group G define the derived series as iterated commutator
subgroups.

G (0) := G ; G (n) := [G (n−1),G (n−1)].

A meridian of a band of a Seifert surface lives in π
(1)
1 (MK ), so we

would expect to need at least metabelian representations to detect
knotting in the bands of the Seifert surface.
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Metabelian Representations

ρ : π1(MK )→ π1(MK )

π1(MK )(2)
∼=

π1(MK )

π1(MK )(1)
n
π1(MK )(1)

π1(MK )(2)
∼= ZnH1(MK ;Z[Z])

→ Z n H1(MK ;Q[Z])
Bl(p,•)−−−−→ Z n

Q(Z)

Q[Z]
=: Γ1

with a choice of p ∈ H1(MK ;Q[Z]).
Suppose that p ∈ P - a metaboliser for Bl and ker i∗ - then ρ
extends over W : a putative slice disc complement (replace MK by
W and Bl by β, p ∈ H2(W ,M;Q[Z]) in the above).

π1(M)
ρ //

i∗

��

Z n Q(Z)
Q[Z]

=

��

π1(W )
ρ̃ // Z n Q(Z)

Q[Z]
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Concordance Obstructions

We can now form the homology groups H∗(W ;ZΓ1) for a
4-manifold W with P a metaboliser for the Blanchfield form,
which we hope to change to a slice disc complement.

Key Idea: We work backwards in a sense; we start with a slice disc:
X ∪ D2 × S1, and a 4-manifold W with the right H1.

We then seek to calculate obstructions to doing surgery on W to
kill H2(W ;Z): we would then have a slice disc complement.

However, 2-dimensional homology is typically represented by
immersed spheres, or by embedded surfaces, but not by embedded
spheres.
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Concordance Obstructions

We look for algebraic obstructions: the surfaces can look like
spheres to the intersection form on

H2(W ;Z[π1(W )/π1(W )(2)])
ZΓ1⊗ρ̃−−−−→ H2(W ;ZΓ1)

This is good because we have little idea what π1(W ) might be,
since the 4-manifold is variable, but Γ1 is fixed.
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Localisation

Theorem

Γ1 satisfies the Ore condition:

∀ r , s ∈ Γ1, s 6= 0, ∃a, b such that rb = sa, b 6= 0

We can therefore define non-commutative fractions of elements of
ZΓ1 using the equivalence relation s\r ∼ a/b; to obtain the skew
field K = (ZΓ1 − {0})−1ZΓ1, which inverts formally all non-zero
elements of ZΓ1.
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Localisation

Then H2(W ;K) is a free module, and since H∗(MK ;K) ∼= 0, the
intersection form

λ : H2(W ;K)× H2(W ;K)→ K

is non-singular.

Localising coefficients is like killing the boundary; the boundary
constitutes the failure of the non-localised intersection form to be
non-singular.
We want to be able to detect the algebraic obstruction given by
the Witt class of this intersection form.
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L2-signatures

Theorem

For a 3-manifold M with a representation φ : π1(M)→ Γ of its
fundamental group, there is an invariant σ̃(2)(M, φ) ∈ R, which
detects the Witt class of the intersection form over K of a
4-manifold W with boundary M, over which φ extends. Moreover
it is independent of the choice of 4-manifold.
If there is a subgroup 〈m〉 ∼= Z ≤ Γ such that the intersection form
λ(m) only depends on elements in this subgroup, then

σ̃(2)(M, φ) =

∫
ω∈S1⊂C

σ(λ(ω)) ∈ R

with the σ in the integrand denoting the usual Z-valued signature
of a Hermitian operator on Cn.
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Explicit 4-manifolds

It is unfortunately too much for this talk to expand further on the
beautiful theory of L2-signatures. We shall use their independence
of the choice of 4-manifold to make calculations using a specific
4-manifold.
We do an example. Let K be the twist knot with n = 6.

a
b

5

The curve (−1, 2) has zero self-linking and so generates a
metaboliser for the Seifert form:(

−1 2
0 1

)(
6 1
0 −1

)(
−1 0
2 1

)
=

(
0 −3
−2 −1

)
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Explicit 4-manifolds

The knot and the Seifert surface can be isotoped so that the
zero-linking curve is one of the bands.

3

Note that the zero linking curve is knotted as a trefoil.
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Explicit 4-manifolds

Given a Seifert surface of a genus one knot J, here is a picture of a
4-manifold, W (J), using the Kirby notation for handle attaching.

lk(a+,a)

Framing
0

Framing
lk(b+,b)

Corresponds to 
‘a’ curve

Corresponds to 
‘b’ curve

Twisting, linking and knotting
 can occur in the box

Linking here 
corresponds to 
intersection of ‘a’
 and ‘b’ curves Disc becomes 1-handle
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Explicit 4-manifolds

To obstruct the algebraically slice twist knots from being slice we
need the intersection form of W0 to measure the knotting of the
zero linking curve on F . For this, we modify W (K ), in a
construction reminiscent of gropes, to obtain W0:

lk(a+,a)

Framing
0

0

x

0-linking curve k
  is resolved into 
the diagram W(k)
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Explicit 4-manifolds

W0 has the following properties.

∂W0 = MK ; This can be seen with some handle slides and
surgering 1-handles to 2-handles.

H1(MK ;Q[Z]) ∼= Q[t,t−1]
(13−6(t+t−1))

.

13− 6t − 6t−1 = (3t − 2)(3t−1 − 2),so metabolisers for the
Blanchfield form are all multiples of 3t − 2, or of 3t−1 − 2.
These correspond to zero linking curves on the Seifert surface
for K , which give metabolisers for the Seifert form. These
homology classes must vanish in W0 so that the
representation ρ extends to π1(W ).
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Explicit 4-manifolds

H2(W0;ZΓ) is generated by the 2-handles which correspond
to the Seifert surface for the zero linking curve.

The intersection form on H2(W0;ZΓ) is given by the matrix:

h :=

(
1 −1
−1 (m − 1)(m−1 − 1)

)
which, integrating the signatures for m = ω ∈ S1, gives rise to
the L2-signature −4

3 6= 0, which is the same as the integral
around S1 of the ω-signatures of the trefoil knot; h is
congruent to (1−m)V ′ + (1−m−1)V ′T , where V ′ is the
Seifert matrix of the trefoil.
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Final Obstruction Theorem

It turns out then, that the integral of the classical ω-signatures of
the zero linking curve on the Seifert surface provides an
obstruction to slicing the knot.

Theorem (Cochran-Orr-Teichner, 2003)

Let K be a slice knot with a genus 1 Seifert surface F . Then there
exists a homologically essential simple closed curve J ⊂ F with
lk(J, J) = 0 and ∫

ω∈S1⊂C
σω(J) = 0.

For all the algebraically slice twist knots, the zero linking curves
are torus knots (of which the trefoil is a special case), which all
have the integral above non-zero, completing the COT proof of the
Casson-Gordon result.
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