Isotopy classes of diffeomorphisms of

(k-=1)~-connected almost-parallelizable 2k-manifolds

M. Kreck+

§ 1 Results

The group of isotopy classes of orientation preserving diffeomorphisms on a
closed oriented differentiable manifold M is denoted by -rrODiff(M); the group
of pseudo isotopy classes is denoted by ?'rODiff(M). In this paper we will com-
pute w Diff(M) for M a closed differentiable (k-1)-connected almost-parallel-
izable 2k-manifold in terms of exact sequences for k 23, and classify elements
in %ODiff(M) for any simply-connected closed differentiable 4-manifold.

In the following M stands for a closed differentiable (k-1)-connected almost-
parallelizable 2k-manifold if k2 3 and a simply-connected manifold if k=2.

To describe our results we need some invariants. We denote by Aut Hk(M) the group

of automorphisms of H (M) := H (M;Z) preserving the intersection form on M
and (for k23) commuting with the function o : Hk(M) ——>Trk_1(SO(k)), which
assigns to Xer(M) the classifying map of the normal bundle of an embedded
sphere representing x. As the induced map in homology of any orientation pre-~
serving diffeomorphism 1ies in Aut H (M), we obtain a homomorphism

W RIFf(M) —> Aut H (M), [fl—> %

We denote the kernel of this map by TrOS Diff(M).

Our next invariant is defined for elements [f] in WS Diff(M). It assigns to
[f] a homomorphism H, (M) —> S, (S0(k)), where S is the map , (S0(k)) —>
wk(SO(k+1)) induced by inclusion. If xe Hk(M) is represented by an embedded
sphere ke M we can assume that f |Sk = Id. As the stable normal bundle of S
in M is trivial the operation of f on V(Sk) @ 1 given by the differential of f
corresponds to an element of w 50(k+1). It is obvious that this element lies in
the image of w, (S0(k)) —> ™, (S0(k+1)).-

k

*This work was begun in Bonn in 1976 and was partially supported by the Sonder-
forschungsbereich (SFB 40). It was finished during a stay in Aarhus (Denmark)
in 1978. I would 1ike to thank the University of Aarhus for the invitation and
the stimulating atmosphere there.
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Lemma 1: The construction above leads to a well defined homomorphism

X i T,S Diff(M) —> Hom(H (M), S m,(S0(k)))-

The proof of this Lemma for k >3 is contained in the papers of Wall ([19];[20],
Lemma 2 3), the case k=3 follows from Lemma 2 below. I want to repeat here the
warning of Wall that it is not obvious that X and similar invariants are well
defined. The difficult point is to show that x(f) depends only on the isotopy
class of f.

From the work of Kervaire ([5]) one can easily deduce the following list for
S (S0(k)) for k>2 and k # 6:

k mod 8 0 1 2 3 4 5 6 7
s m, (S0(k)) Zez 2z, z, Z Z, 0 z, 2

For k=6 we have S1r6(SO(6)) = 0.

Thus, for k=3 mod 4 we can identify Hom(H (M), S (S0(k))) = Hom(H, (M), Z) with
Hk(M). In this case we can describe x (f) by an invariant defined by Browder
using the Pontrjagin class of the mapping torus Me = IxM( X)~( [2]

The definition is as follows. We consider the map ¢ : Mf—st“mx M =M
From the Wang sequence we know that Sl Hk(Mf) — H |((M) is surjective, if

fo = Id. Thus we obtain an isomorphism c* = H“*1(gM*) — u**1(M,). The in-
variant p'(f)e Hk(M) is defined as the image of the inverse suspension isomorph-
ism applied to c*'l(p(k+1)/4(M(f)). It is not difficult to see that f +—p'(f)
is a homomorphism. It is related to x(f) in the following way.

If x¢ Hk(M) is represented by an embedded sphere Sk and ﬂsk = Id then Sl"sk/{lixsk

represents the image of x in Hk 1(zM } under the suspension isomorphism. We de-
note it by y. Now we consider the stable vector bundle E over Sle /-{1{xSk classi-

fied by x(f)(x). By the c]ass1f1cat1on of vector bundles over spheres we know

that the Kronecker product <p(E), [S L sk /413 x sk1> = -i»a(k 1)/4((k 1)/2)1 X (f)(x)»
where a_ = 2 for m odd and 1 for m even., But it is obvious that (c|S xsk) (B)is
equa1 to the restriction of the stable tangent bundle of M, to stxsK. Thus

¥y =Tta k+1)/4((k-1)/L)._)((1‘)( ). This implies:

Lemma 2: If k=3 mod 4
P'(F) = £ ap,qy4((k-1)/2)1 X (),
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where a, = 2 for m odd and 1 for m even.

Now we are ready to formulate our results.

Theorem 1: For a simply-connected closed differentiable 4-manifold the homo-
morphism

N

T Diff(M) — Aut Hy(M), [f]lv— f,

is injective.

Remarks:

1) This result is completely analogous to the classification of isotopy classes
of diffeomorphisms of an oriented connected surface by the operation of the
diffeomorphism on the fundamental group.

2) It seems very hard to determine the image of the map ﬁoDiff(M) —> Aut HZ(M)'
Wall has shown that it is surjective if M is of the form M = N4#5%xS% and the
intersection form is indefinite or has rank <8 ([18]).

In the following examples it is obvious that the map is surjective and we obtain
the following results:

oo 22y
T DiFf(5x SY) = 2,

R RIff(P,C#P,C) = Z,@ Z,

ﬁooiff(PM ) = 0(k; Z).
K

O(k; Z ) is the group of matrices with exactly one coefficient *¥1 in each row
and column and zero otherwise. It is the group of automorphisms of a k-dimen-
. . Lo~ . N L e _
sjonal cube. For instance: 1TOD1ff(P2¢£ ) = ZZ’ T Diff(P,C # Pzd:) = Dg,
the dihedral group.

A 5% P a
'rromff(wc # P04 ... #P,&)CO(k,15Z)

k S—

I o
k
the group of integer matrices preserving the form (O T ) .
Bl
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Theorem 2: k2=3. The following sequences are exact:

0 —> m S Diff(M) —> W Diff(M) —> Aut H (M) —> O

. X
0 ‘“‘"sz+1/>:” - WS Diff(M) —>Hom(H (M), S (S0(k))) —>0

ZM is an element in the group of (2k+l)-dimensional homotopy spheres 92k+1
of order 2 and depending only on M.

EM can be described as follows. We consider the embedding of S1 X D2k into
S"x M obtained from a product embedding twisted by the nontrivial element of
TISO(ZK) = 22. Then we replace Slx M by a homotopy sphere ZM by a sequence
of surgeries first killing the fundamental group with this embedding and then
killing the k-th homotopy by arbitrary surgeries -

The map @ —> w_S Diff(M) is induced by the following map
2k+1/ Zm ° 2kel,  2ks1
8,2 SDIff(M). Consider 2692k+1 as D U, D and assume that f
is the identity on a neighbourhood of the Tower hemisphere Dz_kc s2K. Then we get
an element of w S Diff(M) by the diffeomorphism on M which is the identity

outside an embedded disk in M and is equal to leZk on this disk.
+

Part of this result is contained in the work of Wall ([19] ) [20]) where he com-
putes the group of pseudo isotopy classes of diffeomorphisms of M minus an open
embedded disk. Complete results were known for the case M = Skx Sk and k= 4
(compare [17] ) and for hamotopy spheres. Then I, coincides with the y(M) of [21].

To complete our computation we have to determine ZM. First, I state some proper-
ties of ZM'

Lemma 3:
b) If M bounds a framed manifold then =,=0
¢) If Mis a homotpy sphere we get ZM from the Milnor-Munkres-Novikov pairing

© oy X T1(80) > 92k+1 as the image of (M, 1 ) where 71 ew(S0) is the non-
trivial element.
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pA m is closely related to the following diffeomorphism on M. We consider an
embedding of 2-D°K into M and a differentiable map  : [1,2] —»S0(2k) which
maps a small neighbourhood of the boundary to the identity matrix and represents
the nontrivial element in “my(S0(2k)). Then we get a diffeomorphism fx of M
by taking the identity on DZk and outside 2-02k and by mapping x € 2+ DZk-.D2|<

to &k |x})-x.

Lemma 4: ZM = 0&=f, is isotopic to the identity rel. p2k,

To formulate our main result about ZM we have to distinguish between the case
where M can be framed and the case where it cannot. Under our assumptions M can
automatically be framed if k # O mod 4 and in the case k = 0 mod 4 it can be
framed if and only if the signature (M) vanishes.

We identify a framed manifold W’P]"QSE by the Pontrjagin-Thom construction with
the corresponding element in w3, . We denote the map @ —» cok J, by T ([6])
and the projection map nf] — cok ‘]n by P.

Theorem 3.

a) If M is an s-parallelizable manifold then
T(Zy) = Pqe[M, B])
where B is any framing on M. e denotes the composition map in the stable
homotopy groups.

b) If T(M") =s & .5 #0, where Gy fg TS the order of bPy,, then
T(Zy € P([sg -2, 9]

where @ is the element of order 2 in im J, ; and [sg ,2, 77] denotes
the Toda bracket.

c¢) If Mis an s-parallelizable manifold then
there exists a framing ]3 on M such that
ZM=0 @ vo[M,p] =O|koddorkevenaan2k+2=0;
there exists a framing |3 on M such that )70[M,§3]e1m J
and an invariant ofM)e Zz vanishes lk even and bP2k+2#

o

et (M) is defined as the Arf invariant of ZM. It is only defined if the first
condition is fulfilled. For then we will show that ZMebP2k+2.

Especially it follows that for k odd Iy = 0« Iy€ bP2K+2‘ This extends
a result of Levine ([21]1, Prop.8).
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Remark: I have no example where et(M) # 0. Thus it may be that the condition
oL (M) = 0 can be omitted.

Now, we will discuss some consequences of our theorems. First we will give some
examples where ZM is nonzero. In the case of stably parallelizable manifolds
we can use Toda's tables ([15]) to get complete information about E‘M in Tow
dimensions. As ’]9“gk+2 £0 ([1]) we get, furthermore, a series of examples in
higher dimensions. This campletes the computations of ([21], 16).

Corollary 1: Notations as in Toda's tables ([15]). If M is a framed manifold

which represents one of the following elements in ‘!rf then Z M is nonzero

VB3R, ot prik.k+el 7*, R SRR v

For all other framed manifolds of dim£18 Z’M is zero.

1f M2 45 a framed manifold representing Sek+2 then ZM is nonzero.

In the case of non s-parallelizable manifolds we get examples of M with nonzero
p M in dim 8k. For Adams has proved that e. [«3‘,2, )7] is nonzero for all ele-
ments of this Toda bracket, where gedg .1 1s the element of order 2 ((1,114).
But ([1],719) implies that no element of [g ,2,7] is contained in im ‘J8k+l' Thus
T g # 0, if M has signature (2r+1) & .

8k

Corollary 2: If the signature of M is an odd multiple of G‘Zk then

EM;eo.

From these examples we can see that in most cases 1rOD1'ff(M) depends on the
differentiable structure on M. This was known in some dimensions for a sphere
([11]). But our examples show that this is the case for all highly connected
s-parallelizable 8k+2-dim manifolds. For if M is such a manifold with ZM =0
then we can change the differentiable structure on M by replacing M by the con-
nected sum of M with a framed homotopy sphere representing Mgk By Lemma 3
and Corollary 1 we know that for M with this differentiable structure ZM is
nonzero.Thus TrODiff(M) has changed. On the other hand on every M there exists
a differentiable structure such that 2 M= 0. For if ZM is nonzero we know
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that M is framed bordant to a homotopy sphere N. By Lemma 3 we know that
=y = Xy and that EM#(-N) = 0.

Corollary 3: For every highly connected s-parallelizable 8k+2-manifold M the
group TrODiff(M) depends on the differentiable structure on M.

The proofs of our results are very much in the spirit of Kervaire-Milnor's work
on homotopy spheres and are based on direct surgery arguments. They make no use
of the general machinery of surgery as developed by Browder, Novikov, Sullivan,
Wall. This machinery 1eads to very interesting informations about the rational
homotopy type of Diff(M) ([14}; [16]; compare the report of Burghelea at this
conference). But it seems hard to get complete information from it. I want to
indicate this very briefly.

For a l-connected manifold M" of dim3 5 the general surgery theory gives the
following information ([17]). There are exact sequences:

0—>bP ., —> S(MxI, Mxi) —» [EM, G/0}
L
1rD1ff T isotopy classes of diffeomorphisms
l homotopic to Id
0

It seems that for highly connected almost parallelizable manifolds -rr'oDiff(M)?r =
LA Diff(M). The difficulties in applying these sequences to the computation )
of woDiff(M) are 1) the computation of =M, G/Qand with it of S(MxI, MxI)
and 2) the computation of Ker @. I have no idea howhsolve especially the last
problem. Perhaps the knowledge of the results for sufficiently many examples

would suggest the solution. The present paper could be understood as a first

step into this direction.
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§ 2 Proofs

Before we give the proof of theorem 1 we formulate a general criterion for the
problem, which diffeomorphism on the boundary of a l-connected manifold can
be extended for the interior and spezialize it to the problem of existence

of pseudo-isotopies.

Proposition 1: (compare {3], 2.3 ;[9], Lemma 7) Let N be a 1-connected mani-
fold of diemsnion=5 and f an orientation preserving diffeomorphism of 3N.

f can be extended to a diffeomorphism on N if and only if the twisted double

N Ug - N bounds a 1-connected manifold W such that all relative homotopy groups
a7 (W,N) and wk(w, -N) are zero, where N and -N mean the two embeddings

of N into NUf ~N.

Proof: If we introduce corners along the boundary of a tubular neighbourhood
of IN into Nuf -N we see that W is a relative h-cobordism between (N, 9N) and
(-N, 9N). Then the proposition is a standard application of the relative h-
cobordism theorem ([12]).

If we spezialize this proposition to the case where N is equal to MXI, M a
I-connected manifold of dimension24, and consider diffeomorphisms of ‘d N=M+ (-M)
of the form f + Id we obtain the following criterion for the existence of pseudo-
isotopies between f and Id. For dim M>5 we get the existence of isotopies using
the deep result of Cerf ([4]).

Proposition 2: Let M be a 1-connected manifold of dimension = 4. An orientation

preserving diffeomorphism of M is pseudo-isotopic (isotopic, if dim M25) to
Id if and only if the mapping torus Mf = IxM/(O x)m(1,£(x)) bounds a 1l-connected
manifold W with @ (W .M) = {o} for all k.

Remark: The conditions of Proposition 1 can be reformulated as: Mg is h-cobordant

to Mxsl,

Proof of Theorem 1: We consider an orientation preserving diffeomorphism
f:M—>Mof asimply-connected closed differentiable 4-manifold with
f* : HZ(M) ——>H2(M) the identity. A1l we have to do is to construct a 6-mani-
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fold W with the conditions of Proposition 2. The idea is to start with an
arbitrary manifold W bounding M¢ and to modify this manifold by surgery in

the interior of W until the properties are fulfilled. But in general this does
not work, for we can only do surgery if we can represent homology classes by
embedded spheres with trivial normal bundle. As we are in the oriented case
each embedded 1-sphere has trivial normal bundle and each bundle over 83 is
trivial, so the only problem arises at embedded 2-spheres. But the normal
bundle of an embedded 2-sphere is trivial if and only if the Stiefel Whitney
class w, is zero. So there is no problem if W is a spin-manifold. We will see
that we can choose W as a spin-manifold if M is a spin-manifold and that we

don't need any condition for W if M is not a spin-manifold.

Using this idea we first have to check that for a diffeomorphism f : M —>M
with f, = Id the mapping torus Mf bounds an oriented 6-manifold W which can

be chosen as a spin-manifold if M admits a spin structure. As fy, = Id the Wang
sequence shows that the inclusion induces an isomorphism Hz(Mf)-—> HZ(M).
Thus if M admits a spin structure, which means Wy(M) = 0, then M; admits one.

But the bordism group of 5-dimensional spin-manifolds is zero ([13]), so M
bounds a spin-manifold W,

f
If M admits no spin structure, we want to show that Mf bounds an oriented

6-manifold W (without any additional condition). The only obstruction for this

is the Stiefel Whitney number Wo(Mc)wg(Mc). But by a formula of Lusztig,

Milnor and Peterson:

Wy (MIws(Mg) = dim Hy(Mes @) + dim Hy(Mes @) = dim Hy(Mes Z,) - dim Hy(Mgs &) mod 2,
the mod 2 difference of the semicharacteristics with coefficients in § and Zé

resp. ([10]). But as M is simply-connected and fg = Id the Wang sequence shows

that He(Mg) is torsion free. Thus the semicharacteristics with coefficients in

Q and Z, are the same and W, (Me)wg(Me) = 0.

Now we want to do surgery on W to kill Tiy(W) and 77 (W,M) for 122, which is
equivalent to killing W (W) and Hi(W,M) for all i. It is well known that we can

kill (W) by a sequence of surgeries and can do this in such a manner that the

resulting simply-connected manifold is a spin-manifold if W was. We denote this
simply connected manifold again by W.
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The next step is to kill HZ(W,M). As HZ(N)-—9 HZ(N,M) is surjective we can re-
present an element x of H,(W,M) by icer(w). As w, (W) ¥ Hy (W) we can represent
X by an embedded S
the Kronecker product <y2(w);z> is zero. If M admits a spin structure we have
supposed that W has one and so Wo(W) = 0. If M admits no spin structure there
exists zeH,(M) with {wy(M),2) # 0. If {wy(W),X> # O we replace X by X + i,z ,i
the inclusion M — W. In H,(W,M) the element X + i z again represents x, but
{Wy(W),X + i, = 0.

So we can represent each element x of H,(W,M) by an embedded sphere szc-,w with
trivial normal bundle. Surgery with this 52 kills x and so we can kill H, (W, M)

«» W. This sphere has trivial normal bundle if and only if

by a sequence of surgeries giving a simply-connected manifold, again denoted by
W with Hy(W,M) = {0}.

Now we come to the final step namely killing H3(N,M). If we can do this we are
finished for by Poincaré duality

kW, aw-m) & 8 Keu,my .

Hy (W,M) TH
Again from Poincareé duality and the universal coefficient theorem it follows that
Ha(W,M) is torsion free.

To see how to kill H(W,¥) we consider the following situation. Let x &H3(W,M) be
a primitive element representable by an embedded sphere S3C—>N. This sphere has
trivial normal bundle. Now an easy generalization of a standard argument of surgery
theory (compare [6]) shows that if we do surgery with this embedded sphere the
resulting manifold W' is again simply-connected, Hz(w‘,M) = 40} and H3(N‘,M) =
H:,,(lrl,M)/‘ZXJr Zy where y ;s an element of H3(N,M) such that the intersection number
of the embedded sphere S” with y is 1.

This shows that we can kill H3(W,M) by a sequence of surgeries i1f there exists a
direct summand U in H3(N,M) with the following properties:

1.) dimU =5 dim Hy(W,M)

2.) each x€U can be represented by an embedded sphere S3r—-’ W
3.) for x,yelU the intersection number xey vanishes.
Then we choose a basis of Ha(W,M) of the from Xq,....X; s ¥qs« -5y, such that

XPseeeaXy is a basis of U and Xsoy; = 1 for all i. But by condition 2.) we can
represent each X; by an embedded sphere S?-‘—vw and condition 3.) allows us to
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choose these embeddings disjointly. According to the considerations above it
follows that we can kill Hy(W,M) by a sequence of surgeries with S?.

To show that such a subspace UCH,(W,M) exists we first compute the dimension
of Hy(W,M). We consider the following exact sequences:

o

}

H, (W, ow)

|

H(aw)
L

o —— Wy (W) =S W (W,M) — H () —> H W) —> 0
L

LROVED

The zero at the top results from the fact that the map H4(w) ——§H4(w, aW) is the
Poincaré dual of H2(W, @W) —> HZ(W) which factorizes through H2(W,M) = {O}.

From these exact sequences it follows:

dim Hy(W,M) = dim Hy(W) + dim Hy (M) - dim Ho (W)

rank J, + rank i, + dim HZ(M) - dim Hy(W).

dim H3(9 W) - dim Hy(W, 3W) and dim H3(3 W) = dim H,(M) by the Wang
sequence and dim H4(w,aw) = dim Hz(w) by Poincaré duality. So dim HZ(M) - dim Hz(w)
= rank iy and we have:

dim H,(W,M) = rank Jp * 2 rank i.

But rank ™

As H3(N,M) is torsion free, the same holds for H3(w). We decompose HB(N) into sub-
spaces S @ V such that im i,€ S and dim § = rank iy,. From this it follows that
for x€$S and y €H3(W) the intersection number xey vanishes. Furthermore it follows
that dim V = rank Jx = rank of the intersection form on W. The restriction of the
intersection form to V is non-degenerate and as this form is antisymmetric there
exists a direct summand T of V such that dim T = % dim V and the intersection form
vanishes on T. Thus U = k(S & T) is a direct summand in H3(w,M), of dimension

%— dim Hq(W,M), on which the intersection form vanishes.
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To show that U fulfils condition 2.) we consider the following commutative
diagramm:

TW) —3 TM3(W,M) ———> W, (M)

O ——— Hy(w) e, Hylw, M) —— n, (M)

It shows that W3(W) —>H3(W) is surjective and so we can represent each xe U
by an embedded sphere S i,

Thus we have shown that a subspace UeH;(W,M) with the desired properties exists
and this brings the proof of Theorem 1 to an end.

2k
)s

The proof of Theorem 2 splits into two parts. First, we compute #oDiff(M rel D
the group of pseudo-isotopy classes of diffeomorphismsleaving an embedded disk
D2|< fixed. This is easier than the computation of rrODiff(M). But 7, ,Diff(M) can
be expressed as a quotient of {¥ODiff(M rel DZk) and this leads to the proof of

theorem 2.

Proposition 3: k2 3. The following sequences are exact:

00— 'rmro S Diff(M rel DZk) — %ODiff(M rel DZk) —3> Aut Hk(M) —> 0
80— 8,y — ;S DIff(Mrel oKy — Hom(H, (M), S (SO(k))) —> 0

The maps are defined as in Theorem 1.

Proof: We denote the manifold obtained from M by removing a disk disjoint from

sz by N. Wall has shown that every element of Aut H (N) = Aut Hk(M) can be realized
by a diffeomorphism on N rel D2|< ([19], Lemma 1lo). This follws rather easily using
a handle decomposition of N. A similar argument shows that every element of

Hom (H, (N), S'rrk(SO(k))) = Hom (H| (M), ka(SO(k))) can be realized by an element
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of S Diff{N rel DZk). Thus the sequences would be exact on the right-hand side if

every diffeomorphism on N could be extended to a diffeomorphism on M and this is
equivalent to the fact that the restriction of any diffeomorphism of N to 9N=82k'1
beeing isotopic to Id. But if we identify the restriction of diffeomorphisms of N
to @ N with the inertia group of M we see from the work of Kosinski that all diffeo-
morphisms of N can be extended to M ([7]).

2k)

To finish our proof we have to show that the homomorphism 92k+1 —> 1"%08 Diff(M rel D
is injective and that its image is equal to the kernel of %OS Diff(M rel DZk) —>
Hom(H, (M), S (S0(k))). We show this by constructing an inverse & from this kernel

to 81,1

The map & is defined as follows. We fix embeddings (S¥xD¥*1). ¢ M x(0,1), disjoint

DZk, representing a basis of Hk(M). Now, for a diffeomorphism f €ker

ﬁ"o S Diff(M rel DZk) —>Hom(Hk(M), STrk(SO(k))) we take its mapping torus Mc. We
want to kill Try(M;) by a sequence of surgeries. We do this using the embedding
Slx Dch Mf, which exists since fIDZk = Id, and the embeddings (Skx Dk+1)]. C
Mx(O,l)ch. From the work of Kervaire-Milnor ([6]) together with the fact that
Hk(Mf) = Hk(M) is torsion free it follows that the resulting man%':old is a homotopy
sphere which depends only on the pseudo-isotopy class of f rel D°" and is denoted

by o (f)-

from

We get a bordism between M¢ and & (f) by adding handles to Mex 1 using the em-
beddings above.This bordism Wis a k-connected manifold and its k+l-homology is
isomorphic to Hk+1(Mf) by inclusion. For our proof we need an additional property
of this bordism, namely that all elements of Hk+1(w) can be represented by em-
bedded spheres with trivial normal bundle. I don't know whether this is already
true for this bordism. But in any case we can get such a manifold by two surgeries
on this bordism. First we do surgery with slxp?ktle M x (0,1) which is contained
in our original bordism. The resulting manifold already has the desired property
for H - For this we use that X (f) = 0. But its second homology is now equal to
Z which can be killed by a second surgery.

We summarize the properties of the bordism W
1) W 1is k-connected
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2) the inclusion Hk+1(Mf) —->Hk+1( W) induces an isomorphism and all elements of
Hk+1( W) can be represented by embedded spheres with trivial normal bundle.
This implies that the signature of W is zero.

3) The embedding of Sl)(D2k into Mg coming from the fact that ﬁDZk = Id can be ex-

tended to an embedding of DZX DZk

into W meeting M transversally.

Remark: It's an easy exercise in elementary surgery to show that if W is any mani-
fold with these properties and gW 1is equal to Me and a homotopy sphere then this
homotopy sphere is equal to & (f).

Remark: If Mf is a framed manifold and the embeddings above are compatible with the
framing we get W as a framed manifold and in particular we get a framing on G7(f)
from the framing on M- We need this for the proof of theorem 3.

Now, we show that ¢ is a homomorphism. For diffeomorphisms f and f' in

ker .S Diff(M rel DZk) —> Hom (H| (M), S (S0(k))) we consider manifolds W and
W' as above. Let S denote the bordism between Mf + Me and Mff. given by the fibra-
tion with fibre M over the twice punctured disk D2
cated in the following picture.

classified by f and f' as indi-

XM

fXId,t 4 f'xld

Now, we consider the manifold S v www' with boundary consisting of Mff. and

a’(f) + o (f'). It follows again from a standard surgery argument that we can by

a sequence of surgeries replace this manifold by one which fulfils the conditions
above. Together with the first remark above this implies that & (ff') = o (f) +a(f').

o is surjective. This follows from the fact that for a diffeomorphism f which is
the image of a homotopy sphere & under the homomorphism 92k+1 —> ?'rOS Diff(M rel D
it is known that Mf = stl#z ([2], Lemma 1). This implies o(f) = = .

2k)

2k+1

We finish the proof by showing that & is injective. If &4{f) =S we consider
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\"T AR DZk+2, where W 1is as above a bordism between Me and @ (f). Then we attach
to this manifold a handle along Slx DZkC Me. The resulting l-connected manifold W
has the following properties, which can be verified rather easily.

1) aW = NXIuMNxI , where N = M - D2 and fUId is the diffeomorphism on
fuID

9 (NxI) = NUN given by f and Id.

2) Hz({;"/) £z » generated by an embedded sphere with trivial normal bundle.
Hi(W) = {o} for 2¢igk.

n
3) Hq(w) —=—)Hk+1(\'/v‘/) and we have an exact sequence
0 —3H (W) —>H,(W,N) —>H (N) —>0

As Hk+1(u) is a subspace of half dimension in Hk+1(\'f°/,N) in which all elements
can be represented by embedded spheres with trivial normal bundle we can kill
H*(C'J,N) by a sequence of surgeries. Now, Proposition 1 implies that the diffeo-
morphism fuld on A(NXI) can be extended to NXI. But this implies that fj, is
pseudo-isotopic to Id rel 9N = SZk'l. Thus f is pseudo-isotopic to Id in
Diff(M rel D°K).

q.e.d.

To complete the computation of 1rOD1'ff(M) we use the following exact sequence
for a 1-connected manifold ([19], p.265):

Z, = T (S0(2k)) —> W Diff(M rel D
The homomorphism Tr,(S0(2k)) —> #F Diff(M rel D°") fs defined as follows.
We extend the embedding of D2k into Mte ar embedding of 2402k into M. For ¥y : (I,21)
—> (S0(2k),e) we define a diffeomorphism on M by the identity on D2k and outside
2-02k and by x+— x(Ixi-1)+x for xe ZDZk - DZk.

2K) —s yr DiFF(M) —> 0
2K,

[t is obvious that this diffeomorphism is contained in ker 'rNrOS Diff(M rel DZk) —>

Hom(Hk(M), S (S0(k))). Thus we can apply ¢~ to it. If ¥ is the nontrivial ele-
ment in ~rr180(2k) we denote the image under & of the corresponding diffeomorphism
by =2 M Now, it is clear that Theorem 2 follows from Propositon 3 and the exact
sequence above. Then the definition of 2’y gives Lemma 4.
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Remark: It is useful to have the following description of Z_M. Let f be the diffeo-
morphism corresponding to the nontrivial element in Wl(SO(Zk)). There is a diffeo-
morphism Mf —> Slx M which is the identity outside Slx 2-DZk and whose restriction
to Slx D2k corresponds to the twisting by the nontrivial element ¥ € Ty S0(2k).
Thus ZM can be obtained from Sl)tM by a sequence of surgeries starting with the
embegding of Slx D2|< into SlxM, which maps (Xx,y) > (X, K(x).y) and then killing

Hk(S x M) by arbitrary surgeries.

Now we come to the proof of Theorem 3.

Proof of Theorem 3: If M is a framed manifold with framing & we can obtain Z
by framed surgeries on Slx M with the product of the nontrivial framing on S1
and the frammg & on M. Then we obtain ZM as a framed manifold which is framed
bordant to [M u]

This gives the proof of theorem 3, a.

For the proof of part b) and c) we need the & -invariant of a framed manifold
[8] For a framed manifold (V 4n-1, &) there exists an r>0 such that r(V,&)
bounds a framed manifold (W ,B). & (V,«) == - z{ W)€ @ . It can be considered
& the defect of the signature theorem  for any mamfo]d bounding V, where we have to
use relative characteristic classes with respect to o 1in the L-polynomial. We
need the following properties of this invariant. If we fix a framing B on V then -
with respect to this framing - the set of all homotopy classes of framings on V
is euqal to [V,SO] . The following formula is true.
S X1 ¥p) = §0VLFy) + 8§(Vs 1) - &(V,-B)

where 1, Y5 € [V SO] and (V, x;) denotes the framed4man1fo1d corresponding to
T Wwith respect to P . If we fix the restriction to S 1

D4n then & : 1T4k_1(80) = Z —>Q is an injective homomorphism. The framings
4k-1
on $§

of the framing of

are classified by § . The & -invariant mod 1 is a framed bordism invariant

. 2n+l,,2n-1 lfor n even
and is equal to tan-2 (2 -1)- e‘z the real Adams invariant, where ap = {Zfor*n odd.

For the proof of b) we consider a manifold M4n with (M) = s-G’n, s # 0. We con-
sider a framing p on M - B4n_ The restriction of P to Sa'n'1 is a nontrivial ele-
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ment in Tr4n_1(SO), as the § -invariant is equal to T(M). Since im J has even
order this element has even order. Thus there exists a framing ﬁon Sa'n-1 such
that Zﬁ = Blg4n-1 regarded as elements in T, ,(S0). From the correspondence
between the &-invariant and the real e-invariant it follows that the framed
bordism class [S4n_1,g:| is equal to s *Q , where ¢ is the element of order 2

in im ‘]4n-1'

Now we construct an element in the Toda bracket [S +@ , 2,7] as follows. We con-
sider the standard framed bordism between 2(54”‘1,8) and (S4n_1, ﬁ' g4n-1) and
glue the product of this manifold with (51,)) to (s'x 1xs*™ 1 yx1dx % ) along
2(S1 XS4n‘1) with an appropriate orientation preserving diffeomorphism to obtain
a framed manifold (V,Z) with boundary (84"_1,p|s4n-1). The union of (V, 3) with
(stx(m - D%, rxB) along st xs* 1 is contained in (5§ .2,27 . To finish
the proof we have to show that this manifold is framed bordant to EM with a
suitable framing.

We will show that (V,2) is framed bordant modulo boundary to a manifold which is
diffeomorphic to szs4n-1 by a diffeomorphism which is equal to (x,y) ri) (Xs y(x)ey)
on the boundary. X is the nontrivial element in Trl(SO(4n)). But this implies

that our manifold above is framed bordant to D°X S4n_10}81 xM - 0% with some
framing. Now, this manifold is obtained from SlxM by surgery with the embedding
(x,¥) > (X, ¥ (x)-y) and by the remark on p. 16 we can obtain ZM from it by

a sequence of framed surgeries.

To show that (V,3) is framed bordant modulo boundary to a manifold diffeomorphic

to Dz)‘Stm_1 we do surgery on it. V has the following homology:

H1(V) Y ZeoelZ ,; Ha (V) 2Z ; Ha(V) =200 = H4n_2(V) = {0} ; Hgp-1(V) ¥ Hap (V) /7.
Now, we kill Hl(V) and HZ(V) by framed surgery and obtain a framed manifold S
o~
with the desired properties. This can be seen as follows. We consider S :=
82 o4n-1 2 c<4n-1 . . 4n- g
S - D x5S » where D°x S is a tubular neighbourhood of an embedded S c S
- - ne .
which is isotopic to {3 xs™ 1 ¢ 3(5) = stxs*L. S fulfils the condition of
the Browder-Levine fibration theorem ([3]). Thus the fibration 9% = slxgdn-1,
51x sén-1 -——>Sl can be extended to a fibration § —» Sl. From the homology of V
it is easy to see that the fibre is a h-cobordism between s4-1 and s, Thus

$4-1x 1. This implies that S is diffeomorphic to DZxs*"~1

1

it is diffeomorphic to
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by a diffeomorphism whose restriction to the boundary is given by an element of
T 1(SO(4n-1)). But as the framing on 9S given by ¥x p[s4n—1 can be extended

to S, this must be the nontrivial element. This ends the proof of part b.
For the proof of part ¢ we begin with the case k odd. Suppose ZM = g2kl
For a framing @ on M we have shown in the second remark on p.14 that we can extend
the framing y =B on Sle to a framing on U . We denote the restriction of this
framing to EM = 82k+1 by 2. We are done if 2 extendsto DZk+2 and this is equivalent
to §(sPKL,7) = 0. But £, z) = & (slaM, pxp)as (W)= 0. Since
considered as an element of 1(S0) has order Z the formula for the & -invariant
above implies:

§(stxm, Txp ) = 2-8stxm, pxp) - g(slxm, Txp)
where T 1is the trivial framing on $°. On the other hand S(Slx M, TxB) = 0, as

(Slx M, zx 8 ) bounds the framed manifold D2 x M with signature 0. Thus ZM =0

implies yeo[M,B] =o0.

If 7e[M,p] = 0 then ( Z.3) bounds a framed manifold (V,g). Thus

= | €bPy ., and is determined by the signature of V ([6]). But V) = &(Zys3)
and this is zero as shown above.

The case k even and bP2k+2 = {O} can be seen in a similar but even simpler way.
For the case k even and bP,, ., # {0} we first have to show that if %eo[M,E] =0
then 3\ € bPy . If 7e[M,B] = 0 it follows that ( Z. y) is framed bordant
to zero. Thus ZM bounds a framed manifold. Now, the case k even and bp2k+2 # 0
follows as the cases above using in addition the fact that bP2k+2 is classified
by the Arf invariant ([6]).

q.e.d.

Proof of Lemma 3: a) Let V be the standard bordism between M + N and M4N. We
cclJnsider the manifold S := NM + NN u Slx Vuww where NM is the bordism between
S"xM and ZM as in the definition of Zy We want by a sequence of surgeries

to replace S by an h-cobordism between Zy+ ZN and  Z -

S is 1l-connected and has the following homology. Hi(S) = {O§ for 0<igk and 1 # 2.
HZ(S) 2 Ze Z . The second Stiefel-Whitney class W, (S) is zero. This follows
from the fact that the product of the non-trivial spin-structure of S1 with the
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spin-structure on M,N and MAFN can be extended to NM, NN, wMuN and 817<V, This
gives a spin-structure on S. Thus all elements in H,(S) can be represented by
embedded spheres with trivial normal bundle.

For Hk+1(S) one obtains the following information from a Mayer-Vietoris sequence.
There is an exact sequence
1 1 1 1, .
0 ——~>Hk+1(S xM) & Hk+1(S XN) ~—)Hk+1(S) ——>Hk(S xM) @ Hk(S XN)—>»0
As the map on the left side factorizes through NM and NN and all elements in
Hk+1(wM) and Hk+1(wN) can be represented by embedded spheres with trivial normal
bundle we get a subspace of half the dimension 1in Hk+1(S) with the same property.

It is well known that these properties imply that we can replace S by a sequence
of surgeries by a h-cobordism between ZfM + Zy and ZFM#N'

b) If M bounds a framed manifold V than 2|y bounds the s-parallelizable manifold
S := thslx V. Thus EEM & bP2k+2. If k is odd the vanishing of the signature

of W and the Novikov-additivity imply that -<T(S) = 0. Thus EZM = 0 in this case.

If k is even we have to show that the Arf-invariant of IEM is zero.First we can
assume that V is k-1-connected and that Hk(V,M) = {0} . This implies that Hi(S)={b}
for 0<igk and i# 2 and that H,(S) ®*Z . A Mayer-Vietoris argument similar to
that in a) shows that there is a direct summand in H , ,(S) of half the dimension

in which all elements can be represented by spheres with trivial normal bundle.

So the Arf-invariant of Z, vanishes.

¢) This follows immediately from the definition of Iip1and the geometric
description of the Milnor-Munkres-Novikov pairing.

qg.e.d.
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