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Microbundles and Bundles 
H. Semisimplicial Theory 

N.H.  KUn'ER (Amsterdam) and R.K.  LASHOF* (Chicago) 

0. Introduction and Notations 

The main result in Part II is 

Theorem 1. There exists an exact sequence 

--~ ~ (PLn) ~ ~j ( S n- 1 ) ~ r~j_ ~ (C, _ 1 ) ~ rcj _ 1 ( PLn - 1) -- '  n3-1 (PL~), 

where PL  n is Milnor's semi simpliciat (s.s.) structural group for  n-dimensio- 
nal PL-microbundles (see [9]) and Cn- 1 is the s.s. group of  concordances 
of PL-homeomorphisms of  S n- 1 and the identity. 

Applications of this theorem will be given in a forthcoming part III. 
Here we content ourselves to remark the obvious comparison be- 
tween this sequence and the homotopy sequence for the fibration 
On_~cO,-~S~-l ,  0~ the orthogonal group. It is the fact that Cn_~ is 
not contractible that leads to the difference between PL-bundles and 
orthogonal bundles. In order to define PLn and C~_ 1 more explicitly 
we introduce some notations, also for later use. W (X) is the s.s. group 
complex whose k-simplices are PL-bundle isomorphisms f :  A, • X ~  
Ak • X with base space A k and fibre a locally finite simplicial complex X. 
~r (X) is the subgroup leaving every point of A c X fixed (If A consists 
of one point p or two points p and q, we write ~ ( X )  and ~gCp, q(X) re- 
spectively.) ~ N  Cp)(X) is the subgroup of ~gt~(X) of those elements that 
have some neighbourhood (not necessarily the same neighbourhood 
for different simplices) o fp  ~ Xpointwise fixed. Then C,_ 1 = ~ o  ( S~- 1 x / ) ,  
ao =S~-1•  O. o*(.4, X )  is the s.s. complex whose k-simplices are bundle 
monomorphisms f :  A k x A ~ A,  • Z. In analogy with the above cases, 
d'0 (N(0), R ~) is the s. s. complex of bundle monomorphisms f :  Ak • N (O)~  
Ak •  ~ having fixed 0r  n, for some neighbourhood N(0) (again not 
necessarily the same neighbourhood for different simplices), etc. 

By definition, PL~ is the quotient complex of d'o(N(0), R ~) obtained 
by identifying two monomorphisms f i: Ak x N,(O) ~ A k • R ~, i=  1, 2, if 
they agree on A, xN3(O),N3(O)=N~(O)nNz(O). PL, is a s.s. group 
complex because inverses exist. 

* The second author was supported by the US Air Force AFOSR 711-65. 
17" 
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Finally HI, ,  is defined to be ~0 (D") with 

O"=( t=( t l ,  . . . ,  t , ) eg" i l t ,  l<=l all i}. 

The definition of the homotopy groups of a s.s. complex is recalled 
in section 3 A. 

The main technique will consist in the use of s.s. fibre spaces (as in 
HIRSCH [3]). In section 1 fibre spaces are used in order to prove homotopy 
equivalence between certain complexes or spaces. In section 2 we obtain 
from the important diagram (1 l) an exact sequence which is up to weak 
homotopy the exact sequence of some Serre fibration: 

-~176 rr/(S " - l )  �9 z:j(~,)--~rcj-l(PLn-1)--~Tri-l(PL,)--~. (12) 

In section 3 we take care of some lemmas needed and used in the earlier 
sections, in particular in order to obtain the main theorem from the 
sequence (12). 

An important r61e is played throughout by the covering isotopy 
theorem of HUDSON [5]. We now recall this theorem and deduce con- 
sequences for later use. First we need some definitions. 

We shall be concerned with PL-maps of a compact PL m-manifold 
M in a PL q-manifold Q which is not necessarily compact. The boundary 
of M will be denoted by 0 M etc. Let 

I "=  { t = ( q ,  . . . ,  tn)eR"lO<=fi<_ 1 for all i}. 

A PL n-isotopy of M in Q is a PL embedding i: I n x M ~ I  n x Q which 
commutes with projection onto the first factor. We denote: i((t, x ) )=  
(t, it(x)). An ambient PL n-isotopy of Q is a PL homeomorphism h: In x 
Q ~ I n x Q which commutes with projection onto the first factor and such 
that ho: Q ~ Q is the identity. The index 0 refers to the point t = (0 . . . . .  0). 
In this case if io: M--*Q is an embedding then i, defined by i((t, x))= 
(t, ht io (x)), is a PL n-isotopy of M in Q. i is called a restriction of the 
ambient isotopy h. h is called an ambient isotopy of i. 

A PL n-isotopy i of M in Q is called proper if i[- l(aQ)=OM, for all 
t e I  n. It  is called locally trivial if, for every point (t, x ) e I  n x M, there are 
closed neighbourhoods V of t in I n and U of x in M, and a PL embedding 
a: V x ( U x D q - n ) - ~ I n x Q  which commutes with projection into the 
first factor, with restriction i=(a] V x  (Ux  0)) on identifying Vx (U• 0) 
with Vx U. 

Theorem of Hudson. Let i: I n x M ~ I n x Q be any proper PL n-isotopy 
of the compact M m in Qq. I f  i is locally trivial, then there exists an ambient 
PL n-isotopy h of i. I f  q -  m > 3 then i is locally trivial. 

If it: M - ~  Q is constant in t on a M, then ht may be taken constant 
in t on OQ. (In particular this applies if 0 M is empty.) 
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Remark. As I n and the n-simplex An are PL-homeomorphic, we may 
replace throughout I n by A n and the theorem remains valid. 

Lemma0.1.  Let D~={x~Rql lx~l<e, i=l , . . . ,q} .  Assume e < l ,  
and let f :  D~ ~ R  q be an orientation preserving embedding with f ( 0 ) = 0  
and f ( D ] ) c  Int Da(D ~ =Dq). Then f is ambient isotopic to the inclusion, 
by an ambient 1-isotopy which is fixed in a) zero and b) the closure of 
the complement of D q. The same holds with R q replaced by SL 

Proof. By the regular neighborhood theorem [7], an ambient isotopy 
ht, 0 < t < l ,  of R ~ exists satisfying a) and b) with h~f  sending D~ onto 
itself. Since any PL-homeomorphism of a sphere which is orientation 
preserving is isotopic to the identity, and this isotopy may be extended 
to a product neighborhood of dD~ in R q, there is by HUDSON'S Theorem 
an ambient isotopy=h~+t, 0 < t <  1 of R ~ satisfying a) and b) with h2f  
the identity on BD~. Finally, by the Alexander trick ([6] see part I), 
there is an ambient isotopy h2+ t, 0 < t < l ,  satisfying a) and b), with 
h3 f the identity on D~. ha t, 0 <  t<  1 is the required ambient isotopy of RL 

Lemma 0.2. Let f :  An x Rq--~An x R q be an orientation preserving 
bundle monomorphism preserving the zero section. Then there exists 
a bundle isomorphism g: An x D q ~ A n x D  q, which agrees with f in a 
neighborhood of the zero section, and is the identity on A n x ODL 

Proof. Let e be sufficiently small so that f(An x Dq)cAn x Int D q. 
Let M = a D  q. Let i = f [ A n x M :  A n x M ~ A n x D  q. By Lemma 0.1, we 
may assume fo (and thus io) is the inclusion. (I.e., if h is the homeo- 
morphism of R q into itself such that hfo is the inclusion, then replace f 
by (14, x h ) f  and the resultant g by (la,  x h lDq) - ~ g.) Now i is locally 
trivial, because it extends to a product neighborhood of M in D q. By 
HUDSON'S Theorem there exists an ambient PL n-isotopy h of D q, fixed 
on OD q, extending i. Since it(M) separates D q, h preserves the notions 
of inside and outside. For  teAn we define 

ht on the outside of M, and on M 
g t  = 

ft on the inside of M.  

Then g is the desired bundle isomorphism. 

1. Examination of Some Principal s .s .  Fibre Bundles 

1. We begin by exhibiting some principal s.s. fibre bundles. 

Definition 1.1. (Compare [1]). Let r: E ~ B  be a morphism of s.s. 
complexes, and let J be a s.s. group acting on E. If 

a) r is onto and 

b) J acts freely and transitively on p-1  (b) for all b~B, then p is 
called a principal s.s. bundle with group J .  
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Example: 

Lemma 1.1. For every connected manifold M" without boundary and 
x ~ M  ~, the natural restriction map r: Jt~(M")~g(x, M ~) is a principal 
s.s. bundle with group ~/f~(M"). 

Proof. If f is a k-simplex of Aa(M ") and g a k-simplex of ~r 
then g acts on f by composition g : f  ~ fg.  Then b) is immediately deduced. 
I t  remains to prove a). We take a simplex f :  Ap • x --+ A p • M" in ~ (x, Mn). 
Because M n is connected there exists for any x, x ' e M " a  homeomor-  
phism of M n onto itself, which carries x '  onto x. Applying this to the 
first vertex eo x x  of Ap• and its image f (e  o x x ) = e o  x x ' ,  and taking 
the corresponding element h: A p • Mn--* A p • M ", constant in the variable 
in Ap, we obtain h f :  A p x x ~ A p •  ~, which sends eo• onto eo• 
Hence we may just as well assume this property for f :  f(eo x x) = e  o x x. 
Next we show that f :  A/~ x x o Ap • M is a locally trivial isotopy. For 
any t~Ap there exists a closed neighborhood V of t and an open neighbor- 
hood W in M such that 

f (V x x)cAl,  X W ~ A p x  M 

with W PL-homeomorphic  to R *. Identify W with R n. The embedding 

~: Vx(x •215  W ~ V x M )  
defined by 

~(t, x, u)=(t, fl(~) + ~) 
with 

f ( t ,  x) =(t ,  fl(x)) 

proves the local triviality at teAp. 
Finally we apply the theorem of Hudson which says that f is the 

restriction of some bundle isomorphism ] :  Ap • M ~ A p  x M ~. Conse- 
quently r is onto. 

Lemma 1.2. The following are principal s.s. bundles (the term on 
the left being the fibre (=group) of the bundle). 

a) ~ , ~ ( S ~ ) c , ~ ( S  ~) " >,~(p, Sn-q) .  
b) ~ ( S ' )  ~ ~e (S ' )  " , ~ ( q ,  Sn). 
c) go (g n) = ~e (R n) " ,  e (0, g') .  

d) go, p (g') c go (R n) ' ,  ,~ (p, R ~ -  0). 
e) ~r ~..,PL,. 
f) ,r176 n) ~ ~PL~. 

g) ~c~ ~ ,PEn. 
h) X'N(~ o(D ~) ~ ,SPL~. 
i) go,~(D~)r-go(D ~) ~ >#V(S~-~). 
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In h) and i) 

1) d as a subscript means the boundary OD~=S n-1 c D  ~. 

2) 0 as a map means restriction to the boundary. 

3) SPL n is the subgroup of PLn, of orientation preserving germs of 
monomorphisms. 

In each case r is the obvious restriction map under given fixed 
identifications of (S" -q ,  p) with (R", 0) and of ( D " - 0 ,  0) with (R", 0), 
where in the last case the identification is the identity on some neighbor- 
hood of O~D~cR ~. Analogously V is the "restriction" to germs (that is 
to some nonfixed neighborhood). 

Proof. a) b) c) and d) are special cases of lemma 1.1. In all cases 
part b) of definition 1.1 is immediate, so that only the part a), "onto" ,  
remains. 

From onto in e) follows onto in f), because under the given identifi- 
cations there is inclusion and commutativity in the triangle: 

/PLo. 
( R")/ 

Analogously from onto in h) follows onto in g) and from that again 
onto in f). But onto in h) is expressed in lemma 0.2. And onto in e) is 
expressed in the last part  of lemma 0,1, 

There remains the proof of onto in i) which we will give now. It is 
sufficient to construct a cross-section p of 0. This is a morphism 

p: Je(Sn-')  o(D 

such that 0 p: ~ (S "-  1) ~ g  (S . -  1) is identity: ~ p = I. 

As in part I, section 3, p is defined with the help of a PL-version of the 
Alexander trick: 

a) Define p ( f )  on any zero simplex f :  S "-  14_. S ~- 1 as the cone of f .  

b) Assume inductively that p has been defined on j-simplices, j < k ,  
so as to commute with face and degeneracy operators, 0r and st, 
respectively. 

c) Let f :  A k X S ~ - I ~ A k X S  ~-1 be a k-simplex of ~ (S n -1 ) .  

If f = s  i g, define p ( f ) = s  i p(g). If f is non-degenerate, define p ( f )  
over d~A k by p(dif ) ,  and define p ( f )  on AkXaD ~ by f .  Then p ( f )  is 
defined on O(AkXD~). Now let v=(b, 0), b the barycenter of A k, 0 the 
center of DL Define p ( f )  to be the identity on v. Extend linearly over 
the join lines v . x ,  x~O(Ak x D"). Then p ( f )  is a bundle isomorphism, 



248 N.H. KUIPER and R. K. LASHOF" 

which extends f and satisfies t~ i p ( f ) = p  (aif). This completes the defini- 
tion of p. It is obvious that p has the required property 0 p = 1. 

Remark. Since all group complexes are Kan complexes and the total 
space of a principal s.s. bundle is a Kan complex if and only if the base 
space is a Kan complex (see [1]), all the complexes in lemma 1.2 are 
Kan complexes. Hence homotopy groups are defined and all the bundles 
have exact homotopy sequences. As base point we always take the 
s. s.-o-simplex which is an identity map or germ of map. 

In order to prove that many of the maps in these fibre bundles are 
homotopy equivalences we first prove. 

Lemma 1.3. For all L nj (~ (x, X) is naturally isomorphic to rcj (X, x)). 

Proof. Write 5a(X) for the singular complex of X, and SepL(X) for 
the subcomplex of PL-singular simplices. Define a s.s. map ~0: g (x, X) --* 
SepL (X) by assigning to f :  Ak = Ak • x ~ Ak • X, defined by, say f (u, x) = 
(u,g(u)), the map q~(f): A k ~ X  such that ~o(f)(u)=g(u). Then q~ is an 
isomorphism of s.s. complexes. 

The simplicial approximation theorem implies that i: 6epL(X) ~Se(X) 
induces isomorphisms on all homotopy groups. But we have the natural 
isomorphism n~(Se (X), x) ~- nj (X, x). Consequently 

Lemma 1.4. The following have trivial homotopy groups, and hence 
are contractible: 

a) 8 (0, R"), b) e (p, S"-  q). 

In section 3A we will prove moreover 

Lemma 1.5. The following are contractible: 

c) 9ffo, 0(D"), d) ~N(P)(S"), e) ~N(~ 

Applying lemmas 1.7 and 1.5 to the bundles of lemma 1.2 we obtain 

Lemma 1.6. The following are homotopy equivalences 

a) i: ~,q(S") - - -~(S") .  

c) i: ~o(R")--~;~(R"). 
e) 7: ~.q(S")---~PL,. 

f) 7: ~o(R")--~PL,. 

i) O: ~o(D")--~3/g(S"-l). 

Moreover we have the isomorphism 

A: zcj+I(PL,) - ,rcj(JefJW)(D")), j>_0, 

where A is the boundary homomorphism of the homotopy sequence of 
lemma 1.2 h). Lemma 1.6 implies in Particular (see part I): 
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Theorem 2. There is a one-to-one correspondence between equivalence 
classes of: 

1) n-dimensional microbundles. 

2) S ~ bundles with a given cross-section. 

3) R ~ bundles with (or without) a given cross-section. 

Lemma 1.6 i) together with ap  = 1 implies 

L e m m a  1.7. p: ~ ( S  "-1) -~ ~o  (D") is a homotopy equivalence. 

We need two further maps Pl and PE which are related to p. 

Definition of Pl. ~ '~(S"- l )~o .oo(S") :  By our definitions we may 
identify S " = d I  ~+ 1 and D" =1". Take two copies of D", denoted D~ and 
D~. Identify d l  "+1 with D ~ S " - l x I ~ D ~  in the obvious fashion. 
Now define Pl ( f )  as p ( f )  in D[ as well as in and D~,  and as f x  1 in 
S " - i  x L  

Definition of P2. ~ ( S€ 1 )~  ~o (g"): Identify (R", 0) with (S " -  ~ ,  0) 
by a PL homeomorphism, so that D " c R  ~ gets identified to D ~ S  ", 
and (xl . . . . .  x ,_ l ,  t )eR" gets identified to (xl,  . . . ,  x,_ 1, t - 1 ) e D ~ - i  x 
I~S~-~xlfor Ix~l<6, i=1  . . . . .  n - l ,  1 > 6 > 0 ,  and l < t < 2 .  Then P2 
is defined by restriction of Pl. PE has the properties: 

a) P2(f)  IAk x D " = p ( f ) .  
n--1  

b) P2 ( f )  = f x 1 in a neighborhood of (0 . . . . .  0, ~) e R". 

From the construction we see that P2 is one to one and it can there- 
fore be considered as an inclusion. Moreover 

L e m m a  1.8. The following diagram is commutative 

,r "-1) P ,~o(D")  

o~o(R") :'~ > e L .  

(lemma 1.6f) are homotopy equivalences. and p (lemma 1.7) and 71 

For later use we include 

Lemma 1.9. Let 
p ~ ~Q 

l, l 
R a D S  

be a commutative diagram of inclusions of spaces and suppose 

7cj(ct) ~- , lrS(fl) for all j .  
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Then 
nj(r) --- ,nj(6) for all i .  

Here ns(oO=rcs(Q, P), etc. 
Proof. From the exact sequences of the triples (S, Q, P) and (S, R, P)  

we get the commutative diagram. 

n,(R,P) 

l \ \ N  
7~i (Q, P) , ni (S, P) , ni (S, Q) 

rq(S, R). 

Then the exact vertical and horizontal sequences are seen to split, and 
the conclusion follows. 

2. Geometric Realizations and Proof of the Main Theorem 

Write I~ l  for the geometric realization of a s.s. complex 9,. 19'[ is 
a CW-complex. If 9" is a Kan complex, then n~(9") is naturally isomor- 
phic to ~(tSel). Furthermore from results in [1] and [8] follows: 

Lemma 2.1. I f  
F ~ E  v ~B 

is a s. s. fibre space, then 
I F I c l E I  p ,IB[ 

is a topological fibre space satisfying the covering homotopy property 
for finite complexes. (We use the same symbol for the induced map of 
geometric realizations.) If  B is a Kan complex, and hence E also, then the 
homotopy sequences of the s.s. fibre space and its geometric realization 
are naturally isomorphic. 

A map 
E V ,B 

of topological spaces satisfying the covering homotopy property (CHP) 
for all spaces is called a Serrefibration. Chosing one fibre F=p-l(bo), 
bomB, it is represented by the short sequence of maps 

F ~ ,E v >B 
where i is injection. 

A short sequence of maps of topological spaces 

F t ,E v ,B 
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is called a weak homotopy Serre fibration (whS fibration) if there exists 
a Serre fibration 

and a homotopy commutative diagram 

F i ~ E  v ,B 

1 7 ~ E  V , B  

such that Jr, is a homotopy equivalence and JF a weak homotopy equi- 
valence. 

From the homotopy sequence of the Serre fibration follows immedi- 
ately the homotopy sequence of a w.h. Serre fibration of topological 
spaces 

~s(F ) i, ,lrj(E) p. >nj(B) a >~zj_l(F)...__~. 

A short sequence of semi simplicial maps of Kan complexes: 

(1) 

is called a w.h. Serre fibration, if the corresponding sequence of geo- 
metrical realisations 

IFt * >[EI P ,IBI isw.h.  Serre. (3) 

By lemma 2.1 the exact sequence of (3) is isomorphic to the well defined 
exact sequence (1) of (2). 

Construction of Serre. Given a map of topological spaces p: E ~ B, 
Serre constructs a Serre fibration as follows: 

2.4. Let E = { ( x , f ) ~ E x B 1 l p ( x ) = f ( O ) ) ,  and define /5: / ~ B  by 
/5(x,f) =f(1),  and let F =/5-l(b0) , boa base point in B. Then 

N 

F ~ E  "P ~B 

is a fibre space satisfying the CHP for all spaces. Let j :  E-~/~ be given 
by j(x)=(X, fb) , where p(x )=b  and fb(I)=b.  T h e n j  identifies E with a 
deformation retract of E, and 

p - l ( b o ) ~ E  P ,B 

F c E  P ~B. 

(Warning:j~ need not be a weak homotopy equivalence here !) 

F t ,E ; ,B (2) 
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Lemma 2.2. Let p: (E, F) --> (B, bo) be a map of pairs of topological 
spaces inducing isomorphisms on relative homotopy groups. Then 

F ~ ,E p >B 

is a weak homotopy Serre fibration. 

Proof. In the above diagram of the Serre construction we replace 
p - l (bo)  by F o p - l ( b o ) ,  and obtain the commutative diagram 

F c E  >B 

~ N 

F c E  ,B 

with JE a homotopy equivalence. We now have a diagram with exact 
rows and isomorphisms as indicated: 

rq + 1 (E) --o rq + 1 (E, F) ~ ~z i (F) ~ rr i (E) --o rc i (E, F) 

l t i 1: 1 o 
Then the unknown vertical arrow also represents an isomorphism by 
the five lemma for all i, and JF is a weak homotopy  equivalence. The 
conclusion of the lemma follows. With lemma 2.1 we conclude imme- 
diately to the analogous s.s. lemma: 

Lemma 2.2 s.s.  Let p: (E, F)---> (B, bo) be a map of pairs of  Kan 
complexes inducing isomorphisms on relative homotopy groups. Then 

F ~ ,E  P >B 

is a weak homotopy Serre fibration, and the exact sequence (1) holds. 

Discussion and proof of  a main lemma. We study three diagrams which 
will be combined into one big diagram. 

First we have the commutative diagram of s.s. complexes 

9f, N(O)(Dn) = > 9r176 

1 1 
~o ( Dn) = II  Ln - "~ , ~ n (4) 

t' 1' 
PLn " "Nn 

where • is the principal s. s. bundle with group ~ x  ~o~ (D') of lemma 1.2 g), 
p is the corresponding universal bundle with base ~ , ,  and I* is the classify- 
ing map. 
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The exact sequence of the fibre bundle p is 

- -~ rcj (q/) ~ rcj (~ . )  --* re j _  1 ,r (D") ---* re j _  1 (q/,) --~. 

As n j (q / , )=0  for all j ,  we get a natural isomorphism 

~j(~.) ~,  nj_l(~ N(~ (5) 

The exact sequence of the fibre bundle 7 is 

rcj (HL~) --+ rcj (PL.)--~ rcj_ 1 ~:N (o) (D") ~ re j _  x(F/L.) . 

Or, in view of (5): 

rcj (ILL.) ~ rcj (PL.) ~ rcj (~ . )  --~ re j _  1 (ILL.).  (6) 

We can also consider the exact sequence of the map 7 (which up to 
homotopy equivalence is an inclusion of s.s. complexes). 

7~j (/-/L.)--, ~j (P Ln) ~ rcj (7) ~ ~j-1 (F/L.) 

which coincides with (6), hence 

~j(7)~-7~j(~n). (7) 

Next we recall the diagram of lemma 1.8: 

H ( S . - ~ )  a >Ho(O") 

1 "~ 1' (8) 
Ho(R. ) ~1 , P L . .  

Because p and 7~ are homotopy equivalences we have for all j :  hi (p2)= 
rc j (7)=~j(~ ). The third diagram has two principal s.s. fibre bundles 
(lemma 1.2b) and d)) as rows: 

j,C~q(S,-1) ,' ,gff(S.-X) r' , g ( q , S . - 1 )  

~,~(R") ' ,~o(R") " ,~(q,R"-0) 

where p ;  =P2 [ o~gq (S"- 1), i, i '  inclusions. 

The groups 

~j(i ')~-rcjN(q, S"- 1)~rcj(S " - t )  (lemma 1.3) 
and 

~ j ( i )~ -~ jS (q ,  R " - O ) ~ r ~ : ( S  "-~) 
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are isomorphic for a l l j  by virtue of the vertical maps in (9). Then by the 
s.s. version of lemma 1.9 there is an isomorphism 

~j(Pr2) ~ ) T C j ( P 2 )  

by virtue of the horizontal maps in (9). 

We combine the above diagrams into the commutative diagram 

~ ( s  ~-~) *' , w ( s  ~-1) ~ ,nL~ ~ ,~,, 

b 1 l' 1" 
~o , , (R  n) ' ,~o(R") . " , PL~ ~ n .  

i', i, P'2, P2 are one to one and can be considered as inclusions, p and ~l 
are homotopy equivalences. 0//is homotopy trivial. Hence for example 
p~p is a homotopy trivial map. Then because P2 is an inclusion, 
P~'l: 3ffo(R')'-*~, is homotopic to a map /~1 which sends ~(S" -1 )=  
Pz ~ ( Sn- 1)Cd~o (R n) into bo e ~ , .  With this new map we have the corn- 
mutative diagram 

~ ( s  ~-') 

~o, a (R') 

i" , Y f (S  n- l )  ~'~ 'bo 

' , ~r (R') z~ ,&n (11) 

1" t r ~ r X / t  1 qxid \ \  
q ,N(q, Rn-O) ~d•176 Rn--O)xBn. 

M ~  Lemma 2.3. The main diagonal of (11) 

~ ( S ~ - 1 )  02,' ,]fo(R~) ,x , ,  , r  (12) 

is a weak homotopy Serre fibration. 
Proof. r • #1 defines a mapping of triples of s.s. complexes: 

[~o (Rn), ~(S' -  1), ~ ( S ' -  1)] 
r • 1 6 2  0) x ~ , 8 ( q , R  n - 0 )  x b o , q x b o ] .  

Then there is a natural homomorphism of the exact sequence of homotopy 
groups of the first triple into that of the second. Some of these homo- 
morphisms of homotopy groups of pairs are: 

~j [W(S"-  1), ~ (S" - 1)] __, nj [o ~ (q, R ~ - 0) x bo, q x bo] 

I. l--" 

~j(i') r~j (S~- 1). 
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But this is an isomorphism for all j (see (8)). 

xj [~o (R"), ~ ( S " -  1)] --~ xj [d'(q, R"-0)  x B,, 8(q, R"-0)  x bo] 
II. ~ 

zrj(p2 ) lrj(&,, bo). 

But this is an isomorphism (see (8)) for allj. 
Then the remaining homomorphisms are also isomorphisms by the 

five lemma (for allj): 

III. nj[~o(R"), ~f~(S"-l)J "• >:~j(d'(q, g " - 0 )  x &,,  q x bo). 

Consequently 
~zj(p2 i') ~ , uj(8(q, g " - 0 )  x ~ , )  

and the main lemma follows by applying lemma 2.2 s.s. 
The exact sequence of (12) is 

~j~(S . -1 )  ~"  ,~j~eo(R. ) 

"• >zcl(8(q , R"-O) x .~,,)--~ xj_ 1 ,r 

Or, with the homotopy equivalences of lemma 1.6 

uj(PL,_I)--~uj(PL,)--~nj(S "-1) (~ 7rj(~,)--~uy_ I(PL,_ 1). (12) 

From the exact sequence of the universal bundle 

p: q/. ~ .  follows 7~j(~n)~-7~j_l(~N(O)(Dn)). 
The main theorem 1 now follows from (12) with 

Lemma 2.4. There is a homotopy equivalence 

This will be proved in section 3 B. Observe that in (6) we now can replace 
nj(~.)  by 7~j_l(Cn_l). 

The map which gives rise to the homomorphism ztj (PL._ 1)--* 7~j (PL.) 
has been defined as a composition of a number of homotopy equivalences 
and the map p2i'. We will now prove that this map is homotopy equi- 
valent to the natural embedding 

PL.-1 ~ ~PL.. 

Hence in the theorem and in (12) the homomorphism is induced by i. 
This is useful when we want to define the direct limit PL =lira PL. in 
part III. 
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Lemma 2.5. 
/ G ( s  "-~) ~" ,xe(s"-b 

~ o (  -~) ' ,~o(R") 

l, l, 
homotopy commutes, where PL,_ ~ ~ ~ PL. 

i - 1  
F: ~ ( s  "- ')  ~ ~ , ~ ( s " - b  ' ,Xeo(R"-b, 

i - 1 a homotopy inverse of 

i: ~K~p, q (S"- 1)---* G (S"- 1). 

Proof. Since the bottom square commutes, and 7 is a homotopy 
equivalence, it suffices to prove: 

~'p2i': .-~p,q(S "-~) '" ,Yd'(S "-~) p~ ,~'o(R") ~ ,PL~ 
and 

~ir: ~ . ~ ( S  ~-~) " ,Y~o(R "-~) ~ ,~o(R ~) ~ ;PL. 

are homotopic. 

Referring to the definition of P2, if we identify q e S"-1 with 0eD~-1, 
and also with (0, ..., 0, *})eR ~, then 

p'2=P2 i' : ~,~,q(S"-l)---+~o,q(R")C~o(R"); 

and p '2( f )=fx  1 in a neighborhood of q. 

Let T~: 2f~(R")-*;r ~) be given by T ~ ( f ) = ( l x T x ) f ( l x T x ) ,  
T~: R"-*R" translation by xeR". Then T~ is homotopic to the identity, 
and T~: ~(R")--',JCdo(R"). Since , r  ") is a homotopy 
equivalence, 

~o, ~(R") ,o, ~e o(R.) 

~ ( a  ") 
homotopy commutes. 

Thus p2i is homotopic to a m a p / ~  such that G(f)=fx 1 in a neigh- 
borhood of zero, and hence ?/~2 =?it. 

Remark. T~ is actually homotopic to the identity through homo- 
morphisms and consequently one may show that the diagram of lemma 
2.5 with the groups replaced by their universal base spaces and induced 
maps is homotopy commutative. 
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By the same arguments as in the proof of the main lemma one may 
show 

Proposition 2.6. 

pL,_  I p~(~)-I ,~o.q(R ~) ,11 ~ ,  

is a weak homotopy Serre fibration. 

This will be needed in part III. 

3A. Homotopy Groups of ~ ( X )  

Proof of  Lemma 1.5. 

Let S k- 1 be the semi-simplicial complex generated by the simplicial 
complex aAk by throwing in the degeneracies. The homotopy group 
rtk(K ) of a Kan complex K is the group of s.s. homotopy classes of 
maps of S k- i into K. A homotopy class is represented by a s.s. map q~: 
S k- 1-+K; and such a map is determined by choosing a simplex of K 
for each non-degenerate simplex of aAk so that they fit together along 
the faces. 

For ~ ( X ) ,  ~0: Sk-I-+.Cg(X) is therefore equivalent to a bundle 
isomorphism f :  aAk • X-+0Ak • Further, q~ is homotopic to zero, 
if and only if f extends to a bundle isomorphism g: Ak • X-+Ak • X. 

Similar considerations hold for various subgroups of oeg(X). 

Proof of Lemma 1.5. 
1. ~o,e(D ~) is contractible. 

We must show that the homotopy groups are trivial: If f :  (OAk)• 
D"--* (a Ak) X D" is a bundle isomorphism which is the identity on 
(d Ak) x a D ~, t h e n f c a n  be extended to a bundle isomorphism g: A k • D" -+ 
A k • D" which is the identity o n  A k • ODL 

Now f can be extended to A k • OD" as the identity, and hence f is 
defined on 0(Ak • D"). Let b be the barycenter of A k, then Ak • D" is 
the cone over O (Ak • D") with vertex b • 0. Define g on b x 0 as the identity, 
and set g = f  on O(AkXD" ). Then extend g linearly to all of Ak• 
Then g commutes with projection and preserves the zero section since f 
does; i.e., g is a bundles isomorphism which extends f and is the identity 
on A k • O D". 

2. ~/f N ~P) ( S") is contractible. 

A (k-1)-dimensional  homotopy class is represented by a bundle 
isomorphism f :  (OAk) • S"-+(OAk) x S" which leaves (OAk) x q fixed, 
and for each simplex A ~ = O A k , f I A I •  A l x S " - + A l x S "  is the 
identity on some neighborhood, possibly different for each simplex, 
18 Invent. math., Vol. 1 
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of p. Since only a finite number of simplices are involved, there is a 
common neighborhood of p which is left fixed by all of them. Choose a 
disc D~ about p, so that f is the identity on (OAk) x D~. Let D~ be the 
closure of the complement of D~, in S". Then f l  (OA~)x D~ is the identity 
on (OAk)xq and (OAk)xOD~. Hence by (1) above, f l(OA~)xD~ is 
extendable to Ak x D~ with the same properties. Extending f over Ak x D~, 
as the identity, f is extendable to g: Ak x S t e A k  x S r such that g is the 
identity on q and in a neighborhood of p. But this means that the homo- 
topy class is trivial. 

3. ~ N  ~o) (R r) is contractible. 

By the same argument as in (2), there is a disc D~ so that the bundle 
isomorphism f :  (aAk) • R"~(OAk) x R r is the identity^on (OAk) • Dno. 
Let D n be the closure of the complement of D~ in RL D n is a disc with 
its center co removed, fl(OAk) x D  r is the identity on 0Ak• O/~r. By 
the same argument as in (1), fl  (O&) x/~r may be extended to (A k • w 
(b x oo), so as to be the identity on Ak x OD r and on b • ~ .  Hence we 
can throw away the point b x ~ ,  and extending f to Ak x D[ as the identity, 
we get an extension g: Ak x R"-~ Ak x R r which is the identity on a neigh- 
borhood of the zero section. Hence the homotopy class represented 
by f is trivial, and A "~ <o~ (R") is contractible. 

3B. The Homotopy Equivalence ;~ 

A map 2: Cn-1 ~ ~ N  (o)(/y,) is defined as follows: 

Let f :  A k X ( S " - l x I ) - - * d k x ( S " - l x I )  be in Cr-~. By identifying 
S r - 1 x I to a fixed product  neighborhood V of 0D r in D r, and extending 
f to D" - V as the identity; we may identify C~_ 1 with ~ (Dr), N = D R - 1I. 
Then 2 is the morphism Cr-1 - - - ~  (Dr) c o~r 'N (o)(D r) of group complexes. 

Lemma 3.1. 2: Cr-1 ~ o~ff~c~ ") is a homotopy equivalence. 

We will show that the map2:  Cn_l~ovt~176 n) induces an iso- 
morphism on homotopy groups. Then 2 is a weak homotopy equi 
valence hence a homotopy equivalence. 

2 is epimorphic (onto). Let f :  OA k x Dr--* aAk x D" represent a homotopy 
class of o~N(~ Just as in 3A one can show that there exist a fixed 
disc neighborhood N'  of zero in/Y' such t h a t f i s  the identity on OAk x N' .  
On the other hand, C,_ i has been identified to bundle isomorphisms f 
which are the identity on a disc neighborhood N. 

Let h: D"x  I ~ D  ~ x I be an ambient isotopy sending N to N '  which 
is fixed in a neighborhood of the boundary and in a neighborhood of 
zero. Then H = ( l o a k x h - l ) o ( f x  lz)o(l~a~xh) is an isotopy of f in 
ovt'~c~ to a bundle isomorphism g in C~_ 1, and represents the same 
homotopy class asf .  I.e., 2 is onto. 



Microbundles and Bundles. II 259 

2 is monomorphic. Let f :  OAk • D" --* OAk x D", f l  OAk x N the identity, 
represents a h o m o t o p y  class in C,_  ~, and s u p p o s e f i s  homotopic  to zero in 
~N~~ (D"). Then f m a y  be extended to g: Ak x D" ~ Ak • D", g ~ : N  (~ 
As above, it follows tha tg  I Ak • N '  is the identity for some ne ighborhood N '  
of  zero. We take for N '  a disc ne ighborhood in N. Then we may  take h 
as above such that  h~(N)= N'.  Let H = ( l a k  x h -  1)o (g x Ix)o (Ink • h). Then 
H110Ak• is homotop ic  t o f  in C , -1  and extends to the bundle iso- 
morphism Ht  over A k in C , -1 .  Hence f is trivial in C , _ I ,  and 2 is 
monomorphic .  
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