Microbundles and Bundles

I. Elementary Theory

N. H. KUIPER* and R. K. LASHOF** in Amsterdam and Chicago

1. Definitions, Statement of Results

In this part I we work in two categories namely the category of topological spaces and continuous maps, and the category of piecewise linear (PL) spaces and PL-maps. A PL-space is a topological space with a complete class of locally finite triangulations, any two of which have a common subdivision. A PL-map $f: X \to Y$ is a continuous map between PL-spaces X and Y, which for some triangulation of X and Y maps every simplex of X linearly into a simplex of Y. We consider fibrebundles in the sense of STEENROD with a fixed cross-section, often called the zerosection,

$$\xi \colon F \xrightarrow{i} E \rightleftharpoons_{s}^{p} X; \quad P_{s} = i^{-1} s(X) \in F.$$
(1)

The base space X is a locally finite simplicial complex; E is the total space; p is the projection which in the PL-category of course has to be a PL-map; s is the zero section. The fibre F will be n-dimensional numberspace \mathbb{R}^n (the open n-ball), or the n-ball (with boundary included)

$$B^{n} = \{(x_{1}, \dots, x_{n}) \in \mathbf{R}^{n} | \Sigma_{1}^{n} x_{i}^{2} \leq 1\}$$
 with $P_{s} = (0, \dots, 0),$

or the *n*-sphere

$$S^{n} = \{(x_{0}, ..., x_{n}) \in \mathbf{R}^{n+1} \mid \Sigma_{0}^{n} x_{i}^{2} = (4/\pi)^{2}\}$$

with

$$(-4/\pi, 0, ..., 0) = P_s(``0``)$$
 and $(4/\pi, 0, ..., 0) = P_n(``\infty`')^1$.

The group will be the group of all homeomorphisms of $(F; P_s)$ or $(F; P_s, P_n)$ resp. onto itself.

Two fibrebundles ξ_1 and ξ_2 with the same base space X, are called *micro-identical* if: the zerosections coincide, $s_1 X = s_2 X$; the total

Invent, math., Bd. 1

^{*} Part of this work was done while this author was a guest at the Institut des Hautes Etudes Scientifiques in Bures sur Yvette.

^{**} This work was supported by the U.S. Air Force grant AFOSR 711-65.

¹ See section 2 for a description of these spaces in the PL category.

spaces E_1 and E_2 have in common some open set U containing this zerosection; and if moreover the restrictions of the projections p_1

and p_2 to U coincide, $p_1 | U=p_2 | U$. See Fig. 1.

Let V_1 and V_2 be subspaces of X. Two fibrebundles ξ_1 over V_1 and ξ_2 over V_2 are said to *micro agree*, in case their restrictions to $V = V_1 \cap V_2$ are micro identical fibrebundles over V.

A premicrobundle over X is a set of fibrebundles ξ_{α} with cross-section, one over each open set V_{α} , of a covering of $X = \bigcup_{\alpha} V_{\alpha}$, such that any two of them microagree.

Two premicrobundles $\{\xi_{\alpha}\}$ and $\{\xi_{\beta}\}$ over X are called *strongly* equivalent if their union $\{\xi_{\alpha}, \xi_{\beta}\}$ is also a premicrobundle.

Definition. A microbundle is a strong equivalence class of premicrobundles.

Every premicrobundle determines the unique microbundle (=equivalence class) of which it is an element.

Example 1. Every fibrebundle ξ (with fibre *F* as above), is an example of a premicrobundle. Consequently it determines a unique microbundle $\mu(\xi)^2$. ($\mu(\xi)$ can be considered as a germ of neighborhood of the zerosection of the bundle of the total space, together with what remains of the projection.) The converse is to a certain extent true:

Theorem 1. In the topological and in the PL-category every micron-bundle over X contains a \mathbb{R}^n -bundle and a \mathbb{S}^n -bundle with zero-crosssection, and these bundles are unique up to equivalence.

The special cases of this theorem will be denoted by $Top - S^n$, $PL - R^n$ etc.

For the topological case this is a theorem of KISTER [3] and B. Mazur. No proof for the PL-case seems to be published so far. We

 $^{^2}$ One can define "microsets" in a microbundle. They form a partially ordered system with analogy to the system of subsets of a set. It may be interesting to study "microsettheory".

give a proof for the cases $top - \mathbb{R}^n$, $top - S^n$, $PL - \mathbb{R}^n$ in § 2-4. A second proof for $PL - \mathbb{R}^n$ and a proof for $PL - S^n$ is given in § 5. The consideration of the S^n -case simplifies the \mathbb{R}^n -proofs considerably. Observe that BROWDER [1] proved that not every micro *n*-bundle contains a \mathbb{B}^n bundle.

Example 2. It was MILNOR [5], who introduced microbundles. He defined them as equivalence classes of certain diagrams.

A Milnor diagram

$$X \xrightarrow{i} Y \xrightarrow{p} X$$

consists of a base space X, a total space Y, maps i and p with composition $p \ i =$ identity, such that for every point $x \in X$ there exists a neighborhood V of i(x) in Y and a surjective homeomorphism h which makes the main square of the following diagram commutative

$$Y \supset V \xrightarrow{h} p(V) \times \mathbb{R}^{n}$$

$$i \Big| \Big| p \qquad i_{1} \Big| \Big| \pi_{1}$$

$$X \supset p(V) \xrightarrow{i \, d \times 0} p(V) \times 0$$

with

$$\pi_1(x, u) = (x, 0), \quad i_1(x, 0) = (x, 0).$$

This special diagram defines a \mathbb{R}^n -bundle over $p(V) \subset X$ with total space V. The bundles so obtained from a Milnor diagram define a premicrobundle, hence a microbundle according to our definition.

Example 3. A special case is the tangent microbundle of a topological or PL manifold M defined by the diagram

$$M \xrightarrow{\Delta} M \times M \xrightarrow{p} M$$

with $\Delta: x \rightarrow (x, x)$ the diagonal map and $p: (x, y) \rightarrow p(x, y) = x$ the projection in the first factor.

If $x \in V_1 \subset \overline{V_1} \subset V_2 \subset M$, and $g: V_2 \to \mathbb{R}^n$ is a surjective homeomorphism, then h of example 2) is defined by

$$V = V_1 \times V_2 \xrightarrow{h} V_1 \times \mathbf{R}^n, \qquad (x, y) \longrightarrow (x, g(y) - g(x)).$$

In stead of the fibrebundles (1), we also consider fibre bundles with fibre F =

$$R^{p+n} = \{(x_1, \dots, x_{p+n})\}$$

or

$$S^{p+n} = \{ (x_0, \dots, x_{p+n}) \in \mathbb{R}^{p+n+1} \mid \Sigma_0^{p+n} x_i^2 = 1 \}$$

or

$$B^{p+n} = \{ (x_1, \ldots, x_{p+n}) \in \mathbb{R}^{p+n} \mid \Sigma_1^{p+n} x_i^2 \leq 1 \}$$

1*

and with group the group of those homeomorphisms that leave invariant the subspace with equation $x_{p+1} = \cdots = x_{p+n} = 0$.

In the case $F = S^{p+n}$ we obtain in this manner a S^{p+n} -bundle containing fibrewise a S^{p} -bundle, with a common 0- and ∞ -cros-section. We call this object a fibrebundle of type (S^{p+n}, S^{p}) and analogously for the other kinds of fibre. The notions microidentical, premicro-(p+n, p)-bundle and micro-(p+n, p)-bundle are now defined in analogy with the former case. We obtain in § 7:

Theorem 2. In the topological and in the PL-category every micro-(p+n, p)-bundle over X contains a bundle of type $(\mathbf{R}^{p+n}, \mathbf{R}^p)$ and a bundle of type (S^{p+n}, S^p) and they are unique up to equivalence.

Example 4. (Normal microbundles.) Let X be a p-dimensional locally flat submanifold of a p+n-dimensional manifold Y, and let the pair be locally homeomorphic to the standard imbedding of \mathbb{R}^p in \mathbb{R}^{p+n} . If τ_x is the tangentmicrobundle of X, $\tau_Y | X$ the restriction to X, of the tangent microbundle of Y, then these two microbundles form a micro-(p+n, p)-bundle. In particular X may be the zero-section of an \mathbb{R}^n -bundle ξ over X with total space Y. But in the latter case $\tau_Y | X$ can be identified with the Whitneysum (MILNOR [5]) $\tau_X \oplus \mu(\xi)$, with $\mu(\xi)$ the microbundle of ξ . $\mu(\xi)$ is in this case a normal microbundle for X in Y. The group of the corresponding bundle of type $(\mathbb{R}^{p+n}, \mathbb{R}^p)$ can then be reduced to the group of homeomorphisms

f:
$$\mathbf{R}^{p+n} \rightarrow \mathbf{R}^{p+n}$$
 which split:

$$f_i(x_1, \dots, x_{n+p}) = \begin{cases} f_i(x_1, \dots, x_p, 0, \dots, 0) & \text{for } 1 \le i \le p \\ f_i(0, \dots, 0, x_{p+1}, \dots, x_{p+n}) & \text{for } p+1 \le i \le p+n \,. \end{cases}$$

It is not yet known whether such a reduction always exists or not. For vectorbundles it is wellknown to exist. In the PL-case for n > p+1 it exists and is unique by a theorem of HAEFLIGER and WALL [2].

If it exists in the case of the submanifold $X \subset Y$, hence if v_X , a submicrobundle of $\tau_Y | X$ exists, and

$$\tau_Y \mid X = \tau_X \oplus v_X$$

then v_X is called a normal microbundle of X in Y.

Consider a premicro-*n*-bundle over X consisting of bundles ξ_{α} over open sets $V_{\alpha} \subset X$ of a locally finite covering.

Let W_{α} be compact, $W_{\alpha} \subset V_{\alpha}$ and $\bigcup_{\alpha} W_{\alpha} = X$. Finally let ξ be a \mathbb{R}^n -bundle which microagrees with all bundles ξ_{α} .

Now we consider an open set U in the total space of ξ , that contains the zero-section s X and such that $[U \cap p^{-1}(W_{\alpha})] \subset p_{\alpha}^{-1}(W_{\alpha})$. So U is completely covered by the bundles spaces of the premicro-bundle. It would be nice to have a bundle ξ' with total space contained in U, which also microagrees with ξ_{α} for all α . Then ξ' would not require more points then those allready offered in the given premicrobundle and no identifications would be needed under restriction to $\{p^{-1}(W_{\alpha})\}$. In the case of the tangent microbundle ξ' would have its total space imbedded in $M \times M$ (see example 3). This aim can be reached in view of

Theorem 3. If

$$\xi: \quad \mathbf{R}^n \xrightarrow{i} E \rightleftharpoons_s^p X$$

is a \mathbb{R}^n -bundle over X, U an open set in E containing s X, then there exists a bundle ξ' microidentical with ξ , with total space contained in U.

This will be proved in §6. An analogous theorem holds for bundles of type $(\mathbf{R}^{p+n}, \mathbf{R}^p)$.

The following sequence gives a survey of some related problems

It concerns bundles with zero-section and microbundles over a pdimensional manifold X, and each symbol represents a set of equivalence classes. The arrows represent natural maps, and the problems are injectivity and surjectivity of these maps. \mathbb{R}^n can be compactified by an n-1-sphere to get \mathbb{B}^n with the linear group acting well defined on \mathbb{B}^n . This defines the map b. For any \mathbb{B}^n -bundle we can take the bundle twice and identify fibrewise along the $\partial \mathbb{B}^n$ -bundle to get an \mathbb{S}^n -bundle. This defines the map s. Given a zero-section in a \mathbb{S}^n -bundle, there exists a disjoint ∞ -section; delete it and get a \mathbb{R}^n -bundle. This defines $r \cdot \mu$ was defined earlier. v assigns to any bundle over the manifold X the pair consisting of the tangentbundle of s X and the restriction of the tangentbundle of the total space to s X. In the PL case the maps have to be defined with more care.

As a mather of fact b has not been properly defined so far we believe in case PL, but perhaps it can be done along the lines of the work of LASHOF and ROTHENBERG [4].

The following is now known. For some X and some n: b is stably neither injective nor surjective (MILNOR [5]); s is not surjective (BROWDER [1]). For every X and n, r and μ as well as r' and μ' are bijective (KISTER [3], and our theorem 1); s is stably bijective (BROWDER [1]).

2. Tools

We first describe some standard representations of spheres and balls and other tools in the *topological category*. On the *n*-sphere

$$S^{n} = \{(x_{0}, \ldots, x_{n}) \in \mathbf{R}^{n+1} \mid \Sigma_{0}^{n} x_{i}^{2} = (4/\pi)^{2} \}$$

in euclidean n+1-space, we distinguish two points $(-4/\pi, 0, ..., 0) = P_s$ also called the *south pole* or sometimes "0" and $(-4/\pi, 0, ..., 0) = P_n$ also called the north pole or sometimes " ∞ ".

r is the distance measured in S^n from any point to P_s . ω is the shortest geodesic from any point to P_s . (r, ω) are southpolar coordinates on S^n .

The ball $B(a) = \{x \in S^n | r(x) \leq a\}$ with centre P_s , has interior $\mathring{B}(a) = \{x \in S^n | r(x) < a\}$. The complement of $\mathring{B}(a)$ is $B'(a) = S^n \setminus B_0(a)$, a ball with centre P_n . The interior of B'(a) is denoted by $\mathring{B}'(a)$.

In particular: $B(0) = P_s$, $B(4) = S^n$, B(2) is called the *south hemisphere*, $B'(4) = P_n$; $\mathring{B}(4)$ will often be identified with \mathbb{R}^n . Another representation is the *ball*

$$D(a) = \{(x_1, \ldots, x_n) \mid \Sigma_1^n x_i^2 \leq a^2\} \subset \mathbf{R}^n.$$

Lemma 2.1. For every 0 < a < b < c < d < 4 there exists a *concentric* homeomorphism $\rho(a, b, c, d)$ of S^n onto S^n which maps B(b) onto B(c) and leaves B(a) and B'(d) pointwise fixed.

In southpolar coordinates it is defined by

$$\rho(a, b, c, d)(r, \omega) = (\varphi(r), \omega).$$

The real function φ is represented in Fig. 2a.

It has the required values for r=0, a, b, c, d and 4, and is linear in the connecting intervals.

Observe that all hypersurfaces of S^n like $x_i=0$ or $x_i=x_j$ for i, j=1, ..., n are invariant under ρ .

Lemma 2.2. For every 0 < a < b < 4 there exists a continuous map $\lambda(a, b)$, called *pinch*, of S^n onto S^n which maps B(a) onto $B(0) = P_s$, restricts to a homeomorphism of $\mathring{B}'(a)$ onto $\mathring{B}'(0)$, and which leaves B'(b) pointwise fixed.

In south polar coordinates it is defined by

$$\lambda(a, b)(r, \omega) = (\psi(r), \omega).$$

The real function ψ is represented in Fig. 2b. It has the required values for r=0, a, b, 4, and is linear in the connecting intervals.

For the *piecewise linear category* we have to modify these tools. The modified tools are more complicated, but they can be used for the topological category as well.

In \mathbf{R}^{n+1} we consider the Banach norm

$$||x|| = \max_i |x_i|, \quad x = (x_0, \dots, x_n) \in \mathbb{R}^{n+1}.$$

On the *n*-sphere

$$S^{n} = \{ x \in \mathbf{R}^{n+1} \mid ||x|| = 1 \}$$

we distinguish the south pole $P_s = (-1, 0, ..., 0)$ and the north pole $P_n = (1, 0, ..., 0)$. r is the Banach distance measured in S^n from any point to P_s . ω is the shortest geodesic from any point to P_s . (r, ω) are south polar coordinates in S^n .

The ball $B(a) = \{x \in S^n | r(x) \leq a\}$ with centre P_s , has interior $\mathring{B}(a) = \{x \in S^n | r(x) < a\}$. $B'(a) = S^n \setminus \mathring{B}(a)$, a ball with centre P_n , is the complement of $\mathring{B}(a)$ in S^4 .

In particular: $B(0) = P_s$, $B(4) = S^n$, B(2) is the south hemisphere, $B'(4) = P_n$. Observe that B(1) and B'(3) lie in hyperplanes in \mathbb{R}^{n+1} .

Another representation is the ball

$$D(a) = \{(x_1, \ldots, x_n) \mid \max_i | x_i | \leq a\} \subset \mathbf{R}^n.$$

In all these spaces the PL-structure is taken from the natural PLstructure of \mathbf{R}^{n+1} or \mathbf{R}^n . Every triangulation of S^n or a part of S^n or \mathbf{R}^n to be considered will be a subdivision of the division obtained from the hyperplanes $x_i=0$ and $x_i=\pm x_j$ for i, j=1, ..., n in \mathbf{R}^{n+1} or \mathbf{R}^n .

In order to define a *concentric homeomorphism* ρ as required in the lemma, also for the PL-category, we first introduce a PL-homeomorphism

$$\kappa: \quad \mathring{B}(4) \longrightarrow \check{D}(4).$$

For that we take a triangulation of $\mathring{B}(4)$ such that the spheres

$$\partial B(1), \quad \partial B(2), \quad \partial B\left(4-\frac{1}{k}\right) \text{ for } k=1, 2, 3, \dots$$

are triangulated subspaces, and such that no vertices of the triangulation of $\mathring{B}(4)$ except P_s are outside these spheres. The restriction of κ to these spheres will be defined in terms of south polar coordinates (r, ω) for $\mathring{B}(4)$ and polar coordinates (r', ω') for $\mathring{D}(4)$ by the equations r' = r and $\omega' = \omega$. Then κ is completely determined by the condition of linearity on the simplices of the triangulation. Observe that the equations $x_i = 0$ and $x_i = x_j$ for i, j = 1, ..., n are invariant under κ .

Observe also that the radial Banach distance r is invariant under this map κ .

We will define a concentric homeomorphism (PL) in $\mathring{D}(4)$, which we then can carry over by κ to $\mathring{B}(4)$. Consider a triangulation of $\mathring{D}(4)$ with no vertices in the annuli $\mathring{D}(b) \setminus D(a)$ and $\mathring{D}(d) \setminus D(b)$. In $\mathring{D}(4)$ we apply the formula given above for ρ (a, b, c, d) to define a concentric homeomorphism (topological version), but we use it only to define a map for the vertices of the triangulation. After that we extend the map linearly over the simplices, and we call the resulting PL-homeomorphism $\tau: \mathring{D}(4) \to \mathring{D}(4)$. Then $\kappa^{-1} \tau \kappa: \mathring{B}(4) \to \mathring{B}(4)$ is the required PL-version of the concentric homeomorphism. We denote it again as ρ (a, b, c, d). It carries "spheres" with centre P_s onto such spheres. A straight line through P_s however is in general not mapped onto another such line see Fig. 4). We also define ρ (a, b, c, d) to carry the north pole P_n onto itself.

We leave it to the reader to establish that τ is isotopic to the identity map. As a consequence we have (to be used for the proof of theorem 3):

Remark 2.3. $\rho(a, b, c, d)$ is isotopic with the identity map (in the PL-category and in the topological category).

The pinch $\lambda(a, b)$ will also be defined using the chart κ . We use the above formulas for all points $x \in \mathring{D}(4)$ with $0 \le r \le a$, r = a + (b-a)/k for k = 1, 2, 3, ... and $b \le r < 4$. We take a triangulation of $\mathring{D}(4) - D(a)$

with all vertices in this set of points, and we extend linearly. The continuous map $\lambda(a, b)$ so obtained is piecewise linear in the complement of the sphere $\partial D(a)$. There is no open set containing $\partial D(a)$ in which the pinch $\lambda(a, b)$ is piecewise linear. Observe that the hypersurfaces $x_i=0$ and $x_i=x_i$ for i, j=1, ..., n are invariant under λ as well as under ρ .

Remark 2.4. If K is a simplicial complex, for example one simplex, then one has the homeomorphism

identity
$$\times \rho(a, b, c, d)$$
: $K \times S^n \longrightarrow K \times S^n$

and the pinch

given by

identity
$$\times \lambda(a, b)$$
: $K \times S^n \longrightarrow K \times S^n$.

In the PL-case these are PL, and PL outside $K \times \partial B(a)$, respectively. They will be denoted also by $\rho(a, b, c, d)$ and $\lambda(a, b)$ respectively. Both maps commute with projection onto the first factor K. That is, they are fibre preserving.

Definition 2.5. If $f: \Delta_p \times B(b) \to \Delta_p \times S^n$ is a fibrewise inbedding, Δ_p the standard *p*-dimensional simplex, $\lambda = \lambda(a, b)$ the pinch defined above, then the *transform* $f(\lambda)$ of the pinch λ is the fibrewise map

$$f(\lambda): \quad \varDelta_p \times S^n \longrightarrow \varDelta_p \times S^n$$

$$f(\lambda)(x, y) = \begin{cases} (x, y) & \text{if } (x, y) \notin f(\Delta_p \times B(b)) \\ (x, 0) & \text{if } (x, y) \in f(\Delta_p \times B(a)) \\ f \lambda f^{-1}((x, y)) & \text{elsewhere} \end{cases}$$

In the PL-case $f(\lambda)$ is a PL-homeomorphism in the complement of $f(\Delta_p \times B(a))$.

3. Reduction of Theorem 1 to Lemma 3

We will first concentrate on the topological category and in particular on the existence proof for the case $\text{Top} - S^n$ of theorem 1. The other cases are then taken care of by some simple additional remarks as we will see.

Let the micro-*n*-bundle \underline{x} be represented by the premicro-*n*-bundle $\{\xi_{\alpha}, p_{\alpha}, V_{\alpha}\}$ where ξ_{α} is a bundle over V_{α} , over the simplicial complex $X = \bigcup_{\alpha} V_{\alpha}$. Take a triangulation T of X such that each simplex σ is covered by at least one V_{α} , of the open sets $\{V_{\alpha}\}$ and consider $\xi_{\sigma} = \xi_{\alpha} | \sigma$, the restriction of the bundle ξ_{α} to $\sigma \subset V_{\alpha}$. The bundles ξ_{σ} for $\sigma \in T$ micro-agree with each other. We may as well restrict, and we will do so, to one (trivial) S^n -bundle over each simplex $\sigma \in T$ that is not on the boundary of some higher dimensional simplex. Such a set of microagreeing bundles allready determines the microbundle completely.

If Δ is a simplex in the intersection of the simplices σ_1 and $\sigma_2 \neq \sigma_1$, then $\xi_{\sigma_1} | \Delta$ and $\xi_{\sigma_2} | \Delta$ are micro-identical. We assume inductively that $\xi_{\sigma_1} | \Delta$ and $\xi_{\sigma_2} | \Delta$ are identical for all triples $(\Delta, \sigma_1, \sigma_2 | \Delta \subset \sigma_1 \cap \sigma_2)$ with Δ of dimension $\langle k \ (k \ge 0)$. This means that over the k-1-skeleton of T we have an S^n -bundle allready. Now let Δ be a k-simplex in the intersection of σ_1 and σ_2 . The bundles (of the premicrobundle) over σ_1 and σ_2 are trivial. So are their restrictions to Δ :

$E_1 \xrightarrow{\kappa_1} \Delta \times S^n$		$E_2 \xrightarrow{\kappa_2} \Delta \times S^n$		
P 1		and	p 2	
¥	↓		↓	¥
Δ	Δ		Δ	Δ

Both can be represented (charts κ_1 and κ_2) by the trivial S"-bundle with standard 0-section and ∞ -section. By the inductive assumption the restrictions of the two bundles to $\partial \Delta$ are identical.

Hence

$$f_{1} = (\kappa_{2} \kappa_{1}^{-1} | \partial \Delta \times S^{n}): \quad \partial \Delta \times S^{n} \xrightarrow{\simeq} \partial \Delta \times S^{n}$$

is a well defined bijection.

Definition. The word *bijection* will be reserved for a fibrewise surjective homeomorphism of bundles, also in the PL-category. (The diagram is commutative; the nonhorizontal arrows are projections in the first factor.)

The bundles over Δ are microidentical. This implies that b, with $0 < b \leq 3$, exists such that this microidentity is *represented by* a fibrewise homeomorphism

$$f_{\mathrm{II}} = (\kappa_2 \, \kappa_1^{-1} \,|\, \varDelta \times B(b)): \quad \varDelta \times B(b) \longrightarrow \varDelta \times B(4)$$

which agrees with $f_{\rm I}$ on their common domain. If we replace once and for all κ_1 by its composition with a suitable concentric homeomorphism $\rho(a, b, 3, 3\frac{1}{2})$. κ_1 (lemma 2.1), then we get the new value b=3. We assume b=3, and we combine $f_{\rm I}$ and $f_{\rm II}$ to a fibrewise inbedding

$$f: (\partial \varDelta \times S^n) \cup (\varDelta \times B(3)) \longrightarrow \varDelta \times S^n.$$

Now we need

Lemma 3. For every fibrewise inbedding

$$f: \quad \Delta \times B(3) \longrightarrow \Delta \times \mathring{B}(4)$$

preserving the 0-section, there exists a bijection:

$$g: \quad \Delta \times S^n \longrightarrow \Delta \times S^n$$

preserving the 0-section and the ∞ -section, such that

$$f \mid \Delta \times B(2) = g \mid \Delta \times B(2).$$

This lemma will be proved in § 4 and 5. We apply it in our situation and obtain a fibrewise map

$$h_{\rm I} = g^{-1} f$$

which is the identity on $\Delta \times B(2)$ and which is also defined on the boundary $\partial(\Delta \times B'(2))$ of $\Delta \times B'(2)$.

We represent the north pole ball B'(2) by the convex ball $D(2) \subset \mathbb{R}^n$, and Δ by a simplex in \mathbb{R}^k with centroid $0 \in \mathbb{R}^k$.

Next we extend the homeomorphism $h_{\rm I}$ by defining

$$h(tx, ty) = t h_1(x, y) \in \mathbf{R}^{k+n} = \mathbf{R}^k \times \mathbf{R}^n$$

for $(x, y) \in \partial (\Delta \times D(2))$ and $0 \le t \le 1$. Because h_{I} maps points of the fibre of $t x \in \Delta$ onto points of the fibre of t x so does h. Hence $h: \Delta \times S^{n} \to \Delta \times S^{n}$ is a bijection.

Finally $\hat{f} = g h$ is used to identify the trivial bundles over σ_1 and σ_2 after a preliminary separation. As a result, above $\partial \Delta$ nothing is changed. Above Δ nothing is microchanged.

The Sⁿ-bundle is now also defined above Δ . Repeating the process we obtain by induction the existence of the required Sⁿ-bundle in the topological category.

If two Sⁿ-bundles over X are microidentical then we obtain an isomorphism of the restrictions of the Sⁿ-bundles to the k-skeleton from the same over the k-1-skeleton, k simplexwise with the same method.

Hence uniqueness up to equivalence is also established. Leave out the ∞ -cross-sections and one obtains the case Top- \mathbb{R}^n of theorem 1.

In the PL-category everything can be done in the same way if one has the pure PL-version of Lemma 3 (Lemma 3 PL). This will be given in § 5. In § 4 however we give a *common proof* of a) lemma 3 topological and b) the following restricted PL-version of lemma 3.

Lemma 3'(PL). For every fibrewise PL-inbedding

f: $\Delta \times B(3) \rightarrow \Delta \times \mathring{B}(4)$

there exists a topological bijection:

g:
$$\varDelta \times S^n \longrightarrow \varDelta \times S^n$$

such that

$$g \mid \Delta \times B(2) = f \mid \Delta \times B(2)$$

and such that

 $g \mid \Delta \times \mathring{B}(4)$ is a PL-homeomorphism.

Applying lemma 3' instead of lemma 3 we obtain in the PL-case a S^n -bundle which may be PL-bad (!) at the ∞ -section. If we delete the ∞ -section, we obtain an \mathbb{R}^n -bundle in the PL-category. Hence the common proof of lemma 3 Top and lemma 3' (PL) in §4 leads to a common proof for the cases $\text{Top}-\mathbb{R}^n$, $\text{PL}-\mathbb{R}^n$ and $\text{Top}-S^n$ of theorem 1.

4. Proof of Lemmas 3 (Top) and 3'(PL)

Let $f_1 = f$ be the fibrewise inbedding assumed in lemma 3 or 3'(PL). We define the fibrewise inbeddings

$$f_k: \Delta \times B(3) \longrightarrow \Delta \times \check{B}(4), \qquad k = 2, 3, \dots$$

inductively by

$$f_{k+1}(x, y) = \begin{cases} f_k(x, y) & \text{for } y \in B_k = B\left(3 - \frac{1}{k}\right) \\ \left[f_k(\lambda_k)\right]^{-1} \rho_k \left[f_k(\lambda_k)\right] f_k(x, y) & \text{for } y \notin B_k \end{cases}$$

1 .

with

$$\lambda_{k} = \lambda \left(3 - \frac{1}{k}, 3 - \frac{1}{k+1} \right) \quad \text{(pinch)},$$
$$\rho_{k} = \rho \left(\varepsilon, 2\varepsilon, 4 - \frac{1}{k}, 4 - \frac{1}{k+1} \right)$$

and $\varepsilon > 0$, so small that

$$\Delta \times B(2\varepsilon) \subset f(\Delta \times B(2)).$$

Observe that $[f_k(\lambda_k)]f_k = f_k \lambda_k$, and analyse in particular what happens with $\Delta \times B_{k+1} \setminus \Delta \times B_k$ in the four steps (composition of maps) of the formula for $f_{k+1}(x, y)$. Observe also that

$$f(\Delta \times B(2)) \subset f_k(\Delta \times B_{k+1}) = f_k \lambda_k(\Delta \times B_{k+1}).$$

Compare definition 2.5 for $f_k(\lambda_k)$. The pinch is needed in order to be able to leave f_k unchanged in the pinched part. ρ_k is used in order to make $f_{k+1}(\Delta \times B(3))$ very large: it contains

$$B\left(4-\frac{1}{k}\right).$$

For the PL-case it should be remarked that f_k and f_{k+1} are identical in some open set containing $\Delta \times B_k$. Therefore the piecewise linearity is not hurt by the change from f_k to f_{k+1} although a pinch occurs twice in the formula for this change.

In the topological as well as in the PL-category we obtain a limit which is a *bijection*

$$f_{\infty}: \Delta \times \mathring{B}(3) \xrightarrow{\simeq} \Delta \times \mathring{B}(4)$$

with $f_{\infty} | \Delta \times B(2) = f | \Delta \times B(2)$ as we see.

Next let τ be the reflection of S^n with respect to the equator

$$\tau(x_0, x_1, \dots, x_n) = (-x_0, x_1, \dots, x_n) \in \mathbf{R}^{n+1}$$

Then

 $\tau \lambda(1,2) \tau$

is a mapping which pinches B'(3) into the North pole P_n , leaves B(2) pointwise fixed, and defines a bijection of

$$\Delta \times \mathring{B}(3)$$
 onto $\Delta \times \mathring{B}(4)$.

The topological bijection g, required in lemma 3 (Top) and in lemma 3' (PL), is then

$$g = \begin{cases} f_{\infty} \cdot [\tau \lambda(1, 2) \tau]^{-1} \colon \Delta \times \mathring{B}(4) \longrightarrow \Delta \times \mathring{B}(4) \\ \text{identity:} \qquad \Delta \times P_n \longrightarrow \Delta \times P_n. \end{cases}$$

We recall that now in the cases $\text{Top} - \mathbf{R}^n$, $\text{Top} - S^n$ and $\text{PL} - \mathbf{R}^n$, existence and uniqueness of theorem 1 are proved completely.

5. Proof of Lemma 3 (PL)

In this § we work in the PL-category.

Referring to lemma 3, we first consider the special case where Δ is one point (dimension zero).

We write B(3) instead of $\Delta \times B(3)$ for this case. As we have no need to consider the part between B(3) and B(2) we let f denote the (given) inbedding:

$$f: B(2) \longrightarrow B^0(4) \subset S^n.$$

NEWMAN (Theorem 3 in [6]) proved that any two inbedded combinatorial *n*-balls in an *n*-manifold are "similarly situated". Applying this to $B(2) \subset B^0(4)$ and $f(B(2)) \subset B^0(4)$, this means the existence of a bijection which can be assumed pointwise fixed for points in $B'(4-\varepsilon)$ for some $\varepsilon > 0$,

 $h_1: S^n \rightarrow S^n$

such that $h_1 f(B(2)) = B(2)$.

Of course it can and will also be assumed that $f(P_s) = P_s$. Let the bijection $h_2: S^n \to S^n$ be defined by

$$h_2(y) = \begin{cases} h_1 f(y) & \text{for } y \in B(2) \\ \tau h_1 f(\tau(y)) & \text{for } y \in B'(2) \end{cases}$$

 τ is the reflection of Sⁿ in the equator $\partial B(2)$ discussed earlier.

Then the bijection

$$g_0 = h_1^{-1} h_2 \colon S^n \longrightarrow S^n$$

is the extension to S^n , required in the lemma, for the case that Δ is one point:

$$g_0 | B(2) = f | B(2),$$

$$B(2) \xrightarrow{f} S^n$$

$$\downarrow \cap \swarrow g_0 \downarrow h_1$$

$$S^n \xrightarrow{h_2} S^n.$$

Next consider the general case. Let x_0 be a vertex of Δ . Let $f(\Delta \times B(2))$ be contained in the interior of $\Delta \times B(4-\varepsilon) \subset \Delta \times S^n$.

Denote by

$$f_0: \Delta \times B(2) \longrightarrow \Delta \times S^n$$

the inbedding which equals f on the fibre $x_0 \times B(2)$ and is constant in the variabele $x \in A$:

$$f_0(x, y) = (x, \psi(y)); \quad f_0(x_0, y) = f(x, y).$$

According to HUDSON (ZEEMAN, Remark, page 74 in [7]) there exists a bijection (a higher dimensional PL-isotopy with the variable x running in Δ instead of in the 1-simplex Δ_1):

$$h: \varDelta \times S^n \longrightarrow \varDelta \times S^n$$

with

$$(h \mid \Delta \times B' (4 - \varepsilon)) = \text{identity}$$

such that

 $f = h f_0$.

By the first part of this f_0 is the restriction of some bijection (the same in each fibre): $g_0: \Delta \times S^n \to \Delta \times S^n$, with the property:

$$g_0 \mid \Delta \times B(2) = f_0.$$

Then $g = h g_0$ is the bijection required in lemma 3:

$$g \mid \Delta \times B(2) = h g_0 \mid \Delta \times B(2) = h f_0 = f.$$

Hence lemma 3 (PL) and theorem 1 (PL) are also proved.

A simpler obvious proof can be obtained with a deeper theorem to the effect that if f is as above, and orientation preserving, then $f \mid \Delta \times B(2)$ is ambient isotopic to the identity map.

6. Proof of Theorem 2

Theorem 2 is analogous to theorem 1 with R^n -bundles replaced by bundles of type $(\mathbf{R}^{p+n}, \mathbf{R}^p)$ and Sⁿ-bundles replaced by bundles of type (S^{p+n}, S^p) . The proof is obtained by following the proof of theorem 1 very closely and making small modifications.

First we follow § 2 the tools. Here the standard fibre S^n is replaced by the pair consisting of

$$S^{p+n} = \{ (x_0, \dots, x_{p+n}) \mid \Sigma_0^{p+n} x_i^2 = (4/\pi)^2 \}$$
$$S^p = S^{p+n} \cap \{ (x_0, \dots, x_{p+n}) \mid x_{p+1} = x_{p+2} \cdots = x_{p+n} = 0 \}$$

and analogous for \mathbf{R}^n and for the PL case.

Sp+n_fer

Because the concentric homeomorphism ρ as well as the pinch λ leave $S^p \subset S^{p+n}$ and $R^p \subset R^{p+n}$ invariant, all operations used in § 2 and § 3 can be repreated in the new situation and are seen to preserve these pairs for each fibre. Of course it is necessary for example in § 3 to choose the charts κ_1 and κ_2 such that they are charts of type (S^{p+n}, S^p) instead of type S^n . Also in lemma 3 the given map, f must be replaced by an inbedding of bundle pairs:

$$f: (\Delta \times B^{p+n}(3), \Delta \times B^{p}(3)) \longrightarrow (\Delta \times \check{B}^{p+n}(4), \Delta \times \check{B}^{p}(4)).$$

This being assumed the resulting bijection g of the lemma is automatically a bijection of bundles of type (S^{p+n}, S^p) .

In §4 the proof of lemma 3 (Top) and 3 (PL- \mathbb{R}^n) can be repeated with the same formulas with *n* replaced by p+n, to obtain the lemma required for theorem 2.

This being so, we have proved theorem 2 for the topological category and the case of bundles of type $(\mathbf{R}^{p+n}, \mathbf{R}^p)$ in the PL-category.

ZEEMAN has informed us that from a forthcoming paper of HAEFLIGER and ZEEMAN, it follows that any simplex of ball-bundle-pair imbeddings, like f above, orientation preserving in each fibre-pair, is ambient isotopic, preserving fibrepairs, to the identity map. The analogue of lemma 3 (PL) then follows immediately, and hence theorem 2 both PL-cases.

7. Proof of Theorem 3

U is an open set containing the zero cross-section in the R^n -bundle

$$\xi: \quad \mathbf{R}^n \longrightarrow E \stackrel{p}{\leftrightarrows} X$$

over the locally finite simplicial complex $X: s X \subset U \subset E^s$. We construct as follows a locally finite covering $\{V_{\sigma}\}$ of X.

For each simplex σ , which is not on the boundary of another simplex of X, let φ_{σ} be a continuous function, which is linear on each simplex of X and for which

$$\varphi_{\sigma}(x) = \begin{cases} -1 & \text{for } x \in \sigma \\ 2 & \text{for } x \in L(\sigma) \end{cases}$$

where $L(\sigma)$ is the union of all simplices that have no point in common with σ . Let

$$V_{\sigma} = \varphi_{\sigma}^{-1}([-1, 1]), \quad V_{\sigma}' = \varphi_{\sigma}^{-1}([-1, 0]), \quad W_{\sigma} = \varphi_{\sigma}^{-1}(0).$$

Then we can identify $\varphi_{\sigma}^{-1}([0, 1]) = W_{\sigma} \times I$, and we have

$$V_{\sigma} = V'_{\sigma} \cup (W \times I), \qquad V'_{\sigma} \cap (W_{\sigma} \times I) = W_{\sigma} \times 0 = W_{\sigma}.$$

 V_{σ} is contractible and so ξ is trivial over V. We use a chart of the kind

$$\kappa_{\sigma}: p^{-1}(V_{\sigma}) \xrightarrow{\simeq} V_{\sigma} \times \mathring{B}(2)$$

to represent the bundle $(\xi | V_{\sigma})$.

Now let $b_{\sigma} > 0$ be so small that

$$\kappa_{\sigma}(U \cap p^{-1}(\sigma)) \supset \sigma \times B(b_{\sigma}).$$

We map E into E with the fibrewise homeomorphism φ_{σ} defined by:

$$\varphi_{\sigma}(z) = \kappa_{\sigma}^{-1} \left[\rho\left(\frac{1}{2} b_{\sigma}, b_{\sigma}, 2, 3\right) \right]^{-1} \kappa_{\sigma}(z) \quad \text{for} \quad z \in p^{-1}(V_{\sigma}')$$

 $\varphi_{\sigma}(z) = z$ (identity) for $z \notin p^{-1}(V_{\sigma})$. The remaining part of the bundle, with total space $p^{-1}(W \times I)$, is equivalent to

$$W_{\sigma} \times I \times \mathring{B}(2) \longrightarrow W_{\sigma} \times I$$

 φ_{σ} is already defined for the parts corresponding to the endpoints 0 and 1 of *I*:

 $\partial V_{\sigma} \times 0 \times \mathring{B}(2)$: a concentric homeomorphism, the same in each fibre and

 $\partial V_{\sigma} \times 1 \times \mathring{B}(2)$: identity.

We connect these two by the isotopy described in remark 2.3, in order to complete the definition of φ_{σ} .

The image $\varphi_{\sigma}(E) \subset E$ is the total space of a bundle with projection $p_{\sigma} = (p | \varphi_{\sigma}(E))$ such that $(p_{\sigma})^{-1}(\sigma) \subset U \subset E$. By repeating this process, for each simplex σ once, we obtain the required bundle ξ' with total space $E' \subset U$. Observe that by local finiteness every point of E is involved in at most a finite number of moves.

References

- [1] BROWDER, W.: Open and closed disc bundles (in prep.).
- [2] HAEFLIGER, A., and C. T. C. WALL: Piecewise linear bundles in the stable range (in prep.).
- [3] KISTER, J. M.: Microbundles are fibre bundles. Ann. of math. 80, 190-199 (1964).
- [4] LASHOF, R. K., and M. ROTHENBURG: Microbundles and smoothing. Topology 3, 357-388 (1965).
- [5] MILNOR, J.: Microbundles I. Topology 3, Suppl. 1, 53-80 (1964).
- [6] NEWMAN: On the superposition of n-dimensional manifolds. J. London Math. Soc. 2 (1926), Th.3.
- [7] ZEEMAN, E. C.: On combinatorial isotopy. Publ. I.H.E.S. 19, 74 (1964).

Mathematisch Instituut der Universiteit Amsterdam (Niederlande)

(Received October 6, 1965)