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Microbundles and Bundles 

I. Elementary Theory 

N. H. KuIPER* and R. K. LAsI~oF** in Amsterdam and Chicago 

1. Definitions, Statement of Results 

In this part I we work in two categories namely the category of 
topological spaces and continuous maps, and the category of piece- 
wise linear (PL) spaces and PL-maps. A PL-space is a topological 
space with a complete class of locally finite triangulations, any two 
of which have a common subdivision. A PL-mapf :  X-~ Yis a continuous 
map between PL-spaces X and Y, which for some triangulation of 
X and Y maps every simplex of X linearly into a simplex of Y. We 
consider fibrebundles in the sense of STEENROD with a fixed cross- 
section, often called the zeroseetion, 

P 

~: F ~-L~E~X; Ps= i - l s (X )6F .  (1) 

The base space X is a locally finite simplicial complex; E is the total 
space; p is the projection which in the PL-category of course has to 
be a PL-map; s is the zero section. The fibre F will be n-dimensional 
numberspace R" (the open n-ball), or the n-ball (with boundary included) 

B"={(Xl . . . . ,  x,)eR"JX1 " xi2=< 1} with P~=(0 . . . .  ,0) ,  

or the n-sphere 
S"= {(x0 . . . . .  x,)e R"+ l [ Z'"oX{=(4/n) z } 

with 
( - 4 / n ,  0, ..., 0)=P~("0") and (4/n, 0 . . . . .  0 )=P , ( "oo" )  1 

The group will be the group of all homeomorphisms of (F; P~) or 
(F; P~, P.) resp. onto itself. 

Two fibrebundles,~l and ~z with the same base space X, are called 
micro-identical if: the zeroseetions coincide, s~ X=s2 X; the total 

* Part of this work was done while this author was a guest at the Institut des 
Hautes Etudes Scientifiques in Bures sur Yvette. 

** This work was supported by the U.S. Air Force grant AFOSR 711-65, 
1 See section 2 for a description of these spaces in the PL category. 
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spaces E 1 and E 2 have in c o m m o n  some open set U containing this 
zerosection; and if moreover  the restrictions of the projections Pl  

and P2 to U coincide, Pl [U=pz[U. 
See Fig. 1. 

s X  

N 
E 1 ~ U ~ E 2 

",\ 1/ 

~ X  V 

Let VI and V2 be subspaces of X. 
Two fibrebundles 31 over V 1 and ~2 
over V2 are said to micro agree, in 
case their restrictions to V =  Vz c~ V 2 

vig.~ are micro identical fibrebundles 
over V. 

A premierobundle over X is a set of fibrebundles r with cross-section, 
one over each open set V,, of a covering of X = U ,  V,, such that  any 
two of them microagree. 

Two premicrobundles {~,} and {~p} over X are called strongly 
equivalent if their union {~,, Ca} is also a premicrobundle.  

Definition. A microbundle is a strong equivalence class of premicro- 
bundles. 

Every premicrobundle determines the unique microbundle (=equ i -  
valence class) of which it is an element. 

Example 1. Every fibrebundle ~ (with fibre F as above), is an example 
of  a premicrobundle.  Consequently it determines a unique microbundle 
p(~)2. (p(~) can be considered as a germ of ne ighborhood of the 
zerosection of the bundle of the total space, together with what  remains 
of  the projection.) The converse is to a certain extent true:  

Theorem 1. In the topological and in the PL-category every micro- 
n-bundle over X contains a R"-bundle and a S"-bundle with zero-cross- 
section, and these bundles are unique up to equivalence. 

The special cases of this theorem will be denoted by T o p - S  ", P L -  
R" etc. 

For  the topological case this is a theorem of KISTER [3] and B. 
Mazur.  N o  proof  for  the PL-case seems to be published so far. We 

2 One can define "microsets" in a microbundle. They form a partially ordered 
system with analogy to the system of subsets of a set. It may be interesting to study 
"microsettheory". 
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give a proof for the cases t o p - R " ,  t o p - S " ,  P L - R "  in w 2 - 4 .  A second 
proof for P L - R "  and a proof for P L - S "  is given in w 5. The considera- 
tion of the S~-case simplifies the R~-proofs considerably. Observe 
that BROWDER [I] proved that not every micro n-bundle contains a B"- 
bundle. 

Example 2. It  was MmNoR [5], who introduced microbundles. He 
defined them as equivalence classes of certain diagrams. 

A Milnor diagram 
X-~  Y ~ X  

consists of a base space X, a total space Y, maps i and p with composi- 
tion p /= iden t i ty ,  such that for every point x~X there exists a neighbor- 
hood V of i(x) in Y and a surjective homeomorphism h which makes the 
main square of the following diagram commutative 

Y~  V h -~p(V) xR" 

X ~ p ( v )  ~ ~  , p ( V ) x 0  
with 

~ ( x ,  u) =(x ,  0), is(x, o)=(x, 0). 

This special diagram defines a R'-bundle over p ( V ) ~ X  with total 
space V, The bundles so obtained from a Milnor diagram define a 
premicrobundle, hence a microbundle according to our definition, 

L~ample 3. A special ease is the tangent microbundle of a topolo- 
gical or PL manifold M defined by the diagram 

M J G M x M  P-GM 

with A : x N- , (x ,  x) the diagonal map and p: (x, y) ~ . p ( x ,  y)=x the 
projection in the first factor. 

If x ~ V I c V 1 c V ~ c M ,  and g: V2~R" is a surjective homeo- 
morphism, then h of example 2) is defined by 

v =  v ,  • v , ~  •  (x, y) ~-,  (x, g(y)-g(x)) .  

In stead of the fibrebundles (I), we also consider fibre bundles 
with fibre F =  

g"+"= { ( ~  . . . .  x,+.)} 
or  

s "  +" = {(~o . . . .  x ,  +.) ~ R" +" + ~ i Zg +" x~ = 1 } 
or  

B p+" {(xt, , " "P+" r v + " " z < l  = . x~+.m*, l--1 ~ i = - }  
1" 
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and with group the group of those homeomorphisms that leave inva- 
riant the subspace with equation xp+, = . . . .  xp+, =0. 

In the case F = S  p+" we obtain in this manner a SP+"-bundle con- 
taining fibrewise a SP-bundle, with a common 0 - a n d  oo-cros-section. 
We call this object a fibrebundle of type (S p+", S p) and analogously 
for the other kinds of fibre. The notions microidentical, premicro- 
(p + n, p)-bundle and micro-(p + n, p)-bundle are now defined in analogy 
with the former case. We obtain in w 7: 

Theorem 2. In the topological and in the PL-category every micro- 
(p+n,p)-bundle over X contains a bundle of type (RP+",R p) and a 
bundle of type (S p+", S p) and they are unique up to equivalence. 

Example 4. (Normal microbundles.) Let X be a p-dimensional 
locally flat submanifold of a p+n-dimensional  manifold Y, and let the 
pair be locally homeomorphic to the standard imbedding of R p in 
R p+". If z x is the tangentmicrobundle of X, r r l X  the restriction to X, 
of the tangent microbundle of Y, then these two microbundles form a 
micro-(p+n,p)-bundle. In particular X may be the zero-section of an 
R"-bundle 4 over X with total space Y. But in the latter case z r l X  can 
be identified with the Whitneysum (M1LNOR [5]) Zx@#(~), with /~(~) 
the microbundle of 4./~(r is in this case a normal microbundle for Xin Y. 
The group of the corresponding bundle of type (R p+", R p) can then 
be reduced to the group of homeomorphisms 

f: RP+"-~R p+n which split: 

f i ( x t , . . . , x , + p ) = ~ f i ( x  , . . . . .  xp ,0  . . . . .  0) for l<i<_p 

f i ( 0 , . . . , 0 ,  xp+l . . . .  ,xp+,) for p + l < i < p + n .  

It is not yet known whether such a reduction always exists or not. 
For vectorbundles it is wellknown to exist. In the PL-case for n>p+ I 
it exists and is unique by a theorem of HAEFLmZR and WALL [2]. 

If it exists in the case of the submanifold X =  Y, hence if Vx, a sub- 
microbundle of zy IX  exists, and 

~YIX=~x@Vx 

then v x is called a normal microbundle of X in Y. 

Consider a premicro-n-bundle over X consisting of bundles 4, over 
open sets V,= X of a locally finite covering. 

Let W, be compact,  W,=  V, and U, W, =X. Finally let r be a R"- 
bundle which microagrees with all bundles 4,- 

Now we consider an open set U in the total space of 4, that contains 
the zero-section s X and such that [Uc~p- '(W~)]cp~l(W,) .  So U is 
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completely covered by the bundles spaces of the premicro-bundle. It  
would be nice to have a bundle ~' with total space contained in U, 
which also microagrees with ~, for all e. Then ~' would not require 
more points then those allready offered in the given premicrobundle 
and no identifications would be needed under restriction to {p-l(W,)}. 
In the case of the tangent microbundle ~' would have its total space 
imbedded in M x M (see example 3). This aim can be reached in view of 

Theorem 3. I f  
P 

~: R n d G E ~  X 
s 

is a R'-bundle over X, U an open set in E containing s X, then there exists 
a bundle ~' microidenticaI with ~, with total space contained in U. 

This will be proved in w 6. An analogous theorem holds for bundles 
of type (R p+", RP). 

The following sequence gives a survey of some related problems 

[Vector R"] b~ [B"] ~ [S"] ~ [R"] ~ m i c r o - n  

, (2t 

IS "+p, SP] ~L~ [R "+", R"] ~ micro(n + p, p). 

It concerns bundles with zero-section and microbundles over a p- 
dimensional manifold X, and each symbol represents a set of equi- 
valence classes. The arrows represent natural maps, and the problems 
are injectivity and surjectivity of these maps. R" can be compactified 
by an n - 1 - s p h e r e  to get B" with the linear group acting well defined 
on B". This defines the map b. For  any B"-bundle we can take the bundle 
twice and identify fibrewise along the OB"-bundle to get an S"-bundle. 
This defines the map s. Given a zero-section in a S"-bundle, there exists 
a disjoint m-section; delete it and get a W-bundle. This defines r./~ was 
defined earlier, v assigns to any bundle over the manifold X the pair 
consisting of the tangentbundle of s X and the restriction of the tangent- 
bundle of the total space to s X. In the PL case the maps have to be 
defined with more care. 

As a mather of fact b has not  been properly defined so far we believe 
in case PL, but perhaps it can be done along the fines of the work of 
LASHOF and ROTHENBERG [4]. 

The following is now known. For some X and some n: b is stably 
neither injective nor surjective (MILNOR [5]); S is not surjective (BRoWDER 
[1]). For every X and n, r and # as well as r '  and #' are bijective (K~STER 
[3], and our theorem 1); s is stably bijective (BROWDER [1]). 
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2. Tools 

We first describe some standard representations of spheres and 
balls and other tools in the topological category. On the n-sphere 

S"= {(x0 . . . . .  x , )eR "+' 12:; x{ =(4/re) 2} 

in euclidean n+l -space ,  we distinguish two points ( - 4 / n ,  0 . . . .  0)=P~ 
also called the south pole or sometimes "0"  and ( -4 I~ ,  0 . . . .  0 ) = P ,  
also called the north pole or sometimes "oo". 

r is the distance measured in S" from any point to P~. co is the shortest 
geodesic from any point to Ps. (r, o~) are southpolar coordinates on S". 

The ball B(a)={xeS"lr(x)<a} with centre P~, has interior /7(a)= 
{xeS"]r(x)<a}. The complement of /7(a) is B'(a)=S"\Bo(a),  a ball o 
with centre P , .  The interior of B'(a) is denoted by B'(a). 

In particular: B(0) = Ps, B(4)=  S", B(2) is called the south hemisphere, 
B'(4) =P , ; / 7 (4 )  will often be identified with R". Another representation 
is the ball 

D(a)= {(x, . . . . .  x,,)l z"~ x~ < aZ} c R ". 

Lemma2.1.  For every O < a < b < c < d < 4  there exists a concentric 
homeomorphism p(a, b, c, d) of S" onto S" which maps B(b) onto B(c) 
and leaves B(a) and B'(d) pointwise fixed. 

In southpolar coordinates it is defined by 

p(a, b, e, d)(r, m) =(~pCr), on). 

The real function cp is represented in Fig. 2a. 

Ov~ 

0 

I 
f, . /  i ! I ; , "  i i 

I ' /  I I 
/ , "  l I I 

I I I 
/ i  ~ i i 

/ ! ! ! I 
" I I  ~ i 

a b d gr  

_ m  

jj 
/ / / / /  

O a b r 7' 

Fig. 2a Fig. 2b 

It has the required values for r = 0 ,  a, b, c, d and 4, and is linear 
in the connecting intervals. 

Observe that  all hypersurfaces of S" like xi=O or x~=xj for i , j=  
1, ... n are invariant under p. 
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Lemma 2.2. For every 0 < a < b < 4  there exists a continuous map 
2(a, b), called pinch, of S" onto S "o which maps B(a) onto B ( 0 ) = P , ,  
restricts to a homeomorphism of B'(a) onto B'(0), and which leaves 
B'(b) pointwise fixed. 

In south polar coordinates it is defined by 

b)(r, 

The real function @ is represented in Fig. 2b. It has the required values 
for r--O, a, b, 4, and is linear in the connecting intervals. 

oo Aioidk 

8r/)~ 
0 ,.7ou/k 

Fig. 3 

For the piecewise linear category we have to modify these tools. 
The modified tools are more complicated, but they can be used for the 
topological category as well. 

In R "+1 we consider the Banach norm 

llx]l=maxilx~[,  x=(Xo . . . . .  x , )eR "+1 

On the n-sphere 
Nxll=l } 

we distinguish the south pole P s = ( - 1 ,  0 . . . .  0) and the north pole 
P ,=(1 ,  0 . . . .  0). r is the Banach distance measured in S" from any 
point to P~. m is the shortest geodesic from any point to P~. (r, m) are 
south polar coordinates in S". 

o 

The ball B(a)={xeS"1r(x)<a} with centre Ps, has interior B ( a ) =  
{xeS"lr(x)<a}. B'(a)=S"\/7(a), a ball with centre P, ,  is the comple- 
ment of B(a) in S 4. 

In particular: B(0)=P~,  B(4)=S",  B(2) is the south hemisphere, 
B'(4)=P,. Observe that B(I)  and B'(3) lie in hyperplanes in R "+~. 

Another representation is the ball 

D (a) = {(xz, . . . ,  x,)[ max i Ix i [ < a} c R". 
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In all these spaces the PL-structure is taken from the natural PL- 
structure of R n+l or  /in.. Every'trlangulation of S" or a part of S" or 
R" to be considered wilt be a subdivision of the division obtained 
from the hyperplanes x~=0 and x~= -l-xj for i , j =  t, ... n in R "+1 or RL 

In order to define a concentric homeomorphism p as required in 
the lemma, also for the PL-category, we first introduce a PL-homeo- 
morphism 

o 

~c: B(4)--~D(4). 

For  that we take a triangulation of/}(4) such that the spheres 

k = 1 , 2 , 3  

are triangulated subspaces, and such that no vertices of the triangulation 
of B(4) except P~ are outside these spheres. The restriction of tc to these 
spheres will be defined in terms of south polar coordinates (r, co) for 
/}(4) and polar coordinates (r', co') f o r / ) (4 )  by the equations r' = r  and 
co'=co. Then tr is completely determined by the condition of linearity 
on the simplices of the triangulation. Observe that the equations x~=0 
and x i = x j  for  i , j=  1 . . . . .  n are invariant under ~c. 

Observe also that the radial Banach distance r is invariant under 
this map ~. 

o 

We will define a concentric homeomorphism (PL) in D(4), which 
we then can carry over by K to /~(4). Consider a triangulation of /9(4)  
with no vertices in the annuli /~(b) \ D(a) and/~(d)  t D(b). In/~(4) we 
apply the formula given above for p (a, b, c, d) to define a concentric 
homeomorphism (topological version), but we use it only to define 
a map for the vertices of the triangulation. After that we extend the map 
linearly over the simplices, and we call the resulting PL-homeomorphism 
z: /~(4)-~/)(4) .  Then ~c -1 z tr : /] (4) ~ /} (4) is the required PL-version 
of the concentric homeomorphism. We denote it again as p (a, b, c, d). 
It  carries "spheres" with centre P~ onto such spheres. A straight line 
through P~ however is in general not mapped onto another such line see 
Fig. 4). We also define p (a, b, c, d) to carry the north pole P,  onto itself. 

We leave it to the reader to establish that z is isotopic to the identity 
map. As a consequence we have (to be used for the proof of theorem 3): 

Remark2.3. p(a, b, c, d) is isotopic with the identity map (in the 
PL-category and in the topological category). 

The pinch 2(a, b) will also be defined using the chart K. We use the 
o 

above formulas for all points x~D(4) with O<r<_a, r = a + ( b - a ) / k  
for k = l ,  2, 3 . . . .  and b<r<4 .  We take a triangulation of /~ (4 ) -D(a )  
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with all vertices in this set of points, and we extend linearly. The con- 
tinuous map 2(a, b) so obtained is piecewise linear in the complement 
of the sphere ~ D (a). There is no open set containing O D (a) in which the 
pinch 2(a, b) is pieeewise linear. Observe that the hypersurfaces x~ =0  
and xi=xi  for i , j= l  . . . .  n are invariant under 2 as well as under p. 

Fig. 4 

b "q ! 0 

Remark 2.4. If K is a simplicial complex, for example one simplex, 
then one has the homeomorphism 

identi tyxp(a,b,c,d):  K x S " - - , K •  n 

and the pinch 
identity x 2(a, b): K x S"---*K x S". 

In the PL-case these are PL, and PL outside K• respectively. 
They will be denoted also by p(a, b, c, d) and 2(a ,b)  respectively. 
Both maps commute with projection onto the first factor K. That is, 
they are fibre preserving. 

Definition2.5. If f : A p •  is a fibrewise inbedding, 
zip the standard p-dimensional simplex, 2 = 2 ( a ,  b) the pinch defined 
above, then the transform f ( 2 )  of the pinch 2 is the fibrewise map 

given by 

n _ ~  S n f (2) :  A p x S  A , x  

(x ,y)  if ( x , y ) r  

f ( 2 ) ( x , y ) =  (x,O) if ( x , y ) e f ( A p x B ( a ) )  

f 2 f - 1 ((x, y)) elsewhere 

In the PL-case f ( 2 )  is a PL-homeomorphism in the complement of 
y (zip • 8(a)). 
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3. Reduction of Theorem 1 to Lemma 3 

We will first concentrate on the topological category and in particular 
on the existence proof for the case T o p - S "  of theorem 1. The other 
cases are then taken care of by some simple additional remarks as we 
will see. 

Let the micro-n-bundle x be represented by the premicro-n-bundle 
{~ ,  p , ,  V,} where ~, is a bundle over V,, over the simplicial complex 
X = U ,  V,. Take a triangulation T of X such that each simplex o- is 
covered by at least one V,, of the open sets { V,} and consider ( ,  = ~ l a, 
the restriction of the bundle ~, to ~ c V~. The bundles ~, for  ere T micro- 
agree with each other. We may as well restrict, and we will do so, to 
one (trivial) S '-bundle over each simplex a e  T that is not on the boundary 
of some higher dimensional simplex. Such a set of microagreeing bundles 
allready determines the microbundle completely. 

If A is a simplex in the intersection of the simplices cr~ and a24:c h, 
then ~.~ [A and r are micro-identical. We assume inductively that 
~,~[A and ~o~lA are identical for all triples (A, trl, az[A~alc~tr2) 
with A of dimension < k  (k>0) .  This means that over the k - I - s k e l e t o n  
of T we have an S'-bundle allready. Now let A be a k-simplex in the 
intersection of a I and Oz. The bundles (of the premicrobundle) over a 1 
and a 2 are trivial. So are their restrictions to A: 

Et ~ >A xS" E 2 - - ~ A  xS" l ,land) l 
A A A A 

Both can be represented (charts ~c, and ~c2) by the trivial S"-bundle 
with standard 0-section and oo-section. By the inductive assumption 
the restrictions of the two bundles to t?A are identical. 

Hence 
fx=(Xz~-~llOAxS'):  OAxS" = ,OAxS"  

is a well defined bijection. 

Definition. The word bijection will be reserved for a fibrewise sur- 
jective homeomorphism of bundles, also in the PL-category. (The 
diagram is commutative;  the nonhorizontal arrows are projections in 
the first factor.) 

The bundles over A are microidentical. This implies that b, with 
0 < b < 3, exists such that this microidentity is represented by a fibrewise 
homeomorphism 

fu=(tc2tc~ -11A xB(b)) :  A xB(b)--*A x/}(4) 



Microbundles and Bundles. I 11 

which agrees withfi on their common domain. If we replace once and 
for all ~l by its composition with a suitable concentric homeomorphism 
p(a, b, 3, 3�89 ~c 1 (lemma2.1), then we get the new value b=3 .  We 
assume b=3 ,  and we combinefi  a n d f .  to a fibrewise inbedding 

f: (SA x S") w (A x B(3))---*A x S". 
Now we need 

Lemma 3. For every fibrewise inbedding 

f :  A xB(3) , A x/}(4) 
\ / 

\ A  / 

preserving the O-section, there exists a bijection: 

g: A x S "  ) A x S "  
\\ y/// 

~A 

preserving the O-section and the m-section, such that 

f lA x B(2)=g  [ A x B(2). 

This lemma will be proved in w 4 and 5. We apply it in our situation 
and obtain a fibrewise map 

h i = g - i f  

which is the identity on A x B(2) and which is also defined on the bound- 
ary 8(A x B'(2)) of A x B'(2). 

We represent the north pole ball B' (2) by the convex ball D (2)c  R", 
and A by a simplex in R k with centroid OeR k. 

Next we extend the homeomorphism hi by defining 

h( tx ,  t y )= t hi(x, y)  e R k + " = R  k • R n 

for (x, y)eO(A x D(2)) and 0=<t< 1. Because h i maps points of the fibre 
of t xeA  onto points of the fibre of t x so does h. Hence h: A x S" --+A x S" 
is a bijection. 

Finally f = g  h is used to identify the trivial bundles over a 1 and o- z 
after a preliminary separation. As a result, above 8A nothing is changed. 
Above A nothing is microchanged. 

The S"-bundle is now also defined above A. Repeating the process 
we obtain by induction the existence of the required S"-bundle in the 
topological category. 

If two S"-bundles over X are microidentical then we obtain an 
isomorphism of the restrictions of the S"-bundles to the k-skeleton from 
the same over the k-1-skeleton,  k simplexwise with the same method. 
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Hence uniqueness up to equivalence is also established. Leave out the 
oo-cross-sections and one obtains the case Top-R" of theorem 1. 

In the PL-category everything can be done in the same way if one 
has the pure PL-version of Lemma 3 (Lemma 3 PL). This will be given 
in w 5. In w 4 however we give a common proof of a) lemma 3 topological 
and b) the following restricted PL-version of lemma 3. 

Lemma 3'(PL).  For every fibrewise PL-inbedding 

f :  A x B ( 3 ) - - , A  x / } (4 )  

there exists a topological bijection: 

such that 

and such that 

g: AxS"--~AxS"  

g]A x B ( 2 ) = f l A  xB (2 )  

g[ A x/}(4) is a PL-homeomorphism. 

Applying lemma 3' instead of lemma 3 we obtain in the PL-case a 
S"-bundle which may be PL-bad (1) at the oo-section. If we delete the 
oo-section, we obtain an R'-bundle in the PL-category. Hence the 
common proof of lemma 3 Top and lemma 3' (PL) in w 4 leads to a 
common proof for the cases T o p - R " ,  P L - R "  and T o p - S "  of theo- 
rem 1. 

4. Proof of Lemmas 3 (Top) and 3' (PL) 

Let f ,  = f  be the fibrewise inbedding assumed in lemma 3 or 3'(PL). 
We define the fibrewise inbeddings 

o 
fk: A x B(3) ..... --* A x B(4), 

\ / /  

inductively by 

fk+ 1( x, Y)= I 
A(x, Y) for 

[[f*(2k)]-' Pk [fk(2k)] fk(x, y) for 
with 

k=2 ,  3 . . . .  

YCBk 

2 k = 2 \{3 - 1,k 3 _ ~_~__)1 (pinch), 

pk=p 4 1 (e, 2e, 4 - - ) - , - - - ~ - )  

and e > 0, so small that 
A x B(2e)=f(A x B(2)). 
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Observe that [fk(2k)]fk=fk 2k, and analyse in particular what happens 
with A x Bk+l \ A x B k in the four steps (composition of maps) of the 
formula forfk+l(x,  y). Observe also that 

f (A x B(Z))c fk(A x Bk+ l )= fk  2k(A x Bk + 1). 

Compare definition 2.5 for fk(2k). The pinch is needed in order to be 
able to leave fk unchanged in the pinched part. Pk is used in order to 
make fk+ 1( A X B(3)) very large: it contains 

For the PL-case it should be remarked that fk and fk+1 are identical 
in some open set containing A x Bk. Therefore the piecewise linearity is 
not hurt by the change from fk to fk+~ although a pinch occurs twice in 
the formula for this change. 

In the topological as well as in the PL-category we obtain a limit 
which is a bijection 

f~ :  A x/~(3) -~ ,A x/](4) 

withf~olA x B(2)=fIA xB(2) as we see. 
Next let �9 be the reflection of S" with respect to the equator 

Z(Xo, xt . . . . .  x , ) = ( - X o ,  xl, ..., x,) e R "+' 
Then 

z 2(1, 2) z 

is a mapping which pinches B'(3) into the North pole P, ,  leaves B(2) 
pointwise fixed, and defines a bijection of 

A• onto Ax/}(4).  

The topological bijection g, required in lemma 3 (Top) and in lemma 3' 
(PL), is then 

ffo~" [z 2(1,2) -c]- 1: A x/}(4)--~A x/}(4) 
g 

~identity: A x P, ~--, A x P,. 

We recall that now in the cases Top -R" ,  T o p - S "  and PL--R", exis- 
tence and uniqueness of theorem 1 are proved completely. 

5. Proof of Lemma 3 (PL) 

In this w we work in the PL-category. 
Referring to lemma 3, we first consider the special case where A 

is one point (dimension zero). 
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We write B(3) instead of A x B(3) for this case. As we have no need 
to consider the part  between B(3) and B(2) we l e t f  denote the (given) 
inbedding: 

f:  B(2) -~B~ 

NEWMAN (Theorem 3 in [6]) proved that any two inbedded combina- 
torial n-balls in an n-manifold are "similarly situated". Applying this 
to B(2)cB0(4)  and f (B(2))cBO(4) ,  this means the existence of a 
bijection which can be assumed pointwise fixed for points in B ' ( 4 - e )  
for some e > 0, 

h 1 : S~'--~S " 
such that h~f(B(2))=B(2) .  

Of course it can and will also be assumed that f (P~)=P~. Let the 
bijection h2: S " ~  S n be defined by 

f h l  f ( y )  for y e B ( 2 )  

hz(Y)=~,z" hi f ( z (y ) )  for yeB ' (2 ) .  

z is the reflection of S" in the equator OB(2) discussed earlier. 

Then the bijection 
g o = h t  -1 h2: S"----~S" 

is the extension to S", required in the lemma, for the case that A is one 
point: 

go l B ( 2 ) = f l B ( 2 ) ,  

B(2) f---*S n 

S n h2 ~ an .  

Next consider the general case. Let Xo he a vertex of A. L e t f ( A  x B(2)) 
be contained in the interior of A x B ( 4 -  e) c A x S n. 

Denote by 
f0: A xB(2)---*A x S  n 

the inbedding which equals f on the fibre Xo x B(2) and is constant in 
the variabele x~A:  

fo(x, y)=(x,  ~b(y)); fo(xo , y)= f (x, y). 

According to HUDSON (ZEEMAN, Remark,  page 74 in [7]) there exists 
a bijection (a higher dimensional PL-isotopy with the variable x running 
in A instead of in the 1-simplex A1): 

h: AxS"- - -~AxS"  
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with 
(h [ A x B' ( 4 -  e)) = identity 

such that 

f = h  fo. 

By the first part of this w is the restriction of some bijection (the same 
in each fibre): go: A x S n -~A x S", with the property: 

go [A x B(2)= fo.  

Then g = h  go is the bijection required in lemma 3 : 

g[A • B ( 2 ) = h  go]A • fo=f. 

Hence lemma 3 (PL) and theorem 1 (PL) are also proved. 

A simpler obvious proof can be obtained with a deeper theorem to 
the effect that i f f  is as above, and orientation preserving, thenf [A • B(2) 
is ambient isotopic to the identity map. 

6. Proof of Theorem 2 

Theorem 2 is analogous to theorem 1 with R"-bundles replaced by 
bundles of type (R p+", R p) and S"-bundles replaced by bundles of 
type (S p+", SP). The proof is obtained by following the proof of theorem 1 
very closely and making small modifications. 

First we follow w 2 the tools. Here the standard fibre S" is replaced 
by the pair consisting of 

S p+" = {(Xo . . . . .  x,+,)  [ 1;~ +" xl z = (4/r0 = } 
and 

S ~ =  S ~+" c~ {(x0 . . . . .  x~+.)  l x . +  1 = x . + 2  . . . .  xp+. = 0 }  

and analogous for R" and for the PL case. 

Because the concentric homeomorphism p as well as the pinch 2 
leave S P c S  p+" and RPcR p+" invariant, all operations used in w 2 and 
w 3 can be repreated in the new situation and are seen to preserve these 
pairs for each fibre. Of course it is necessary for example in w 3 to choose 
the charts/s and/s such that they are charts of type (S p+", S p) instead 
of type S". Also in lemma 3 the given map, f must be replaced by an 
inbedding of bundle pairs: 

f :  (A x B~'+"(3), A x BP(3))--->(A x BP+"(4), A x B~'(4)). 

A 
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This being assumed the resulting bijection g of the lemma is automatically 
a bijection of bundles of type (S p+", SP). 

In w 4 the proof of lemma 3 (Top) and 3 ( P L - R ' )  can be repeated 
with the same formulas with n replaced by p+n,  to obtain the lemma 
required for theorem 2. 

This being so, we have proved theorem 2 for the topological category 
and the case of bundles of type (R p+", R0 in the PL-category. 

ZEEMAN has informed us that from a forthcoming paper of HAEFLIGER 
and ZEEMAN, it follows that any simplex of ball-bundle-pair imbeddings, 
like f above, orientation preserving in each fibre-pair, is ambient iso- 
topic, preserving fibrepairs, to the identity map. The analogue of 
lemma 3 (PL) then follows immediately, and hence theorem 2 both 
PL-cases. 

7. Proof of Theorem 3 

U is an open set containing the zero cross-section in the R'-bundle 

P 

4 : R'--~ E -m X 

over the locally finite simplicial complex X: s X c  U c  E ". We construct 
as follows a locally finite covering { V~} of X. 

For each simplex a, which is not on the boundary of another simplex 
of X, let (p~ be a continuous function, which is linear on each simplex 
of X and for which 

{ ; 1  f o r / e ~  

~o~(x) = for x e L ( a )  

where L(a)  is the union of all simplices that have no point in common 
with a. Let 

V~=q~2'([-1, 1]), V ' = ~ o 2 ' ( [ -  1,0]),  Wo = ~o2 t(0). 

Then we can identify ~o~-l([0, 1])= g~ x L and we have 

v~=v2u(Wxl), v2c~(w~xo=W~xO=W~. 

V~ is contractible and so ~ is trivial over V. We use a chart of the kind 

tea: p - l (va)  -~ ,V~x/}(2) 
\ / /  

\ 'a Y 
vo 

to represent the bundle (~1 V~). 

Now let b~ > 0 be so small that 

~:.(U r~ p-l(~r))~ a x B(b.) .  
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We map E into E with the fibrewise homeomorph i sm q% defined by:  

q~(z)=x21[p(�89 b, ,  2, 3)]-I~:~(z) for  z e p - l ( V  ") 

q~,(z)=z (identity) for zq~p-l(V,). The remaining part  of the bundle, 
with total space p - ~ ( W •  I), is equivalent to 

W~xI• x I .  

~p~ is already defined for the parts corresponding to the endpoints 0 
and 1 of I :  

o 

(~Vox0•  a concentric homeomorphism,  the same in each fibre 

and 

aV~ x 1 • identity.  

We connect  these two by the isotopy described in remark  2.3, in order 
to complete the definition of cp,. 

The image ( p ~ ( E ) c E  is the total space of a bundle with projection 
p~=(plcp~(E)) such that  ( p ~ ) - l ( a ) c  U cE.  By repeating this process, 
for each simplex a once, we obtain the required bundle ~' with total 
space E' ~ U. Observe that  by local finiteness every point  of E is involved 
in at mos t  a finite number  of  moves. 
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