Microbundles and Bundles

I. Elementary Theory

N. H. Kuiper ${ }^{*}$ and R. K. Lashof ${ }^{\star *}$ in Amsterdam and Chicago

1. Definitions, Statement of Results

In this part I we work in two categories namely the category of topological spaces and continuous maps, and the category of piecewise linear (PL) spaces and PL-maps. A PL-space is a topological space with a complete class of locally finite triangulations, any two of which have a common subdivision. A PL-map $f: X \rightarrow Y$ is a continuous map between PL-spaces X and Y, which for some triangulation of X and Y maps every simplex of X linearly into a simplex of Y. We consider fibrebundles in the sense of Steenrod with a fixed crosssection, often called the zerosection,

$$
\begin{equation*}
\xi: \quad F \xrightarrow{i} E \underset{s}{\stackrel{p}{\rightleftarrows}} X ; \quad P_{s}=i^{-1} s(X) \in F . \tag{1}
\end{equation*}
$$

The base space X is a locally finite simplicial complex; E is the total space; p is the projection which in the PL-category of course has to be a PL-map; s is the zero section. The fibre F will be n-dimensional numberspace \boldsymbol{R}^{n} (the open n-ball), or the n-ball (with boundary included)

$$
B^{n}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \boldsymbol{R}^{n} \mid \Sigma_{1}^{n} x_{i}^{2} \leqq 1\right\} \text { with } P_{s}=(0, \ldots, 0),
$$

or the n-sphere

$$
S^{n}=\left\{\left(x_{0}, \ldots, x_{n}\right) \in R^{n+1} \mid \Sigma_{0}^{n} x_{i}^{2}=(4 / \pi)^{2}\right\}
$$

with

$$
(-4 / \pi, 0, \ldots, 0)=P_{s}\left({ }^{\prime \prime} 0 '\right) \quad \text { and } \quad(4 / \pi, 0, \ldots, 0)=P_{n}\left(" \infty{ }^{\prime \prime}\right){ }^{1}
$$

The group will be the group of all homeomorphisms of $\left(F ; P_{s}\right)$ or $\left(F ; P_{s}, P_{n}\right.$) resp. onto itself.

Two fibrebundles ξ_{1} and ξ_{2} with the same base space X, are called micro-identical if: the zerosections coincide, $s_{1} X=s_{2} X$; the total

[^0]spaces E_{1} and E_{2} have in common some open set U containing this zerosection; and if moreover the restrictions of the projections p_{1}

Fig. 1 and p_{2} to U coincide, $p_{1}\left|U=p_{2}\right| U$. See Fig. 1.

Let V_{1} and V_{2} be subspaces of X. Two fibrebundles ξ_{1} over V_{1} and ξ_{2} over V_{2} are said to micro agree, in case their restrictions to $V=V_{1} \cap V_{2}$ are micro identical fibrebundles over V.
A premicrobundle over X is a set of fibrebundles ξ_{α} with cross-section, one over each open set V_{α}, of a covering of $X=\bigcup_{\alpha} V_{\alpha}$, such that any two of them microagree.

Two premicrobundles $\left\{\xi_{\alpha}\right\}$ and $\left\{\xi_{\beta}\right\}$ over X are called strongly equivalent if their union $\left\{\xi_{\alpha}, \xi_{\beta}\right\}$ is also a premicrobundle.

Definition. A microbundle is a strong equivalence class of premicrobundles.

Every premicrobundle determines the unique microbundle (=equivalence class) of which it is an element.

Example 1. Every fibrebundle ξ (with fibre F as above), is an example of a premicrobundle. Consequently it determines a unique microbundle $\mu(\xi)^{2}$. $(\mu(\xi)$ can be considered as a germ of neighborhood of the zerosection of the bundle of the total space, together with what remains of the projection.) The converse is to a certain extent true:

Theorem 1. In the topological and in the PL-category every micro-n-bundle over X contains a R^{n}-bundle and a S^{n}-bundle with zero-crosssection, and these bundles are unique up to equivalence.

The special cases of this theorem will be denoted by Top- $S^{n}, \mathrm{PL}-$ $\boldsymbol{R}^{\boldsymbol{n}}$ etc.

For the topological case this is a theorem of Kister [3] and B. Mazur. No proof for the PL-case seems to be published so far. We

[^1]give a proof for the cases top- \boldsymbol{R}^{n}, top $-S^{n}, \mathrm{PL}-\boldsymbol{R}^{n}$ in $\S 2-4$. A second proof for PL $-R^{n}$ and a proof for $\mathrm{PL}-S^{n}$ is given in $\$ 5$. The consideration of the S^{n}-case simplifies the R^{n}-proofs considerably. Observe that Browber [1] proved that not every micro n-bundle contains a B^{n} bundle.

Example 2. It was MiLNOR [5], who introduced microbundles. He defined them as equivalence classes of certain diagrams.

A Milnor diagram

$$
X \xrightarrow{i} Y \xrightarrow{p} X
$$

consists of a base space X, a total space Y, maps i and p with composition $p i=i d e n t i t y$, such that for every point $x \in X$ there exists a neighborhood V of $l(x)$ in Y and a surjective homeomorphism h which makes the main square of the following diagram commutative

with

$$
\pi_{1}(x, u)=(x, 0), \quad i_{1}(x, 0)=(x, 0)
$$

This special diagram defines a \boldsymbol{R}^{n}-bundle over $p(V) \subset X$ with total space V. The bundles so obtained from a Milnor diagram define a premicrobundle, hence a microbundle according to our definition.

Example 3. A special case is the tangent microbundle of a topological or PL manifold M defined by the diagram

$$
M \xrightarrow{\Delta} M \times M \xrightarrow{p} M
$$

with $\Delta: x \rightarrow(x, x)$ the diagonal map and $p:(x, y) \rightarrow p(x, y)=x$ the projection in the first factor.

If $x \in V_{1} \subset \overline{V_{1}} \subset V_{2} \subset M$, and $g: V_{2} \rightarrow R^{n}$ is a surjective homeomorphism, then h of example 2) is defined by

$$
V=V_{1} \times V_{2} \xrightarrow{h} V_{1} \times R^{n}, \quad(x, y) \sim(x, g(y)-g(x)) .
$$

In stead of the fibrebundles (1), we also consider fibre bundles with fibre $F=$

$$
\boldsymbol{R}^{p+n}=\left\{\left(x_{1}, \ldots, x_{p+n}\right)\right\}
$$

or

$$
S^{p+n}=\left\{\left(x_{0}, \ldots, x_{p+n}\right) \in R^{p+n+1} \mid \Sigma_{0}^{p+n} x_{i}^{2}=1\right\}
$$

or

$$
B^{p+n}=\left\{\left(x_{1},,, x_{p+n}\right) \in R^{p+n} \mid \Sigma_{1}^{p+n} x_{i}^{2} \leqq 1\right\}
$$

and with group the group of those homeomorphisms that leave invariant the subspace with equation $x_{p+1}=\cdots=x_{p+n}=0$.

In the case $F=S^{p+n}$ we obtain in this manner a S^{p+n}-bundle containing fibrewise a S^{p}-bundle, with a common 0 - and ∞-cros-section. We call this object a fibrebundle of type (S^{p+n}, S^{p}) and analogously for the other kinds of fibre. The notions microidentical, premicro($p+n, p$)-bundle and micro- $(p+n, p)$-bundle are now defined in analogy with the former case. We obtain in § 7:

Theorem 2. In the topological and in the PL-category every micro($p+n, p$)-bundle over X contains a bundle of type $\left(\boldsymbol{R}^{p+n}, \boldsymbol{R}^{p}\right)$ and a bundle of type (S^{p+n}, S^{p}) and they are unique up to equivalence.

Example 4. (Normal microbundles.) Let X be a p-dimensional locally flat submanifold of a $p+n$-dimensional manifold Y, and let the pair be locally homeomorphic to the standard imbedding of R^{p} in \boldsymbol{R}^{p+n}. If τ_{x} is the tangentmicrobundle of $X, \tau_{y} \mid X$ the restriction to X, of the tangent microbundle of Y, then these two microbundles form a micro- $(p+n, p)$-bundle. In particular X may be the zero-section of an \boldsymbol{R}^{n}-bundle ξ over X with total space Y. But in the latter case $\tau_{Y} \mid X$ can be identified with the Whitneysum (Milnor [5]) $\tau_{X} \oplus \mu(\xi)$, with $\mu(\xi)$ the microbundle of $\xi . \mu(\xi)$ is in this case a normal microbundle for X in Y. The group of the corresponding bundle of type ($\boldsymbol{R}^{p+n}, \boldsymbol{R}^{p}$) can then be reduced to the group of homeomorphisms

$$
\begin{aligned}
& f: \quad \boldsymbol{R}^{p+n} \rightarrow \boldsymbol{R}^{p+n} \text { which split: } \\
& f_{i}\left(x_{1}, \ldots, x_{n+p}\right)=\left\{\begin{array}{lll}
f_{i}\left(x_{1}, \ldots, x_{p}, 0, \ldots, 0\right) & \text { for } & 1 \leqq i \leqq p \\
f_{i}\left(0, \ldots, 0, x_{p+1}, \ldots, x_{p+n}\right) & \text { for } & p+1 \leqq i \leqq p+n .
\end{array}\right.
\end{aligned}
$$

It is not yet known whether such a reduction always exists or not. For vectorbundles it is wellknown to exist. In the PL-case for $n>p+1$ it exists and is unique by a theorem of Haefliger and Wall [2].

If it exists in the case of the submanifold $X \subset Y$, hence if v_{X}, a submicrobundle of $\tau_{Y} \mid X$ exists, and

$$
\tau_{Y} \mid X=\tau_{X} \oplus v_{X}
$$

then v_{X} is called a normal microbundle of X in Y.
Consider a premicro- n-bundle over X consisting of bundles ξ_{α} over open sets $V_{\alpha} \subset X$ of a locally finite covering.

Let W_{α} be compact, $W_{\alpha} \subset V_{\alpha}$ and $\bigcup_{\alpha} W_{\alpha}=X$. Finally let ξ be a R^{n} bundle which microagrees with all bundles ξ_{α}.

Now we consider an open set U in the total space of ξ, that contains the zero-section $s X$ and such that $\left[U \cap p^{-1}\left(W_{\alpha}\right)\right] \subset p_{\alpha}^{-1}\left(W_{\alpha}\right)$. So U is
completely covered by the bundles spaces of the premicro-bundle. It would be nice to have a bundle ξ^{\prime} with total space contained in U, which also microagrees with ξ_{α} for all α. Then ξ^{\prime} would not require more points then those allready offered in the given premicrobundle and no identifications would be needed under restriction to $\left\{p^{-1}\left(W_{\alpha}\right)\right\}$. In the case of the tangent microbundle ξ^{\prime} would have its total space imbedded in $M \times M$ (see example 3). This aim can be reached in view of

Theorem 3. If

$$
\xi: \quad R^{n} \xrightarrow[\rightarrow]{i} E \stackrel{p}{\rightleftarrows} X
$$

is a \boldsymbol{R}^{n}-bundle over X, U an open set in E containing $s X$, then there exists a bundle ξ^{\prime} microidentical with ξ, with total space contained in U.

This will be proved in $\S 6$. An analogous theorem holds for bundles of type ($\boldsymbol{R}^{p+n}, \boldsymbol{R}^{p}$).

The following sequence gives a survey of some related problems

It concerns bundles with zero-section and microbundles over a p dimensional manifold X, and each symbol represents a set of equivalence classes. The arrows represent natural maps, and the problems are injectivity and surjectivity of these maps. \boldsymbol{R}^{n} can be compactified by an $n-1$-sphere to get B^{n} with the linear group acting well defined on B^{n}. This defines the map b. For any B^{n}-bundle we can take the bundle twice and identify fibrewise along the ∂B^{n}-bundle to get an S^{n}-bundle. This defines the map s. Given a zero-section in a S^{n}-bundle, there exists a disjoint ∞-section; delete it and get a \boldsymbol{R}^{n}-bundle. This defines $r \cdot \mu$ was defined earlier. v assigns to any bundle over the manifold X the pair consisting of the tangentbundle of $s X$ and the restriction of the tangentbundle of the total space to $s X$. In the PL case the maps have to be defined with more care.

As a mather of fact b has not been properly defined so far we believe in case PL, but perhaps it can be done along the lines of the work of Lashof and Rothenberg [4].

The following is now known. For some X and some $n: b$ is stably neither injective nor surjective (Milnor [5]); s is not surjective (Browder [1]). For every X and n, r and μ as well as r^{\prime} and μ^{\prime} are bijective (Kister [3], and our theorem 1); s is stably bijective (Browder [1]).

2. Tools

We first describe some standard representations of spheres and balls and other tools in the topological category. On the n-sphere

$$
S^{n}=\left\{\left(x_{0}, \ldots, x_{n}\right) \in \boldsymbol{R}^{n+1} \mid \Sigma_{0}^{n} x_{i}^{2}=(4 / \pi)^{2}\right\}
$$

in euclidean $n+1$-space, we distinguish two points $(-4 / \pi, 0, \ldots 0)=P_{s}$ also called the south pole or sometimes " 0 " and $(-4 / \pi, 0, \ldots 0)=P_{n}$ also called the north pole or sometimes " ∞ ".
r is the distance measured in S^{n} from any point to $P_{s} . \omega$ is the shortest geodesic from any point to $P_{s} .(r, \omega)$ are southpolar coordinates on S^{n}.

The ball $B(a)=\left\{x \in S^{n} \mid r(x) \leqq a\right\}$ with centre P_{s}, has interior $\stackrel{\circ}{B}(a)=$ $\left\{x \in S^{n} \mid r(x)<a\right\}$. The complement of $\stackrel{\circ}{B}(a)$ is $B^{\prime}(a)=S^{n} \backslash B_{0}(a)$, a ball with centre P_{n}. The interior of $B^{\prime}(a)$ is denoted by $\stackrel{\circ}{B}^{\prime}(a)$.

In particular: $B(0)=P_{s}, B(4)=S^{n}, B(2)$ is called the south hemisphere, $B^{\prime}(4)=P_{n} ; \stackrel{\circ}{B}(4)$ will often be identified with \boldsymbol{R}^{n}. Another representation is the ball

$$
D(a)=\left\{\left(x_{1}, \ldots, x_{n}\right) \mid \Sigma_{1}^{n} x_{i}^{2} \leqq a^{2}\right\} \subset \boldsymbol{R}^{n}
$$

Lemma 2.1. For every $0<a<b<c<d<4$ there exists a concentric homeomorphism $\rho(a, b, c, d)$ of S^{n} onto S^{n} which maps $B(b)$ onto $B(c)$ and leaves $B(a)$ and $B^{\prime}(d)$ pointwise fixed.

In southpolar coordinates it is defined by

$$
\rho(a, b, c, d)(r, \omega)=(\varphi(r), \omega)
$$

The real function φ is represented in Fig. 2a.

Fig. 2 a

Fig. 2 b

It has the required values for $r=0, a, b, c, d$ and 4 , and is linear in the connecting intervals.

Observe that all hypersurfaces of S^{n} like $x_{i}=0$ or $x_{i}=x_{j}$ for $i, j=$ $1, \ldots n$ are invariant under ρ.

Lemma 2.2. For every $0<a<b<4$ there exists a continuous map $\lambda(a, b)$, called pinch, of S^{n} onto S^{n} which maps $B(a)$ onto $B(0)=P_{s}$, restricts to a homeomorphism of $\dot{B}^{\prime}(a)$ onto $\stackrel{\circ}{B}^{\prime}(0)$, and which leaves $B^{\prime}(b)$ pointwise fixed.

In south polar coordinates it is defined by

$$
\lambda(a, b)(r, \omega)=(\psi(r), \omega)
$$

The real function ψ is represented in Fig. $2 b$. It has the required values for $r=0, a, b, 4$, and is linear in the connecting intervals.

Fig. 3
For the piecewise linear category we have to modify these tools. The modified tools are more complicated, but they can be used for the topological category as well.

In \boldsymbol{R}^{n+1} we consider the Banach norm

$$
\|x\|=\max _{i}\left|x_{i}\right|, \quad x=\left(x_{0}, \ldots, x_{n}\right) \in R^{n+1}
$$

On the n-sphere

$$
S^{n}=\left\{x \in \boldsymbol{R}^{n+1} \mid\|x\|=1\right\}
$$

we distinguish the south pole $P_{s}=(-1,0, \ldots 0)$ and the north pole $P_{n}=(1,0, \ldots 0) . r$ is the Banach distance measured in S^{n} from any point to $P_{s} . \omega$ is the shortest geodesic from any point to $P_{s} .(r, \omega)$ are south polar coordinates in S^{n}.

The ball $B(a)=\left\{x \in S^{n} \mid r(x) \leqq a\right\}$ with centre P_{s}, has interior $\stackrel{\circ}{B}(a)=$ $\left\{x \in S^{n} \mid r(x)<a\right\} . B^{\prime}(a)=S^{n} \backslash \stackrel{\circ}{B}(a)$, a ball with centre P_{n}, is the complement of $\stackrel{\circ}{B}(a)$ in S^{4}.

In particular: $B(0)=P_{s}, B(4)=S^{n}, B(2)$ is the south hemisphere, $B^{\prime}(4)=P_{n}$. Observe that $B(1)$ and $B^{\prime}(3)$ lie in hyperplanes in R^{n+1}.

Another representation is the ball

$$
D(a)=\left\{\left(x_{1}, \ldots, x_{n}\right)\left|\max _{i}\right| x_{i} \mid \leqq a\right\} \subset \boldsymbol{R}^{n}
$$

In all these spaces the PL-structure is taken from the natural PLstructure of \boldsymbol{R}^{n+1} or \boldsymbol{R}^{n}. Every triangulation of S^{n} or a part of S^{n} or \boldsymbol{R}^{n} to be considered will be a subdivision of the division obtained from the hyperplanes $x_{i}=0$ and $x_{i}= \pm x_{j}$ for $i, j=1, \ldots n$ in \boldsymbol{R}^{n+1} or \boldsymbol{R}^{n}.

In order to define a concentric homeomorphism ρ as required in the lemma, also for the PL-category, we first introduce a PL-homeomorphism

$$
\kappa: \quad \stackrel{\circ}{B}(4) \rightarrow \stackrel{\circ}{D}(4) .
$$

For that we take a triangulation of $\dot{B}(4)$ such that the spheres

$$
\partial B(1), \quad \partial B(2), \quad \partial B\left(4-\frac{1}{k}\right) \text { for } k=1,2,3, \ldots
$$

are triangulated subspaces, and such that no vertices of the triangulation of $B(4)$ except P_{s} are outside these spheres. The restriction of κ to these spheres will be defined in terms of south polar coordinates (r, ω) for $\dot{B}(4)$ and polar coordinates $\left(r^{\prime}, \omega^{\prime}\right)$ for $\grave{D}(4)$ by the equations $r^{\prime}=r$ and $\omega^{\prime}=\omega$. Then κ is completely determined by the condition of linearity on the simplices of the triangulation. Observe that the equations $x_{i}=0$ and $x_{i}=x_{j}$ for $i, j=1, \ldots, n$ are invariant under κ.

Observe also that the radial Banach distance r is invariant under this map κ.

We will define a concentric homeomorphism (PL) in $D(4)$, which we then can carry over by κ to $\stackrel{\circ}{B}(4)$. Consider a triangulation of $\stackrel{\circ}{D}(4)$ with no vertices in the annuli $\stackrel{\circ}{D}(b) \backslash D(a)$ and $\check{D}(d) \backslash D(b)$. In $\stackrel{\circ}{D}(4)$ we apply the formula given above for $\rho(a, b, c, d)$ to define a concentric homeomorphism (topological version), but we use it only to define a map for the vertices of the triangulation. After that we extend the map linearly over the simplices, and we call the resulting PL-homeomorphism $\tau: \check{D}(4) \rightarrow \perp(4)$. Then $\kappa^{-1} \tau \kappa: \stackrel{\circ}{B}(4) \rightarrow \AA(4)$ is the required PL-version of the concentric homeomorphism. We denote it again as $\rho(a, b, c, d)$. It carries "spheres" with centre P_{s} onto such spheres. A straight line through P_{s} however is in general not mapped onto another such line see Fig. 4). We also define $\rho(a, b, c, d)$ to carry the north pole P_{n} onto itself.

We leave it to the reader to establish that τ is isotopic to the identity map. As a consequence we have (to be used for the proof of theorem 3):

Remark 2.3. $p(a, b, c, d)$ is isotopic with the identity map (in the PL-category and in the topological category).

The pinch $\lambda(a, b)$ will also be defined using the chart κ. We use the above formulas for all points $x \in D(4)$ with $0 \leqq r \leqq a, r=a+(b-a) / k$ for $k=1,2,3, \ldots$ and $b \leqq r<4$. We take a triangulation of $\stackrel{D}{(4)}-D(a)$
with all vertices in this set of points, and we extend linearly. The continuous map $\lambda(a, b)$ so obtained is piecewise linear in the complement of the sphere $\partial D(a)$. There is no open set containing $\partial D(a)$ in which the pinch $\lambda(a, b)$ is piecewise linear. Observe that the hypersurfaces $x_{i}=0$ and $x_{i}=x_{j}$ for $i, j=1, \ldots n$ are invariant under λ as well as under ρ.

Fig. 4
Remark 2.4. If K is a simplicial complex, for example one simplex, then one has the homeomorphism

$$
\text { identity } \times \rho(a, b, c, d): \quad K \times S^{n} \rightarrow K \times S^{n}
$$

and the pinch

$$
\text { identity } \times \lambda(a, b): \quad K \times S^{n} \rightarrow K \times S^{n} .
$$

In the PL-case these are PL, and PL outside $K \times \partial B(a)$, respectively. They will be denoted also by $\rho(a, b, c, d)$ and $\lambda(a, b)$ respectively. Both maps commute with projection onto the first factor K. That is, they are fibre preserving.

Definition 2.5. If $f: \Delta_{p} \times B(b) \rightarrow \Delta_{p} \times S^{n}$ is a fibrewise inbedding, A_{p} the standard p-dimensional simplex, $\lambda=\lambda(a, b)$ the pinch defined above, then the transform $f(\lambda)$ of the pinch λ is the fibrewise map

$$
f(\lambda): \quad A_{p} \times S^{n} \rightarrow A_{p} \times S^{n}
$$

given by

$$
f(\lambda)(x, y)=\left\{\begin{array}{ccc}
(x, y) & \text { if } & (x, y) \notin f\left(A_{p} \times B(b)\right) \\
(x, 0) & \text { if } & (x, y) \in f\left(A_{p} \times B(a)\right) \\
f \lambda f^{-1}((x, y)) & \text { elsewhere }
\end{array}\right.
$$

In the PL-case $f(\lambda)$ is a PL-homeomorphism in the complement of $f\left(A_{p} \times B(a)\right)$.

3. Reduction of Theorem 1 to Lemma 3

We will first concentrate on the topological category and in particular on the existence proof for the case Top $-S^{n}$ of theorem 1. The other cases are then taken care of by some simple additional remarks as we will see.

Let the micro- n-bundle x be represented by the premicro- n-bundle $\left\{\xi_{\alpha}, p_{\alpha}, V_{a}\right\}$ where ξ_{α} is a bundle over V_{α}, over the simplicial complex $X=\bigcup_{\alpha} V_{\alpha}$. Take a triangulation T of X such that each simplex σ is covered by at least one V_{α}, of the open sets $\left\{V_{\alpha}\right\}$ and consider $\xi_{\sigma}=\xi_{\alpha} \mid \sigma$, the restriction of the bundle ξ_{α} to $\sigma \subset V_{\alpha}$. The bundles ξ_{σ} for $\sigma \in T$ microagree with each other. We may as well restrict, and we will do so, to one (trivial) S^{n}-bundle over each simplex $\sigma \in T$ that is not on the boundary of some higher dimensional simplex. Such a set of microagreeing bundles allready determines the microbundle completely.

If Δ is a simplex in the intersection of the simplices σ_{1} and $\sigma_{2} \neq \sigma_{1}$, then $\xi_{\sigma_{1}} \mid \Delta$ and $\xi_{\sigma_{2}} \mid \Delta$ are micro-identical. We assume inductively that $\xi_{\sigma_{1}} \mid \Delta$ and $\xi_{\sigma_{2}} \mid \Delta$ are identical for all triples ($\Delta, \sigma_{1}, \sigma_{2} \mid \Delta \subset \sigma_{1} \cap \sigma_{2}$) with Δ of dimension $<k(k \geqq 0)$. This means that over the $k-1$-skeleton of T we have an S^{n}-bundle allready. Now let Δ be a k-simplex in the intersection of σ_{1} and σ_{2}. The bundles (of the premicrobundle) over σ_{1} and σ_{2} are trivial. So are their restrictions to Δ :

Both can be represented (charts κ_{1} and κ_{2}) by the trivial S^{n}-bundle with standard 0 -section and ∞-section. By the inductive assumption the restrictions of the two bundles to $\partial \Delta$ are identical.

Hence

$$
f_{1}=\left(\kappa_{2} \kappa_{1}^{-1} \mid \partial \Delta \times S^{n}\right): \partial \Delta \times S^{n} \xrightarrow{\simeq} \xrightarrow[\partial \Delta]{\simeq} \partial \Delta \times S^{n}
$$

is a well defined bijection.
Definition. The word bijection will be reserved for a fibrewise surjective homeomorphism of bundles, also in the PL-category. (The diagram is commutative; the nonhorizontal arrows are projections in the first factor.)

The bundles over Δ are microidentical. This implies that b, with $0<b \leqq 3$, exists such that this microidentity is represented by a fibrewise homeomorphism

$$
f_{\mathrm{II}}=\left(\kappa_{2} \kappa_{1}^{-1} \mid \Delta \times B(b)\right): \quad \Delta \times B(b) \rightarrow \Delta \times B(4)
$$

which agrees with f_{I} on their common domain. If we replace once and for all κ_{1} by its composition with a suitable concentric homeomorphism $\rho\left(a, b, 3,3 \frac{1}{2}\right) . \kappa_{1}$ (lemma 2.1), then we get the new value $b=3$. We assume $b=3$, and we combine f_{I} and f_{II} to a fibrewise inbedding

$$
f: \quad\left(\partial \Delta \times S^{n}\right) \cup(\Delta \times B(3)) \rightarrow \Delta \times S^{n} .
$$

Now we need
Lemma 3. For every fibrewise inbedding

$$
f: \quad \Delta \times B(3) \longrightarrow \Delta \times \circ \text { B(4) }
$$

preserving the 0 -section, there exists a bijection:

preserving the 0 -section and the ∞-section, such that

$$
f|\Delta \times B(2)=g| \Delta \times B(2) .
$$

This lemma will be proved in $\S 4$ and 5 . We apply it in our situation and obtain a fibrewise map

$$
h_{\mathrm{I}}=g^{-1} f
$$

which is the identity on $\Delta \times B(2)$ and which is also defined on the boundary $\partial\left(\Delta \times B^{\prime}(2)\right)$ of $\Delta \times B^{\prime}(2)$.

We represent the north pole ball $B^{\prime}(2)$ by the convex ball $D(2) \subset \boldsymbol{R}^{n}$, and Δ by a simplex in \boldsymbol{R}^{k} with centroid $0 \in \boldsymbol{R}^{k}$.

Next we extend the homeomorphism h_{1} by defining

$$
h(t x, t y)=t h_{1}(x, y) \in \boldsymbol{R}^{k+n}=\boldsymbol{R}^{k} \times \boldsymbol{R}^{n}
$$

for $(x, y) \in \partial(\Delta \times D(2))$ and $0 \leqq t \leqq 1$. Because h_{1} maps points of the fibre of $t x \in \Delta$ onto points of the fibre of $t x$ so does h. Hence $h: \Delta \times S^{n} \rightarrow \Delta \times S^{n}$ is a bijection.

Finally $\hat{f}=g h$ is used to identify the trivial bundles over σ_{1} and σ_{2} after a preliminary separation. As a result, above $\partial \Delta$ nothing is changed. Above Δ nothing is microchanged.

The S^{n}-bundle is now also defined above Δ. Repeating the process we obtain by induction the existence of the required S^{n}-bundle in the topological category.

If two S^{n}-bundles over X are microidentical then we obtain an isomorphism of the restrictions of the S^{n}-bundles to the k-skeleton from the same over the k - 1 -skeleton, k simplexwise with the same method.

Hence uniqueness up to equivalence is also established. Leave out the ∞-cross-sections and one obtains the case Top- R^{n} of theorem 1 .

In the PL-category everything can be done in the same way if one has the pure PL-version of Lemma 3 (Lemma 3 PL). This will be given in §5. In § 4 however we give a common proof of a) lemma 3 topological and b) the following restricted PL-version of lemma 3.

Lemma $\mathbf{3}^{\prime}$ (PL). For every fibrewise PL-inbedding

$$
f: \quad \Delta \times B(3) \rightarrow \Delta \times \AA(4)
$$

there exists a topological bijection:

$$
\mathrm{g}: \quad \Delta \times S^{n} \rightarrow \Delta \times S^{n}
$$

such that

$$
g|\Delta \times B(2)=f| \Delta \times B(2)
$$

and such that

$$
g \mid \Delta \times \stackrel{\circ}{B}(4) \text { is a PL-homeomorphism. }
$$

Applying lemma 3^{\prime} instead of lemma 3 we obtain in the PL-case a S^{n}-bundle which may be PL-bad (!) at the ∞-section. If we delete the ∞-section, we obtain an \boldsymbol{R}^{n}-bundle in the PL-category. Hence the common proof of lemma 3 Top and lemma 3^{\prime} (PL) in $\S 4$ leads to a common proof for the cases Top- $\boldsymbol{R}^{n}, \mathrm{PL}-\boldsymbol{R}^{n}$ and $\mathrm{Top}-S^{n}$ of theorem 1.

4. Proof of Lemmas 3 (Top) and 3^{\prime} (PL)

Let $f_{1}=f$ be the fibrewise inbedding assumed in lemma 3 or $3^{\prime}(\mathrm{PL})$. We define the fibrewise inbeddings

$$
f_{k}: \Delta \times B(3) \longrightarrow \Delta \times B(4), \quad k=2,3, \ldots
$$

inductively by

$$
f_{k+1}(x, y)=\left\{\begin{array}{ccc}
f_{k}(x, y) & \text { for } & y \in B_{k}=B\left(3-\frac{1}{k}\right) \\
{\left[f_{k}\left(\lambda_{k}\right)\right]^{-1} \rho_{k}\left[f_{k}\left(\lambda_{k}\right)\right] f_{k}(x, y)} & \text { for } & y \notin B_{k}
\end{array}\right.
$$

with

$$
\begin{aligned}
& \lambda_{k}=\lambda\left(3-\frac{1}{k}, 3-\frac{1}{k+1}\right) \quad \text { (pinch), } \\
& \rho_{k}=\rho\left(\varepsilon, 2 \varepsilon, 4-\frac{1}{k}, 4-\frac{1}{k+1}\right)
\end{aligned}
$$

and $\varepsilon>0$, so small that

$$
\Delta \times B(2 \varepsilon) \subset f(A \times B(2))
$$

Observe that $\left[f_{k}\left(\lambda_{k}\right)\right] f_{k}=f_{k} \lambda_{k}$, and analyse in particular what happens with $\Delta \times B_{k+1} \backslash \Delta \times B_{k}$ in the four steps (composition of maps) of the formula for $f_{k+1}(x, y)$. Observe also that

$$
f(\Delta \times B(2)) \subset f_{k}\left(\Delta \times B_{k+1}\right)=f_{k} \lambda_{k}\left(\Delta \times B_{k+1}\right) .
$$

Compare definition 2.5 for $f_{k}\left(\lambda_{k}\right)$. The pinch is needed in order to be able to leave f_{k} unchanged in the pinched part. ρ_{k} is used in order to make $f_{k+1}(\Lambda \times B(3))$ very large: it contains

$$
B\left(4-\frac{1}{k}\right) .
$$

For the PL-case it should be remarked that f_{k} and f_{k+1} are identical in some open set containing $\Delta \times B_{k}$. Therefore the piecewise linearity is not hurt by the change from f_{k} to f_{k+1} although a pinch occurs twice in the formula for this change.

In the topological as well as in the PL-category we obtain a limit which is a bijection

$$
f_{\infty}: \Delta \times \stackrel{\circ}{B}(3) \xrightarrow{\simeq} \Delta \times \stackrel{\circ}{B}(4)
$$

with $f_{\infty}|\Delta \times B(2)=f| \Delta \times B(2)$ as we see.
Next let τ be the reflection of S^{n} with respect to the equator

$$
\tau\left(x_{0}, x_{1}, \ldots, x_{n}\right)=\left(-x_{0}, x_{1}, \ldots, x_{n}\right) \in \boldsymbol{R}^{n+1} .
$$

Then

$$
\tau \lambda(1,2) \tau
$$

is a mapping which pinches $B^{\prime}(3)$ into the North pole P_{n}, leaves $B(2)$ pointwise fixed, and defines a bijection of

$$
\Delta \times \stackrel{\circ}{B}(3) \text { onto } A \times \stackrel{\circ}{B}(4)
$$

The topological bijection g, required in lemma 3 (Top) and in lemma 3^{\prime} (PL), is then

$$
g= \begin{cases}f_{\infty} \cdot[\tau \lambda(1,2) \tau]^{-1}: & \Delta \times \stackrel{\circ}{B}(4) \rightarrow \Delta \times \AA(4) \\ \text { identity }: & \Delta \times P_{n} \rightarrow \Delta \times P_{n} .\end{cases}
$$

We recall that now in the cases Top- \boldsymbol{R}^{n}, Top $-S^{n}$ and PL- \boldsymbol{R}^{n}, existence and uniqueness of theorem 1 are proved completely.

5. Proof of Lemma 3 (PL)

In this § we work in the PL-category.
Referring to lemma 3, we first consider the special case where Δ is one point (dimension zero).

We write $B(3)$ instead of $\Delta \times B(3)$ for this case. As we have no need to consider the part between $B(3)$ and $B(2)$ we let f denote the (given) inbedding:

$$
f: B(2) \rightarrow B^{0}(4) \subset S^{n} .
$$

Newman (Theorem 3 in [6]) proved that any two inbedded combinatorial n-balls in an n-manifold are "similarly situated". Applying this to $B(2) \subset B^{0}(4)$ and $f(B(2)) \subset B^{\circ}(4)$, this means the existence of a bijection which can be assumed pointwise fixed for points in $B^{\prime}(4-\varepsilon)$ for some $\varepsilon>0$,

$$
h_{1}: S^{n} \rightarrow S^{n}
$$

such that $h_{1} f(B(2))=B(2)$.
Of course it can and will also be assumed that $f\left(P_{s}\right)=P_{s}$. Let the bijection $h_{2}: S^{n} \rightarrow S^{n}$ be defined by

$$
h_{2}(y)= \begin{cases}h_{1} f(y) & \text { for } y \in B(2) \\ \tau h_{1} f(\tau(y)) & \text { for } y \in B^{\prime}(2) .\end{cases}
$$

τ is the reflection of S^{n} in the equator $\partial B(2)$ discussed earlier.
Then the bijection

$$
g_{0}=h_{1}^{-1} h_{2}: S^{n} \rightarrow S^{n}
$$

is the extension to S^{n}, required in the lemma, for the case that Δ is one point:

$$
\begin{gathered}
g_{0}|B(2)=f| B(2), \\
B(2) \xrightarrow{f} S^{n} \\
\left\lvert\, \begin{array}{c}
\text { so } \\
S^{n} \xrightarrow{h_{2}} S_{1} \\
S^{n} .
\end{array}\right.
\end{gathered}
$$

Next consider the general case. Let x_{0} be a vertex of Δ. Let $f(\Delta \times B(2))$ be contained in the interior of $\Delta \times B(4-\varepsilon) \subset \Delta \times S^{n}$.

Denote by

$$
f_{0}: \Delta \times B(2) \rightarrow \Delta \times S^{n}
$$

the inbedding which equals f on the fibre $x_{0} \times B(2)$ and is constant in the variabele $x \in \Delta$:

$$
f_{0}(x, y)=(x, \psi(y)) ; \quad f_{0}\left(x_{0}, y\right)=f(x, y)
$$

According to Hudson (Zeeman, Remark, page 74 in [7]) there exists a bijection (a higher dimensional PL-isotopy with the variable x running in Δ instead of in the 1 -simplex Δ_{1}):

$$
h: \Delta \times S^{n} \rightarrow \Delta \times S^{n}
$$

with

$$
\left(h \mid \Delta \times B^{\prime}(4-\varepsilon)\right)=\text { identity }
$$

such that

$$
f=h f_{0}
$$

By the first part of this \S, f_{0} is the restriction of some bijection (the same in each fibre): $g_{0}: \Delta \times S^{n} \rightarrow \Delta \times S^{n}$, with the property:

$$
g_{0} \mid \Delta \times B(2)=f_{0} .
$$

Then $g=h g_{0}$ is the bijection required in lemma 3:

$$
g\left|\Delta \times B(2)=h g_{0}\right| \Delta \times B(2)=h f_{0}=f
$$

Hence lemma 3 (PL) and theorem 1 (PL) are also proved.
A simpler obvious proof can be obtained with a deeper theorem to the effect that if f is as above, and orientation preserving, then $f \mid \Delta \times B(2)$ is ambient isotopic to the identity map.

6. Proof of Theorem 2

Theorem 2 is analogous to theorem 1 with \boldsymbol{R}^{n}-bundles replaced by bundles of type $\left(\boldsymbol{R}^{p+\boldsymbol{n}}, \boldsymbol{R}^{p}\right)$ and S^{n}-bundles replaced by bundles of type (S^{p+n}, S^{p}). The proof is obtained by following the proof of theorem 1 very closely and making small modifications.

First we follow $\S 2$ the tools. Here the standard fibre S^{n} is replaced by the pair consisting of

$$
S^{p+n}=\left\{\left(x_{0}, \ldots, x_{p+n}\right) \mid \Sigma_{0}^{p+n} x_{i}^{2}=(4 / \pi)^{2}\right\}
$$

and

$$
S^{p}=S^{p+n} \cap\left\{\left(x_{0}, \ldots, x_{p+n}\right) \mid x_{p+1}=x_{p+2} \cdots=x_{p+n}=0\right\}
$$

and analogous for \boldsymbol{R}^{n} and for the PL case.
Because the concentric homeomorphism ρ as well as the pinch λ leave $S^{p} \subset S^{p+n}$ and $\boldsymbol{R}^{p} \subset \boldsymbol{R}^{p+n}$ invariant, all operations used in $\S 2$ and $\S 3$ can be repreated in the new situation and are seen to preserve these pairs for each fibre. Of course it is necessary for example in $\S 3$ to choose the charts κ_{1} and κ_{2} such that they are charts of type (S^{p+n}, S^{p}) instead of type S^{n}. Also in lemma 3 the given map, f must be replaced by an inbedding of bundle pairs:

This being assumed the resulting bijection g of the lemma is automatically a bijection of bundles of type (S^{p+n}, S^{p}).

In § 4 the proof of lemma 3 (Top) and 3 (PL- \boldsymbol{R}^{n}) can be repeated with the same formulas with n replaced by $p+n$, to obtain the lemma required for theorem 2.

This being so, we have proved theorem 2 for the topological category and the case of bundles of type ($\boldsymbol{R}^{p+\boldsymbol{n}}, \boldsymbol{R}^{p}$) in the PL-category.

Zeeman has informed us that from a forthcoming paper of Haefliger and Zeeman, it follows that any simplex of ball-bundle-pair imbeddings, like f above, orientation preserving in each fibre-pair, is ambient isotopic, preserving fibrepairs, to the identity map. The analogue of lemma 3 (PL) then follows immediately, and hence theorem 2 both PL-cases.

7. Proof of Theorem 3

U is an open set containing the zero cross-section in the R^{n}-bundle

$$
\xi: \quad \boldsymbol{R}^{n} \rightarrow E \stackrel{p}{\leftrightarrows} X
$$

over the locally finite simplicial complex $X: s X \subset U \subset E^{s}$. We construct as follows a locally finite covering $\left\{V_{\sigma}\right\}$ of X.

For each simplex σ, which is not on the boundary of another simplex of X, let φ_{σ} be a continuous function, which is linear on each simplex of X and for which

$$
\varphi_{\sigma}(x)= \begin{cases}-1 & \text { for } x \in \sigma \\ 2 & \text { for } x \in L(\sigma)\end{cases}
$$

where $L(\sigma)$ is the union of all simplices that have no point in common with σ. Let

$$
V_{\sigma}=\varphi_{\sigma}^{-1}([-1,1]), \quad V_{\sigma}^{\prime}=\varphi_{\sigma}^{-1}([-1,0]), \quad W_{\sigma}=\varphi_{\sigma}^{-1}(0) .
$$

Then we can identify $\varphi_{\sigma}^{-1}([0,1])=W_{\sigma} \times I$, and we have

$$
V_{\sigma}=V_{\sigma}^{\prime} \cup(W \times I), \quad V_{\sigma}^{\prime} \cap\left(W_{\sigma} \times I\right)=W_{\sigma} \times 0=W_{\sigma} .
$$

V_{σ} is contractible and so ξ is trivial over V. We use a chart of the kind

to represent the bundle ($\xi \mid V_{\sigma}$).
Now let $b_{\sigma}>0$ be so small that

$$
\kappa_{\sigma}\left(U \cap p^{-1}(\sigma)\right) \supset \sigma \times B\left(b_{\sigma}\right) .
$$

We map E into E with the fibrewise homeomorphism φ_{σ} defined by:

$$
\varphi_{\sigma}(z)=\kappa_{\sigma}^{-1}\left[\rho\left(\frac{1}{2} b_{\sigma}, b_{\sigma}, 2,3\right)\right]^{-1} \kappa_{\sigma}(z) \text { for } z \in p^{-1}\left(V_{\sigma}^{\prime}\right)
$$

$\varphi_{\sigma}(z)=z$ (identity) for $z \notin p^{-1}\left(V_{\sigma}\right)$. The remaining part of the bundle, with total space $p^{-1}(W \times I)$, is equivalent to

$$
W_{\sigma} \times I \times \stackrel{\circ}{B}(2) \rightarrow W_{\sigma} \times I
$$

φ_{σ} is already defined for the parts corresponding to the endpoints 0 and 1 of I :
$\partial V_{\sigma} \times 0 \times \stackrel{\circ}{B}(2):$ a concentric homeomorphism, the same in each fibre and
$\partial V_{\sigma} \times 1 \times \stackrel{\circ}{B}(2):$ identity.
We connect these two by the isotopy described in remark 2.3 , in order to complete the definition of φ_{σ}.

The image $\varphi_{\sigma}(E) \subset E$ is the total space of a bundle with projection $p_{\sigma}=\left(p \mid \varphi_{\sigma}(E)\right)$ such that $\left(p_{\sigma}\right)^{-1}(\sigma) \subset U \subset E$. By repeating this process, for each simplex σ once, we obtain the required bundle ξ^{\prime} with total space $E^{\prime} \subset U$. Observe that by local finiteness every point of E is involved in at most a finite number of moves.

References

[1] Browder, W.: Open and closed dise bundles (in prep.).
[2] Haefliger, A., and C. T. C. Wall: Piecewise linear bundles in the stable range (in prep.).
[3] Kister, J. M.: Microbundles are fibre bundles. Ann. of math. 80, 190-199 (1964).
[4] Lashof, R. K., and M. Rothenburg: Microbundles and smoothing. Topology 3, 357-388 (1965).
[5] Milnor, J.: Microbundles I. Topology 3, Suppl. 1, 53-80 (1964).
[6] Newman: On the superposition of n-dimensional manifolds. J. London Math. Soc. 2 (1926), Th. 3.
[7] Zeeman, E. C.: On combinatorial isotopy. Publ. I.H.E.S. 19, 74 (1964).
Mathematisch Instituut
der Universiteit
Amsterdam (Niederlande)

[^0]: * Part of this work was done while this author was a guest at the Institut des Hautes Etudes Scientifiques in Bures sur Yvette.
 ** This work was supported by the U.S. Air Force grant AFOSR 711-65.
 ${ }^{1}$ See section 2 for a description of these spaces in the PL category.
 Invent. math., Bd. 1

[^1]: 2 One can define "microsets" in a microbundle. They form a partially ordered system with analogy to the system of subsets of a set. It may be interesting to study "microsettheory".

