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Introduction
Let Mn be a smooth closed n-dimensional manifold and let DIFF (Mn) be the group

of diffeomorphisms of Mn. Two diffeomorphisms /„,/[£ DIFF (Mn) are said to be
concordant (pseudo-isotopic) if there is a diffeomorphism FeDIFF (Mn x I), where
/ = [0,1], such that F(x,0) = fo(x) and F(x, 1) = fx(x) for all xeMn.

The diffeomorphisms fo,fx e DIFF (Mn) are said to be isotopic if there exists a
diffeomorphism Fe DIFF (Mn x I) such that

(1) F(x,i)=ft(x)(i = 0,1).
(2) The diagram

Mnxl • M" x /

is commutative.
Obviously isotopic diffeomorphisms are concordant. The converse is in general not

true (see [7, 9]) but there is the following celebrated result due to J. Cerf (see [3]).

THEOREM (Cerf). Let Mn be a smooth closed simply connected manifold with n ^ 5.
Then concordant diffeomorphisms are isotopic.

In this paper we consider the case n = 4. Our investigations were motivated by
the following question of L. Siebenmann[20].

P.I. Is it true that every topological automorphism of the pair (M4 x /, d(M4 x /))
that fixes M4 x {0} pointwise is topologically isotopic to the identity fixing M4 x {0} ?
In particular, is the restriction M4 x {1} ̂ > M* x {1} topologically isotopic to the
identity ?

Our goal is to prove that the answer to this question is 'no' . More precisely, we
show that on the 4-dimensional torus T4 there are diffeomorphisms which are
pseudo-isotopic but not isotopic (even topologically) to the identity. This result
provides a negative answer to a problem about the existence of such homeomorphisms
posed by A. Hatcher (see [11], problem 4-35). Our proof of the existence of
homeomorphisms of T4 which are pseudo-isotopic but not isotopic to the identity is
a natural extension of an analogous result proved by Hatcher and Wagoner (see [7,
8]) in the case of Tn (n ^ 5). We will not be able to generalize all of Hatcher and
Wagoner's results to dimension 4, but the generalization which we obtain will enable

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0305004100067098
Downloaded from https://www.cambridge.org/core. Durham University Library, on 21 Oct 2021 at 09:56:46, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0305004100067098
https://www.cambridge.org/core


104 SLAWOMIR K W A S I K

us to provide a negative answer to Siebenmann's question. We will follow Hatcher
and Wagoner's considerations from [8] very closely and will only supply necessary
changes which are required to make their arguments work in the 4-dimensional case.
In fact, what we are going to show is that the only missing ingredient in dimension 4
was the Whitney Lemma (cf. [13]). A topological version of this lemma is now
known (see [4-6]) and hence part of Hatcher and Wagoner's considerations can be
extended to dimension four.

From the geometric point of view the proof of the existence of pseudo-isotopic but
not isotopic homeomorphisms on T* which we present has a rather unpleasant feature.
Namely, it uses an abstract and heavy algebraic machinery developed by Hatcher
and Wagoner in [8]. But it seems to us that there is no alternative. (We do not know
of any construction of homeomorphisms pseudo-isotopic to the identity but not
isotopic to it which really avoids algebraic considerations; cf. [7], p. 9.) On the other
hand, this algebraic approach can be used to provide a proof (certainly not the
favourite one) of the following 4-dimensional version of Cerf's theorem (cf. [16, 18]):

THEOREM. Let M* be a smooth closed simply connected ^-dimensional manifold. The
concordant dijfeomorphisms are topologically isotopic.

This paper is self-contained in the sense that it contains the main line of Hatcher
and Wagoner's considerations. Many details in our exposition are omitted; this is a
consequence of the assumption of familiarity with [3] and [8].

2. Concordances and Whitehead groups

In this section we recall basic facts concerning concordances following Cerf's
functional approach (see [3, 8]). We will also recall (following [15]) some definitions
and constructions connected with algebraic iC-theory.

Let (M, dM) be a compact smooth manifold. A pseudo-isotopy of (M, dM) is a
diffeomorphism-F1: (M, dM) x I -*• (M, dM) x /such that F\^M SM) x{0} is the identity and
F\SM x j is an isotopy. Let & = 0>{M, dM) denote the group of pseudo-isotopies (group
multiplication = composition) equipped with the C00-topology. Consider the space 3F
of C°°-functions / : (M, dM) x I-> I such that f(x, 0) = 0 and f(x, 1) = 1 for all x e M
and such that f(x, t) = t for all x e dM. Let § <=- 3F be the subset consisting of those
functions with no critical points and let p: (M, dM) xl -* I be the standard
projection. The correspondence g^*pg induces a fibration

with the fibre ST being the space of isotopies of the identity of M. Now, because 3T
is contractible, we have a homotopy equivalence

The contractibility of &" implies

Therefore, to show, for example, that no(^) = 0 it is enough to show that each path
in !F joining p with pg can be deformed, keeping endpoints fixed, to a path lying in
<?. Note (cf. [3]) that Tro(0>) = 0 says 'pseudo-isotopy implies isotopy'. The space &
has a natural stratification (see [3]):

y y jsrco)
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Low-dimensional concordances and isotopies 105

where each 3Fk has codimension k in ^ . It was shown in [3] that each path in &
(rel. S) can be approximated (rel. endpoints) by a 'generic' path lying in J*° U !Fl

such that this path is transverse to !FX.
For each path ft,te[0,1] (path = 1-parameter family of maps) one defines the

graphic of ft as the subset of Ixl consisting of all pairs (t, u) such that u is a critical
value of/t. For example, the graphics (death and birth), Fig. 1, show the lines which
are images of critical points of index i and i + 1.

Now following [3] and [8] we introduce the gradient-like vector fields.
By a gradient-like vector field we mean a triple (v,f,/i) where/: M x I-* I is an

element in !F and v is a vector field on Mxl that is gradient-like for/with respect
to the Riemannian metric fi on Mxl. (Gradient-like means that (1) df(x).7](x) > 0
whenever x is not a critical point of/and (2) near each critical point v(x) = grad/(x).)

Let # denote the space of gradient-like vector fields and let $ c # be the subspace
consisting of the triples (y,f,ju), where / has no critical points. The importance of
gradient-like vector fields lies in the fact that there is a homotopy equivalence of pairs

In particular it^F,£,$) S 77̂  (#,<#,$).
Let q e M x I be an isolated critical point of/. Let <j>t be the one-parameter family

of diffeomorphisms generated by v. We define the stable set of q as

W(q) = {x e M x 11 lim <j>t{x) = q)
t-»00

and the unstable set of q as

W*(q) = {xeMxI\ lim <f>t(x) = q).
t-* — 00

Now we recall some basic facts concerning algebraic if-theory (cf. [15]).
Let A be a ring. Denote by [x, y] the commutator of x and y.

Definition 2-1. For n > 3 the Steinberg group St (n, A) is the group defined by
generators x\} subject to the relations:

(1) s*a$ = 4+",
(2) [4,aji] = a# (.•*!),
(3) [4,aft]=l (j*M=H).

Now let e^eGL(n,A) denote the elementary matrix with entry A in the (i,j)th
place. Let E(A) c GL(A) be the subgroup generated by all elementary matrices.
There is a canonical homomorphism

<f>:St(n,A)-*GL(n,A)

given by 0(«*) = ex
tj,

and consequently there is a homomorphism

<f> :St (A) -+GL (A)

with 0(St (A)) <= E(A), where St (A) = limn^oo St (n, A).

Definition 2-2. The kernel of the homomorphism <f>: St(A) -»• GL(A) is called K2(A).
In fact, we will be interested in the Whitehead group Wh2(A) rather than in K2(A).

Therefore, we recall its definition.
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Fig. 1

Let A = Zln^M)] and let W(±nl(M)) c= St^n^M)]) be the subgroup generated
by the words wfia, where

totf = xffx**-1x$« for gen^M).

Wh2(nx(M)) = K^ZfafflV/KWiW]) n W(±n1(M)).

We refer to [8] for more information concerning Wh2.
We close this section by introducing the group Wh^n^M); Z2 x n2(M)).
Let (Z2 x n2(M))[n1(M)] denote the additive group of finite formal sums 2<*j0"<,

where ateZ2x n2(M) and <r<e7r1(ilf). Let (/?.l,a<r—aVcr"1) be the additive subgroup
of (Z2 X7T2(Jf))[77-1(J!f)] generated by the elements /?.l and acr-a^TOT"1, where
a,,fteZ2xn2{M),(T,Te7T1(M),le7T1(M) is the identity, and aJ denotes T acting
trivially on the Z2 component of a and in the usual way on the n2-factor. Now

Wh1(n1{M);Zaxnt(M)) =

Observe that if n2(M) — 0 and nx{M) is abelian, then

Example 2-3 (cf. [7]). Let Tn be an n-dimensional torus. Then

WhJnJT"); Z2) * Z2\tx,t~\ ... ,tn,rn
l]/Z2(i) s Z2 ® Z2 .. s Z

3. Concordance implies isotopy

In this section we show that concordant diffeomorphisms /(,,/j e DIFF (Jl/4) are
topologically isotopic when M4 is simply connected.

Let ge&,g: M*xl -* I, be a nice Morse function satisfying the following
condition:

(*) g has exactly r critical points pv...,pr of index i and r critical points qlt..., qr

of index i + 1.

Let s/ <= <£ be the space of pairs (/, n), where/satisfies (*) (here/* is omitted and
we write simply (/, TJ) instead of (/, ?/,/*)). Let & cr $$ be the subspace of pairs (/, rf)
such that if p( and pj are critical points of/ then

0 W*(Pj) = 0 for

and the same holds for the critical points qv ...,qr.
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Low-dimensional concordances and isotopies 107

Now it is known (see [8], p. 80) that if r > 3 and i = 2 (or i = 3 by the symmetry),
there is a bijection

A,: St (r, Z\jix{M4 x /)]) -> ̂ (jtf, £ , (/„, ?/„)),

where (/0,v/0)e^ is a base point.
The map A can be described briefly as follows (cf. [8]).
Let (h, £)e3$ be given and let plt... ,pr be (ordered) critical points of h. Assume

that the p^ (j = 1, . . . ,r) are connected to a base point by paths y^ and choose an
orientation for each stable manifold W(p}). This gives a basis e1, ...,er for the
naturally determined chain complex C2. (C2 is considered as a Z[n1(M)]-module.)
Suppose that pa, pp are two critical points of h with h(pa) > h(jpp). Let z^g be the
Steinberg generator with AeZ[7T1(.M

4)]. Under the above conditions there is a
well-defined path ^ . (A,£) = (ht,£,t), te[Q, 1] such that the stable manifolds of £x

determine the basis e1,...,ea + Ae^,...,er of C2. Now the map \ is defined as follows.
Let z £ St (r, Z\TTX(M4 x /)]) be represented by the word

where each z} is of the form xfyfij for AjS Zln^M4 x/)] . Then A((z) =
zm(zm-i---(zi(fo,Vo))-

It is proved in [8] that A4 is well defined and indeed is a bijection. In fact there
exists a map

Xt: n^s/, 3d, (/„, Vo)) -» St (r, Zfoflf* x /)]),

which is the inverse of the map At (see [8], p. 91). The map At: St (r, Z\TIX{M* X /)]) -»-
•nx{s4,31, (/0, v/0)) forms a step in the construction of a homomorphism

The general construction of this homomorphism requires rather heavy algebraic
machinery (see [8]). In our case one can give a reasonably simple description of this
homomorphism by using the following geometric result (see [8], p. 184).

(**) Each one-parameter family (ft,tit), ft:M
4xI-*I can be deformed (rel.

endpoints) to a family whose non-degenerate critical points are of index 2 and 3.

One can also assume (cf. [8]) that the gradient-like vector field r/t subordinated
toft ' s m general position and that all birth-death points oift are independent.

Remark 3-1. The above result implies that the graphic of/f looks as shown in Fig. 2.
Here is the description of 2 : TTO(̂ ») -»• Wh^n^M4)).

Suppose that all critical points of index 3 are ordered and that stable manifolds
of these points are oriented. Choose paths to a fixed basepoint for the arcs of critical
points of index 3. Let the algebraic 3/2 intersection number of a birth pair be
+ 1 £ Z[7r1( J/4)]. This gives preferred choices for the arcs of critical points of index 2.
In all (-slices which do not contain 3/3 or 2/2 intersections we have the algebraic
intersection matrix in G!L(2[7r1(M

4)]). Near t = 0 this algebraic 3/2 intersection
matrix is the identity matrix. Now as t passes a 2/2 (3/3) intersection the matrix
changes by right or (left) multiplication by an elementary matrix ejk for some
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Fig. 2

ere +n1{Mi) and for some j and k. Near t = 1 the matrix is of the form P.D =
(permutation).(diagonal with entries in ±n1(M

i) cz Z[7i1(M
i)']). Therefore one has

On the other hand (cf. [8], p. 107) P.D can be represented as

). Consequently the element

n =

for some

in St(Z[7T1(if
4)]) lies in K2Z[n1(M

i)]. I t turns out that the image - [ I I ] of n in
Wh^n^M*)) is the invariant S.

Now let M* be a closed, four-dimensional smooth manifold with n^M*) poly-(finite
or cyclic).

PROPOSITION 3-2. If topological isotopies are allowed, then the map

is surjective.

Sketch of proof. The proof of Proposition 3-2 is essentially the same as the proof
of theorem 2 in [8], p. 213. Namely, let ze Wh^n^M*)) be represented by a word
Tlx^y( in iC2Z[7r1(J/4)]. By using the homomorphism A, or, better, by using its inverse
X, and by using the property (**), one gets a path (ft,i)t), let us say for 0 ^ t ^ %,
from the standard projection to (fa,rji), where ft has only critical points of index 2
and 3 and v I f, n,\ -

The pair (/a, T/S) detects in a standard way a chain complex C(/a, TJS) = {C{, d(}, and
from the description of the boundary homomorphism (see [8], p. 99) it follows
directly that d3: C%-*C2 is the identity. Now by proceeding analogously as in
Freedman's 5-dimensional (topological) s-cobordism theorem (see [5, 6]) we can
cancel (topologically) all critical points of index 2 and index 3 of /a without
introducing new 2/2 or 3/3 intersections. Now the family (ft,r)t), <e[O,f] can be
extended to a family (ft,Vt)> <e[0>l] with / jE^ . By the construction

= ze Wh^n^M*)). (Let us recall (cf. [8], p. 128) that S [ / J can be described as

Now we show how the above algebraic machinery can be used to give a proof of
the 4-dimensional version of Cerf's result. As mentioned in the Introduction, this
proof is not the best one and it is sketched here as an example of an application of
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Low-dimensional concordances and isotopies 109

algebra. The other reason for sketching this proof is that it involves an argument that
also appears in the proof of the existence of pseudo-isotopic but not isotopic
homeomorphisms on T4.

Different proofs of the 4-dimensional version of Cerf's theorem were given by
B. Perron[16] and F. Quinn[18].

THEOREM 3-3. Let M4 be a closed simply connected four-dimensional smooth manifold
and let ^ T O P be the space of topological concordances of M4 (compact-open topology). Let
y.&-* ^rop be the natural forgetful map. Then

*oO"(^)) = 0.

Consequently, pseudo-isotopic diffeomorphisms of M4 are topologically isotopic.

Sketch of proof. Let (ft,vt) be an element in (&,$). We show that any such path
can be deformed (rel. endpoints) to a path in S. Because in the deformation process
we will use topological isotopies, our conclusion will be weaker than no(^) = 0. Since
771(ilf

4) = 0 then Wh^TT^M4)) = 0 and by using proposition 3 in [8], p. 214, we know
that the path (ft, vt) can be deformed (smoothly) to have the graphic shown in Fig. 3.
This graphic can be deformed (topologically) to the graphic shown in Fig. 4 by
repeating the procedure shown in Fig. 5. In order to apply this procedure we need a
version of the swallowtail lemma (cf. [3, 8]). Namely, we would like to replace the
left-hand side in Fig. 6 by the right-hand side. The proof of the analogous
higher-dimensional result relies heavily on the Whitney lemma (see [3]). It turns out
that the 4-dimensional version of the Whitney lemma is applicable here, but this is
rather far from being obvious. Therefore at this point we accept the 4-dimensional
version of the swallowtail lemma and postpone until the end of the proof the
description of the modifications required to make the 4-dimensional version of the
Whitney lemma applicable. Actually there are two other places in the proof of
Theorem 3 3 where the 4-dimensional Whitney cancellation procedure is used. In both
these cases we take for granted that it works well; of course the modifications
described at the end of the proof are necessary.

We can assume (see [8]) that the family ft is ordered, and now we have only one
critical point of index 2 and one critical point of index 3. This gives a 1-parameter
handle decomposition of M4 x I with only one 2-handle and one 3-handle. Let N be
the middle level manifold lying above the 2-handle and below the 3-handle. Let S2

be the attaching sphere of the 3-handle in N and S2 the belt sphere of the 2-handle
in N (i.e. if a is a critical point of index 2 and b is a critical point of index 3, then
S2 = N n W(b) and S2 = N 0 W*(a)).

N-S2~M4-chc\e^N-S2

we infer that _
n^N-S2) s n^N-S2) = 0.

It is easy to see (cf. [23]) that the simple-connectivity of N implies that the normal
bundles v(S2,N), v(S2,N) are trivial. To eliminate the graphic shown in Fig. 7 it is
enough to show (see [8], p. 172, proposition 11) that the 3/2 intersections consist
of one point in each J-slice, ts [0,1]. Consider the global 3/2 intersection T. We have
T=S2xI(]82xIczNxI, and therefore we infer that T is a one-dimensional
compact manifold. We know that 3 T : = t w o points, hence T consists of one
Z^-component and let us say r ^-components S\,S\,..., S\. Choose paths from a base
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Fig. 4

Fig. 5

Fig. 6
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Fig. 7

point in N to S2 x / and S2 x / and orientations for S2 x / and <S2 x / such that the
algebraic intersection number

(S2 xI).(S2xI):=S2.S2eZ[nx(N)\ S Z
is equal to + 1 .

Each point of transverse intersection of T with a <-slice also defines the algebraic
intersection number (cf. [8], pp. 221-222) in i ^ i l / 4 ) <= ZfTr^i/4)]. In fact in our case
for all components of T this number is equal to 1. Now, proceeding as in the proof
of corollary 3 in [3], p. 36, one can show that an isotopy of S2 x I —* N can be taken
to be an embedding. The proof given in [3] remains valid in dimension four if we use
the fact that 82 o> N has a trivial normal bundle. Therefore any isotopy of T in S2 x I
fixing d(S2 x I) can be realized by an isotopy of the S2 x I (rel. d(S2 x I)). Consequently
we can join by surgery all components S\,S\,...,£*, of T into a single component.
Namely, if 8\ intersects a <-slice transversely, it does so in at least two points with
algebraic intersection numbers 1 and — 1. We can suppose (by isotoping if necessary)
that 8\ also intersects the same <-slice. Consider two intersection points, one in S\ with
the intersection number + 1 and the second in S\ with the intersection number — 1.
Now by using the Whitney cancellation process (with the modifications which are
described below) one obtains an isotopy which joins S\ and S\. In fact, we can apply
this procedure to the D1-component as well, so we can assume that T consists of one
Z^-component. Now consider the remaining Z)1-component of T. This component is
an arc which, in general, may be knotted in S2 x /. But [3], p. 39, tells us how to change
this arc to an unknotted one by a sequence of embedded surgeries. Once more this
is the place where the Whitney procedure is used (again after the modifications).
Assuming that the Z^-component is unknotted, one cancels all 3/2 intersection points
by an application of the already mentioned proposition 11 in [8], p. 172.

Now, following Quinn, we describe briefly some necessary modifications connected
with the use of the 4-dimensional Whitney lemma. The detailed description of these
modifications is contained in [18].

In all places where the Whitney cancellation process was mentioned, it was used
to simplify the 1-parameter family of handlebodies by using the isotopy of the middle
level manifold. In higher dimensions such an isotopy is detected by Whitney discs
(see [3, 8]). In dimension 4 two different kinds of Whitney discs are involved, namely
Whitney discs coming from the Whitney moves and those coming from the finger
moves (see [6, 18]). The generic situation we are dealing with is the following:

Let N be the middle level manifold lying above the 2-handle and below the 3-handle.
Let S2 be the attaching sphere of the 3-handle in N and S2, the belt sphere of the
2-handle in N. The algebraic intersection of 82 with S2 is equal to 1, and we have
two collections {V}, {W} of Whitney discs which eliminate all but one of the S2S2

intersections. Let us agree that the collection {F} came from finger moves and {W}
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came from Whitney moves. The {F} intersects S2 in disjointly embedded arcs with
endpoints given by intersections S2S2 (the same for {W}). Therefore the union of these
intersections is given by a collection of immersed circles and one arc (or one isolated
point).

The extra difficulty in dimension 4 is connected with the fact that the discs F and
W may intersect. In higher dimensions this problem does not arise because by general
position argument we can always separate two Whitney discs. This possibility of
separation of the Whitney discs is crucial because it allows us to simplify the
1-parameter family of handlebodies just by performing Whitney moves. The ideal
situation in dimension 4 would be to have all the Whitney discs disjoint; then we
could just repeat the higher-dimensional arguments essentially without any altera-
tions. Unfortunately, in general there is no hope that we can make V and W disjoint;
however, we can deform the generic situation described above to a situation which
is simple enough so that the cancellation procedure can be applied.

Now we describe the necessary simplifications which are obtained by deforming
the isotopy of the middle-level manifold through isotopies. The first step in this
process is to simplify the intersections between F U W and S2 U S2. Namely, one can
arrange that F U W intersects S2 and S2 in single embedded arcs. This is achieved by
using the 'sum operation'. In this operation two F discs are cut apart and next
reassembled by using an embedded square S, with two edges on F discs: one edge
on S2 and one on S2. The model is shown in Fig. 8.

The new V discs are obtained by cutting the given ones along the boundary edges
of S and gluing in two parallel copies of S. If the interior of S is disjoint from S2,
S2 and all F discs, then the new discs are embedded Whitney discs and hence provide
a new isotopy. In the above situation the edges of the square are given by properly
chosen arcs which join + 1 and —1 endpoints. (Note: the existence of such an
embedded square is not automatic; it requires proof.) The next step in the
simplification of the situation is to deform the situation to one with single V and W
discs such that d V U d W intersects S2 U S2 in embedded arcs. The idea here is to push
S2 across the W discs. The F discs are joined together and a single embedded disc
V is produced. Note that there is an inverse operation, namely the finger moves of
the image of S2 along the arcs A} <= F, where the V discs were joined. It is clear that
this operation recovers all W discs (Fig. 9).

I t turns out that with some care the discs F can be recovered as well. Now the
disc V is used to deform the situation to a situation where one less V disc is recovered
(and hence one less W disc). By repeating this procedure one finishes with only one
V disc and one W disc. The final step in the simplification is to observe that if the

intersections ofS2S2 have single V and W discs which intersect along embedded arcs,
then the existence of an embedded transverse sphere F* for V disjoint from
S2 U S2 U W leads to the cancellation of all intersections. We recall that the transverse
sphere for F is a framed 2-sphere which intersects F in exactly one point. To find
F* is in fact not difficult. One starts with a small linking sphere to the boundary arc
of F in S2 and modifies it to obtain VK The more serious difficulty is proving that
the existence of F* suffices for the cancellation of intersection points. The proof of
this fact relies on a trick similar to one used by K. Igusa for 5-dimensional manifolds.
(Let S2 be the attaching sphere of the 3-handle and S2 the belt sphere of the 2-handle
in the middle level manifold N for a given 1-parameter family of handlebodies. The
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s2

Fig. 9

trick referred to tells us how to deform the family so that the belt sphere of the
2-handle is switched from #2 x {0} to S2 x {1} in <S2 x /.) With the above modifications,
the 4-dimensional Whitney cancellation procedure replaces the higher-dimensional
one perfectly well. Therefore the sketched proof of Theorem 3-3 can be carried over
to dimension four as well.

Remark 3-4. Theorem 3-3 is definitely false when M* is not simply connected. For
example, let L3(q) be a 3-dimensional lens space with n1(L

3(q)) s Zg, q a prime number
and q > 5. Let M* = L3(q) x S1. Then Wh^n^M*)) = Wh(Zg x Z) * 0 (see [21]). By
Proposition 3-2, there is a surjection S: no(j(^)) -* Wh^n^M*)) and hence

* 0. (In fact, no(j(0>)) is infinite.)

4. Pseudo-isotopic homeomorphisms on T4

In this section we show that on the 4-dimensional torus T4 there exist homeo-
morphisms which are pseudo-isotopic to the identity but not isotopic to it. This
provides a positive solution to a problem posed by A. Hatcher and simultaneously
it answers Siebenmann's question negatively.

Let 2) c no(&) be the set of all [f]eno(S) such that / can be connected to the
standard projection p by a path having the graphic shown in Fig. 10. It is not difficult
to see (cf. [8], p. 211) that S is a subgroup. Now, following [8], we define a
homomorphism

QSWhMM'YZ)
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Fig. 10

Fig. 11

Let [ / ] e ® so that it has the graphic shown in Fig. 11. In the proof of Theorem 3-3
it was shown how such a graphic detects a finite number of circles, say S\, . . . ,$*.
Every such Sj (j = 1, ...,r) yields (by ignoring sign) a well defined 'algebraic
intersection number' a^en^M4) (cf. [8]). The above graphic also yields an element
in Z2 which is a framed bordism class in Q.[T S Z2. Namely, it is the bordism class
of Sj cr S2 x I cr S3 with normal bundle v(Sj, S2xl)^ v(S2 xI,NxI) |sj framed by
the canonical framing of v(S2 x I; N xl) detected by the fact that S2 is the attaching
sphere of a 3-handle.

PROPOSITION 4 1 . If topological isotopies are allowed and TTX(M4) is poly-(finite or
cyclic), K2(M) = 0, then

is onto.
Proof. Let bo~eZ2[-nl(M

i)'] be an arbitrary element. Le t / : M*xl-* I be a Morse
function with only 2 critical points, of index 2 and 3, and with transverse intersection
consisting of 3 points, px, p^, p_(T, in an intermediate level manifold N. The
intersection numbers are 1, cr, —ere ±n1(M

i) <r Zln^M*)]. We join pa, p_a by two
arcs Cj <= S2 and C2 cz S2 (here S2 is the belt sphere of a 2-handle (in N) and S2 is an
attaching sphere of a 3-handle). Let W be the Whitney tower associated to these two
points. (It surely exists in our case.) Inside W we can find a Whitney disc D2 which
enables us to cancel (topologically) the intersection points a and — <r.

In the construction of a Whitney disc D2 an important role is played by a framing
condition. Namely, one requires that the section s of the normal bundle v(D2,N),
which on the Whitney circle C1 U C2 = 3D2 is given by

s\c : = oriented normal to C%al32,

s\Ci := oriented complement to the 3-plane bundle (T(D2) ©T(<S2)) |C ] ,

extends to a global section s: D2 -* v(D2, N).
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(Here v(D2, N) means the topological normal bundle. It exists by [5].) In higher
codimensions (i.e. for n — i ^ 3) the Z2 part of the Z^n^M4)] obstruction is realized
by refraining the bundle over C1 U C2 (this bundle consists of vectors which over Cx

are normal to D2 and normal to <Sn and which over C2 are normal to D% and tangent
to <S"~*, cf. [13, 8]). In codimension two (our case) the choice of the Whitney disc
can be altered by re-choosing the section s over Cx c S2 (keeping it normal to D2 along
Cv cf. [8], p. 228). Such a choice is classified by an element in n^S1) = Z and stably
by an element in 77 (̂0(00)) ^ Z2. Now, by repeating the construction of the Whitney
tower, we can produce a Whitney disc with the correct framing with respect to the
altered section of v(D2, N) |Cl y c • Consequently, we can cancel the intersection points
P<r> P-a m different ways according to different choices of an element b in
77 (̂0(00)) £ Z2. The cancellation process provides a one-parameter family ft with the
graphic shown in Fig. 12 and with one S1 component of 3/2 intersections. As in [8],
the invariant of this S1 is baeZ2[n1(M

4)']. By iterating this procedure one constructs
several components of 3/2 intersections which one can add and thus obtain an
arbitrary element in Z^

Remark 4-2. In the proof of Proposition 4-1 we used the fact that there is a Morse
function on M4 x I with two critical points, one of index 2 and one of index 3, and
with given geometric intersection number. Alternatively (in the language of handle
decomposition), there is a handle decomposition of M4 x I with one 2-handle and one
3-handle and with given intersection number. Usually in such constructions one
assumes (cf. [14], p. 398) dimilf ^ 5. But [19], p. 90, provides a construction which
works when dim M = 4 as well. Note that there is no difference between the PL and
smooth considerations because, for a smooth manifold M, no(0>(M)) = TJ^PPL{M))

(see[l],p. 41, cf. [2]).

Remark 4-3. Actually one has a destabilized invariant in Z[7r1(J/4)] instead of in
Z2[7r1(il/

4)]. The above result shows that every element in Z[7r1(il/
4)] is realizable by

a one-parameter family with the graphic shown in Fig. 13.
Now we show how the surjection

yields the existence of diffeomorphisms on T4 which are pseudo-isotopic to the
identity but not isotopic to it.

First we recall the cobordism group no(g$(T4)). This group was denned in [9] and
we refer to [9] for more information. The brief description of 7T0(&&(T4)) goes as follows:

An object a = (W(a),f) is a diagram

T4

(W, dW, T4)

satisfying the following conditions:
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Fig. 12

Fig. 13

(1) 1 is the base point of D2, and the upper triangle is commutative with j , a
homeomorphism, and k the standard identification of T4 with T4 x 1;

(2) / i s a simple homotopy equivalence;
(3) the lower triangle is commutative, with p0 the projection onto the second

factor, and T* -> dW -* dD2 is a topological fibration.
Two such objects acva2 are cobordant if we have

T'xl

jxid kxid

{U, V,T*XI) ~T4x(D2,dD2,

(D\D2,l)xI
satisfying the following conditions:

(1) the upper triangle is commutative, with U an s-cobordism between W(OL1) and
W(a2) and V an s-cobordism between dW(ax) and dW(a2);

(2) the lower triangle is commutative such that T* -* V -* dD2 x / is a topological
fibration;

(3) F\w(at)a-i 2) mduces the objects a4 (i — 1,2).

Now let Aut (T4) = {/: T4 -* T4 such t h a t / is a simple homotopy equivalence}.
Denote by ^(T4) the fibre in the fibration

TOP ( T 4 ) - Aut (T4).

Let £(74 x (Sx, 1)) be a space of simple homotopy TOP structures of T4 x S1 which are
standard o n f x l (cf. [24]). I t turns out (cf. [9]) that the cobordism group ^{^(T4))
fits into a braid of groups. Here is a piece of this braid. (Note that 4-dimensional
topological surgery works for manifolds with poly-(finite or cyclic) groups; in
particular there is a long Wall-Sullivan exact sequence.)
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[S Ti+, G/TOP]

It is known (see [24]; cf. [5]) that L^n^T*)) - » n ^ T * x (8\ 1) is onto, and hence

is trivial. Thus we obtain the short exact sequence

Since 7ro(^(r4 x (S1,1))) = 0 (cf. [24, 12]), we have n^T4)) £ 7ro(^(T*)). The torus
T74 is a #(Z4, l)-space, and because the map TOP (T4) -» Aut (T4) has a left homotopy
inverse we get the split exact sequence

(*) 1 - "oW?14)) -» ^o(TOP (T4)) -»(?L (4, Z) - 1.

Let us now consider the group 770(^(T4)). There is another description of this group
(see [1, 7, 10]), namely

77-0(̂ (714)) = 770(Q(TOP (T*)/TOP (T4))) = TT^TOP (T4)/TOP (T4)).

Here TOP (T*) is the space of block autohomeomorphisms of T*. I t follows directly
(from the first or from the second description) that there is a natural homomorphism

We claim that this homomorphism is non-trivial. For, let/: T* xl ->T* x I represents
an element in the kernel. It is shown in [10] (lemma 2-6, p. 140) that there is an
FeTTa{&TOV{T* x I)) such that F\MxIx{1) = / .

Now, because T* x I is 5-dimensional, we have (see [1])

I)) = " I))-

Consequently we can take Feno(^(T* x I)). We know (see [7]) that

no(0>(T<xI))=Wh1(Z*;Z*).

Geometrically, no(0>(T* x I)) is represented by the subgroup S> <= n^&iT* x I)) (cf.
[8]) consisting of pseudo-isotopies with graphic given by Fig. 14. (Note that
Wh2(Z*) = 0.) By using Proposition 4-1 one obtains that the suspension map S sends
(j(2))) c 7r0(^

>
TOP(T

4)) onto 3) c n^&lT4 xl)). In particular, F = S(g) for
ge(j(3>)) c 7r0(^

>
TOP(T

14)). From this it follows that f=g + g, where
~: ^TOP(^1 4)">^TOP(^T 4) ' s *n e standard involution inducing the involution ~ on the
7ro-level. Consequently one has a non-trivial homomorphism

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0305004100067098
Downloaded from https://www.cambridge.org/core. Durham University Library, on 21 Oct 2021 at 09:56:46, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0305004100067098
https://www.cambridge.org/core


118 SLAWOMIR KWASIK

or (by duality)

Fig. 14

(Note that [(j(S>))] surjects onto Z2[tv ...,t4]/Z2(l), which is certainly non-trivial.)
We recall that the involution on Z2[tvt~

1, ...,<4,<71]/22(1) is given (see [8]) by tt = tjl.
Now the image of [(j(S>))] in ^(^(T4)) (non-trivial), and consequently the image of
[(j(@))] in n0(TOP (T4)) (by using the exact sequence (*)), corresponds to the
diffeomorphisms of T* which are pseudo-isotopic to the identity, but not isotopic
(even topologically) to it.

Remark 4-4. The dimension 4 is the lowest dimension for the torus (and probably
the lowest dimension at all) to support pseudo-isotopic but not isotopic homeomor-
phisms (cf. [22]).

Remark 4-5. L. Siebenmann has shown to the author [20] how to conclude from
Theorem 3 3 by using Quinn's results (see [17]) that pseudo-isotopic homeomorphisms
of closed simply connected 4-dimensional topological manifolds are topologically
isotopic.

I would like to thank F. Quinn and L. Siebenmann for their perceptive comments
and the referee for his helpful suggestions and his patience.
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