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In this paper we investigate the symmetries of the fake ~ p 2 .  The fake ~ p 2  is a 
closed topological manifold homotopy equivalent to ~ p 2 ,  but not homeomorphic 
to it. The fake (EP 2 is, in fact, nonsmoothable. This manifold was constructed by 
Freedman in [1] and was denoted by CEh (for Chern manifold). This notation will 
be also used in this paper. The standard ~p2 is strongly symmetric in the sense that 
it admits an S 1-action. It turns out that, though very similar to qEP 2 (i.e., homotopy 
equivalent), the manifold (Eh is much less symmetric. Our result concerning the 
symmetries of Ch seems to be something of a surprise; namely, 

Theorem. For each odd prime p > 1 there is a locally smoothable Zp-action on (Eh, 
but ff~h does not admit a nontrivial locally smoothable Z2-action. 

It is worthwhile to note that the above theorem provides the negative answer 
(in the locally smoothable category) to the following problem in the theory of 
transformation groups [6, 8]. 

Existence of Circle Actions. Let M be a closed manifold which admits a Zp-action 
for almost all primes p that are sufficiently large, does M admit a topological circle 
action? 

Before we give a proof of the theorem, we recall briefly the construction of the 
fake (EP 2, (Eh. Let K be the trefoil knot Fig. 1 which is embedded in S 3 = 0D 4 C D 4. 

Fig. I 
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The Dehn surgery on K with coefficient equal to one produces a four-dimensional 
manifold T with a boundary 0 T= 2; 3, where S 3 is the Poincar6 homology 3-sphere. 
It was proved in [1] that every homology 3-sphere bounds a contractible 
topological manifold. Let V be such a manifold for ,2 3. Now the fake ~p2 manifold 
Ch is given by: 

IEh=TU V.  ~3 

It was proved in 1,1] that II~h is nonsmoothable and in fact nonsmoothable even 
stably i.e. Ch • R is nonsmoothable. 

In the following, we will not distinguish between the smooth and PL situations. 
Of course, we are justified in this because in dimensions < 6 there is, in fact, no 
difference [3]. 

Proof of Theorem. First we show how to construct a locally smoothable Zp- 
action on IEh for each odd p > 1. We start from a smooth Zp-action on ~p2 which 
has 3 isolated fixed points. Here is one explicit example. In terms of homogeneous 
coordinates (Zo : zl : z2) o n  II~P 2 the action takes the form: 

t ( Z 0  " Z 1 : Z 2 ) =  ( ta~ : ta l z l  : ta2z2) ,  

where t=exp(27ti/p) and a i ~aj(modp) for i@j. This action of Zp has 3 isolated 
fixed points Po = (1 : 0 : 0), Pl = (0 : 1 : 0), P2 = (0 : 0" 1). Let X be a manifold 
obtained from IEP 2 by excluding small disjoint invariant open discs around these 
points, i.e. 

2 

X=r U D(Pi). 
i = 0  

The manifold X is simply connected manifold whose boundary 0X is given by 3 
copies orS 3. Let p : (X, OX)-*(X, OX)/Z v = (Y, OY) be the projection onto the orbit 
space. The embedding theorem from [2] together with results in [7] enables us to 
do topological surgery on four-dimensional topological manifolds with poly- 
(finite or cyclic) fundamental groups. Consequently we have the following Wall- 
Sullivan exact sequence 

s t 0 s 
0 =Ls(~z,(Y))~STop(Y, ~ Y)--,l, Y, 0Y; G/TOP, �9 ] ~ L  4(Tt,(Y )). 

What we shall do below is to construct a manifold (N, ON) and a homotopy 
equivalence h:(N, 0N)~(Y, 0Y) such that hleN is a homeomorphism. [-The pair 
((N, ON), h) represents an element in Sxoe(Y, 0Y).] The construction of(N, ON) will 
have one salient feature; namely, it will guarantee that (N, ON) is stably 
nonsmoothable. Upon lifting h to universal covers, we obtain a stably nonsmooth- 
able manifold (/q, 0/q) which is homotopy equivalent to (X, 0X). Now, the Zp- 
action on 0/q is sufficiently nice to allow us to plumb discs along 0/q so that 

/qU Uo" 
a~ 

is a manifold homotopy equivalent to CP  2. This manifold, however, cannot be 
homeomorphic to (I~P 2 because it is stably nonsmoothable; hence it must be ~h. 
Of course it supports locally smoothable Zp-action. 
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Now we show how to find the required manifold (N, BN) and a homotopy 
equivalence h:(N, BN)~(Y, BY). Consider the following sequence of fibrations 
which form the commutative diagram 

/,G/PL '~', G/TOP..~ 

TOP/PL "~B*PLII' '~ , BT~OP ~k K(Z2'4) 

i l 
BG id ) BG 

where k" BTOP--*K(Z2, 4) is induced by the universal triangulation obstruction 
[3] and k= k o i2. All the spaces in the above diagram are H-spaces and all maps are 
H-maps [3]. Thus one obtains the following exact sequence of abelian groups, 

[Y,,BY;TOP/PL,*] , [Y, BY;G/PL,*] ~-~ [Y,,BY;G/TOP,*] 

[Y,, BY; K(Z2, 4)] 

which one can write in the form 

Ha(Y, ~Y; Z2)~ [ Y, dY; G/PL, * ] ~[Y, BY; G/TOP, * ] ~ H4(y,, BY; Z2). 

The 4-stage in the Postnikov system for G/TOP is given by K(Z2, 2) x K(Z, 4) [3] 
which implies 

[Y, dr ;  G/TOP,, ] .~ H2(y, BY; Z2)@H4(y, BY; Z). ( �9 ) 

The 4-stage for G/PL after localization at 2 is given [3] by 

K(Z2,2) • K(Z(2 ),4). 
~Sq 2 

This implies [3] the following: 

[Y, BY; G/TOP, * ]/~0.[ Y, BY; G/PL, * ] = ~,[Y, BY; G/TOP, * ] 

= red(H4(y, B Y; Z) + Sq2H2(y, B Y; Z2) 

where the last sum forms a subgroup in H4(Y, BY; Z2) and red: H4(y, BY; Z) 
-~H4(Y, BY; Z2) is the reduction of coefficients. 

Now let g : (Y, BY)--*(G/TOP, * ) be a map which represents an element 

(t, 0) e H2(y, BY; Z2)0) H4(Y,, BY; Z) 

in the decomposition (*). Let f:(M,t~M)--,,(Y, BY) be a normal map which 
corresponds to g. 

Claim. The surgery obstruction O(f)= O(g) for f Vanishes. 
To see this, note that [L3; G/TOP] = 0 for any lens space L 3. Therefore, we can 

suppose that 
fl~u: BM~BY is a homeomorphism. 

Let if" be a closed Zp-manifold obtained from (M, dM) and (K BY) using the 
identification of their boundaries. Now O(g) is just the multi-signature ~(Vr of 17r 
and, in fact [9] is the standard signature a(ff') of I~ which is equal to a(M r) -a(Y).  
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The difference a ( M ) -  a(Y) can be described as follows [9]. Let P le  H4(BTOP; Q) 
be the first Pontriagin class and let pl(Y) be the first Pontriagin class for the 
tangent bundle of Y. Denote by pI(G/TOP) the corresponding Pontriagin class 
induced by 

i 2 : G/TOP~BTOP.  

Let L(Y) be the Hirzebruch polynomial for Y and let L(G/TOP) be the Hirzebruch 
polynomial with respect to pl(G/TOP). Now 

a(M) - a(Y) = <L(Y) . 9*(L(G/TOP)); [Y, OY]> 
and 

L(Y). 9*L(G/TOP) ~ H4(y, OY; Q); 

hence a(M)-a(Y)=0 by our choice of 

(t, 0) e H2(y, 0Y, Z2)QH4(y, 0Y; Z). 

Thus the proof of the claim is complete. 
Because the surgery obstruction 0(9) is trivial then there exists an element 

(N, 8N; h) in SToP(Y, 0Y) such that 

z(N, ON; h) = (t, 0). 

Up to this point, the choice of t was irrelevant. We shall now choose a nontrivial t 
with the property that t 2 is also nontrivial in H~(Y, 0Y; Z2). 

The action ofZ  n on H*(X, OX; Z) is trivial therefore by the transfer argument 
[note that (2,p)=l] we infer that 

p* 
H*(Y, 0Y; Z2) , n*(x ,  OX; Z2) 

is an isomorphism. In particular, HZ(X, OX;ZE)~HE(y, oY;Z2)~Z2 and if 
t ~ HE(y, 0Y; Z2) is the nontrivial element, then t 2 = tw t ~ H4(y, 0Y; Z2) is a 
nontrivial element too. 

We recall that the Kirby-Siebenmann invariant of N, k(N)~ H4(N, ON; Z2) 
Z 2 is the pull back, using the classifying map 

f :  (N, 0N)--.(BTOP, * ) 

of the universal triangulation obstruction k ~ H4(BTOP; Z2). Also note that by 
the results of Taylor and Lashof [5] or Quinn [7] the Kirby-Siebenmann invariant 
k(N) can be viewed as the obstruction to smoothing N • R rel0N • R. 

Now if g:(Y, OY)--*(G/TOP,*) is a map associated to h:(N, ON)--*(Y,,OY) 
then( t / ; [Y ,0Y])#0  represents the obstruction to lift g through G/PL. But 
9 ~ [Y, 0Y; G/TOP; * ] represents the difference between the stable normal bundles 
of (N, ON) and (Y, OY). Therefore, the commutativity of the diagram 

G/TOP___~ 
j i~ --~K(ZE, 4) 

BTOP------~ 

implies that <t2; [Y, O Y]> # 0 represents the difference of the Kirby-Siebenmann 
invariants k(N)-k(Y).  Because k(Y)=0 then the invariant k(N) must be 
nontrivial. This completes the first part of the proof of our theorem. 
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Now we show that Ch does not admit a nontrivial locally smoothable Z 2- 
action. This was proved in [4], but in order that this paper be self-contained, we 
include a brief sketch of a proof  here. This proof  works for all 4-manifolds with 
nontrivial Kirby-Siebenmann invariant and with an orientation preserving 
involution. Because the signature a(Ch) of the fake ~p2 is different from zero, then 
every involution must be orientation preserving. This implies that the fixed point 
set of such an involution would consist of isolated points and disjoint surfaces. 
Now, it can be shown that the surfaces would have equivariant tubular 
neighborhoods on which the involution is smooth. For  this, one can use the 
existence of normal microbundles for surfaces in 4-manifolds (due to M. Freedman 
or D. Ruberman) or more simply, just raise the dimension by 1 by crossing with R 
(trivial involution on R) and apply the well-known existence theorem for normal  
microbundles in this case. The fact that 0(2) is a strong deformation retract of 
TOP(2) guarantees the existence of a smooth structure on these tubular 
neighborhoods. By excluding from tEh the above tubular neighborhoods together 
with small invariant discs around fixed points, one would obtain a manifold 
with boundary Ch with a fixed point free involution. This implies that the 
relative Kirby-Siebenmann invariant k(IEh) is trivial. But on the other hand, 
from the construction, it follows directly that k(IEH)~-O, which yields a contra- 
diction. For  more details we refer to [4]. 

Remark. It  follows directly from the proof  of our theorem that ~ h  admits a locally 
smoothable Zk-action for all odd (not necessary prime) k > 1. 
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