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INTRODUCTION

IN THIS PAPER we concern ourselves with the following question. Suppose one has an
unbounded combinatorial manifold X contained in an unbounded differentiable manifold M.
When does there exist a piecewise differentiable isomorphism 4 : M — M such that A(K)
is a smooth submanifold of M. It is clearly necessary that K have a vector bundle neighbor-
hood in M. Our main result asserts that if X is the homotopy type of a finite complex the
converse is true.

This theorem can be thought of as a refined version of the fundamental theorem of
smoothing theory due to Cairns-Hirsch. While the “classical’’ Cairns—Hirsch theorem is
our takeoff point the generalization is not straightforward. Our basic tool is the theory of
piecewise linear microbundles due to Milnor [5], and we assume familiarity with these
notes. Aside from a strong form of the “classical’ Cairns—Hirsch theorem due to Mazur [4]
and the notes of Milnor, we utilize techniques and results in differential topology which
have already appeared in print.

Chapter I is a bit technical, building up the necessary simplicial machinery. The most
important results are in §3, yielding a functorial triangulation in the best possible sense of
a vector bundle over a complex. This result appears to have applications beyond the
considerations of this paper.

In Part IT we apply the machinery of Part I to the problem of smoothing theory. §5
deals with stable tubular neighborhood theorems in the combinatorial category. Here the
results are what one would expect and in fact more or less assumed by those working in the
field. However, our proof is the first we know of in the general case. It is based on a careful
analysis of a proof of Mazur for an important special case. §6 deals with results and
application of results concerning the representability of the functor which assigns to each
combinatorial manifold its set of smoothings. Here our machinery of Part I pays off in
yielding a relatively straightforward and unique proof of a theorem on I',, due independently
to Hirsch and Mazur; along with its generalizations announced by Mazur. Of particular
interest may be a proof of a conjecture of Mazur that the set of smoothings of a differentiable
manifold form in a natural way an abelian group. In §7 we conclude the paper by proving
the theorem promised at the beginning of this introduction.
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In a subsequent paper we will apply the machinery developed in this paper to the
question of classifying imbeddings of homotopy n-spheres in S"**. In particular, we will
give there a proof and elaboration of the exact sequences which we announced in Seattle
in the Summer 1963.

We might remark that this line of research was inspired by hearing of the result of
Hirsch that I', =7, (PL/O) and trying to understand this result. Half-way through our
own work we came upon the notes of Mazur [4] which considerably clarified and broadened
our outlook as well as supplying some key ideas. We are also indebted to conversations
with Hirsch and Mazur at the Seattle conference on Differential Topology.

PART I—-SEMI-SIMPLICIAL BUNDLES

§1. PIECEWISE DIFFERENTIABLE VECTOR BUNDLES

We begin by constructing a semi-simplicial analogue of the orthogonal group O,.
This will turn out to be more suitable for comparison with Milnor’s semi-simplicial group
PL, [5], and hence for comparing vector bundles with microbundles.

DEerNITION (1.1). The c.s.s. group O,

Let A, be the standard r-simplex, and A, x R" the product n-plane bundle over A,.
An r-simplex in O, is a vector bundle map f: A, x R"— A, x R" over the identity, which is
differentiable over each simplex ¢ of some rectilinear subdivision of A,. Composition makes
the set 0% of r-simplexes into a group. Each monotone simplicial map 4 : A, — A, defines
a homomorphism A* : 0% — 09 where A*f is the vector bundle map over the identity
uniquely defined by the condition that

ASf
A;x R"—— A, x R"

Ax]J AxI

f
A, x R"—— A, xR" commute,

It is easy to check that A*f is differentiable over each simplex of a rectilinear subdivision
of A,. Thus 0, = {0, A1*} is a c.s.s. group complex.

In the remainder of this section, a complex (unless otherwise specified) will mean a
countable, finite dimensional, locally finite, simplicial complex.

DerINITION (1.2). A piecewise differentiable structure on an n-plane bundle & over a
complex K is a presentation of the total space E(§) as the union of 6 X R, o€ K, with the
coordinate transformations from o to 0,0 being in O, where dim ¢ =r + 1,

A vector bundle, together with a piecewise differentiable structure will be called a
piecewise differentiable vector bundle (p.d. bundle).

Remark. 1t follows from the definition, that 3 a rectilinear subdivision K; of K, such
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that n~!(a), o€ K;, has a well defined differentiable structure, induced from t x R", where
e K is any simplex containing 0. We will say that £ is differentiable over K.

DEerFINITION (1.3). Two p.d. bundles &, and &, over K are called equivalent if 3 a map
@ 1 E(&,) > E(&,) such that ¢|,, -1, : 7y '(6) > 1y (o) is in O, where dim o = r, re k.

THEOREM (1.1). Two p.d. bundles &; and &, over K are equivalent if and only if they are
equivalent as vector bundles.

Before beginning the proof we need the following Lemma which follows immediately
from the above remark and Definition (3).

LeMMA. Two p.d. bundles &, and &, over K are equivalent if and only if 3 a subdivision
K, of K and a map ¢ : E(£,) — E(&,) satisfying:

() &, and &, are differentiable over K,

(1) Op-10y: 71 Yo) » n; (o) is a differentiable map of differentiable vector bundles,
oeK,.

Proof of Theorem (1.1). The “only if” part is obvious. Now assume we have replaced
K by a rectilinear subdivision over which &, &, are differentiable. Let ¢° be any bundle
map of E(¢,) — E(&,) over the identity. Then ¢, is differentiable over the vertices. Now
suppose that ¢° has been deformed through bundle maps to a bundle map ¢! such that
e VinT(r) > n; (r) is differentiable, te K¢™D, (K1), the (r — 1)-skeleton of K).
We will show that ¢~ Y may be deformed through bundle maps to a bundle map ¢,
such that

(@) @@y (K™D = o Vr (KTTY)

(b) ¢ is differentiable over the r-simplicies of K. The result will then follow by
induction.

Let ¢ be an r-simplex. We will consider ¢ to be imbedded in standard fashion n E’.
Now ¢~V over o is represented by a continuous map f: ¢ = O(n, R), which is differen-
tiable on the boundary ¢ of ¢. It is sufficient to deform f relative to the boundary to a
differentiable map. For this will define a deformation of ¢”~!) on each r-simplex, leaving
it fixed over K"V, and this deformation may be extended by the homotopy extension
principle to a deformation of ¢~ over KX through bundle maps.

Consequently, the theorem will follow if we can prove:

LemMA. Let f: 0 — M be a continuous map of an r-simplex into a smooth closed manifold
M, such that f|, is smooth, then f may be deformed relative to the boundary to a smooth map.

Proof. Let i: M — E" be an imbedding in a sufficiently high dimensional Euclidean
space. Let U be a tubular neighborhood of M in E” and r: U— M a smooth retract.
It will be sufficient to deform if: 6 - U < E”, in U, to a smooth map, relative to O; since
the retraction will throw this deformation back into M.

By R. Thom, [9], if ¢ may be extended to a smooth map g of some neighborhood of
¢ in E" into U, and thus may be extended to a smooth map of ¢ into U (Thom proves a
real-valued smooth function on ¢ may be extended to a smooth function on E"; the above
assertion follows immediately). Since ¢ has a product neighborhood in o, it is easy to sce
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that it may be deformed in U relative to ¢ to a map § which agrees with g on some sufficiently
small neighborhood of ¢. But now by the approximation theorem, g is homotopic to a
smooth map 4 : ¢ — U, relative to a closed neighborhood of ¢ in 6. Thus we get a deforma-
tion of it to h, relative to ¢; and hence a deformation of f= rif to the smooth map
rh : ¢ —» M, relative to ¢.

This completes the proof of the Lemma and hence of Theorem (1.1).

THEOREM (1.2). Every vector bundle over a complex is equivalent to one which admits
a p.d. structure.

Proof of Theorem (1.2). Imbed K combinatorially in E", n sufficiently large. Then if
U is the interior of the second regular neighborhood of K in E", K is a deformation retract
of U; r: U— K the retraction. Let n = r*(¢) then n|K is equivalent as a vector bundle to &.
Since U has a natural differential structure, E(n) can be given the structure of a differentiable
vector bundle. Let K, be a sufficiently fine rectlinear subdivision of K, such that each simplex
oK, is contained in a coord. neigh. ¥, of n. Then the diff. coord. transformation from
V. to V, restricts to a diff. coord. transformation from 0,6 to ¢, and makes n|K a p.d.
vector bundle, equivalent to £ as a vector bundle.

This compietes the proof of Theorem (1.2).
Theorem (1.1) and Theorem (1.2) give

THEOREM (1.3). An equivalence class of vector bundles over a complex K determines a
unique equivalence class of piecewise differentiable vector bundles over K, and conversely.

Theorem (3) enables us to treat vector bundles semi-simplicially, the same way Milnor
[5] treats p.l. micro-bundles.

DEFINITION (1.4). Let & be a p.d. vector bundle over a finite complex K. We define the
associated principal (s.s.) bundle £ as follows; The base space K is the c.s.s. complex con-
sisting of monotone simplicial maps f: A, —» K; with A¥ : K® - K defined by 1*f = fol.
A k-simplex of the total space P consists of

(1) a k-simplex fe K®

(2) a p.d. bundle equiv. F: Ay x R" — f*&,

The functions A* : P® — P® are defined by the formula A*(f, F) = (f° 4, A*F). The right
translation function P x 0, — P is just the operation of composing p.d. bundle equivalences.
Since O® operates freely in P®), with orbit set R®; it follows that £ is a principal s.s.
0 ,-bundle.

LemMAa. Two p.d. vector bundles &, n over a complex K are equivalent if and only if the
associated c.s.s. principal bundles &, ij are equivalent.

(Proof as in Milnor [5], p. 25]

LeMMA. Let K be a complex. Any principal O,-bundle © over K is isomorphic to & for
some p.d. vector bundle & over K.

Proof. (As in Milnor, [5], p. 26).
By Heller’s classification theorem [1], we have
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THEOREM (1.4). The equivalence classes of n-dimensional p.d. vector bundles and hence
(Theorem (1.3)) the equivalence classes of n-dimensional vector bundles over a complex K
are in 1-1 correspondence with the homotopy classes of (s.s.) maps of K into the base space
of any universal (s.s.) bundle for O,

In the remainder of this paper we assume familiarity with elementary piecewise linear

micro-bundle theory, as contained in Milnor [5]. In particular, the definition and pro-
perties of the piecewise linear complex of n germs, PL,, is assumed.

2. THE C.S.S. COMPLEX PD,

DErFINITION (2.1). A map f: K— M of a simplicial complex K into a smooth manifold M
is called piecewise differentiable (p.d.), if f is differentiable on each simplex of a rectilinear
subdivision of K.

DEerINITION (2.2) PD,. A k-simplex in PD, is a germ of a topological microbundle
equivalence f: A, x R" = A, x R" (i.e. f is fibrewise and preserves zero section), such that
fiA X R - A, x R"<R*x R" is a p.d. imbedding w.r.t. the product triangulation of
A, x R". The set of k-simplicies is denoted PD{®. For each monotone simplicial map
A: A, — A, define a function A¥* : PDW — PDW by A*(f) is the germ of the topological
microbundle equivalence 4 ¥f uniquely defined by the condition that

Ay xR"—— Ay x R"
AxT AxT

Ay x R"——— A, x R" commutes.
It is easy to check that Afis a p.d. imbedding. Thus PD, = {PD®, A*} is a ¢.s.s. complex.
It is also easy to check that it satisfies the Kan condition [7].

Although PD, is not a group complex, it contains PL, and we will see that the inclusion
is a homotopy equivalence. PD, has the advantage over PL,, that O, acts freely on it.

DEFINITION (2.3). Consider K to be a rectilinear simplicial complex in some RF, and let
f:K— M be a p.d. map into a smooth manifold, i.e. f is differentiable on each simplex of a
subdivision K, of K. Then a p.d. map

[ St(x, K;) — t(fx) (the tangent space to M at fx)

is defined by £,(3) = (fl16)(»), xec €K}, yeo < St(x, K,), where (f|0), is the induced map
on tangent spaces (and we identify the tangent space to ¢ at x with o).

The map f is called regular if £, is 1-1 (into) for every xe K. It is called non-singular
if it is a regular p.d. imbedding. A non-singular p.d. homeomorphism of K onto M is called
a smooth triangulation.

Lemma (Milnor [6]). A p.d. imbedding f: K— M which is a homeomorphism onto, is
non-singular (and hence a smooth triangulation).

Remark. Amapf: A, x R"— A, x R" representing an element of PD{* is nonsingular.
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In fact, since A, has a product neighborhood in R, f may be extended to a p.d. imbedding
of N x R" onto an open set in N x R", where N is an open neighborhood of A, in R*. By
the lemma, the extension of f, and hence f itself, is non-singular.

DErFINITION (2.4). A piecewise differentiable isotopy between two p.d. imbeddings fo,
fi: K-> M is a pd. imbedding F:KxI—> M x1I, such that F,:Kxt—-M xt and
FIKx0=fy, FIKx 1=f,.

Remark. 1f F is non-singular, F, is non-singular.

LEMMA. Let F be a p.d. isotopy between fy, f; : K- M, and G a p.d. isotopy between
Jifo: KM, then H: KxI->-MxI, H=F,, 0£t£1/2, H=Gy 1, 125t 1, is
a p.d. isotopy between f, and f,.

We need two theorems of Whitehead [11].

THEOREM (A). Let f: K— R? be a non-singular p.d. imbedding. Then there are maps
&, n: K— R, such that every (¢, n)-approximation to f is non-singular.

An (&, n)-approximation to fis a p.d. map g : K— R%, such that |g(x) — f(x)| < &(x),
g — £ O] £ 1(x) | ()|, xeK, x+ yeSi(x, Ky), where K| is a rectilinear subdivision
of K on the simplices of which both f, g are differentiable.

THEOREM (B).t Letf: K — R? be a non-singular p.d. imbedding, then forany &, n : K— R,
there exists a subdivision of K, such that the linear approximation to fis an (£, n)-approximation.

The linear approximation of f w.r.t. the subdivision K, of K, is the p.l. map g defined
by g(Zs;a;) = Zs;f(a;), where (ao, ..., @;) is an r-simplex in K;, and s; are the barycentric
coordinates of a point in the r-simplex.

From Theorems (A) and (B) we have:

THeOREM (C). Let f: K — R? be a non-singular p.d. imbedding, let (€, n) be given, then
there exists a rectilinear subdivision K, of K, such that the K, linear approximation g to [
satisfies

(a) g is a non-singular imbedding.

(b) g is an (&, n)-approximation to f.

(c) F: K x I—> R? x I given by F(x, 1) = (1 — 1) f(x) + tg(x) is a p.d. isotopy.

(d) Fis a non-singular imbedding (in R? x RY).

(e) If fis p.I. on some subcomplex L of K, F|; = f.

Proof. (a), (b), (¢), (¢) are immediate from Theorem (A) and (B). To see (d), note
that F will be an (&, n")-approximation to fx 1, if g is an (&, n)-approximation to f for
sufficiently small (¢, #). But f % 1 is clearly non-singular.

THEOREM (2.1). Let f: A, x R"— Ay x R" be a topological micro-bundle equivalence,
and a p.d. imbedding with respect to the product triangulation of A, x R* (as a map into
R* x R"). Then there exists a non-singular p.d. isotopy

F:IxA xR —> I x A, x R”

+ See proof of Theorem (9) of [11].
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such that
(a) F is a topological microbundle equivalence (over I x A}).
(b) Iffis p.l. in some subcomplex K of a rectilinear subdivision of A, x R", then F, | = f.

(N B jon ol sainenbeodls omeiiendomnn fanon A )
\b} y — I 1 W u IJ.I. mierovurniuic cquwuwnbc \uuer le[

g A x R"—— Ay x R".

Proof. Since fis p.l. on A, x 0 and K, it is enough to apply Theorem (C) and show that
nF, = Fm, n: A, x R"—> A, the projection. Let L be the rectilinear subdivision of the
product triangulation of A, x R" given by Theorem (C). Let (aq, ..., a,) be an r-simplex
in L. Then by assumption nf(a;) = fra; = na;. Now let (3 .s;a;), Y's; =1, be an arbitrary
point in the r-simplex. Then

F(Y s;a) =01 —=0fQs3) + 1Y s;f(a))
aF (Y. s,a) =1 = 0fn(};s,a) + 1) sma;.
But since we have a rectilinear subdivision of the product triangulation of A, x R", 7y s;a; =
Ysina;, and nF() sa) = n(ds;a;) = Fr() s;a)).
THEOREM (2.2). PL, is a deformation retract of PD,.
Proof. We rely on Proposition (1) of Appendix A to Chapter I in [7].

PROPOSITION (Moore [7]). If X and Y are s.s. complexes, then fy, f; : X — Y are homo-
topic if and only if there exists functions K, : X@ — Y9*V defined for i =0, ...,q, and all
g such that

(1) doko =14 (5) Ok =k;0i—q,i>j+1
)] aq+1kq =/fo ©) Sikj=kj+1si’ i£j
(3) Oikj=k;_10i i< j D) sikj=kis;,i>]
C)) ai+1kj+1 = aj+1kj’
If A is a subcomplex of X, and f5|4 = f;|4, then f, is homotopic to f; relative to 4 if and
only if
k{o) = fo(s{(0)), for oeA.

We apply this to our problem in taking f, = identity on PD,, f; = retraction of PD,

into PL, < PD,. We use the following:

LemMA. Let te PD®, and g, : Ag X R* - Ag x R" be a p.d. imbedding representing t.
Then if g:Ix Ag x R">IXx Ag x R" is a p.d. isotopy and a topological microbundle
equivalence, such that gl0 X Ap X R" = g,, there exist functions k;: L(t)® — PD,@*D),
satisfying (1)-(7) above, where L(t) is the subcomplex of PD, generated by o, f, = identity,
and f(A*0) = A*(g,), A any monotone simplicial map of A, — Ag.

Proof. Subdivide I x A, into the g+ 1 simplicies (ao, ..., @;_14;, ... a,). Define
k(A*() = (A* x logln™(ao, ..., @;~1a;, ..., a,)). We leave it to the reader to check
properties (1)~(7).

In order to prove the theorem, we need to pick representatives g for each non-degen-
erate simplex 7. Then by Theorem (1), there exists a p.d. isotopy g from g, to a p.l. homeo-
morphism g,, relative to any sub-complex on which g, is a p.l. homeomorphism. We must
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show that the isotopy given for the representative of t and the representative of d;t agree
in some neighborhood of the zero-section over d;A,. To do this, we proceed by induction.
We assume the isotopies have been defined for representatives of all p — 1 simplexes to
satisfy the above condition. This means that we have a well defined isotopy of g, on some
neighborhood of the zero section above the complete boundary of A,. Now there is a p.l.
isotopy of A, x R" into itself which is a deformation of the identity to a map into any
prescribed neighborhood of the zero section, relative to any smaller neighborhood of the
zero section. Assuming inductively that our isotopies are always constant for some initial
and final interval in some neighborhood of the zero section; Theorem (1) and the above
deformation, show that it agrees in some neighborhood of the zero section with the isotopies
defined over the boundary, and satisfies the stationary condition on (possibly smaller)
initial and final intervals. (Note that any p.d. isotopy above the boundary of A, may be
extended to a p.d. isotopy over A, since the boundary has a product neighborhood in A,
Also once g, over the boundary of A, has been deformed to a p./. map, application of
Theorem (1) leaves this part of the map unchanged.)

§3. ON TRIANGULATING VECTOR BUNDLES—EXISTENCE AND UNIQUENESS

PROPOSITION (3.1). Let &,, &, be differentiable vector bundles over a smooth manifold M.
Let f: K— M be a smooth triangulation. Then if ¢ : E(&;) - E(E,) is a p.d. vector bundle
map over the identity (i.e. @ is differentiable over each simplex of some rectilinear subdivision
K, of K), ¢ is isotopic through p.d. bundle maps to a differentiable bundle map.

Proof. Let P, P, be the total space of the assoc. princ. diff. bundle. Then ¢ induces
®: P, - P,, a bundle map diff. over each simplex of K;. Now @ is defined by a cross-
section of the following bundle (G = group of orthogonal transformations of R"):

d*(Py x ¢ P,) — Py x g P,
|

|

M———— Mx M.

This is a diff. bundle with fibre G and group G x G. Consequently, it may be approx. by
a diff. cross-section ¥. Now put a Riemannian metric on G, invariant under the action of
G x G. Then if ¥ is sufficiently close to @, ¥(x) may be joined to ®(x), xe M, by a unique
shortest geodesic, in the fibre over x. Deforming ® to ¥ along the geodesics preserves
differentiability, whenever @ and W are both diff; i.e. over each simplex of K. This defines
a p.d. bundle deformation of ¢ to a diff. bundle map V.

DErINITION (3.1). Triangulation of p.d. vector bundles. A triangulation of a p.d. vector
bundle £ over a complex K, is a p./. microbundle y over K and a fibrewise map ¢ : E(u) —»
E(&), preserving the zero cross-section, and such that ¢ is a p.d. homeomorphism over each
simplex 6 € K. We denote such a triangulation by the pair (i, ¢).

THEOREM (3.1). Let & be a p.d. vector bundle over K, and (u;, ¢;), i = 1,2 be triangulations
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of &. Then there exists a map of p.l. microbundles \y : E(uy) = E(u,) such that

E(py)
1 \\
\P1
N

E(u,) /

commutes up to homotopy. (Note that (u,, @,i) is a triangulation of £ and the homotopy
between ¢,y and ¢, is to be a triangulation at each stage.)

COROLLARY. Let (u;, ;) be triangulations of p.d. vector bundles £, i =1, 2 over recti-
linear subdivisions of K. If A : E(¢;) — E(&,) is a p.d. bundle equivalence, there exists a micro-
bundle equivalence vy : E(u,) —» E(u,) such that

E(u;) — E({)
" A

E(u;) —— E(¢,)
commutes up to homotopy.
(Note that (uy, A¢,) and (u,, @,¥) are triangulations of &,, and the homotopy is to be a
triangulation at each stage.)

Proof of Theorem (3.1). The idea of the proof is to deform ¢, fibrewise and relative
to the zero section to a p.l. homeomorphism iy with respect to the triangulation (u,, ¢,)
of E(£). We do this by induction over the skeletons of K.

But first we may change E(y;), i =1, 2 to equivalent microbundles, so that E(u;) =
uoe X R, 6eK; (6 x R") attached to d,0 x R" by a p.l.h. of ¢ x R" over d,0 into 9,0 x R".

Over each vertex ve K9, ¢, is a p.d.h. of (R", 0) into (R", 0), and is isotopic through
p.d. homeomorphisms relative to 0e R", to a p./. homeomorphism (see Theorem (2.1))
w.r.t. the triangulation induced by (u,, ¢,). This isotopy of ¢,|r, " '(K°) may be extended
to a fibrewise isotopy of ¢, on E(y,) relative to the zero section, p.d. over each simplex;
by induction over the skeletons, using the fact that the boundary of each simplex has a
product neighborhood in the simplex.

Now assume that ¢, is a p.. homeomorphism over the (r — 1)-skeleton of K, and
preserves the zero section; and let o be an r-simplex of K. ¢q|n; '(0) is a p.d.h., which is
p.l. over ¢ and p.l on the zero section. By Theorem (2.1) we can deform ¢,|n; }(s) fibre-
wise, through p.d. homeomorphisms, and relative to ¢,(r; }( ) and the zero section, to
a p.lh. w.rt. (i, ¢,). This, having been done for each r-simplex, gives a p.d. isotopy of
o, over K relative to K"~ and the zero section. This isotopy may now be extended to
a p.d. isotopy of ¢, relative to 7~ }(K*~ ") and the zero section.

This completes the induction step and the proof of Theorem (3.1).
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THEOREM (3.2). There exists a unique function T, functorial in the base space, from
equivalence classes of n-dimensional p.d. vector bundles (and hence ordinary vector bundles)
to equivalence classes of n-dimensional p.l. microbundles, satisfying

(a) Given a p.d. vector bundle &; if ueT(E], there exists a map ¢ : E(u) - E(£), such
that (u, @) is a triangulation of &.

Proof. The uniqueness follows from Theorem (3.1). To show existence, we first define
a map of BO, into BPL,.

Let PD, be the c.s.s. complex defined previously; i.e. a k-simplex of PD, is a fibre
preserving p.d. homeomorphism

fiA X R = A, x R", fl5, xo = identity. Then

PD,={PD®, 1*}. We recall that PD, is not a group complex, but has the following
properties:

(a) O,,PL, < PD,

(b) n(PL,) - n{PD,) is an isomorphism, all i

(c) PL, acts freely on the right of PD,, O, acts freely on the left of PD,.
Let U, be the total space of a universal s.s. bundle for PL,. Then n(U,) =0, all i. Let PL,
act on both factors of PD, x U,. Then n,(PD, x U)/PL,) = 0, all i; since (PD, x U,, PL,,
(PD, x U,)/PL,) is a principal s.s. bundle (and hence has an exact homotopy sequence),
and n(PL,) — n{PD, x U,) is an isomorphism, all i.

Let O, act on PD, x U, by acting on PD, only. Then the action of 0, commutes with
the action of PL,, and O, acts freely on (PD, x U,)/PL, Hence (PD, x U)/PL,, O,,
O\PD, x U,/PL) is a universal s.s. bundle for 0,. Write BO,= O,\PD, x U,/PL,, and
BPL, = U,/PL,. Then the projection p, : PD, x U, — U, induces a s.s. map p : BO, —~ BPL,
by passage to the quotients. We note for future use

Lemma (3.3). (BO,, PD,/O,, BPL,) is a s.s. fibre space.

Now let ¢ be a p.d. vector bundle over some rectilinear subdivision of K, and & the
associated principal s.s. bundle. Then & is equivalent to a bundle induced by a s.s. map
f: K> BO,. But pf: K — BPL, induces a principal s.s. bundle over K with group PL,.
Let p be the associated microbundle. We set T[¢] = [p]). Since any two classifying maps
are homotopic, T is well-defined.

We wish to define a map ¢ : E(u) — E(£) such that (u, ¢) is a triangulation of £. This
is done as follows:

If 0e K, choose y,e U which lies over pf(c). Further choose x,€PDY? so that
(x4, ¥,)€PD, x U, lies over f(¢); and denote the class of (x,, y,) in (PD, x U))/PL, by
[xw ya]‘ Then

aiya'=y6,u'F’ FEPLn(q—l):
and

ai[xa’ ya] = [aixm aiyu] = [xt‘iias Ya.a]G, Ge Op(;q_l),
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where we define right actidn of G by

[xﬁiw yﬁga]G = [G_lxiiias yt?ia']'
By definition E(u) = |J ¢ x R", with o x R"identified withd,c x R"by F, E(¢) = U ¢ x R*,
oek oceK

with ¢ x R" identified to 8,0 x R" by G. (Here ceK is considered as the simplex in R«@
representing it.) To define ¢, it is sufficient, in view of Theorem (1), to consider E(£) to
be the equivalent bundle above. Define ¢ by

¢le x R" = x,, ce kK.
We claim this is well-defined; in fact
G Xy =0x, F 1,
since [0,x,, 0:¥,] = [0:X4, Vo, o] = [0, F 1, Yol = [G_lxa.-w Yol
It follows that ¢ is well-defined, and (u, ¢) is a triangulation of £.
This completes the proof of Theorem (3.2).

§4. ON WHITNEY SUMS

Let aePD,, a:Ay x R* 5 Ay x R* and yePD,, y:A, x R"> Ay x R define the
Whitney sum «@y€ PDyy, a®y:Ag x REX R"> Ay x R* x R* by o @ y(x, 4, v) =
(x, ay(x, w), y,(x, w)) where a(x, u) = (x, o;(x, u), y(x, v) = (x, y;(x, v)) then @ is a semi
simplicial map

@ :PD, x PD,— PD,,,. By restriction, we get
@®:PL,xPL,—~PL,,,
®:0,%x0,- 0,44
By product action 0, x O, acts on PD, x PD, and we have a commutative diagram
(Ok X 0") X (PDk X PD")—‘——PPD]( X PD"
oxo ®

Ogsn X PDysp ———————> PDy1,.

Thus the above map passes to quotients
@ PDk/Ok X PDn/On'_) PDk+n/0k+n'
We use | ] to denote semi simplicial homotopy classes of maps.

Let K be a complex o, : K— PD,, a,: K— PD, then the above operation induces a
map o, ® a,: K— PD,,,. Notice (o, ®a,) Do, = 0, ® (e, D x,).

Homotopy commutativity of Whitney sums
(We use ~ for homotopy equivalence of maps)

The vertices of O, are just the general linear group GL,. Let we GL, and Wthe smallest
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subcomplex of O, containing w. For any complex there is a unique map wk: K— W.
Since no(0,) = Z,, w, K ~ w,K in O, iff det. w, -det. w, > 0. Since each W< PL, we have
a commutative diagram

PL,
Va
- Y \\

K— W . /\'PD,, —— PD,/O,
\.0 ”//

Now assume det. w,-det. w, > 0. Since w, K~ w,K in O,, wyK~ w,K in PD,. Since
1:PL,— PD, is a homotopy equivalence w, K ~ w,K in PL,. Let A, be one of the com-
plexes O,, PL,, PD,, PD,/O,. Then using the group structure in PL,, O, and their actions
on PD, we have maps

Wx A,— A, A x W— A4,

Thus given a map « : K— A,, we have products wK-o: K— 4, and o-wK : K — A,. Using
the homotopy equivalence between w; K and w,K for w;, w, e GL, one has w,K-o ~ w,K o
and a-w, K ~ o-w, K,

Consider e, e GL,, the identity matrix, then ¢,K-¢ = o = «-¢,K. Thus for any weGL,,
det. w> 0, wK oo~ a ~ a-wk.

LemMma (I). Let o, : K— A, o, : K- A4,.
Then o ® a, = woK-(a, D) -w K, where w;eGL,,, is defined by wy(e) =e;,, for
i<n, wle)=e;_,fori>n; (e, ..., e, canonical basis for R***) and w, = wy .

Proof. By direct substitution in equation defining @. A direct computation shows
det. w; > 0 iff n-k = O(mod 2). Thus

CoroLLARY (I). If nk = 0 (mod 2) then a; @ o, ~ 01, @ 4.

Let teGL, ., be defined by #(e;) = ¢;fori > 1, f(e;)) = —e;. Leti=¢|R, R* < R*x R"
= R**", Using notation of Lemma (I).

CorOLLARY (II). If nk =1 (mod 2) then oy @ o, ~ tK-(at, @ 0y)-th = (iK-o5 " IK @ ay).
Since tK-e, 1K =g, for any k, we have combining Corollary (I, II).
CoROLLARY (III). For any k

K@, ~o, ®ekK.

Combining Corollary (I, 1I, III).
CoROLLARY (IV). o, @ o, D e, K ~a, Doy, ® e K.
Proof. If nk = 0 (mod 2) this follows from Corollary (I). If nk = 1 (mod 2) we have

Cor(I) Cor(III)

o0, D, @eK) ~ (0, Pe K)BPoy, ~ a,@a, DeK.
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Consider the diagram
®
Ay X Ay————— A1

l., [., 1+ with 1,(a) = ¢ P e
@

An+r X Ak+s——_-—’ An+k+r+s

This is not commutative, however, if a; : K— A, o5 : K— A, then 1,0, = o; @ e, K, 1,0, =
o, ®eK. And

0y @ 10y = (al ® erK® 7] @ esK) Co‘:\(fm) % 5] o @ erK® esK =0y @ 5] & er+sK

While l,+s(a1 ("B az) = 0y ("B 273 @ e,+,K.
COoROLLARY (V). Thus applying the functor [K, ...] one gets a commutative diagram
®
[K’ An] X [K9 AI’] —_— [K9 An +k]

- -

ir s rasl®

]
[K’ An+r] X [K’ Ak+s] A [K’ An+k+r+s]'

The family (4;, 1,) is a directed system of complexes. Define

lim
A = — Ai'

We call a complex X, finite if it has only a finite number of non-degenerate simplicies.
For any finite complex K an easy argument shows [K, A] = lim [K, 4,]. It immediately
—_
follows that this is true for any complex K of the same homotopy type as a finite complex.
Such a complex will be said to be of finite homotopy type. By Corollary (IV, V) and above
remark we have

THEOREM (4.1). The Whitney sum induces on [K, A] for any finite homotopy type complex
K, the structure of an associative abelian monoid with two sided identity.

We will see that the restriction that K be finite is unnecessary and that [K, 4] is actually
a group. We first consider the case 4 = O, PL. Then A is actually a group under composi-
tion inherited from O,, PL,. We will see that the above operation comes from the group
structure.

Let &, &, €[K, 4], K finite. Let a, €K, 4,], a,€[K, 4,] represent &, &,. Then by
Corollary (III), o, ® e,K and e, K @ «, also represent &, &,. Then &, -&, is represented by
(o, @ e,K) (e, KD a,) =a, @a,. Thus the two operations in [K, 4] agree.

COROLLARY (VII). For A = O, PL the Whitney sum on [K, A] is induced from group
multiplication and thus extends to arbitrary K. Further [K, A] is an abelian group.

Since PL — PD is a homotopy equivalence, the conclusion of Corollary (VII) applies
to [K, PD].
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The following results on PD/O make use of some deeper information. The only use
we make of them in the sequel is of Theorem (4.2) for complexes K of finite homotopy
type, the proof of which for this case does not depend on any of the following assumptions.

ASSUMPTION (A). T, is finite for all n = 0.

A proof for the only doubtful case I', has been announced by Cerf but has not appeared.
The other cases are dealt with in [8] and [3].

AssumpTiON (B). 7,(PD/O)=T,.

This will be proved in the sequel.

For any complex K, let K, be the subcomplex generated by the n section of K. A
complex K is called finite dimensional if K = K|, for some ».

ProrosITION (I). Let K be finite dimensional. Then there is a j such that 1* : [K, PD;/0/]
-+ [K, PD/0O] is onto.

Proof. Let M be a minimal subcomplex of PD/O [7]. Then since n,(PD/O) is finite

] Y 3
for all n, M, is finite for all n. Then M, — PD/O factors back M,— PD;/O;~ PD/O up
to homotopy. If X is finite dimensional, a € [K, PD/O] comes from o' € [K, M,] for some n.
Thus since diagram

1*

'K, M,]—— [K, PD,{0;] —— [K, PD/O]

commutes, the proposition follows.
CoroLLARY (VIII). If K is finite dimension, [K, PD/O] =lim [K, PD,;/O;]. Thus the

LN
Whitney sum operation extends to finite dimensional XK.

Proof is easy from above proposition.
Remark. The following diagram
®
[K’ PDn/On] X [Ka PDk/Ok] E— [K7 PDn+k/0n+k]

g ¢ S

[K’ Bon] x [K9 Bok] [K’ Bon+k]

commutes, where @ on the bottom denotes the Whitney sum of bundles. The proof comes
from defining the Whitney sum of bundles through co-ordinate functions.

THEOREM (4.2). For any finite dimensional complex K the sequence

[K, 0] —— [K, PD] — [K, PDJ0] —— [K, BO] —— [K, BPL]

is an exact sequence of abelian groups.
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Proof. That this is an exact sequence of basepointed sets is the usual property of fiber
spaces applied to the fiber spaces

I O-PD-PD/O

11 PD/O —» BO — BPL
noticing that I is fibrations induced from II by inclusions PD/Q — BO.

That the maps are additive follows from definitions; [The fact that p(&, @ &) =
p(&) ®p(&,), where @ denotes usual Whitney sum, follows from uniqueness of triangula-
tion Theorem (3.1)]; and from above remark.

That [K, BO] and [K, BPL] are abelian groups is known. It only remains then to show
that [K, PD/O] is actually a group, i.c. that inverses exist. Let ae[K, PD/O] then
{[x]e[K, BO] has an inverse ve[K, BO] since p is a group homomorphism p(v) = 0.
Thus there is an «'€[K, PD/0O] with {(«') = v. Thus {(a @ «’) = 0 or there is a fe[K, PD]
with A(f) = a @ «’. Now f has a negative in [K, PD]so that A(—f) + (x + «) = AL + —f)
=0. Thus «' + A(—p) is an inverse to . Q.E.D.

THEOREM (4.3). PD/O can be given the structure of an H-space such that for each finite
dimensional K, the Whitney sum on [K, PD/O] comes from this H-space structure on PD/O.

Proof. Let M be a minimal subcomplex of PD/O. Then there exists a deformation
retraction r : PD/O — M. As noted previously, the Whitney sum is defined on [M, x M,
PD|O] x [M, x M,, PD|0O] - [M, x M,, PD/O].

Let n;: M, x M,—» PD/O,i=1,2, be projections and let a, represent n, ® 7, €
[M, x M,, PD/O]. Then a,,,|M, x M, ~a,. By homotopy extension theorem [7} ((PD/O
is a Kan complex)), we can choose «,,, with «,,,|M, X M, = a,. Choosing inductively in
this manner we have an o : M x M — PD/O. The retraction of PD/O — M turns PD/O
into an H-space with desired properties. Q.E.D.

PART II—BUNDLES AND SMOOTHING THEORY

§5. TUBULAR NEIGHBORHOOD THEOREM

THEOREM (5.1). Given K x R*— K x R* p.l. homeomorphism, «|K x O = identity,
K unbounded combinatorial manifold. Then

ax1,: KxR'xR"—> K x R¥ x R",
n sufficiently large, is isotopic to a fibrewise map relative to K x O.

The proof will be preceeded by some definitions:

Let K be a complex. Let H,(K) be set of germs of p.l. imbeddings o : K x R* -+ K x R
with «|K x O = identity. We will denote by «, the composite

a n2
K xR"—- K xR"'—R"
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Since K is countable and locally finite, the set of simplicial maps K — PL,, PLE, is in
1-1 correspondence with the set of germs of p.l. imbeddings r: K x R* —» K x R* with
9]K x O = identity, and m,(y(k, »)) = k. Thus there is an injection PLX - H,(K) and we
henceforth consider PX c H,(K).

Let o represent an element of H,(K), y an element of PLX. Define a @y : K x R" x

identity
R>Kx R xR by a®y:(k, x,») = (a(k, x), y,(k, ). If 1,:KxR"——Kx R’
then a @ y = composition (1, ® y)}« @ 1,), and thus is an imbedding. Hence Whitney sum
induces a pairing:
®
Hn(K) X PLf'( - Hn+r(K)'
Note that if y, p represent elements in PLE, PL¥ : @ is the Whitney sum defined in I, 4

and that
@G Dp)=@Dy)Dp.

Let o, o’ represent elements of H,(K). Define o —IE o if there is a ¢ representing an element
of H,(I x K) such that #]0 x K x R*=a, t}]l x Kx R"=a'. It is not difficult to see that
if a, o' have the same germ o = o, so that the relation induces an equivalence relatlon in
H,(K), still denoted by =. Itis clear that if 3, §' are homotopxc elements of PLX that § = '
and further that if &, Ge H(K), =& then @ 5=a @Y.

Finally, define for ae H,(K), ae H(K), a=a if there exist integers J, 1 with
&@®1;="@1, It then follows that the equivalence classes in H(K) = U H"(K) under

n=0

relation = are acted on by elements of [K, PL] (homotopy classes of simplicial maps).
We also make use of the property that if & = ~ then ai = ai &, o, 1€ H(K).

5

LemMA. For e H(K), 7ePLK, ja =a ®7.

Proof. Letting «, y represent &, 7, we have a @y = (1, ® y)(« @ 1,,). By Corollary III,
p.23,1,®y=y@1, in [K, PL].
Thus (1, @@ 1) =@ 1)@ 1) =(ad 1) =ye. QE.D.

We can now restate Theorem (5.1) in the following form.

Theorem (A). Let K be an unbounded combinatorial manifold. Then for each deH (K)
there existsaje PLX with@ = .

The proof depends on an intermediate construction. For the time being we assume K
is an arbitrary complex.

Let o represent an element of H,(K). Let I =(—1/3,4/3). Let w* be the identification
space of I x K x R" under identification of (1 + ¢, k, x) with (¢, a(k, x)), —1/3 <t < 1/3.
And P, : I x K x R"— w* the natural projection. Note P, is a local homeomorphism and
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P(I x Kx 0)= 8" x K< w" Further, if a represents an element in PLX, w* is a micro-
bundle over S’ x K.

Define w* =w” if there is a p./. homeomorphism 4 of a neighborhood of S’ x KX in
w* onto a neighborhood of §’ x K in w* with A|S’ x K = identity.

Finally it is straightforward to see that a = o’ = w* = w*,

ProposITION (I). Let o, &' represent elements of H(K), vy an element of PLE. If
w* I_E wa’ - wa@y 'Ewa’@v
Proof. First note commutative diagram

idx0 n
IxKxR — S [xKxR' XR——IxKx R

P, l}’u@y Py
At A2

w* N waGBy 5 we

Since P,, P,q, are local homeomorphisms, w*®? is an r-dimension microbundle over w".
The restriction of this bundle to $* x K is clearly w*. Since a ~ 1, modulo K x O, it is easily
seen that inclusion S’ x K — W* is a homotopy equivalence for W'» = §" x K x R*. Thus
W=®7 considered as a microbundle over W* is uniquely determined by its restriction to
S’ x K. Now let S’ x K< N*< W% N*a neighborhood of S’ x K in W* Then 1, '(N%
= W*®|N* is a neighborhood of 1'(N®) <€ W*®’, Given an o’ representing an element of
H(K), an N* where S’ x K< N* < W%, and a homeomorphism 4 :N*— N* with
h|S’ x K = identity; it follows that W*®Y|N* is equivalent as a microbundle over N* to
h*(W*®|N¥). Thus there is a homeomorphism £ of a neighborhood of 4,(N%) < W*®|N®
onto a neighborhood of 1((N*) = W*®?|N* with h'A, = A1h. Since h|S’ x K = identity,

k|S’ x K = identity and thus W*®" = w*®7 Q.E.D.
i
PropoSITION (II). Let « represent an element of H(K) and suppose W* = W'r. Then

a®l,=1,,,.

Proof. Since we can retract by a homeomorphism W'»= S x K x R*~— into any
neighborhood of ' x K x Oleaving a smaller neighborhood fixed we may as well assume the
equivalence between W= and W*" is given by an embeddingk: S’ x K x R*—» W* We
further can assume # has the following properties:

1. Py ((—1/4,1/4) x K x R") < P((—1/3, 1/3) x K x R")
2. hPy ((3/4, 5/4) x K x R") < P,((2/3, 4/3) x K x R").
Then one can cover 4, by a map k so that the following diagram commutes.

k
(—1/4,5/4) x K x R" ——> I x K x R"

T

SxKxR ——m—— W
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h is uniquely determined by this and the fact that (¢, k, O) = (¢, k, O) te(1/4, 5/4). Clearly
h is an imbedding.
Now let Q, = hl(~1/4, 1/4) x K x R, O, = hl(3/4, 5/4) x K x R" Qy(t, k, y) = 05(1

idxa

+t,k,y),te(—1/4,1/4) I x o1 (2/3,4/3) x K x R*— (2/3,4/3) x K x R". Then we must
have (I x @)0, = @, on (—1/4, 1/4) x K x R*. Now let p be a p.l. homeomorphism
p: R—(=1/4, 1/4) with p|(—1/8, 1/8) =identity. Let 5: Kx R*x R—>(—1/4, 1/4)
x K x R" by pk, x, ) = (p(»), k, x). Also let

permute id x inclusion

c:IXxKxR—— > Kx R x1 K x R*x R.

Then o(1 x ©)3,p =0 Q,p as maps K x R**1— K x R**!. Notice that they represent
elements of H,,(K). Consider the map H:Ix Kx R"x R—1Ix K x R* x R defined as
composite of the following

idxp
IXKXxR'XR—>Ix(—1/4,1/4) x K x R" >
permute id xinclusion

Ix(—1/3,4/3) x KX R* ———Ix KX R*x(~1/3,4/3) ——— I x Kx R" x R,

where h(¢, t', k, y) =t, h(t + ', k, y).
Then H represents an element of H,,+1(I x K) and Ho—aQIp, H, =0Q,p. Hence

o-le =0¢Q,p and thus (1 x «)0,p =y0,p and thus (1 x )6~ * = 1,,, where the left
hand side is well defined on K x R" x (—1/3,4/3) and thus represents an element of
H,.,(K). Since a(1 x a) 0~* has the same germ as a @ 1,, the proof is complete.

COROLLARY TO PROPOSITION (11, I). Let o represent an element of H,(K), y and element

of PLK. If W*®ls = W'®l then a = .
i i i
Proof. W®ls = @l o ppa0@LOy~! o pprOLey~! = WY®1i8L . Pix®:  Then by

Proposition (IN) a @ 1,®y ' =1,,,, ora =y. QE.D.
ProrosiTioN (I11). Let o represent an element of H,(K) where K is an unbounded com-
binatorial mam‘fold Then for r sufficiently large there exists a y representing an element of

PLE,, with W2l = ",

Proof. W*is also an unbounded combinatorial manifold. Without loss of generality
we may assume W*®is orientable [for if not, choose y representing an element of PL% with
the first Stiefel-Whitney class + O as microbundle over S’ x K. The normal bundle of W*
in W=**7 has the first Stiefel-Whitney class % O as in proof of Proposition (I). Thus if W*
is non orientable, W*®? is orientable and thus we can work with a + y]. Now choose r so
large that S’ x K has a normal bundle in W*®!r = W* x R’. Call bundle £"*". Since
Wet1r is orientable &|S’ x k, ke K is trivial (See Lemma (10), Milnor [4]). By construction
of W*®lr g|lp x K, pe §’ is trivial.

Thus classifying map S’ x K— BPL,,, factors through S' x K— S A K— BPL,,,. The
homotopy class of &' is determined by a characteristic map y: K— PL,,.. And clearly
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W*®=g¢,,, as a bundle over §' x K. Since ¢ is a normal bundle for §' x K in W*®!,

WY = W*®!r and proposition follows.

Theorem (A) follows immediately from Corollary and Proposition (III) as does:

THEOREM (B). « = o if and only if W*®ls = W*'®- For some s, r, where « represents
an element of H(K), o' an element of H,(K), K an unbounded combinatorial manifold.

Query. Are Theorem (A) or the Weaker Theorem (B) true for arbitrary complexes
K? It seems quite likely, yet the proof may be difficult.

THEOREM (5.2). Let u, v be p.l. microbundles over a combinatorial manifold K, and let
[ E(u) = E(v) be a zero-preserving p.l. homeomorphism. Then for s sufficiently large

F x 1,: E(u) x R®— E(v) x R®
is p.1. isotopic, relative to the zero-section, to a fibrewise map.
Proof. 1. Let i be any microbundle over K, and A" any inverse to A. Let m,, m, be
the bundle projections in y, v respectively. Now E(f*z¥l) = {(x, y) € E(u) x E(z}FA)| f(x)
= p(»)}, p the projection E(n}1) — E(v). Consequently, we have the natural bundle map
@, E(f*n*l) - E(n*2), ¢,(x, y) = y. Similarly, we have ¢, : E(f*n*1’) - E(n*1’), and
finally @, : E(f*nfi @ ') > E(z¥A ® A’). Then

0sDon’
E(f*nfi@f*ny i) — E(nyA@® nyA)

2% 3%

E(f*rfi@d 1) E@ii® i)

E(w) x R® ——————— E(V) X R®
commute under the natural equivalence. s = dim A x dim 1'.
2. Since we may assume K is a p./. deformation retract of E(u), f*n*A ~n}A. Since
E(n*3) = E(v® ) and E(n}4) = E(u® 1), ¢, corresponds under identifications to a zero-
preserving map g : E(u® 1) - E(v® A).
Similarly, ¢; + ¢,. corresponds to a bundle map
h: E(n}g,A) = E(n}, ,A') covering g.

Suppose g is isotopic to a fibrewise map, relative to the zero-sections. This isotopy
may be covered by a bundle isotopy of 4, to a fibrewise map as bundles over K. But
then ¢, @ ¢,;. and hence by (1), f x 1% is isotopic to a fibrewise map as bundles over K,
relative to zero-sections.

s
3. Since by uniqueness of stable normal bundles, u ~ v, we can take A to be an inverse of
both ¢ and v. Then g: E(u® 4) - E(v® A) may be considered a zero-preserving map
Kx R"-» K x R", n=dim A. Since we may always add a trivial bundle to A, Theorem
(5.1) implies g is isotopic to a fibrewise map for n sufficiently large; and Theorem (5.2)
follows from the argument (2) above.
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THEOREM (5.3). Let f;: K~ V, i=0,1, be p.l. imbeddings, where K and V are com-
binatorial manifolds without boundary, then
(a) f{K) has a normal microbundle y; in ¥ x R", n sufficiently large; i.e. there exists p./.
homeomorphisms F;: E(y;) » V x R* such that F; restricted to the zero-section is
fi: K->V xO0.
(b)) If h: Kx I-V x Iis any p.l isotopy between f, and f;, there exists a p.l. isotopy
H:E(uy) x R x IV x R"** x I, k sufficiently large, covering #, and such that
Hy = Fy x 1,, H, is a microbundle equivalence of E(u,) x R* into Fy(E(u,)) x R*.

Proof. (a) Milnor [5] proves the existence of a stable normal microbundle.
(b) Extend & to a p.l imbedding h : K x R— V x R, by setting

E(xi t) = (fO(x)’ t)a t<0
= hix, 1),0 =t £1

= (,fl(x), t)s t >l

Then A(K x R) has a normal microbundle in ¥ x R x R**¥, k sufficiently large. By the
covering homotopy Theorem [5], this bundle is of the form v @ 1, where v is a bundle over
K, i.e. there exists a p.. homeomorphism G:E(v) x R»¥V x Rx R"** GIKx R=h
(but not necessarily commuting with projection into R).

Now G may not be an isotopy, but I': E(v) x R x I—» ¥V x R x R*™* x I, defined by
I(x, s, ) = (G(x, s + £), t) is a p.l. isotopy, for any interval L.

On the other hand, we claim that Fy x 1,4, : E(uo) X R**1 —» V x R****1 s pl.
isotopic, relative to the zero-section, to a fibrewise map F, w.r.t. ', =TE(v) x R x (0);
i.e.

Fo
E(:“'O) X Rk+l——-—-> V x Rn+k+1

N A

E(v) x R

where ¢ is a microbundle equivalence.

In fact, Fy x 1,,; and say I'_; may both be thought of as normal microbundles of fo(K) =
T (Kx0)cVx(—1)x0cV x Rx R , Hence F; x 1,, is isotopic relative to K
(by Theorem (5.2)) to a fibrewise map w.r.t I'_;. But I'_;, I'y: E(¥) x R— ¥ x R****+1
are isotopic, relative to K.

Similarly, T, is isotopic to say I',, which in turn is isotopic to a fibrewise map w.r.t
F, x 1;,,. Since Iy is also p.l. isotopic to I';, we may combine these isotopies to give a
p.l isotopy H: E(up) x R*** x I-» ¥V x R***¥*1 x [ such that Hy = Fy x 1,4, and H, is
fibrewise w.r.t. F; x 1,,,. Hence for k sufficiently large (i.e. writing k for k + 1), we get
conclusion (b), and the Theorem is proved.
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§6. SMOOTHING COMBINATORIAL MANIFOLDS

DEeFINITION (6.1). Let K be a combinatorial n-manifold. A smoothing of K is a pair
(M, f), where M is a smooth n-manifold and f : K — M is a non-singular p.d. homeomorphism.

Two smoothings (M, f,j and (M,, f,) are called equivalent if there exists a diffeonior-
phism d : M; - M, such that

M,
fl//
/

K
AN

commute.

N
o,

DEFINITION (6.2). Two smoothings (M, f)), (M,,f;) of a combinatorial manifold
K, without boundary, are called concordant, if there exists a smoothing (W, F) of
Kx I, F: K x I— W such that 0W = disjoint union of My, M, and Fl,.o =f1, Flix1 = /-

More explicitly, we are given diffeomorphisms d;: M; > W, i = 1,2, di(M,) nd,(M,)
=0, di(M,)udy,(M,)=0W and

S f2
K —M, K —M,
iol I«di i‘jv jvdz
F F
KxI—W KxI—W

commute.

In the remainder of the paper we deal only with combinatorial manifolds of the homo-
topy type of a finite complex. This will be understood in what follows.

The basic theorem of concordance theory is the Cairns—Hirsch [2] Theorem. We use
it in the following form [4].

TuHEOREM—Cairns-Hirsch. Let (f, M) be a smoothing of K x R*. Then there exists
a smoothing (g, N) of K, unique up to concordance with the following property.

There is a piecewise differentiable isotopy H:K x R* x I—» M x I with H,=f, and
H, =¢(g x id) where ¢ is an imbedding¢ : N x R* - M.

DerFINITION (6.3). A trivial triangulation of a p.d. vector bundle E" over a locally finite
complex K is a triangulation (1", @), where E(1") = K x R", ¢ : K x R* — E(£). We write
(@, &) for a trivially triangulated p.d. bundle.

Two trivially triangulated p.d. bundles (¢, £7), (¢,, £5) over K are called equivalent if
there exists a trivially triangulated p.d. bundle (¢, &) over K x I such that K x O = &,,
EKx 1>&, o] KX O x R~ ¢, p| K x 1 X R~ ¢,.

More explicitly, there exists p.d. bundle equivalences

Y1 E(G) = EQlkxos Y2 1 E(C2) = E(S)lkx1s
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such that
?1 ?2
K X R*———— E(¢)) K x R" ————— E(¢£;)
iol l!lll i 1 l'l’z
@ i @
K x I x R*—— E(&) K x I x R"— E(¢)
commute,

Alternative definition of equivalence

More simply, if less symmetrically, there exists a p.d. bundle equivalence
W @ E(&,) — E(&,) such that Y, is isotopic to ¢, through trivial triangulations.

Further, since the Whitney sum of a p.d. bundle and a trivial bundle has a naturally
defined p.d. structure, we may define stable equivalence of trivially triangulated p.d. bundles
over K: (¢y, &5, (@,, &) are called stably equivalent if there exists a trivially triangulated

s § s
pd. bundle (¢, &) over Kx I such that &|g,o~&, &lxxi>& Olixoxrn = @1
¢|K x 1 X R" =~ ¢,.

We denote the set of stable equivalence classes of trivially triangulated p.d. bundles by
T. Tis a set with unit element, namely the class of (/, 1);7: K x R"— K x R" the identity.

Let C = C(K) be the concordance classes of smoothings of a combinatorial manifold
K, and let ¢,e C be a distinguished class. We will denote this set with distinguished class
by C,.

Let K be the s.s. complex corresponding to K. Let O = 2—» 0, be the direct limit of
the s.s. complexes defined above. Let [K, O] be the s.s. homotopy classes of s.s. maps of
K into 0. Define [K, PD], [R, BO), [K, BPL] similarly. Let ji:[K, O] - [K, PD] be the
map induced by the inclusion u: O — PD. Let p: [K, BO]- [K, BPL] be induced by
p: BO —~ BPL. Define an action of [K, PD] on C, as follows: Let (M, f)eceC,, and let

g:Kx R"— K x R" represent a class (g)e[K,PD]. Let h: K x R"—> M x R* be the
g Sx1
composition K X R"—» K x R"—— M x R"; then zis a non-singular p.d. homeomorphism.

Let {(M,, f))} be the concordance class defined from 4 by the Cairns—Hirsch theorem.
This is clearly independent of the choice of g. Further, it depends only on the concordance
class c; as is proved by applying the same construction to the given concordance. We denote
this action by .. Now define a map { : Cy — [KBO] by {{(M, f)} = homotopy class of the
stable classifying map for T @ 15!, where t = tangent bundle of M, 7, = tangent bundle
M,. It is clear, that this depends only on the concordance class of (M, f), and (M, fo)
since concordant manifolds are diffeomorphic [10], and hence have the same stable tangent
bundles.

DErFINITION (6.4). Let G, H, K, L be groups, and C a base-pointed set with H as a group
of operators on C. Let A : C x H— C be the operation. Let p: G — K a map of base-pointed
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sets. Then we say that
i 4 v
G f—» H->C->K~-
is exact if the following hold:
(1) A(h, ¢} = c if and only if he (G).
) Ucy) = Ucy) if and only if ¢, = A(cy, h) for some he H.
(3) wk) =1 if and only if ke &(C).

Remark. If C is a group, then an exact sequence of groups G- H— C— K— Lis an
exact sequence in the above sense, where A(c, k) = cA(h).

5—LEMMA. Let
n A1 4] vt
Gl ‘>H1 AC‘——)I<1"_'_*Lll
‘ml ¢2l PJ %1 lllzl
uz Az L2 v2
GZ > H2 > C2 > K2 > L2

be a commutative diagram, where the horizontal rows are exact in the sense of Definition
(6.4), ¢4, @3, Y1, Y5 are group isomorphisms and p is a map of base-pointed sets with operators.
Then p is an isomorphism of base-pointed sets with operators.

ProrosiTION (6.1). [K, 0]—f—> [R, PD] ~, Co —C—-> [K, BO] R [R, BPL) is exact

Proof. 1. Order two

(@) A

This is just Proposition (3.1) applied to the trivial bundle over M, for using smoothing
f: K- M, an element of [K, O] is exactly a p.d. vector bundle map M x R"—» M x R" and
the isotopy given by proposition deforms this to a differentiable bundle map
Mx R"—-Mx R"

(b) LA

Let (9)e[K, PD] and let 2: K x R"— M x R" be the induced p.d. homeomorphism.

Then the Cairns—Hirsch theorem gives that £ is a p.d. isotopic to a p.d. homeomorphism
Six1 d
h:Kx R"—> M; x R"—— M x R", where d is a diffeomorphism. It follows that

M, has the same stable tangent bundle as M. Hence {A((g), ¢) = K(¢).
© p¢

Since any two smoothings of K have tangent bundles with the same underlying tangent
microbundle, and § is a homomorphism w.r.t. Whitney sum; p{(c) = homotopy class of
the classifying map for the trivial microbundle.

2. Exactness
(@) [K, PD]

Suppose (¢) € [K, PD] is such that A((g), ¢) = ¢ for some ce C,. We wish to show that
(g) comes from [K, O]. Starting with (M, f;)€c, the action of (g) must lead by the con-
struction 4 to (M,,f,)ec. Let f: K x I— V be the concordance between (M, f;) and
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(M,, f3). The imbedding (which we denote d,) of M, x R" in M; x R" of the A-construc-
tion, can be extended to a smooth imbedding d:V x R"— M, x I x R", such that
dM,x R"=d,: M, x R"> M, x O X R"andd|M; x O: M; x O M; x (1) x Ois the
identity. In fact, V is diffeomorphic to M; x I, and any two imbeddings of M| x R" are
isotopic if n is sufficiently large. Now dof x 1 is p.d. isotopic to a p.l. imbedding
f:KxIxR -KxIxR', such that flIKx1x R" is fibrewise p.d. isotopic to
dofx1|[Kx1x Re[K,0)],and fIKxOXxR":KxOxR'-Kx 0 xR'isg. Now f
may be extended to amap 4: K x R x R"—> K x R x R", by extending the maps over the
two boundaries of K x Iin constant fashion. Since AlIK x Rx O : KX Rx O—>Kx Rx R"
is isotopic to the identity, relative to K x (R — Int I), the Tubular Neighborhood Theorem
gives a covering isotopy of 4 to a fibrewise map. But this shows that A|/K x 1 x R" and
hIK x O x R" are stably isotopic in PD. Hence (g) comes from [K, O}.
(b) G

Let (M, f,), (M,, f,) represent two concordance classes c;, ¢, respectively, such that

K(c,) = K(c,); i.e. 1, = t,. Then there is a smooth imbedding i : M, x R* > M, x R"; for
n sufficiently large; such that if, : K— M, x 0> M, x R" is homotopic to f;, and hence
p.d. isotopic to f;. By the tubular neighborhood theorem, i°(f, x 1) is p.d. isotopic to a
p.l. bundle map g: K x R"— K x R". Hence c, = A((g), ¢)), (9)€ [K, PD].

(©) [K, BO]

Let (k)€ [K, BO]. Then if j(h) =0, (h) represents a p.d. vector bundle £ which has a

trivial triangulation ¢. Then ¢ : K x R"— E(¢), E(¢) the diff. vector bundle over M,,
defines a concordance class ¢, with tangent bundle &; i.e. K(c) = (h).

i A g p
PROPOSITION (6.2). [R, 0]= [K, PD]—- T — [K, BO] - [K, BPL] is exact, where
(1) Ll(p, &)] = the homotopy class of the classifying map for £
(2) IR, PD] acts on T by Whitney sum; i.e. given (f)e [K, PD], (¢, &)eteT, let A(f).7)

betheclassof p ®f: K x R* x R"— E(£) x R".

Proof.
1. Order two

(a) A

Let (9)e [K, 0), (¢, E)eteT. Then A(g), f)istheclassof g @ g: K x R" x R™ - E({)
XR" but o @Dg=1Dg0o®1, 1Dg: E&) x R" > E() x R™. Since this last is a p.d.
bundle equivalence (¢ @ g, ¢ ® 1™ €.

() {4

Up D, 0 ®1%) = {(o, £) by definition (see 2) above)

(©) pt

If (¢, {)eteT, ¢ by definition has a trivial triangulation, and p{(¢) is the homotopy
class of the classifying map for the trivial microbundle.

2. Exact
(a) K, PD]
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Let (9)e [K, PD], (9, £)eteT; and suppose A((g), 1) =t. Then after stabilizing, we
have

AE(E) xR™
L1
/
K x R"x R" v
¢D1
NME@E) x R™

commutes up to isotopy through trivial triangulations, where ¥ is a p.d. bundle equivalence
(see alternative definition of equivalent trivial triangulations). Hence yo(¢p @ 1)|K x 0 x
R" . Kx O xR">Kx R"c E(£) x R™ is isotopic in PD, to o@D g|K x O x R™: K x
O x R"— K x R™ < E(£) x R™. Identifying K x O x R"with K x R", o ®g|lK x O x R™
=g and Yo(p ®1)|K x O x R" =y}K x R™. Hence g is isotopic in PD,, to y|K x R™,
where (Y|K x R™ e [K, O).

®T

b

Let (¢, &) et;€T, i =1, 2, and suppose that {(¢;) = {(¢,); i.e. {; =~ &,. Then we may
suppose &, =&, =¢, and ¢@;: Kx R"— E(), i=1,2, are two triangulations. Then
¢, is isotopic through triangulations to

@5 : K x R" ——— E(§), @5 = ¢19, g a p.l. microbundle

N 4
g \ /¢1
K x R"

homomorphism. LE. (g)e[K, PD] and X((g), t,) = ¢,.

(9 IK, BO}

Let (h) e [K, BO), and suppose p(h) is trivial. L.E. (k) represents a p.d. bundle & which
has a trivial triangulation ¢. Then {{(¢, &)} = (h).

Result from previous section
i

3 - ¢ - P -
6.3) [K,0]—— [K, PD]—— [k, PD/0]—— [K, BO]—— [R, BPL]
is an exact sequence of groups.

DEFINITION OF p: T— Cy:

Let f,: Kx M, be a given smoothing. Let (¢, £) be a triangulated p.d. bundle,
¢ : K x R"— E(¢). Considering ¢ as a vector bundle over M, E(£) may be given a unique
differential structure as a diff. vector bundle, up to diff. bundle equivalence. Denote E(&)

AN A
with this diff. structure by E(£). Then there exists a p.d. bundle map y : E(£) — E(&) over
the map f, : K— M,; i.e.  is diff. over each simplex of some rectilinear subdivision of K.

AN
Then Y@ : K x R"— E(£) is a p.d. homeomorphism. By the Hirsch product theorem it
defines a concordance class of smoothings of K.
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To show this is well-defined, we must show it is independent of the choice of i and the
choice of representative in the stable equivalence class of (¢, £).
AN
By Proposition, if y': E(E) —» E(£) is any other p.d. bundle map, there exists a diff.
Faaald VAN
bundle equivalence A : E(&) - E(£) such that

[ P
E(§) — E(%)
\

\ 2
o
\ AAA
E(¢)
commutes up to a p.d. bundle isotopy. It follows that Y@ and /¢ define concordant
smoothings.
It is clear that (¢, ) and ((p, 1), @ + 1), (o, 1) : (K x R") x R— E({) x R, define con-

cordant smoothings. Now suppose (@y, £;) is equivalent to (¢@,, £,); i.e. we are given
¢:KxIxR'->E®,0o restrlctmg to (qol, &), (@3, ;) resp. at 0 and 1. Again there exists

a p.d. bundle map ¥ : E(é)—»E(C), E(é) the diff. bundle over M x I, ¥ covermg

(foo ): K xI—>Myx I Then by the Cairns-Hirsch theorem, y¢: K x I x R" —>E(.f)
defines a concordance between the smoothings defined by ¢, and y¢,.

Hence the map from stable equivalence classes to concordance classes is well-defined.
Let p : T— C, be the map defined above.

THEOREM (6.1).

" a . A 4 - P -
[R, 0] —— [R, PD] —— T —— [R, BO]—— [R, BPL]
/

is commutative, and hence p is an isomorphism of base pointed sets with operators.

Proof. (a) That {p = p is immediate from the definition of p.

(b) Let (9)e[K, PD], (¢, )eteT. Then A((g), ) is represented by o ®g: K x R x
R™— E(&) x R™ p(M(g), 1)) is determined by the Cairns-Hirsch theorem from ¢ @®g:
K x R* x R™— E(£) x R™. But ¢ @ g is p.d. isotopic to ¢’ @ g, where

Faaal

¢': K x R"—— E(¢),

f& 'dl

M; xR"
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where (M,, fi)ep(f). Thenf; +g: K x R" > M, x R™is p.d. isotopic to

h:KxR"——— M, x R",
\ 7

N\
N\ //

sz}\\ //Aa
M

M, x R,

where (M,, )4 ((g), p(#)). But then (d; x 1)«((f; x 1)@ g) and hence ¢ Dg is p.d.
isotopic to (d; x Do(l x dy)o(f5 x 1 x 1), L.e. (M,, f)€ p(M(g), t)). Hence pi = A.

(¢) Since p : T— C, is a homomorphism of sets with group of operators [K, PD), the
usual 5—Lemma argument applies to show that p is an isomorphism. Q.E.D.

Define o : T— [K, PD/,0] as follows:
Let (¢, §)eteT, ¢ : K x R*— E(£). Then since ¢ is p.d. homeomorphic over each simplex
of K, and E({) is pasted together by elements of O, ¢ gives a well-defined map g,, : K — PD/O.
Further, equivalent pairs give homotopic maps. Consequently, we get a well-defined
class a(?).
THEOREM (6.2).
o . 4 ¢ o B ~
[K,0] —— [K, PD] —— T —— [K, BO]—— [K, BPL]
\\ //
}\ 4 //{
N - v
[K, PD/0O]
is commutative, and hence o is an isomorphism of base-pointed sets with operators.

COROLLARY. T and hence Cy may be given a group structure, such that the exact sequences
of Proposition (1, 2) become exact sequences of groups.

Proof of Theorem. (a) Let (g)e[K, PD] and (9, &)eteT. A(g) is represented by
9®@Dg:Kx R"x R"— E({) x R"; clearly, (¢ @®g,{@D1) is just the Whitney sum;
ie. lo = A.

(b) Let (o, &)eteT. Let P be the total space of the associated principal s.s. O, bundle
to & Let f: A,— K bein K@, Then FeP@ is a p.d. bundle map F: A, x R" - f*(&) over
feK®@. Further, ¢ induces a unique p.d. homeomorphism ¢ ¢ such that

A, x R —2 s (@)

fxll
@

K x R* ——— E(§) commutes.

Then F~'g,: A, x R">A, x R is in PD®. Further (8,F) '@, = 0(F '¢,). Hence ¢
defines a s.s. map & : P— PD,. & is amap of principal O, bundles, sinceif R: A, x R" > A,
x R is in O, $(FR) = R™'(F~'¢,), which is just what the definition of right action of
0, on PD, calls for.
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Now the quotient map K — PD/O induced by @ is just the map g, constructed in the
definition of . Further, P » PD, < PD, x U is an O, bundle map which induces by pas-
PL

sage to quotients
R——PD,jO,  PD, x U =BO,
go [0 PL,
Hence (g, is a classifying map for ¢, and {o = (.
(c) Again the 5—Lemma argument shows that ¢ is an isomorphism of sets with a
group of operators. Q.E.D.

From Theorem (6.1) and (6.2), we have C, ~ [K, PD/0}; i.e.

THEOREM (6.3). Let K be a combinatorial manifold (without boundary), which admits a
smoothing M, then the concordance classes of smoothings of K are in 1-1 correspondence
with the abelian group [K, PD|O] such that the class of M, corresponds to the identity element.

(Theorem (6.3) was announced by Mazur in Seattle)

Remark. Using Hirsch [2] it is easy to generalize Theorem (6.3) to manifolds with
boundary).

CorOLLARY (1) (Hirsch-Mazur). n(PD/O) ~T,, the group of differentiable structures
on S" (under connected sum).

Proof. mn(PD]O) ~ Cy(S") by the above. But since every n.s. p.d. homeomorphism of
S" onto S" is p.d. isotopic to the identity, two smoothings, which are diffeomorphic, are
concordant. Hence as sets Cy(S™) = I',. If the base point of Cj is taken to be the standard
sphere, then we may show that Cy(S™) with the group structure induced from =, (PD/O) is
group isomorphic to I',.

Note first, that we may define an addition in T by taking Whitney sum of trivial tri-
angulations. Thus ¢ : T— [K, PD/O] is obviously additive, so that the group structure in
T is given by Whitney sum.

Now Whitney sum of vector bundles over a sphere corresponds stably to connected

sum of bundles. Defining connected sum of trivializations (stably) in corresponding fashion,
we see that under p : T — C,;,, Whitney sum of trivializations, corresponds to connected sum

of spheres.
P
LemMa (Milnor). n(BO)— n(BPL) is a monomorphism (and hence n{O)— n(PD) is
a monomorphism).
This follows from Theorems (6.3) and (2.4), and the fact that every homotopy sphere
has a stably trivial normal bundle. See [3].

TueoreM (Hirsch-Mazur).

14 q
0 —— n,(BO) ——> n,(BPL) 3 Y > O
is exact, where q : n,(BPL) ~ n,_(PL) ~n,_(PD)>n,.,(PD/O)=T,_,.
Proof. This follows from the above Lemma and Corollary (1).
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§7. CONCORDANCE CLASSES OF SMOOTHINGS OF A VECTOR BUNDLE
AND SMOOTHINGS OF IMBEDDINGS
Let n be a p.d. vector bundle over a unbounded combinatorial manifold K, and let
(E(), p) be a triangulation of E(n). We wish to show

THEOREM (7.1). There exists a 1-1 correspondence between concordance classes of
smoothings of K and concordance classes of smoothings of E(u). Further, this correspondence
is obtained by assigning to (M, f,), where f,: K— M, the concordance class of (E(n),, @.)
where ¢, : E(u) = E(n), is the induced triangulation given by ¢, and E(n), is the total space of
differentiable vector bundles defined by n over M,,.

Proof. Let p: T(K)— Co(K) be as above. Let ceCy, and t = p~'(c). Let (y, )ety;
i.e. £ is a p.d. vector bundle over K and y : K x R"— E({) is a trivial triangulation. Let
p : E(u) > K be the p.l. projection map. Then (p*y, p*&) e T(E(u)) where

P
E(p) X R" ——— E(p*¢)

p“l lﬁ
¥

K x R —————— E(&) commutes.

E(p*&) = {(x, y)e E(w) x E)|p(x) = n(y)}, =:E(§)—K the projection p*y(x,r)=
(x, Y(p(x), 1)), P*(x, y)=y.

We define p* : T(K) — T(E(r)) by p*(ty) = {{(p*(¥), p*&)}. Similarly, if s: K— E(y) is
the zero-cross-section, then s* : T(E(n)) — T(K), and s*p* = 1. This shows that p* is 1-1 into.

On the other hand, since s(K) is a p./. deformation retract of E(u), we have a homotopy
H: E(u) x I - E(u) such that H, = 1, H, = sp. Given any trivially triangulated p.d. vector
bundle (4, &) €ty over E(k), E(H*(E) =~ E(2) x I, and H* : E() x I x R" - E(H*(?) =
E(&) x I gives an equivalence between (p*s*y, p*s*¢) and (¥, ), showing that 7, =

p*s¥tyy; ie. p¥s* =1, and p* is 1-1 onto. (The fact that p* is 1-1 may also be obtained
Palaal

from the fact that [E(u), PD/O] ~ [K, PD/O].

Now let (M,, f,)ec, then t = p~!(c) is represented by (¢, ¢), such that yy : K x R" -
E(&)y; where E(£), is the diff. vector bundle over M, is p.d. isotopic to

Sax1 d
Y': K xR M, x R" ——— E(&),.

Then (p*y, p*£) defines a smoothing in p(p*c) on E(u) from the Hirsch product theorem
using p*y : E(u) X R" > E(p*&),, where E(p*{), is the diff. vector bundle over E(),. We
wish to show that this smoothing is (£(n),, ©,)

E(p*&)y = E(n*n), and we have the commutative diagram

o
E(4) X R" ———— E(p*£)y ———— E(*no

v
K x R" - E(£),.
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Consider the p.d. vector bundle E(y*n*n) = E(y) x R", we have

E(n) x R"
ox1 = 14
E(p) x R"—— E(Y*n*n) ———— E(n*n)o

4

KxR'————— K xR'"———— E(§), commuting.
identity ']

The p.d. isotopy of Y to y’ is covered by a p.d. bundle isotopy of ¥ to J’. But then

PaXx 1 d
E(w) [( R ———— ETL X R* ———— E(n*n)o = E(p*&)o
K x R" —— M, X R" ———— E(¥), commutes.
fﬂ x 1 d

Since p*y is p.d. isotopic to d(g, x 1), (p*, p*&) defines the smoothing (E(y),, ¢,); i.e.
pp*p~ (Mo, £} = {(E()> @)} This proves Theorem (7.1).

THEOREM (7.2). Let p be an r-dimensional microbundle over a combinatorial manifold
K", and i : E(u) —> V**" be a p.d. imbedding in a smooth manifold V. Then if y is a triangula-
tion of some p.d. vector bundle C, there exists a smoothing M, of K such that i is concordant
to a smooth imbedding E(L), in V.

Explicitly, there exists a p.d. imbedding A : E(u) x 7— ¥V x I such that 1, = i: E(u) x
0 -V x0and 4, : E(u) x 1 >V x 1 may be factored

A1
E(p) ———

\\ /
¢a\ /A
N

E(®),

where ¢ : E(u) — E(£) is the triangulation, and 4 is a smooth imbedding.
Proof. i: E(i) - V induces a smoothing (g, E(1)B) of E(y), such that

E@) ————— V
AN
N /
B\\ //do
N/
E(u)y commutes, where d, is smooth
By Theorem (1), (g, E(u)p) is concordant to some (E(£),, ¢,). If 1: E(u) x I—> W is this
concordance, then there is a diffeomorphism e : E(w)j x I — W, such that eog = 1o Take
A=(dy x 1)e” %1, Since 1, =d,p, for some diffecomorphism d,, A, = dgp, where
d = dye, ~'d, is a diffeomorphism.



MICROBUNDLES AND SMOOTHING 387

THEOREM (7.3). Leti: K — V be a p.l. imbedding of a combinatorial manifold in a smooth
manifold V, w.r.t f: L—V a smooth triangulation. Then there exists a non-singular p.d
homeomorphism h: V — V such that hi(K) is a smooth submanifold with normal vector bundle
&; if and only if i(K) has a normal microbundle u which triangulates &.

Proof. (a) Only if

Let ¢ : E(u) = E(£) c V be the triangulation. Then ¢ is p.d. isotopic, relative to the
zero section, to a p.l. imbedding ¢, w.r.t the triangulation Af: L — V. Thenh™ ‘¢, : E(u) —» V
is a p.l. imbedding which extends the imbedding i : K — V.

® If

By Theorem (7.2), if i(K) has a normal microbundle 4 which triangulates &, there
exists a p.d. imbedding A: E(u) x I— V x I such that A,: E(u) — V is a p.l. imbedding
which extends i, and A; = d¢,; where d is a diffeomorphism, and E(&), is a differentiable
vector bundle over a smoothing M, of K, which is equivalent as a vector bundle to £. Let
N be a regular neighborhood of the zero-section in E(x). Then A,(N)is a combinatorial sub-
manifold with boundary of the same dimension as V. Let N, be the second regular neigh-
borhood of N in E(u); then Ny = N u 0N x [. 1t follows by the Cairns-Hirsch theorem,
that A: (Ny x I, Ny x dI) > (V' x I, V x dl) is p.d. isotopic, relative to (N x I, N x é) to a
p.d. imbedding 1, such that A(éN, x I) is a smooth submanifold. Now A(0N; x I) has a
smooth product neighborhood T in ¥ x I. See Fig. 1.

Then Vis a smooth manifold (after smoothing corners).

,
LTI TR — X (K ><I)= N(K><
o\ D T3 s Xt

v

FiG. 1.

P
<]

FiG. 2,
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Let V=(V —To)” U 0T u T,. This is represented by heavy line in Fig. 1. Since 8T

is diffeomorphic to 0T, x I, and A(N; x 1) is homeomorphic to A(N; x 0), there exists a
non-singular p.d. homeomorphism 4 : ¥ — V, such that ki(K) is a smooth submanifold of V
with normal bundle ¢. It remains to show that Vis diffeomorphic to V.

Extend the left boundary of ¥ x /, then the region between the new boundary and V

is a smooth manifold which is combinatorially a product (see Fig. 2). Hence V is diffeomor-
phic to ¥, by Munkres [8]-Thom [10].
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