
About the diffeomorphisms of the 3-sphere and a famous theorem of Cerf (Γ4 = 0)

François Laudenbach

Abstract. Using a rigidity property of the foliations of S2 × [0, 1] that are defined by a non-
vanishing closed one-form, we give a rather simple proof of a theorem due J. Cerf, going back
to 1968, that the group of direct diffeomorphisms of S3 is connected.

The famous theorem of Jean Cerf in question in the title states the following.

Every diffeomorphism of the 3-sphere preserving the orientation is isotopic to the identity.

It follows that every diffeomorphism of S3 extends to the 4-ball. Then, Γ4 := DiffS3/ρ(DiffD4)
is a trivial group; here, ρ stands for the restriction morphism to the boundary of D4. So, Γ4 = 0
is a short name for the real theorem of Cerf. Actually in 1992, using recent results at the time
in 3-dimensional contact geometry and the theory of holomorphic discs, Y. Eliashberg gave a
direct proof of Γ4 = 0 [2, section 6], avoiding Cerf’s theorem.
In 1979, I solved in [5], with the help of Samuel Blank, a problem raised by J. Moser [7]:

(A)

{
On a compact 3-dimensional manifold, two non-vanishing closed one-forms
that are tangent to the boundary and cohomologous are isotopic.

Our proof did not use Cerf’s theorem. Applying (A) to S2 × [0, 1] immediately implies the
original theorem of Cerf, not just Γ4 = 0.1 Nevertheless, I should confess that this isotopy
theorem of 1-forms is somehow technical. A simpler proof of (A) is given by N.V. Quê and R.
Roussarie [9], but depending on Cerf’s theorem.

We name Theorem (A’) the particular case of Theorem (A) where the ambient manifold is
S2 × [0, 1]. The present paper aims to give a less technical proof of Theorem (A’) than [5], and
hence of Cerf’s Theorem.

Acknowledgement. I am grateful to Robert Roussarie for his reading of a preliminary version
of this text, his advice about the saddles of type X and other comments. I thank the project
COSY ANR-21-CE40-0002 for its support.

1. Preliminaries and plan of proof

In the rest of the paper, the ambient manifold will be S2× [0, 1] and z will denote the variable
in its second factor.

2000 Mathematics Subject Classification. 57R19.
Key words and phrases. diffeomorphisms of the 3-sphere, closed 1-forms, Dehn twist, Dehn modification,
1For completeness, one should apply some classical fibration theorems also due to Cerf [1, Appendice].
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1.1. Every non-vanishing closed one-form ω on S2× [0, 1] that is tangent to the boundary reads
φ∗dz for some diffeomorphism φ that is equal to identity on S2 × {0}. This follows from the
fact that every orbit of a vector field X that everywhere fulfills ω(X) > 0 goes from S2×{0} to
S2 ×{1}. Moreover, if φ∗dz = dz then φ is isotopic to the identity among the diffeomorphisms
of the same type.2

1.2. Moser’s method. Given two non-vanishing closed 1-forms ω0 and ω1 on S2 × [0, 1],
tangent to the boundary, a point a ∈ S2× [0, 1] is said to be a negative contact (resp. a positive
contact) if there exists µ > 0 (resp. µ < 0) such that ω0(a)± µω1(a) = 0. In other words, the
kernels of ω0(a) and ω1(a) coincide but their co-orientations are opposite (resp. equal). The
locus of negative (resp. positive) contacts will be denoted by C− (resp. C+.)

Lemma 1.3. If the two non-vanishing closed one-forms are cohomologous and their mutual
negative contact locus C− is empty, then the two forms are isotopic.

Indeed, the barycentric combination ωt := (1− t)ω0 + tω1 provides a path (ωt)t∈[0,1] of closed
1-forms, from ω0 to ω1, that are cohomologous, tangent to the boundary and nowhere singular.
In that case, Moser’s isotopy theorem applies, as in the case of volume forms [7]. Namely, there
is an autonomous flow (ψt)t∈[0,1] that conjugates ωt to ω0 for every t ∈ [0, 1].3

Therefore, our method to prove the isotopy Theorem (A’) on S2 × [0, 1] will be to cancel the
locus C− of negative contacts between ω0 := dz and ω1 := φ∗dz.

1.4. Reduction to a more special case. Let f be the function which is equal to the
projection onto the factor [0, 1]; we set ℓ := φ∗f = f ◦ φ. From now on, the two forms ω0 and
ω1 will be respectively denoted by ωF and ωL; and the foliations they define will be respectively
named F and L. The leaves of ωF will be named the level sets (understood of f) while the
level sets of ℓ will continue to be named the leaves (understood of L.)
Without loss of generality, to prove Theorem (A’) we may assume the following in the rest

of the paper:

(1.1)

{
The restriction of f to every leaf of ℓ, close enough to the boundary S2 × {0, 1},
has only two critical points, a maximum and a minimum, and these belong to C+.

1.5. Plan of the proof of Theorem (A’). Generically, the contact points (positive or
negative) have a Morse index: 0, 1 or 2. The contact points of index 1 are named saddles.
They have also a type: Y, λ, or X. A saddle s on a leaf L ∈ L is said to be of type λ (resp. Y )
if the connected component of L∩ [f(s)− ε, f(s)+ ε] which contains s looks like a pair-of-pants
(resp. a reversed one.) A saddle is said to be of type X if it is the common limit of two
sequences of saddles, one of λ-saddles and the other of Y -saddles, the pair (f, ℓ) being kept
fixed (Definition 3.12.) This necessarily involves a pair of saddles both of type X in the same
connected component of level curves (Lemma 3.13.) One will speak of λ-, Y -, and X-saddle
respectively.

2These facts hold true on Sn × [0, 1] for every dimension.
3In the case of non-vanishing closed one-forms, a very simple proof is given in [5, Appendice I].
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Section 2 is devoted to basics on generic properties. Section 3 reviews elementary isotopies
whose effect is to simplify C−. One of them will allow us to kill all the finitely many X-saddles.
Typically, this phenomenon occurs in the setting saddle-center-saddle (Definition 3.4.)
The next operation will consist of pushing the saddles of type Y to levels higher than all

saddles of type λ. Unfortunately, this operation is obstrued by connecting orbits Y → λ of
the L-gradient of f , a phenomenon that generically appears finitely many times. Here, the
L-gradient of f is the orthogonal projection of ∇f = ∂z onto the leaves of ℓ with respect to an
understood Riemaniann metric; it will be denoted by ∇Lf .
These obstructions are destroyed thanks to the main operation of the paper, namely the

Dehn modification. Section 4 will be devoted to this type of 3-dimensional surgery considered
in our specific setting. Section 5 makes use of all these tools to prove the main result, namely
Theorem (A’).

2. Basics on pairs of non-vanishing closed one-forms

2.1. Regularity. We set C = C− ∪ C+. With local coordinates (x, y) on S2, the contact
locus is defined by the following system:

(2.1) C =

{
∂ℓ

∂x
(x, y, z) = 0,

∂ℓ

∂y
(x, y, z) = 0

}
.

The subsets C+ (resp. C−) are defined by adding the inequation
∂ℓ

∂z
(x, y, z) > 0 (resp. < 0).

By the assumption (1.1), C− does not approach the boundary and hence is compact.
By the transversality theorem of Thom in jet spaces, some approximation of φmakes maximal

the rank of the linearized system associated with system (2.1) at every point of S2×]0, 1[. In
this case the pair (ωF , ωL)—or (f, ℓ)—is said to be regular and C is a smooth curve. The open
subset of points in C where

(2.2) ∆ :=
∂2ℓ

∂x2
∂2ℓ

∂y2
−
(
∂2ℓ

∂x∂y

)2

is non-zero is the locus where C is transverse to both foliations F and L; overthere, their
contact is quadratic. If a is such a point and L is the leaf of a, this point has a Morse index
in {0, 1, 2} as a critical point of the function fL, that is the restriction of f to L. The critical
points of fL are named minimum, saddle, maximum, depending on their Morse index.

The remaining points of C are called inflection points. Generically, the equation ∆(x, y, z) =
0 is regular and hence, the inflections are isolated in C and do not approach the boundary. So,
there are finitely many of them. At an inflection, the tangency of both F and L with C is
quadratic while the mutual tangency of F and L is cubic.

By the versal unfolding theory [6] [8], there are coordinates in a neighborhood of an inflection
where the two functions f and ℓ read

(2.3) f(x, y, z) = z and ℓ(x, y, z) = x3 ± y2 + λ(z)x+ µ(z).

The sign in the above formula depends on the Morse indices of contact points nearby. The
Hessian of fL at an inflection I ∈ L has index 0 (resp. 1), and is said to be a saddle-min (resp.
saddle-max ) inflection. If the restriction fC of f to C is locally minimal (resp. maximal) at
p ∈ C, p is said to be a birth (resp. cancellation) inflection.
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Since C− is generically a closed—in general non-connex—curve, every of its connected com-
ponent carries at least two inflections, one maximum and one minimum of the restriction of f
to C−.

The Morse index of a quadratic contact is constant on each arc of C ending at an inflection
or boundary points. When two arcs in C of quadratic contact have a common inflection in
their closure, their indices differ by 1. So, one of these two arcs has a constant index 1; every
contact point of this arc is a saddle, and the other arc has the index of an fL-extremum.

2.2. Excellence. The pair of functions (f, ℓ) is said to be excellent if the following conditions
are fufilled.

(E1) Let a and b be two distinct quadratic contact points at the same level and in the same
leaf; let (a(t), b(t)) is a pair of local parametrizations of the respective contact arcs such
that a(0) = a, b(0) = b and ℓ(a(t)) = ℓ(b(t)) for every t close to 0. Then we have
d

dt
[f(a(t))− f(b(t))] ̸= 0 at t = 0.

(E2) There are neither three contact points in the same leaf and in the same level set nor
two pairs of contact points in the same leaf at two distinct levels.

(E3) Let σ be an inflection point. Then the leaf of σ (resp. its level set) contains no contact
point at the same level (resp. in the same leaf) as σ.

Lemma 2.3. In the space of smooth functions ℓ : S2 × [0, 1] → [0, 1] such that the pair (f, ℓ)
fulfils the assumption (1.1), the subspace such that the pair (f, ℓ) is regular and excellent is an
open dense set.

Proof. Such a statement is well known to the topologists when one speaks of a generic path
of functions, the variable z being the time. But every path of functions is not the primitive
of a non-vanishing one-form ωL tangent to the boundary. The main difference comes from the

points where
∂ℓ

∂z
= 0. In our setting,

∂ℓ

∂z
is not vanishing at every point where the two other

partial derivatives vanish. That means that we work in an open set of the general space of
smooth real functions on S2. So, Thom’s transversality theorems in bi-one-jet4 spaces of real
functions apply. □

3. Elementary isotopies and application.

Here is the list of the isotopies of ℓ that we consider as elementary : cancellation—or creation—
of a simple loop in the contact locus C; bypass of the cusp singularity x4; exchange (that is
another way of bypassing a cusp.) To this list, we add the isotopies along a satured set, though
they are not related to singularity theory.

As announced, these techniques will allow us to cancel the saddles of type X (in the sense
of subsection 1.5.) Before starting with the description of these isotopies, some notation is
needed.

4A bi-one-jet is just a pair of two one-jets.
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3.1. Given a leaf L ∈ L and an extremum m of fL, the cone of m, denoted by CL(m), is the
largest open disc in L—if it exists—that contains m and is bounded by a singular simple closed
curve ∂CL(m) in a level set of f such that:

(i) ∂CL(m) contains a saddle (or an inflection) and bounds a disc ∆(m) in its level set;
(ii) ∆(m) ∪ CL(m) bounds a (topological) ball BL(m) in the ambient manifold.

Note that if L is close to the boundary of S2× [0, 1], by (1.1) the cone of the minimum (resp.
maximum) is not defined since the leaf contains no saddles.

Definition 3.2. (Simple loop.) A simple closed curve Γ in the contact locus C of the pair
(f, ℓ) of smooth functions on S2 × [0, 1] is said to be a simple loop if the following conditions
are fulfilled.

(1) Γ is made of two open arcs, α and β, of quadratic contact points of the same signs and two
inflection points, I0 and I1, which make the topological closure of each of the arcs α and
β; say α is of Morse index 1; the index of β, 0 or 2, depends on the sign in front of y2 in
formula (2.3).

(2) Every leaf L that crosses α at a saddle sL
5 also crosses β at a unique extremum mL and

conversely. Moreover, sL belongs to ∂CL(mL).
(3) There is a unique L-gradient line6 γL joining sL to mL on every leaf L meeting α ∪ β.
(4) The only arc of definite quadratic contacts located in the ball BL(mL) is β ∩BL(mL).

By formula (2.3), if sL goes to Ij (j = 0 or 1) then γL with its field of unit tangent vectors
goes to Ij with ±∂x. Note that, by permuting f and ℓ, there are F -gradient lines connecting
pair of points in α× β lying in the same level set of f .

Proposition 3.3. Let Γ be a simple loop in the contact locus of the pair (f, ℓ). Then,
there exists a smooth closed 3-ball N which is an arbitrary small neighbourhood of the union⋃

mL∈β BL(mL) satisfying the following two properties.

(1) The boundary is foliated by smooth closed curves drawn by L∩ ∂N , with exactly two singu-
larities at max ℓ∂N and min ℓ∂N .

7

(2) The germ of ℓ along ∂N extends to N as a smooth function ℓ′ without contact point with f
in N . Moreover, ℓ′ is isotopic to ℓ by an isotopy supported in the interior of N .

Proof. We may only consider the case where β is an arc of maxima. Let ε be a small positive
number. For every mL ∈ β, consider the stable manifold W s(mL,∇Lf), truncated at the level
f = f(sL)− ε. Then slightly enlarge this surface to a disc DmL

⊂ L in order to have a smooth
boundary and to contain an ε-neighbourhood of the truncated stable manifold of sL. If ε is small
enough, DmL

avoids all other connected components of the contact locus. If this construction
is performed smoothly with respect to mL with a fixed ε, the desired N is ∪mL∈βDmL

.
There exists a proper disc S ⊂ N , transverse both to the leaves of ℓ and the level sets of

f , that contains all segments γL (item (3) in Definition 3.2.) This S can be endowed with
coordinates (x, z) where f(x, z) = z and the pair (x, z) allows us to use the normal form

5By the Stokes formula this point is unique when it exists.
6See the definition in subsection 1.5.
7These two points are close to I0 and I1 respectively, depending on the distance of ∂N to ∪mL∈βBL(mL).
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α

arc of saddles

I1

I0

β

arc of max.

sL

mL

γL

Figure 1. A simple loop max-saddle.

of inflections. Finally, one finds the y-coordinate by slicing N transversely to S so that the
maximum of f|{x=x0,ℓ(x0,y,z)=ℓ0} is quadratic non-degenerate and located in {y = 0}. In Morse
theory, such extension of coordinates is named a suspension [3].
We are able to solve the problem of isotopy for a pair of functions like (f|S, ℓ|S) since the

two-dimensional problem is known by the contractibility of Diff(D2 rel. S1) [10]. An isotopy of
S extends to N , relatively to a small neighbourhood of ∂N by suspension. Nothing is changed
in (S2 × [0, 1])∖N . The proof is now complete.8 □

On the opposite, creating a simple loop requires no condition. It can be realized in any open
set of the ambient manifold where the two functions f and ℓ have no contact points. The details
are left to the reader.

The next elementary isotopy will follow the same idea of suspension. This deals with the
configuration of contacts named saddle-center-saddle. Center stands for minimum or maxi-
mum; here, we only consider the case of a minimum. The case where the center is a maximum
is similar.

Definition 3.4. The saddle-center-saddle configuration is the following. The three contact
points are in the same leaf L of L; the center is a minimum mL whose cone CL(mL) contains
two saddles sL and s′L in its boundary; there is exactly one L-gradient line from mL to sL, and
similarly from mL to s′L. So, f(sL) = f(s′L).

Let α, β, α′ denote the contact arcs containing sL,mL, s
′
L respectively. Here are the main

requirements:

(1) Let L′ be a leaf close to L crossing β at mL′ with f(mL′) < f(mL). Then f(sL′) < f(s′L′).
(2) Let L′′ be a leaf close to L crossing β at mL′′ with f(mL′′) > f(mL). Then f(sL′′) > f(s′L′′).
(3) The interior of the ball BL(mL) meets no other contact arc than an arc of β.9

8This proof is inspired by my proof of a theorem of Morse about the cancellation of a pair of critical points
of one real function [4].

9See subsection 3.1 for notation BL(mL).
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Here, it is meant that {sL′ , sL”} ⊂ α and {s′L′ , s′L”} ⊂ α′.

α β α′

L′′

L

L′

Figure 2. The leaves are denoted on the left. Vertically are the three contact arcs.

Note that, up permuting α and α′, (1) and (2) above-mentioned follow from the excellence
of the pair (f, ℓ); moreover, it is easily seen by (3) that sL, mL, and s

′
L have the same sign

as contact point. The planar figure of this configuration is represented in Figure 2. One
recognizes—up to sign—the singularity x4, named cusp, whose versal unfolding—up to conju-
gation sourcextarget—reads

(3.1) (x, λ, µ) 7→ −(x4 + λx2 + µx)

where λ and µ are two real parameters. As mL is a minimum, the suspension consists of adding
a positive square in the added variable y. Hence, it reads

(3.2) (x, y, λ, µ) 7→ −(x4 + λx2 + µx) + y2.

The critical points of f restricted to a leaf close to L are given by y = 0, 4x3 + 2λx + µ = 0.
Up to positive coefficients, the equation of this discriminant locus reads

(3.3) 4λ3 + 27µ2 = 0.

The (λ, µ)-space, denoted by R(λ,µ), is stratified, apart from the origin, by the discriminant
locus D of the fold, and the half axis A = {λ < 0}, the set of parameters for which the
corresponding function has two critical points with the same value. This is exactly the case
of fL. The deformation from L′ to L′′ corresponds to a path in R(λ,µ) crossing A transversely
(Figure 3.)

λ

µ
D

A

bypass

fL′

fL′′
fL

Figure 3. Discriminant locus of the singular function x4 or x4 − y2.
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In the setting saddle-center-saddle, we have the 3-ball BL(mL) that we can extend up to the
level {f = f(sL) + ε}. The closure of this extension contains a piece of the unstable manifolds
W u(sL,∇Lf) and W

u(s′L,∇Lf). Then, we take a neighbourhood N of this closure. And hence,
there are coordinates (x, y, z) on N such that the surface S := {y = 0} is the locus of the
minimum of f on the curve in N defined by (x, ℓ) = (x0, ℓ0) where the pair (x0, ℓ0) ranges in a
convenient 2-dimensional domain.

Definition 3.5. A bypass of the cusp singularity is any path of functions as in Figure 3.

Figure 4 represents the modification of the contact locus along such a path.

Proposition 3.6. In the above-mentioned setting, there is an isotopy supported in N that, at
time 1, carries ℓ to a function ℓ′ whose one-parameter family of leaves realizes a bypass of the
cusp singularity.

α β α′

=⇒

saddle saddlecenter

Figure 4. Bypass in configuration saddle-center-saddle.

After these first two elementary isotopies, we present more shortly one useful variation of the
latter.

Definition 3.7. The configuration min-saddle-min is the following. A quadratic contact mL

of index 0, located in the leaf L, has a cone CL(mL) whose boundary has an inflection IL of the
same sign as mL. Let β be the contact arc containing mL. It is assumed:

1) The ball BL(mL) contains no other contact arcs but a sub-arc of β.
2) IL is the cancellation point of a pair saddle-min, that is the common upper bound of an arc

α of saddles and an arc β′ ̸= β of minima (Figure 6, left-hand side.)

Therefore, there is an L-gradient line from mL to IL. So, if mL′ is just below mL on β, then
there is a saddle sL′ connected to mL′ by an L-gradient line, and hence, the other branch of
the stable manifold W s(sL′ ,∇Lf) comes from a minimum m′

L′ distinct from mL′ .
If one forgets the so-called suspension by +y2, it is clear that the new configuration deals

with the cusp singularity x4. Instead of crossing the equality of two critical values, one crosses
the cancellation of a saddle with a center.

In this setting, bypassing the cusp singularity has the following effect on the contact curves, as
shown in Figure 6.

Proposition 3.8. In the configuration min-saddle-min, there is an isotopy supported in a
neighbourhood N of the ball BL(mL) that, at time 1, carries ℓ to a function whose contact
curves in N have the behaviour presented in the right hand side of Figure 6.
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λ

µ
D

A

fL′

fL′′

Figure 5. Another bypassing of the cusp singularity.

β α β′

=⇒IL

Figure 6. Min-saddle-min configuration.

We now turn to isotopies along saturated sets.

Definition 3.9. Let x ∈ S2× [0, 1] and z0 > f(x). The ascending saturated set of x up to level
z0, denoted by Sz0(x), is the minimal closed subset of {f ≤ z0} that contains x and satisfies:

(i) For every y ∈ Sz0(x), the positive orbit of y under ∇Lf , truncated at level z0, is included
in Sz0(x).

(ii) Let C denote the contact locus of (F ,L). If y ∈ (C ∩ Sz0(x)), every arc of C ascending
from y and truncated at level z0 is contained in Sz0(x).

Of course, there is an analogous definition of a descending satured set. Such a subset is
stratified in an obvious way. By excellence assumption, Sz0(x) contains finitely many accidents,
meaning level sets where the stratified type changes. From one accident to the next one, one
proves that Sz0(x) is surrounded by a fundamental system of collapsible domains that, in our
setting, are defined as follows.

Definition 3.10. A collapsible domain K is a 3-ball whose boundary ∂K is the angular union
of two discs, the lower boundary ∂loK and the horizontal boundary ∂hK, fulfilling the next
conditions:

(i) ∂hK is contained in {f = z0}.
(ii) ∂loK (resp. its interior) is contained in {f ≤ z0} (resp. {f < z0}).
(iii) There exists a field of directions on K transverse to the f -level sets and also transverse

to ∂loK.

Lemma 3.11. Let K be a collapsible domain which contains Sz0(x) and whose lower boundary
is disjoint from Sz0(x). For every ε > 0, there exists an isotopy (Φt)t∈[0,1], supported in the
interior of K, such that:
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(1) Φ0 = Id and Φ1(Sz0(x)) is contained in {z0 − ε < f ≤ z0};
(2) for every t ∈ [0, 1] and every contact point y of the pair (f, ℓ), its image Φt(y) is a contact

point of the pair (f, ℓ ◦ (Φt)−1), with the same sign and Morse index;
(3) if γ is an L-gradient arc, then Φt(γ) is transverse to the f -level sets.10

Such an isotopy is said to be an isotopy along a saturated set.

3.12. Application. Here we give an application of Proposition 3.6, namely, the cancellation
of a pair of saddles, that are of the type X. We specify the definition of an X-saddle when the
pair (f, ℓ) is excellent.

Definition. A saddle s in a contact arc α is said to be of type X, or an X-saddle, if s is
the upper bound on α of an interval of saddles of type λ (resp. Y ) and the lower bound of an
interval of saddles of type Y (resp. λ).

The following facts are easily checkable when the pair (F ,L) is excellent and the leaves are
2-spheres.

Lemma 3.13. (1) If s is an X-saddle there is another X-saddle s′ in some contact arc α′

interacting with s, meaning that the two saddles are located in the same connected component
Ĉ0 of the intersection L0 ∩ F0 of a leaf L0 := {ℓ = u0} and a level set F0 := {f = z0}.
(2) Both saddles have the same sign and Ĉ0 looks like the bold line on Figure 7.

(3) Ĉ0 is made of two closed singular curves C0 and C ′
0 in F0 meeting in s and s′ only.11

s

s′

Ĉ0

Figure 7. Ĉ0 denotes the connected component of s in the level curve F0 ∩L0. The
dashed (resp. dotted) curves lie in L0 and in level sets above (resp. below) z0.

Proof. It almost clear that a second saddle in Ĉ0 is necessary. Indeed, if not, the germ of
L ∩ F0 Ĉ0 is stable in the sense that, up to isotopy, it does not depend on small variations of
z0. Therefore, s could not be of type X.

10See more details in [5, chap. III §4].
11There are two possibilities for the pair (C0, C

′
0): either it is the limit of the dotted curve from Figure 7 or

it is the limit of the dashed curve.
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Figure 8. The unique example of a chain in S2. Uniqueness up to isotopy does not
hold in R2.

By excellence, Ĉ0 cannot have three saddles (or double points.) Then, it contains exactly

two saddles. Up to isotopy of F0, there are very few configurations for Ĉ0:

(a) The one represented in Figure 7.
(b) A second one that is the image—named a chain—of a smooth closed cuve through an

immersion with two double points (Figure 8.)

The rule for the co-oriention of Ĉ0 in F0 = S2 near the double points leaves only these two
cases. In the same way, one checks that in case (a) the two contact points have the same sign.

In case (b), whatever the signs of contacts the saddles cannot be X-saddles. □

C− C ′−

T

T ′

Sz0−ε(Γ)

Sz0−ε(I1)

Figure 9. The gray rectangle represents the domain marked by the ascending satu-
rated set of Γ in the level set z0 − ε .

Denote by α′ the arc of saddles passing through s′. Let s(t) and s′(t) be two local parametriza-
tions of α and α′, with s(0) = s, s′(0) = s′, such that ℓ(s(t)) = ℓ(s′(t)) for every t close to 0.
Say f(s(t)) and f(s′(t)) are increasing with t. As the pair (f, ℓ) is excellent, the two f -velocities
at t = 0 are different. We continue this analysis by specifying that the two contacts are positive.
For ε small enough, let C− and C ′

− be the two smooth closed curves in the level set {f = z0−ε}
corresponding to C0 and C ′

0 respectively by the L-gradient flow lines on L0. Let T and T ′ be
the lower boundaries of the saturated sets descending from s(0) and s′(0) respectively (Figure
9).

Proposition 3.14. There is an isotopy supported in {z0 − 2ε ≤ f ≤ z0 + ε} whose effect on ℓ
is to decrease by one the number of pairs of contact points with F that are of type X.

Proof. The idea is to create a configuration saddle-center-saddle which contains s(0) and s′(0).
Since the center is missing, one starts by introducing a simple loop Γ of type saddle-min whose
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C ′−

saddle in α′′ center in β

two components descending from C−

Figure 10. The very thick lines are lower boundaries of descending saturated sets
of saddles s(0), s′(0) and α′′ ∩ {f = z0 − ε}.

inflection points I0 and I1 satisfy z0 − 2ε < f(I0) < f(I1) < z0 − ε and so that its upper
boundary in {f = z0 − ε} is a position as shown in Figure 9.

The next operation is an isotopy along the satured set Sz0+ε(I1). By application of Lemma
3.11, one can collapse this domain above z0. After this isotopy, still denoting by ℓ and Γ the
carried function and simple loop, one sees a configuration saddle-center-saddle as shown in
Figure 10. Then Proposition 3.6 is available that makes the desired cancellation of a pair of
X-saddles.

There is a new arc α′′ of positive saddles which crosses {f = z0−ε}—this is the arc of saddles
in the simple loop Γ after the just above mentioned isotopy; the arc of minima is denoted by β.
One checks that α′′ contains only saddles of type λ. Now we can apply Proposition 3.6. This
cancels the pair (s, s′) of X-saddles without creating a new one and Proposition 3.14 is proved.

□

The outcome of Proposition 3.14 is the cancellation of every X-saddle.

4. Dehn modification

After Thom’s transversality arguments that generate generic properties, the Dehn modifica-
tion, also called Dehn surgery, is the main tool to prove Theorem (A), and already regarding
its 1-connected version Theorem (A’). We are going to speak of this notion in our setting only:
the ambient manifold is M := S2 × [0, 1], provided with two foliations, respectively as the level
sets of two functions, f and ℓ, that are constant on each component boundary components and
whose critical sets are empty.

As an application, we prove that a suitable series of Dehn modifications allows us to move
the Y -saddles above the λ-saddles.

Definition 4.1. (Dehn twist and Dehn modification.)
1) A left Dehn twist on the standard annulus A := S1 × [1, 2] is a diffeomorphism τ that, in
polar coordinates, reads

(4.1) (θ, r)
τ7−→(θ + φ(r − 1), r)

where φ is a smooth non-decreasing function from the value φ([0, ε]) = 0 to φ([1− ε, 1]) = 2π.
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The right Dehn twist is the inverse τ−1 of the left one.

2) Let A be an annulus embedded in M and parametrized by A; for i = 1, 2, ∂iA is parametrized
by ∂iA := S1 × {i}. Let M̌ be the manifold obtained by cutting M along the interior of A;
it is provided with a singular boundary made of two lips A+ and A− corresponding to the
coorientation of A. The Dehn modification of M along A is the manifold Mτ obtained from M̌
by gluing x ∈ A+ to τ(x) ∈ A−.

A+

A−

N

∂2A
∂2A

Figure 11. The two dotted vertical arrows indicate the gluing that makes Mτ .

In our setting, A is an annulus, embedded in a level set F0 of f transversely to L; the leaves
of L∩A are closed curves isotopic to each component of ∂A. The identification with A is chosen
so that these curves are parametrized by the circles of A. In this setting we shall say that the
Dehn modification is adapted to the pair (f, ℓ) or (F ,L). By construction, the functions f and
ℓ are carried to some uniquely defined functions fτ and ℓτ .

Important remark 4.2. In the previous setting, a Dehn modification along A keeps the contact
locus of the pair (f, ℓ) invariant. Indeed, the support of this modification is away from the
contact locus.

Definition 4.3. Let A be an annulus, parametrized by A, in a level set F0 = {f = z0}. Let
pA ∈ S2 such that the vertical arc {pA} × [0, 1] ⊂ S2 × [0, 1] avoids A and intersects the unique
disc in F0 that contains A and is bounded by ∂2A.
Let DA denote the space of smooth oriented 2-discs embedded in M that contain A as oriented

annulus, have algebraic intersection +1 with {pA} × [0, 1] and have ∂2A as a boundary.

Proposition 4.4. With this notation, the following holds true.

1) Every D ∈ DA defines a unique diffeomorphism ψD :Mτ →M , up to isotopy.
2) For every pair (D0, D1) of elements in DA, then ψD1 is isotopic to ψD0.
3) There are two discs D0 and D1, elements of DA, such that (ψD0)

∗df = dfτ , and (ψD1)
∗dℓ =

dℓτ .
4) The functions f and ℓ are isotopic if and only if the functions fτ and ℓτ are isotopic.

Proof. 1) Since A is an imposed collar of ∂D for every D ∈ DA, it is natural to say that,
abstractly, D is the disc of radius 2 in the Euclidean plane. This disc may be considered as
embedded in M or in Mτ as well. Firstly, we consider D in Mτ . One endows D with a 3-
dimensional collar N ∼= D × [0, 1] on the side of A+, that is A+ ⊂ D × {0}. So, N already
existed in M̌ and M .
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One defines a diffeomorphism ρ : D → D by ρ(x) = τ(x) if ∥x∥ ∈ [1, 2] and ρ(x) = x if
∥x∥ ≤ 1. One chooses an isotopy (ht)t∈[0,1] among the diffeomorphisms of D from ρ for t = 0
to the identity of D for t = 1, with an extra requirement:

(4.2) ∥ht(x)∥ = ∥x∥ for every t ∈ [0, 1].

Then, on defines ψD :Mτ →M by

(4.3)

{
ψD(y) = y if y ∈M ∖N
ψD(x, t) = (ht(x), t) if (x, t) ∈ N.

Since all choices are made in contractible spaces, ψD is uniquely defined up to isotopy.

TA

D

A

V

Figure 12. Example of meridional twist. Here, wA(D) = −1.

2) Usual tools of 3-dimensional topology yield the following topological result.12

Each 2-disc D ∈ DA has a winding number around A, wA(D) ∈ Z, that is the
algebraic intersection of D with a vertical arc V in S2 × [0, 1] starting from the
interior of A and ending in S2 × {1}. Moreover, wA provides a bijection from
π0(DA) onto Z.
Here, the linking condition imposed to D for being in DA plays an important role. This

statement also holds in Mτ . Moreover, one can think of A as a flat annulus in a solid torus
TA ∼= S1 × D2, each ray of A being a diameter of {θ} × D2. An exterior collar of ∂TA has
coordinates (θ, θ′, t) with (θ′, t) ∈ ∂D2 × [0, 1]. This allows one to define a meridional Dehn
twist in the coordinates (θ′, t) independant of θ.13 Let us denote it by µ. For D ∈ DA, one has

(4.4) wA(µ(D)) = wA(D) + 1.

This holds true on M and Mτ as well because the support of τ and µ are disjoint.
Using that translations on the torus are commuting, one has for every D ∈ DA:

(4.5) ψµ(D) = µ ◦ ψD ◦ µ−1

Moreover, µ is isotopic to the identity if A is let free to rotate in TA around its core. rotating
A does not change Mτ . Therefore, ψµ(D) is isotopic to ψD which proves what was desired.

3) The disc D0 is the unique disc in the level set F0 fulfilling the requirement ∂D0 = ∂2A.
One can choose its collar N ∼= D0 × [0, 1] to be foliated by level sets of f . Then formula (4.3)
shows that (ψD0)

∗f is sensitive neither to τ nor to the isotopy (ht). So, (ψD0)
∗f = f is clear.

12Unfortunately, I have no reference for this exercise. One has to use the classical method of the innermost
intersection curve for two discs in DA with the same winding number wA.

13Use formula (4.1) replacing (θ, r) with (θ′, t).
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For D1, this is slightly more subtle. There is a disc ∆ which is bounded by ∂1A in some
L-leaf and intersects {pA} × [0, 1] positively. The union A ∪ ∆ is angular along ∂1A. But its
smoothing is easy: Take a collar N∆ of ∆ in the direction outward to A along ∂1A and foliated
by L. Then, cap ∂1A in N∆ with a disc ∆̃ tangent to A along ∂1A and so that L induces a
foliation by circles with one center. Now, we take D1 = A ∪ ∆̃.
The last step consists of choosing a collar N1 = D1 × [0, 1] of D1 in M , that exists in M̌ (on

the side of A+) so that L induces on each D1×{t} a foliation by circles. Therefore, by formula
(4.3) the isotopy is compatible with L. And hence, ψD1(Lτ ) = L.

4) This is a formal consequence of items 2) and 3). □

We have seen that a Dehn modification adapted to (F ,L) allows us to carry some structures,
like f or ℓ, fromM toMτ . But an isotopy, for instance along a saturated set, cannot be carried.
Fortunately, the last item of Proposition 4.4 allows us to carry the property that the pair (F ,L)
is made of isotopic foliations. This is the reason why we introduce the notion of weak isotopy.

Definition 4.5. A weak isotopy of L to F in M is an alternating finite sequence of Dehn
modifications—right or left—and isotopies, M1, (ψ

t
1) , . . . ,Mk, (ψ

t
k) , t ∈ [0, 1], and a sequence

of pairs of foliations, (F ,L), (F1,L1), . . . , (Fk,Lk), fulfilling the following recursive conditions
for every integer j ∈ [1, k].

(i) Mj is a Dehn modification adapted to the pair of foliations (Fj−1, ψ
1
j−1(Lj−1));
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(ii) Mj carries Fj−1 to Fj and ψ1
j−1(Lj−1) to Lj;

(iii) Fk = ψ1
k(Lk).

In this language, Theorem (A’) reduces to: F and L are weakly isotopic.

Now is the announced application of Dehn modification dealing with connecting orbits of sad-
dles. One should first mention that, as for a one-parameter family of functions on a Riemannian
manifold, generically on the metric the vector field ∇Lf has finitely many orbits connecting two
saddles; moreover there are connecting orbits neither from a max-saddle inflection to a saddle
nor from a saddle to a min-saddle inflection. We now include this property in the definition of
excellence and assume it in the remainder of this paper. We recall that, by Proposition 3.14,
we may assume that no saddles are of type X.

Proposition 4.6. In this settting there exists a weak isotopy of ℓ to a new function ℓ′ in M
such that all of its Y -saddles are located above its λ-saddles with respect to the order of their
f -values.

Proof. Without X-saddles the type of saddles is constant on every saddle arc. The two ends
of such an arc are inflections of the same Morse index:15 if this index is 0 (resp. 1) the saddles
are of type λ (resp. Y ) as it can be seen near the inflection.

The matter is to destroy the L-gradient connecting orbits Y → λ. Indeed, assume the metric
is chosen so that there are no such connections. Consider a level z0 above all λ-saddles and a
contact arc α of Y -saddles. By assumption on the metric, the ascending saturated set Sz0(α)

14Here, (F0,L0) = (F ,L).
15For the index of an inflection see Subsection 2.1.
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avoids every closure of λ-saddle arcs. Of course, Sz0(α) could meet another Y -saddles not
belonging to α or maxima and inflections of Morse index 1. This does not matter, all thses
contacts have to be incorporated to Sz0(α). An isotopy along Sz0(α) realizes what is wished for
α, and so on for the other Y -saddle arcs.

To bypass the connecting orbits we use Dehn modifications. At the beginning, we have finitely
many connecting orbits Y → λ lying in distinct leaves L1, L2, . . . , Ln where each Li = ℓ−1(yi)

is a generic leaf. There exists ε > 0 such that L̂i := ℓ−1([yi − ε, yi + ε]) is still made of generic
leaves.

The connecting orbit on Li goes from Y -saddle si to λ-saddle s
′
i. Denote by αi (resp. α

′
i) the

arc of contacts that contains si (resp. s
′
i). Set α̂i := L̂i ∩ αi and α̂

′
i := L̂i ∩ α′

i; all are named
saddle intervals. If ε is small enough there exists η such that every interval in the collection(
f(α̂i), f(α̂

′
j)
)
i,j∈[1,n] has a length less than η and every two of them have a mutual distance

larger than η. In addition, one may require, for every j ∈ [1, n] and every pair (a, b) of distinct

contact points in a same leaf from L̂j,

(4.6) |f(a)− f(b)| > 2η.

τ (T ′)

=⇒

τ (T ′′)
T ′

T ′′

T

Figure 13. T ′′ is marked by Sz1(α̂
′′) where α̂′′ is a saddle interval of type λ in L̂1

and f(α̂′′) > f(α̂′
1).

Say f(s1) > f(si) for every i > 1. Cut L̂1 at the level z1 := f(s′1) − η. By condition (4.6),

this level set of L̂1 is a finite collection of annuli. Among them, call A1 the one which meets
the connecting orbit s1 → s′1. The foliation L induces on A1 a foliation by circles; the central
circle lies in the leaf L1. Knowing that s1 is of type Y and s′1 of type λ one sees in A1 two arcs
T and T ′ joining the two boundary circles: T = A1 ∩ Sz1(α̂1) and T

′ = A1 ∩ Sz1(α̂
′
1). Here, the

first satured set is ascending and the second one is descending. Moreover, T ∩ T ′ is the point
where the connecting orbit crosses A1—because the connecting orbits are on isolated leaves.

Applying a Dehn twist τ to T ′—left or right depending on the sign of intersection ⟨T, T ′⟩—
together with the corresponding Dehn modification toM kills the connecting orbit since τ(T ′)∩
T = ∅.

However, new connecting orbits could have been created in the foliated domain L̂1 by this
first Dehn modification (this is the case in Figure 13 due to τ(T ′′) ∩ T ̸= ∅.) One solves this
new difficulty as follows.
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Look at all saddle intervals of type λ in L̂1 at level higher than z1. Name them β̂1, ..., β̂k
such that f(β̂1) < f(β̂2) < · · · < f(β̂k).

16 The number of them is not affected by forthcoming
Dehn modifications, it is kept invariant (Remark 4.2.)

Say that β̂1 ⊂ L̂1 is the lowest saddle interval of type λ being Lτ -gradient connected to α̂1;
if there is no such a connecting orbit, consider β̂2, and so on. Take a proper annulus A′

1 ⊂ L̂1,

at the level z′1 := inf f(β̂1)− η, that crosses a connecting orbit from α̂1 to β̂1.

The figure is similar to Figure 13, but Sz′1
(β̂1) marks a short arc T ′(β̂1) joining the two

boundary components of A′
1 while Sz′1

(α̂1) marks a long arc like τ−1(T ). These two arcs are
transverse to the foliation Lτ∩A′

1 and, up to isotopy, there is only one intersection point between

them. One can repeat the trick of Dehn modification to cancel the connection α̂1 → β̂1. Of
course, new connecting orbits are possibly created, but only from α̂1 to β̂j, j > 1. So, the
process goes on, without increasing the complexity.

One can destroy all connecting orbits from α̂1 to β̂1 ∪ · · · ∪ β̂k. As a result, after this long
series of Dehn modifications, the ascending saturated set Sz0(α̂1) avoids every λ-saddle, where
z0 has been chosen at the very beginning of the proof. If the saddles (si)

n
i=1, from which one

connecting orbit goes up in the leaf Li, are ranked in the decreasing order of their f -values
(f(si))

n
1 , the process continues with the interval α̂2 and so on. □

5. Proof of Theorem (A’)

5.1. So far, we got that every saddle is of type λ or Y—that is, no X-saddle— and, up to
a weak isotopy applied to the function ℓ, every Y -saddle is located at a level higher to all
λ-saddles. Recall that an inflection adhering to a contact arc of λ-saddles (resp. Y -saddles) is
of type saddle-min (resp. saddle-max). Say that the λ-saddles (resp. le Y –saddles) are located
in {0 < f < 1/2} (resp. {1/2 < f < 1}.)
A way to achieve the proof of Theorem (A’) is, by Lemma 1.3, to kill every negative contact

of the pair (f, ℓ). This requires some algorithm since the leaves of L could have a very tricky
topology as embedded surface in S2 × [0, 1]. In [5], this algorithm was based on words in an
alphabet with four letters. Here, it is much simpler; it is based on two topological concepts:
basin and co-basin that we are going to define.

Definition 5.2. Let L = {ℓ = u0} be a leaf of L and let m ∈ L be a negative contact of
index 0. The basin of L determined by m is the maximal 3-ball B(m) in M = S2× [0, 1] whose
boundary is made of two parts: the first part is a horizontal disc ∂FB(m) whose boundary curve
has exactly one negative λ-saddle if L is a generic leaf or one of the following two situations:
a negative inflection in ∂FB(m) or two saddles one of them being negative; the second part is
a disc ∂LB(m) in L with m as unique negative center and no other negative contact with F in
the interior of ∂LB(m). Its threshold consists of every negative saddle—generically unique—in
the boundary curve of ∂LB(m).

In contrast, ∂LB(m) may have many positive contacts. If z0 denotes the level of ∂FB(m)
and u0 denotes the ℓ-value of the negative saddle(s), we have B(m) ⊂ {f ≤ z0} ∩ {ℓ ≤ u0}.

16Inequalities of intervals mean that their are disjoint and ordered as it is written.
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Definition 5.3. A basin B(m) being given as above, a co-basin joint to B(m) is a maximal ball
B∗ in {f ≤ z0} ∩ {ℓ ≥ u0} whose boundary is made of two parts: the first one is a horizontal
disc ∂FB

∗; the second one is a disc ∂LB
∗ in the L-boundary of B(m). Its threshold is the

unique17 λ-saddle which has only one descending separatrix lying in ∂LB
∗ and the other in

∂LB(m)∖B∗.

Somehow, a co-basin is like a pocket with respect to a basin. Many co-basins could be glued
to a basin. In our setting where the Y -saddles are above all λ-saddles, ∂LB

∗ cannot have
maxima.

I0

α

β

z = z0

γ

γ′

s

Figure 14. I0 is a birth positive saddle-min inflection; α and β are respectively
the saddle and the min locus emanating from I0; γ and γ′ form the boundary of the
unstable manifold of I0. The saddle s is negative.

5.4. Lower complexity. Given a pair (f, ℓ) of functions without critical points, we define its
lower complexity κ−(f, ℓ) as the pair (µ, ν) of non-negative integers arranged in lexicographical
order and defined in the following way.18

The entry µ is the number of contact arcs of negative minima.
Let I0 be the upper, unique by excellence, negative inflection which is the birth of an arc β of

negative minima. Every minimum m ∈ β defines a unique basin. A minimum m ∈ β, distinct
from a cancellation inflection, is said to be accidental if one of the following cases happens:

– the boundary of ∂FB(m) contains either two saddles or a negative inflection—necessarily
a cancellation inflection—by definition of I0,

– ∂LB(m) contains a positive inflection.

By definition, the entry ν of the lower complexity is the number of accidental minima in β.

If µ = 0 then there are neither negative minima nor negative λ-saddles anymore and, by
convention, κ−(f, ℓ) is equal to (0, 0); then the set of negative contacts is empty in {f < 1/2}.

17The uniqueness of its threshold holds since there are no X-saddles (compare Figure 7.)
18This pair is meant to measure the topological complexity of L in the domain {0 < f < 1/2}.
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Similarly, some upper complexity, κ+(f, ℓ), is defined that measures the topological complex-
ity of L in the domain {1/2 < f < 1}. Its vanishing means that there are no negative contacts
in {f > 1/2}. By symmetry, any result about negative λ-saddles/minima applies to negative
Y -saddles/maxima—and conversely. Therefore we are focusing on the first case.

Lemma 5.5. By the choice of I0, denoting by β the arc of minima that I0 generates, the
following holds.

(1) Let B∗ be a co-basin joint to a basin B(m) with m ∈ β. Every (piece of) leaf in the interior
of B∗ contains no negative minimum.

(2) The positive contact arcs descending from contact points in the interior of ∂LB
∗ descends

to an inflection in the interior of B(m). In particular, m is the absolute minimum of the
basin that it defines.

Proof. 1) Let L be a leaf passing through B∗ and m′ be a negative minimum contact in L∩B∗.
The contact arc β′ passing through m′ cannot cross ∂LB

∗ which only contains positive contacts.
So, β′ descends to an inflection in B∗. But such an inflection should be higher than m, the
negative minimum of B(m), that itself is higher than I0. This contradicts the choice of I0.
2) Suppose such an arc γ crosses ∂LB(m) twice. The integral of dℓ on γ, oriented in the

direction of decreasing z, is positive. This prevents γ from having two distinct points on the
same leaf. Hence the lower point of γ is an inflection in the interior of B(m). □

The topic of the next lemma is to clean up the basins we are going to deal with in the proof
of Theorem (A’), namely to make sure that no co-basins are joint to them. Again, I0 is the
upper birth negative saddle-min inflection and β is the contact arc of minima that I0 generates.

Lemma 5.6. In this setting, let I ′ be a positive birth saddle-min inflection located in ∂LB(m)
for some m ∈ β. Then there exists a contact conjugating19 isotopy Φt, t ∈ [0, 1], fulfilling the
following:

(i) the isotopy is supported in {0 < f < 1/2} and keeps the negative contacts fixed;
(ii) Φ1(I

′) is away from every so-called I0-basin, that is defined by some minimum in β.

After having iterated such isotopies, every I0-basin is free of positive contact.

Proof. For the first part we recall that when the negative threshold of a basin goes down on
its own contact arc, meanwhile the positive threshold of the joint co-basin generated by I ′ goes
up on its own contact arc. Hence, there is a level zI′ which is the common level of both the
threshold of some basin B(m′), m′ ∈ β, and the threshold of the joint co-basin B∗

I′ generated
by I ′.
So, it is natural to consider the ascending saturated set Σ′ := SzI′+ε(I

′) for some small enough
ε. Here, we recall that every ascending separatrix of a λ-saddle reaches the level {z = 1/2}
except if it is bounded from above by a cancellation inflection or another λ-saddle—which will
be incorporated to Σ′.

Claim. Σ′ does not approach the negative contacts.

Indeed, by Lemma 5.5, there is no negative contact locus in the interior of Σ′—what is equiv-
alent to the interior of a co-basin. What about α, the locus of saddles emanating from I0 when

19A diffeomorphism Φ of S2 × [0, 1] is said to be contact conjugating if Φ maps every contact point of the
pair (F ,L) to a contact point of the pair (F ,Φ(L)) and conversely.



20

the level is close to zI′? Let s′ denote the threshold of the basin B(m′) and let s′(z) denote that
nearby threshold at level z close to zI′ . Since the crossing can happen, certainly s′(z) has no
connecting orbits with points of Σ′ if ε is small enough and z ranges in (z(I ′)− ε, z(I ′) + ε).20

So, for such a z, the negative saddle s′(z) in not in the closure of Σ′. □

By Lemma 3.11, there is an isotopy along Σ′ that pushes it above the level z(I ′). Its support
is located in a neighborhood of Σ′. The time one of this isotopy fulfills the demand.

About the last claim, it is sufficient to recall that there are only finitely many such positive
birth inflections. Let I ′′ be one of them.21 One can consider its saturated set Σ′′ with respect
to Φ1(L) up to a level which is determined as previously by the crossing argument. An isotopy
along Σ′′ pushes I” away from all basins and does not destroy what was gained in the first
step. So, cumulating the isotopies related to each positive inflection that is initially contained
in a basin makes all basins B(m), m ∈ β, free from positive contacts. The order in which the
concerned inflections are numbered is irrelevant. □

Now we are ready for the decisive part of the proof of Theorem (A’). It will consists of
decreasing the lower complexity κ−(f, ℓ) until it vanishes. By the symmetry z → 1 − z, the
same holds true about the upper complexity.

Proposition 5.7. If the set of negative minima contacts of the pair (f, ℓ) is non-empty there
exists an isotopy supported in {0 < f < 1/2} that carries ℓ to a function ℓ′ such that

(5.1) κ−(f, ℓ′) < κ−(f, ℓ).

Proof. There are several cases depending on how the complexity is topologically made.
1) Assume µ > 0 and ν = 0. We continue with the upper negative birth saddle-min in-

flection I0 and the arc β of index 0 that it generates. By Lemma 5.6, every basin B(m),
m ∈ β, is free of positive contact. In this case, for every minimum m ∈ β the cone CL(m) is
standard.22

If the negative λ-saddle arc α emanating from I0 and the minimum arc β close up in a
common cancellation inflection point then the union α ∪ β forms a simple loop in the sense
of Definition 3.2. By Proposition 3.3 there is an isotopy supported in a neighbourhood of
∪m∈βCL(m) that eliminates this simple loop and decreases µ by 1.

Let us show that there are no other configurations with ν = 0. Let J1 be the inflection ending
α; let I1, distinct from J1, be the inflection ending β and let I2 be the birth inflection of the
λ-arc, named α′, descending from I1. We have f(I0) > f(I2) by definition of I0 (Figure 15.)
Moreover, f(J1) > f(I1); if not, the unique separatrix converging to J1 starts from a minimum
m1 ∈ β, and hence ν > 0.

When ν = 0 and f(J1) > f(I1), every m ∈ β ends one separatrix descending from some
saddle s(m) ∈ α and one separatrix descending from some saddle s′(m) ∈ α′. The latter two

20Indeed, for z = zI′ , the threshold has a separatrix coming from m′ for some choice of the Riemannian
metric. Hence, the same holds in nearby basins.

21Possibly, I” belongs to Σ′. Hence, Φ1(I
′′) is already away from any basin and hence this inflection can be

skipped.
22See Subsection 3.1 for notation.
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claims prove similarly: the existence of s(m) is clear near the inflection I0 and extends to β
since no accident happens along this arc; the existence of s′(m) is clear near I1 and also extends
to β for the same reason.

When m is close to I0 one has f(s′(m)) > f(s(m)) and when s′(m) is close to I1 one has
f(s′(m)) < f(s(m)). Then there is m0 ∈ β such that

(5.2) f(s(m0)) = f(s′(m0)).

Hence, CL(m0) is in the saddle-center-saddle configuration (Definition 3.4) and ν is positive.
Contradiction.

I0

I1

J1

αβ

I2

α′

Figure 15. The horizontal lines stand for level sets.

2) We assume ν > 0 in the rest of the proof. Consider the first accidental minimum m0

in β when coming from I0 and assume that the curve ∂CL(m0) contains two saddles s0 and
s′0, necessarily negative by the “cleaning” Lemma 5.6. Then we have the saddle-center-saddle
configuration; item (3) from Definition 3.4 is fulfilled by the choice of I0 and the cleaning of
the I0-basins.

α β α′

=⇒

I0

β′

I1

I0

m0

s0 s′0

Figure 16. Bypass creating a simple loop.

Let α and α′ denote the contact arcs containing s0 and s
′
0 respectively; let st, s

′
t and mt denote

local parametrizations of α, α′ and β respectively near t = 0 such that these three contact
points are in the same leaf for every t close to 0. If α comes from I0 and knowing that m0 is the
first accidental point on β, one has f(mt) < f(st) < f(s′t) for every t < 0. In other words, the
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f -values of st and s
′
t are ordered as in Figure 2. Thus every saddle in the sub-arc (I0, s0) ⊂ α

is cancellable with the corresponding minimum in β; for every small t > 0, the pair (s′t,mt)
can be cancelled. Proposition 3.6 applies and its effect is shown in Figure 4. In particular, this
bypass creates a simple loop which contains I0 and a new birth inflection I1 with the following
properties:

- f(I1) > f(I0).
- The minimum arc β′ emanating from I1 has less accidental minima than β since it
coincides with β in {f > f(I1) + ε} for ε small enough (Figure 16.)

Once the simple loop has been cancelled the number of birth inflections remains equal to
the initial µ but the entry ν of the lower complexity decreases by 1: the arc β′ has one less
accidental minimum than β.

=⇒

I0I0

J1

α

β

m1 β′

I1

Figure 17. Bypass in configuration min-saddle-min.

3) With the same notation, we assume ν > 0 and the first accidental minimum m1 ∈ β has
a cone with an inflection point J1 in its boundary. This inflection cannot be a birth since it
lies at a higher level than I0. So, this is a cancellation inflection, which is a negative contact
due to the cleaning Lemma 5.6. Let β denote the index-0 arc starting from I0 and let I1 be
its upper end. We have I1 ̸= J1 since an arc that is transverse to L cannot meet the same leaf
twice. Here there are two cases.

3-1) Assume that the saddle arc α starting from I0 ends at J1. Here, we are in the configu-
ration min-saddle-min (Definition 3.7). Let β′ be the arc of index 0 descending from J1. The
isotopy from Proposition 3.8 modifies the contact arcs as, including their names, it is shown in
Figure 6. The outcome is a simple loop containing I0 and an arc of minima. After the simple
loop has been cancelled, the number of negative birth saddle-min inflections has decreased by
one and hence the complexity decreases (Figure 17.)

3-2) Assume that α does not end at J1. Let α′ and β′ respectively denote the saddle arc
and the minimum arc ending at J1. The arcs (β, α′, β′) and the leaf L that contains m0 ∈ β
slightly below m1 also presents a configuration min-saddle-min. The effect of the isotopy from
Proposition 3.8 does not produce a simple loop that could be cancelled. But it keeps I0 as the
upper negative birth inflection and the index-0 arc β̌ emanating from I0 contains no accidental
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=⇒

I0I0

αβ

m1

β′

J1 J1

α′

β̌

Figure 18. Variant of Figure 17.

minimum. Therefore, the complexity decreases from (µ, ν) to (µ, 0) (Figure 18.) □

When the two complexities vanish, no negative contacts are remaining and the Moser trick
(Lemma 1.3) completes the proof of Theorem (A’). □
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