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PREFACE

This manuscript is a detailed presentation of the ten lectures
given by the author at the Conference Board of Mathematical Sciences
Regional Conference on Three-Manifold Topology, held October 8-12, 1977,
at Virginia Polytechnic Institute and State University. The purpose of
the conference was to present the current state of affairs in three-manifold
topology and to integrate the classical results with the many recent ad-
vances and new directions.

The ten principal lectures presented here deal with the study of
three-manifolds via incompressible surfaces. At the conference, these lec-
tures were supplemented by eight special lectures: two lectures each by
Professor Joan Birman of Columbia University (Heegaard Theory), Professor
Sylvain Cappell of the Courant Institute (branched coverings and applica-
tions to 4-dimensional topology), Professor Robion Kirby of The University
of California/Berkeley (three-dimensional knot theory) and Professor
William Thurston of Princeton University (three-dimensional hyperbolic geo-
metry) .

I wish to thank the host university, the members of the Department
of Mathematics at V.P.I. & S.U., and the Conference Director, Professor
Charles Feustel. A special thanks to the Conference Coordinator, Professor
Ezra 'Bud' Brown.

I believe that the conference was a success and that much of the
success was due to the special lectures given by the previously named parti-
cipants. I wish to acknowledge my thanks to Professors Birman, Cappell,

Kirby and Thurston.



vi PREFACE

In the preparation of my lectures I had many helpful discussions
with mv close colleagues, Benny Evans, John Hempel and Peter Shalen. Their
~elp has been extended to the completion of the writing of these lecture
actes. In the preparation of the manuscript, I have been assisted by
John Rice, the staff at The Institute for Advanced Study, especially Elizabeth
Gorman Moyer and Gail Sydow, and at Rice University by Anita Poley.

I dedicate this manuscript to my wife, Linda, who has been under-
standing and constantly supportive over the long period of time that I have

spent in its preparation.

William Jaco
Houston, Texas

July, 1979



INTRODUCTION

This manuscript is intended to present the development of three-
manifold topology evolving from the study of incompressible surfaces em-~
bedded in three-manifolds. This, of course, is quite a restriction to
come under the broad title of the manuscript. But even here, the reader
will find many important aspects in the theory of incompressible surfaces
missing. I am not trying to make the manuscript all inclusive (I do not
believe that a possible task) and I have not tried to make the bibliography
complete. The manuscript is exactly what I would do in ten lectures with
the above intention.

The reader will find the subject, through the first six chapters,
overlappling with the book by John Hempel, [Hel]. I have very high regard
for Hempel's book and debated a bit about presuming its contents. However,
I decided that this manuscript would better serve if the development began
more at the foundations. And in the end, I believe that the reader will
find the overlap mostly in spirit and terminology. I have developed the
material from my point of view and I give a number of new proofs to the
classical results. If I needed material that appears in Hempel's book, and
if T felt that the development there was consistent with my development,
then I refer the reader to the appropriate result. While this manuscript
certainly can be considered independent of Hempel's book, it can also be
considered as a sequel to it.

In Chapter I, I wanted togive a unified proof of the Loop Theorem -

Dehn's Lemma and the Sphere Theorem, using equivarient surgery. I also

vii



viii INTRODUCTION

had another motive for this approach; namely, to prove that the universal
covering space of an orientable, irreducible 3-manifold is itself irreduc-
ible. I was only able to carry through equivarient surgery in the limited
case of two-sheeted coverings (involutions); hence, I give an equivarient
surgery proof of the Loop-Theorem and Dehn's Lemma; but I give no new infor-
mation on the Sphere Theorem. Since I presented these lectures, W. Meeks
and S. T. Yau have given unified proofs of the Loop Theorem - Dehn's Lemma
and the Sphere Theorem, using minimal surfaces to accomplish equivarient
surgery. Their methods also show that the universal covering space of an
orientable, irreducible 3-manifold is irreducible.

In Chapter II the main result is the Prime Decomposition Theorem
(I1.4) for compact, orientable 3-manifolds. Here, the classical proof of
existence is due to H. Kneser [Knl] and is a very intriguing proof. However,
a more natural approach is an argument based on reasoning by induction. I
present such an ;rgument using a theorem of W. Haken [Hal], which states
that a closed, orientable 3-manifold admitting a connected sum decomposition,
admits a connected sum decomposition by closéd, orientable 3-manifolds having
strictly smaller Heegaard genus (II.7). Even here I give a new proof of
Haken's Theorem, which is surprisingly easy and, moreover, is really a 2-
dimensional argument.

In Chapter I, I give the definition of an incompressible surface
and of a Haken-manifold. I give some sufficient (and some necessary) condi-
tions for the existence of an incompressible surface in a 3-manifold. I
have included a number of examples, many of which I use later in the manu-
script. Here, however, the main result is the so-called Haken-Finiteness
Theorem (II1.20). It gives a finiteness condition for collections of pair-

wise disjoint, incompressible surfaces embedded in a Haken-manifold. It is
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indespensible to the approach of this author and I have presented it in both
detail and generality. I also present a convenient generalization due to
Peter Shalen and myself.

I believe the reader will find that Chapter IV is a fun chapter.

It is a very important chapter; since the existence of a hierarchy for a
Haken-manifold provides an inductive method of proof, which has been a major
tool employed in the study of this important class of 3-manifolds. But, in
this chapter I introduce the notion of a partial hierarchy and give some fun
examples of infinite partial hierarchies for compact 3-manifolds. I also
define the (closed) Haken number of a compact 3-manifold and the length of

a Haken-manifold; and I discuss different inductive methods of proof (advan-
tages and perils). I end Chapter IV with Theorem IV.19, where I prove that
any Haken-manifold has a hierarchy of length no more than four — a result
that I have never been able to use.

Chapter V is an abbreviated version of what might have been a
revision of my Princeton Lecture Notes on the structure of three-manifold
groups, I first indicate the restrictive nature of three-manifold groups
by classifying the abelian three-manifold groups. I present the Scott-
Shalen Theorem (V.16) that any finitely generated three-manifold group is
finitely presented. This is done using the idea of indecomposably covering
a group, which I like very much. However, a large part of Chapter V is
devoted to open questions about three-manifold groups and properties for
three-manifold groups; e.g., the finitely generated intersection property
for groups, which is important in later chapters (particularly, Chapter VII).

Chapter VI is in some sense the beginning of the new material.

Here I present new results about Seifert fibered manifolds. Namely, I

prove that if a finite sheeted covering space of a Haken manifold M is
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a Seifert fibered manifold, then M itself is a Seifert fibered manifold
(VI.29) and I develop the topological study of Seifert fibered manifolds
needed in the later chapters to present the recent work of Shalen and my-
self, Waldhausen and Johannson. Also, I present a proof of the Gordon-
Heil prediction that a Haken-manifold, having an infinite cyclic, normal
subgroup of its fundamental group, is a Seifert fibered manifold (VI.24)
and a description of compact, incompressible surfaces in Seifert fibered
manifolds (VI.34). I hope that this chapter on Seifert fibered manifolds
will serve as an introduction to this important class of 3-manifolds for
the beginners in the subject and provide some enjoyable reading for the
more advanced.

I begin Chapter VII by giving general conditions that are suffi-
cient for a noncompact 3-manifold to admit a manifold compactification.
The basic result here (VII.1l) is after T. Tucker's work [Tul]. I give

a new proof of J. Simon's Theorem [Si that the covering space of a Haken-

1
manifold corresponding to the conjugacy class of a subgroup of the funda-
mental group, which has the finitely generated intersection property, admits
a manifold-compactification to a Haken-manifold (VII.4). This result is
then applied to covering spaces corresponding to finitely generated peri-
pheral subgoups (finitely generated, peripheral subgroups have the finitely
generated intersection property (V.20), [J-M] and [J—Sz]) and to covering
spaces corresponding to the fundamental groups of well-embedded submani-
folds. This latter material is based on work of B. Evans and myself and
allows certain isotopes that are used in all the later chapters. While this
work on compactifications is itself very important to me, its use here pro-

vides the foundation for the existence and uniqueness of the characteristic

pair factor of a Haken-manifold pair. This is a new presentation of the main
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results of the paper [J—Sz]. I use covering space arguments rather than
the formal homotopy language used there. I believe that the reader should
find the material here much more intuitive. I have not, however, covered
many of the surprising results obtained in that manuscript. Time and
space would not allow this. I am disappointed in not doing so; but if

the reader has interest after completing Chapter VII, I believe revisiting
[J—Sz] may be a more pleasant experience.

In Chapter VIO, I present a major part of the joint work of Shalen
and myself [J—Sl]. My approach here follows very much the lines of our
original approach. While this approach is similar to the presentation in
[J—Sl], I do not go into the generalities of that manuscript (thereby, I
considerably reduce the notation and length of the presentation) and I have
set up a different foundation with the material of Chapter VII. I give
proofs of the Essential Homotopy Theorem (VIII.4), the Homotopy Annulus
Theorem (VIII.10) and the Homotopy Torus Theorem (VIII.1l1l) and the Annulus-
Torus Theorems (VIII.13 and VIII.14).

I believe that the presentation of Chapter IX will introduce the
reader to an understanding of the characteristic Seifert pair of a Haken-
manifold with a minimum amount of work. In fact, this chapter is really
very short, By introducing the idea of a perfectly-embedded Seifert pair
in a 3-manifold, I am able to show (under the partial ordering that one
perfectly-embedded Seifert pair (Z',®') is less than or equal to another
perfectly-embedded Seifert pair (Z,9) if thereis an ambient isotopy taking
L' dinto Int L and ©¢' dinto Int ¢) that a Haken-manifold with incom-
pressible boundary admits a unique (up to ambient isotopy) maximal, perfectly

embedded Seifert pair. This unique maximal, perfectly-embedded Seifert pair
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is the characteristic Seifert pair. The bulk of Chapter IX is in giving a
detailed proof of Theorem IX.17, which allows a characterization of the
characteristic Seifert pair via homotopy classifications of maps. I con-
clude Chapter IX with examples of the characteristic Seifert pair of some
familiar 3-manifolds and some examples for caution.

I think it is fair to say that I worked the hardest for the results
of Chapter X. I guess what is good about this is that I am pleased with the
outcome. For here, I present the generalized version of Waldhausen's Theorem
on deforming homotopy equivalences (X.7); hence, I have answered conjecture
13.10 of [Hel] affirmatively and given a complete proof of this version of
the theorem, which is due to T. Tucker (X.9). Moreover, I have been able to
obtain a new proof of the beautiful theorem due originally to K. Johannson
[JOZ] on the deformations of homotopy equivalences between Haken-manifolds
with incompressible boundary (X.15 and X.21). This proof is inspired by
observations of A. Swarup (VII.22 and VII.24). I also give many examples of
"exotic' homotopy equivalences. Most of these examples are well-known.

I have used standard terminology and notation except for the new
terms that are introduced; of course, here I give the required definitions
and describe the new notation. The reader will find that I have included a
lot of detail. However, if there were items that I felt might improve the
presentation and I did not want to complete the detail, I set such items
off as Exercises. This is in contrast to items labeled as Question; in

the case of a question, I simply do not know the answer.



CHAPTER I. LOOP THEOREM-SPHERE THEOREM:
The Tower Construction

In this chapter I discuss the Loop Theorem, Dehn's Lemma, the
Sphere Theorem and some of their more interesting generalizations.

There is a very nice account of these theorems given in the book by
John Hempel [Hel]. In particular, one can find there complete proofs
that are quite readable.

There are a few reasons why I have chosen to begin these lectures
at this point. The fundamental importance of these theorems to the
methods of three-manifold topology, and particularly to the approach
of this author, cannot be overestimated, I plan to give a modified
version of the classical method of proof. The approach that I use here,
to prove the Loop Theorem,can be used to give a unified proof of Dehn's
Lemma and the Loop Theorem with their generalizations after Shapiro-
Whitehead [S-W] and Waldhausen [Wl], respectively, I have here a
forum to make a case for a new proof of the Sphere-Theorem using only
the Loop-Theorem (or even better, a proof using equivariant surgery in
a universal covering, see Chapter VI ) and to present some interesting
problems arising from the study of these theorems, However, certainly
the main pursuasive for starting at this point is that many participants
at these lectures are not familiar with the techniques of 3-manifold
topology and are here to gain a working knowledge for the study of
problems in this area. With this in mind, there is no better place to
start,

The results of this chapter can be considered as the first step
in the program of studying singular mappings of surfaces into 3-manifolds

1



2 WILLIAM JACO

For here a singular mapping of a planar surface (a surface is planar

if it can be embedded in kz, the plane) or of a sphere into a 3-
manifold is replaced by a non-singular mapping, while preserving certain
prescribed conditions. Of first importance, however, is the case when
the surface is one of the basic 2-~elements, the 2-disk or the 2-sphere.

The version of the Loop Theorem given here is after J. Stallings [St1

I.1. LOOP THEOREM: Suppose that M is a 3-manifold, S is a connected

surface in OM and N is a normal subgroup of ﬂl(S). Let f : D2 —=> M

be a map such that f(BDz) CSC3M and [f| aDZ} £ N. Then there

exists an embedding g : D2 —> M such that g(BDz) CS<C oM and

(g | @?] £ N.

To obtain a possibly better understanding of I.l consider the

following, otherwise not so obvious, consequences,

I.2. COROLLARY: Suppose that M is a 3-manifold and that S 1is a

connected surface in oM. Set K equal to the normal subgroup

ker{ﬁl(s) < WI(M)}. If K¢ {1}, then a nontrivial element of K

can be represented by a simple closed curve (s.c.c.) in S.

Proof: One simply applies I.1 in the case N = {1}, W

Contrast this to the fact that many normal subgroups of ﬁl(S)
have no such element, Indeed, this is already the case for S = S1 X S1
and any normal subgroup of WI(S) generated by a nontrivial, non-primitive
element., In fact, it is a very interesting question as to when the kernel of

a homomorphism that is induced by a mapping between two closed, orientable

surfaces needs to contain such an element (see [Edl] and [qu]).

I.3. COROLLARY: Suppose that M is a 3-manifold and that S is a
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compact surface in M. Set G = Im(TTl(S) > TTl(M)). Then

GNF *G *... %G where F is a free group and G; ¥ TTl(Si)

for some closed surface S, (1<i< k).

Proof: One simply applies I.l to prove that K = ker(ﬂl(S) > Trl(M)
is normally generated as a subgroup of Trl(S) by a finite, pairwise

disjoint collection of simple closed curves in S. W

I.4. EXERCISE: Show I.3 is true in the case where S 1is not necessarily
compact, Of course, the conclusion may need to be modified to admit a

possibly infinite number of factors Gi'

If M is a 3-manifold, a subgroup H of TTl(M) is peripheral
if there exists a surface S C OM such that H 1is conjugate in Trl(M)

into a subgroup of Im(TTl(S) > TTl(M)).

I.5. EXERCISE: Any finitely generated peripheral subgroup H of a

3-manifold group has the form H~ F * Hl * L. * Hn where F 1is a

free group and Hi ~ TTl(si) for some closed surface Si (1 <i<n).

The next result is Dehn's Lemma, first formulated by M. Dehn [Dl]

in 1910, However, his proof contained a serious gap which was pointed
out by H. Kneser [Knl] in 1927, A satisfactory solution to Dehn's Lemma
was given by C. D. Papakyriakopoulos in 1956 along with his versions of

the Loop Theorem and the Sphere Theorem [Pl’ P2].

I.6. DEHN'S LEMMA: Suppose that M is a 3-manifold and that
f:0° —>M is a map such that f | ? is an embedding and
2

f‘l(f(anz)) = oD (i.e. the singularities of f do not meet aDZ).
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Then there exists an embedding g : D2 —> M such that g| an2 = f |aD2.

Sometimes it is helpful to be aware that:

I.7. REMARK: A contractible simple closed curve is orientation

preserving. Indeed, if two simple closed curves J and K in a

3-manifold M are homologous in M, then J 1is orientation-preserving

iff K 1is orientation-preserving. This follows from another useful observa-
tion., Namely if a s.c.c. in the boundary of a 3-manifold M bounds a surface

in M, then it is orientation preserving in the boundary of M,

I.8. REMARK: Dehn's Lemma is usually stated by saying that there
exists a neighborhood A of 8D2 such that f| A is an embedding

and f-l(f(A)) = A (i.e, that the singularities of f miss a neighbor-
hood of aDZ). Such a version clearly follows from the Loop Theorem
(I.1). However, it was pointed out to me by John Hempel that the above
version of Dehn's Lemma (I.6) also follows from the Loop Theorem (I.1l),.
The proof goes like this: Let U be a small tubular neighborhood of
f(anz) such that f is in general position with respect to JU. Set
M'=M - 8. Since there are no singularities of f on 8D2, there
exists a map f' : D2 —> M' such that f'(aDZ) C dU and

[£' IBDZ] # 1 1in nl(au). Hence, by the Loop Theorem (I.l) there
exists an embedding g : D2 —> M' such that g(anz) C dU and

[gl aDZ] # 1 in ﬂl(aU). I want to show that g IBDZ is a longitude
of U. It follows that U, along with a regular neighborhood of g(DZL
is a punctured Lens space (allowing 82 X S1 and S3 both as a Lens
space). Since f IBDZ is the core of U (and as such generates the

fundamental group of the Lens space) and is trivial in M, the only
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2
possibility is that the Lens space is S3. Therefore, g| oD is a

longitude of U. The s.c.c. g(&Dz) and f(sz) cobound an annulus

in U and so the map fl aDZ can be extended to an embedding of D2

into M.

The following theorem is often referred to as the Projective
Plane Theorem., The version here is after Epstein [Epl] and incorporates

essentially all of the other major versions [Pl, Wh Stz].

2)
I1.9. SPHERE THEOREM: Suppose that M is a compact 3-manifold and
N is a ﬂi(M)-invariant subgroup of ﬂzﬂn). Let f : 82 =M b

o

map such that [f] € N, Then there exists a covering map

g : 82 — g(Sz) C M such that g(Sz) is two-sided in M and [g] # N.

I.10. REMARK: The covering map g 1in the conclusion of I.9 has image
g(Sz) either a 2-sphere or a projective plane. 1In the case of the
projective plane it guarantees that g(Sz) is two-sided in M (a
2-sphere is always two-sided in a 3-manifold). If the manifold M is
assumed to be orientable (or at least does not admit an embedded, two-
sided projective plane), then the conclusion of the Sphere Theorem is

that there exists an embedding g : 82 —> M with [g] £ N. The manifold

M= P2 X S1 (which has the property that every embedded 2~sphere in M
bounds a 3-=cell in M) provides an example where the covering map
g : 32 —> M must be nontrivial and therefore g(Sz) is a two-sided

projective plane,

I.11., REMARK: If M 1is an orientable 3-manifold and ﬂé(M) is not

trivial, then it follows from the Sphere Theorem that ﬂl(M) is either
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infinite cyclic or splits as a nontrivial free product. A partial
converse to this (the so-called Kneser Conjecture that if M is a
closed, orientable 3-manifold and WI(M) is either infinite cyclic
or splits as a nontrivial free product, then there exists an essential
2-sphere embedded in M) can be proved without the aid of the Sphere

Theorem (see [Hel], [St3] and [th]).

I will give the statements of the two main generalizations

of I.1 and I.6.

I1.12, GENERALIZED DEHN'S LEMMA [S-W]: Let M be a 3-manifold and

let D be a compact planar surface with boundary components J

cee, J

r k'
Suppose that f : D —> M is a map such that f| 3D is an embedding,

f-l(f(aD)) = oD and f(Ji) is orientation preserving in M for

each i (1 <i<k), Then there exists a compact planar surface D'

with boundary components Ji, ceey Jé, and an embedding f' : D' —> M

such that for each j (1 < j < k') there exists a unique i

j
¢t _<_ij5 k) so that f'(JJ!) = £(J3; ).
i

I.13, GENERALIZED LOOP-THEOREM [W Let M be a 3-manifold and

1

let D be a compact, planar surface with boundary components J

veey J

1’ k*

Let Nl’ ooy Nk be normal subgroups of ﬂl(M). Suppose that

f:D —>M is amap such that £(3D) =M, [f|J, ] €N, f£(J,) is

orientation preserving in M for each i, and f£(J.,) N f(Jj) =0

i
for i # j. Then given regular neighborhoods Ui of f(Ji) in M

there is a compact, planar surface D' with boundary components

Ji, vees Jé. and an embedding g : D' —> M such that for each j

(1L < j<k') there exists a unique ij (1< i, <k) so that g(Ja) c Ui

] 3
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and for some j, [g] J%] ¢ N; .
|

The "essence' of the proofs of the preceding theorems (I.1l, I.6,
I.9, I.12 and I1.13) is discussed on pages 40-41 of [Hel]. Basically
my approach is the same, Given a singular map f : F —> M, I construct

a factorization

where the corresponding problem for f'; F —> M has a solution. Then
by using techniques of equivariant surgery in covering spaces, I am able
to arrive at a solution to the problem for f : F —> M. This method
works well for I.1, I.6 and their generalizations (I.12 and I.13)
mentioned above; however, I have had no success using this method to

prove the Sphere Theorem (I.9). It is easy enough to find a factorization
where T : F—>M has a solution (see Exercise 1,29). The problem lies
in the limited methods of equivariant surgery. This matter is discussed

further in Chapter III.
THE TOWER CONSTRUCTION

The commutative diagram

is called a level over f : K —> L if K, M and M are all simplicial
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complexes, both of the maps f : K —> M, ¥:x—=>M are simplicial
maps, L = f£(K), i = EXK), V = U(L), R7= U(ES are relative regular
neighborhoods of L in M, T in 31 respectively, and M is a
covering space of V with simplicial covering projection p. The level

is said to be trivial, two-sheeted, regular or universal depending on

the covering space éﬁ, p) of M being trivial, two-sheeted, regular

or universal, respectively. The commutative diagram

K C—éVn Cs M

n
A(//;;

£ K . E>v . CoM
n-1 n-1 n-1
. ﬂn:l
1.15 K n-1 . .
/;1
Cs VO C> MO

is called a tower (over f. : K —> Mo) of height n if each subdiagram

}/ Kt 7 Vi 2 M
I.16 K /’iﬂ
N K, v, Coun
1 1 1 1

is a level over fi PR —=> M, for each i, 0<i<n,

The fundamental lemma for our purposes is:

I.17. LEMMA: A tower of two-sheeted levels having height n can be

extended to a tower of two-sheeted levels having height n + 1 provided

that V has a two-sheeted covering Mn+1 with projection map Poi1

n —=-—

such that (fn)*(ﬂl(K)) < (Pn+1)*ﬁ1(Mn+1)'
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I.18. REMARK: 1If ﬂi(K) = 1, then a tower of two-sheeted levels
of height n can be extended to a tower of two-sheeted levels of

height n + 1 provided that Vn has a two-sheeted covering.

I.19. REMARK: If V 1is a compact 3-manifold, 3oV # @ and some

component of 3V 1is not a 2-sphere, then V has a two-sheeted covering,

I.20. EXERCISE: If V 1is a compact, orientable 3-manifold and some
component of 3V is mot a 2-sphere, then Im(H,(3V; @) > H) (V; @)

is not trivial,

I.21. EXERCISE: There exists non-orientable 3-manifolds, Vg’ with
closed, orientable surfaces in an having genus g (for arbitrary g);

yet, Hl(vg) is finite.

I.22. LEMMA: If K is a finite simplicial complex, M, is a triangulated

— 0 ——
3-manifold and fO : K —> MO is simplicial, then there exists a non-
negative integer (7 such that any tower over fo : K —> MO of height

greater than (¢ must have a trivial level.

Proof: For any simplicial map f of K into a simplicial
complex M, define the complexity of £, written ((£), to be the
cardinality of the set of pairs of simplicies GE) = {(0, T) €K XK :
0# T and f(g) = f(g)}. Since K 1is finite, C:(fo) tis a nonnegative
integer. Set (£ = <2(f0)- Then Lemma I.22 follows from the observation
that if

£ Koy SV,

i+l i
K P

i
\K Cs>y, C>u,
1 1 1

i

1
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is a level in a tower over fo : K —> M, then C,(fi+1) < C(fi)

and inequality occurs if and only if the level is not trivial., B

In the following I shall construct a tower of two-sheeted levels
in order to prove the Loop Theorem (and Dehn's Lemma).
The tower for the Loop Theorem is constructed as follows: Set

K=D2 and subdivide both K and M so that f 1is simplicial, Set

f0 = f, MO =M and KO = fO(K). Set V0 equal to a relative regular

neighborhood of K in M., such that §S_. = VO n B(MO) is a relative

0 (0] 0

regular neighborhood of fo(aK) in 3M . For i, : SOC—> M, let

N0 = (io);l(N). Having constructed a tower of two-sheeted levels of

height k over f L : K —> M

0 o’ if there exists a two-sheeted covering

of Vi then we can extend this tower to a tower of two-sheeted levels

of height k + 1 by letting M'k+1 be a two-sheeted covering of Vk

with simplicial covering projection Pri1® The simplicial map

fk : K —=> Vk lifts to a simplicial map £

Kt = B -

K+l - K —> Mk+1' Set

Set V equal to a relative regular neighborhood

k+1

of Kk+1 in M'k+1 such that Sk+1 = Vk+1 n aMk+1 is a relative

regular neighborhood of fk+1(al() in B(Mk+1). For Ly Sk+1(_> aM'k+1’

let Notice that if [f, | 3D’] £ N, then

_ . -1
Nepr = Pppp ® pqp) s e
2
(frpp DT BN,

I.23. LEMMA: Suppose that f : D2 —> M satisfies the hypothesis of

the Loop theorem, Let I.15 be a tower of two-sheeted levels over

f:0° —>M of height n and defined as above. If the tower I.15

cannot be extended to a tower of two-sheeted levels over f of height

n + 1, then there exists an embedding g, D2 - Vn such that
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2 2
g, (M) =5 <M and (g, | o0"] £ N_.

Proof: By I.18 and the hypothesis of this lemma, it follows
that Vn has no two-sheeted covering spaces. Hence, by I.19 each
component of BVn is a 2-sphere. It follows that the 2-manifold
Sn is spherical and therefore ﬂl(Sn) is generated by bSn. Since
[fn’ 8D2] 4 N, the conjugacy class determined by'some component of
BSn does not belong to Nn' This class has a representative which
is a simple closed curve in Sn and each simple closed curve in Sn
bounds a disk embedded in BVn (and therefore bounds a disk embedded

2

in Vn)' Let g, : D — Vn be an embedding which realizes such

a disk., B

I.24., REMARK: If we consider the '"top" of a tower as the level at
which the tower cannot be extended in a desired fashion (in the case

of the Loop Theorem a level at which v, has no two-sheeted coverings),
then we can interpret Lemma I.23 as simply stating that there exists a
solution to the Loop Theorem at the top of a tower of two-sheeted
levels. In the case of the Generalized Loop Theorem (Generalized Dehn's
Lemma) again the method of proof is to exhibit a solution at the top of
a tower of two-sheeted levels, However, in this case the top occurs

at a level in which it may not be true that each component of bvn is

a 2-sphere; therefore there is more work in exhibiting a solution., The
top of the tower is precisely where this approach falters in the case

of the Sphere Theorem, Even though it is necessary that a solution to
the Sphere Theorem exists at the top of a tower of two-sheeted levels,

I do not know of a direct method for finding it. Notice that it is true,
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and easy to prove, that for any compact 3-manifold V with ﬂl(V)
finite and ﬂé(V) not trivial, then 3V is a nonempty collection
of 2-spheres and ﬂé(V) is generated as a ﬂl(v)-module by the
components of V.,

Next, I consider the method of descending a tower with a
solution, For simplicity's sake, as well as continuity of my presenta-
tion, I shall give detail only in the case of proving the Loop Theorem
(Dehn's Lemma)., It is true, however, that particularly subtle points
appear in descending a tower with a solution to the Sphere Theorem or
with a solution to the Generalized Loop Theorem (Generalized Dehn's
Lemma), I will say more about this in the remarks immediately following

the proof of Lemma I.25.

I.25. LEMMA: Using the notation established above, suppose that I.15

is a tower of two-sheeted levels for the Loop Theorem., If I.15 has a

solution at height k (k > 1), then I.15 has a solution at height
k - 1; i.e. if there exists an embedding 8 ° D2 -_ Mk such that

2 2 .
gk(aD ) < Sk < BMk and | aw] ¢ N then there exists an

. 2
embedding 8- 1 : DT —> Mk 1 such that 8- 1(aD ) < Sp-1 © BMk 1

and | an ] £ N 1

(&1

Proof: Let T be the nontrivial covering translation., The
idea is that a solution 8 * D2 —> Mk can be found such that
_ _ 2 . -
DNTM®M =P where D= gk(D ). Then it follows that Bi-1 = Py 8
is the desired embedding of Dz into Mk-l'
To begin, I take the given embedding g D2 —> Mk and set

= gkODZ). I may assume that adjustments have been made so that D
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and T(@) meet transversally, Then D N T(D) 1is either empty (the
desirable situation) or consists of a pairwise disjoint collection of
simple closed curves and spanning arcs. I then use the union D U T(®D)
to find a disk D' such that a map realizing D' as an embedding of
D2 into M, is a solution to the Loop theorem, D' meets T(D')
transversely and D' N T(M') has fewer components than D N TM). If

I continue to call this new embedding By then it is clear that
inductively, I will obtain the desired solution.

Suppose that D N TM) # 9.

Case 1. D N T() has a simple closed curve component (Figure 1,1).

N —"K U\ :——"'—'{—‘)-’9
/ / A Ve \ I |
LT BT 02,

T(4) TM,

(a) (b) (c)

Figure 1,1

In this case let a be a simple closed curve component of

o
D N T@M) such that & bounds a disk & on D and AN TMD) = @;

i.e. & 1is "innermost'" on D. The simple closed curve T(a) (which

may be equal to a if @ 1is invariant) divides D into two components:

an annulus DO’ which contains 3D, and a disc Dl' Let U be a
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small product neighborhood of T(A) such that U has a parametrization
as I XIxI with T(A) =1 xIx {1/2}, UND=3( x I) x I,
IxIx{0}ND #0 and I xIx{1}0D #¢. set D= ®, - U ND)
and set A' =1 x I x {0}, Then D' = Dé U 4' has the property that

D' N T(D') has fewer components than D N T(D).

Case 2. D N T(D) has no s.c.c. components (see Figure 1,2).

(a) (b) ()

Figure 1.2

Let O be a component of DN TM) (¢ is a spanning arc of D)
so that there exists an arc B in JD having the property that 3da = 38
and o« U B bounds a disk A in D where Z NTM) = P; i.e. a is
"outermost" on D. The spanning arc T(@) <D N T(D) (which is disjoint
from o) divides D into two components DO and Dl’ each of which

is a disk, and divides oD into two arcs % and % such that

Qo(: BDO and a = &Dl. Set Y = T(B). By properly choosing orientation

we have [dD] = aydy = (aOY)(Y-lal). Therefore, ayY £N or Y-lal £ N
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(say GOY £ N). Let U be a small product neighborhood of T(4) such
that U has a parametrization as I x I x I with T(A) = I x I x {1/2},
UNo= {1} xI x 1, 1x1x{ﬂnmo¢¢am lex{Unnl¢@

Set Db = (D0 -UND) and set A' =1 x I x {0}, Then
D' = D6 U A' has the property that D' N T(D') has fewer components

than DN Tm. N

In the next two remarks, I am continuing to use the notation of

Lemma I.25 and its proof.

I.26., REMARK: 1In the case of the sphere theorem if one tries to descend
a tower of two-sheeted levels with a solution, then the situation is as
follows: there exists an embedding By ° 82 - Vk with [gk] 3 Nk and
one needs to exhibit an embedding g, _; : s > V1 vith [gk_l] £ N o1
If S = gk(Sz), then either S N T(S) = @ or each component of § N T(S)
is a simple closed curve. If @ 1is such a component of intersection

and o = T(d), then the induction argument may fail; that is, equivariant
surgery, as described in Lemma I,25, may fail to reduce the number of
components of intersection between the 2-sphere and its image under the
covering translation T, However, in this case, it follows that Vk-l

is a nonorientable 3-manifold (in fact, pk_l(a) is an orientation

reversing curve in and one can find a nontrivial covering map
[}

Vie-1)
g . i 8 —>g (S CV, ., with [g <] EN, 3 i.e. g (5 is
k-1 ° k-1 k-1 k-1) FNpops teee gy

a two-sided projective plane in Vk-l'

I.27. REMARK: 1In the case of the Generalized Loop Theorem (Generalized
Dehn's Lemma) if one tries to descend a tower of two-sheeted levels

with a solution, then there exists a planar surface Fk with Ty boundary
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components bk ceey bi and an embedding gk : F. —> V. such that

r K k k
g (bk) c Sk c 3 and for some j [g, | bk] 3 Nk One needs to exhibit
KPy) = 8; < oMy PR R
a planar surface Fr with ro_1 boundary components bi-l, cees bi-l
k-1
and an embedding 81 ¢ Fre1 ™ Vi with gk_l(bﬁ-l) = Sﬁ-l c BMk_
and for some m, [gk-ll bi-l] £ Ng-l.

Set F = gk(Fk), then either F N T(F) = @ or each component
of intersection is a spanning arc or a simple closed curve., Now, I
have been able to make the method of equivariant surgery presented here
successful in this case by using that F is planar and if J, K are
components of OF, then either JN T®K) =@ or J= K. This latter
fact follows from the hypothesis that the singular images of distinct
components of the boundary of the planar surface do not meet., Hence,
if a component of F N T(F) 1is a s.c.c. @, then both o and T(a)
separate both F and T(F) and equivariant surgery can be done., If
a component of F N T(F) is a spanning arc @, then either a has
both of its end points in the same component J of JdF (and, by the
above observation (hypothesis), T(&) has both of its end points in
T(J) € 3T(F)), so both a and T() separate both F and T(F) and
equivariant surgery can be done; or both o and T(a) have one end
point in J € 3F and the other end point in K S 3F (J # K) (again,
by the above observation (hypothesis)), so together Q and T(Q)

separate both F and T(F) and equivariant surgery can be done,

I.28, QUESTION: 1Is the Generalized Loop Theorem (I.13) valid if we

eliminate the hypothesis that f£(J,) N f(Jj) =P for i+# j?

I.29. EXERCISE: Suppose that M is a simply connected 3-manifold and
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ﬂé(M) # 0. Using the Loop theorem prove that there exists an essential

2-sphere embedded in M,

I1.30. EXERCISE: Prove that Dehn's Lemma, the Loop Theorem, and their

generalized versions (I.12 and I.13) follow from the Sphere Theorem,

The next exercises give direct and elementary applications of

the theorems discussed in this Chapter.

I.31. EXERCISE: Using Dehn's Lemma prove that the knot k C S3 is

trivial if and only if TTl(S3 -~ k) 1is infinite cyclic.

I.32. EXERCISE: Assume that M 1is a compact 3-manifold such that
every 2-sphere in M bounds a 3-cell in M (M 1is irreducible),
Use the Loop Theorem to prove that M is a cube-with-handles if and

only if ﬂl(M) is a free group.

I.33. EXERCISE: Assume that M 1is a compact, irreducible 3-manifold
with connected boundary. Prove that M 1is a cube-with-handles if and

only if ﬂi(aM) —> ﬂl(M) is onto,

I.34, EXERCISE: Let k be a knot in SB. Use the Sphere Theorem to

prove that S3 - k 1is aspherical.

I.35. EXERCISE: Let M be an irreducible 3-manifold. Let F be

a closed component of 3M and let F' # F be a component of 3M. Suppose
that every loop in F 1is homotopic to a loop in F', Use the Generalized
Loop Theorem to prove that if both ker(ﬂl(F) <> ﬂl(M)) = {1} and
ker(ﬂl(F') < ﬂl(M)) = {1}, then M is homeomorphic to F X I via a

homeomorphism taking F onto F x {0}.



CHAPTER II. CONNECTED SUMS

Connected sums of 3-manifolds are considered in detail in the
book by Hempel [Hel]; and in particular, he gives a proof of the most
general version of the Prime Decomposition Theorem, I will present a
completely different proof of the existence of prime decompositions
for compact, orientable 3-manifolds. My proof is based on a theorem
of Haken [Hl], which is of independent interest; moreover, I will give
a new proof of Haken's theorem. (The proof that I give is two-dimensional
and surprisingly elementary.)

A sphere S in a 3-manifold M 1is compressible in M if §
bounds a 3-cell embedded in M, Otherwise, the 2-sphere S 1is

incompressible in M. For example, a nonseparating 2-sphere S in

the 3-manifold M is incompressible in M, A 3-manifold in which
every 2-sphere is compressible is called irreducible. A famous theorem
of J. W. Alexander [Al]implies that both R3 and S3 are irreducible,
Let M be a 3-manifold and let S be a 2-sphere embedded in
M that separates M., Let M1 and M2 denote the two 3~manifolds
obtained by splitting M along S and capping-off the two resulting

2-sphere boundary components with two 3-cells, Then M 1is a connected

sum of M and M

1 ,» written M, # M,. A 3-manifold M is pontrivial

if M is not homeomorphic to S3. The 3-manifold M 1is prime (with
respect to connected sum) if M is nontrivial and if M = M1 # M2
implies that either M1 or M2 is trivial; i.e. M # S3 and M cannot

be written in a nontrivial way as a connected sum,

There is the reverse operation to the one described above in which

18
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one starts with two 3-manifolds and builds from them a connected sum,
This may result in some ambiguities; and in fact, if care is not taken,
the operation is not well-defined., I will discuss this matter at the
end of this lecture, This latter problem will not really concern me.
I am interested only in splitting a 3-manifold along 2-spheres to

2 1,

arrive at irreducible pieces, along with possible §~ X §'s, and the

2

uniquencess of the seemingly many possible ways of doing this.

II.1., EXERCISE: Let M be a 3-manifold and suppose that S 1is a

non-separating 2-sphere embedded in M. Show that M = M1 # 82 ><cp Sl.
(If N is a 3-manifold and N is homeomorphic to a surface bundle
over S1 with fiber F and monodromy ¢, I shall write N =F XCp Sl.
If ¢ is isotopic to Y, @ = {, then F §$ S1 is homeomorphic to

F Xw Sl. Of course, F X S1 is used for F Xcp Sl, o~ idF.)

IT.2. EXERCISE: If some component of OM is a 2-sphere, then
M=M1#D3.

II.3. EXERCISE: With the exceptions 83, 52 X S1 and 82 X S1

®

. . . . 2 . . . .
with ¢ orientation reversing on S°, a manifold is prime if and

only if it is irreducible,

I am going to state and prove the Prime Decomposition Theorem
for closed, orientable 3-manifolds. The same result is true for compact
3-manifolds in general, orientable or not, with or without boundary
(See Exercise II1.18), To obtain a proper uniqueness statement in the
nonorientable case it is necessary to have a '"mormal-form'" for the decom-~
position (see either [Hel] or [Rl]). The existence part of the

theorem was first proved by
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H. Kneser [Knl] and the uniqueness part was obtained by J. Milnor [Ml]'

Their methods of proof are presented by Hempel [Hel].

II.4. PRIME DECOMPOSITION THEOREM. Let M be a closed, orientable

nontrivial 3-manifold. Then M = M1 # ... # Mn where each Mi is

prime. Furthermore, this decomposition for M is unique up to order

and homeomorphism,

Let M be a closed, orientable 3-manifold. A closed, orientable

surface F embedded in M determines a Heegaard splitting of M if

F separates M and the closure of each component of M - F 1is a cube-
with-handles., If the surface F determines a Heegaard splitting of
the closed, orientable 3-manifold M, I shall call the pair (M; F)

a Heegaard splitting of M. The genus of the Heegaard splitting (M; F)

is by definition the genus of F. The genus of the 3-manifold M is
the minimum of the genera taken over all Heegaard splittings of M.
(Lectures on Heegaard theory of 3-manifolds are being given at this
Conference by Professor J, Birman and a set of lecture notes has been

prepared [Bl].)

II.5. EXERCISE: Every closed, orientable 3-manifold has a Heegaard

splitting.

I1.6. EXERCISE: If M admits a genus one Heegaard splitting, then
either M 2353, M ﬁiSZ X S1 or M 1is irreducible. 1In particular, a

genus one 3-manifold is prime.

II1.7. THEOREM (Haken) [Hl]: Let (M; F) be a Heegaard splitting of

the closed, orientable 3-manifold M. If M contains an incompressible
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2-sphere, then M contains an incompressible 2-sphere S such that

S NF is a single simple closed curve,

The proof follows from a lemma about planar surfaces., First,
I need some definitions. A properly embedded arc a in a 2-manifold
T is inessential in T if there exists an arc B < dT such that
a U B bounds a disk in T. Otherwise, G 1is essential in T. A s.c.c.
& in T 1is inessential in T if it is contractible in T, Otherwise,

& 1is essential. A hierarchy for a 2-manifold T is a sequence of

pairs (TO, GO), (Tl, al), e, (Tn, an) where I,=T, o, isan

essential arc omr simple closed curve in Ti’ Ti+1 is obtained from

Ti by splitting along o, and each component of Tn+1 is a disk.

I1.8. LEMMA: Let T be a planar surface and assume that T has

b > 1 boundary components (i.e., T # D2). Let (TO, ao), ey (Tn’ ah)

be any hierarchy for T with each a, an arc. f d is the number

of components of T 11 then d<b - 1.

Proof (of Lemma II,8): The proof is via induction on b, b > 2,
If b=2, then T is an annulus and up to isotopy there exists a
unique essential arc in T. Hence, d =1 and the conclusion of II.8
is satisfied.

Suppose that the surface T has b boundary components where
b > 2 and I1.8 is true for all planar surfaces having fewer than b

boundary components. There are two cases.

Case 1. Qo does not separate T.

Set bl equal to the number of boundary components of Tl'
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Since «,. does not separate T, distinct end points of o, are in

0

distinct components of 3T; and it follows that b, = b - 1. Hence,

by induction, d=d, <b, -1=5b>b - 2,

1-"1

Case 2. O« separates T.

0
Let Ti and T; denote the components of T;. Set by, bi
and bI equal to the number of boundary components of Tl’ Ti and
T;, respectively. Since ao separates T, distinct end points of
a, are in the same component of 3dT; and it follows that b1 =b + 1.
However, we know that b1 = bi + b; and since %y 1is essential, both
b! > 2 and bY > 2., Therefore, b; <b and b] <b. Hence, by

1 1

induction, d = d,; =

1

II.9. LEMMA: Let

1 2

] " [ "o - -
1t dl < (bl 1) + (b1 1) b 1. B

T be a planar 2-manifold. Assume that T has

b boundary components and z > 0 components which are not disk. Let

Ty, GO), eeey, (T, an) be any hierarchy for T with each a, an

n

arc. If d is the number of components of Tn

Proof (of Lemma II.9): If T

then d <b - z,

+17

(3)

is a component of T which

is not a disk (1 < j < z), then the hierarchy for T determines a

hierarchy for T(j).
of T (b(J) > 2,

components of Tn+1

Let b(J) denote the number of boundary components
1< j<z), and let d(J) denote the number of

coming from T(J). Let k be the number of

z .
components of T which are disk., Then d =k + Z a@ and

1l ¢

¢ G) _ = ()
b=k+ % b, From Lemma II.8 it follows that % dJ’ < & @Y’ -

=1

=1 =1

therefore, d<b - z. W

PROOF (OF THEOREM II.7): Let (M; F) be a Heegaard splitting of
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the closed, orientable 3-manifold M. Denote the closures of the
.components of M - F by H and H', each of which is a cube-with-
handles.

By hypothesis, M contains an incompressible 2-sphere,
Therefore, M contains an incompressible 2-sphere which meets F
transversely. Among all incompressible 2-spheres in M which mee't
F transversely, choose one, S, such that the number of components
of SNF is a minimum.

I shall generalize the notions of compressible and incompressible
for 2-spheres to all properly embedded 2-manifolds. This will be
simply more convenient language to use. I will discuss these notions
in great detail in Chapter III. A 2-manifold T, properly embedded
in a 3-manifold N, is compressible in N if either T = 82 and T
bounds a 3-cell or T # 52 and there exists a disk D © N such that
DNT=23 NT is a noncontractible curve in T. Otherwise, T is

incompressible in N,

CLAIM 1: Both SNH and S N H' are incompressible.
This follows from the choice of S such that the number of components
of SNF is a minimum,

CLAIM 2: S NF consists of a single simple closed curve.

Since S 1is incompressible and a cube-with-handles is irreducible,
it follows that S NF # $. In order to establish Claim 2, I need to
describe a certain isotopy of S in M.

Suppose that A is a disk in M such that A NS = g is an arc
in 98, A NF =8 is an arc in J4, da =3B and o U B =234 (see

Figure 2.1la).
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(a) (b)
Figure 2.1

An isotopy of Type A at « is performed by sliding « across A and

past B (see Figure 2,1). Such an isotopy shoves a part of S that
is on one side of F in M through F and into the other side of F
in M. The result of this isotopy to that part of S which was on the
same side of F as Q@ before the isotopy is equivalent to the result
of cutting along a.

Now, suppose that some component of S NMH 1is not a disk., Set
T=SNH, By Claiml, T is incompressible in H., In this situation
it is not difficult to prove that there exists a hierarchy
(TO, ao), ooy (Tn, an) for T which gives rise to a sequence of
isotopies of § in M where the first isotopy is of Type A at ao,
the second isotopy is of Type A at Oy eees and the (n+l)-st
isotopy is of Type A at an. (For example, look at a complete system
of disks for H and intersect them transversely with T.)

Set S8' equal to the image of S after this sequence of isotopies

Each component of S' NH is a disk. The number of components of § N F

is b, the number of components of Q3dT. The number of components of
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§' NF 1is d, the number of components of Tn However, by Lemma

+1°
11.9, d<b -z, where z > 1 is the number of components of T
which are not disk. So, S' would be an incompressible 2-sphere
in M meeting F transversely and the number of components of S' NF
would be less than the number of components of S N F.

Similarly, if some component of S N H' is not a disk, then
we could find an incompressible 2-sphere S' in M meeting F
transversally and the number of components of S' N F would be less
than the number of components of § N F,

Therefore, by the earlier choice of S, each component of

S NH is a disk and each component of S N H' is a disk. This

establishes Claim 2 and proves the theorem. W

PROOF OF II.4: I will only prove existence here, (The original
proof by Milnor [Ml] of uniqueness is very easy to follow.) The proof
is via induction on the Heegaard genus of the 3-manifold M. For
manifolds having Heegaard genus one, this is just Exercise II.6,
Now, assume that each closed, orientable 3-manifold having Heegaard
genus < n (n > 2) admits a prime decomposition., Let M be a closed,
orientable 3-manifold having Heegaard genus n,

Since M has Heegaard genus n, there exists a Heegaard splitting
M; F) of M having genus n. Also, M is nontrivial (Heegaard genus
of S3 is zero)., If M is prime, then there is nothing to prove., So,
assume that M is not prime. Hence, there exists an incompressible
2-sphere in M, By Theorem II.7, there exists an incompressible 2-sphere
S in M such that S NF consists of a single simple closed curve, By

a slight modification, if necessary, I can find such an S such that §
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separates M. The 2-sphere S allows M to be writtem as M = Mlﬁﬁ‘ M2

for some 3-manifolds M, and M2. Moreover, since S NF is connected,

there are induced Heegaard splittings of M1 and MZ. Therefore, the

Heegaard genus of Mi is less than n for i = 1,2. The induction

hypothesis now gives the desired conclusion. B

I1.10. COROLLARY: The Heegaard genus of the sum is the sum of the

n
Heegaard genera; i.e., if M =‘M17% ..7#’Mn, then genus M = X genus Mi'
1

Now, let's consider the problem of recapturing a 3-manifold by
knowing its prime factors.

Given two 3-manifolds M1 and M2 I can choose a point in the
interior of each manifold, remove the interior of small 3-cells chosen
about these points from each manifold and attach the resulting 2-sphere
boundary components via some homeomorphism, The resulting 3-manifold is
a connected sum of My and M2 written M17% M2. It turns out that
this operation does not, in general, lead to a unique (up to homeomorphism)
3-manifold. However, by the Newman and Gugenheim homogeneity theorem
[Gul] the operation does not depend on the points or the 3-cells chosen.

The problem is in the two distinct isotopy classes of homeomorphisms on

the 2-sphere.

II.11. EXERCISE: Show that isotopic attaching maps on the 2-spheres

result in homeomorphic 3-manifolds.

There is a way around this problem. Namely, work in the category
of oriented manifolds and orientation preserving homeomorphisms. Then

the orientations on M1 and M2 induce orientations on the 2-spheres
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(as the boundaries of oriented 3-cells). Now, require that the attaching

map be orientation reversing as a map between oriented 2-spheres.

I1.12., EXERCISE: 1In the category of oriented 3-manifolds and orientation
preserving homeomorphisms, the operation of connected sum is well-defined.
Furthermore, up to orientation preserving homeomorphisms, it is an
associative and commutative operation with S3 acting as an identity

element, (Corollary II.10 can be used to show that there are no inverses.)

If M is an oriented manifold, let =M denote the oriented

manifold determined by M and its opposite orientation.

II.13. EXERCISE: Form M # M and M # -M by requiring the attaching
map on 2-spheres to be orientation reversing, Then M # M is topologically
equivalent to M # -M if and only if M admits an orientation reversing

self-homeomorphism,

II.14, REMARK: I do not know if there is any general information available
on orientation reversing self-homeomorphisms of 3-manifolds., (Some

study has been done on orientation reversing involutions [le], and

[BZ]' ) However, there are 3-manifolds that do not admit orientation

reversing self-~homeomorphisms.

II.15. 1LEMMA: The lens space L(p, q) admits an orientation reversing

self-homeomorphism if and only if q2

-1 (mod p).

PROOF: Set L = L(p, q), 0< q<p. Then L has a genus one
Heegaard splitting (L; F) such that if H and H' are the closures

of L -F, then F has a framing &, B such that B is contractible
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in H and pa + gqB 1is contractible in #'.

I shall prove the theorem under the additional assumption that
the supposed homeomorphism h : L —> L 1is isotopic to a homeomorphism
which is invariant on F., (I do not know if this assumption introduces
any limitations. I suspect this is always the case., See Question II.16.)
A proof not using this assumption may be obtained by modeling the proof
of Lemma 3.23 in [Hel].

I may assume that h(F) = F. There are two possible cases.

Case 1. h(H) = H.
The matrix of the homeomorphism h |F must have the form

(i _?) or (-i 2) , since h(B) = 1B. However, it must also be true

that h(pa + qB) = ¥(p& + qB). Hence, the only possibility is (i _?)
with n =1 and therefore p=2, q=1; i.e. L=1L(2, 1) is real

projective 3=-space.

Case 2. h(H) = H'.
The matrix of the homeomorphism hI F must have the form

s q -s =-q

(r p) or (-r -p) where rq - ps = +1, since h(B) = t(pa + gB).
In this case it must also be true that h(pd + qB) = *B. For (r p>

s q
one calculates that h(pad + qB) = =B is the only possibility and then
q2 = -1 (mod p). For (:z :2) one calculates that h(px + gB) = B

is the only possibility and then q~ = -1 (mod p).

In Case 1 and Case 2 we arrive at q2 = -1 (mod p). This proves
that the condition is necessary. However, the proof also shows how
to construct such homeomorphisms if q2 = -1 (mod p); therefore showing

that this condition is also sufficient. IR
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II.16. QUESTION: Let L be a lens space and let (L; F) be a genus
one Heegaard splitting of L. Suppose that h : L —> L is a homeo-

morphism. Then is h isotopic to h' : L —> L such that h'(F) = F?

II1.17. REMARK: The problem of decomposing 3-manifolds via 'disk-sums"
has been studied [Gl’ Gz], [Swl]. The results in this case are similar

to the results presented here on connected sums,

II.18. EXERCISE: Let M be a compact, orientable 3-manifold distinct from
S3. Then M = Ml# coo Mn where each Mi is prime. Furthermore, this
decomposition for M is unique up to order and homeomorphism. [Hint:

This is the generalization of Theorem II.4 to manifolds with possibly non-
empty boundary. First, assume that oM # ¢ and each component of M is
incompressible., Let 2M be the manifold obtained by doubling M along

OM. By II.4, 2M has a prime decomposition. Set F -equal to the
incompressible 2-manifold in 2M corresponding to dM. Among all collec-
tions of incompressible 2~spheres in 2M giving a prime decomposition of

M, choose S such that the number of components of § NF is minimal.
Argue that S NF =@ and the collection S NM gives a prime decomposition
of M. It is now easy to extend the result to manifolds M with possibly
compressible boundary. Milnor's proof [Ml] for the closed case works

equally well here, ]



CHAPTER III. 2-MANIFOLDS EMBEDDED IN 3-MANIFOLDS

There have been two very successful approaches to the study of
3-manifolds by studying embeddings of 2-manifolds in them, One approach
uses the Heegaard surface. Here the underlying philosophy is to embed
a surface into a 3-manifold so that the components of its complement
are as "simple'" as possible. The other approach uses the incompressible
surface., Here the underlying philosophy is to embed a surface into a
3-manifold so that the surface is as '"'simple'" as possible and carries
both geometric and algebraic information. (Recent success using differ-
ential geometry in 3-dimensional manifold theory exploits minimal
surfaces, totally geodesic surfaces, etc,)

A surface F embedded in a compact 3-manifold M is a Heegaard
surface in M provided that F bounds a cube-with-handles U in M
and M 1is obtained from U by adding a finite number of two and three

handles.

III.1. REMARK: Using this definition we allow a compact 3-manifold
with boundary to have a Heegaard surface., Note that if M 1is closed,
then F 1is a Heegaard surface in M iff the closure of each component

of M -F 1is a cube-with-handles of genus equal to the genus of F,

I plan to direct my attention to the study of incompressible
surfaces. As mentioned earlier, J., Birman has written a set of notes
on Heegaard surface theory to supplement her lectures here at this

conference [Bl].

30
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A surface F properly embedded in the 3-manifold M (or
embedded in &M) 1is compressible in M if either
(i) F = 32 and F bounds a 3-cell in M, or
(ii) there exists a disk DC M such that D NF = 3D

and [dD] 1is not trivial in F.

Otherwise, F 1is incompressible in M.

Notice that any properly embedded disk in M 1is incompressible in
M. This is very convenient for later definitions and it creates no extra

considerations.

II1.2. EXAMPLES:

(a) Let H be a cube-with-handles of genus n, then OH_
is compressible in Hn'

(b) Let K be a knot in S3 and let U(K) be a tubular
neighborhood of K., Set M(K) = S3 - 8(K). Let F be the intersection

of a minimal genus, orientable Seifert surface for K with M(X). Then

F 1is incompressible in M(K) (Figure 3.1).

K = TREFOIL KNOT

Figure 3.1
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III.3. REMARK: If F 1is compressible in M, then we may do 'surgery"
(see Figure 3.2) on F to obtain a 2-manifold F' such that the Euler

Characteristic of each component of F' 1is greater than the Euler

SURGERY Z
,I
/

Fl

Characteristic of F, X(F).

X(F') = X(F) + 2
Figure 3,2

(c) Let K be a knot in 83 and let U(K) be a tubular
neighborhood of K. Set M(K) = S3 - 8(K). Then 3M(K) ~ S1 X S1 is
incompressible in M(K) iff K 1is non-trivial,

(d) Let K1 and K2 be non-trivial knots in S3; let M(Ki)
be the knot-space corresponding to Ki’ i=1, 2, Let h: aM(Kl) —> MK
be a homeomorphism., If M = M(Kl) g M(KZ) is obtained from the disjoint
union of M(Kl) and M(KZ) via the identification x ~ h(x) for each

x € BM(Kl), then T = BM(Kl) = aM(Kz) is incompressible in M.

III.4., REMARK: If framings of BM(Ki) (Example (d)), say “i’ A., are

i
chosen so that My is a "meridian'" and ki is a "longitude" (i =1, 2)

and h : 3M(K;) —> aM(Kz) has the property that h(ul) = Xz and
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h(Xl) = HZ’ then M = M(Kl) E M(Kz) is a homology 3-sphere containing

an incompressible surface.

(e) P2 c P3 is incompressible (one-sided).

III.5. REMARK: A useful observation is that if F 1is a surface in M
and DS M is a disk such that D NF = 3D, then 3D 1is an orientation

preserving curve on F,

(f) Let M(n) be the Lens space L(2n, 1). Then there exists
an incompressible non-orientable surface with n-cross caps embedded in

M(n) (see Figure 3.3).

P(n) = suspension of 2n-edge polygon

D= D2

o
i

oD

P(n) identifies to M(n) and

D identifies to F.

Figure 3.3

III.6. EXERCISE: Show that the Lens space L(p, q) contains a closed,

incompressible surface iff p 1is even. [Hint: Wait until Lemma III.9.]

III.7. REMARK: The surface F CM is injective if ker(™, (F) < M (D)
is trivial. An injective surface in M 1is incompressible in M; however,

the converse is not true, For example, there is an incompressible Klein
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bottle embedded in L(4, 1) (see Example III.2 (f)). For two-sided
surfaces there is the following lemma.

-

II1.8. LEMMA: A two-sided surface distinct from 52 in a 3-manifold is

incompressible in M iff it is injective in M.

The next lemma, while quite elementary, is very important to the
study of 3-manifolds via incompressible surfaces, It is implicit in

the work of Stallings [St, ]; and this version comes from Waldhausen [W

4] 2].

III.9. LEMMA: Let M be a 3-manifold, N an n-manifold and LC N

a compact, properly embedded (n-1)-submanifold with ker(ﬂl(L)¢:%> ﬂi(N))

{11, m(N) = T, (N - L) = {0}, and my(¥) = 0. Suppose that f : M—> N is a

compact map. Then there exists a homotopy ft (0 < t <1) such that

(1) f,=f

(ii) fl is transverse to L

(iii) Each component of fIl(L) is a properly embedded, incompressible

surface in M.
Furthermore, if f | 3M is transverse to L we may take

ftl M = f|aM (0 <t<1),

Proof: First deform f wvia a proper homotopy so that the resulting
map (also called f) 1is transverse to L., Set n, = number of components

of f-l(L) having Euler Characteristic equal to k. (Each component of
£ (L) is a compact, properly embedded surface in M.) Using surgery on

the map f, induct on the set of finitely nonzero tuples (..., Dy eees Dy,

ny, 0y, nz) lexicographically ordered from the left (see [Hel], Lemma 6.5). B

The next two theorems give the most commonly used results for
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existence of incompressible surfaces in 3-manifolds,

III.10., THEOREM: Let M be a compact 3-manifold. Then M contains

a two-sided incompressible surface if at least one of the following is

true:

1) H @, © 70,

(2) m@D A%, B or A%, or

(3) M+ 8.

Proof: 1In case (1) there exists amap f : M — S1 which has
the property that f cannot be homotoped off of any point of Sl. Set

N = Sl and L = a point in Sl and apply Lemma III.9.

In case (2) there are classical constructions using either
mapping cylinders or a mapping torus to construct a manifold N and a
submanifold L so that there exists a map f£ : M —> N which has the
property that f cannot be homotoped off of L. Again apply Lemma III.9.
In case (3) any properly embedded disk will work, This, however,
is a rather noninstructuve surface; it is more instructive to note that
if some component of 3M is not 82 and M 1is orientable, then (1) is

also satisfied (see Exercise I.20). W

ITI.11, THEOREM: Let M be a noncompact 3-manifold. Then M contains

following is true:

(1) M has at least two ends, or

(=N
1]

(2) ﬂl(M) is not locally free,

1
Proof: 1In case (1) there exists a compact map of M onto R,

35
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In case (2) if ﬁl(M) is not locally free, then ﬂi(M) contains
a finitely presented subgroup G which is neither infinite cyclic nor
a nontrivial free product. Let X be a compact 2-complex with
ﬂl(X) ~ G. Then there exists amap g : X —> M such that g, induces
an embedding of ﬂi(X) onto G. Using surgery techniques (see the
proof of the Corollary on page 343 of [Jl] for details), some neighbor-
hood, U, of g(X) has a boundary component which is incompressible.
(If each component of 3U 1is a 2-sphere, we invoke the hypothesis that
M is not compact; hence, getting an incompressible 2-sphere. This is
the only place, in case (2), that the hypothesis that M 1is noncompact

is used.) W

III.12. REMARK: Useful information may be gained in the case that the
3-manifold M contains a one-sided incompressible surface. In particular
if M contains a properly embedded, one-sided surface, then M contains
an incompressible, properly embedded, one-sided surface, Such a condition
is satisfied if M 1is orientable, M does not contain an incompressible
two-sided surface and Hl(M; 22) # 0. I considered some of these problems
in 1971. Most of the information that I gained was later published by
Hempel ([Hez] and [Hel]). To date the most extensive work on one-sided

surfaces is that by Rubenstein [Rl]'

A surface F in a 3-manifold M 1is OJ-compressible (boundary-
compressible) if either

(i) F 1is a disk and F 1is parallel to a disk in oM or

(ii) F 1is not a disk and there exists a disk D €M such that

DNF=0a is an arc in 3D, D N3 = B is an arc in 3D, with
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aNB=23=23 and a UPB = 203D, and either a does not separate F
or QO separates F into two components and the closure of neither is

a disk (see Figure 3.4). Otherwise, F is 0O-incompressible.

OF € M

Figure 3.4

I1I.13, EXAMPLIES:

(a) If F 1is an incompressible, two-sided surface in a solid
torus, then F is homeomorphic to either a disk or an annulus. If F
is an incompressible and J-incompressible surface in a solid torus,
then F 1is homeomorphic to a disk.

(b) The only incompressible and J-incompressible surface in a

cube-with-handles is a disk.,

I want to give a construction for embedding incompressible surfaces
in the product of a 2-manifold with an interval., I will give the
construction in two special cases; the reader should then be able to
generalize to the many possibilities that come out of this method. I

first gave such a construction in [JZ]'

IIT.14, EXAMPLES:

(a) Let S be a disk with two holes, Let « and B be essential
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spanning arcs in S as shown in Figure 3.5 and let U(a), U(B) be
regular neighborhoods of «, B respectively, having the property that
U@) NUB) = @. Denote the arcs in Fr U(Y) by Y+, Y~ where

(o] o
y=a0a, B, Set S'= S - (U@ UTE®B).

Figure 3.5

. . [ - 1 i .
Given an integer n > 1, let §; =8 X {EIT , 1 <i<n., Then

' +_ i -y i _
S} €S xI. Set Y=Y x{m_l, Y, =Y x{m_l}, Yo v x {0} and

Y41 =YX {1}, vy=o0o, B, 1<i<n., Let S, be the surface obtained
i=n + + -
from the union U S! by attaching Yy, to Y., Y. to Y. (1<i<n)
j=1 * 1 0 i i-1 -
Yn+l to Y; (y=0a, B) with "nearly vertical" disk (see Figure 3.6 for
n = 3).
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Figure 3.6

Using an induction argument, it is easily seen that (i) X(Sn) =2 -n,
(ii) for n = 2k - 1, an odd integer, the number of components of aSn
is one and the genus of S, is k-1, and (iii) for n = 2k, an even
integer, the number of components of aSn is two and the genus of Sn is
k -1,

There are different ways to see that Sn is incompressible. One
method (geometric) is given in [J2]. However, an algebraic method is
available as follows: A set of free generators {zl, ooy zn_l}, for
ﬂl(Sn), a free group of rank n - 1, can be chosen so that inclusion
sends z; —> xiy-i where {x, y} are the obvious free generators of
Wl(S X I), a free group of rank two. The subgroup generated by
Xn-lyl—n}

-1
{xy 7, ..., in the free group of rank two generated by {x, y}
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is freely generated by these symbols.

(b) Let S be a closed, orientable surface having genus two.
Let J be a nonseparating simple closed curve in S and let U(J)
be a regular neighborhood of J in S. Denote the s.c.c. components

- o
of Fr U(J) by J+ and J . Set S' =8 - U(J). (See Figure 3.7.)

’d ()

S g'
Figure 3.7
Given an integer n > 1, let Si = 8' x {;ii , 1<i<n., Then

' +_ oty il DU SV S -
§; €S xI. Set J.=1J x{n+1}, =3 x{n+1], Jo=J x {0} and

n

J =J X {1}. Let Sn be the surface obtained from the union U S;
i=1

. + + - . -

by attaching J1 to JO’ Ji to Ji-l (1<i<n) and Jn+1 to Jn

n+l

with "nearly vertical" annuli,
As before it is easily seen that
(1) X(5)) = -2n
(ii) The number of components of aSn is two and the genus of Sn

is n.
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In this case free generators {xl, Yis eees X Yoo z} for
ﬂl(Sn), a free group of rank 2n + 1, can be chosen so that inclusion

sends x, —> dtad™t y, —> dibd-l, z —> d"cd™ ™ where {a, b, c, d}

b

are the obvious generators of ﬂl(S). Again we have this subgroup a

free subgroup which is freely generated by the selected generators.

III.15. CONCLUSION: Let H2 be the cube-with-handles of genus two.

Then for every genus g, H2 contains a properly embedded, incompressible
surface of genus g (with one boundary component). Analogous conclusions

may be drawn for arpitrary cubes-with-handles. Notice that our construction

gives nonseparating surfaces.

II1.16. QUESTION: Does H2 (respectively, Hn)’ the cube-with-handles of genus
2 (respectively, n), contain a separating incompressible surface of arbitrarily
high genus?

Another interesting conclusion may be drawn from the above examples.

III.17. CONCLUSION: Using the notation of Example III.14, let M= S X Sl.

For each n, the surface Sn constructed in Examples III,14 gives rise

2]’

1 -
that M fibers over S  with fiber Sn' In particular, it follows that

to an incompressible surface Sn in M. Also, it can be shown, [J

if S 1is the closed, orientable surface of genus 2, then for any integer
n, M= S X S1 fibers over S1 with fiber the closed, orientable surface
of genus n. (In [Nwl]’D' Neumann shows that this phenomenon is quite
common for M= F ><Cp Sl. Also, see [Thl] for many examples of incompressible
surfaces in bundles which are not fibers in any fibration.)

These examples show that a 3-~manifold may admit many distinct

embeddings of surfaces which are incompressible., On the other hand, there
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exists closed, orientable, irreducible 3-manifolds with infinite
fundamental group which admit no embedded incompressible surfaces
Th

(W J-R]. I shall discuss these matters in later chapters.,

2’ 2’

I now want to consider the very important Kneser-Haken Finiteness

H,, H. ]. I shall prove the theorem in the most general

Theorem [Knl, 1 By

case for surfaces, with or without boundary, and for compact 3-manifold
irreducible or not., Also, I shall present a special case of the new
result of P, Shalen and myself, which eliminates the condition of
d-incompressibility on the surfaces, which is necessary in the work

of Haken ([Hl, H D).

2

A compact, orientable, irreducible 3-manifold is called a

Haken-manifold if it contains a two-sided incompressible surface.

I11.18. EXAMPLES:
(a) A 3-cell is a Haken-manifold.
(b) A knot space in S3 is a Haken-manifold.

3 2 2

(c) The manifolds S, S§° x I, S~ X S1 and L(p, q) are not

Haken -manifolds.
III.19. REMARK: A Haken-manifold is a K(T, 1).

III.20, THEOREM: Let M be a compact, orientable 3-manifold. There

is a nonnegative integer nO(M) such that if {Fl, oo, Fn} is any

collection of pairwise disjoint, incompressible, and o-incompressible

surfaces in M, then either n < nO(M) or for some i # j, Fi is

parallel to Fj in M.

Proof: I shall prove this theorem in a number of steps. I begin
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with M a special type of Haken-manifold; and then, by progressively

relaxing conditions, I arrive at the situation of the theorem,

STEP 1: Suppose that M 1is a o-irreducible Haken-manifold;

i.e. each component of oM 1is incompressible.

Proof in Step 1l: The reader can easily fashion a proof after
the proofs of Lemma 3.14 and Lemma 13.2 of [Hel], both of which are
very well done. However, I do mention a significant difference., If
T is a fixed triangulation of M, then the collection {Fl, ooy Fn}
can be put in '"normal form'" with respect to T; however, now there are
two types of ''disk replacements'", both of which may be accomplished by
an ambient isotopy of M. The first is precisely as the 'D-modification'
used in Lemma 3.14 of [Hel] and can be accomplished by an isotopy since
each Fi (1 <i<n) is incompressible and M 1is irreducible. The
second is not considered in [Hel], since there each Fi (1 <i<n)
was assumed to be closed. For this second "disk-replacement'" let D
be a 2-cell in M with D N U F, = Q, an arc in 3D, D N aM= B,
an arc in 3D with a N B=203dx=23 and o UB=23D. Then acC Fi
for some i. Since each F. is d-incompressible, there is a disk E
in F, such that EN3WM =Y is an arc in 3E, a Ny =23 = 3y and
a Uy= 3E. Put F} = (Fi -E) U D. This is called a D-modification
of {Fl, csey Fn}. A D-modification can be accomplished by an ambient
isotopy of M, since M 1is OJ=-irreducible and irreducible.

In Step 1, for a fixed triangulation T of M, the number
28, 43 Zz) + 6[T3], where |T3| is the number of 3-simplexes of T,

satisfies the conclusion of Theorem III.20.
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STEP 2: Suppose that M is a Haken-manifold.

Now, there is the possibility that some component of &M is
compressible. The argument that I give is fashioned after the arguments
presented in §VI of [er]; however, I point out that I do not arrive at
the same number given in the proof of Lemma B of [er]. 1

need two elementary results which I state as the next two lemmas.

III.21. IEMMA: Let M be a compact Haken-manifold. Then there is a

finite collection of pairwise disjoint disks Dl’ ooy Dr Erog:rlz
embedded in M such that each component of M split open at U Di is
- - 1

a Oo-irreducible Haken-manifold.

Proof: Induct on the complexity of M wusing ¥(aM).
If M 1is a compact 3-manifold a collection {Dl, seey Dr} of
pairwise disjoint, properly embedded disks in M 1is called a complete

T
system of disks for M if each component of M split at g Di is

o=-irreducible. (Sometimes it may be the case that for such a collection
to be a complete system it also satisfies the condition that each member

D, is J-incompressible.)

ITI.22. LEMMA: Let M be a oJ-irreducible Haken-manifold. Let

{Dl, ooy Dr} be any collection of pairwise disjoint disks in oM.

If {El, cees En} is any collection of pairwise disjoint, properly

r
embedded disks in M - % D, and n > 2r, then either some E, is
r
arallel to a disk in oM - U Di or for some i # j, Ei i arallel
par: a in 1 or for some para’lel

r
to E, in M- UD,.
_— j = 1 i

Proof: The proof is via induction on r, For r =1, n > 2.
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Since M is QJ-irreducible and irreducible, both E1 and E2 are

parallel into OM, Hence either E1 is parallel to E2 in M- Dl’

or at least one of E1 or E2 is parallel into oM - Dl'
Now assume that the lemma is true for all collections {Dl, ey Dr}

where r <k, k> 1, Let {Dl, vee, Dk+1} be a collection of (k+1)

)
pairwise disjoint disks in dM. Let {El, ey En} be a collection of
pairwise disjoint, properly embedded disks in M, with n > 2(k + 1).

It follows from induction that either for some i, E, is parallel to

k
a disk in M - U Di or for some i # j, Ei is parallel to Ej in

1
k
M - % D,. 1In the first situation either E, is parallel to a disk in
k+1 k
M - g D, or E, is parallel in M - U D, to D ;. If

k+1
for some i, Ei is parallel to a disk in aM - U Di’ then this is
1

one of the possible conclusions and the induction step follows. Therefore
k+1

is parallel to a disk in M = g D.. If E, is

assume that no Ej
k

parallel in M - % Di to then consider the collection

Dyt
{El, cees En} - {Ei}. Since n>2(k + 1), (n-1)>2k+ 1 and it

follows from induction and the above assumption that either for some 1i',

k
E is parallel in M - % D, to D, O©f for some 1i' # j, Ei' is
k k
parallel to Ej in M - % Di' If Ei' is parallel in M - % Di to
k+1

Dk+1’ then Ei' is parallel to Ei in M - g Di' This is one of

[y

the possible conclusions and the induction step follows. Therefore in

addition to the previous assumption, assume further that only Ei is

k

parallel in M - g D, to Dk+1'

So, Ei' is parallel to Ej in
k
M - % D,. The collection {El, ceey En} - {Ei, Ei,} has n - 2 > 2k

disks and therefore by the induction step and all of the previous
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assumptions, it follows that for some i" # j', Ei” is parallel in

k
M-UD, to E,, (one of i" on j
1 1 J

' may be j). Therefore one of

k+1

these pairs E,,, E, or E,,, E., is parallel in M - U D,. This
1 ] 1 1 1

]
is one of the possible conclusions and the induction step follows.

To complete the induction step, I may assume that for some

k
i# j, E, is parallel to E, in M - UD., and that no E, is
i kJ 1 i i
parallel to a disk in oM - U Di' This is one of the special situations
1

considered above,

The induction step and, hence, the lemma follow. B

I shall now prove the theorem under the assumptions of Step 2.
Let A be any complete system of disks for M. Let IAI denote
the cardinality of 4 and let {Ml, ceey Mk} be the components of M
split open at A, Define nO(M, A =% nO(Mi) + 6|A|(|A| + 1), where
nO(Mi) is the number for Mi determined in Step 1. Now, by Lemma
III.21 M has a complete system of disk, say AO. Set nO(M) = nO(M, AO).
Let EF'= {Fl, ey Fn} be any collection of incompressible and
d-incompressible surfaces in M. If A is a complete system of disk in
M and A 1is transverse to 9:, define the complexity of 4 and the
collection ¢F, written (4, 7F), to be the total number of components
of the intersection of A and ¢f (each component being either a
spanning arc or a simple closed curve in some member of 4 and some Fi)'
Now, among all collections A of complete systems of disks for
M having the property that nO(M, a) = nO(M, AO), choose one having
minimal complexity with the collection gF. Also denote this collection A
First, I shall prove that for this 4, _c (4, &) = 0. Then I shall

prove that if _C(4, @) = 0, then either n < nO(M) or for some i # j
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the surface Fi is parallel to Fj'

Since the collection &F is incompressible and M 1is irreducible,
I can assume that no component of the intersection of A and §F’ is a
s.c.c. So, if £ (A, F) # 0, there exists a component of intersection,
say @, which is a spanning arc in some member of A and in some Fi c EFi
I may assume that «a is "outermost' in the member of A. Since Fi is
d-incompressible, @ must separate Fi and one component of Fi -
must have closure which is a disk, say E. Consider E N A, This is a
collection (possibly empty) of spanning arcs in E along with «. Choose
one of these, say B, which is "outermost away from a" or in the absence
of any other components of intersection, set B = 0., Then B # Q
separates E into two disks and one, say E', has the property that
E'NA=8; or B=0a and E' =E has the property that E' N A = B,
Now, E' C Mj for some j and since A is a complete system of disk,
Mj is irreducible and 3-irreducible, Hence E' splits Mj into M3
and a 3-cell B; and E'NA=E'N Dr = B where B splits Dr into
two disks D' and D" with D", say, in 8B. Let A' be the new
collection of disks obtained from A' by setting Di = Di’ i#r, and
D; = D' UE'., Then A' is a complete system of disks for M and
LB, F) < @, F); yet, |A"| = |A| and each component of M
split at A' 1is homeomorphic to one and only one component of M
split at A, It follows, that nO(M, A') = nO(M, b) = nO(M, AO). This
contradicts our choice of A having the property that _C(4, Tf) is
minimal for all complete systems of disk satisfying such an equality.
So, we have established that -C(4, TF) = O,

Now, with .C(4, TF) = O, suppose that n > n (M) = n,Q, b)
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= Zn,01) + 6]4] (J8] +1). since, (4, ZF) =0, each F, is
contained in some component Mj of M split at A. Furthermore, a
component Mj of M split at A has at most 2|A| disk in its
boundary corresponding to the splitting of M at A, If nj denotes
the number of members of of in Mj’ then X ny = n. On the other
hand, there are at most |A| + 1 components of M split at A and
by assumption n > nO(M); hence, for some component Mj of M split

at 4, it must be true that nj > nO(Mj) + 6|A

. Since each component
of E}r is incompressible and Jd-incompressible in M; only those
members of of in Mj which are disk are not incompressible and
d-incompressible in Mj' However, since at most 2|A' disk in an
corresponding to the splitting of M at 4, it follows from Lemma
I11.22 that the number of members of ??T in Mj which are disk is
either less than 4|A| or two of them are parallel in a fashion which
makes them parallel in M., So, I suppose that there are less than

4|A| such disks from <oF in Mj' Hence, there must be at least
no(Mj) + ZIAI + 1 members of GF' in Mj which are incompressible and
d-incompressible in Mj' Therefore, there are at least 2|A| + 1
distinct pairs which are parallel in Mj' Since at most 2|A| disk

in an correspond to the splitting of M at 4, it follows that

at least one of these pairs is parallel in M. This completes this step

STEP 3. M is an arbitrary compact 3-manifold.

If the reader survived Step 2, then this step is straightforward;
simply replace Lemma III.21 by the prime decomposition theorem using

2-spheres now rather than disk. As a guide the reader may follow
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Section VI of [er]. However, as I remarked earlier, beware of Lemma B
on page 493 of [er]. In the proof of that lemma, n should be set
equal to n(e3) + 3k, For one gets a guarentee of at most n - 2k + 1
of these surfaces incompressible in %3 (notation as in [er]). This

completes the proof of Theorem III,20,

Let M be a compact 3-manifold. For M, the collection of
nonnegative integers nO(M) satisfying the conclusion of Theorem III.20
is not empty. Set h(M) equal to the minimal such number, The number

h(M) 1is called the Haken number of M.

I11.23. REMARK: If M 1is a compact 3-manifold there exists a non-
negative integer defined for M as above where only collections of
closed incompressible surfaces are considered. I shall denote this

number by -EXM) and call it the closed Haken number of M when I

have occasion to refer to it.

The next theorem is a new theorem due to P, Shalen and myself.

I shall state it in general but prove it in a very simple special case,

IIT1.24, THEOREM: Let M be a compact 3-manifold. Then there is an
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integer NO(M) such that if {Fl, cees Fn} is any collection of pairwise

disjoint, incompressible surfaces in M, then either n < NO(M)’ some

Fi is an annulus or a disk parallel into M, or for some i # j, F,

— i

is parallel to Fj in M.

SPECIAL CASE: Assume that each Fi in the collection is an annulus,

Proof: Set NO(M) = 3h(M). I may assume that no Fi is parallel
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to an annulus in 3M and at most h(M) - 1 of the annuli are also
d-incompressible., Hence, there must be at least 2h(M) annuli in the
collection none of which are parallel into 8M and each of which is
d-compressible, By successively performing Jd-compressions, I arrive

at a collection of at least 2h(M) incompressible and J-incompressible
disks in M. Now, by Theorem III,20 at least 3 of these disks are
pairwise parallel, It is now straightforward to reconstruct the original

annuli and conclude that at least two of them are parallel in M., B



CHAPTER 1IV. HIERARCHIES

The results of this chapter are basic to the study of Haken
manifolds; and they exhibit one of the major roles of incompressible
surfaces, In Chapter II, I used the notion of a hierarchy for a 2-
manifold., After reading this chapter, I believe that it would be
instructive for the reader to think about 2-dimensional results based
on inductive methods using hierarchies for 2-manifolds; and then try
to find the analogous results for 3-manifolds and extend the methods.
An example of this parallel is carried out between Theorem 13,1 and
Theorem 13,6 of [Hel].

Let M be a compact 3-manifold. A partial hierarchy for M

is a finite or infinite sequence of pairs
(Ml’ Fl)’ e, (Mn, Fn), cos

where M, = M, F is a two-sided, incompressible surface in M ,

1 n n
which is not boundary-parallel, and Mo is the manifold obtained
from Mn by splitting Mn at Fn (i.e. for some regular neighbor-

o
hood U(Fn) of Fn in Mn’ then Mn+1 = Mn - U(Fn)).
A partial hierarchy for M is called a hierarchy for M if

for some n, each component of Mh+l is a 3-cell,

IV.1. REMARK: Necessarily, a hierarchy for M 1is a finite sequence

of pairs (Ml’ Fl)’ ooy (Mn’ Fn)' For such a hierarchy, the integer

n is called the length of the hierarchy,

IV.2. EXAMPIE: Partial hierarchies for a cube-with-handles of genus 2

51
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(a) A hierarchy of length two (see Figure 4,1).

Let M be the cube-with-handles of genus 2. Let M1 =M and

let F1 be a nonseparating disk properly embedded in M Let M

1° 2
be M1 split at Fl’ then M2 is a solid torus., Let F2 be a non-
separating disk properly embedded in M2. The hierarchy for M is

(Ml’ Fl)’ (MZ’ F2).

P ) 21y % N ./
F <, (LN
Ml M2 M3

Figure 4.1

(b) An infinite partial hierarchy where each Mrl is a cube-with-

handles of genus 2 and each Fn is an incompressible annulus (see

Figure 4.2).

Let M be the cube-with-handles of genus 2, Then M 1is homeo-
morphic to T X I where T 1is a once-punctured torus (i.e. T 1is
homeomorphic to S1 X S1 minus an open disk). Let J be a nonseparating

simple closed curve in T. Set M1 = M. There is a homeomorphism

h1 T XxXI—> Ml' Set F1 = hl(J X I). For n>1, define Mn+1 to

be M split at F_. Then there is a homeomorphism h TXI —=>M
n n n+ n+

1 1°
Set F ., = hn+1(J X I). The sequence of pairs (Ml’ Fl), ceer M, Fn), .o

is the proposed partial hierarchy.
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>N
{ ﬁ - f)"’/‘, & Aoa
P ) F, F
1 M, 4

Figure 4.2

(c) An infinite partial hierarchy where each Mn (n>2) is

a cube-with-handles of genus (2n-1 + 1) and each Fn (n>2) 1is an

incompressible, two-sided, nonseparating surface having X(Fn) = _2n-1

(see Figure 4.3b).
Let M be the cube-with-handles of genus two. Then M is
homeomorphic to T X I where T 1is the once-punctured torus. Set

M1 = M and set T1 = T. Using the construction of Example III.l4

(using a single nonseparating s.c.c. J1 in T1 in this case (see

Figure 4,3a)), there is an incompressible, two-sided, nonseparating

surface F in M, = T, x I having X(Fl) = X(Tl) = -1, Let M, be

1 1 1 2

1 split at Fl’ then M2 is a cube-with-handles (Exercise I.32)

1 1
and  XQ®,) = 5 X(@M,)) = 3 [x(@M;) + 2x(F;)] = -2. So, M, has genus 3,

M

Since M2 is a cube-with-handles of genus 3, M2 is homeomorphic to

the product T2 X I where T2 is a twice=-punctured torus (i.e. T

is homeomorphic to S1 X S1 minus two disjoint open disks). Using the

2

construction of Example III.1l4 (using a single nonseparating s.c.c. J2

in T2 in this case (see Figure 4,3a)), there is an incompressible,

two-sided, nonseparating surface F2 in M2 = T2 Xx I and X(FZ) = X(Tz)
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Now, for n> 2 and each i, 2 < i <n, suppose that Mi

and Fi have been constructed satisfying the requirements of (c).

Let M be M
n

split at F . Then M is a cube-with~handles
n-1 n

n-1

. 3 - l = =
(Exercise I.32) and since X(Mn) =3 X(aMn) X(aMn_l) 2X(Mn_1),
it follows that genus Mn =1 - X(Mh) = 2n-1 + 1 (by assumption,

_ ,n=2 - _on=2

genus Mn—l =2 + 1 and X(Fn_l) 27 .

Since Mn is a cube-with-handles of genus (2n-1 + 1), Mn
is homeomorphic to the product Tn x I where Tn is a (2n-1)_

punctured torus (i.e. Tn is homeomorphic to S1 X S1 minus 2n—1

pairwise disjoint open disks). Using the construction of Example
I1I.14 (again using a single nonseparating s.c.c. Jn in Tn in
this case (see Figure 4,3a)), there is an incompressible, two-sided,
nonseparating surface Fn in Mn = Tn x I and X(Fn) = X(Tn) = _2n—1
The sequence (Ml’ Fl)’ (M2, F2), ceey (Mn, Fn)’ ... 1is the
proposed partial hierarchy (see Figure 4,3b).
Notice that the sequence of genera for the cubes-with-handles

n-1
+

M obtained in this example is {2, 3, 5, 9, 17, 33, ..., 2 1, ...

n > 2, Furthermore, each F is planar.

IV.3. REMARK: Even though there is an analogy between the splitting
of 3-manifolds at incompressible surfaces and the splitting of 2-
manifolds at essential simple closed curves and spanning arcs, Example
IV.2 should show that some caution is required in the 3-dimensional
case, In (a) the manifold was simplified, in (b) the manifold was
unchanged and in (c) the manifold was made more complex. It will be
seen that the key to simplifying is to use incompressible and ?d-

incompressible surfaces.
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(2n-1)—holes

Figure 4.3a

Figure 4.3b
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IV.4, EXERCISE: Let M be a compact 3-manifold. Suppose that
(Ml’ Fl), e (Mn’ Fn), .e. 1s a partial hierarchy for M. If for
all but a finite number of n's the surface Fn is a disk, then

the partial hierarchy is finite,

IV.5. EXERCISE: Let M be a compact 3-manifold. Suppose that
(Ml’ Fl)’ cens (Mn, Fn), .e. 1is a partial hierarchy for M. If S
is an incompressible, closed surface in M, then S 1is also

incompressible in M,

The next lemma shows that given any partial hierarchy for M,
the order of surfaces can be arranged in such a fashion to obtain a

new partial hierarchy for M which postpones cuts along disks as

long as possible.

IV.6. LEMMA: Let M be a compact 3-manifold. Suppose that

(Ml’ Fl)’ coes (Mn’ Fn)’ .+o is a partial hierarchy for M and for

i k 1 0 h r isk,
some integer at least k of the surfaces Fn are not dis Then

M has a partial hierarchy (M!, Fi), (Mé, Fé), cee, (Mé, Fi), .

such that for 1 < j <k, the surface F3 is not a disk.

Proof: This follows easily from induction and the observation
that if M has a partial hierarchy (Ml’ Fl), cees (Mn’ Fn)’ cee

where F is a disk, then M has a partial hierarchy (Mi, Fi), cens

' ' " . [Ba-g ' ~
(Mn, Fn)’ ... Where Fi Fi’ 1<i<n, Fn Fn+1’ Fn+1 Fn and

~

. '
for i>n+1, Fi = F,. |

Recall that if M 1is a compact 3-manifold, then E(M) is the

closed Haken-number for M; hence, if {Sl, cees Sk} is a collection
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of pairwise disjoint, closed, incompressible surfaces in M and
k > h(M), then for some i # j, s, is parallel to Sj in M

(see Remark III.23).

IV.7. THEOREM: Let M be a compact 3-manifold. Suppose that

™, Fl)’ ceey (M, Fn), ... is a partial hierarchy for M. If

for each n, the surface Fn is both incompressible and 3-

incompressible in Mn’ then there exists at most jﬁ(M) integers

n for which Fn is not a disk.

Proof: Suppose that for some integer k at least k of the
surfaces Fn are not disk., It follows from Lemma IV.6 that I may
assume that for 1 < j <k, the surface Fj is not a disk., I must
show that k < 3E(M).

To prove that k < jE(M) I need the following lemma, This
lemma is a simple generalization of Lemma III.21 and its proof follows
from the same methods as those used in Step 2 of the proof of Theorem
I11.20. Note that the hypothesis of J-incompressibility is used here

(it is also used at a crucial step later in the argument).

IV.8. LEMMA: Let M be a compact 3-manifold and let F be a two-

sided, incompressible and J-incompressible surface in M. Then there

exists a complete system of disks {Dl, ceey Dr} for M such that

r
FNUD, =90. B
11

I shall construct a collection {Sl, ey Sk} of pairwise
disjoint, incompressible, closed surfaces in M. This is done as
follows:

If Fj is closed and 1 < j <k set Sj = Fj' Then Sj is
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an incompressible, closed surface in Mj and by Exercise IV.5, Sj is
an incompressible, closed surface in M, If Fj is not closed and
1 <j<k, then Fj is a two-sided, incompressible and d-incompressible
surface in Mj; hence, by Lemma IV.8 there exiﬁif a complete system of
disks {Dj, cees Dj } for M, such that F, NU D? = fp. Let M!
T, ] J 1 1 J

denote the component of Mj split at U Di that contains the surface
Fj' Each component of 8M3 is an incompressible, closed surface in Mj;
let S; be a component of an such that S; n Fj # 0. Set Sj equal
to the surface obtained by a small isotopy of Si into ﬁ&. Since Sj
is an incompressible, closed surface in Mj’ it follows from Exercise
IV.5 that Sj is an incompressible, closed surface in M,

If k> 3E(M), then for some set of four distinct integers
{p, @, r, s}, the surfaces Sp’ Sq’ Sr’ and SS are pairwise parallel
in M. Hence, there are two possibilities:

(1) For at least two of the integers {p, q, T, s}, say p and
q, S_=PF and Sq = Fq where both Fp and Fq are closed; or

P P

(2) For at most one of the integers {p, q, r, s}, say s,
S = Fs where FS is closed.
In case of (1), there is no loss to assume that p < q. However,
it then follows that Fq is parallel into an. This is a contradiction,
In case of (2), the three surfaces Sp, Sq’ and S, are pairwise
parallel; so, one of them is "between' the other two, say SP is "between
Sq and Sye Since Sp has only two-sides, one of Sq or §_ must be
contained in M; (notation as above), say Sq. Therefore, p < q and
it follows that Fp is parallel in M; to a surface in BM;.

I claim that Fp is not parallel in M; to a surface in aM;.

It is at this point that I use that Fj (1< j<k) is not a disk and
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is both incompressible and J-incompressible. For, if Fp is parallel
to a surface F' in OM', then F' 1is not in 3M_; but F' minus a
P P P P P

finite union of disks is in aMp. Now, since Fp is not a disk, F;

is not a disk and there exists an essential spanning arc B in F; n aMp.

Using that Fp is parallel to F; in M;, there is an essential
spanning arc @ in Fp and a disk D in Mp such that D N Fp = Q,
o UB=23a and a NB =203 = 3B. This contradicts the hypothesis
that Fp is Q-incompressible in Mp'

For both (1) and (2) I arrive at a contradiction., Therefore

k < 3h(M) 1is the only possibility. M

IV.9. REMARK: By Exercise IV.4 and Theorem IV.7, any partial hierarchy
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for M in which each surface is both incompressible and Jd-incompressible

is finite.

Now, I want to restrict my attention to partial hierarchies
for Haken-manifolds, Here I shall state and prove, as a Corollary to
Theorem IV.7, one of the most useful tools for the study of Haken-

manifolds (it gives us the means for an inductive method of proof).

IV.10. EXERCISE: If (Ml’ Fl)’ ooy (Mn, Fn)’ ... 1s a partial

hierarchy for the Haken-manifold M, then each Mn is a Haken-manifold.

I1V.11. EXERCISE: 1If the Haken-manifold M is not a cube-with-handles,
then there exists a two-sided, incompressible and Jd-incompressible
surface F in M, which is not a disk (and is not parallel into 3M).

[Hint: Consider M split open at a complete system of disks for M.]

IV.12. COROLLARY: A Haken-manifold has a hierarchy.
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Proof: Let M be a Haken-manifold., Define a partial hierarchy

for M as follows. Set M= M. If M, isa cube-with~handles,

then M1 has a hierarchy and thus so does M, If M1 is not a cube-

with-handles, then by Exercise IV.1ll, M1 contains a two-sided,

incompressible and J-incompressible surface which is not a disk and

is not parallel into aMl. Let F1 be such a surface in Ml'

Now, suppose that M 1is not a cube-with-handles and for some
n > 1 the finite partial hierarchy (Ml’ Fl)’ cees (Mn’ Fn) for M
has been defined such that each Fi is both incompressible and 3@-
incompressible and is not a disk.

Let Mn be the manifold obtained by splitting Mn open

+1

at F . By Exercise IV.9 both M.n and Mn

N are Haken-manifolds.

+1

If each component of Mn+1 is a cube-with-handles, then Mn+1 has

a hierarchy and thus so does M. If some component of Mn+1 is not

a cube-with-handles, then by Exercise IV,11, M

contains a two-
n+1

sided, incompressible and J-incompressible surface which is not a

Let F

ntl be such a surface

disk and is not parallel into 8Mn+1.
in Mn+1.

Then (M, Fl)’ ceey (M, F ), ™M

417 Fn+1) is a partial

n
hierarchy for M such that each Fi is both incompressible and

d-incompressible and is not a disk. However, by Theorem IV.7 the number
of pairs in such a partial hierarchy for M is bounded above by 3E(M).

It follows from Exercise IV,1ll that for some n < 3F(M), Each component

of M is a cube-with-handles. Hence, M

n+1 1 has a hierarchy; and

therefore M has a hierarchy. W

IV.13. REMARK: Let M be a Haken-manifold. Let (Ml, Fl)’ cees (Mn’ Fn)
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be a partial hierarchy for M such that each Fn is incompressible,
d-incompressible and not a disk (necessarily a finite partial hierarchy).
Under these conditions, the number 550%) places a bound on the integers
n; i.e. the number of pairs is always < jﬁ(M). Define the integer

V(M) to be the maximal number of pairs occuring in any such partial
hierarchy for M. Then V(M) is called the length of M. I was first
introduced to this idea in a conversation with B, Evans. He tells me
that W. Haken also used such a notion.

Clearly, whenever M 1is a Haken-manifold and F is an in-
compressible and @-incompressible surface in M, which is not a disk
and is not parallel into &M, then the manifold, M', obtained by
splitting M open at F, 1is a Haken-manifold and Vv(M') < v(M). This

allows us to use V(M) for an inductive method of proof. (Notice that

h (M) does not have this same property.)

There are some important differences between the use of the
length of M and the use of the length of a hierarchy for M in an
inductive method of proof. The former allows freedom of choice in finding
the surface (of course, the surface must be incompressible, Jd-incompressible,
not a disk and not parallel into 3M); however, induction starts at an
arbitrary cube-with-~handles. The latter gives no freedom of choice in
finding the surface (the surface comes as a member of a fixed hierarchy
having a certain length (see Example IV.14)); however, in this case
induction starts with the 3-cell,

There is another important invariant for an inductive method of

proof. This is the handle complexity used by Waldhausen in [W Here,

-

one also uses incompressible and J-incompressible surfaces (necessary
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to normalize). However, an advantage to handle complexity is that it

allows the use of cuts along Jd-incompressible disks.

IV.14, EXAMPLE: There exists a Haken-manifold M such that for any

integer n M has a hierarchy of length greater than n

0°
Let M= F X S1 where F 1is a compact surface with OF # ¢

O)

and ¥X(F) < 0. For any integer n there is a compact surface F'

O)

with =X(F') > ng and M = F' ><Cp S1 (see III.17). Set My

~ '
1° Then M2 F' x1I

=M,
F, = F' and set M, equal to M; split at F

is a cube-with-handles and genus M2 =1 - X(F'). Hence, any hierarchy

for M2 has length greater than or equal to genus M2 =1 - %(F') > n
thereby giving M a hierarchy of length greater than n,. Notice

that such a hierarchy for M also has the property that each surface

is incompressible and Jd-incompressible,

IV.15. EXERCISE: M a Haken-manifold. Show that E(M) =0 iff M

is a cube-with-handles,

IV.16. EXERCISE: Give an example of a Haken-manifold M such that

V(M) 3E(M) (and M 1is not a cube-with~handles); such that

viM) < éE(M). Notice that an example with V(M) = 3E(M) shows that

3E(M) is, in general, the best possible bound for Theorem IV.7.

IV.17. EXERCISE: Give an example of a Haken-manifold M having the
property that for any integer ng there exists a partial hierarchy

(Ml, Fl), ooy (Mho, F O), .ss for M such that each Fi is in-
compressible and Jd-incompressible, yet, M
n0+1

handles. (How does such an example co-exist with Theorem IV.77?)

n

is not a cube-with-
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IV.18., REMARK: Given a Haken-manifold M, it is possible to determine

the length of a hierarchy for M.

1V.19. THEOREM: Let M be a Haken-manifold. If the 2-manifolds

in a hierarchy are not required to be connected, then M has a hierarchy

(M1; F1)7 (M2: Fz); (M3; F3)7 ™ ) F4)

of length four,

Proof: Set M1 = M. Let F1 be a maximal (in number) collection
of pairwise disjoint, incompressible closed surfaces in Ml’ none of
which is d-parallel in M1 and no two of which are parallel in M1
(such a collection exists, although possibly empty). Let M2 be M1
split open at F1 (if F1 = @, then M2 = M1 and the hierarchy starts
at (M2, F2)).

Each component of M is a Haken-manifold and therefore contains

2

an incompressible surface which is not J-parallel (otherwise, some

component of M, is a 3-cell and hence M was a 3-cell)., Let F

2 2

be a collection of pairwise disjoint, incompressible surfaces in MZ’

no component of which is J-parallel and F, meets each component of

2
MZ' Each component of F2 has nonempty boundary. Let M3 be M2
split open at F2.
Each component of M3 is a "disk-sum" of cubes-with-handles

and the product of a number of closed surfaces with I, If any of

the latter appear, let F3 be the union of essential annuli, one from

each such product chosen to be properly embedded in M Let M, be

3° 4

M split open at F

3 3°
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Each component of M, isa cube-with-handles, @

IV.20. REMARK: Notice that in the preceeding theorem, each component

of F1 is closed, each component of F3 is an annulus and each

component of F is a disk.

4



CHAPTER V. THREE-MANIFOLD GROUPS

There is a vast amount of information on three-manifold groups.
In 1971, I wrote a set of notes on the subject [J3]; since that time
many questions posed in those notes have been answered and much new
information has been gained. If such a set of notes were written
today, it could easily be double in size, I shall be able to barely
introduce the reader to the subject in this chapter, However, I shall
present The Scott-Shalen Theorem, which says that a finitely-generated
three-manifold group is finitely-presented; and I shall give some of
the most outstanding problems associated with the study of three-
manifold groups.

Suppose that <X:R> is a finite presentation of the group
G. The deficiency of <X:R>, written def <{:R>, is
Card(X) - Card(R); 1i.e. the number of generators of the presentation
minus the number of relations of the presentation., If C 1is any
group, I shall use the notation p(C) to denote the minimum number
of generators of C. The next result, due to D, Epstein [Epz], allows

a definition for the deficiency of a finitely presented group.

V.l. LEMMA: Let G be a finitely presented group. For any finite

presentation <X:R> of G, the inequality

def <X:R> < Rank Hl(G; Z) - DHZ(G; Z) holds. M

Now, if G 1is a finitely presented group, the deficiency of G,
written def G, is the supremum of the set {def <X:R> : ¢ = <X:R>

is a finite presentation of GJ.

65
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V.2. EXAMPLES: (a) If A 1is a finitely generated abelian group,

r S
A=(—'(19z+(?zpi (pilpi+1, 1<i<s) ,

then def A= r - (r;s) where (r;s) is the binomial coefficient,

In particular, def(Z +Z +2Z) = 0 while def(Z +Z +2Z +2Z) = -2,
(b) If F 1is a finitely generated free group, then

def F = Rank F.
(c¢) If G has a one-relator presentation <X:R> ; 1l.e.,

Card R =1, and G is not free, then def G = def <X:R> (see [Epz]).

V.3. LEMMA: Let M be any compact 3-manifold. Then

1 -x@®, oM7% 9,
def ™ (M) >

0, M=p .

Proof: The 3-manifold M has a cell decomposition consisting

of one 3-cell attached along a 2-complex C, The 2-complex C gives

a natural presentation for ﬂl(M) = <XC;RC> where XC is a set of
free generators for the 1l-skeleton, C(l), of C and RC is the set
of words coming from the boundaries of the 2-skeleton, C(z), of C.

Let P denote the number of i-cells of C and let C(l)
denote the i-skeleton of C, 0< i< 2, Then Card(XC) =1 - X(C(l))

=1+ Py = Py and Card(RC) = Py By definition
def <X.:R> =l+p -py-p,=1-%C .

If oM+# @, then X() = X(C) and def T M) > def <X :R>
1 -x@).

If aM= @, then XM) = X(C) - 1 and def ﬂi(M) > def <XC:RC>

il
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V.4, EXERCISE: Suppose that M 1is an irreducible 3-manifold. Show
that HZ(M) is isomorphic to HZ(ﬂi(M))' [Note: ﬂé(M) may not be

trivial.,]

V.5. EXERCISE: Let M be a compact, irreducible 3-manifold. Show
that

def Trl(M) = def <XC:RC>
where C 1is any cell-decomposition of M,

The next theorem first appeared in [Jl] (for an outline of the

proof, see Theorem 8.1 of [Hel]).

V.6. THEOREM: Let M be a 3-manifold and let G be any finitely

presented subgroup of ﬂl(M). Then there is a compact 3-manifold N
and an immersion f : N—> M such that f* s ﬂi(N) — Wl(M) is an

isomorphism onto G. W

V.7. REMARK: 1In [Scz], Scott improves Theorem V.6 to show that if the
subgroup G 1is all of ﬂl(M) @G = TH(M)), then f can be taken to
be an embedding. In [Jl], I could only do this in the case that

G = ﬂl(M) was indecomposable (with respect to free product),

I will now give an example of the use of the rather elementary

information developed thus far in this chapter.

V.8, EXAMPLE: The following is a complete list of all finitely generated

abelian groups which are 3-manifold groups (along with a representative

manifold).
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GROUP l 1 ‘ z 'z+z ’z+z+z |z+z2 lzp, p>2
Lens

REALIZATION | D°xI ’1)2><s1 x| Pxst lr2x51 Space
L(p, 1

Proof: Let A be a finitely generated abelian group. Then
A is a finitely presented group. If A 1is a 3-manifold group, then
by Theorem V.6, there is a compact 3-manifold N with T&(N) ~ A.

For the present I shall assume that N does not contain a two-
sided Pz. If any component of N is a 2-sphere, it can be 'capped-
of f" with a 3-cell without any alteration to ﬂi(N). I shall assume
that no component of 3N is a 2-sphere, According to Remark I,1ll,
either WZ(N) =0 or AR ﬂl(N) is infinite cyclic. I shall assume
that ﬂé(N) = 0; hence, I can even go further and assume that N is
irreducible (Theorem II.4).

Under the preceeding assumptions, X(3N) < O; and therefore,
X(N) < 0. So, by Lemma V.3, it follows that def A = def ﬂi(N) > 0.
Now, I use Example V,2(a) to conclude that the only possibility for
the group A 1is one of the groups 1, Z, Z +Z, Z+Z +Z, Z + Zp
(p > 2), or zp (r > 2).

There is an easy realization for each of these groups with the
exceptions of the groups Z + Zp (p > 3); and no member of the groups
z +-Zp (p > 3) 1is a, 3-manifold group. To see this, recall that
HZ(N) can only have torsion when N 1is closed and nonorientable; and
then Hz(N) has only one factor of 2-torsion, By Exercise V.4,
HZ(A) ~ HZ(N)' However, HZ(Z + Zp) has p-torsion; and so, p = 2,

Now, suppose that I allow the possibility that N contains a
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two-sided Pz. Then A ®~ ﬂl(N) is a split Z extension of (and hence

2

a direct sum of 22 and) one of the groups 1, Z, Z+Z, Z +Z + Z,

Z+Z,, or Zp (p > 2). Again, by applying Exercise V.4, the homology

2)

excludes any additional groups being added to the collection already

obtained; and P2 X S1 gives a realization of the group Z + Z2.

V.9. REMARK: A nonfinitely generated abelian group is a 3-manifold
group iff it is a subgroup of the additive group of rational numbers
[E-M]. Realizations of such groups come from the fundamental group

of the compliment of a solenoid in R3. Hence, all abelian groups that

are 3-manifold groups are known.

Let E, G be groups and suppose that © :C—>> G is a group
epimorphism. Then ¢ is decomposable if there is a consistent diagram

of group epimorphisms

T L5 ¢
onx /B
X * Y

where X * Y is a non-trivial free product. Otherwise, ¢ is indecomposable

~

~ -~
If ® : G —>> G is indecomposable, then G indecomposably covers & and

¢ 1is a covering epimorphism,

V.10. REMARK: If G indecomposably covers G, then both G and G

are indecomposable groups.

~

V.1ll, EXERCISE: A group homomorphism Q. E:—ﬁ> i * Y is inessential if
there is an inner automorphism Y of ‘i * ? such that vy oa<5) is

~ ~ ~
contained in either X or Y. Otherwise, Q 1is essential. Show that
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® E —>> G is indecomposable iff there is a consistent diagram of
group homomorphisms

T2 ¢

a\ f%

X *Y
~ -~
where X * Y 1is a non-trivial free product and o 1is essential.

V.12. EXAMPLE: Suppose that G 1is a two generator group (i.e. pP(G) = 2).
Then either
(i) G~ A * B where both A and B are nontrivial cyclic groups; or
(ii) G can be indecomposably covered by a finitely presented group

~ ~
G with p(G) = 2.

This is rather straightforward to establish; however, it does use
that a free product of cyclic groups is Hopfian (a group is Hopfian iff
it is not a proper quotient of itself)., The result appeared in [J-M].

(I always liked this particular manuscript, and I think it has a lot of
interesting material; however, we decided not to publish it after it was
rejected by Topology.)

It is given that p(G) = 2. Suppose that (i) does not occur. Let
F be the free group of rank 2 and let 6 : F —>> G be an epimorphism

of F onto G. Among all consistent diagrams of epimorphisms

with A# 14 B (so both A and B are nontrivial and cyclic), choose
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A, B, @ and B so that A and B have the smallest possible orders,
where first the order of A 1is minimized and then the order of B is
minimized. Since (i) does not occur, ker(B) # 1. Let 1 # W € ker(B).
Set C = A * B/<w>; let @ : E'——>> G be the natural epimorphism.

I shall show that E' indecomposably covers G with covering
epimorphism . Since A * B is finitely presented, E’ is finitely
presented.

Suppose that there is a consistent diagram of epimorphisms

® G

E\&C * Df

with C# 1 # D (so both C and D are nontrivial and cyclic). At

F —>> A * B

least one of C or D must have finite order. For otherwise, C * D
is isomorphic to F and the sequence of epimorphisms

F—>> A ¥ B —>> E;——€E> C * D would contradict that F 1is Hopfian.
Choose the notation so that |[C| < |D| where | | denotes order. By

the choice of A and B, it follows that |A| < |C| and |B| < |p

Now, pass to the first homology and use that the epimorphism
A*B—>>G—> C * D above induces an epimorphism of A X B onto
C X D to conclude that strict inequality cannot hold (i.e. IA' = |C'
and |B| = |D|). So, A * B is isomorphic to C * D; however, the
epimorphism A * B —>> EC—€§> C*D has W# 1 1in its kernal. This

contradicts the fact that A * B 1is Hopfian. »

The importance of a 3-manifold group being indecomposably covered

is captured by the next theorem (see [G-H-M], Theorem 2.1).
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V.13. THEOREM: Let M be a 3-manifold. Suppose that ﬂi(M) can be

indecomposably covered by a finitely presented group Eﬁ Then there

exists a compact manifold N embedded in M such that ﬂl(N) s ﬂi(M)

is an isomorphism. In particular, ﬂi(M) is finitely presented.

Proof: I shall give the proof from [J2] (see Remark V.7) where
I obtained the same conclusion with the hypothesis that ﬂl(M) was
finitely presented and indecomposable.

By hypothesis there is a finitely presented group ¢ indecomposably
covering ﬂl(M) with covering epimorphism ¢, Let K be a finite
2-complex with ﬂi(K) ~ E. Then there is amap f : K —> ﬁ with £, = @
Let U= U(f(K)) be a regular neighborhood of £f(K) in ﬁ. Then there

is a consistent diagram of maps

E —b nl M)

oW\, f

™ (U)

o
where U 1is a compact submanifold of M and BU is induced by inclusion.
For any compact submanifold U of M let n, denote the number
of boundary components of U with Euler Characteristics equal to k.
The complexity of U 1is defined to be the tuple (finitely nonzero)
Gooey My, eeey 0_y, g, Dy, n2). The set of all such tuples is lexicograph
ically ordered from the left (see the proof of Lemma III.9).
o
Now, consider the entire set of compact submanifolds U of M
such that there exists homomorphisms aU . T —> ﬂl(U) and
. . A . . °
BU : ﬂi(U) —_> ﬂi(M), induced via inclusion, with BU aU

to . Choose one, say N, such that the complexity of N is a minimum,

conjugate
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I claim that each component of 8N 1is incompressible in M
or T&(M) is cyclic. If some component of ON 1s compressible in

M then there is a component B of 3N and a disk D <M such

s
that DNAN=DMNB=23DMB= 23D is not contractible in B,

If D 1is not contained in N, then simply add a two-handle
to N at D to obtain N'. The inclusion map ﬂi(N) (= nlon)
factors through the inclusion map of ﬂl(N')c;€> ﬁl(M). However, the
complexity of N' 1is strictly less than the complexity of N. This
contradicts our choice of N,

If D 1is contained in N, then ﬁl(N) splits as a nontrivial
free product A * B or ﬂi(N) is infinite cyclic., If ﬂi(N) is
infinite cyclic, then ﬁl(M) is cyclic., If ﬂi(N) splits as a non-
trivial free product A * B, then there is a consistent diagram of
maps

E —_—> TTl ™)

ﬂl(N) ~A*B

where qﬁ is conjugate to @ (and therefore is a covering epimorphism)
It follows from Exercise V,1l1 that GN is inessential; hence, I may
choose notation so that the image GN(EB is contained in A (after
possibly a conjugation in ﬂi(N))' Let N' be the component of N
obtained by surgery along D so that ﬁl(N') = A, The complexity of
N' is strictly less than the complexity of N, This contradicts our
choice of N. So, I have established the claim,

If TH(M) is infinite cyclic, then there is a solid torus N C ﬁ

such that T, (N) < T (M) is an isomorphism, If T () is finite
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cyclic, then the results of [Epz] find a compact submanifold N of M
(each component of QN 1is a 2-sphere or projective plane) such that

ﬂl(N) (= ﬂi(M) is an isomorphism., If ﬂi(M) is not cyclic, then the
N found above has incompressible boundary. Since ﬁl(N) s nlcn) is

onto, it is an isomorphism.

To prove that a finitely generated 3-manifold group is finitely
presented, it is sufficient to prove that a finitely generated, indecomposable
3-manifold group can be indecomposably covered by a finitely presented group.

In light of Example V.12 this leads to the following question:

V.14, QUESTION: Can each finitely generated, indecomposable group be

indecomposably covered by a finitely presented group?

I do not know the answer to this question; however, Peter Scott

and Peter Shalen independently answered it for 3-manifold groups.

V.15, THEOREM: Let

(]

a finitely generated, indecomposable group.

be
If G 1is isomorphic to the fundamental group of some 3-manifold, then

G can be indecomposably covered by a finitely presented group.

Proof: The proof of this theorem can be found in [Scl] or
extracted from the proofs of Lemma 8.5 and Theorem 8.2 of [Hel] by

inducting on p(G). "

V.16. COROLLARY (SCOTT-SHALEN): Let G be a finitely generated group.

f G is isomorphic to the fundamental group of some 3-manifold, then

G is finitely presented.

Before leaving the concept of a group indecomposably covering a
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group, I would like to give another example,

V.17. EXAMPLE: Given two finitely presented, indecomposable groups
Land ~ .
G and G, one can ask if G indecomposably covers G; 1i.,e., does
Ead
there exist a covering epimorphism ¢ : G —>> G. In particular, suppose

that E is the group
- n
G = <Xy, Yys eees X5 Y :—Er [xi, yi]> .

Let Fn be the free group of rank n, Now, there are many different

epimorphisms © : T —>> Fn X Fn'

V.18. QUESTION: Does [:1 indecomposably cover Fn X Fn?

If the answer to Question V.18 is negative, then the 3-dimensional

Poincaré Conjecture is true [St If the answer to Question V,18 is

51

positive, then the 3-dimensional Poincaré Conjecture is false [J4].

There are a couple of other aspects of the study of 3-manifold

groups that really intrigue me. One of these is the finitely generated

intersection property (hereafter always referred to as f.g.i.p.). If

G 1is a group, then a finitely generated subgroup H of G has f.g.i.p.
if for every finitely generated subgroup K of G, the group H NK
is finitely generated, If every finitely generated subgroup of G has

f.g.i.p., then G 1is said to have f.g.i.p.

V.19, EXAMPIES:
(a) A free group has f.g.i.p. (see [J-M] for a geometric proof).
(b) The fundamental group of a surface has f.g.i.p. (see [J-M]

for a geometric proof).
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(c) Let Fn be the free group of rank n. The group Fn X Z,
n > 2, does not have f.g.i.p.
To see this suppose that Fn is free on the set {xl, ceey xn}.
Let t denote the generator of Z. Let H be the subgroup generated
by {Xl’ cees X1 txn}. Then if K = F, the intersection H NK
is the infinitely generated free group generated by {xixjx;l : 1< j<n,
-0 < i< ®],
This example can be studied geometrically by considering the
examples given in Example III.14, Also, see Conclusion III.17, In
this way a 3-manifold M can be constructed having two-sided incompressible

surfaces §; and S, such that s, ns

1 2
ﬂi(Sl) n ﬁl(S

2 is a single arc; yet

2) is not a finitely generated group.

The group Fn X Z of Example V.19 (c¢) is a 3-manifold group.
Hence, in general, a 3-manifold group does not have f,g.i.p. However,
I believe that a slight generalization of example (c) may essentially
describe the extend to which a 3-manifold group does not have f.g.i.p.
I give this as the next example. It depends strongly on the results of
Chapter VII and Chapter VIII, as well as some knowledge from Chapter VI;
however, I believe it fits in best with the present discussion.

(d) (with B, Evans) Let M= F xcp S1 be a bundle over S1 with

fiber F., If YX(F) < 0, then there is a two-generator subgroup H of

ﬂl(M) such that H N ﬂl(F) is a nonfinitely generated free group.

I need to make two definitions., A 3-manifold M 1is algebraically
simple if each Z + Z subgroup of ﬂi(M) is peripheral (for the
definition of peripheral, see Exercise I.5); M 1is (geometrically) simple

if each incompressible torus embedded in M is parallel to a torus in 3M.
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A Haken-manifold which is not simple is not algebraically simple.
Conversely, as a result of the version of the torus theorem (Chapter VIII)
due to Shalen and myself, a Haken-manifold which is not algebraically
simple, is either a special Seifert fibered manifold or is not simple.
I need another result due to Shalen and myself, [J-Sl]: If the Haken-
manifold M 1is algebraically simple and H 1is a two-generator subgroup
of ﬂl(M), then either

(i) H is free,

(ii) H is isomorphic to Z X Z and is peripheral, or

(iii) The index of H in TH(M) is finite,

I shall now establish the claims of the example. I do this first

in a special case.

CASE 1. Let M=F )<Cp S1 be a bundle over S1 with fiber F, 1If
X(F) <0 and M is algebraically simple, then there is a two-generator
subgroup H of ﬂl(M) such that H N ﬂi(F) is a nonfinitely generated

free group.

Proof in Case 1: Since YX(F) < O, there exists an x € [ﬂi(F), TH(F)],
which is not peripheral. Let ¢t € ﬂi(M) map onto the generator of the
fundamental group of the circle under the given fibration of M., Set
H=gp(x, t), the subgroup of ﬂl(M) generated by x and t,

4 &1 & %

If y €H, then y=t x «..t x ., If y is also in ﬂl(F),
then £ 8, = 0. Hence, if y €HNmF), y€ gp(t xth ;. co < i< o),
Conversely, since ﬂl(F) is normal in ﬂl(M), gp(t-lxtl ;e < i < @) ﬂl(F)

and so, it is contained in H N ﬂl(F). Furthermore, since x € [nl(F), ﬂl(F)]

and [ﬂl(F), ﬂl(F)] is a characteristic subgroup of ™™ (F),
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HO M) < (M@, m@®].

By choosing x not peripheral, H 1is not peripheral. Also,
the index of H in ﬂl(M) is infinite; in fact if fl and fz are
in distinct cosets of [ﬂi(F), ﬂi(F)] in ﬂl(F), then f1 and f2

are in distinct cosets of H in ﬂlﬂﬂ). (If f f2 € ﬂi(F) and

1’
-1 -1
flf2 € H, then flf2 €HN ﬂl(F) c [ﬂl(F), ﬂi(F)].)
By the result quoted above, the only possibility is that H
is free., Clearly, the rank of H 1is two and so H 1is freely generated
by x and t. The subgroup H N ﬂl(F) is therefore a nonfinitely

generated free group and is freely generated by the set

{£7*%tb : ~o < i < @],
CASE 2. The general case.

The proof is by induction on -X(F) > 1.

Suppose that X(F) = -1. Then F 1is either a disk-with-two-
holes or a once-punctured torus.

If F 1is a disk-with-two-holes, then ¢ is isotopic to a
periodic homeomorphism and M has a finite sheeted covering 6& p)
with SZ homeomorphic to F X Sl. Since ﬁléﬁs = ﬂl(F) X Z and ﬂl(F)
is free of rank two, the subgroup H of example (c) has the property that
H 1is a two-generator group and H N ﬂl(F) is not finitely generated.
The monomorphism p, carries these properties into ﬂl(M).

If F 1is a once-punctured torus, then either M is algebraically
simple, M is not simple or M 1is a special Seifert fibered manifold.
If M is algebraically simple, then by Case 1, TH(M) contains the

desired subgroup. If M is not simple, then there is an incompressible
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torus T embedded in M which is not parallel into @M. By considering
the possibilities for the components of T N F, it is easy to conclude
that there is a nonboundary parallel simple closed curve J in F and
either ©J) = J or qF(J) = J, Hence, there is a finite sheeted
covering fﬁ, p) of M (having one or two sheets), M=rF &$ S1 where
a(J) =J (5 = @ or 'a = q?). The annulus J X I in F x I identifies
to a torus % in 'ﬁ and M split at 'E fibers over S1 with fiber
F' which is F split at J; hence, F' 1is a disk-with-two-holes,
The previous considerations give a two-generator subgroup H of ﬂl(M')
which has the property that H N ﬂl(F') is not finitely generated. The
inclusion induced monomorphisms of ﬂi(M') < TH(M) and T&(F') > ™, (F)
and the monomorphism p, carry these properties into ﬂl(M). If M
is a special Seifert fibered manifold, then ¢ is periodic (Chapter VI)
and M has a finite sheeted covering éq, p) with M homeomorphic to
F x Sl. Now, there is a simple closed curve J in F which is not
parallel into JF and a torus f'i"= J X S1 in M such that M split
at T is homeomorphic to F' X S1 where F' is F split at J; hence,
F' 1is a disk-with-two-holes. Again, the previous considerations give
the conclusion,

The induction argument follows the above lines. Namely, suppose

that for any bundle M' = F' X S1 where =-X(F') <n (n > 2) there

o'
is a two-generator subgroup H of ﬂl(M') and H N ﬁl(F') is not
finitely generated,

Let M=F xCp S1 where -X(F) = n (n > 2), Then either M is

algebraically simple, M is not simple or M 1is a special Seifert fibered

manifold, If M 1is algebraically simple, then by Case 1, ﬂl(M) contains
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the desired subgroup., If M is not simple, then as before there is

an incompressible torus T embedded in M which is not parallel into
M. 1In this case there is a nonboundary parallel simple closed curve

J in F and for some integer Kk, q&(J) = J. The argument is exactly
as before only (?f, p) 1is a k-sheeted covering of M, ’I:IJ= F xc»ba Sl
where QE(J) =J 65 = qk), and after splitting ;Z at the torus

T=13 X I/&i the argument is completed by the use of induction. If

M 1is a special Seifert fibered manifold, then ¢ 1is periodic and M
has a finite sheeted covering (ﬁ, p) with M homeomorphic to F X Sl.
There is a simple closed curve J in F which is not parallel into

8F and if M 1is split open at the torus %'= J X Sl, then induction

gives the desired conclusions. W

I shall finish my discussion of f.g.i.p. with a very useful
result., It first appeared in [J-M]. An updated proof is being published

in [J-Sz].

V.20, THEOREM: Let M be a 3-manifold. Then any finitely generated,

peripheral subgroup of ﬂi(M) has f.g.i.p.

As I mentioned at the beginning of this Chapter, there are many
aspects to the study of 3-manifold groups. However, I shall conclude

this chapter with just a few of the more intriguing questions,

V.21. QUESTION: Suppose that M 1is a closed, irreducible 3-manifold
with ﬂi(M) infinite (or even say, M has a hyperbolic structure),
Does ﬂl(M) contain a subgroup isomorphic to the fundamental group of

a closed surface?
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V.22. QUESTION: If G 1is a group, then a subgroup H of G is

subgroup separable if H is an intersection of subgroups of finite

index (equivalently, for each g € G - H there is a homomorphism
@ mapping G onto a finite group with o(g) £ ©(H)).
Is each finitely generated subgroup of the fundamental group of
a Haken-manifold subgroup separable?
Is each finitely generated subgroup of the fundamental group of
a Haken-manifold M, which is isomorphic to TH(F) for some two-sided
incompressible surface F © M , subgroup separable?
Is each finitely generated, peripheral subgroup of the fundamental

group of a Haken-manifold subgroup separable?

W. Thurston claims that the answer to this last question is
positive if one also assumes that the peripheral subgroup is Z + Z.
Notice that {1} € G being subgroup separable is the familiar property

of G being residually finite.

V.23. QUESTION: A subgroup H of the fundamental group of a manifold
M is geometric in ﬂl(M) if there is a codimension zero submanifold
N < M such that T&(N) > T&(M) is an isomorphism onto a conjugate

of H in ﬂi(M). The subgroup H is almost geometric if there is a

finite sheeted covering 63, p) of M such that p;l(H N p*ﬂlaq)) is
geometric in ﬁld;).

Is every finitely generated subgroup of the fundamental group of
a Haken-manifold almost geometric? (See [Sc3].)

Is every finitely generated, indecomposable subgroup of the

fundamental group of a Haken-manifold almost geometric?
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Is every finitely generated, peripheral subgroup of the

fundamental group of a Haken-manifold almost geometric?



CHAPTER VI. SEIFERT FIBERED MANIFOLDS

This is a chapter that has been very difficult for me to be
successful at trying not to cover too much, There is a considerable
amount of literature on Seifert fibered manifolds. To start, there
is Seifert's paper [Sel] (or an excellent English translation by
W. Heil); there is the paper by Orlik, Vogt and Zieschang [0~V-Z];

and there is the book [0,] by Orlik. Much of the topology of Seifert

1]
fibered manifolds, of interest to me, was introduced in the papers by

Waldhausen [wz, %) This approach was taken by Hempel in Chapter 12

ar
of his book [Hel]; and it is this approach that is closest in spirit

to the study by Shalen and myself in [J-Sl] and to the study presented
here, There will, naturally, be a considerable overlap of the material
of this Chapter with these and other manuscripts on Seifert fibered
manifolds. In fact, there will be no new results in the sense of
formerly being completely unknown in the existing literature. This
presentation is designed primarily for support of the material of
Chapter VIII-Chapter X. In the later chapters, I restrict any consider-
ations to orientable 3-manifolds and therefore only need to draw from
the study of orientable Seifert fibered manifolds. However, it was

my original plan to present Seifert fibered manifolds, orientable or
nonorientable, Having progressed quite a way in this generality, I

was finally convinced that an adequate presentation of the nonorientable
case must allow a generalization of the classical concept of Seifert

fibered manifold to include fibered neighborhoods which are homeomorphic

to a fibered solid Klein bottle, It was then very apparent that to

83
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present Seifert fibered manifolds in this generality was beyond the
scope of these lectures., So, I have, quite reluctantly, settled on
presenting a view of orientable Seifert fibered manifolds. I hope
that it will serve as an introduction to this important class of 3-
manifolds for the beginners in the subject and also provide some
enjoyable reading for the more advanced.

Let (4, V) be a pair of relatively prime integers. Let D2

be the unit disk in R2 defined in polar coordinates as

p’ - {(r, ©) : 0<r <1}, A fibered solid torus of type (M4, V)

is the quotient of the cylinder D2 x I via the identification

((xr, &), 1) = ((r, 8 + 2{?5’ 0). The fibers are the image of the

arcs {x} x I. Thus the core (or former cylinder axis) arises from
the identification of {0} x I and meets the meridinal disk D2 x {0}
once., Every other fiber meets Dz x {0} exactly | times. Up to

fiber-preserving homeomorphism, I may assume that K > 0 and

0 <V <H/2, The integer | 1is called the index., If K > 1, the

fibered solid torus is said to be exceptionally fibered and the core

is an exceptional fiber; otherwise, the fibered solid torus is regularly

fibered and each fiber is a regular fiber.

VI.l. REMARK: Suppose that T 1is a fibered solid torus of type
(4, v) where 0<v<M/2 and T' is a fibered solid torus of type
M', V') where 0 < V' <U'/2, There is a fiber-preserving homeomorphism

between T and T' iff M'=f and W = v,

An orientable 3-manifold M 1is said to be a Seifert fibered

manifold if M 1is a union of pairwise disjoint simple closed curves,

called fibers, such that each fiber has a closed neighborhood, consisting
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of a union of fibers, which is homeomorphic to a fibered solid torus
via a fiber-preserving homeomorphism. Such a neighborhood of a fiber
is called a fibered-neighborhood. Notice that if T1 and T2 are

fibered neighborhoods of the fiber T, then T is exceptional in T,

iff T 1is exceptional in T Hence, it makes sense to call a fiber

9
T of the Seifert fibered manifold M an exceptional fiber, if T

has a fibered neighborhood which is homeomorphic to a fibered solid
torus via a fiber-preserving homeomorphism taking T to an exceptional

fiber. Otherwise, a fiber T of the Seifert fibered manifold M is

a regular fiber.

VI.2., REMARK: If M 1is a Seifert fibered manifold, then it is

implicit that M has a fixed Seifert fibration; i.e. M has a partition
into simple closed curves satisfying the above conditions. Two Seifert
fibered manifolds are equivalent if there is a fiber-preserving homeo-

morphism between them., (See Example VI.5 and Theorem VI.17.)

VI.3. REMARKS: If T 1is a fibered solid torus, then T is a Seifert
fibered manifold and every fiber of T, with the possible exception of
the core, is a regular fiber,

If T 1is any non-contractible simple closed curve in the boundary
of a solid torus T, then T has a representation as a fibered solid

torus with T a regular fiber.

The quotient space obtained from a Seifert fibered manifold M
by identifying each fiber to a point is a 2-manifold which is connected
if M is connected and disconnected otherwise. This quotient space is

called the orbit-manifold (of the Seifert fibered manifold M). There
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is a natural projection map from M to its orbit-manifold called the
projection map. The projection of an exceptional fiber in M 1is an

exceptional point,.

VI.4. REMARKS:

(a) If M 1is a compact Seifert fibered manifold, then since
the fibered neighborhoods give a covering of M, it follows that there
are at most a finite number of exceptional fibers in the Seifert fibration
of M.

(b) By convention, if M 1is a Seifert fibered manifold, then
M 1is orientable; however, the orbit-manifold may or may not be
orientable (see Example VI.5).

(¢) If M 1is a Seifert fibered manifold with orbit-manifold B,
then oM # @ iff OB # §. Furthermore, if M 1is compact (equivalently,
if B 1is compact), then each component of @M is a fibered torus and
each fiber in &M 1is a regular fiber in the fibration of M.

(d) A useful way to think of a Seifert fibered manifold M is
to think of M as being obtained from an orientable Sl-bundle over a
2-manifold by removing a finite number of regular fibers and replacing

them with exceptional fibers,

VI.5. EXAMPLES:

(a) Let B be a compact, orientable 2-manifold. Set M = B X Sl.
Then M 1is a Seifert fibered manifold with orbit-manifold B and projection
map M —> B projection onto the first factor, Hence, M is fibered over

B with no exceptional fibers,

(b) Let M be an Sl-bundle over 82 (necessarily, M is
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orientable). Then M 1is a Seifert fibered manifold with orbit-manifold
82 and projection map M —> B bundle projection., Hence, M is
fibered over S2 with no exceptional fibers. Of course, one such M

is just 82 X Sl. The Lens spaces L(n, 1), n > 0, are the manifolds

obtained in this fashion (S2 X S1 is L(0, 1)). Notice that for n =1

P
this example gives the Hopf fibration of 83 over Sz; and for n = 2
this example gives P3 as an Sl-bundle over Sz.

(¢) The Lens space L(n, m) 1is a Seifert fibered manifold with
orbit-manifold, 82 and one exceptional fiber of index M = fm_l (mod n).
Here is an example showing that the index of an exceptional fiber is not
determined by the manifold. This example can also be used to show that
the number of exceptional fibers is not determined by the manifold; for
L(n, m) is a Seifert fibered manifold with orbit-manifold 82 and two
exceptional fibers, This lack of uniqueness can be described and is not
the rule for Seifert fibered manifolds in general (see Theorem VI.17).

(d) The twisted I-bundle over the Klein bottle is a Seifert
fibered manifold in two distinct ways. It is a Seifert fibered manifold
with orbit-manifold the disk and two exceptional fibers, each of index
two. And, it is a Seifert fibered manifold with orbit-manifold the MYbius

band and no exceptional fibers.

VI.6. EXERCISE: Show that the knot space determined by a torus knot
in S3 is a Seifert fibered manifold. (Lemma VI.3.4 of [J-Sl] characterizes

all compact Seifert fibered manifolds embedded in R3.)

Let X and Y be spaces. Suppose that f : X —> Y 1is a map.

A subset Z of X 1is saturated (with respect to f) 1if 2Z = fnl(f(Z)).
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In particular, if M 1is a Seifert fibered manifold with orbit-manifold
B and projection map p : M —> B, then a subset Z = p-l(p(Z)) is
saturated iff Z is a union of fibers of M, Notice, if a 1is a
spanning arc in B and O does not meet an exceptional point, then
p- (@) 1is a saturated annulus in M (p-l(a) is two-sided and in-
compressible in M); and if a 1is a simple closed curve in B and
0. does not meet an exceptional point, then pnl(a) is a saturated
torus or Klein bottle in M (p-l(a) is a torus iff @ 1is two-sided;
and p—l(a) is incompressible if either @ does not bound a disk
DT B or whenever O bounds a disk D < B, then D contains at
least two exceptional points), In the case that p-l(a) is a Klein
bottle, the fibering of the Klein bottle is by orientation preserving
circles, However, there are examples of saturated Klein bottles in
Seifert fibered manifolds where the fibering is not by orientation

preserving curves alone (of course such Klein bottles are not saturated

over simple closed curves; see Example VI.5 (d)).

VI.7. LEMMA: With the exceptions of the manifolds homeomorphic to

either 82 X S1 or P3 # P3, an orientable Seifert fibered manifold is

irreducible,

Proof: Let M be a Seifert fibered manifold with orbit-manifold
B and projection map p : M —> B,

Suppose that M # @ (3B # @). Then it is easy to show that M
is irreducible by using an induction argument which splits B along
spanning arcs and splits M along the corresponding saturated annuli.

Suppose that M = @ (3B = @). Here the idea is to split M
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along a torus which is saturated over a two-sided simple closed curve

o in B. However, for this method to be effective, the torus must

also be incompressible in M; 1i.e., the torus is saturated over a simple
closed curve that either does not bound a disk D < B or if it bounds

a disk D < B, then D contains at least two exceptional points. Such
a simple closed curve can be found in B with the exceptions that

B = 82 and the Seifert fibration has no more than three exceptional
fibers or B = P2 and the Seifert fibration has no more than one

exceptional fiber. These cases must be considered individually. The

arguments are straightforward. I shall only list the conclusions,

Case 1. M 1is Seifert fibered with orbit-manifold 82 and no exceptional

fibers (i.e. M 1is an Sl-bundle over Sz).

In this case, with the exception 82 X Sl, M 1is irreducible,

Case 2, M 1is Seifert fibered with orbit-manifold 82 and one exceptional

fiber (i.e. M 1is a Lens space including all examples of Case 1).

In this case, with the exception 32 X S M 1is irreducible,

)

Case 3, M 1is Seifert fibered with orbit-manifold 82 and two exceptional

fibers (i.e. M 1is a Lens space and is already among the examples of Case 2)

1

In this case, with the exception 82 X 87,

M is irreducible,

Case 4., M 1is Seifert fibered with orbit-manifold 82 and three

exceptional fibers,

In this case, M 1is irreducible (see Example VI.13).
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Case 5. M 1is Seifert fibered with orbit-manifold P2 and no exceptional

fibers (i.e. M 1is an Sl-bundle over P2).

In this case M can be viewed as the orientable Sl-bundle over
the MUbius band (the twisted I-bundle over the Klein bottle) with a
solid torus attached. The twisted I-bundle over the Klein bottle admits
a Seifert fibration in precisely two distinct ways (see Example VI.5 (d));
however, in this case the fibers are the circles as viewed in the structure
of an Sl-bundle over the MUbius band; and therefore, they are orientation
preserving curves on the Klein bottle sitting over the '"center' curve of
the MUbius band. Hence, there is only one way to attach the solid torus

and not get an irreducible manifold. This exception gives M = P3 # P3.

Case 6, M 1is Seifert fibered with orbit-manifold P2 and one exceptional

fiber.,

In this case, there are no additions to the previous list., In
. 3 3 .
fact, the exception P # P° does not appear and each such M is

irreducible. W

V1.8. EXERCISE: Let M be a Seifert fibered manifold with aM # f.

With the exception of D2 X Sl, M 1is irreducible and d-irreducible,

The fundamental group of a Seifert fibered manifold has some very
interesting structure, In fact, it is conjectured that the structure is
so characteristic that it distinguishes Seifert fibered manifolds within
the class of 3-manifolds (see Theorem VI.24 and Remark VI.30 (b)).

Let M be a compact, connected, orientable Seifert fibered manifold

with orbit-manifold B.
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VI.9. B 1is orientable, has genus g and p boundary components and

M has q exceptional fibers.

g’ g P
-1 -1 -1 -1
a hai =h, b hbi = h, c.hc h, dkhdk = h,
o B b
J= J = e e e s e e
c. h -, h [ai, bi]c1 cq-lchl dp>

J

where each aj is the index of the jth exceptional fiber 0 < Bj < aj

(1<j<q) and b 1is an integer,

VI,10. B 1is nonorientable, has g cross caps and p boundary components

and M has q exceptional fibers,

ﬂl(M) = <a1, cees 8, Cpy eee; C, dl’ eee, d , h:

b_ 2 2 L) o0
h al---agc1 chl dp>

where each aj is the index of the jth exceptional fiber 0 < Bj < aj

(1<3j<q) and b 1is an integer.

VI.1l. OBSERVATIONS: (notation as above)

(a) The element h generates a cyclic, normal subgroup of ﬂi(M)
and h may be represented by any regular fiber., The element h (and,
therefore, the subgroup generated by h) depends on the fibration,
However, if ﬂi(M) is infinite, then <h> 1is infinite cyclic,

(b) The quotient group ﬂl(M)/<h> is a member of a well-studied
family of groups, the Fuchsian groups (see §II.3 of [J-Sl] for a brief

""topological" study of Fuchsian groups, which is basically adequate for



92 WILLIAM JACO

the purposes of studying Seifert fibered manifolds),

(c) The group ﬂi(M) is either Z, 22 * Zz or finite iff

TH(M)/<h> is finite, Hence, ﬂl(M) is finite iff M 1is not homeo-

morphic to s2 x st or P # P> and one of the following holds:

i) B 1is orientable, g=0, p=0 and either q < 2

or q= 3 and L + L +-—L-> 1. If q<2, then M is a Lens
1 % % -
space, and if q = 3, there are four possible sets of triples
(a,, a,, 0,) satisfying the condition that ;L'+-J; + —L'> 1, the
1’722 73 O %, ’

"platonic triples": (2, 2, a3), 2, 3, 3), (2, 3, 4), and (2, 3, 5).
Or

ii) B 1is nonorientable, g=1, p=0 and q < 1.
Notice that these manifolds already appear among those listed in (i).
They are the Lens spaces L(4n, 2n-1) or the '"prism-manifolds"
corresponding to the triples (2, 2, a3).

(d) 1If g 1is an element of a group G, then ((g) = {x €G :
x-lgx = g] is the centralizer of g in G, The centralizer, (),
of h in T&(M) has index < 2., If TH(M) is infinite, then for
x € <>, ((x) = ((h); and for x F£<h>, ((x) contains an abelian
subgroup of index < 2 in ((x) (in fact, ((x) N ((h) is abelian).
If ﬂi(M) is infinite and x £ ((h), then ((x) 1is cyclic.

(e) An immediate consequence of (d) is the useful fact that if
N 1is a Seifert fibered manifold and C 1is an infinite, cyclic, normal
subgroup of ﬂl(N), then there exists a Seifert fibered manifold M
and a homeomorphism f : N —> M such that f*(C) C <h>, This can be
stated simply that any infinite, cyclic, normal subgroup of the fundamental

group of a compact Seifert fibered manifold is generated by a power of a
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regular fiber in some Seifert fibration. I only need this result in
the case that 3N # @ (see VI.25 and Remark VI.21). The proof in the
case ON # @ (Lemma II.4.8 of [J-Sl}) uses the fact that any compact,
orientable, irreducible, 3-manifold with nonempty boundary having an
abelian group as a subgroup of finite index in its fundamental group

1, S1 X S1 X I or a twisted I-bundle

must be homeomorphic to D2 X S
over the Klein bottle., If 3N = @, then it is necessary to analyze
certain manifolds covered by S1 X S1 X Sl. The situation is not too
bad; by using some algebraic manipulation and the fact that the manifold
N is orientable, it can be shown that either the statement holds or N

1 1

is double covered by S X S X S1 and therefore is the torus bundle

b

over S1 given as Example 12.3 (2) in [He This manifold is the

11
double of the twisted I-bundle over the Klein bottle, The result can
be proved directly in this case.

(f) 1f x € ﬂi(M) and x" € <h>, then x 1is represented by

a power of a fiber of M (possibly an exceptional fiber - see Lemma

I1.4.2 of [J-5;]).
VI.12, EXERCISE: Prove the statements VI.1ll (a) through (f).

VI.13. EXAMPIE: [W Let M be a Seifert fibered manifold with

5]
orbit-manifold 32 and with three exceptional fibers, Then M 1is
irreducible and M contains a two-sided incompressible surface (M

is a Haken-manifold) iff Hl(M) is infinite (see [E-J] for a detailed

discussion of these manifolds).

The claims that such a Seifert fibered manifold M 1is irreducible

in general, and that such a Seifert-fibered manifold M contains a two-
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sided incompressible surface iff Hl(M) is infinite can be proved

simultaneously, Notice that ﬂi(M) has a presentation (VI.9)

™, M) = <c c h :c hc-1 = h hc-1 = h cal = hsl
1V = SCp Cop B CRGy > % ] ’
a B a B8
2 P2 3_ .83
c,” = h %, (clcz) =h >

and the Fuchsian quotient ﬁl(M)/<h> has a presentation (VI.1l1 (b))

_ a (13
nlon)/<h> = <c1, SN (c1c2) = >

where Iail >1, 1<1i< 3, Hence, ﬂi(M) is neither infinite cyclic
nor a nontrivial free product. It follows that any incompressible
2-sphere S in M must separate M; and, the closure of one component
of M-S is a homotopy cell,

If HI(M) is infinite, then by Theorem III,10, M contains an
incompressible two-sided surface. So, I shall assume that Hl(M) is
finite. Thus any incompressible surface § in M must separate M.

From the above, I shall have established my claim if I can show
that M does not contain a separating incompressible surface. Let
fl’ f2, f3 denote the exceptional fibers in the given Seifert fibration
of M; let Ti be a fibered neighborhood of fi (1 <i< 3)., Then
each Ti is a fibered solid torus,

Among all separating incompressible surfaces in M choose one,
say S, such that each component of S Ti is a disk (1 <i < 3)
and the number of components is minimal. Let M' =M - ? %i and let
§' =8 NM', Then M' is homeomorphic to the product of a disk-with-
two-holes and Sl; and S' 1is both incompressible and Jd-incompressible

in M', Furthermore, S' must separate M', Since TH(M') has nontrivial
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center, S' 1is either a 2-sphere, a torus or an annulus, A 2-sphere
in M' is compressible (bounds a 3-cell) in M' and an incompressible
torus in M' is parallel to one of the tori in aM' and hence could
not be incompressible in M. The only possibility is that S' is an
annulus, both components of 3S' are on the same torus Tl’ say,

and h corresponds to the generator of ﬂl(S'). This is impossible;
for if this were the case, then h would be trivial in T and the

1

given Seifert fibration of M would not have three exceptional fibers. B

VI.14., REMARK: Except for those Seifert fibered manifolds where the

triple (al, Q,, @.) corresponds to a "platonic-triple', each manifold

22 73
of Example VI.13 has infinite fundamental group. These were the first
known examples of irreducible 3-manifolds with infinite fundamental

group which are not Haken-manifolds [W Other examples of such

P
manifolds have since been discovered (Thurston [Th2] by doing surgery

on the compliment of the "figure-eight' knot; and, more generally,

[J-R] by doing surgery on a once-punctured torus bundle over Sl). All
known examples of compact, irreducible 3=-manifolds with infinite funda-
mental group have the property that they can be covered in a finite
sheeted fashion by a Haken-manifold (i.e. almost sufficiently-large or
almost Haken). However, this question is not answered in general. If

M is a closed, irreducible 3-manifold, it is unknown if ﬂi(M) contains
a subgroup isomorphic to a closed surface group (see Question V,2l); it

is unknown if (ﬁ; p) 1is a covering of M, if i1 is itself irreducible
(see Chapter I --the only success on this problem has been in the case

of two-sheeted coverings by using equivariant surgery) and it is unknown,

even if the answer to both of these previous questions is affirmative, if
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M must be almost Haken. These are good problems. P. Shalen has made
some success toward their answer in the case where M is assumed to
have a hyperbolic structure. This not only avoids the bothersome
irreducible problem, it also gives a large amount of literature to

draw from,

The arguments are now complete as to which Seifert~fibered-

manifolds are irreducible and which have finite fundamental group.

VI.15, THEOREM: With the exceptions Lens spaces (including 82 X S1

and S3) and P3 # P3, a compact Seifert-fibered-manifold is either

a Haken-manifold or is Seifert fibered with orbit-manifold 82 and

with precisely three exceptional fibers. In the latter case M is a

Haken-manifold iff Hl(M) is infinite. W@

In Theorem VI,24, I give a characterization of those orientable
Haken-manifolds which are Seifert-fibered-manifolds.

In VI.5 I gave examples of Seifert fibered manifolds which
admitted distinct (no fiber-preserving homeomorphism) Seifert fiberings.
In the closed case these manifolds are included among the ''small' Seifer
fibered-manifolds. (See [01], §5.4.) This term is a bit misleading
since some "small" manifolds are '"sufficiently large' in the sense of
[w3]. In Chapter VIII, I shall have occasion to single out some of
these manifolds (in the bounded case); however, my purpose will be other

than the fact that they admit distinct Seifert fiberings,

VI.16. NON-UNIQUE SEIFERT FIBERINGS:

(a) Lens Spaces (including 82 X S1 and S3).
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(b) Prism-manifolds. These, by definition, are Seifert fibered

with orbit-manifold 82 and with three exceptional fibers of index
corresponding to the triple (2, 2, a3). Since Oy > 1, each Prism-
manifold admits a Seifert fibering with orbit-manifold P2 and with
no more than one exceptional fiber. Note that there are orientable
Seifert fibered manifolds with orbit-manifold P2 and with no more
than one exceptional fiber which are not Prism-manifolds (Lens spaces

L(4n, 2n-1) and the manifold P3 # P3).

(c) Double of twisted I-bundle over Klein bottle. This

manifold is Seifert fibered with orbit-manifold 83 and with four
exceptional fibers of index al =, = a3 = Gﬁ = 2, It is also Seifert
fibered with orbit-manifold the Klein bottle and with no exceptional
fibers (an Sl-bundle over the Klein bottle). Notice that it also has

the structure of a torus bundle over Sl (see Example 12.3 (2) of [Hel]).

(d) The solid torus: (see Remark VI,.1l).

(e) A twisted I-bundle over the Klein bottle: (see Example

VI.5 (d)).

VI.17. THEOREM: Let M and N be connected Seifert-fibered-manifolds

and let £ : M —> N be a homeomorphism. Either M (and therefore N)

appears on the list VI.16 or there is a fiber-preserving homeomorphism

from M to N.

The idea of proving such a theorem is to actually prove a stronger
conclusion, with more Seifert-fibered-manifolds as exceptions than those
listed in VI.16, and then, by hand, and case by case arrive at the desired

conclusion, I shall do precisely this in the case that the manifolds in
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question have nonempty boundary, The version of the theorem needed in
this case is given as Theorem VI,18, The general case of this theorem

was proved by Waldhausen in [W4].

VI.18. THEOREM: Let M and N be connected Seifert-fibered-manifolds

and let f : M —> N be a homeomorphism, Suppose that M (and therefore

N) has the property that M # @ and M 1is not homeomorphic to

D2 X Sl, S1 X S1 X I or a twisted I-bundle over the Klein bottle,

Then f is isotopic t

a fiber-preserving homeomorphism,

Proof: 1I shall prove this by establishing two lemmas. The first
lemma can be stated simply that a fiber in the boundary of a Seifert-

fibered-manifold completely determines the Seifert fibering:

VI.19, IEMMA: Let M and N be connected Seifert-fibered-manifolds and

let f : M —> N be a homeomorphism., Suppose that for some fiber T

in oM that £(T) is a fiber in N, Then f is isotopic (rel T)

to a fiber-preserving homeomorphism,

Proof: Let BN be the orbit-manifold of the Seifert fibered

manifold N with projection map Py ¢ N —> BN. The proof is via

induction on the "complexity" of BN'

If BN is a disk and there is at most one exceptional fiber in
N, then N (and hence M) 1is a fibered solid torus; and since £ is
a homeomorphism, T 1is a fiber in M and £(T) 1is a fiber in N, it
follows that both M and N are fibered solid tori of the same type

and the desired isotopy can be constructed.

Now, suppose that either BN is not a disk or if BN is a disk
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then there are at least two exceptional fibers in N. There is an arc
aN in BN from the point pN(f(T)) in BBN to a distinct point in
BBN such that GN is not homotopic (rel BGN) into BBN missing an
exceptional point., Hence, p&l(aN) = AN is an incompressible, saturated
annulus in N; one component of BAN = £(T) and AN is not homotopic
(rel aAN) into 3N,
Let AM = f-l(AN). Then AM is an incompressible annulus in M;
one component of BAM is T and AM is not homotopic (rel aAM) into oM.
It is not hard to prove that AM is isotopic (rel T) to a
saturated annulus (see VI.25 for a generalization). That is, after an
isotopy of f (rel T), I may assume that AM = f-l(AN) is saturated,

I can now split N at AN and M at AM and apply the induction

argument to complete the proof of Lemma VI.19. W

The second lemma can be stated simply that with certain exceptions
there exists only one isotopy class of s.c.c. in each boundary component

which can be a fiber in any Seifert fibration of M,

VI.20. LEMMA: ZLet M be homeomorphic to a compact, connected, Seifert-

fibered-manifold with nonempty boundary. Suppose that M 1is not homeo-

morphic to D2 X Sl, S1 X 1

197]

X

=

r a twisted I-bundle over a Klein

bottle, Let T be a component of OM. Then up to ambient isotopy of

M there exists a unique simple closed curve in T which is mapped to

a fiber.

Proof: Suppose that there exists compact, connected Seifert

fibered manifclds N1 and N2 and homeomorphisms fi M —> Ni

(i=1, 2), For i=1, 2, Ilet T, be a simple closed curve in T
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such that f£.(T.) 1is a fiber in N,.
it i i

Now, either N, (and hence M) is a solid torus, which is not
the case, or there exists saturated annuli A; o Ni with one component
of their boundary equal to fi(Ti), the other component of their
boundary a fiber in aNi distinct from fi(Ti) and Ai is not

N . . s = - '
homotopic (rel aAi) in Ni into BNi (i 1, 2). Set Ai fi (Ai).

Since M 1is not homeomorphic to D2 X S1 and M is homeo-
morphic to a Seifert fibered manifold, each component of 3M is
incompressible (Exercise VI.8). Hence, the covering space of M

corresponding to Im(ﬂl(T) — ﬂl(M)) compactifies [Si,] to the

]
product T X I, Both A1 and A2 lift and each has distinct boundary
components in distinct components of the boundary of the covering. It
follows from Theorem 1 of [Jl] that either there is an ambient isotopy
of M taking Tl to T2 or M is an I-bundle over a torus or an
I-bundle over the Klein bottle. By hypothesis, neither of the latter

two is the case. W

It is now easy to prove Theorem VI.18. By hypothesis the manifold
M 1is not homeomorphic to D2 X Sl, S1 X S1 Xx I on a twisted I-bundle
over the Klein bottle. Setting one homeomorphism equal to the identity
on M and the other one equal to the given homeomorphism f : M —> N;
it follows from Lemma VI.20 that up to isotopy of M there is a fiber

T in oM such that f£(T) is a fiber in JN. Hence, by Lemma VI.19,

the homeomorphism f is isotopic to a fiber-preserving homeomorphism., W

VI.21l. REMARK: 1In order to prove Theorem VI,18, it was not necessary

to have Lemma VI.20, I stated and proved VI.20 to establish a strong
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geometric form of the uniqueness of a fiber, This corresponds to the
algebraic result given in VI.1ll (e) for infinite, cyclic normal sub-
groups of the fundamental group. I could have used VI.1l (e) in place

of VI.20 to prove Theorem VI.1l8,

VI.22. EXERCISE: Suppose that M and N are Seifert fibered manifolds
and each is homeomorphic to the trivial I-bundle over the torus. Prove

that there is a fiber-preserving homeomorphism from M to N,
VI.23. EXERCISE: Prove Theorem VI,1l7 in the general case.

There is a very nice characterization of those orientable Haken-
manifolds which are homeomorphic to Seifert fibered manifolds. The
version presented here first appeared in [J-Sl]; however, major contributions
to this theorem are due to [B-Z], [WZ]’ [G-H] and [Tol]. Also see [He-=J].
Some of the steps in proving this theorem are important in their own
right and will be used later. For these reasons I assign them a reference

number,

VI.24., THEOREM: Let M be a compact, orientable Haken-manifold. Then

ﬂl(M) has an infinite, cyclic, normal subgroup iff M is homeomorphic

to a Seifert fibered manifold.

Proof: A compact,orientable Haken-manifold M 1is either a 3-cell
or has infinite fundamental group. So, if M is homeomorphic to a Seifert
fibered manifold, then it follows from VI.1l (a) that ﬂl(M) has an
infinite cyclic, normal subgroup.

Conversely, suppose that M 1is a compact, orientable Haken-manifold

and that C is an infinite, cyclic, normal subgroup of ﬁl(M). To prove
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that M is homeomorphic to a Seifert fibered manifold, I shall induct
on the length of M (see Remark IV,13).

The induction starts whem M 1is a cube-with-handles. The only
possibility is for M to be a solid torus; and hence, M is homeomorphic
to a Seifert fibered manifold (Remark VI.3).

Suppose that the manifold M satisfies the hypothesis of Theorem
VI.24, that M has length n (n > 2) and that any manifold of length
less than n satisfying the hypothesis of VI.24 is homeomorphic to a
Seifert fibered manifold.

Let F denote a two-sided, incompressible and d-incompressible
surface in M (such a surface exists by Exercise IV.1l); and if possible,
choose such an F that does not separate M. This condition is possible
iff Hl(M) is infinite, which is always the case if oM # @.

I shall consider separately three possibilities: the infinite,
cyclic, normal subgroup C < ﬂi(F); the infinite, cyclic, normal subgroup
c £ ﬂl(F) and F does not separate M; the infinite, cyclic, normal
subgroup C £ Wl(F) and F separates M.

Only the first case uses the induction step.

VIi.25. If C< ﬂl(F), then F is an annulus or a torus and M is

homeomorphic to a Seifert fibered manifold via a homeomorphism taking F

to a union of fibers (i.e. F 1is saturated in some Seifert fibration of M)

Proof of VI.25: Since ﬁl(F) contains C, F must be an annulus
or a torus. Let M' denote the manifold obtained by splitting M at F,
Then each component of M' is a compact, orientable Haken-manifold having

length strictly less than the length of M and having an infinite, cyclic,



THREE -MANIFOLD TOPOLOGY 103

normal subgroup of its fundamental group. It follows by induction that
each component of M' 1is homeomorphic to a Seifert fibered manifold and
therefore by VI.1ll (e), each component of M' admits a Seifert fibration
with C generated by a power of a fiber, It follows that each component
of M' admits a Seifert fibration with the surfaces corresponding to F
saturated. Clearly, if F is an annulus, the Seifert fibration(s) on
the component(s) of M' can be extended to a Seifert fibration of M
with F saturated. If F 1is a torus, then since C 1is generated by

a power of a fiber and each element of ﬁl(F) has a unique primitive
represented by a simple closed curve on F, the Seifert fibration(s)

on the component(s) of M' can be extended to a Seifert fibration of M

with F saturated. W

VI.26. If C £ ﬁl(F) and F does not separate M, then C is central

in ﬂl(M), M=TF ><Cp S1 is fibered over S1 with fiber F and sewing

map ® and ¢ is periodic,.

Proof of VI.26: This result is well known and appears frequently
in the existing literature. I shall only outline the ideas.

The first step is to go to the infinite cyclic covering of M
determined by F (F 1is two-sided and does not separate M) and prove
that it is the covering of M corresponding to ﬂl(F). This method of

proof was introduced in [B-Z] and exploited by Waldhausen in [W The

2]'
proof is carried out in detail as Case 1 in the proof of Theorem 12,7 of
[Hel] where it is also shown that C must be central in ﬂl(M). It

follows that Wl(M) can be written as an extension ﬂl(F) > ﬁl(M)-——> A

where TF # Pz. Hence, by [St4] the manifold M = F X¢ S1 fibers over
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1

S° with fiber F and sewing map V. Now, by applying the original work
of [B-Z), which is done in the proof of Lemma 12.6 of [Hel], it can be shown
that some power of W* is an inner automorphism of ﬂl(F). Therefore, | is

homotopic (hence isotopic) to a periodic homeomorphism, @@ [Nl]. |

It remains to prove that M is homeomorphic to a Seifert fibered
manifold. The next result is well known. It is implicit in the work of
Waldhausen [w2]. Also, it is implicit in the statement of Lemma 12.6 of

[Hel] and a proof may be found within the proof of that lemma.

VI.27. Let M= TF X S1 be a surface bundle over S1 with fiber F

®
and sewing map . If ¢ 1is homotopic to a periodic homeomorphism,

then M is homeomorphic to a Seifert fibered manifold.

Now, I shall establish that M is homeomorphic to a Seifert

fibered manifold in the remaining case.

VI.28. If C < ﬂl(F) and F separates M, then M 1is closed and

M=M1UM2 with MlnM = 3M; = M, = F and each M, (1i=1, 2) is

2

a twisted I-bundle over a closed, nonorientable surface.

Proof of VI.28: Since F separates M, (by the choice of F)

Hl(M) is finite; so, M 1is closed; and M = My UM, with M, NM, = 3M

2 2

= BMZ = F. At the fundamental group level, ﬂl(M) splits as a free

product of the groups ﬁlonl) and ﬂl(Mz) with amalgamation over ﬁl(F).

1

It is straightforward, from the algebra, that either C < ﬂl(F) or
cn ﬂl(F) = {1} and ﬂl(F) has index precisely two in both ﬂl(Ml) and
ﬂi(Mz). By hypothesis, the former is not the case. The latter implies

that each M (i=1, 2) is a twisted I-bundle over a closed, non-
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orientable surface. W

It remains, in this case, to prove that M is homeomorphic to
a Seifert fibered manifold. This step was the only remaining step
prior to [J-Sl]. I again want to emphasize that only VI.25 uses the
induction hypothesis.

Notice that if VI.28 is satisfied, then M has a canonical two-
sheeted covering 61 p), F 1lifts to M and if F 1is one of the
components of p-l(F), then M=TF ﬁp S1 is a surface bundle over
Sl with fiber F and sewing map . Furthermore, if ¢ = p;l(C N p*ﬁléq)),
¢ is an infinite, cyclic, normal subgroup of ﬂ1(ﬁ3; and since
cn ﬂl(F) = {13, E.{ ﬁlff). As I have pointed out above, VI.26 does
not depend on the induction hypothesis; hence, M is homeomorphic to
a Seifert fibered manifold. The results of [Tol] can be applied to show
that either M is homeomorphic to a Seifert fibered manifold or M is
closed and Seifert fibered with orbit-manifold the 2-sphere with
precisely three exceptional fibers. Lemma II.5.2 of [J-Sl] eliminates
the second possibility. I shall state in VI.29 what seems to be a more
general statement than is needed here; however, it can be argued that
VI.29 is equivalent to proving that if M and M satisfy the above

situation, then M 1is homeomorphic to a Seifert fibered manifold.

VI.29. Let M be a connected, orientable Haken-manifold. Suppose that

o~
M, p) 1is a finite-sheeted covering space of M. Then M is homeomorphic

o a Seifert fibered manifold iff M is homeomorphic to a Seifert fibered

manifold.

Lemma VI.29 is proved as Lemma II.5.1 and Lemma II.5.3 of [J-Sl].
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This completes the proof of VI,.28 and the proof of Theorem VI.24., W

VI.30. REMARKS: (a) Theorem VI.24 is not true in the nonorientable
case. However, it appears to be valid if the class of manifolds considered
as Seifert fibered manifolds is enlarged to admit orientation reversing
curves as fibers, as suggested in the opening remarks of this Chapter.

(b) It is conjectured that any closed, connected 3-manifold M
having a finite-sheeted covering (ﬁ, p) where M is homeomorphic to
a Seifert fibered manifold implies that M is homeomorphic to a Seifert
fibered manifold. Such an M must have an infinite, cyclic, normal
subgroup of its fundamental group. However, it is not known if the center

of ﬂi(M) must be finitely-generated.

I shall finish this chapter with two consequences of VI.24 and
its sublemmas VI-25 through VI.29.

In VI.27 I observed that a surface bundle over S1 admits a
Seifert fibration if the sewing map is periodic. The next lemma is a

partial converse to VI.27.

VI.31l. LEMMA: Let M be homeomorphic to
If M=F ><cp S1 is a surface bundle over S1 with fiber F and sewing

map ¢, either ¢ is homotopic to a periodic homeomorphism or F is a

a Seifert fibered manifold.

1
torus and M 1is an S -bundle over the torus or Klein bottle.

Proof: By hypothesis ﬁl(M) contains an infinite, cyclic, normal
subgroup C. If C £« ﬂl(F), then by VI.26 C 1is central in ﬂl(M) and
¢ 1is homotopic to a periodic homeomorphism, If C < ﬂl(F), then F is

an annulus or a torus, If F is an annulus, then ¢ is homotopic to a
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periodic homeomorphism, If F 1is a torus, then it can be shown that
. . t1 n

the monodromy of ®, 1is represented by a matrix A = I If

TR A= 2, then M is an S -bundle over a torus and if TR A = -2,

then M is an Sl-bundle over a Klein bottle, W

VI.32. THEOREM: Let M be an orientable Seifert fibered manifold.

Then M= F xcp S1 is a surface bundle over S1 with fiber F and

sewing map ¢ iff either h has infinite order in HI(M) or M 1is an

1
S -bundle over a torus, a Klein bottle, an annulus or a MYbius band. W

VI.33. REMARK: If M 1is a Seifert fibered manifold with orbit-manifold
B and B 1is nonorientable, then h has finite order in Hl(M)' The

order of h in Hl(M) can be computed (e.g. see page 122 [01]).

The following theorem, which concludes this chapter, characterizes

the two-sided incompressible surfaces embedded in a Seifert fibered manifold.

VI.34. THEOREM: Let M be a compact, orientable Seifert fibered manifold.

f F is a two-sided, incompressible surface in M then one of the follow-

ing alternatives holds:

(i) F is a disk or an annulus and F is parallel into aM.

(ii) F does not separate M and F 1is a fiber in a fibration of

M s a surface bundle over Sl.

(iii) F does separate M and M = M1 U M2 where M1 n Mz = aMl

= BMZ = F and Mi (i=1, 2) a twisted I-bundle over a compact

is

surface (possibly with boundary).

(iv) F is an annulus or a torus and F 1is saturated in some Seifert

fibration of M.
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Proof: This is just a matter of collecting the results proved
earlier.

Fix a Seifert fibration of M and let h € TH(M) be represented
by a regular fiber (by VI.1l (a), <> 1is a cyclic, normal subgroup of
™ 0D).

If <h> < ﬂl(F), then by VI.25 alternative (iv) holds.

If <> £ ﬂl(F) and F does not separate M, then by VI.26
alternative (ii) holds. If <h> ¢ ﬂi(F) and F does separate M, then
either alternative (i), (iii), or (iv) holds. If the splitting of ﬁl(M)
determined by F 1is not a nontrivial free product with amalgamation
over ﬂl(F), then F 1is a disk, an annulus or a torus parallel into
oM. If F is a torus, then alternative (iv) holds. 1If the splitting
of ﬂl(M) determined by F 1is a nontrivial free product with amalgamation
over ﬂl(F), then an argument analogous to that for VI.28 proves that

alternative (iii) holds. W



CHAPTER VII. PERIPHERAL STRUCTURE

If M is a 3-manifold with boundary, any subgroup of the funda-
mental group of a component of M defines a conjugacy class of subgroups
of ﬂi(M), namely the conjugacy class of subgroups induced by inclusion
of 3M into M. Such a class of "peripheral" subgroups is particularly
important, in the study of the structure of ﬂi(M), in the case the class
corresponds to the fundamental group of an incompressible surface in M.
For instance, if M 1is a Haken-manifold, then M admits a hierarchy
(Chapter 1IV); so ﬂl(M) may be described, via an inductive procedure,
in terms of peripheral subgroups defined on the fundamental groups of
certain "simpler" 3-manifolds and these peripheral subgroups correspond to
incompressible surfaces in the boundaries of the simpler 3-manifolds.

The techniques developed in this chapter for studying the peripheral
structure will be fundamental to the work of the remaining chapters. It is
used in the analysis and proof of the homotopy versions of the Annulus-
Torus Theorems (Chapter VIII), in the proof of the existence and uniqueness
of the Characteristic Seifert Pair (Chapter IX) and in the study of the
extent to which the fundamental group of a Haken-manifold determines its
topological type (Chapter X).

Recall (Exercise I.5) that if M is a 3-manifold, a subgroup H of
ﬂi(M) is peripheral if there exists a surface S € 3M such that H is
conjugate in ﬂi(M) into a subgroup of hn(T&(S) S TH(M)). Since a
peripheral subgroup is only determined up to conjugacy, it is natural to
pass to the covering space uniquely determined by such a conjugacy class

of subgroups of the fundamental group. The study of these covering spaces

109
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turns out to be particularly rewarding due to two beautiful theorems, one
theorem of T. Tucker [Tul] and one theorem of J. Simon [Sil]. These
results apply to the compactification of 3-manifolds and particularly,

to the compactification of certain coverings of Haken-manifolds.

A manifold M admits a manifold-compactification if there exists a

compact manifold Q and an embedding ¢@: M — Q such that Int Q C

@ (Int M) . Notice that a manifold M admits a manifold compactification
iff there exists a compact manifold Q such that M is homeomorphic to
Q minus a closed subset of 3Q. There are many interesting examples of
3-manifolds which do or do not admit manifold compactifications in [Tul],

[TUZ] and [J For my purposes, the main theorem, as to when a 3-

6]'

manifold admits a manifold compactification, is due to T. Tucker [Tul].

VII.1. THEOREM: Let M be an irreducible, orientable 3-manifold. Then

M admits a manifold compactification if and only if for each compact

polyhedron C in M, each component of M - C has finitely generated

fundamental group.

I wish to apply this theorem to certain covering spaces of Haken-
manifolds. This is the point that the work of Simon [Sil] is used. 1In
[Sil], Simon gives a sufficient condition for a covering space of a Haken
manifold to admit a manifold compactification. I shall give a modified
version of his theorem. In the proof I give, it should be noticed that
it is not necessary to construct a manifold compactification as Simon does
indeed, the theorem of Simon follows easily from Theorem VII.l. This has

been independently observed by Tucker [Tuz].
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VII.2. THEOREM: Let M be a Haken-manifold and suppose that H is a

finitely generated subgroup of ﬂi(M)' let ﬁ(H) be the covering space

of M corresponding to the conjugacy class of H in ﬂi(M) and let

P : ﬁ(H) —> M denote the covering projection. If there exists a two-

sided, incompressible 2-manifold F in M such that each component of

- o
p 1(M-U(F)) admits a manifold compactification to a Haken-manifold,

where U(F) 1is a product neighborhood of F in M, then ﬁ(H) admits a

manifold compactification to a Haken-manifold.

Proof: To prove that E(H) admits a manifold compactification it
is sufficient to prove that if C is a compact polyhedron in ﬁ(H), then
each component of ﬁ(H) - C has finitely generated fundamental group.

First, observe that if C and C' are compact polyhedra in ﬁ(H),
C'C C and each component of ﬁKH) - C has finitely generated fundamental
group, then each component of ﬁKH) - C' has finitely generated fundamental
group., Using this observation and the hypothesis that ﬂl(ﬁfH)) is finitely
generated (being isomorphic to H), I only need to consider compact,
connected polyhedra C in M(H) which have the property that the inclusion
induced homormorphism of ﬂi(C) into ﬂl(ﬁ(H)) is an epimorphism,

So, let C be a compact, connected polyhedron in ﬁkH) which has
the property that the inclusion ﬂl(C) into ﬂi(ﬁ(H)) is an epimorphism,
Since C is compact, there are only finitely many components of p-l(F)
which meet C nontrivially and only finitely many components of ﬁ(H) - p-l(F)
whose closure meets C nontrivially. Let N be the union of the closures
of those components of ﬁkH) - p-l(F) whose closure meets C nontrivially.
Then N involves only finitely many components of ﬁKH) - p-l(F), the

inclusion of ﬂ1(§) into ﬂl(ﬁkH)) is an epimorphism and, what is more,
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the fundamental group of any component of EKH) - C is isomorphic to the
fundamental group of some component of N - c.

Each component of N - C is a union of a finite number of components
of ﬁ(H) - p-l(g(F))- C connected by a finite number of components of
p-l(U(F)) - C. Since each component of ﬁ(H) - p-l(g(F)) admits a
manifold compactification, each component of ﬁkH)- p_l(g(F)) - C has
finitely generated fundamental group. Hence it follows from the Seifert-
Van Kampen Theorem that the fundamental group of a component of E - C
is a quotient of a finite free product of finitely generated groups and is,
therefore, a finitely generated group. As observed above, this implies
that each component of ﬁkH) - C has a finitely generated fundamental
group.

It remains to show that the compactification of ﬁfH) is a Haken-
manifold. This is really straightforward. The manifold ﬁKH) is orientable
and since each component of p_l(M-g(F)) compactifies to a Haken-manifold,
the closure of each component of p-l(F) is irreducible, which implies
that ﬁ(H) is irreducible. It follows that the compactification of E(H)
is orientable and irreducible. The compactification either has nontrivial
boundary (and so is a Haken-manifold) or is closed, in which case the
compactification is M(H). If this latter case holds, themn M 1is closed,
ﬁ(H) is a finite sheeted covering of M and pnl(F) is an incompressible
2-manifold in ﬁ(H). I have already shown that ﬁ(H) is orientable and

irreducible. So, in this case the compactification is a Haken-manifold. u

VII.3. REMARK: J. Simon conjectured that the covering space corresponding

to a finitely generated subgroup of the fundamental group of a Haken-
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—anifold admits a manifold compactification to a Haken-manifold. If M
is a Haken-manifold and H 1is a finitely generated subgroup of TH(M),
then it is very tempting to try to prove the existence of a two-sided
surface F in M so that M, H and F all satisfy the conditions of the
hypothesis of Theorem VII.2; thereby, establishing Simon's Conjecture in
the affirmative. However, the conclusions of Example V.19(d) provide
numerous examples where such an attempt will fail. Recall that in Example
V.19(d) it is shown that if M = F Xcp S1 is a bundle over S1 with fiber
F where <%(F) < 0, then there is a two-generation subgroup H of ﬂi(M)
such that H N ﬂi(F) is not finitely generated. Furthermore, there are
examples of bundles M = F Xcp S1 where <Y(F) < 0 and, up to isotopy,
the fiber F 1is the only two-sided incompressible surface in M (e.g, if
M 1is obtained by zero framed surgery on a (p,q)-torus knot manifold where
l(p-l)(q-l)/zl > 1). In this situation if ﬁ(H) is the covering space
of M corresponding to the conjugacy class of H in T&(M) and
p : M(H) = M is the covering projection, then there exists components
of p_l(M-g(F)) which do not have finitely generated fundamental groups;
and so, such components of p-l(M—g(F)) could not admit manifold compacti-
fications, The status of Simon's Conjecture is unknown at this time.
However, there are reasonable conditions which can be placed on a
subgroup H of the fundamental group of a Haken-manifold M which
guarantee that ﬁ(H) admits a manifold compactification. The next theorem

is due to J. Simon.

VII.4. THEOREM: Let M be a Haken-manifold, H a finitely generated sub-

group of ﬂi(M) and ﬁ(H) the covering space of M corresponding to the

conjugacy class of H in ﬂl(M). If H has the finitely generated
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intersection property (f.g.i.p.), then ’I:{(H) admits a manifold compacti-

fication to a Haken-manifold.

Proof: The proof is via induction on the length of a hierarchy for

If M is a 3-cell, then there is nothing to prove. So, suppose
that M has a hierarchy of length n (n > 1) and for any Haken-manifold
M' having a hierarchy of length < n and any finitely generated subgroup
H' of ﬂ‘l(M'), which has f.g.i.p., the covering space of M' corresponding
to the conjugacy class of H' in ﬂl(M'\ admits a manifold compactification
to a Haken-manifold.

Let F be the first surface in a hierarchy of length n for M.
Let p : ﬁ(H) —> M denote the covering projection. If N is a component
of p-]'(M-g(F)), then for some component M' of M - ([)I(F), N is the
covering space of M' corresponding to the conjugacy class in ﬂl(M') of
the subgroup TTl(M') n Hg for some g € ﬂl(M). (Hg is the conjugate (in
TTl(M)) of H by the element g € Trl(M).) Set H' = TTl(M') NES., I claim
that H' has f.g.i.p. (in TTl(M')). Let K be a finitely generated sub-
group of TTl(M'). Then K NH' = KN TTl(M') Ne® is isomorphic to
k&N H; and so, K N H' is finitely generated, since H has f.g.i.p.

Since M' has a hierarchy of length < n, N admits a manifold
compactification to a Hakep-manifold. However, N was an arbitary
component of p-l(M-?J(F)). It follows from Theorem VII.2 that M(H)

admits a manifold compactification to a Haken-manifold, W

VII.5. COROLLARY: Let M be a Haken-manifold, H an abelian subgroup

of Trl(M) and M(H) the covering space of M corresponding to the
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conjugacy class of H in ﬂi(M). Then M(H) admits a manifold compacti-

fication to a Haken-manifold.

Proof: An abelian subgroup of the fundamental group of a Haken-

manifold must be finitely generated and so has f.g.i.p. []

VII.6., COROLLARY: Let M be a Haken-manifold. Then the universal cover

of M admits a manifold compactification t

a 3-cell. []J

VII.7. QUESTION: Let M be a closed, aspherical (ﬂh(M)=O, n > 2) 3-

manifold. Does the universal cover of M admit a manifold compactification

to a 3-cell?

VII.8. COROLLARY: Let M be a Haken-manifold, H a finitely generated

peripheral subgroup of ﬂlﬂn) and M(H) the covering space of M

corresponding to the conjugacy class of H in ﬂi(M). Then ﬁKH) admits

a manifold compactification to a Haken-manifold.

Proof: By Theorem V.20 a finitely generated peripheral subgroup H

of ﬂl(M) has f.g.i.p. [ ]

The preceding corollary is the major result in my approach to the
study of the peripheral structure of 3-manifolds. However, before leaving
the results on compactifications and investigating the consequences of
Corollary VII.8, there is one more compactification theorem, due to B,
Evans and myself, that is needed in Chapters VIII and IX. I need to
introduce some notation prior to stating this theorem. This notation
will be used through the next three chapters, since the major results of

these chapters can be stated best in relative terms using this notation.
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A pair (X,Y) is called a polyhedral pair if X is a polyhedron and

Y 1is a sub-polyhedron of X. A polyhedral pair (X,Y) is connected if X
is connected. A component of a polyhedral pair (X,Y) is a polyhedral pair
(X',Y¥') where X' 1is a component of X and Y' =Y NX'. A polyhedral
pair (X,Y) is compact if both X and Y are compact. The polyhedral pair
(X',Y') is contained in the polyhedral pair (X,Y), written (X',Y')S(X,Y),
if X' 1is a subpolyhedron of X and Y' is a subpolyhedron of Y.

An n-manifold pair is a polyhedral pair (M,T) where M is an
n-manifold and T 1is an (n-1)-manifold contained in 3M. Let M be a
3-manifold. A 3-manifold pair (M',T') < (M,3M) 1is well-embedded in M

if ) M'A3M = T' and (ii) FrM(M') is incompressible in M.

VII.9. THEOREM: Let M be a Haken-manifold. Suppose that the connected

3-manifold pair (M',T') € (M,3M) is well-embedded in M. Then the cover-

ing space of M corresponding to the conjugacy class of ﬂl(M') in TTl(M)

admits a manifold compactification to a Haken-manifold.

VII.10., REMARK: Theorem VII.9 yields the same conclusion as the earlier
results, yet for quite different reasons. In this case the subgroup

Trl(M') may not have f.g.i.p. (e.g., see V.19(c)).

Proof of Theorem VII.9: Set H = Trl(M') and set F = FrM(M'). Let
ﬁ(H) denote the covering space of M corresponding to the conjugacy class
of H= Trl(M') in Trl(M) and let p : ﬁ(H) ~—> M denote the covering
projection. Set U(F) equal to a product neighborhood of F in M. I
shall show that the hypotheses of Theorem VII.2 are satisfied; that is,

- o
each component of »p 1(M-U(F)) admits a manifold compactification to a
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Haken-manifold.
o ~ -1 o
There is a lifting of M'- U(F) to a component M' of p ~(M=U(F))
~ o~ o

such that pIM': M'—> M'- U(F) is a homeomorphism; furthermore, the
inclusion induced homomorphism of Trl(M') G Trl (ﬁ(H)) is an isomorphism.
It follows that each component of p-l(F) separates ’I‘Z(H). Now, for f
a component of p-l(F), choose notation so that if M, and M, are the

1 2

then M'C M,. Since the inclusion ﬂl(ﬁ') S

components of ﬁ(H) -F s 1

ﬂl(ﬁ(H)) is an isomorphism and p-l(F) is incompressible, the inclusion
ﬂl(ﬁ') S ﬂl(Hl) is an isomorphism and the inclusion TTI(?)G ﬂl(ﬁZ)
is an isomorphism, I claim that each component of p-l(F) has finitely
generated fundamental group. This follows from a lemma, which is of

interest in its own right.

VII.1l., IEMMA: Let R be a 3-manifold and let S be a surface in 3R,

1f ﬂl(R) is finitely generated, then Im(ﬂl(S)(-> TTl(R)) is finitely

generated,

Proof: Let R' be a homeomorphic copy of R which is disjoint from
R. Choose a homeomorphism h : R —> R'. Let S' = h(S). Let 2R be the
3-manifold obtained from the disjoint union R U R' by identifying s € S
with s' = h(s) € 8'., Set G = Im(nl(s) <> Trl(R)) and G' = IM(nl(s') >
TTl(R')). Let ¢ : G —> G' be the isomorphism of groups induced by h,
Then n1(2R) can be represented as a free product with amalgamation
111(2R) ~ (ﬂl(R),ﬂl(R'),G,G';cp). The group ﬂl(ZR) is a finitely generated
3-manifold group. If G, and hence G', are not finitely generated, then
™ (2R) cannot be finitely presented [Nel]. However, this contradicts

Corollary V.16. n
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So, if f is a component of p-l(F), then, with the above notation,
f is a surface in aﬁl. Since ﬂi(ﬁl) is isomorphic to ﬂi(ﬁ"), which
in turn is isomorphic to H, a finitely generated group, the group ﬂldgl),
is finitely generated. By Lemma VII.1ll, Im (ni(¥5c?ﬂi(ﬁ1)) is finitely
generated. However, f is incompressible, so Im(ﬂi(?)caﬂi(ﬁl)) is
isomorphic to ﬂi(f3° This establishes my claim.

Now, let N be a component of p-l(M-g(F)). Then N is a covering
space of a component N of M-ﬁ(F) with covering projection p[ﬁl

Furthermore, by the preceding, either N = M' or N is the covering

space of N corresponding to the conjugacy class in T&(N) of a finitely

generated peripheral subgroup of ﬂi(N). if N = ﬁ“, then N is itself
a compact Haken-manifold; otherwise, by Corollary VII.S8 N admits a
manifold compactification to a Haken-manifold. It now follows from
Theorem VII.2 that M(H) admits a manifold compactification to a Haken-

manifold, |

VII.12. COROLLARY: Let M be a Haken-manifold. Suppose that F is a

two-sided, incompressible surface in M or in 8M. Then the covering

space of M corresponding to the conjugacy class of ﬂl(F) in ﬂl(M)

admits a manifold compactification t

a Haken-manifold.

Proof: Let M' be a regular neighborhood of F in M which meets
3M ir a regular neighborhood T' of F NaM in M. The pair (M',T')

is a well-embedded manifold pair in (M,3M) and ﬂi(M') = ﬂl(F). [

As I mentioned earlier (Remark VII.3) it is unknown if the covering
space of a Haken-manifold M corresponding to the conjugacy class of a

finitely generated subgroup of ﬁl(M) admits a manifold compactification,
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There is a perplexing set of examples to study. Namely, I have the

following question.

VII.13. QUESTION: Let M= F XCp S1 be a bundle over S1 with fiber
the compact surface F. Does the covering space of M corresponding to
any finitely generated subgroup of ﬂl(M) admit a manifold compactification?

A 3-manifold pair (M,T) 1is called a Haken-manifold pair if M is

a Haken-manifold and T is an incompressible 2-manifold in 3M.

Let (M,T) be a Haken-manifold pair. I shall describe a method,
based on Corollary VII.8, for analyzing the peripheral structure of M
at the components of T. Let Tr be a component of T. Let ﬁr denote
the covering space of M corresponding to the conjugacy class in ﬂi(M)

of ﬂl(Tr). Let P.: ﬁ;-——> M denote the covering projection. There

is a component T  of p- (T.) such that »p |T': T — T is a
r r T r'r’ r r

homeomorphism. By Corollary VII.8 ﬁ; admits a manifold compactification
to a Haken-manifold. It follows from [Brl] that the manifold compacti=

fication of ﬁ; is homeomorphic to Tr X I via a homeomorphism with

~

Tr corresponding to Tr x {0}. Therefore ﬁr may be viewed as the

product Tr X I with a closed subset of Tr X {1} missing and E;

~

corresponding to Tr x {0}. With this identification let Hr: Mr——> T}

denote the corresponding product projection.

Each component of p;l(T) is an incompressible surface in éﬁr;
and by the preceding, the product structure of ﬁ; has been chosen so
that each component of p;l(T), except T;, is a submanifold of T X {11}
in the compactification of ﬁ; to T xI. Let 2 , denote the

incompressible 2-manifold in T; which is the image under the product
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projection Hr of the 2-manifold p;l(T) - T;: T, X {1}, set Eﬁr==
pr(ﬂgr)-

Carry out this same procedure for each component Tr of T. Then
for each component Tr of T there is the collection of pairwise dis-
joint, incompressible surfaces 6Zr in Tr’ which can be thought of as
a recording of the ''shadows'" on Tr of the components above T in the
covering ﬁ; of M which corresponds to ﬂi(Tr) (of course, all of
this is after an appropriate product structure has been chosen for ﬁ;).
Set éz = g é;;. Then é% is an incompressible 2-manifold in T.

Now, some more notation and definitions. Suppose that (P,Q) and
(X,Y) are polyhedral pairs., A PL-map f: P—> X 1is a map of pairs
if f(Q) € Y. This is written f : (P,Q) —> (X,Y). The map- g : (P,Q)
—> (X,Y) is homotopic to f (as a map of pairs) if there exists a
map of pairs

h: (P xI, QxI)— (X,Y)
with h(p,0) = g(p) and h(p,1) = f£(p) for p € P.

Let (M,T) be an n-manifold pair and let (X,Y) be a connected
polyhedral pair. A map of pairs f : (X,Y) —> (M,T) is essential if
f 1is not homotopic, as a map of pairs, to amap g : (X,Y) —> (M, T)
such that g(X) € T. A map of a general polyhedral pair into (M,T) is
essential iff it is essential on each component. Otherwise, such a map
is inessential.

This preliminary discussion makes a very nice setting in which to
describe essential homotopies into M having their initial and terminal
ends in T. These homotopies are quite restricted and in the nicest

possible case such an essential homotopy can be thought of as being
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deformable in M, while keeping the initial and terminal ends in T, so
that its image is '"level-by-level" in an embedded I-bundle in M.

Let P be a polyhedron and suppose that f :(P x I, P x 3I)
—> (M, T) is a map of pairs. The map ft: P —> M where ft(p) =
f(p,t) is defined for each t; and in particular, f0 and f1 map P

into T. The map f£ is called the initial end of f and the map f

0 1

is the terminal end of f. The map f is a homotopy from f0 to fl.

If P 1is commected and f : (P X I, P X 3I)—> (M,T) has fO(P) c Tr’

a component of T, then f 1lifts to T . (P XxI, P xal) —> (ﬁr,p-l(T))
such that ?O(P) C"i‘JrO Furthermore, if f 1is essential, then ’f’l(P)

& Tr; however, ?I(P) c p_l(T).

VII.14. OBSERVATIONS: Let (M,T) be a Haken-manifold pair, P a poly-
hedron and f: (P x I, P X 3I) —> (M,T) an essential map of pairs. All
other notation as above:

(a) The map of pairs t . (P xI, PXQJI)—> M,T) defined as
f(p,t) = f(p,1-t) 1is an essential map of pairs with initial end ?0= fl

and terminal end f1= fo.

(b) There exists g : (P X I, P x 3I)—> (M,T) homotopic to f

as a map of pairs such that both gO(P) and gl(P) are contained in g'

Proof: Suppose that P 1is connected and fO(P) c Tr s fl(P) c
0

Trl. The map fi (i=0,1) 1is homotopic in T into gvvia the homotopies
Pkoo ﬂkoo f and pklo ﬂ.klo f, respectively. 1In general, the homotopy is

defined by restricting to each component of P, B

(c) 1If the map f P—> T 1is an embedding of P into T, then

1:
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f is homotopic in T to an embedding of P into éz;i.e., if a map of

0
a polyhedron into T is homotopic in M to an embedding in T (possi-

bly different components of T), then the map is homotopic in T to

an embedding in T. B

Let M be an n-manifold and let S be a subset of 3M (S is not
necessarily connected). An essential map of pairs d : (S x I, S x dI)

—> (M,5M) 1is a spatial deformation if

(1) d0 is the inclusion S—=> M (i.e., do(s) = g for every
s € S) and
(ii) d1 embeds S into M.

If d 1is a spatial deformation and S' is the homeomorphic image

of S under dl’ then d 1is a spatial deformation from S to §S'.

VII.15. LEMMA: Let (M,T) be a Haken-manifold pair. Using the preceding

notation, if F 1is a component of %’, then there exists a component
F' of %hand a spatial deformation from Int F to Int F' (possibly

Proof: Let F be a component of %ﬁ. I may assume that F is
not simply connected; for otherwise the conclusion is immediate. By
the definition of % and Observation VII.1l4(c), there exists a spatial
deformation d from F into T. Furthermore, by Observation VII.1l4(b)
I may assume that dl(F) is contained in a component of %%, say F'.
Now, consider d. It follows that d is a spatial deformation from
F' into F. Since both F and F' are incompressible and the

embeddings d1 and El induce isomorphisms, it follows that Int F
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and Int F' are homeomorphic. The desired spatial deformation is now

easy to construct.

let (M,T) be a Haken~-manifold pair. A compact, incompressible

2-manifold &< T 1is a characteristic pair factor for (M,T) if

(i) for any component ¢ of & there is a spatial deformation
from ¢ to a component ¢' of & (possibly o' = @),

(ii) for any connected polyhedron P and any essential map
f: (P XxI, P X3I)—> MT) such that the image under f* of ﬂl(P x I)
is not trivial, the map f «can be factored through a spatial deformation
from some component @ of & to a component ' of &; i.e., there exists
a component ¢ of &, a spatial deformation d from ¢ to a component
0w of & and amap g : P —> ¢ such that do(g X id) is homotopic
to f as a map of pairs, and

(iii) for no proper subcollection of components of & are (i)

and (ii) satisfied.

VII.16., THEOREM: Let (M,T) be a Haken-manifold pair. A characteristic

pair factor for (M,T) exists and is unique (up to ambient isotopy of M

fixed on M - T).

Proof: Given the Haken-manifold pair (M,T) let % be an incompres-
sible 2-manifold embedded in T and defined as above. Since T is
compact and each component of % is incompressible, each component of
Zh has finitely generated fundamental group. Therefore, if F 1is a
component of %, there is a compact, incompressible surface Cﬁ: Int F

so that the inclusion CF —> F 1is a homotopy equivalence. The surface
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CF is called a core for F and is unique up to ambient isotopy of F,
fixed off of some compact subset of 1Int F. An easy Euler character-
istic argument shows that %ﬁ has at most a finite number of components
having a core with negative Euler characteristic and those cores of
components of Zj, which have Euler characteristic zero, represent at
most a finite number of ambient isotopy classes in T. I am not con-
cerned with the simply connected components of ZA.

Define & to be the compact, incompressible 2-manifold in T
consisting of cores from components of T, one to represent each component
of %% having a core with negative Euler characteristic and one
to represent each isotopy class in T of cores of components of gh
with Euler characteristic zero. I claim that & 1is a characteristic
pair factor for (M,T).

If C 1is a core of any component of Zh and C is not simply
connected, then there exists a component ¢ of & and an ambient isotopy
of T, fixed on 3M - T, taking C onto ®. So, by Lemma VII.1l5, part
(i) is satisfied.

If P 1is a connected polyhedron and f : (P x I,P X 3I) — (M, T)
is essential, then by Observation VII,1l4(b) I may assume that both f

0

and f1 have image in ZA, Now, the image under £, of ﬂi(P x I) is

not trivial; so, I may further assume, by the definition of §, that

f0 has image in some component % of & and f1 has image in some

component of &, 1If both ® and % have negative Euler character-
istic, then the spatial deformation of part (i) beginning in % must

take Py to @ and f may be factored through it with g = f If

00

either of % or @ has zero Euler characteristic, then the situation
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is a bit more subtle. Suppose this is the case. Choose notation so that
% has zero Euler characteristic (this is possible, use £ 1if necessary)

Let T0 be the component of T containing % and let ﬁb denote the

covering space of M corresponding to T&(T with covering projection

0’
Py’ ﬁb-——> M. I shall use notation consistent with the above in study-
ing this situation. The map f 1lifts to f : (P X I, P x3Il) —>

(ﬁb,pal(T)) with ?6 having image in EB: Tb. There is a unique

component Fb of pal(T), distinct from Tb , such that Eb is a core

of HO(Fb) and there is a unique component fi of pal(T), distinct

~

has image in F,. If Fi = ¥, then there is

OJ

from Tb sth that f1

|
a component q& of & (possibly qi = Q5 and in fact, ® =@ if %
is an annulus; otherwise, © is an annulus ''parallel" to a component of
a¢i) and a spatial deformation from % to mi through which f can

be factored with g = f If Fi # Fb, then there is a component qé

0°
of & (possibly q% = Qs and in fact, q% =% if @ is an annulus;
otherwise, q% is an annulus ''parallel" to a component of 3 ¢b) and a
spatial deformation from q% to @ through which f can be factored
with g = fo. So, part (ii) 1is satisfied. Clearly, part (iii) is
satisfied.

It remains to prove that a characteristic pair factor for (M,T) is
unique, To this end, suppose that both & and &' satisfy conditions
(i), (ii), and (iii) above. Then from conditions (i) and (ii) it follows
that there is an ambient isotopy of M, fixed on M - T , taking & into

$' and an ambient isotopy of M, fixed on M - T , taking &' into &,

By condition (iii) it follows that there is an ambient isotopy of M,
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fixed on M - T , taking & to &' iff up to ambient isotopy of M,
fixed on M - T, & and &' have the same classes of annuli, This can
be easily arrived at by modifying the above argument. All details are

given in Lemma 4,3 of [J-Sz]. |

VII.17. REMARK: Theorem VII.16 is a major observation leading to the
results of Chapters VIII and IX. 1Indeed,the use of the term character-
istic pair factor anticipates this work. Many surprising and very
useful finiteness properties involving peripheral information are
immediate corollaries of Theorem VII.16; e.g., Corollarly 3.6, Theorem
4,5 and Corollaries 4.6, 4.7, 4.8, and 4.9 of [J-Sz]. I would like very
much to present these results here; however, space is limited and these
latter results will not be needed in the remaining chapters of these
lectures., I shall conclude this chapter with an "algebraic character-
ization'" of a peripheral subgroup. It makes the work of Chapter X

much easier and quite civilized.

Let X be a polyhedron. If C is a compact subpolyhedron of

X, then X - C has at most a finite number of components; some of which

)

are unbounded (i.e., have noncompact closure) if X 1is not itself

compact, Let e(il- C) denote the number of unbounded components of

X - C. The number of ends of i; written e(i}, is defined to be
e®X) = sup {fe® -¢C): Cisa compact subpolyhedron of i} if this number

exists; otherwise, e®) 1is infinite,

VII.18. EXAMPIES:

(a) Let X be compact., Then e(X) = 0.
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1 1
(b) Let TR denote the real line, then e(R) = 2.
(c) Let EP denote n-dimensional Cartesian space (n > 2).
n
Then e(R ) = 1.
(d) Let X denote the wedge of two circles (X = SIV'Sl).

Let X denote the universal covering space of X. Then e(i) is

infinite.

VII.19. EXERCISE: Let X be the closed, orientable surface of genus
two. For each n > O, show that X has a covering space ﬁ; such that

e(ig) = n,

Now, I want to use the above ideas to define an invariant of a
pair (G,H) where G is a finitely presented group and H 1is a sub-
group of G. Recall that if G 1is a finitely presented group, then
there exists a compact Polyhedron X such that ﬂi(X) ~ G, Hence,
suppose that G 1is a finitely presented group and H 1is a subgroup
of G. Let X be a compact polyhedron with ﬂi(X) NG and let X
denote the covering space of X corresponding to the conjugacy class of

H in G ™~ ﬂi(X). Define e(G,H) = e(i) to be the number of ends of

the pair (G,H). Then e(G,H) depends only on G and the cosets of

H in G [Ep3]. In particular, e(G,{l}) is the number of ends of G;

and if H 1is normal in G, then e(G,H) is the number of ends of G/H.

VII.20. EXERCISE: If H 1is normal in G, show that e(G,H) 1is equal

to 0, 1, 2 or is infinite,

VII.21l. EXERCISE: Give an example of a finitely presented group G

which has the property that for each n > 0 there is a finitely
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presented subgroup Hn of G such that e(G, Hn) = n,

The next two propositions were originally observed by G. A. Swarup and
reported to me by Peter Scott, If the characteristic pair factor of a Haken-
manifold pair (M,3M) 1is empty, then they give a pleasant algebraic character-
ization of a peripheral subgroup of the fundamental group of M . 1In Chapter X

I shall give a generalization of these results.

VII.22. PROPOSITION: Let (M,0M) be a Haken-manifold pair. Set G = ﬂlﬂ%)

and let H be a subgroup of G isomorphic to the fundamental group of a

closed, orientable surface. If e(G,H) = 1 , then H is peripheral.

Proof: Let ﬁ(H) denote the covering space of M corresponding to the
conjugacy class of H in G = ﬂl(M). Let p : ﬁ(H)——> M denote the covering
projection.

Let F be a closed, orientable surface with TTl(F) ~ H. There exists a
map f : F—> M such that the induced homomorphism f*: ﬂl(F)——> TTl(M) is
an isomorphism onto H. Hence, f 1lifts to T . F=> f’[J(H). Since H ~ Trl(F)
is neither infinite cyclic nor a nontrivial free product, it follows by Theorem
V.13 that there exists a compact submanifold N in ﬁ(H) such that the inclu-
sion induced homomorphism of TTl(N) to ﬁl(ﬁ(H)) is an isomorphism., Now, by
hypothesis e(ﬁ(H)) = 1; so ﬁ(H) - N has precisely one unbounded component,

I may assume that ﬁ(H)-N is connected (and unbounded). However, Tfl(N)
being isomorphic to the fundamental group of a closed surface implies that N
is an I-bundle; and the orientability implies that N 1is a product I-bundle.
Hence, one component B of ON is contained in Bﬁ(H) and the inclusion
ﬂl(’g)c—é ﬂl(ﬁ(H)) is a homotopy equivalence. Set B = p(E). Then B is a
component of oM and H 1is conjugate in Tfl(M) into Im(ﬂ‘l(B)f——%Trl(M));

i.e., H is peripheral. [}

VII.23. REMARK: Notice that if M is a compact 3-manifold, G = TTl(M) and
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= 1is a finitely-generated subgroup of G , which has infinite index in G ,
Then e(G,H) finite implies that JM 1is incompressible. In particular, in
ne preceding proposition I did not need to assume that dM 1is incompressible;

I is necessarily incompressible by the assumptions on H .

“II.24. PROPOSITION: Let (M,dM) be a Haken-manifold pair. Set G = Trl(M)

:nd let H be a subgroup of G isomorphic to the fundamental group of a

closed, orientable surface. If the characteristic pair factor of (M,3M) is

zapty and H is peripheral, then e(G,H) = 1.

Proof: Since H is peripheral, there is a component B of JdM such that
Z 1is conjugate into Im(TTl(B)C%Trl(M)). Furthermore, since H is a closed surface
group, the conjugacy class of H in Im(TTl(B)ﬁ-%ﬂl(M)) has finite index. So, it
s sufficient to show that if f’f(B) is the covering space of M corresponding to the
conjugacy class of Im(TTl(B)(—éTrl(M)), then ﬁ(B) has only one end. By Corollary
VII.8, M(B) admits a manifold compactification to the Haken-manifold BXI in such
a way that ﬁ(B) is homeomorphic to BxI minus a closed subset z of Bx{l}.
Since the characteristic pair factor for (M,0M) is empty, it follows that Z is

connected; so, ﬁ(B) has only one end. This completes the proof. g

VII.25. REMARK: Let M be a Haken-manifold and suppose that dM is incompres-
sible. Then there is an algebraic characterization of when the pair (M,3M) has
a nonempty characteristic pair factor; namely, the pair (M,3M) has a nonempty
characteristic pair factor iff Trl(M) splits as a nontrivial free product with

amalgamation along the infinite cyclic group.



CHAPTER VIII. ESSENTIAL HOMOTOPIES
(THE ANNULUS-TORUS THEOREMS)

In this chapter I shall give a method for the study of certain
maps into Haken-manifolds. In particular, I shall prove the homotopy
versions of the Annulus-Torus Theorems. Immediate corollaries of these
theorems are the Annulus-Torus Theorems announced by Waldhausen [w5]
and the Characteristic Seifert Pair Theorem, Chapter IX.

This work was done originally in collaboration with P, Shalen
[J-Sl], [J-Sz], [J-S3] and [J-Sa]. The presentation given here follows
the lines of our original approach. It is similar to the presentation
in [J-Sl]; however, I do not go into the generalities of the manuscript
[J-Sl], I have changed the emphasis somewhat and I am much less formal
in this presentation.

A different approach is outlined in [J-S3] and is carried out in
detail in two unpublished manuscripts. An independent and different
approach from either of the above mentioned methods is given by K.
Johannson [Jol]. I understand that still another approach has been
obtained by P, Scott.

A Haken-manifold pair (S,F) 1is an I-pair if there exists a
homemorphism h of S onto the total space of an I-bundle over a tompact
2-manifold, not necessarily orientable, such that h(F) 1is the total
space of the corresponding JI-bundle. For example, if B is a compact,
orientable surface, then the pair (B x I, B x 3I) is an I-pair. If

S is homeomorphic to a product I-bundle, then the I-pair (S,F) is a

130
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product I-pair; otherwise, the I-pair (S,F) 1is a twisted I-pair. In

the latter case, F 1is connected iff S 1is connected.

A Haken-manifold pair (S,F) is an Sl-Bgig if there exists a
homeomorphism h of S onto the total space of a Seifert fibered
3-manifold such that h(F) is a saturated subset in some Seifert
fibration.

A Haken-manifold pair (S,F) 1is a Seifert pair if each component

. . 3 1 .
is either an I-pair or an S =-pair.

VIII.1l. REMARKS:

(a) Some Haken-manifold pairs are both I-pairs and Sl-pairs;
e.g., (Slx Slx I, Slx Slx 9I). 1In fact, any I-pair over a surface with
Euler characteristic zero is an Sl-pair.

(b) If (S,F) 1is an Sl-pair, then S 1is a Seifert fibered
manifold with orbit manifold B and projection p : S —> B such that
F 1is saturated (with respect to p) over some l-manifold Fc oB; i.e.,

F = p-l(F).

Before getting into the results of this chapter, I need a few more
definitions, If M,T) 1is a 3-manifold pair, a map £ : (Slx I, Slx dI)
—> (M,T) is nondegenerate if f is essential (as a map of pairs; see
Chapter VII) and f*: ﬂi(Slx I) — T&(M) is injective. A map
f . (Slx Sl,Q) —> (M, T) 1is nondegenerate if f is essential (as a
map of pairs) and f,: ﬂi(Slx Sl) —> ﬂl(M) is injective.

The next definitions are for technical reasons and later help in

keeping track of homotopies and piecing manifolds together., Let L be

a polyhedron and let T be a 2-manifold. A submanifold T' of T
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carries f if f 1is homotopic to amap f': L —> T such that
f'(L) © T' and each component of T' meets f'(L). The map f': L > T'

fills T' if every incompressible 2-manifold in T' which carries £ is

a deformation retract of T'. The following observations will be helpful

through the remainder of this chapter,

VIII.2. OBSERVATIONS:

(a) If L is a disconnected polyhedron and T' 1is an annulus,
then no map of L into T' can fill T'. This gives examples of maps
of a polyhedron into a 2-manifold which do not fill even if their restric-
tions to some subpolyhedron do fill, This causes a technical pain;
however, the phenomenon can be analyzed.

(b) Let L be a polyhedron, T a 2-manifold and f : L —> T
a map. Then there exists a submanifold T' of T and a map f': L —> T,

homotopic to £, such that f' fills T',

I shall now state the main technical results of this chapter.

VIII.3. PROPOSITION A: Let (M,T) be a Haken-manifold pair and let

f . (Slx I, Slx dI)—> (M,T) be a map of pairs such that f|Sl>< dI :

slx 91— T 1is an embedding. If f is nondegenerate, then there

1
exists a well-embedded Sl-pair (Z,%) < M,T) and amap g : (S X I,

Slx 3I)—> (M, T) homotopic to £ (rel Slx dI) such that g(SlxI)C z

and g(s'x 3I) C 3.

VIII.4., ESSENTIAL HOMOTOPY THEOREM: Let (M,T) be a Haken-manifold

pair and let K be a compact polyhedron. Suppose that f : (K x I,

K x 3I)—> (M,T) 1is a map of pairs such that K has no component
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x  for which the subgroup (flk x I), (mk x 1)) «m M is trivial.

If f is essential, then there exists a well-embedded Seifert pair

(Z,8) € M,T) and amap g : (K x I, K x 3I) —> (M,T) homotopic to
f (as a map of pairs) such that g(X x I) © %, g(K xdI) € ¢ and

K X3 : K Xxa3l—> & fills ¢.

VIII.5. DISCUSSION: Notice that Proposition A is a special case of the
Zssential Homotopy Theorem. The hypothesis in Proposition A, that the

map flSlx 31 1is an embedding, allows the conclusion that the Seifert
pair is actually an Sl-pair. This type of distinction is not possible

in the Essential Homotopy Theorem. Clearly, in general, such a distinc-
tion could not be possible; but even if K = S1 in the Essential Homotopy
Theorem, the Seifert pair may be an I-pair and not an Sl-pair (e.g., see
D).

Proposition A, while of independent interest, basically has the
role of a technical result needed in the proof of the Essential Homotopy
Theorem, The two results are proved together via induction on the
length of the Haken-manifold M (see Chapter IV). The proof of Proposition
A is really straightforward in idea; however, the fact that fISlx dI
maps Slx 91 into T requires everything to be done in a relative
fashion, The resulting technical and notational problems cost insight
into what is really going on., So, I only plan to outline the idea of
the proof of Proposition A, The analogous "absolute' version of proof
is given in detail later (the proof of the Homotopy Torus Theorem,

Theorem VIII.1l). If the reader is interested in the details of a proof

of Proposition A, they can be found in [J-Sl]. In this Chapter, I shall
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prove that Proposition A implies the Essential Homotopy Theorem,

Before I outline the proof of Proposition A, I think it might
help the reader if Theorem VII.16, the discussion just preceding tghat
theorem, and the next paragraph are read with the Essential Homotopy
Theorem in mind.

For convenience, in the statement of the Essential Homotopy
Theorem suppose that T 1is connected and K 1is connected. Let M be
the covering space of M corresponding to the conjugacy class of ﬂl(T)
in Trl(M). Let p : M—> M denote the covering projection, Then M
is homeomorphic to T X I minus a closed subset of T X {1}; and if
T corresponds to T X {0}, the map p]"f: "f-——> T is a homeomorphism.
Now, £ : (K xI, KX3I) —> (M,T); so, f Llifts to £ : (K x I, K x dI)
—> ®,p"t(r)) with F|K x {0} : K x 0} —> T and F|K x {1}:K x {1}
S p_]'(T). Furthermore, by f being essential it follows that
’ffK x {1} maps K x {1} into a component of p_l('l‘) distinct from T.
The product structure on M guarantees a well-embedded Seifert-pair
(actually, always a product I-pair) (%,E) in (,lcf,p-l(T)) and a map
g : (K XI, K x3Il)—> (ﬁ,p-l(’l‘)) homotopic to f (as a map of pairs)
such that E(K x I) < ¥ and E(K X 3l) < 75. So, in the covering space

~ o~

M there exists a well-embedded Seifert pair (%,9) and amap g
satisfying the conclusions of the Essential Homotopy Theorem with
respect to the map T and the 3-manifold pair (Ff,p-l(T)). The idea is
to consider the map pl’i : % —> M and try to make it an embedding.
Then set g = p og. From the work of Chapter VII, I have that p|¢%

embeds each component of 3. However, pIFr’i , each component of Fr X

is an incompressible annulus, may be singular, In the case that (i ®)
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is not the I-pair (Slx I x1I, Slx I x 3l), I can apply Proposition A to

the map p]Fr Y and actually arrange the pair (%, %) so that p|§ :

—> M 1is a covering map onto its image. The pair (Z,%) with

|

= p(i) and ¢ = p(‘é) is a well-embedded I-pair in M and together
with the map g = pog satisfies the conclusions of the Essential Homo-
topy Theorem, 1In the case that (i,’?};) is the I-pair (Slx I X I,Slx I x dI)
I cannot, in general, alter the pair (’2,’5) so that p|§ : Y —>M isa
covering map onto its image. However, I can still apply Proposition A in
this case and in a more direct fashion. Namely the pair (%,E) =
(S]'X I x1I, Slx I x 3I) mnaturally collapses onto (Slx I, Slx ).
The map pISIX I: (Slx I, Slx dI) —> (M, T) can be arranged so that
pISlx dI 1is an embedding; so, by Proposition A, there is an Sl-pair
(Z,3) © M,T) and themap g : (K X I, K X dI) —> (ﬁ,p-l(T)) may be
chosen so that g = peg is homotopic to f (as a map of pairs) and g
maps (K x I, K x 3I) into (M,T) with g® x I) © ¥ and g(X X 3I)
< & The fact that g|K x dI : K x 3T —> & fills & comes out
naturally, The work of Chapter VII enables me to present the proof of
the Essential Homotopy Theorem in a more formal and slick fashion than
the preceding discussion,

There is a technical lemma which is needed in the proof of
Proposition A; in fact, this lemma will be used several times later in

this chapter and in the next chapter.

VIII.6. LEMMA: Let (M,T) be a Haken-manifold pair. Suppose that

(21, Ql),..., (Zn, @n) are well-embedded Seifert pairs in (M,T) such

that a@i n aéj =@, i+# j. Then there exists a well-embedded Seifert
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pair (%, %) < (M,T) and homeomorphisms J;# M —> M each isotopic to the

identity on M with Ji(Zﬁ) c Z and Ji(@i) c %,

Proof: This is one of those proofs that has close to a million
cases which need to be considered. I would like to just skip over it;
however, this lemma plays an important role and I feel that I should put
in something of its proof.

It is sufficient to consider the case that M is connected. Also,
since I do not require that a Seifert pair be commected, if I reason
inductively on the number, n, of Seifert pairs, it is sufficient to prove
the lemma for two Seifert pairs (Zi’@l) and (22,@2).

With an ambient isotopy of M (fixed on M) make Fr Z& and
Fr Z& meet transversely, I shall induct on the number of components of

Fr 21 NFr % each of which is a simple closed curve (aélﬂ 5@2 = @).

2 >
I have to first consider the case that Fr 21 N Fr 22 = 9., If

21 n Zﬁ = @, then set X = Zi U 22 and ¢ = @1 U @2. If 21 n 22 70,

then to find the desired pair (Z,®) I induct on the number of components

of (Z&,él) which meet (Zz,éz). Suppose that (0%, ¢*) 1is a component

of (Zi’él) and O% 22 4 @. If (0% ¢*) is contained in a component of

1 1 : . .

(ZZ,QZ), then let (Zi’él) be obtained from (Z&,@l) by discarding the

component (C%,%), The lemma follows from induction using the pairs

(Z',@i) and (Zé,@z). So, suppose that (O%,¢*) 1is not contained in a

component of (Zz,éz) and if (02’¢b) is a component of (Z&,@z)

meeting (0%, ), then (Oz,qh) is not contained in (0%, %) (any

components of (Z&,@z) entirely contained in (0% %) can be completely

forgotten).
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If (0% ¢*) 1is an I-pair and not an Sl-pair, then via an ambient
isotopy of M moving components of (Z§’®2) only in a neighborhood of
(0%,%), I can assume that either (CO%, ¢*) no longer meets (Zé,@z) or
(0%, p*) only meets components of (22,@2) that are I-pairs and not
Sl-pairs. The union of (0%, %) and all components of (Zz,éz) which
neet (O%, %) is an I-pair, say (O%%, @r%), Let (Zi,@i) be obtained
from (Zi’él) by discarding the component (0%, )., Let (Z',@é) be
obtained from (Zz,éz) by discarding the components of (Zz,éz) which
meet (0%, ¢*) and adding the I-pair (o%%, %), The lemma follows from
induction using the pairs (Zi,@i) and (Z',@é).

If (O%, %) 1is an (Sl-pair), then consider any component of inter-
section of (0%, %) with a component of (ZZ,QZ). First, since (O%, *)
is an Sl-pair and not contained in any component of (Zﬁ’@Z) I can
assume that after an isotopy, either (0%, ¢*) does not meet ’(ZE’QZ)
or (C%, %) meets (22,@2) only in components which are Sl-pairs.

So, the particular component of intersection of (O¥%,¢%) with an Sl-pair,
(OZ’qb)’ of (Zi’@Z) has frontier, which consists of saturated annuli and
tori in the Seifert fibration of (C%,¢*%) and the Seifert fibration of
(02’¢b)' (Notice that any annulus in the frontier is clearly saturated
in both fibrations; however, to conclude that the tori are also saturated
in both fibrations, I am using Theorem VI,34 from which I can conclude
that either the tori are saturated in both fibrations or one of O%<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>