IMMERSIONS AND SURGERIES OF TOPOLOGICAL MANIFOLDS

BY J. ALEXANDER LEES¹

Communicated by William Browder, December 9, 1968

In this announcement, we outline a version of Haefliger and Poenaru's Immersion Theorem [2] for topological manifolds. We then use our theorem to do surgery on topological manifolds, and obtain results such as the following: Let M^n be a closed, almost parallelizable topological manifold (that is, the tangent bundle of M-p is trivial, $p \in M$) which has the homotopy type of a finite complex. Then by a sequence of surgeries, M can be reduced to an [n/2-1] connected almost parallelizable manifold.

In order to state the Immersion Theorem we give the following definitions: Let M, M' and Q be topological manifolds, M a compact locally flat submanifold of the open manifold M', with dim $M' = \dim Q$.

Write $\operatorname{Im}_{M'}(M, Q)$ for the semisimplicial complex of M' immersions of M in Q; a simplex of $\operatorname{Im}_{M'}(M, Q)$ is an immersion $f: \Delta \times U \to \Delta \times Q$ commuting with the projections on the standard simplex Δ , where Uis a neighborhood of M in M'. Two such are identified if they agree on $\Delta \times$ (a neighborhood of M in M').

Write R(TM'|M, TQ) for the semisimplicial complex of representation germs of the tangent bundle of M' restricted to M in the tangent bundle of Q; a simplex of R(TM'|M, TQ) is a microbundle map Φ of $\Delta \times TU$ in $\Delta \times TQ$ which commutes with projections on Δ , U a neighborhood of M in M', such that the map of $\Delta \times TU$ in $\Delta \times U \times Q$ given by $(t, u, u') \rightarrow (t, u, \pi \Phi(t, u, u'))$ is an immersion on a neighborhood of $\Delta \times$ (the diagonal of M). Two such representations define the same representation germ if they agree on a neighborhood of $\Delta \times$ (the diagonal of M.

Observe that if f is a simplex of $\operatorname{Im}_{M'}(M, Q)$, the map df defined as follows, is a simplex of R(TM'|M, TQ): $df(t, u, u') = (t, f_iu, f_iu')$ where $u, u' \in U, f(t, u) = (t, f_iu)$. We now state the Immersion Theorem. Suppose M has a handlebody decomposition with all handles of index < dim Q. Then the map d: $\operatorname{Im}_{M'}(M, Q) \to R(TM'|M, TQ)$ is a homotopy equivalence. R. Lashof has shown [6] that the hypothesis

¹ The author was partially supported by NSF grant GP-8971.

that M has a handlebody decomposition can be removed, in case dim $M < \dim M'$.

We first prove the following

NEIGHBORHOOD *n*-ISOTOPY EXTENSION THEOREM.² Let $E^{\mathfrak{q}}$ be euclidean q-space, X a closed subset of $E^{\mathfrak{q}}$, $U \subset V$ neighborhoods of X in $E^{\mathfrak{q}}$. Let $F: U \times I^n \to V^{\mathfrak{q}} \times I^n$ be an n-isotopy, that is, an embedding which commutes with projections on I^n . Then there is an ambient n-isotopy $H: V^{\mathfrak{q}} \times I^n \to V^{\mathfrak{q}} \times I^n$ fixed outside a compact set with $H(F_0x, t) = F(x, t)$ for $x \in U'$, an open neighborhood of X contained in U.

PROOF. For clarity, we give the argument for n=1. Applying the lemma below starting at any level $s \in I$ in either direction we obtain h_{\bullet} and U_{\bullet} so that (replacing F_0 by F_{\bullet}) the theorem holds for $x \in U_{\bullet}$ and t in an interval about s. We then use the compactness of the unit interval to construct the required isotopy H. Using an induction, this argument is generalized to prove the Neighborhood *n*-Isotopy Extension Theorem.

LEMMA. There is an $\epsilon > 0$ and a level preserving homeomorphism $h_0: V \times [0, \epsilon] \rightarrow V \times [0, \epsilon]$ fixed outside a compact set with $h_0(F_0x, t)$ = F(x, t) for $x \in U_0$, $0 \le t \le \epsilon$, U_0 an open neighborhood of X contained in U.

PROOF OF THE LEMMA. Using the arguments in [4] we obtain the following

Sublemma. Let $h: \Delta^i \times E^{q-i} \to \Delta^i \times E^{q-i}$ be a homeomorphism which is the identity on a neighborhood of $\partial \Delta^i \times E^{q-i}$. Then if h is close to the identity, there is a homeomorphism $g: \Delta^i \times E^{q-i} \to \Delta^i \times E^{q-i}$ which is the identity on a neighborhood of $\partial \Delta^i \times E^{q-i}$ and outside a compact set such that g=h on a neighborhood of $\Delta^i \times 0$. Further, the map $h \to g$ is continuous in the compact-open topology.

Now let K be a finite complex, K^i the *i*-skeleton of K, with $U \supset K \supset X$. We will construct a sequence of level preserving homeomorphisms k^i such that $k^i F(x, t) = (F_0 x, t)$ for x in a neighborhood of K^i , $t \in [0, \epsilon]$.

Assume k^{i-1} has been defined and let Δ be an *i*-simplex of K^i , $i \ge 0$. We may assume F_0 is the identity, so $k^{i-1}F$ is the identity on a neighborhood of $\partial \Delta$. Let $\Delta \times E^{q-i}$ be contained in a neighborhood of Δ ; from the arguments in [5] we obtain an isotopy: $\Delta \times E^{q-i} \times [0, \epsilon]$ $\rightarrow \Delta \times E^{q-i} \times [0, \epsilon]$ which agrees with $k^{i-1}F$ on a neighborhood of $[\Delta \times 0 \cup \partial \Delta \times E^{q-i}] \times [0, \epsilon]$.

530

³ Robert Edwards has proved this result independently.

The Sublemma then provides homeomorphisms g_i^i with $g_i^i = k_i^{i-1}F_i$ on a neighborhood of $\Delta \times 0 \cup \partial \Delta \times E^{q-i}$ and fixed outside $\Delta \times E^{q-i}$. Putting together the isotopies so obtained from each of the *i*-simplexes of K^i in turn we obtain the inverse of the required isotopy k^i . This completes the inductive step and the proof of the lemma.

We now prove a covering homotopy property for spaces of immersions. Let $A' \subset A$ be compact subsets of E^q . To simplify notation in what follows, we write $\operatorname{Im}(A, Q)$ and R(TA, TQ) for $\operatorname{Im}_{\mathbb{B}^q}(A, Q)$ and $R(TE^q|A, TQ)$ respectively. Note that if $F: \Delta \times U \to \Delta \times Q$ or $F: \Delta$ $\times TU \to \Delta \times TQ$ is a simplex of $\operatorname{Im}(A, Q)$ or R(TA, TQ), U a neighborhood of A, then the restriction ρF of F to $\Delta \times U'$ or $\Delta \times TU'$ is a simplex of $\operatorname{Im}(A', Q)$ or R(TA', TQ), U' a neighborhood of A'.

THEOREM 1. The restriction map $Im(A, Q) \rightarrow Im(A', Q)$ is a fibration, if $A = D^k \times D^{n-k}$, $A' = \partial D^k \times D^{n-k}$, $k < \dim Q$.

This means the following: Let $F: I \times I^n \times U' \to I \times I^n \times Q$ and $F_0': I^n \times U \to I^n \times Q$ be level preserving immersions, with $F(0, t, u) = F_0'(t, u)$. Then there is a level preserving immersion $F': I \times I^n \times U \to I \times I_x^n Q$ with $F'(0, t, u) = F_0'(t, u)$ such that F' = F on $I \times I^n \times U''$, U'' a neighborhood of A' contained in U'.

PROOF OF THEOREM 1. Let U'_0 be a neighborhood of A' in E^q whose closure is compact and contained in U'. Since F is an immersion we can find $\epsilon > 0$ and a level preserving embedding $p: [0, \epsilon] \times I^n \times U'_0$ $\rightarrow [0, \epsilon] \times I^n \times U'$ so that $F_0 p_t = F_t$ for $0 \le t \le \epsilon$, where we write $F(t, t', u) = (t, F_t(t', u))$.

Applying this result in either direction at any level t we obtain U'_t , $I_t = [t - \epsilon(t), t + \epsilon(t)]$ and p^t such that $U'_t \subset U'$, $p^t : I_t \times I^n \times U'_t$ $\rightarrow I_t \times I^n_x U'$ is an isotopy and $F_t p^t_s = F_s$, $s \in I_t$.

By the *n*-Isotopy Theorem there is a neighborhood U''_i of A' contained in U'_{i-1} and an isotopy $H^i: I_i \times I^n \times U'_{i-1} \to I_i \times I^n \times U'_{i-1}$ fixed outside a compact set with $H^i_s p^i_i(t', u) = p^i_s(t', u), u \in U''_i, U'_{i-1}$ prescribed. As in [2], if $k < \dim Q$ we may reduce to the case in which this compact set lies inside $p^{i_s}_{i_{s-1}}(I^n \times U'_{i-1})$.

Since I is compact we can write $0 = t_0 < s_0 < t_1 < s_1 < \cdots < s_{k-1} < t_k$ = 1 so that $[s_{i-1}, s_i] \subset (t_i - \epsilon(t_i), t_i + \epsilon(t_i))$ for all *i*. Suppose inductively that a level preserving immersion $F': [0, s_{i-1}] \times I^n \times U \rightarrow [0, s_{i-1}] \times I^n \times Q$ has been defined with $F'_i(t', u) = F_i(t', u)$ for $u \in U'_{i-1}$, a neighborhood of A' in U'.

Extend F' over $[0, s_i] \times I^n \times U$ as follows.

$$\begin{aligned} F'_{i}(t', u) &= F_{t_{i}}H^{t_{i}}_{t}(H^{t_{i}}_{s_{i-1}})^{-1}P^{t_{i}}_{s_{i-1}}(t', u), \quad u \in U'_{i-1}, \\ F'_{i}(t', u) &= F'_{s_{i-1}}(t', u), \quad u \in U - U'_{i-1}, \quad s_{i-1} \leq t \leq s_{i}. \end{aligned}$$

1969]

Note that for u in a neighborhood of $\partial U'$ in \overline{U}' , $H_i^{t_i} = 1$ so that this extension is a well-defined immersion. A calculation shows that if $u \in U'_i = U'_{i-1} \cap U''_{i_i}$, $F'_i(t', u) = F_i(t', u)$. This completes the inductive step; Theorem 1 is proved by starting the induction with F'_0 .

Let $D^k \times D^{n-k} \subset E^q$; we identify $\partial D^k \times D^{n-k+1}$ with a neighborhood of $\partial D^k \times D^{n-k}$ in $D^k \times D^{n-k}$. Let U, U' be neighborhoods of $D^k \times D^{n-k}$ and $\partial D^k \times D^{n-k+1}$ respectively in E^q , and let ϕ be the U' germ of an immersion f of U in Q.

Write $\text{Im}_{\phi}(D^k \times D^{n-k}, Q)$ for the semisimplicial complex of E^q immersions of $D^k \times D^{n-k}$ in Q whose $\partial D^k \times D^{n-k+1}$ germ is equal to ϕ . Similarly, let $R_{\phi}(T(D^k \times D^{n-k}), TQ)$ be the semisimplicial complex of representation germs of TU in TQ whose restriction to U' is $d\phi$.

Now by an argument formally identical to that in [2], Theorem 1 implies

LEMMA 1. The map $d: \operatorname{Im}_{\phi}(D^k \times D^{n-k}, Q) \to R_{\phi}(T(D^k \times D^{n-k}), TQ)$ is a homotopy equivalence if $k < \dim Q$.

LEMMA 2. The map $d: \operatorname{Im}(\partial D^{k+1} \times D^{n-k}, Q) \to R(T(\partial D^{k+1} \times D^{n-k}), TQ)$ is a homotopy equivalence if $k < \dim Q$.

Now let M, M' and Q be topological manifolds, M a compact locally flat submanifold of the open manifold M', with dim M'= dim Q. Suppose M has a handlebody decomposition with all handles of index < dim Q.

THE IMMERSION THEOREM. The map $d: \operatorname{Im}_{M'}(M, Q) \to R(TM' | M, TQ)$ is a homotopy equivalence.

PROOF. We argue by induction on the number of handles of M. Suppose $M = M_0 \cup D^k \times D^{n-k}$, $M_0 \cap D^k \times D^{n-k} = \partial D^k \times D^{n-k+1}$. Since M is locally flat in M', $D^k \times D^{n-k}$ is contained in a coordinate neighborhood in M'; thus by Theorem 1, the map $\operatorname{Im}_{M'}(M, Q) \to \operatorname{Im}_{M'}(M_0, Q)$ induced by restriction, is a fibration. The proof now proceeds by an argument formally identical to that in [2].

We now use the Immersion Theorem to do surgery on topological manifolds (see [5]). Let M^n be a topological manifold, TM the tangent microbundle of M and $f_0: S^p \rightarrow M$ a continuous map.

LEMMA 3. If 2p < n and the induced bundle f_0^*TM is trivial, there is an embedding $f: S^p \times D^{n-p} \to M$ which represents the homotopy class of f_0 .

PROOF. Let $\pi: S^p \times \mathbb{R}^{n-p} \to S^p$ be the natural projection. Then $(f_0\pi)^*TM$ is trivial, thus the standard trivialization of $T(S^p \times \mathbb{R}^{n-p})$ induces a representation of $T\mathbb{R}^n | S^p$ in $TM(S^p \times \mathbb{R}^{n-p} \subset \mathbb{R}^n)$. By the

Immersion Theorem, there is a regular homotopy class of E^n immersions of S^p in M corresponding to this representation. The result below shows that such a regular homotopy class contains an embedding, if 2p < n. The proof of Lemma 3 is completed by noting that an E^n embedding of S^p in M restricts to an embedding of $S^p \times D^{n-p}$ in M.

Using Černavskii's Theorem [1] and General Position arguments we can show the following

THEOREM. Let M^n be a topological manifold and K a p-complex in E^n , with 2p < n. Then any regular homotopy class of E^n immersions of K in M contains an immersion $f: U \rightarrow M$ with $f \mid K$ an embedding.

Note that f is then an embedding on a neighborhood of K.

THEOREM 2. Let M^n be an almost parallelizable topological manifold. Let $\lambda \in \pi_p M$, with 2p < n. Then λ can be represented by an embedding $f: S^p \times D^{n-p} \to M$ such that the manifold $\chi(M, f)$ obtained from M by surgery is also almost parallelizable.

PROOF OF THEOREM 2. Let Φ be a trivialization of T(M-x). As in Lemma 3, we can find an embedding $f: S^p \times R^{n-p} \to M-x$ such that the trivialization of the restriction of TM to $f(S^p \times R^{n-p})$ induced by df from the standard trivialization of $T(S^p \times R^{n-p})$ is homotopic to $\Phi|f(S^p \times R^{n-p})$.

Now $\chi(M, f) = M - f(S^p \times \mathring{D}^{n-p}) \cup D^{p+1} \times S^{n-p-1}$ where $(\theta, \theta') \in S^p \times S^{n-p-1}$ is identified with $f(\theta, \theta')$. Let

$$\chi' = S^p \times (\mathbb{R}^{n-p} - \mathring{D}^{n-p}) \cup D^{p+1} \times 1 \times \mathring{D}^{n-p-1},$$

where $1 \times \mathring{D}^{n-p-1} \subset \partial(D^1 \times D^{n-p-1}) = S^{n-p-1}$. Now the standard trivialization of $T(S^p \times R^{n-p})$ restricted to $S^p \times (R^{n-p} - \mathring{D}^{n-p})$ extends to a trivialization of $T\chi'$, identifying $(S^p \times 1) \times \mathring{D}^{n-p-1} \subset S^p \times D^1 \times D^{n-p-1}$ $\subset R^{p+1} \times R^{n-p-1}$ with $\partial D^{p+1} \times (1 \times \mathring{D}^{n-p-1})$.

By the Covering Homotopy Theorem [8], this implies $\Phi \mid M$ $-f(S^p \times \mathring{D}^{n-p})$ extends to a trivialization of $T(M - f(S^p \times \mathring{D}^{n-p}) \cup \chi')$, where $(\theta, t\theta') \in S^p \times (R^{n-p} - \mathring{D}^{n-p}) \subset \chi'$ is identified with $f(\theta, t\theta'), t \ge 1$. However, $M - f(S^p \times \mathring{D}^{n-p}) \cup \chi' = \chi(M, f) - D^n \approx \chi(M, f) - y, y \in \mathring{D}^n$. Thus $T(\chi(M, f) - x \cup y)$ is trivial. We may suppose $x \cup y$ is contained in a coordinate neighborhood ψR^n , thus $T(\chi(M, f) - \psi(0))$ is trivial.

Using the surgery techniques of [3] we have applied Theorem 2 together with the Immersion Theorem to show the following

THEOREM 3. Let M^{4k+1} be a closed almost parallelizable topological manifold, which has the homotopy type of a finite complex. Then M is triangulable as a piecewise linear manifold.

1969]

R. Lashof has generalized this result in [6], thus we omit the proof.

BIBLIOGRAPHY

1. A. V. Černavskil, On topological imbeddings of polyhedrons into Euclidean spaces, Dokl. Acad. Nauk SSSR 165 (1965), 1257-1260=Soviet Math. Dokl. 6 (1965), 1606-1610.

2. A. Haefliger and V. Poenaru, La classification des immersions combinatoires, Inst. Hautes Études Sci. Publ. Math. 23 (1964), 75-91.

3. M. Kervaire and J. Milnor, Groups of homotopy spheres. I, Ann. of Math. (2) 77 (1963), 504-537.

4. R. Kirby, *Stable homeomorphisms*, Mimeographed Notes, Institute for Advanced Study, Princeton, N. J., 1968.

5. J. M. Kister, *Microbundles are fibre bundles*, Ann. of Math. (2) 80 (1964), 190-199.

6. R. Lashof, Lees' immersion theorem and the triangulation of manifolds, Bull. Amer. Math. Soc. 75 (1969), 535-538.

7. J. Milnor, A procedure for killing homotopy groups of differentiable manifolds, Proc. Sympos. Pure Math., vol. 3, Amer. Math. Soc., Providence, R. I., 1961, pp. 39-55.

8. ——, Microbundles. I, Topology 3 (1964), 53-80.

RICE UNIVERSITY, HOUSTON, TEXAS 77001