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4. Geometry of Surfaces

4.1. Smooth patches.

Definition 4.1. A smooth patch of a surface in R3 consists of an open subset
U ⊆ R2 and a smooth map r : U → R3 which is a homeomorphism onto its image
r(U), and which has injective derivative. The image r(U) is a smooth surface in
R3.

Recall that the injective derivative condition can be checked by computing ru ∧
rv ̸= 0 everywhere. A patch gives us coordinates (u, v) on our surface. The curves
α(t) = r(t, v) and β(t) = r(u, t), for fixed u, v, are the coordinate lines on our
surface. The lines of constant longitude and latitude on the surface of the earth
are examples.

Smooth means that all derivatives exist. In practice, derivatives up to third or
fourth order at most are usually sufficient.

Example 4.2. The requirement that r be injective means that we sometimes have
to restrict our domain, and we may not cover the whole of some compact surface
with one patch.

1
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(1) For example, recall a parametrisation of the sphere:

r(u, v) := (cosu sin v, sinu sin v, cos v).

We need to restrict to (u, v) ∈ (0, 2π) × (0, π) in order for this to be a 1-1
map. This misses out the Greenwich meridian, including the north and
south poles of S2.

(2) Similarly for the torus

r(u, v) =
(
(a+ b cosu) cos v, (a+ b cosu) sin v, b sinu

)
we let U = (0, 2π)2. This misses out the union of the coordinate curves
r(0, v) and r(u, 0), so that we have an injective function. In the version
of the torus from identifying edges of the unit square, this means we
parametrise the image of the interior of the square, and do not include
the image of the edges, nor the corner points.

(3) We can actually parametrise the whole sphere apart from a single point,
using what is called the stereographic projection. We define a map r : R2 →
S2 ⊂ R3. Imagine the unit sphere with centre (0, 0, 0). For a point (u, v) ∈
R2, draw a straight line which passes through (u, v, 0) in the x − y plane
and the north pole (0, 0, 1) of S2. This intersects the sphere in one other
point (which is not the north pole). Let this be the point r(u, v).

Now let’s figure out the formula. The straight line from (0, 0, 1) to
(u, v, 0) has equation

γ(t) = (0, 0, 1) + t(u, v,−1) = (tu, tv, 1− t).

This intersects the sphere when

t2u2 + t2v2 + (1− t)2 = 1

⇔ t(tu2 + tv2 − 2 + t) = 0

The point γ(0) is the north pole; we are looking for the other point. This
is when

t =
2

u2 + v2 + 1
.

Plugging back into γ yields

r(u, v) =

(
2u

u2 + v2 + 1
,

2v

u2 + v2 + 1
,
u2 + v2 − 1

u2 + v2 + 1

)
.

This is the stereographic projection, which gives a bijection R2 → S2r(0, 0, 1).

In general, we define a surface to be a subset of R3 such that every point is in
the image of a smooth patch. A surface is constructed from multiple patches, with
suitable change of coordinates on the overlaps of the patches. One smooth surface,
which is a subset of R3, can have many parametrisations, or smooth patches.

Exercise 4.3. What is the smallest number of patches required to cover the torus?
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4.2. Tangent spaces. Consider a point p = r(a, b) in a surface and consider the
tangent vectors to the curve α(t) = (t, v). The derivative

α′(t) = lim
h→0

r(t+ h, v)− r(t, v)

h
= ru(t, v).

Since the curve α lies in the surface, a tangent vector to α is a tangent vector to
the surface. The partial derivative vectors give tangent vectors, which are tangents
to the coordinate curves.

Definition 4.4. The tangent plane to a smooth patch of a surface at a point
p = r(a, b) is the plane in R3 through p ∈ r(U) containing the vectors ru(a, b) and
rv(a, b).

To write down the equation of the tangent plane compute the normal vector
n = ru ∧ rv at (a, b). The equation x · n = r(a, b) · n give the cartesian form of the
tangent plane at p = r(a, b).

Example 4.5. Find the tangent plane to the sphere at the point
(
1
2 ,−

1
2 ,

1√
2

)
.

The point in question occurs when u = −π/4 and v = π/4. Differentiating yields

ru = (− sinu sin v, cosu sin v, 0)

rv = (cosu cos v, sinu cos v,− sin v)

At the relevant point ru(−1/2, 1/2) = (1/2, 1/2, 0) and rv(−1/2, 1/2) = (1/2,−1/2,−1/
√
2).

The tangent plane is the plane through
(
1
2 ,−

1
2 ,

1√
2

)
containing these two vectors.

The normal vector is given by

ru ∧ rv =

(
− 1

2
√
2
,

1

2
√
2
,−1

2

)
.

Therefore the plane is given by the cartesian equation −x+ y −
√
2z = −2.

Exercise 4.6. Find the cartesian equation for the tangent plane to the torus with
a = 5−

√
3, b = 2 at the point (0,−5, 1).

Definition 4.7. A tangent vector at a point p in a patch of a surface Σ is a vector
v ∈ R3 which is a linear combination of the vectors ru(p) and rv(p). The tangent
space of Σ at p, TpΣ, is the vector space consisting of all tangent vectors to Σ at p.

Definition 4.8. The tangent bundle of a smooth surface Σ is the set of pairs

TΣ := {(p,v) |v ∈ TpΣ}

We should think of the tangent space at p as being a vector space whose origin
lies at p, and a tangent vector as a vector whose tail is at p. For any surface and
for any point p, TpΣ ∼= R2 abstractly. Recall any two 2-dimensional vector spaces
are abstractly isomorphic. The map r enables us to define a specific isomorphism.

Example 4.9. Let r : R2 → R3 be the inclusion as the x-y plane. For p ∈ R2,
TpR2 ∼= R2. The isomorphism is canonical. Also there is a one to one correspon-
dence TR2 ∼= R4.
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Let r : U → Σ be a smooth patch and let (p = (a, b),v) ∈ TR2, so that v is a
vector in T(a,b)R2. Define a map

r∗ : TpR2 → Tr(p)Σ
(x, y) 7→ xru(a, b) + yrv(a, b)

i.e. the Jacobian matrix acts on the tangent vectors. The parametrisation gives a
basis of the tangent space.

Tangent planes are a linear approximation to a surface in the neighbourhood of a
point. They enable us to use tools from linear algebra to make notions precise, and
to measure distances, angles and areas, and to measure the curvature of a surface.

Exercise 4.10. Do Carmo Section 2-4, page 88. Exercises 2,3,4, 12, 16.

4.3. Vector fields and covariant derivatives. One useful notion is that of a
vector field. This means a tangent vector at each point p ∈ Σ, which varies con-
tinuously. For example, one might have the velocity of the wind at each point, at
an instance of time, as a vector field on the surface of a planet. For this definition,
note that there is a canonical projection map π : TΣ → Σ which sends (p,v) 7→ p,
forgetting the vector.

Definition 4.11. A vector field on Σ is a map s : Σ → TΣ such that π ◦ s = IdΣ.
(Such a map is also called a section of a bundle).

Example 4.12. On S2, suppose there is a westerly wind, which is strong near
the equator and light near the poles, we could describe this in terms of the first
parametrisation with the vector field.

r(u, v) 7→ (sin v, 0) ∈ Tr(u,v)S
2.

Here the coordinates in the tangent space are given as usual in terms of the basis
{ru, rv}.

Exercise 4.13. A zero of a vector field is a point where s(p) = 0 ∈ TpΣ. Define a
vector field on the torus (a = 2, b = 1) which has no zeroes. Define a vector field on
the torus which has 4 zeroes. A good way to do this is to project the torus to the
x coordinate and take the gradient of this function. Make a sketch of your vector
field. What is the smallest number of zeroes you can achieve for a vector field on
S2?

Covariant differentiation is a fancy word for directional derivative, which was in
Calculus 3. Let α : I → R3 be a curve and let f : R3 → R be a function. We want
to differentiate f along α. For all t ∈ I we have values f(α(t)) ∈ R, and we want to
see how these change as we travel along α. Suppose that α(t) = (x(t), y(t), z(t)).
Then by the chain rule

d

dt
(f ◦ α)(t) = ∂f

∂x
(α(t))x′(t) +

∂f

∂y
(α(t))y′(t) +

∂f

∂z
(α(t))z′(t) = α′(t) · ∇f(α(t)).

Note that this just depends on the tangent vector of α at t. We therefore define
the directional derivative, or covariant derivative of f along a vector v ∈ R3 by

∇vf = v · ∇f.
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This measures the rate of change of f along v. If |v| = 1 then this measures the rate
of change of f in the direction defined by v, whence the nomenclature directional
derivative.

We can characterise the covariant derivative of f at p along v ∈ TpR3 as: ∇vpf =
d
dt(f ◦ α)(t)|t=t0 where α : I → R3 is a curve with α(t0) = p and α′(t0) = vp.
Now we can define the covariant derivative more generally of a vector field

w : R3 → TR3 along another vector field v : R3 → TR3. Recall that for any p
TpR3 ∼= R3 canonically, however it is preferably to think of them as separate,
vectors starting at p and points p, respectively.

Define a new vector field ∇vw by:(
∇vw

)
(p) =

((
∇vpw1

)
(p),

(
∇vpw2

)
(p),

(
∇vpw3

))
where w = (w1, w2, w3) are the coordinates of w.

Example 4.14. Find the covariant derivative of w = (x2, y2, z2) along the tangent
vector to the helix at time t. The helix is given by α(t) = (cos t, sin t, t). Its tangent
vector is v = α′(t) = (− sin t, cos t, 1). We have w1 = x2 so ∇w1 = (2x, 0, 0) and

∇α′(t)w1 = (2x, 0, 0) · (− sin t, cos t, 1) = −2x sin t = −2 cos t sin t.

Similarly

∇α′(t)w2 = (0, 2y, 0) · (− sin t, cos t, 1) = 2y cos t = 2 sin t cos t

and

∇α′(t)w3 = (0, 0, 2z) · (− sin t, cos t, 1) = 2z = 2t.

Thus (∇vw)(t) = (−2 cos t sin t, 2 cos t sin t, 2t).

Example 4.15. A nice example is given by taking w = (x, y, z), the coordinate
vector field. Then

∇w = (e1, e2, e3) · v = (v1, v2, v3) = v.

The covariant derivative of w along v is again v.

To take the covariant derivative of vector fields a(u, v)ru + b(u, v)rv ∈ TpΣ, we
will consider them as elements of TR3.

This does not pose too much difficulty. Let w : U → TR3 be a map where
w(u, v) ∈ Tr(u,v)R3. A vector field s : Σ → TΣ determines such a map. Let’s
compute the covariant derivatives of w along the coordinate directions ru and rv.
We can use the coordinate curves

αu(t) = r(u0 + t, v0)

and

αv(t) = r(u0, v0 + t),

where r(u0, v0) = p is the point at which we want to compute covariant derivatives.
We obtain: (

∇ruw
)
(u0, v0) =

d

dt

∣∣∣
t=0

w(u0 + t, v0) =
∂w

∂u

∣∣(u0, v0)
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and (
∇rvw

)
(u0, v0) =

d

dt

∣∣∣
t=0

w(u0, v0 + t) =
∂w

∂v

∣∣(u0, v0).
Thus as long as we always covariantly differentiate along tangent vectors we

can just take the partial derivatives with respect to the smooth patch coordinates
to compute. We need the following linearity formula, which shows how to take
covariant derivative along any tangent vector aru + brv.

∇aru+brvw = a∇ruw + b∇rvw.

To prove this use the curve

α(a,b)(t) = r(u0 + at, v0 + bt).

Then(
∇aru+brvw

)
(u0, v0) =

d

dt

∣∣∣
t=0

w(u0+at, v0+bt) = a·∂w
∂u

+b·∂w
∂v

= a·∇ruw+b·∇rvw.

In this entire argument, there was no requirement for w to be tangent to Σ.
For example, crucially, we can apply the argument to covariantly differentiate the
normal vector.

Definition 4.16. The unit normal vector to a patch of a surface r : U → R3 is

ru ∧ rv
|ru ∧ rv|

Example 4.17. Consider the saddle surface z = xy. We let the smooth patch be
r(u, v) = (u, v, uv). Compute that the unit normal

n(u, v) =
ru ∧ rv
|ru ∧ rv|

=
(−v, u, 1)√
1 + u2 + v2

.

Then the covariant derivatives of n along the coordinate curves are

∇run =
∂n

∂u
=

(uv,−1− v2,−u)

(1 + u2 + v2)3/2

and

∇rvn =
∂n

∂v
=

(−1− u2, uv,−v)

(1 + u2 + v2)3/2
.

At the origin r(0, 0) = (0, 0, 0) we have

∇run
∣∣
(0,0)

=
∂n

∂u

∣∣
(0,0)

= (0,−1, 0) = −rv|(0,0)

and

∇rvn
∣∣
(0,0)

=
∂n

∂v

∣∣
(0,0)

= (−1, 0, 0) = −ru|(0,0)
This can be interpreted by understanding how the normal vector tilts when one
starts at the origin and moves a small amount in the positive x and y directions.

Exercise 4.18. Check the computations in the previous example.
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Exercise 4.19. Consider the sphere with the stereographic projection from the
north pole. Compute the covariant derivative of the normal vector with respect
to the coordinate vectors ru and rv at the south pole. Interpret your answer
geometrically.

4.4. The normal vector and the Gauss map. As above:

Definition 4.20. The unit normal vector to a patch of a surface r : U → R3 is

ru ∧ rv
|ru ∧ rv|

There are two possible choices of unit normal vector; the parametrisation makes
the choice for us. From now on when we talk about the normal vector we mean
the unit normal and write n.

The unit normal defines a map G : Σ → S2, called the Gauss map. By definition
the Gauss map sends a point in Σ to its unit normal vector. By considering this
as a vector based at the origin of R3, we obtain a point in S2.

There are really two Gauss maps, one being the negative of the other. For a
patch of a surface, the parametrisation fixes one. So we have a well defined map
G : U → S2. Since there are no closed loops in the surface, there can be no Mobius
bands, so this is well-defined. For non-orientable surfaces, the Gauss map can only
be made well-defined as a map to P. We will restrict to orientable surfaces.

Definition 4.21. An orientation of a surface Σ is a consistent choice of unit normal
vector np for all p ∈ Σ. Here consistent means that the Gauss map defined by this
choice is continuous. We call an orientable surface together with an orientation an
oriented surface.

We will only need local properties of the Gauss map; we want to use it to measure
how the surface changes near a point by comparing it to S2. So as long as one
fixes a choice of a Gauss map, that is fixes a choice of orientation, that will be
fine. We claim that the Gauss map is well-defined i.e. independent of the choice of
parametrisation, so is a function purely of the subset of R3. In other words, up to
sign, all parametrisations yield the same unit normal vector.

4.5. Change of parametrisation. Suppose we have smooth patches x : U → R3

and y : V → R3 such that W := x(U) ∩ y(V ) ̸= ∅ is an open subset of a surface
Σ. Here U, V are open sets in R2. Since x and y are homeomorphisms onto their
images, they have continuous inverses. We want to show that these inverses are
smooth.

Proposition 4.22. The homeomorphism h := x−1 ◦ y : y−1(W ) → x−1(W ) is a
diffeomorphism.

A diffeomorphism is a homeomorphism which is differentiable and has differen-
tiable inverse. We will need the inverse function theorem. Recall that a function
f : R → R has an inverse where it is a monomorphism (1-1, injective). A function
with nonzero derivative is locally a monomorphism. The following theorem is the
higher dimensional version of this fact.
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Theorem 4.23 (Inverse function theorem). Let f : U → Rn be a continuously
differentiable function, where U is an open subset of Rn, and suppose |Df |(a) ̸= 0
for some a ∈ U . Then there exists an open neighbourhood V ∋ f(a) =: b and a
function g : V → U such that g(b) = a, f ◦g(v) = v for all v ∈ V , g is continuously
differentiable and g(V ) ⊆ U is an open neighbourhood of a.

The conclusions imply that the restriction of f is a bijection between g(V ) ⊆
U and V . In the proof we frequently use the following argument. Suppose the
derivative of a function is bounded above by 1/2 in some region. Then by the
mean value theorem, the difference in the value of the function at a and b in that
region is bounded above by 1

2∥b − a∥. Thus being able to control the derivative
allows us to control a differentiable function.

Also recall the concept of a Cauchy sequence.
Before the proof we also define the norm of a linear transformation A : Rn → Rm.

Let
∥A∥ := sup{∥Aξ∥ ∈ Rm | ξ ∈ Rn, ∥ξ∥ = 1}.

Intuitively, the norm ∥A∥ is the farthest away from the origin that any point of the
unit sphere gets stretched by the map A.

Theorem 4.24. Let f : U → Rn be a continuously differentiable function from a
convex open subset U ⊂ Rn to Rn and let x, y ∈ Rn. There exists c ∈ U such that

∥f(x)− f(y)∥ = ∥x− y∥ · ∥Df(c)∥.

The following proof is quite sophisticated, and non-examinable.

Proof of Inverse function theorem. We may assume WLOG that a = b = 0 and
that Df(0) = I, the n × n identity matrix. The assumption that |Df(0)| =
det(Df(0)) ̸= 0 implies that Df(0) is invertible. To see this, note that we may

replace f by f̃ : Rn → Rn which sends

x 7→ A−1f(x+ a)− b

where A := Df(a). This replacement is valid for the following reasons.
First note that the functions x 7→ x+a and x 7→ A−1x−b are invertible functions.

Thus if the conclusion holds for the new function f̃ it holds for the old one f too.

Secondly, the hypothesis that |Df(a)| ̸= 0 implies that |Df̃(0)| ≠ 0, because:

Df̃(0) = D(A−1)(f(a)) ·Df(a) = A−1 ·Df(a) = A−1 ·A = I.

Here we used the fact that D(A−1)(x) = A−1 for all x, on which we now elaborate.
For any n× n matrix B we have a linear map B : Rn → Rn. In coordinates this is
given by

(x1, . . . , xn) 7→
( n∑

j=1

B1jxj , . . . ,
n∑

j=1

Bnjxj

)
.

Therefore the derivative is given by the matrix

(DB)ik =

(
∂
(∑n

j=1Bijxj

)
∂xk

)
ik

= Bik.
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So we now assume that a = b = 0 and that Df(0) = I. Since Df is continuous,
we may choose ε > 0 such that

∥Df(x)− I∥ <
1

2

whenever ∥x∥ < ε. To see this, think of Df as a function from Rn to the space
of linear transformations on Rn, and use the norm on linear transformations to
define open balls. Once we have open balls we can define continuous, just like the
beginning of chapter 3. Df is continuous at 0 means that for all τ > 0 (choose
τ = 1/2 here), there exists ε > 0 such that

∥Df(x)−Df(0)∥ = ∥Df(x)− I∥ < τ =
1

2

whenever ∥x∥ < ε.
Define the sets

X := {x ∈ Rn | ∥x∥ < ε}
and

V := {x ∈ Rn | ∥x∥ <
ε

2
}.

These sets will be important for the rest of the proof.
Fix y ∈ V , and define a function ϕ : U → Rn by

ϕ(x) = x+ y − f(x).

Note that f(x) = y if and only if ϕ(x) = x. So to define an inverse function we are
looking for fixed points of ϕ. Note that Dϕ = I −Df so

∥Dϕ(x)∥ = ∥(I −Df)(x)∥ <
1

2

for all x ∈ X. This will be a useful bound. Bounding the derivative enables bounds
on a function in a neighbourhood, using the Mean Value theorem, as we will see.
Intuitively, if the derivative is bounded a function can only change by so much in
a small region.

We claim that ϕ(X) ⊆ X i.e. that ∥ϕ(x)∥ < ε for all x ∈ X. So see this
let x ∈ X. Note that ϕ(0) = y − f(0) = y ∈ V . The mean value theorem for
multivariable functions implies that there exists c ∈ X such that

∥ϕ(x)− ϕ(0)∥ = ∥x− 0∥ · ∥Dϕ(c)∥,

which implies that

∥ϕ(x)− y∥ = ∥x∥ · ∥Dϕ(c)∥ < ε · 1
2
.

Therefore

∥ϕ(x)∥ = ∥ϕ(x)− 0∥ ≤ ∥ϕ(x)− y∥+ ∥y − 0∥ <
ε

2
+

ε

2
= ε.

Thus ϕ(x) ∈ X as claimed.
Now define a sequence {xk}∞k=0 by x0 = 0 and xk := ϕ(xk−1). We have that

∥xk − xk−1∥ = ∥ϕ(xk−1)− ϕ(xk−2)∥ = ∥xk−1 − xk−2∥ · ∥Dϕ(c)∥



M435: INTRODUCTION TO DIFFERENTIAL GEOMETRY 10

for some c ∈ X by the Mean Value Theorem. Then ∥Dϕ(c)∥ < 1
2 so that

∥xk − xk−1∥ ≤ 1

2
∥xk−1 − xk−2∥.

This says that {xk} is a Cauchy sequence (a type of convergent sequence where
you don’t have to know what the limit is to define convergence). Let

g(y) := lim
k→∞

xk.

Since xk ∈ X for all X, g(y) ∈ X. We therefore have a map g : V → X. Note that
g(y) = ϕ(g(y)) since g(y) is the limit, so f(g(y)) = y. Also g(0) = 0: looking at the
sequence with y = 0, we have x0 = 0 and ϕ(x) = x − f(x), so ϕ(0) = 0 − f(0) =
f(0) = 0. Therefore xk = 0 for all k ∈ N ∪ {0} and g(0) = 0 as claimed.

Next we want to prove that g as we have defined it is continuously differentiable.
Write g(y) = x. Given k ∈ Rn (small) let h ∈ Rn be such that g(y + k) = x + h.
Therefore

f(x+ h) = f ◦ g(y + k) = y + k = f(x) + k.

Thus f(x+ h)− f(x) = k, which implies that

f(x+ h)− (x+ h)− f(x) + x = k − h.

Taking norms

∥k − h∥ = ∥f(x+ h)− (x+ h)− f(x) + x∥ = ∥(f − Id)(x+ h)− (f − Id)(x)∥
= ∥(x+ h)− x∥ · ∥D(f − Id)(c)∥

for some c by the mean value theorem. Thus ∥k − h∥ ≤ ∥h∥ · 1
2 .

Claim.
∥g(y + k)− g(y)− (Df(x))−1(k)∥

∥k∥
→ 0

as k → 0.

(Think of f(x+h)−f(x)
h −a = f(x+h)−f(x)−ha

h → 0 as h → 0 if and only if f ′(x) = a.)
Assume that the claim holds, and let k = tei, where ei is the ith standard basis

vector of Rn. Then Df(x)−1k = t(Df(x)−1)i, the ith column of Df(x)−1. Since
t → 0 as k → 0, we obtain the ∂

∂xi
partial derivative of the components of g. So g

is continuously differentiable with Dg(y) = Df(x)−1.

Proof of claim. We have

g(y + k)− g(y)−Df(x)−1k

=x+ h− x−Df(x)−1(f(x+ h)− f(x))

=−Dfx−1 ·
(
f(x+ h)− f(x)−Df(x) · h

)
.

Consider the function

t 7→ f(x+ th)− tDf(x) · h
on t ∈ [0, 1]. The mean value theorem implies that there exists c ∈ [0, 1] such that

∥f(x+ h)−Df(x) · h− f(x)∥ = 1 · ∥Df(x+ ch) · h−Df(x) · h∥ ≤ R(h)∥h∥
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where

R(h) := sup{∥Df(x+ th)−Df(x)∥ | t ∈ [0, 1]}.
Therefore

∥g(y+ k)− g(y)−Df(x)−1k∥ ≤ R(h) · ∥Df(x)−1∥ · ∥h∥ ≤ R(h) · ∥Df(x)−1∥ · 2∥k∥.

The last inequality uses that ∥h∥ ≤ 2∥k∥ whose proof follows. Since ∥k− h∥ ≤ ∥h∥
2

we have

∥h∥ = ∥h− k + k∥ ≤ ∥h− k∥+ ∥k∥ ≤ 1

2
∥h∥+ ∥k∥.

Rearranging yields ∥h∥ ≤ 2∥k∥ as desired.
Now rearranging gives

∥g(y + k)− g(y)−Df(x)−1k∥
∥k∥

≤ 2R(h)∥Df(x)−1∥ → 0

as k → 0 since R(h) → 0 as h → 0 by continuity of Df , and since h → 0 as k → 0.
This completes the proof of the claim. �

We check that f |X is injective. Suppose that f(x) = f(x′). Then (f(x) − x) −
f ′(x)− x) = −(x− x′). But ∥Df − I∥ < 1

2 implies that

∥(f − Id)(x− x′)∥ ≤ ∥x− x′∥1
2
.

Then ∥x − x′∥ ≤ ∥x − x′∥1
2 which implies that ∥x − x′∥ = 0 so x = x′ and f is

injective.
Therefore g(V ) = X ∩ f−1(V ). To see this, g(V ) ∈ X by definition of g. Also

g(V ) ⊆ f−1(V ) since f ◦ g(v) = v for all v ∈ V . So g(V ) ⊆ X ∩ f−1(V ); this
we already knew. Suppose x ∈ X and x ∈ f−1(V ) i.e. f(x) ∈ V . We know
g ◦ f(x) = y is such that f(y) = f ◦ g ◦ f(x) = f(x). Therefore y = x as f is
injective. So g(f(x)) = x and x ∈ g(V ). So g(V ) ⊆ X ∩ f−1(X), and indeed
g(V ) = X ∩ f−1(V ) as claimed.

Both X and f−1(V ) are open (since f is continuous) so g(V ) is open, and
g(V ) ∋ 0 since g(0) = 0, therefore g(V ) is an open neighbourhood of a = 0 ∈ Rn

as required. This completes the proof of the inverse function theorem.
�

We now show that the coordinate change maps are diffeomorphisms.

Proof of Proposition 4.22. Let r ∈ y−1(W ) be a point, and define q := h(r) ∈
x−1(W ). Write x in the form

x(u, v) = (x(u, v), y(u, v), z(u, v)).

Since the derivative of x is injective at q, the wedge product of the columns does
not vanish, so at least one of the determinants of the 2 by 2 minors are nonzero.
These minors are Jacobians; the determinant of the minors are the coordinates of
xu ∧ xv. Assume without loss of generality (WLOG) that it is:

∂(x, y)

∂(u, v)
(q) ̸= 0.
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Now define a function

F : U × R → R3

F (u, v, t) = (x(u, v), y(u, v), z(u, v) + t).

We make a map of the cylinder over U to the cylinder over x(U). Note that F |U×{0}
coincides with x. The derivative of F is given by

DF =


∂x
∂u

∂x
∂v 0

∂y
∂u

∂y
∂v 0

∂z
∂u

∂z
∂v 1


The determinant of this at q is ∂(x,y)

∂(u,v)(q) ̸= 0, so by the inverse function theorem

there is a local inverse F−1 to F in a neighbourhood of q ∈ x−1(W ). Let M ⊆ W ,
M ∋ x(q) = y(r) be the intersection of the neighbourhood given by the inverse
function theorem with W ⊆ Σ. Choose N ⊆ V with N ∋ r such that y(N) ⊆ M .
This is possible by continuity of y. Since F−1|M is an inverse to x we have

h|N = F−1 ◦ y,
and this is a composition of differentiable functions and is therefore differentiable.
To see that h is differentiable it is enough to see that it is in small neighbourhoods.
We may switch the rôles of x and y in this proof to see that h−1 is also differentiable,
so that h is a diffeomorphism as claimed. �

The key ingredients for smooth changes in coordinates are the inverse function
theorem and that we had regular parametrisations, so the Jacobian in question was
nonzero. Note that we also used that our surface is a subset of R3. For abstract
surfaces, smooth changes in coordinates is an assumption as part of the definition,
for embedded surfaces it is a theorem.

Next, a change of coordinates acts on the tangent space in a specific way.

Proposition 4.25. A change of coordinates (ũ, ṽ) = (ũ(u, v), ṽ(u, v)) induces a
change of basis on the tangent space as follows. The vector a ∈ R2 representing an
element of TpΣ with respect to the basis {ru, rv} is represented by the vector JTa
with respect to the basis {r̃ũ, r̃ṽ} where

J =

∂ũ
∂u

∂ṽ
∂u

∂ũ
∂v

∂ṽ
∂v


is the Jacobian matrix of the change of coordinates.

Proof. Suppose r(u, v) = r̃(ũ(u, v), ṽ(u, v)). Then by the chain rule

ru = r̃ũ
∂ũ

∂u
+ r̃ṽ

∂ṽ

∂u
and

rv = r̃ũ
∂ũ

∂v
+ r̃ṽ

∂ṽ

∂v
.

�
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This is a great illustration of the connection between calculus and linear alge-
bra. The derivative matrix is a linear map which acts on tangent spaces. This
proposition will be very useful when we are investigating the effect of a change
of coordinates. Only change of coordinates whose Jacobian matrix has nonzero
determinant are permitted: otherwise one of the patches would not be regular.

Exercise 4.26. Compute the Jacobian matrix for the change of coordinates on
R2r{0} given by r(x, y) = (x, y) and r(r, θ) = (r cos θ, r sin θ), with u = r, v =
θ, ũ = x, ṽ = y

Corollary 4.27. The derivatives satisfy:

Dr = (Dr̃) · JT .

Since the Gauss map gives a normal vector to the plane determined by the
columns of the derivative matrix, we see that the plane is unchanged by change
of coordinates if det(JT ) = det(J) ̸= 0. In addition recall that the Gauss map
requires a choice of normal vector, which is determined by the order of the basis
vectors ru and rv. If det(J) > 0, the normal vector determined by this order is
unchanged. For an oriented surface, only changes of coordinates whose Jacobian
has positive determinant are allowed.

This is a common useful trick in differential geometry: the fewer change of
coordinate functions there are, the easier it is for a function on a surface to be
well-defined.

To elaborate:

Definition 4.28. A function on a surface f : Σ → R is a function fr : U → R for
each smooth patch r, such that for any two coordinate patches r and r̃, if we define

h = r̃−1 ◦ r : r−1(r(U) ∩ r̃(Ũ)) → r̃−1(r(U) ∩ r̃(Ũ))

then we have
fr(u, v) = fr̃ ◦ h(u, v) ∈ R

for all (u, v) ∈ r−1(r(U) ∩ r̃(Ũ)) ⊂ U .

The idea is that we can define a function by defining it on all smooth patches,
provided the definitions agree on the overlaps. Actually there was no need for the
codomain to be R here. It could even be another smooth surface.

Let Σ1,Σ2 be surfaces and let r1 : U1 → Σ1, r2 : U2 → Σ2 be smooth patches for
the surfaces. Define W := r1(U1) and V := r2(U2) be the overlap of the smooth
patches.

A function f : Σ1 → Σ2 is smooth if the function

g := r−1
2 ◦ f ◦ r1 : r−1

1 (W ∩ f−1(V )) → r−1
2 (f(W ) ∩ V )

is smooth for each pair of smooth patches r1, r2.
We can talk about differentiability of functions R2 → R2, so we use this to define

differentiability of functions on surfaces. A diffeomorphism between surfaces is a
homeomorphism which is smooth and has smooth inverse. We say that two surfaces
are diffeomorphic if there is a diffeomorphism between them. This is the natural
equivalence relation to consider on smooth surfaces, just as homeomorphism was
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the natural equivalence relation on topological surfaces. Every smooth surface
is a topological surface and every diffeomorphism is a homeomorphism, but the
converses of these statements are false.

Exercise 4.29. Do Carmo Section 2–3. Questions 1,3,4,7,8.

4.6. Linear Algebra review.

Definition 4.30. A symmetric bilinear form on a vector space V is a function
B : V × V → R such that for all u, v, w ∈ V and for all λ, µ ∈ R, we have:

(i) B(λv + µw, u) = λB(v, u) + µB(w, u); and
(ii) B(v, w) = B(w, v).

A form is nondegenerate if B(v, v) = 0 if and only if v = 0. A form is (posi-
tive/negative) definite if (B(v, v) > 0/B(v, v) < 0) for all v ̸= 0. A positive definite
symmetric bilinear form (which in particular is nondegenerate) is called an inner
product on V . We write B(v, w) = ⟨v, w⟩.

Exercise 4.31. Prove from the axioms that a bilinear form is also linear in the
second variable.

The length of a vector v ∈ V is ∥v∥ := ⟨v, v⟩
1
2 . The angle between two nonzero

vectors v, w ∈ V is

cos−1

(
⟨v, w⟩
∥v∥∥w∥

)
.

The area of a parallelogram defined by linearly independent vectors v, w in R3 is
|v ∧ w|. By putting the structure of an inner product on each tangent space of a
surface, we will be able to compute lengths, angles and areas in a surface.

4.7. First Fundamental Form. A fundamental form on a surface Σ is an inner
product B : TpΣ×TpΣ → R for each p ∈ Σ, such that the form varies smoothly as p
varies. With respect to the basis given by ru, rv, we can write B as a matrix whose
coordinates are functions of u and v. We require that these are smooth functions.

One has to be careful when one defines a notion, how much that notion depends
on the choice of coordinate system. A closely related anxiety is whether a notion
associated to a vector space depends on a choice of basis for that vector space.

Let (a, b) ∈ R2 and let r∗ : T(a,b)R2 → Tr(a,b)Σ be the map defined above. We

require, for all pairs of vectors x, y ∈ R2 (which defines vectors x, y ∈ T(a,b)R2 since

each tangent space is canonically identified with R2), that:

(a, b) 7→ B(r∗(x), r∗(y))

is a smooth function R2 → R. It can be checked that if this holds for one smooth
parametrisation of a surface, then it holds for all of them.

Now we define the first fundamental form. This is one of the most important
objects of the course. (It is a special case of a Riemannian metric, for those
interested in Riemannian geometry.)

Suppose I want to compute the length of a curve in a surface. Let γ(t) =
(u(t), v(t)) be a curve in R2. Then α(t) = r(γ(t)) = r(u(t), v(t)) is a curve in Σ.
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Differentiating yields

α′(t) = ru(u(t), v(t))u
′(t) + rv(u(t), v(t))v

′(t)

so
|α′(t)| =

√
α′ · α′ =

√
ru · ru(u′)2 + 2ru · rvu′v′ + rv · rv(v′)2.

One integrates this function of t to compute the length of α. Define functions
U → R

E(u, v) := ru · ru
F (u, v) := ru · rv
G(u, v) := rv · rv.

So to compute the length of a curve in a surface α over the interval I, we integrate

L(α) =

∫
t∈I

√
E(u′)2 + 2Fu′v′ +G(v′)2dt

Here E,F and G depend on the surface, and u′, v′ came from the original curve γ
in R2.

The functions E,F and G are called the coefficients of the first fundamental
form. With respect to the basis ru, rv for a tangent space, the first fundamental
form is represented by the matrix (

E F
F G

)
.

This means that for vectors x = aru + brv and y = cru + drv we have

B(x, y) =
(
a b

)(E F
F G

)(
c
d

)
= Eac+ F (ad+ bc) +Gbd

If a = c and b = d we have

B(x, x) = Ea2 + 2Fab+Gb2.

We record the first fundamental form formally by the notation

Edu2 + 2Fdudv +Gdv2.

Example 4.32. (a) Let’s compute the first fundamental form of the sphere.

ru = (− sinu sin v, cosu sin v, 0)

rv = (cosu cos v, sinu cos v,− sin v)

Then
E = ru · ru = sin2 u sin2 v + cos2 u sin2 v = sin2 v

F = ru · rv = − sinu sin v cosu cos v + cosu sin v sinu cos v = 0

G = rv · rv = cos2 u cos2 v + sin2 u cos2 v + sin2 v = 1.

Therefore the first fundamental form is

sin2 vdu2 + dv2.

(b) For the plane we have r(u, v) = (u, v, 0) and ru = (1, 0, 0), rv = (0, 1, 0). So
E = G = 1 and F = 0. The first fundamental form is

du2 + dv2.
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(c) For the plane in polar coordinates r(r, θ) = (r cos θ, r sin θ, 0), we have

rr = (cos θ, sin θ, 0)

rθ = (−r sin θ, r cos θ, 0)

so that E = 1, G = r2 and F = 0 so that the first fundamental form is

dr2 + r2dθ.

(d) The cone r(u, v) = (au cos v, au sin v, u). u > 0, 0 < v < 2π. We have

ru = (a cos v, a sin v, 1)

rv = (−au sin v, au cos v, 0)

so that E = 1 + a2, F = 0 and G = a2u2 so we have

(1 + a2)du2 + a2u2dv2

for the first fundamental form.

Exercise 4.33. Compute the first fundamental forms of the following surfaces:

(i) The hemisphere with parametrisation (u, v) 7→ (u, v,
√
1− u2 − v2), ∥(u, v)∥ <

1.
(ii) The surface of revolution

r(u, v) = (f(u) cos v, f(u) sin v, u).

For some differentiable function f : R → R>0. (u, v) ∈ R× (0, 2π).
(iii) The torus with a = 3, b = 1.

We have seen how to use the first fundamental form to compute lengths of curves
on a surface. Next we will use it to compute angles between intersecting curves
and areas of subsets of a surface.

4.8. Angles. Let α : I → R2 and γ : J → R2 define curves on a surface patch
r : U → R3. Suppose that α(0) = γ(0) = p, so that the curves in Σ intersect at
r(p) = q ∈ Σ. The curves r(α(t)) and r(γ(t)) in Σ can be expressed as

r(u1(t), v1(t)) and r(u2(t), v2(t))

respectively. The tangent vectors are

ruu
′
1 + rvv

′
1 and ruu

′
2 + rvv

′
2.

Therefore the angle between the curves at their point of intersection is

θ = cos−1

(
(ruu

′
1 + rvv

′
1) · (ruu′2 + rvv

′
2)

∥ruu′1 + rvv′1∥ ∥ruu′2 + rvv′2∥

)
= cos−1

(
Eu′1u

′
2 + F (u′1v2 + u′2v

′
1) +Gv′1v

′
2√

E(u′1)
2 + 2Fu′1v

′
1 +G(v′1)

2
√

E(u′2)
2 + 2Fu′2v

′
2 +G(v′2)

2

)

= cos−1


(
u′1 v′1

)(E F
F G

)(
u′2
v′2

)
√(

u′1 v′1
)(E F

F G

)(
u′1
v′1

)√(
u′2 v′2

)(E F
F G

)(
u′2
v′2

)

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The purpose of the last formula is so that we will be able to see that the angle
is independent of the choice of coordinate system i.e. is the same for all smooth
patches representing the same surface in R3.

4.9. Areas. Recall that the area of the parallelogram defined by linearly indepen-
dent vectors a and b is |a∧b|. This holds since |a∧b| = |a||b| sin θ where θ is the
angle between a and b.

Thus the size of a small area element at a point r((a, b)) of a smooth patch
r : U → R3 of a surface is given by |ru ∧ rv|(a, b)dudv. Let C be a region of a
smooth patch r. Then the area of C is given by∫

r−1(C)
|ru ∧ rv| dudv.

Recall the vector identity

|ru ∧ rv|2 = (ru · ru)(rv · rv)− (ru · rv)(ru · rv) = EG− F 2.

Therefore the area of C can be computed in terms of the first fundamental form as∫
r−1(C)

√
EG− F 2 dudv =

∫
r−1(C)

√
det

(
E F
F G

)
dudv.

Exercise 4.34. (i) Compute the area of the torus with a = 3 and b = 1.
(ii) Compute the area of the sphere with radius r using the first fundamental

form.
(iii) Give an expression for the area of a surface of revolution for u ∈ [a, b].

Exercise 4.35. Do Carmo Section 2–5, questions 1,2,5,6,10,11,12.

4.10. Effect of change of coordinates on first fundamental form.

Exercise 4.36. Suppose that a bilinear form is represented with respect to the

standard basis of R2 by the matrix

(
2 1
1 3

)
. Find the matrix representing the form

with respect to the basis {(1, 2), (−1, 1)} for R2.

Since

ru = r̃ũ
∂ũ

∂u
+ r̃ṽ

∂ṽ

∂u
and

rv = r̃ũ
∂ũ

∂v
+ r̃ṽ

∂ṽ

∂v
.

we have that

E = ru · ru =

(
∂ũ

∂u

)2

r̃ũ · r̃ũ + 2
∂ṽ

∂u

∂ũ

∂v
r̃ũ · r̃ṽ +

(
∂ṽ

∂v

)2

r̃ṽ · r̃ṽ

=

(
∂ũ

∂u

)2

Ẽ + 2
∂ṽ

∂u

∂ũ

∂v
F̃ +

(
∂ṽ

∂v

)2

G̃.
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Similarly for F and G. We eventually obtain the simple matrix formula:(
E F
F G

)
=

∂ũ
∂u

∂ṽ
∂u

∂ũ
∂v

∂ṽ
∂v

(Ẽ F̃

F̃ G̃

)∂ũ
∂u

∂ṽ
∂u

∂ũ
∂v

∂ṽ
∂v

T

= J

(
Ẽ F̃

F̃ G̃

)
JT

This is seen to be consistent with the change of basis matrix from Proposi-
tion 4.25 and the way that bases change for bilinear forms, as in the exercise
above.

We can use this change of coordinate formula to see that the length, angle and
area formulas given above, in terms of the coefficients of the first fundamental form,
are independent of the coordinate system. That is, if we change coordinates to a
different smooth patch for the same underlying surface, the length of a curve, the
angle between curves, and the area of a region are measured to be the same in the
new and old coordinate systems.

To see this, replace

(
E F
F G

)
in the formulae with J

(
Ẽ F̃

F̃ G̃

)
JT and observe

for the length and angle formulae that

JT

(
u′

v′

)
=

(
ũ′

ṽ′

)
.

For the area formula,

det

(
J

(
Ẽ F̃

F̃ G̃

)
JT

)
= (det J)2(ẼG̃− F̃ 2),

so that we have∫
r̃−1(C)

√
ẼG̃− F̃ 2 det(J)dudv =

∫
r̃−1(C)

√
ẼG̃− F̃ 2dũdṽ

by the change of variable formula for double integration.

4.11. Isometries and local isometries. We have seen that the first fundamental
form transforms in a certain way under change of variables, and that this governs
lengths, angles and areas. In geometry, we consider two surfaces to be “the same”
if they are diffeomorphic; that is there is a smooth homeomorphism between them
which has a smooth inverse, and if the diffeomorphism preserves lengths of curves.

Definition 4.37. An isometry between two surfaces Σ1, Σ2 is a diffeomorphism
f : Σ1 → Σ2 which sends smooth paths in Σ1 to smooth paths in Σ2 of the same
length.

So if γ : I → Σ1 is a smooth path then L(γ) = L(f ◦ γ).

Definition 4.38. Let p ∈ Σ1 be a point with an open neighbourhood V1 ⊆ Σ1. A
map f : V1 → Σ2 is a local isometry f : V1 → f(V1) is an isometry.

If f is a diffeomorphism and a local isometry for all p ∈ Σ1, then f is an isometry.
Next we show that it is equivalent that a local isometry f sends the first funda-

mental form of Σ1 to the first fundamental form of Σ2. Thus the mapping should
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preserve lengths, angles and areas. The first fundamental form is a local property,
so it is preserved under local isometries.

Theorem 4.39. Two Σ1 and Σ2 are locally isometric if and only if for each point
p ∈ Σ1 there is an open set V ∈ R2 and smooth patches r : V → Σ1, r̃ : V → Σ2

with p ∈ r(V ) such that the first fundamental forms of Σ1 and Σ2, with respect to
r and r̃ respectively, are the same.

Proof. The if direction. We claim that the local isometry is given by f = r̃ ◦
r−1 : Σ1 → Σ2. Let γ : [a, b] → Σ1 be a smooth curve in Σ1 with γ(t) = r(u(t), v(t)).
Then f ◦ γ(t) = r̃(u(t), v(t)). Therefore

L(γ) =

∫ b

a

√
E(u′)2 + 2Fu′v′ +G(v′)2 dt = L(f ◦ γ).

So the length of curves is preserved and f is a local isometry as claimed.
The only if direction. This direction is a little harder. Suppose f : Σ1 → Σ2

is a local isometry and let r : V → Σ1 be a smooth patch, with p ∈ V . Define
r̃ : V → Σ2 by r̃ = f ◦ r. Also define

E = ru · ru
F = ru · rv
G = rv · rv
Ẽ = r̃u · r̃u
F̃ = r̃u · r̃v
G̃ = r̃v · r̃v

Since f is a local isometry by assumption, we have∫ b

a

√
E(u′)2 + 2Fu′v′ +G(v′)2 dt =

∫ b

a

√
Ẽ(u′)2 + 2F̃ u′v′ + G̃(v′)2 dt

for all smooth paths t 7→ (u(t), v(t)) in V . Choose

(u(t), v(t)) = (u0 + t, v0).

By the fundamental theorem of calculus,

lim
ε→0

1

ε

∫ ε

0

√
E(u0 + t, v0)dt =

√
E(u0, v0)

and

lim
ε→0

1

ε

∫ ε

0

√
Ẽ(u0 + t, v0)dt =

√
Ẽ(u0, v0).

As above, the two integrals are equal for all ε ̸= 0, so we have
√

E(u0, v0) =√
Ẽ(u0, v0), which implies that Ẽ = E. Similarly taking the path (u(t), v(t)) =

(u0, v0 + t) yields G̃ = G. Then taking (u(t), v(t)) = (u0 + t, v0 + t) implies that

E + 2F +G = Ẽ + 2F̃ + G̃,

so that F̃ = F as well. �
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Example 4.40. The cylinder and the plane are locally isometric but not isometric.
To see that the cylinder and the plane are locally isometric compute the first
fundamental form of the cylinder with parametrisation r(u, v) = (cosu, sinu, v),
(u, v) ∈ (0, 2π)×R to be du2 + dv2, which is the same as that of the subset of the
plane with the parametrisation r̃(ũ, ṽ) = (ũ, ṽ, 0), (ũ, ṽ) ∈ (0, 2π) × R. They are
not homeomorphic, so cannot be diffeomorphic and therefore cannot be isometric.
To see this we’ll consider the compact surfaces: for the plane use the domain
[0, 2π]× [0, 1] and for the cylinder use the domain [[0, 2π)× [0, 1]. We can compute
the Euler characteristic of the plane to be 1 and the Euler characteristic of the
cylinder to be 0. Thus they cannot be homeomorphic.

Example 4.41. The cone is given by

r(u, v) = (au cos v, au sin v, u)

We compute

ru = (a cos v, a sin v, 1)

rv = (−au sin v, au cos v, 0)

so that

E = 1 + a2; F = 0 and G = a2u2.

The first fundamental form is

(1 + a2)du2 + a2u2dv2.

Make the change of coordinates

(u, v) 7→

(√
1 + a2u,

√
a2

1 + a2
v

)
= (r, θ).

Thus u = r√
1+a2

and v =
√

1+a2

a2
θ.

We can compute a formal substitution for the first fundamental form using the
chain rule:

du =
∂u

∂r
dr +

∂u

∂θ
dθ =

1√
1 + a2

dr

and

dv =
∂v

∂r
dr +

∂v

∂θ
dθ =

√
1 + a2

a2
dθ.

After making these substitutions the first fundamental form becomes:

dr2 + r2dθ2

which is the first fundamental form of the plane in polar coordinates.

Note that when v ∈ (0, 2π), the variable θ ∈
(
0, 2π

√
a2

1+a2

)
. Thus there is an

isometry between this part of the plane and the cone with u > 0, v ∈ (0, 2π).
The cone and the plane should be isometric, since we can make the cone from

a sheet of paper. You couldn’t make a sphere or a torus from paper unless it was
very stretchy paper. The stretching would not constitute an isometry.
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Exercise 4.42. The catenoid has a smooth patch (which misses out one meridian)

r(u, v) = (a cosh v cosu, a cosh v sinu, av)

(u, v) ∈ (0, 2π)× R. The helicoid has a smooth patch

x(r, t) = (t cos r, t sin r, ar)

(r, t) ∈ (0, 2π)× R.
(i) Compute the first fundamental forms of these surfaces.
(ii) Find the first fundamental form of the helicoid after the change of coordinates

(r, s) = (u, a sinh v).
(iii) Show that the smooth patches are isometric.

(Since the helicoid is really for all r ∈ R, this is a local isometry between the
helicoid and the catenoid. But restricted to the given patches, it’s an isometry.

Exercise 4.43. A smooth patch is said to be conformal if it preserves angles from
R2, and is equiareal if it preserves areas.

(a) Show that a smooth patch is conformal if and only if E = G and F = 0.
(b) Show that a smooth patch is equiareal if and only if EG− F 2 = 1.
(c) Consider the smooth patch on the sphere

r(θ, ϕ) = (cos θ cosϕ, sin θ cosϕ, sinϕ),

(θ, ϕ) ∈ (−π, π)×(−π/2, π/2). Show that this is neither conformal nor equiareal.
(d) The Mercator projection of the sphere with the Date Line removed takes a

point r(θ, ϕ) to (
θ, log

(
tan

(ϕ
2
+

π

4

)))
∈ (−π, π)× R.

Show that the Mercator projection is conformal but not equiareal. Hint: change
coordinates from (c) to

(u, v) = (θ, log
(
tan

(ϕ
2
+

π

4

))
).

(e) Lambert’s cylindrical projection (projecting a sphere outwards to a cylinder)
takes a point r(θ, ϕ) to (θ, sinϕ). Show that this is equiareal.
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