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5. Second fundamental form and the curvature

5.1. The second fundamental form. We will give several ways of motivating
the definition of the second fundamental form. Like the first fundamental form,
the second fundamental form is a symmetric bilinear form on each tangent space
of a surface Σ. Unlike the first, it need not be positive definite.

The idea of the second fundamental form is to measure, in R3, how Σ curves
away from its tangent plane at a given point. The first fundamental form is an
intrinsic object whereas the second fundamental form is extrinsic. That is, it
measures the surface as compared to the tangent plane in R3. By contrast the
first fundamental form can be measured by a denizen of the surface, who does not
possess 3 dimensional awareness.

Given a smooth patch r : U → Σ, let n be the unit normal vector as usual.
Define

R(u, v, t) := r(u, v)− tn(u, v),

with t ∈ (−ε, ε). This is a 1-parameter family of smooth surface patches. How is
the first fundamental form changing in this family? We can compute that:

1

2

∂

∂t

∣∣
t=0

(
Edu2 + 2Fdudv +Gdv2

)
= Ldu2 + 2Mdudv +Ndv2

where

L := −ru · nu

2M := −(ru · nv + rv · nu)

N := −rv · nv.

The reason for the negative signs will become clear soon.
1
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For example:

1

2

∂

∂t

∣∣
t=0

(
E(u, v, t)

)
=
1

2

∂

∂t

∣∣
t=0

(
(ru − tnu) · (ru − tnu))

)
=
1

2

∂

∂t

∣∣
t=0

(
ru · ru − 2tru · nu + t2nu · nu

)
=
1

2

(
− 2ru · nu + 2tnu · nu

)
|t=0

=− ru · nu

Exercise 5.1. Check the analogous computations for 2M and N .

The form:

Ldu2 + 2Mdudv +Ndv2

is called the second fundamental form. Like the first fundamental form, it also
defines a bilinear form on the tangent space:

(aru + brv, cru + drv) 7→
(
a b

)(L M
M N

)(
c
d

)
.

5.2. Second fundamental form alternative derivation. We can think of the
second fundamental form as measuring distance from the tangent plane. Consider
the Taylor expansion around a point (u, v):

r(u+ δu, v + δv) = r(u, v) + δuru + δvrv +
1

2
(ruuδu

2 + 2ruvδuδv + rvvδv
2) + h.o.t.

Therefore

(r(u+ δu, v + δv)− r(u, v)) · n

=
1

2
(ruu · nδu2 + 2ruv · nδuδv + rvv · nδv2) + h.o.t

=
1

2
(Lδu2 + 2Mδuδv +Nδv2) + h.o.t

where

L = ruu · n
M = ruv · n
N = rvv · n

We prefer this definition of L,M and N with second derivatives of r, since usually
n is tricky to differentiate, as there is a square root in the denominators. Note that
since ru · n = 0, we have

ruu · n + ru · nu = 0

so

ruu · n = −ru · nu = L.

Also rv · n = 0, so

rvv · n + rv · nv = 0
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which implies that
rvv · n = −rv · nv = N

and
ruv · n + ru · nv = 0

rvu · n + rv · nu = 0

which imply
ruv · n = −ru · nv = −rv · nu = M.

Example 5.2. (a) For the plane L = M = N = 0.
(b) For the sphere of radius a, r = an, so that

ru · nu = −a−1ru · ru = a−1E.

Repeating this argument for F and M and for G and N , we have

Ldu2 + 2Mdudv +Ndv2 = a−1
(
Edu2 + 2Fdudv +Gdv2

)
(c) Consider the graph z = f(x, y) of a smooth function f : R2 → R. So the

parametrisation is r = (x, y, f(x, y)). The second fundamental form is a multi-
ple of the Hessian:

1√
1 + f2

x + f2
y

(
fxx fxy
fxy fyy

)
(d) Fix a point p ∈ Σ. Since every surface is locally a graph (we didn’t prove this

but we could have: See Do Carmo Section 2-2, Proposition 3, Page 63, which
uses the Inverse Function Theorem. We can parametrise by the inverse of
projection onto the tangent plane TpΣ. Our point is a critical point of f(x, y),
and we can understand the local behaviour: maximum, minimum or saddle
point in terms of the Hessian matrix i.e. in terms of the second fundamental
form. This will be described soon in detail using the principal curvatures.

5.3. The shape operator. The shape operator, also known as the Weingarten
map, is a function

S : TpΣ → TpΣ

which we can use to define the second fundamental form in terms of covariant
derivatives of the normal vector; the Gauss map Σ → S2.

Define S by
vp 7→ −∇vpn.

So
S(ru) = −∇run = −nu

and
S(rv) = −∇rvn = −nv.

This measures how the normal vector tilts as we move infinitesimally away from
our point. All 3 versions of the second fundamental form are really the same idea
in different guises.

Note that
S(ru) · ru = L

S(ru) · rv = M
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S(rv) · rv = N

We can define a bilinear form on each tangent space by

B(v,w) := S(v) ·w.

The matrix of this with respect to the basis {ru, rv} is that of the second funda-
mental form (

L M
M N

)
.

Now, for later, what is the matrix of the shape operator?
Let a, b, c, d be such that

S(ru) = aru + brv

and

S(rv) = cru + drv.

Then dotting with ru and rv we have:

L = S(ru) · ru = aE + bF

M = S(ru) · rv = aF + bG

M = S(rv) · ru = cE + dF

N = S(rv) · rv = cF + dG

Therefore (
L M
M N

)
=

(
E F
F G

)(
a c
b d

)
so that(

a c
b d

)
=

(
E F
F G

)−1(
L M
M N

)
=

1

EG− F 2

(
G −F
−F E

)(
L M
M N

)
.

This matrix need not be symmetric.

Exercise 5.3. (1) Compute the second fundamental form of a surface of rev-
olution.

r(u, v) =
(
f(u) cos v, f(u) sin v, u

)
.

(2) Compute the second fundamental form of the patch of the torus:

r(u, v) =
(
(a+ b cosu) cos v, (a+ b cosu) sin v, b sinu

)
.

The second fundamental form characterises the plane.

Theorem 5.4. Suppose the second fundamental form of a surface is identically
zero. Then the surface is a part of a plane.

Proof. If L = M = N = 0 then nu · ru = nu · rv = nv · ru = nv · rv = 0 so nu

and nv are parallel to n. Since n is of constant length we therefore have that n is
constant. �
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5.4. Principal curvature. We want to consider the curvature of the set of curves
on Σ through a fixed point p ∈ Σ.

Let γ(t) = r(u(t), v(t)) such that r(u(0), v(0)) = p. Suppose furthermore that
|γ′(t)| = 1 i.e. γ is parametrised by arc length. Let τ := γ′(t). We have an
orthonormal basis for TR3 at each point of the image of γ.

{n, τ,n ∧ τ}.
Recall this frame from the spherical curves section in Chapter 2. The curvature is
k(t) = |γ′′(t)|. Since γ′ · γ′ = 1 we have

γ′′ · γ′ = 0,

so that γ′′ · τ = 0. Therefore

γ′′ = κnn+ κg(n ∧ τ)

where κn = γ′′ · n is the normal curvature and κg = γ′′ · (n ∧ τ) is the geodesic
curvature of γ at p. Note that κ2n + κ2g = k2.

Now, τ · n = 0 = γ′ · n so γ′′ · n+ γ′ · n′ = 0. Thus

κn = −γ′ · n′.

By the chain rule we have

γ′ = u′ru + v′rv

n′ = u′nu + v′nv.

So taking the dot product

κn = −γ′ · n′ = L(u′)2 + 2Mu′v′ +N(v′)2.

We want to compute the principal curvatures and directions.

Definition 5.5. The principal curvatures of Σ at p ∈ Σ are the maximum and
minimum values of the normal curvatures of curves through p.

Consider a plane Π through p which contains n, τ . Then Π ∩ Σ is a curve γ(t)
through p, which we will call γ(t), parametrised as above by arc length.

Note that γ′′(t) · (n∧ τ) = 0 since n∧ τ is normal to Π. Thus κg = 0 and κn = k.
So the principal curvatures are the maximum and minimum curvatures of curves
Π ∩ Σ at p where Π ranges over all planes through p containing np.

So, we can compute the principal curvatures as the maximum and minimum
values of

Lξ2 + 2Mξη +Nη2

for (ξ, η) ∈ R2 such that

Eξ2 + 2Fξη +Gη2 = 1.

This latter condition is that |γ′(t)| = 1.
Since the first fundamental form is positive definite, this is the maximum/minimum

of a function on R2 restricted to an ellipse. To find the maximum and minimum
values, we use simultaneous diagonalisation.

Recall that the spectral theorem from linear algebra says that any real symmetric
matrix A can be diagonalised over the real numbers. This means that there is a
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orthogonal matrix P such that PAP T is a diagonal matrix. Orthogonal means
PP T = Id.

Apply this to the first fundamental form’s matrix. There exists an orthogonal
matrix R such that

R

(
E F
F G

)
RT =

(
λ1 0
0 λ2

)
,

where λ1, λ2 are the eigenvalues of the first fundamental form. The first fundamen-
tal form is positive definite so λ1, λ2 > 0. Let

Q :=

(
1√
λ1

0

0 1√
λ2

)
R.

Then

Q

(
E F
F G

)
QT =

(
1 0
0 1

)
.

Now the matrix Q

(
L M
M N

)
QT is a symmetric matrix, so there exists another

orthogonal matrix P such that

PQ

(
L M
M N

)
QTP T =

(
κ1 0
0 κ2

)
is diagonal and

PQ

(
E F
F G

)
QTP T = PP T =

(
1 0
0 1

)
.

We therefore change coordinates to(
X
Y

)
= PQ

(
ξ
η

)
.

In these coordinates

Eξ2 + 2Fξη +Gη2 = X2 + Y 2

and

Lξ2 + 2Mξη +Nη2 = κ1X
2 + κ2Y

2.

The maximum and minimum values of the latter subject to X2 + Y 2 = 1 are κ1
and κ2. These are our principal curvatures.

The vectors (1, 0) and (0, 1) in the (X,Y ) coordinates are the principal directions.
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It turns out that we need to find the eigenvalues and eigenvectors of

(
E F
F G

)−1(
L M
M N

)
.

To check this:

PQ

(
E F
F G

)−1(
L M
M N

)
Q−1P−1

=PQ

(
E F
F G

)−1(
L M
M N

)
QTP T

=PQ

(
E F
F G

)−1

Q−1P−1PQ

(
L M
M N

)
QTP T

=

(
PQ

(
E F
F G

)
Q−1P−1

)−1

PQ

(
L M
M N

)
QTP T

=

(
PQ

(
E F
F G

)
QTP T

)−1

PQ

(
L M
M N

)
QTP T

=

((
1 0
0 1

))−1

PQ

(
L M
M N

)
QTP T

=

((
1 0
0 1

))−1(
κ1 0
0 κ2

)
=

(
κ1 0
0 κ2

)
.

The eigenvalues and eigenvectors are the same as above. Note that

(
E F
F G

)−1(
L M
M N

)
coincides with the matrix which earlier we computed to represent the shape op-
erator. Therefore we can also define the principal curvatures and directions as
follows.

Definition 5.6. The principal curvatures at p are the eigenvalues of the shape
operator at p and the principal directions are the eigenvectors.

We also define two important quantities. The Gaussian curvature in particular
is of central importance in the geometry of surfaces.

Definition 5.7. The Gaussian curvature K is the product of the principal curva-
tures κ1κ2 which is equal to

det

((
E F
F G

)−1(
L M
M N

))
=

LN −M2

EG− F 2
.

Definition 5.8. The mean curvature H is the average κ1+κ2
2 of the principal cur-

vatures, which is equal to

1

2
tr

((
E F
F G

)−1(
L M
M N

))
=

LG− 2MF +NE

2(EG− F 2)
.
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Example 5.9. (a) The Gaussian and mean curvatures of the plane are zero.
(b) The principal curvatures of the sphere of radius a are both −1/a, since

Ldu2 + 2Mdudv +Ndv2 = −a−1
(
Edu2 + 2Fdudv +Gdv2

)
and therefore (

E F
F G

)−1(
L M
M N

)
=

(
−a−1 0
0 −a−1

)
.

All directions are principal directions. The mean curvature is −1/a and the
Gaussian curvature is a constant 1/a2.

(c) The torus with parametrisation

r(u, v) =
(
(a+ b cosu) cos v, (a+ b cosu) sin v, b sinu

)
.

(u, v) ∈ (0, 2π)× (0, 2π). We compute:

ru =
(
− b sinu cos v,−b sinu sin v, b cosu

)
rv =

(
− (a+ b cosu) sin v, (a+ b cosu) cos v, 0

)
,

so that

ru∧ rv = (−b(a+ b cosu) cosu cos v,−b(a+ b cosu) cosu sin v,−b(a+ b cosu) sinu).

We have

|ru ∧ rv| = b(a+ b cosu)

so

n = −(cosu cos v, cosu sin v, sinu).

Also

ruu =
(
− b cosu cos v,−b cosu sin v,−b sinu

)
ruv =

(
b sinu sin v,−b sinu cos v, 0

)
rvv =

(
− (a+ b cosu) cos v,−(a+ b cosu) sin v, 0

)
Therefore we take the relevant dot products to find:

E = b2; F = 0; G = (a+ b cosu)2

and

L = b; M = 0; N = (a+ b cosu) cosu.

Thus the Gaussian curvature is given by

K =
LN −M2

EG− F 2
=

cosu

b(a+ b cosu)
.

The mean curvature is given by

H =
LG− 2MF +NE

2(EG− F 2)
=

a+ 2b cosu

2b(a+ b cosu)
.

Note that the curvatures are constant along lines of constant u. Topologically
the torus is S1×S1, but geometrically the two copies of S1 are not symmetric.
In particular note that when u = 0, K > 0, when u = ±π/2, we have K = 0,
and when u = π we have K < 0.
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(d) For the catenoid, with parametrisation

r(u, v) = (cosh v cosu, cosh v sinu, v)

with u ∈ (0, 2π) and v ∈ R, we have

ru = (− cosh v sinu, cosh v cosu, 0)

rv = (sinh v, cosu, sinh v sinu, 1)

n =
1

cosh v
(cosu, sinu,− sinh v).

So

E = cosh2 v; F = 0; G = cosh2 v.

Also

ruu = − cosh v(cosu, sinu, 0)

ruv = sinh v(− sinu, cosu, 0)

rvv = cosh v(cosu, sinu, 0)

Therefore

L = −1; M = 0; N = 1.

So the Gaussian curvature is given by

K =
LN −M2

EG− F 2
= − 1

cosh4 v

The mean curvature is given by

H =
LG− 2MF +NE

2(EG− F 2)
=

− cosh2 v − 0 + coshv

cosh4 v
= 0.

The catenoid has mean curvature zero; such surfaces are called minimal.

Definition 5.10. An asymptotic direction is a unit vector (with respect to the
first fundamental form) in the tangent space along which the normal curvature
vanishes. To compute, find (a, b) such that(

a b
)(L M

M N

)(
a
b

)
= 0

and scale so that (
a b

)(E F
F G

)(
a
b

)
= 1

An asymptotic curve through p ∈ Σ is a curve in Σ along which the normal curva-
ture is zero. So γ : t 7→ r(u(t), v(t)), γ(0) = p, such that L(u′)2+2Mu′v′+N(v′)2 =
0.

Exercise 5.11. (i) Find the Gaussian and mean curvatures of a graph z =
f(x, y).

(ii) Compute principal curvatures and principal directions of the saddle surface
z = xy at the origin, and of an ellipsoid x2/a2 + y2/b2 + z2/c2 at each of the
points where two of x, y and z are zero. Also compute the Gaussian and mean
curvatures everywhere of these surfaces.
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(iii) Give an expression for the Gaussian curvature of a surface of revolution.

r(u, v) =
(
f(u) cos v, f(u) sin v, u

)
.

(iv) Do Carmo 3.3 Exercises 1–7, 20. Question 6 on the pseudo sphere is a partic-
ularly good example: a surface with Gaussian curvature constant and equal
to −1. For question 20, an umbilical point is a point where the principal
curvatures are equal.

Here is a cool interpretation of the Gaussian curvature in terms of how area is
altered by the Gauss map. Recall that the Gaussian curvature is a determinant,
so we shouldn’t be too surprised that it has an interpretation in terms of area.

Theorem 5.12. Let x ∈ Σ and let {Ui} with Ui ∋ x for all i be a collection of
open sets in Σ contracting to x. Then

signed area(n(U))

area(U)

tends to the Gaussian curvature K(x) as U contracts to x.

Here the area of n(U) has a sign according to whether n preserves orientation
in S2, with respect to the standard orientation on S2 = C ∪ {∞}.

Proof. Let r : V → U ⊆ Σ be a parametrisation. The area of U is given by∫
V
|ru ∧ rv|dudv =

∫
V

√
EG− F 2dudv.

The area of n(U) is given by ∫
V
|nu ∧ nv|dudv,

however to find the signed area we instead compute∫
V
n · (nu ∧ nv)dudv.

The vector nu∧nv points in the direction of n or in the opposite direction, so taking
the indicated dot product with the unit vector n gives the correct sign. Now

n · (nu ∧ nv) =
(ru ∧ rv) · (nu ∧ nv)

|ru ∧ rv|

=
(ru · nu)(rv · nv)− (ru · nv)(rv · nu)

|ru ∧ rv|

=
LN −M2

√
EG− F 2

Thus the stated quotient is ∫
V

LN−M2
√
EG−F 2

dudv∫
V

√
EG− F 2dudv

.
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In the limit, by continuity, as U shrinks to x, V shrinks to the preimage of x, and
the integral tends to the value at x, which is

LN −M2

EG− F 2
= K

as claimed. �
Corollary 5.13. Suppose Σ is convex and compact. Then∫

Σ
KdA = 4π.

Proof. The Gauss map is a bijection in this case. KdA = area(n(dA)),
∫
ΣKdA =∫

Σ area(n(dA)) which is the area of the unit sphere. �
This is a remarkable corollary in itself. Think of all the possible convex compact

surfaces one could make by deforming a 2-sphere. The curvature can be highly
variable. Nevertheless the integral of the curvature always conspires to be 4π.
Pretty-pretty-pretty good. (Said in Curb Your Enthusiasm style.)

5.5. The Theorema Egregium of Gauss. The theorem of this section is so re-
markable that even Gauss thought so, and he called it the Theorema Egregium,
which is latin for ‘remarkable theorem’. Recall that the principal curvatures are
defined in terms of both the first and second fundamental form. The second fun-
damental form was measuring how a surface curves away from its tangent plane
near a point, and it seems like such a notion is vital for the study of curvature.
Amazingly, the product of the principal curvatures is intrinsic.

Theorem 5.14 (Gauss). The Gaussian curvature is an intrinsic quantity. That
is, it can be computed purely in terms of the coefficients of the first fundamental
form and their derivatives. Another way to say this is that the Gaussian curvature
is invariant under local isometries.

The Gaussian curvature has less information than the two principal curvatures
separately, but it has the great advantage that it only depends on the first funda-
mental form, so makes sense as a notion on an abstract smooth surface with a first
fundamental form, i.e. if we defined a surface which is not embedded in R3, but
exists as an abstract notion.

Proof. We begin by defining the Christoffel symbols Γk
ij = Γk

ji, where each of i, j, k

is from {1, 2}. Recall that {ru, rv,n} is a basis for TR3 at each point of a surface
Σ. Therefore we can write the second derivatives at each point in terms of this
basis.

ruu = Γ1
11ru + Γ2

11rv + Ln

ruv = Γ1
12ru + Γ2

12rv +Mn

rvv = Γ1
22ru + Γ2

22rv +Nn

Note the appearance of L,M and N as the coefficients of n, by their definitions.
Note that the Γk

ij are also functions of (u, v).
Our proof is in two steps:
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(1) Express the Christoffel symbols in terms of the coefficients E,F and G of
the first fundamental form.

(2) Express the Gaussian curvature in terms of the Christoffel symbols.

Combining these two completes the proof of the theorem. The first step is
accomplished in the following lemma.

Lemma 5.15. The Christoffel symbols can be expressed in terms of the coefficients
of the first fundamental form, as follows.(

Γ1
11

Γ2
11

)
=

(
E F
F G

)−1( 1
2Eu

Fu − 1
2Ev

)
(
Γ1
12

Γ2
12

)
=

(
E F
F G

)−1( 1
2Ev
1
2Gu

)
(
Γ1
22

Γ2
22

)
=

(
E F
F G

)−1(
Fv − 1

2Gu
1
2Gv

)
Proof of Lemma 5.15. Start with E = ru · ru. Differentiating yields

1

2
Eu = ruu · ru = Γ1

11E + Γ2
11F.

In a similar vein we compute the derivatives of the first fundamental form coeffi-
cients.

1

2
Ev = ruv · ru = Γ1

12E + Γ2
12F

Fu = ruu · rv + ru · ruv = Γ1
11F + Γ2

11G+ Γ1
12E + Γ2

12F

Fv = ruv · rv + ru · rvv = Γ1
12F + Γ2

12G+ Γ1
22E + Γ2

22F

1

2
Gu = ruv · rv = Γ1

12F + Γ2
12G

1

2
Gv = rvv · rv = Γ1

22F + Γ2
22G.

Rearranging yields the claimed equations:(
1
2Eu

Fu − 1
2Ev

)
=

(
E F
F G

)(
Γ1
11

Γ2
11

)
(

1
2Ev
1
2Gu

)
=

(
E F
F G

)(
Γ1
12

Γ2
12

)
(
Fv − 1

2Gu
1
2Gv

)
=

(
E F
F G

)(
Γ1
22

Γ2
22

)
This completes the proof of the lemma. �

We continue with the proof of the Theorema Egregium; we now need to show
step (2), that the Gaussian curvature can be expressed in terms of the Christoffel
symbols.
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Next we recall the matrix of the negative of the shape operator −S : v 7→ −∇vn,
which acts on the tangent space of a surface, sending

ru 7→ nu = a11ru + a21rv

rv 7→ nv = a12ru + a22rv

So nu = −S(ru), nv = −S(rv). The matrix of the negative of the shape operator
with respect to the basis {ru, rv} is(

a11 a12
a21 a22

)
.

We saw before that this matrix is

−Z = −
(
E F
F G

)−1(
L M
M N

)
=

1

EG− F 2

(
FM −GL FN −GM
FL− EM FM − EN

)
.

Therefore

nu =
1

EG− F 2

(
(FM −GL)ru + (FL− EM)rv

)
and

nv =
1

EG− F 2

(
(FN −GM)ru + (FM − EN)rv

)
.

Now for the coup de grace. We equate (ruu)v = (ruv)u, in particular the coeffi-
cients of ru and rv in this equation.

Take
ruu = Γ1

11ru + Γ2
11rv + Ln

and differentiate:

(ruu)v =(Γ1
11)vru + Γ1

11ruv + (Γ2
11)vrv + Γ2

11rvv + Lvn+ Lnv

=(Γ1
11)vru + Γ1

11(Γ
1
12ru + Γ2

12rv +Mn) + (Γ2
11)vrv

+ Γ2
11(Γ

1
22ru + Γ2

22rv +Nn) + Lvn+ L(−S(rv)).

This is equal to (ruv)u = (Γ1
12ru + Γ2

12rv +Mn)u, which is:

(ruv)u =(Γ1
12)uru + Γ1

12ruu + (Γ2
12)urv + Γ2

12ruv +Mun+Mnu

=(Γ1
12)uru + Γ1

12(Γ
1
11ru + Γ2

11rv + Ln) + (Γ2
12)urv

+ Γ2
12(Γ

1
12ru + Γ2

12rv +Mn) +Mun+M(−S(ru)).

Recall that S(ru) = a11ru + a21rv and S(rv) = a12ru + a22rv. Equate coefficients
of rv to get

Γ1
11Γ

2
12 + (Γ2

11)v + Γ2
11Γ

2
22 + La22 = Γ1

12Γ
2
11 + (Γ2

12)u + Γ2
12Γ

2
12 +Ma21.

Then note that

La22 −Ma21 =
LFM − LEN −MFL+M2E

EG− F 2
=

−E(LN −M2)

EG− F 2
= −EK.

So
EK = (Γ2

11)v − (Γ2
12)u + Γ1

11Γ
2
12 + Γ2

11Γ
2
22 − Γ2

12Γ
2
12 − Γ1

12Γ
2
11.

This expresses the Gaussian curvature K in terms of the Christoffel symbols and
E, so completely in terms of the first fundamental form. This completes the proof.
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Since, for any local isometry, we have coordinates with respect to which the first
fundamental forms are the same, this proves that the Gaussian curvature is an
invariant of local (and therefore global) isometries. �
Remark 5.16. The Gauss equations can be derived in a similar fashion to the
equation above, by equating coefficients of ru and rv in (ruu)v = (ruv)v and (rvv)u =
(ruv)v. They are, in addition to the equation above:

FK = (Γ1
12)u − (Γ1

11)v + Γ2
12Γ

2
12 − Γ2

11Γ
1
22

FK = (Γ2
12)v − (Γ2

22)u + Γ1
12Γ

2
12 − Γ1

22Γ
2
11

GK = (Γ1
22)u − (Γ1

12)v + Γ1
11Γ

1
22 + Γ1

12Γ
1
22 − Γ2

12Γ
1
22 − Γ1

12Γ
1
12

Exercise 5.17. The formula for K becomes a lot simpler when F = 0. Show that
in this case

K =
−1

2
√
EG

(
∂

∂u

(
Gu√
EG

)
+

∂

∂v

(
Ev√
EG

))
,

and then use this formula to compute the Gaussian curvature of the sphere

r(θ, ϕ) = (a cos θ cosϕ, a sin θ cosϕ, a sinϕ)

Note on exam question 4: Saying that two surfaces have different first fundamen-
tal forms with some coordinates does not imply that the surfaces are not isometric.
One has to show that the surfaces could not have the same first fundamental forms
after any change of coordinates. This is where the Gaussian curvature comes in.
As an invariant, it is the same in all parametrisations. Therefore is one surface has
constant K = 0 and another has constant K = 1, those surfaces cannot be locally
isometric.

Exercise 5.18. Do Carmo Section 4-3, Questions 1, 3, 6, 8, 9.
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