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7. The Gauss-Bonnet Theorem

The Gauss-Bonnet theorem combines (almost) everything we have learnt in one
theorem.

• Curves in R3 (especially those living on surfaces in R3).
• Euler characteristic (topological invariant leading to topological classifica-
tion of compact surfaces.)

• Gaussian curvature (intrinsic local isometry invariant defined from first and
second fundamental forms, really only depends on 1st fundamental form.

• Lengths, angles and areas.
• Geodesics.

7.1. Statement of local Gauss-Bonnet theorem. Let r : U → Σ be a smooth
patch of a surface Σ ⊂ R3, where U ⊆ R2 is open, and suppose that α : [a, b] → Σ
is a piecewise smooth simple closed curve in Σ.

(This means: there exist a = t0 < t1 < t2 < · · · < tn−1 < tn = b, with
α(a) = α(b), while for t ̸= s ∈ (a, b) we have α(t) ̸= α(s), such that α is continuous,
and α| : [ti, ti+1] → Σ is smooth for i = 0, . . . , n− 1, with one-sided smoothness at
the endpoints.)

So α(I) is a curvilinear polygon, and let R ⊂ Σ be a region enclosed by α(I).

Theorem 7.1 (Local Gauss-Bonnet theorem).∫
R
K dA = (2− n)π −

∫
α
κg ds+

n∑
i=1

θi,

where

• K is the Gaussian curvature of Σ.
1
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• κg is the geodesic curvature of α.
• s is the arc length.
• θ1, . . . , θn are the internal angles of the polygon (in radians!).

7.2. Area of geodesic triangles.

Corollary 7.2. Let △ be a geodesic triangle (all the sides are geodesics). Then

π +

∫
R
K dA = θ1 + θ2 + θ3,

where θ1, θ2, θ3 are the internal angles of the triangle.

Example 7.3. (1) On a sphere of radius 1, we have

3∑
i=1

θi = π + area(△).

(2) In the plane,
∑3

i=1 θi = π.
(3) On a surface of constant curvature −1 (like the pseudo sphere), we have

3∑
i=1

θi = π − area(△).

In negatively curved space, the largest area a triangle can have is π, and
for that we would need all 3 angles to be zero. Even when the sides get
a very long, geodesics are curved in towards each other, so the area stays
quite small.

7.3. Special case of the plane. Consider the special case of the local Gauss-
Bonnet theorem in the plane. Now K ≡ 0, so the theorem becomes:

(2− n)π −
∫
α
κg ds+

n∑
i=1

θi = 0.

We rewrite it by defining ϑi to be the exterior angle of each vertex of the polygon.

This is defined, for the vertex v = α(ti), by the angle from limt→t−i

α(t)−α(t0)
t−t0

to

limt→t+i

α(t)−α(t0)
t−t0

, measured anticlockwise as positive. Then π − θi = ϑi, so angles

greater than π are measured as negative. We therefore obtain∫
α
κg ds+

n∑
i=1

ϑi = 2π.

To prove this, we use a lemma from Chapter 1. The geodesic curvature of a regular
curve in the plane is the same as the planar curvature from Chapter 1. We showed,
as part of the proof of the Fundamental Theorem of Planar Curves, that

κg(t) = k(t) = ϕ′(t),
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where ϕ is the angle of the tangent vector α′(s) to our curve α measured anticlock-
wise from the positive x-axis. Therefore∫ ti+1

ti

κg dt =

∫ ti+1

ti

ϕ′(t)dt = lim
t→t−i+1

ϕ(t)− lim
t→t+i

ϕ(t).

The total change in angle for a simple closed curve which is parametrised in the
anticlockwise direction is 2π. The change in angle over the smooth parts is the
integral of the geodesic curvature:∫

α
κg ds =

n−1∑
i=0

∫ ti+1

ti

ϕ′(t)dt =

n−1∑
i=0

lim
t→t−i+1

ϕ(t)− lim
t→t+i

ϕ(t).

We also have
ϑi = lim

t→t+i

ϕ(t)− lim
t→t−i

ϕ(t).

These formulae should be correctly interpreted at t0 and tn, where α(t0) = α(tn).
Thus the sum ∫

α
κg ds+

n∑
i=1

ϑi

gives the total change in angle of the tangent vector around the entire simple closed
piecewise smooth curve and we obtain 2π as required (it could be some other
multiple of 2π if the orientation were changed or the curve had self intersections -
consider a figure eight curve, for example. For that the total change in angle is 0.)

7.4. Global Gauss-Bonnet theorem. Here is our plan: 1) state the global
Gauss-Bonnet theorem and deduce it from the local theorem. 2) Prove the lo-
cal Gauss-Bonnet theorem.

Theorem 7.4 (Global Gauss-Bonnet). Let Σ be a compact smooth surface in R3.
Then ∫

Σ
K dA = 2πχ(Σ).

Recall that χ(Σ) = V − E + F is the Euler characteristic of Σ, computing
using a subdivision with V vertice, E edges and F faces. Recall that the Euler
characteristic is independent of the choice of subdivision, and is invariant under
homeomorphisms of surfaces.

Example 7.5. (i) Any smooth surface in R3 which is homeomorphic to S2 sat-
isfies ∫

Σ
K dA = 4π.

We already saw this for convex surfaces using the Gauss map. The surface
need not be isometric to S2 for this relation to hold.

(ii) We have ∫
T
KdA = 0

for any smooth surface T which is homeomorphic to the torus.
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The global Gauss-Bonnet theorem is a truly remarkable theorem! It was remark-
able that K is an invariant of local isometries, when the principal curvatures are
not. But K depends strongly, at a given point, on the first fundamental form. The
fact that the integral of the Gaussian curvature conspires to be a purely topological
invariant is somewhat incredible.

Homeomorphic surfaces can be very far from locally isometric. For example,
imagine blowing a surface up like a balloon; lengths of curves get much bigger.
However this “spreads out” the Gaussian curvature, so the integral is still the
same. This is a nice way to think about it: there’s a fixed amount of curvature
and it can be smeared around the compact surface in different ways depending on
how one deforms it, but one cannot create or destroy curvature without changing
the topological type.

There are many more theorems of this type in mathematics, where local differ-
ential geometry concepts integrated over a manifold assemble to give a topological
quantity, inspired by the archetypal Gauss-Bonnet theorem.

Example 7.6. The sphere of radius a, Σa.∫
Σa

K dA =
1

a2
· 4πa2 = 4π = 2πχ(S2).

Suppose r : U → Σ is a patch which covers all but a union of curves. Then we
can compute

∫
ΣKdA directly by computing∫
U

LN −M2

EG− F 2
·
√

EG− F 2dudv =

∫
U

LN −M2

√
EG− F 2

dudv.

Example 7.7. Consider the torus with r : U → Σ, where

r(u, v) = ((a+ b cos v) cosu, (a+ b cos v) sinu, b sin v).

where 0 < b < a. We computed before that

K =
cos v

a+ b cos v
.

Also
√
EG− F 2 = a+ b cos v, so the integral of the Gaussian curvature is∫ 2π

0

∫ 2π

0
cos v dudv = 2π[sin v]20π = 0 = 2πχ(Σ).

Proof of global Gauss-Bonnet theorem from local Gauss-Bonnet theorem. First, sub-
divide Σ into curvilinear polygons Pj , with j = 1 . . . F , such that each Pj ⊂ rj(Uj)
for some smooth patch rj : Uj → Σ. Let V,E, F be the number of vertices, edges
and faces respectively. We sum the local Gauss-Bonnet equation for each polygon,
over all the polygons.

The Gaussian curvature component is easy:∑∫
Pj

K dA =

∫
Σ
K dA.

Suppose that Pj has nj edges. Then∑
j

(2− nj)π = 2πF − 2πE,
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since each edge is counted twice in this summation, as it belongs to two polygons.
The terms

∫
κgds sum to zero since each edge occurs twice with opposite ori-

entation. (Here we use that any compact surface in R3 is orientable. But in fact
we can subdivide a non-orientable surface using geodesic polygons, so the geodesic
curvature component can be made to vanish in the non-orientable case too. The
Gauss-Bonnet theorem holds for abstract compact surfaces, not just those con-
tained in R3, which we have studied in this course.)

Finally ∑
j

n∑
i=1

θji = 2πV ;

this is the sum of the internal angles at a vertex of all the polygons of which that
vertex is part. For each vertex, the sum is 2π.

Thus, putting it all together, we have∫
Σ
K dA = 2πF − 2πE + 0 + 2πV = 2πχ(Σ).

�

It remains to prove the local Gauss-Bonnet theorem.

7.5. Proof of local Gauss-Bonnet theorem. We begin by proving the simpler
version below.

Theorem 7.8. Let α be a smooth simple closed curve on a patch r(U) of a surface
Σ, with anticlockwise parametrisation, enclosing a region R. Then∫

α
κg ds = 2π −

∫
R
K dA.

Anticlockwise means if you put the thumb of your right hand on an interior point
of R, aiming in the direction of the normal vector, then your fingers curl around
in the direction of the orientation on α.

Example 7.9. We can use this to compute the area of the spherical cap S2∩{x =
(x, y, z) ∈ R3 | z ≥ d} for some d ∈ (0, 1).

We recall a computation from the chapter on geometry of curves. The boundary
of such the spherical cap R is given by

α(t) =

(
a cos

( t

a

)
, a sin

( t

a

)
,
√

1− a2
)
,

where a ∈ (0, 1) such that d =
√
1− a2, and t ∈ [0, 2πa]. Then

α′(t) =

(
− sin

( t

a

)
, cos

( t

a

)
, 0

)
.

Note that |α′(t)| = 1, so we have an arc length parametrisation. This gives the
first vector in an orthonormal basis for TR3 at each point on α. Next,

α′′(t) =

(
−1

a
cos

( t

a

)
,−1

a
sin

( t

a

)
, 0

)
.
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The normal vector to the sphere is α(t), and we compute

α(t) ∧ α′(t)

=

(
a cos

( t

a

)
, a sin

( t

a

)
,
√

1− a2
)
∧
(
− sin

( t

a

)
, cos

( t

a

)
, 0

)
=

(
−
√
1− a2 cos

( t

a

)
,−

√
1− a2 sin

( t

a

)
, a

)
.

Recall {α′,n = −α, α′ ∧ n} is an orthonormal basis at each point of α, and that
the geodesic curvature is the component of α′′ in the direction of α′ ∧ n. Thus

kg(t) = α′′(t) · (α ∧ α′)(t) =

√
1− a2

a
=

d√
1− d2

.

We therefore have∫
α
κg ds =

∫ 2πa

0

√
1− a2

a
dt = 2π

√
1− a2 = 2πd.

since t is arc length. Then since the Gaussian curvature is constant and equal to
one, the area of the spherical cap we seek is∫

R
dA =

∫
R
K dA = 2π −

∫
α
κgds = 2π(1− d).

Before proving the theorem we recall Green’s theorem, which is the planar spe-
cialisation of Stokes’ theorem.

Theorem 7.10 (Stokes’ theorem). Let α : [a, b] → R3 be a piecewise smooth simple
closed curve which bounds a smooth regular surface Σ ⊂ R3 with normal vector n,
and let v be a smooth vector field on Σ. Then∫

α
v · α′ dt =

∫
Σ
(∇∧ v) · n dA.

Corollary 7.11 (Green’s theorem). Let α : [a, b] → R2 be a piecewise smooth
simple closed planar curve defined by α(t) = (u(t), v(t)), which bounds a region
S ⊂ R2, and let (P (u, v) and Q(u, v)) be smooth functions R2 → R. Then∫

α
P
du

dt
+Q

dv

dt
dt =

∫
S
Qu − Pv du dv.

Proof. Define v := (P,Q, 0), α(t) := (u(t), v(t), 0), and Σ = S, so that we embed
R2 in R3 as the x-y plane. Note that n = (0, 0, 1). Then apply Stokes’ theorem, to
obtain Green’s theorem. �
Proof of Theorem 7.8. The first step is to find an orthonormal basis for the tangent
space Tr(u,v)Σ at each point of our patch r(U). This is done using Gram-Schmidt
orthonormalisation. You should have learnt this in linear algebra.

The process is as follows. Take a basis, and make the first vector of length one.
Then make the second vector orthogonal to the first, by substracting its components
in the direction of the first. Then make this length one. Now take the third vector,
and make it orthogonal to the new first and second vectors by subtracting its
components in the directions of the new first and second vectors. Now make the
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resulting vector of length one. This describes the process for 3-dimensional vector
spaces: for n-dimensional vector spaces one proceeds inductively. We only need
the process for 2 dimensional vector spaces, so we stop here.

Apply the Gram-Schmidt process to the basis {ru, rv}. So, define

e1 =
ru√
E
.

We then replace rv with rv − (rv · e1)e1 to make it orthogonal to e1. We have

rv · e1 =
rv · ru√

E
=

F√
E
,

so

rv − (rv · e1)e1 = rv −
Fru
E

and

|rv − (rv · e1)e1| = |rv −
Fru
E

| =
√

rv · rv −
2Fru · rv

E
+

F 2ru · ru
E2

=

√
G− F 2

E
.

Therefore we define

e2 =
rv − Fru

E√
G− F 2

E

=
Erv − Fru√
E
√
EG− F 2

.

Now we have an orthonormal basis {e1, e2} for the tangent space at each point of
r(U).

Let β : [a, b] → U be the curve in R2 whose image in the surface is α, i.e.
r ◦ β(s) = α(s) for all s ∈ [a, b], were s is arc length along α. We consider the
integral

I :=

∫
β
e1 · e′2 ds.

We may think of e1(u, v), e2(u, v) as functions of (u, v). We may therefore evaluate
them at a point β(s) ∈ U . By evaluating this integral in two different ways, one
along the curve and one using Green’s theorem, we will obtain the desired result.

First we investigate the integral I along β. Let δ(s) be the angle between α′(s)
and the vector e1 at α(s), with the angle measured anticlockwise.

Then since |α′(s)| = 1 and {e1, e2} is an orthonormal basis, we have

α′(s) = cos δe1 + sin δe2.

Define η := n ∧ α′. So

η := − sin δe1 + cos δe2.

Then

α′′ = δ′(− sin δe1 + cos δe2) + e′1 cos δ + e′2 sin δ

= δ′η + e′1 cos δ + e′2 sin δ.

Thus

κg = α′′ · η = δ′ + (e′1 cos δ + e′2 sin δ) · (− sin δe1 + cos δe2).
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Note that ei ·ei = 1 so ei ·e′i = 0. Also e1 ·e2 = 0 so e′1 ·e2+e1 ·e′2 = 0. Therefore

κg = δ′ − e1 · e′2.

Rearranging

e1 · e′2 = δ′ − κg,

so

I =

∫
β
e1 · e′2 ds =

∫
β
δ′(s) ds−

∫
β
κg ds.

We saw in the section above on the special case of the plane, that∫
β
δ′(s) ds = 2π.

Therefore

I = 2π −
∫
β
κg ds = 2π −

∫
α
κg ds.

Next we want to evaluate I in a different way using Green’s theorem, to obtain∫
R K dA. This will prove the theorem. We have

I =

∫
β
e1 · e′2 ds

=

∫
β
e1 · (u′(e2)u + v′(e2)v) ds

=

∫
β
e1 · (e2)uu′ + e1 · (e2)v)v′ ds

=

∫
β
Pu′ +Qv′ ds

where P = e1 · (e2)u and Q = e1 · (e2)v. By Green’s theorem, we have that I is
equal to the double integral below:

I =

∫
r−1(R)

(Qu − Pv) dudv.

Lemma 7.12. With P and Q as above, we have:

Qu − Pv = K
√

EG− F 2,

where K is the Gaussian curvature and E,F and G are the coefficients of the first
fundamental form.

Using the lemma, we have that

I =

∫
r−1(R)

K
√

EG− F 2 dudv =:

∫
R
K dA

Thus ∫
R
K dA = I = 2π −

∫
α
κg ds

as required. It remains to prove the lemma.
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Proof of Lemma 7.12. This requires computing Qu − Pv. We have:

Qu−Pv = (e1)u·(e2)v+e1·(e2)uv−(e1)v·(e2)u−e1·(e2)uv = (e1)u·(e2)v−(e1)v·(e2)u.

Note that K
√
EG− F 2 = LN−M2

√
EG−F 2

, and recall that this is equal to n · (nu ∧nv).

Here was the computation, which appeared already in the chapter on Gaussian
curvature and the second fundamental form:

n · (nu ∧ nv) =
(ru ∧ rv) · (nu ∧ nv)

|ru ∧ rv|

=
(ru · nu)(rv · nv)− (ru · nv)(rv · nu)

|ru ∧ rv|

=
LN −M2

√
EG− F 2

However we can also compute n as e1 ∧ e2. Therefore

n · (nu ∧ nv) = (e1 ∧ e2) · (nu ∧ nv) = (e1 · nu)(e1 · nv)− (e1 · nv)(e2 · nu).

Now e1 · n = e2 · n = 0, so

e1 · nu = −(e1)u · n
e1 · nv = −(e1)v · n
e2 · nu = −(e2)u · n
e2 · nv = −(e2)v · n.

Making these substitutions yields

K
√

EG− F 2 = ((e1)u · n)((e2)v · n)− ((e1)v · n)((e2)u · n).
This is now looking rather close to

Qu − Pv = (e1)u · (e2)v − (e1)v · (e2)u.
To get rid of the ns, note that ei ·ei = 1 for i = 1, 2, so (ei)u ·ei = 0 and (ei)v ·ei = 0
for i = 1, 2. Thus we may write, for w = u, v, the partial derivatives in coordinates
with respect to the orthonormal basis {e1, e2,n}, as:

(e1)w = ((e1)w · e2)e2 + ((e1)w · n)n
and

(e2)w = ((e2)w · e1)e1 + ((e1)w · n)n.
Then substituting these into the equation to Qu − Pv above, the dot products

e1 · e2 = e1 · n = e2 · n = 0,

so only the n · n terms survive. We arrive at the expression

((e1)u · n)((e2)v · n)− ((e1)v · n)((e2)u · n),

which as we saw above is equal to n·(nu∧nv) which in turn is equal toK
√
EG− F 2.

This completes the proof of the lemma. �
With the proof of Lemma 7.12 complete, this finishes the proof of Theorem 7.8

�
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Now we show how to modify in the case of corners, so α may only be piecewise
smooth and not smooth.

Proof of full local Gauss-Bonnet theorem. To adapt the proof to the case that α
has corners, we revise our first evaluation of the integral I. We showed that

I =

∫
β
δ′(s) ds−

∫
β
κg ds.

But instead of
∫
β δ

′(s) ds = 2π we have∫
β
δ′(s) ds = 2π −

n∑
i=1

ϑi,

where as in Section 7.3 above the ϑi are the exterior angles at the corners. Since
θi = π − ϑi, this becomes ∫

β
δ′(s) ds = (2− n)π +

n∑
i=1

θi.

Therefore we have

I = (2− n)π −
∫
α
κg ds+

n∑
i=1

θi,

which is the right hand side of the local Gauss-Bonne theorem as required. �
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