
M435: INTRODUCTION TO DIFFERENTIAL GEOMETRY

MARK POWELL

Contents

8. Hyperbolic Geometry 1
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8. Hyperbolic Geometry

The hyperbolic plane is a very interesting and important example of a surface,
and we will study its geometry for the remainder of the semester.

We need a paradigm shift! Instead of looking at a surface in R3, and computing
its first fundamental form, we will take a surface and specify the first fundamental
form.

There will be no 2nd fundamental form, no principal curvatures, however in-
trinsic notions like length, angle, area, Gaussian curvature and geodesics all make
sense still, since we derived formula and equations for these in terms of the first
fundamental form coefficients only. These formulae can now become the definitions.

8.1. The Poincaré unit disc model. Define

D := {(x, y) ∈ R2 |x2 + y2 = 1} ∼= {z = x+ iy ∈ C | zz = 1}

with first fundamental form
4(dx2 + dy2)

(1− x2 − y2)2
.

That is E = G = 4/(1− x2 − y2)2 and F = 0.
This is the Poincaré unit disc model for the hyperbolic plane.

1
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8.2. The upper half plane model. Define

H := {(u, v) ∈ R2 | v > 0} = {w = u+ iv ∈ C | v > 0},
with first fundamental form

du2 + dv2

v2
,

so E = G = 1/v2 and F = 0.
This is the upper half plane model for the hyperbolic plane.
We use complex numbers in these definitions because they enable us to simplify

several of the formulae and calculations which are coming up.
Our aim for this last small section is to understand the following things in D and

H:

• Gaussian curvature.
• Isometries.
• Geodesics.
• Lengths, angles and areas.

8.3. Isometries. Recall that in geometry we consider surfaces up to isometry,
that is modulo the equivalence relation given by Σ1 ∼ Σ2 if and only if there is an
isometry g : Σ1 → Σ2.

Lemma 8.1. H and D are isometric.

Proof. Define a function
f : H → D

w 7→ w−i
w+i = z.

Recall that w = u+ iv ∈ H and z = x+ iy ∈ D.
First note that |w − i| < |w + i| if and only if |z| < 1 i.e. z ∈ D. In particular

note that this function on all of C maps the real axis to the unit circle.
In coordinates, we can write

z =
u+ iv − i

u+ iv + i
=

u2 + v2 − 1− 2ui

u2 + (v + 1)2
.

So

x =
u2 + v2 − 1

u2 + (v + 1)2
; y =

−2u

u2 + (v + 1)2
.

When restricted to v > 0, this gives a bijection to D. To see this last claim more
clearly, note that there is an inverse function in complex coordinates

w = i

(
1 + z

1− z

)
.

So when |z| < 1 this is defined and gives an inverse to z = w−i
w+i .

Formally we can write
dz = dx+ idy

dw = du+ idv

so that
|dz|2 = dx2 + dy2
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|dw|2 = du2 + dv2.

By the chain rule

|dw|2 =
∣∣∣∣dwdz

∣∣∣∣2 |dz|2.
So the first fundamental form of the unit disc model D is expressed as

4|dz|2

(1− |z|2)2

and the first fundamental form of H is given by

|dw|2

v2
=

−4|dw|2

(w − w)2
.

For the last equality note that

w − w = u+ iv − (u− iv) = 2iv

so

v2 = (w − w)2/(−4).

Now we compute that since

w = i

(
1 + z

1− z

)
we have

w − w =
i(1 + z)

1− z
+

i(1 + z)

1− z
=

2i(1− |z|2)
(z − 1)(z − 1)

using that zz = |z|2. Therefore
1

(w − w)2
=

(z − 1)2(z − 1)2

−4(1− |z|2)2
.

Next we compute
∣∣dw
dz

∣∣2, since we also need to substitute this into

|dw|2

v2
= −4|dz|2

∣∣∣∣dwdz
∣∣∣∣2 (z − 1)2(z − 1)2

−4(1− |z|2)2
.

Differentiating w = i(1+z)
1−z yields

dw

dz
=

2i

(z − 1)2
.

Thus ∣∣∣∣dwdz
∣∣∣∣2 = dw

dz

dw

dz
=

2i

(z − 1)2
· −2i

(z − 1)2
=

4

(z − 1)2(z − 1)2
.

Substituting this into the expression above yields

|dw|2

v2
= −4 · |dz|2 · 4

(z − 1)2(z − 1)2
· (z − 1)2(z − 1)2

−4(1− |z|2)2
=

4|dz|2

(1− |z|2)2

as required. Thus since the map f : H → D given is a diffeomorphism which
preserves first fundamental form, f is an isometry and H and D are isometric. �
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We now focus on the model given by H for a while. We investigated an isometry
already. In fact we can understand all possible isometries H → H.

Proposition 8.2. All isometries of H are generated by (i.e. are compositions of)
the Möbius transformations

w 7→ aw + b

cw + d
= z,

where a, b, c, d ∈ R and ad−bc > 0, and the map w 7→ −w, or u+iv 7→ −(u+ iv) =
−u+ iv.

The last map is reflection in the imaginary axis. The Möbius transformations
have inverse functions

w =
dz − b

−cz + a
.

One ought to think of 2× 2 matrices over R, and their inverses.
We don’t have time to do many proofs in this section. The check that these are

isometries is straightforward and similar to the computation above showing that D
and H are isometric. The fact that all isometries arise from compositions of these
two is harder.

The isometries of H (in fact of any space) form a group, with multiplication by
composition.

The isometries act on H, in fact they act transitively, which means that for any
x, y ∈ H there exists an isometry f : H → H such that f(x) = y. To see this note
that z 7→ bz + a sends i to a + bi. Thus if x = a + bi and y = c + di we choose
f1 : H → H so that x 7→ i, i.e. z 7→ (z − a)/b. Next we choose f2 : H → H which
sends i → y, i.e. z 7→ dz + c. Then f2 ◦ f1 = dz+bc−ad

b is a Möbius transformation
so is an isometry and it maps x to y as desired.

8.4. Gaussian curvature. Recall, from the proof of the theorema egregium, that
Gaussian curvature is intrinsic, we derived the formula for K, the Gaussian curva-
ture, when F = 0. This formula now serves as the definition for K.

K =
−1

2
√
EG

(
∂

∂u

(
Gu√
EG

)
+

∂

∂v

(
Ev√
EG

))
.

Into this formula we substitute E = G = 1
v2
. We have:

Gu = 0; Ev =
−2

v3
;

1√
EG

= v2.

Therefore

K =
−v2

2

(
∂

∂v

(
−2

v3
· v2

))
= v2 · ∂

∂v

(
1

v

)
= v2 · − 1

v2
= −1.

The Gaussian curvature is constant and equal to −1.
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8.5. Geodesics. Recall the geodesic equations once again:

(1)
d

dt
(Eu′ + Fv′) =

1

2
(Eu(u

′)2 + 2Fuu
′v′ +Gu(v

′)2)

(2)
d

dt
(Fu′ +Gv′) =

1

2
(Ev(u

′)2 + 2Fvu
′v′ +Gv(v

′)2)

(3) E(u′)2 + 2Fu′v′G(v′)2 = 1

With E = G = 1/v2 and F = 0 we have Eu = Gu = 0. Equation (1) yields

d

dt

(
u′

v2

)
= 0

Equation (2) yields

d

dt

(
v′

v2

)
= − 1

v3
(u′2 + v′2).

Equation (3) becomes
1

v2
(u′2 + v′2) = 1.

Substituting (3) into (2) we have

d

dt

(
v′

v2

)
==

1

v
.

Then we perform the differentiations on the left hand side:

d

dt

(
v′

v2

)
=

v′′v − 2v′2

v3
,

so that we have an equation

v′′v + v2 − 2v′2 = 0.

from equations (2) and (3) Similarly, turning back to equation (1), we have

d

dt

(
u′

v2

)
=

u′′v2 − 2vu′v′

v4
,

so that equation (1) becomes

u′′v2 − 2vv′u′.

We will see that any geodesic in H is of two forms, which are given below. Type
(I) is defined by

u(t) =
1

C
tanh(t) +A; v(t) =

1

C
sech(t).

where C > 0 and A are constants.
Type (II) is a curve of the form

u(t) = A; v(t) = et.

Exercise 8.3. Check that the curves specified by these functions u and v above
give solutions to the geodesic equations.
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The type (I) geodesics are semicircles with centre (A, 0) on the real axis and
radius 1/C, since

(u−A)2 + v2 =
1

C2
(tanh2(t) + sech2(t)) =

1

C2
.

They are just semicircles because only the upper halves lie in the upper half plane.
The type (II) curves are vertical lines above u = A. Recall that through any

point there is a unique geodesic in a given direction. We therefore have all the
geodesics of H, since one can always find one of curves of either type (I) or (II)
going through a given point with a given tangent direction. So these must be the
unique curves.

All geodesics are semicircles with centre on the real axis or vertical half-lines, or
segments of these two. Note that horizontal lines are not geodesics.

8.6. Hyperbolic triangles. These are triangles in H whose sides are geodesics.
We allow the vertices to lie on the real axis, and call these (singly, doubly, triply)
asymptotic triangles.

The local Gauss Bonnet theorem implies, since K ≡ −1, that the area of a
triangle with interior angles θi, i = 1, 2, 3, is given by π −

∑3
i=1 θi. For a triply

asymptotic triangle all angles are zero and the area of the triangle is always π.
Thus we can have triangles with infinite side length but finite volume.

Here is another cool fact from hyperbolic triangles.

Theorem 8.4 (Hyperbolic sine rule). Let △ be a hyperbolic triangle in H with
sides of length A,B,C and let their opposite angles be α, β, γ. Then

sinA

sinhα
=

sinB

sinhβ
=

sinC

sinh γ
.

Unfortunately we have no time for the proof.

8.7. Parallel postulate. In the plane, the parallel postulate states:
Given a straight line L and a point p in R2 not on that line, there is a unique

straight line L′ through P missing L. i.e. P ∈ L′ and L ∩ L′ = ∅.
It was long debated whether this was self-evident and should be an axiom, or if

it required proof, and whether it could be proven from the other Euclidean axioms
of geometry.

The discovery of hyperbolic geometry answered this question in the negative.
Hyperbolic geometry satisfies all the other axioms, but does not satisfy the parallel
postulate. One should replace R2 with H and “straight line” with “geodesic.”

In spherical geometry, there does not exist any such line L′ with the desired
properties. So existence fails. In hyperbolic geometry, there are infinitely many
such lines. So uniqueness fails.

We have already discussed spherical geometry; note that no two great circles
are disjoint. To see the claim in hyperbolic geometry, take L to be a vertical line.
Then for any P , there are (infinitely) many semicircles with centre on the real axis
which pass through P , all of which miss the first vertical line.

Thus the parallel postulate is not self-evident, and it certainly cannot be proven
from the other axioms.
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8.8. Area of a subset of D. For a change we go back to the Poincaré unit disc
model D. Let us compute the area of a disc in D whose radius is a, where 0 < a < 1.

First convert to polars:

4(dx2 + dy2)

(1− x2 − y2)2

becomes
4(dr2 + r2dθ2)

(1− r2)2

Since E = 4
(1−r2)2

and G = 4r2

(1−r2)2
, we obtain√

EG− F 2 =
4r

(1− r2)2
.

Integrating this over the desired areas leaves us with the integral

A =

∫ 2π

0

∫ a

0

4r

(1− r2)2
drdθ = 4π

∫ a

0

2r

(1− r2)2
dr.

Using the substitution u = 1− r2 this gives

4π

∫ 1

1−a2

1

u2
du =

4πa2

1− a2
.

Note that as a → 1, A → ∞. Although the Poincaré unit disc might look to have
finite area, the first fundamental form we imposed on it means it has infinite area.

Computing the area of subsets of H is very similar.

8.9. Computing length in H. One way to compute lengths in H is using isome-
tries. The distance between any two points is defined to be the length of the
shortest path between them. So find a segment of a geodesic which goes through
both points and compute its length. This could be done by finding an arc length
parametrisation (as given in the section above on geodesics) and looking at the
change in the parameter. On the other hand, we can make use of isometries.
Given x, y ∈ H, find an isometry which sends x to i, and sends y to the imaginary
axis, say to λi for some λ ∈ R>0.

The distance between i and λi along the path u(t) = 0, v(t) = t, with t ∈ [1, λ]
(or [λ, 1], but assume for now that 1 < λ). Since u′ = 0 and v′ = 1, the length is:∫ λ

1

√
Eu′2 + 2Fu′v′ +Gv′2 dt =

∫ λ

1

√
1

v2
dt =

∫ λ

1

√
1

t2
dt = [log(t)]λ1 = log λ.

If 0 < λ < 1 then the answer is − log λ, but in that case log λ < 0.
So then one must find an isometry of H, namely a Möbius transformation of the

form

z 7→ az + b

cz + d

with ad − bc > 0, such that x 7→ i and y 7→ λi. Then the distance from x to y is
| log λ|.
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8.10. Angles in H. Since we have E = G and F = 0, the first fundamental form
is conformal, and angles in H are the same as angles in the underlying model open
subset of R2.
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