
SEMINAR ON MAPPING CLASS GROUPS OF 3-MANIFOLDS

ORGANISED BY RACHAEL BOYD AND MARK POWELL

Our goal is to understand what is known about mapping class groups, and more
generally diffeomorphism groups, of compact 3-manifolds. To begin with, we will
focus on mapping class groups, i.e. the connected components of the diffeomorphism
groups. We will restrict ourselves to orientable 3-manifolds, in the first instance.

After the overview talk we will jump straight into examples of known mapping
class groups. Talks should state the results, and then go into as much detail as
time allows on the ideas in the proof.

An ancillary aim of the seminar is to begin to produce a survey on diffeomor-
phism groups of 3-manifolds. There has been exciting recent progress, meaning
we have an excellent understanding of the mapping class groups of all 3-manifolds.
But it is spread throughout the literature, and there is a need for a coherent lo-
calised description. As a first step towards this target, each speaker should type up
the notes from their talk. We will share a communal Overleaf document for this
purpose.

1. Overview and basic definitions, (Rachael Boyd, Oct 3):
Give some basic definitions: diffeomorphism groups, isometry groups, map-
ping class groups. Describe relation between them and state weak and strong
generalised Smale conjecture. Mention that both maps in the composition
Diff(M) → PL(M) → Homeo(M) are homotopy equivalences. This uses the
Smale conjecture, and smoothing theory. State the goals of the seminar.

2. Example: S3, (Isacco Nonino, Oct 10):
Give an overview of Cerf’s proof that every orientation-preserving diffeomor-
phism of S3 is isotopic to the identity, i.e. π0(Diff+(S3)) = {0}, and π0(Diff(S3)) ∼=
Z/2 [Cer68]. There are alternative proofs by Laudenbach and Eliashberg (see
Geiges-Zehmisch [GZ10]). Discuss the Smale conjecture Diff(S3) ≃ O(4) [Hat83].

3. Example: S1 × S2, (Daniel Galvin, Oct 17):
Explain the computation of the mapping class group of S1×S2 by Gluck [Glu61;
Glu62]. Discuss the homotopy type of Diff(S1 × S2) ≃ O(2) × O(3) × ΩO(3)
due to Hatcher [Hat81]; note that he posted a rewrite of his original paper on
his website.

4. Example: Lens spaces, (Brendan Owens, Oct 24):
Explain the computation of the mapping class groups of lens spaces due to Bona-
hon [Bon83].

5. Example: Elliptic 3-manifolds, (Philipp Bader, Oct 31):
Describe the classification of elliptic 3-manifolds. Discuss mapping class groups
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of elliptic 3-manifolds, namely those with finite fundamental groups. See Hong–
Kalliongis–McCullough–Rubinstein [Hon+12] for an overall discussion and ref-
erences, which include work of Asano [Asa78], Rubinstein [Rub78; Rub79],
Boileau–Otal [BO86], Rubinstein–Birman [RB84]. Describe how to compute
the isometries of such 3-manifolds. Mention the generalised Smale conjecture
for these manifolds, which has now been proven [Hon+12].

6. Example: Haken 3-manifolds, (Mark Powell, Nov 7):
Define Haken 3-manifolds (known as sufficiently large 3-manifolds in the 1970s
literature). Present Waldhausen’s results on mapping class groups of Haken 3-
manifolds M , in particular that the map π0(Diff(M)) → π0(hAut(M)) is an
isomorphism [Wal68] (see also [Sco72]). Discuss that the latter coincides with
Out(π1(M)). Mention the work of Hatcher [Hat76] and Ivanov [Iva76], who
showed that in fact Diff(M) → hAut(M) is a homotopy equivalence. Johannson
[Joh79] showed that ‘simple’ Haken 3-manifolds (those with trivial JSJ decom-
position) have finite mapping class groups, and McCullough [McC91] showed in
general they are finitely presented, and investigated other finiteness properties.

7. Example: Hyperbolic 3-manifolds, (John Nicholson, Nov 14):
Discuss Mostow rigidity [Mos68]. For Haken hyperbolic 3-manifolds, Wald-
hausen’s results [Wal68] compute the mapping class groups. Discuss the work of
Gabai [Gab97; Gab01] and Gabai–Meyerhoff–Thurston [GMT03] on completing
the proof that π0(Diff(M)) ∼= π0(Isom(M)).

8. JSJ decompositions and irreducible 3-manifolds, (Csaba Nagy, Nov 21):
Follow Jaco lectures [Jac80] and exposition in Aschenbrenner, Friedl and Wilton
[AFW15], or Hatcher’s notes on classification of 3-manifolds. State the JSJ
Decomposition Theorem, and combine it with the Elliptisation Theorem and
the Hyperbolisation Theorem to get the Geometrisation Theorem. Include ex-
amples. Discuss how to use the JSJ theorem together with the knowledge of
the mapping class groups of the geometric pieces to compute the mapping class
groups of irreducible 3-manifolds.

9. Reducible 3-manifolds, (Weizhe Niu, 28 Nov):
Discuss how to compute the mapping class group of a reducible 3-manifold in
terms of the mapping class groups of the irreducible summands in the prime
decomposition, plus the number of S1 × S2 prime summands. The question
of finite presentation is addressed in Hatcher–McCullough [HM90]. References
include Cesar de Sa–Rourke [CR79], Hendricks–Laudenbach [HL84], Hendricks–
McCullough [HM87], Brendle–Broaddus–Putman [BBP23]. Focus on the case of
#kS1 × S2, following [Lau73; Lau74; BBP23].
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isotopie. Vol. No. 12. Astérisque. With an English summary and table
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