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1. Introduction

Let M be a compact 3-manifold. For most of this survey, M will be closed
(i.e. ∂M = ∅) and irreducible (every 2-sphere bounds a 3-ball).

1.1. Symmetries of M . We can consider smooth, PL, and continuous homeo-
morphisms M → M , and these form topological groups which sit in the following
sequence:

Diff(M) → PL(M) → Homeo(M)

Note: the left hand map exists but it is not natural, to define it one must intro-
duce the notion of a piecewise differentiable map. These form a group PDiff(M)

and there are maps Diff(M) → PDiff(M) and PL(M)
≃→ PDiff(M) induced by

inclusion. The map Diff(M) → PL(M) is then the composite of the first map with
the homotopy inverse of the second map.

The resulting map Diff(M) → PL(M) is a homotopy equivalence by smooth-
ing theory, and Hatcher’s proof of the Smale conjecture [Hat83Hat83] and the map
Diff(M) → Homeo(M) is an equivalence by work of Cerf [Cer59Cer59].

We therefore restrict ourselves to looking at Diff(M) equipped with the C∞

topology/Whitney topology – see Kupers [Kup19Kup19] for a detailed introduction to
this topology.

Definition 1.1. The mapping class group of M is:

Γ(M) := π0(Diff(M)) = Diff(M)/isotopy.

Recall f is isotopic to g if there exists a smooth map F : M × I →M such that
F0 = f , F1 = g and Ft :M →M ∈ Diff(M) for all t ∈ I.

Let Diff0(M) be the connected component of Diff(M) which contains the identity
(i.e. all diffeomorphisms ofM which are isotopic to the identity). We will frequently
refer to the following exact sequence:

(1.2) Diff0(M) → Diff(M) → π0(Diff(M)) = Γ(M).

We will also make use to the natural map

(1.3) Γ(M) → Out(π1(M))

which comes from the connecting map in the long exact sequence of homotopy
groups associated to the fibration

Diffp(M) → Diff(M) → Emb({x},M) ≃M,



MAPPING CLASS GROUPS OF 3-MANIFOLDS 3

where {x} is the one point space, and p is a chosen point in M . This map is
not necessarily onto or injective, but we will study situations in which it is an
isomorphism.

There are two more groups of symmetries that we will study. These are:

• hAut(M) := {f : M → M | f is a homotopy equivalence }, the group of
homotopy auto-equivalences of M . Note that Homeo(M) ↪→ hAut(M).

• Isom(M): ifM has a Riemannian metric g, then f ∈ Diff(M) is an isometry
if f∗(g) = g. This has the consequence that f is distance preserving with
respect to g. It follows Isom(M) ↪→ Diff(M).

Putting together all the inclusions, we get the following sequence

(1.4) Isom(M) ↪→ Diff(M) ↪→ Homeo(M) ↪→ hAut(M).

1.2. Geometrisation. A metric g on M is locally homogenous if for all x, y ∈M ,
there exist neighbourhoods x ∈ Ux, y ∈ Uy, and an isometry Ux → Uy. If M

has such a g, then it follows that Isom(M̃) acts transitively on M̃ with the metric
inherited from (M, g). We say that M “admits a geometric structure modelled on

M̃”.

Theorem 1.5 (Thurston’s geometrisation conjecture, proved by Perelman). After
cutting M along a canonical system of tori and annuli (JSJ decomposition), the
pieces all admit a geometric structure that is either Seifert fibred or atoroidal (the
only embedded tori are boundary parallel).

Moreover, the possible geometric structures are classified. There are eight of
them: six are Seifert fibred and there are also hyperbolic and Sol manifolds. Of
these eight, the Sol manifolds are the only ones with nontrivial JSJ decomposition.

We say that M is geometric if it admits one of the eight geometric structures.

1.3. Smale conjecture. The original Smale conjecture was the following state-
ment.

Theorem 1.6 (Smale conjecture, [Hat83Hat83]). Diff(S3) ≃ Isom(S3) ≃ O4.

Conjecture 1.7 (Generalised Smale conjecture). The inclusion Isom(M) ↪→ Diff(M)
is a homotopy equivalence.

This does not hold in general: for example Diff(S1 ×S2) ≃ O3 ×O2 ×ΩO3, and
Isom(S1 × S2) ≃ O3 ×O2.

We can instead consider the following diagram

Diff0(M) // Diff(M) // π0(Diff(M)) = Γ(M)

Isom0(M)

OO

// Isom(M)

OO

// π0(Isom(M))

OO

where Isom0(M) is the connected component of the isometry group Isom(M) con-
taining the identity. Restricting our attention to these connected components, a
version of the Smale conjecture does hold in general:
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Theorem 1.8 (Weak Smale conjecture). If M is geometric, then Isom0(M) ↪→
Diff0(M) is a homotopy equivalence. Moreover the homotopy type is known.

Note: this theorem is due to many people in different cases, and one of our goals
could be to track down all of the references.

The upshot of this theorem is that we can understand Diff(M) in terms of the
mapping class group Γ(M) and the connected component Diff0(M) ≃ Isom0(M).
Sometimes (but not always) we also get that the map on the right of the above
diagram (π0(Isom(M)) → Γ(M)) is a bijection, which can be very useful.

1.4. Overview of this survey.

1.4.1. The 3-manifold S3. By work of Cerf, Γ(S3) ∼= Z/2Z [Cer68Cer68], i.e. every
orientation-preserving diffeomorphism of S3 is isotopic to the identity. We also
know the Smale conjecture Diff(S3) ≃ Isom(S3) ≃ O3 by Hatcher [Hat83Hat83].

1.4.2. The 3-manifold S1 × S2. By work of Gluck [Glu61Glu61, Glu62Glu62], Γ(S1 × S2) ∼=
(Z/2Z)3. We also know that Diff(S1 ×S2) ≃ O(2)×O(3)×ΩO(3) due to Hatcher
[Hat81Hat81].

1.4.3. Lens spaces. The mapping class groups Γ(L(p, q)) were computed by Bona-
hon [Bon83Bon83]. The generalised Smale conjecture 1.71.7 is also true for lens spaces
by work of Waldhausen [Wal68Wal68]. The group of path components of the isometry
groups of lens spaces are therefore in bijection with the mapping class groups, and
these are shown in Tables 1 and 2 of [HKMR12HKMR12].

1.4.4. Haken’s sufficiently large 3-manifolds.

Definition 1.9. A 3-manifold M is Haken when M contains an incompressible
surface Σ, i.e. π1(Σ) ↪→ π1(M) is injective.

Note that the definition of Haken does not fit nicely with the eight geometries in
geometrisation. In older literature, Haken 3-manifolds are called sufficiently large.

Johannson [Joh79Joh79] showed that ‘simple’ Haken 3-manifolds (those with trivial
JSJ decomposition) have finite mapping class groups, and McCullough [McC91McC91]
showed in general they are finitely presented, and investigated other finiteness
properties.

Waldhausen showed that π0(Diff(M)) → π0(hAut(M)) is an isomorphism [Wal68Wal68]
(see also [Sco72Sco72]). The latter coincides with Out(π1(M)). Hatcher [Hat76Hat76] and
Ivanov [Iva76Iva76], showed that in fact Diff(M) → hAut(M) is a homotopy equiva-
lence.

1.4.5. Elliptic 3-manifolds.

Definition 1.10. A 3-manifold M is Elliptic if it admits spherical geometry (M̃
is isometric to S3 with the standard spherical metric). This is true if and only if
π1(M) is finite.
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Elliptic manifolds are one of the 6 Seifert fibred geometries. Note that lens spaces
are elliptic. Elliptic manifolds are the focus of the Hong – Kalliongis – McCullough
– Rubinstein [HKMR12HKMR12] book, where they prove the generalised Smale conjecture
1.71.7 in detail for all the cases. Tables of Γ(M) ∼= π0(Isom(M)) appear in the
introduction.

1.4.6. Hyperbolic 3-manifolds.

Definition 1.11. M is hyperbolic if it admits hyperbolic geometry (M̃ is isometric
to H3 with the standard hyperbolic metric).

For finite volume hyperbolic manifolds, Mostow rigidity [Mos68Mos68] tells us that

π0(Isom(M)) → π0(hAut(M)) ∼= Out(π1(M))

where the first map is a surjective map, which factors through π0(Diff(M)) = Γ(M).
For Haken hyperbolic 3-manifolds, Waldhausen’s results [Wal68Wal68] compute the

mapping class groups. Gabai [Gab97Gab97, Gab01Gab01] showed that Diff0(M) ≃ ∗, and
Gabai–Meyerhoff–Thurston [GMT03GMT03] showed that Γ(M) ↪→ π0(hAut(M)) is injec-
tive. It follows that Γ(M) ∼= Out(π1(M)).

1.5. Other topics. We will also have two talks on cutting up 3-manifolds, and
what we can say about the mapping class group in these cases.

We will first talk about the JSJ decomposition of a 3-manifold into Seifert fibred
and atoroidal pieces (see e.g. [Jac80Jac80]). We will discuss how to use the JSJ theorem
together with the knowledge of the mapping class groups of the geometric pieces
to compute the mapping class groups of irreducible 3-manifolds.

We will then think about reducible manifolds, that is manifolds with nontrivial
prime decomposition. This talk will focus on the case of #k(S1 × S2), following
[Lau73Lau73, Lau74Lau74, BBP23BBP23].

2. The mapping class group of S3

The aim of this section is to provide a broad overview of the study of π0(Diff S3).
We start by discussing Cerf’s celebrated Γ4 = 0 Theorem [Cer68Cer68], giving a sketch
of the original proof and showing how π0(Diff S3) comes into play. We then slide
into contact geometry, explaining Eliashberg’s modern proof of Γ4 = 0 [GZ10GZ10].
This second approach is somehow more direct, and has a beautiful idea at its core.
Lastly, we briefly mention Hatcher’s result [Hat83Hat83] Diff S3 ≃ O(4), which gives a
complete answer to the original problem of understanding the homotopy type of
Diff S3, or at least reducing it to the homotopy type of a standard space.

2.1. Cerf’s Theorem Γ4 = 0.

Theorem 2.1 (Cerf’s Theorem). Γ4 = 0.

We start by explaining the meaning of Γ4 = 0.

Definition 2.2. Let αn : DiffDn → Diff Sn−1 be the natural map given by the
restriction to the boundary. We define Γn as cokerαn, i.e. Diff Sn−1/ Imαn.
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The group Γn carries the structure of an abelian group [Cer68Cer68]. To see this
first note that Diff Sn−1 → Γn factors through π0(Diff Sn−1), so it suffices to see
that π0(Diff Sn−1) is abelian. To see this, note that up to isotopy we can assume
each element of Diff Sn−1 is supported on a ball Dn−1 ⊆ Sn−1. For two such
diffeomorphisms, we can isotope their supports to be disjoint, and hence up to
isotopy they commute.

Roughly speaking, Γn measures the failure of diffeomorphisms of ∂Dn = Sn−1

to extend over the whole Dn.
We give some motivation behind the study of this group. By work of Kervaire-

Milnor on the h-cobordisms groups θn of homotopy n-spheres and Smale’s proof
of the generalised Poincaré Conjecture (n ≥ 5), we know that Γn = θn and the
latter corresponds to the group of oriented smoothings of Sn (again, n ≥ 5). The
identification Γn

∼= {Smoothings of Sn}/isotopy is given by taking a class [F ] and
associating to it the smoothing obtained by gluing two n-discs along Sn−1 via F .

The above correspondence is extremely helpful for computations, since a lot is
known about Γn. For example Γ5,Γ6 = 0, which means that there are no exotic
spheres in dimension five and six. On the other hand, Γ7 = Z/28Z, giving us the
first examples of exotic spheres, which live in dimension 7.

Cerf’s result does not imply that there are no exotic spheres in dimension 4.
However, it tells us that there are no exotic spheres that arise as the above con-
struction, i.e. by gluing two 4-discs along an extendable diffeomorphism of S3.
There might still be other ways to get exotic phenomena, but at least we know
that the classic construction (which exhausts all smoothings in bigger dimensions)
does not create any weird creatures in dimension 4.

We provide a sketch of the proof of Γ4 = 0. We will show a series of equivalent,
if not stronger reformulations of the problem. Amidst all of them, Diff S3 appears
quite naturally.

Sketch proof of Theorem 2.12.1. First of all, we note that

(2.3) Γn
∼= cokerπ0(DiffDn) → π0(Diff Sn−1)

where map is induced by αn on π0. This can be interpreted as a consequence of
Sn−1 being collared in Dn. In fact, let ϕ ∈ Diff Sn−1 and ψ isotopic to ϕ via some
isotopy H. Then we can think of the “time” coordinate t of the isotopy as the
interval coordinate of the Sn−1× I collar inside Dn. Then we can push the isotopy
inside the collar and force the map on the boundary of the disc Dn \ (Sn−1 × I)
to be ψ. Now if ψ extends to some map Ψ, it is also true that ϕ extends to some
map Φ. Since they differ by some isotopy on the collar, Ψ and Φ are also isotopic.
This shows that Γn can be equivalently defined at the level of π0.

By 2.32.3, we see that if we can show that π0(Diff S3) = 0, then we immediately
obtain Γ4 = 0. This is when the mapping class group of S3 comes into the picture.
Note that the statement π0(Diff S3) = 0 is stronger than Γ4 = 0.

We now reformulate the problem. We know that:

(2.4) πi(Diff Sn) ∼= πi(Diff (Dn, Sn−1))⊕ πi(SO(n+ 1))
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for i ≥ 0. Since we want to show π0(Diff S3) = 0, and we know that π0(SO(4)) = 0,
it suffices to show by 2.42.4 that π0(DiffD3, S2) = 0.

Let G,H be DiffD3 and Diff S2 respectively. The map α3 gives a locally trivial
fibration:

G→ H

whose fibre is Diff (D3, S2). The long exact sequence in homotopy groups of the
fibration yields an exact sequence:

(2.5) π1(G) → π1(H) → π0(Diff (D3, S2)) → π0(G) → π0(H) → 0

Now by Smale, we know H ≃ SO(3) and the composition:

(2.6) πi(SO(3)) → πi(G) → πi(H)

is an isomorphism for all i ≥ 0. 2.62.6 implies that:

(1) π0(H) = 0 and
(2) πi(G) → πi(H) is surjective for all i ≥ 1.

Combining 2.52.5 with the above implications, we obtain a short exact sequence as:

(2.7) 0 7→ π0(Diff (D3, S2)) → π0(G) → 0

We can hence rephrase the question as showing the triviality of π0(DiffD3).
Let now E be Emb(D3 → R3), Ge be the identity component in G and F be

Emb(S2 → R3). G acts on E on the right using pre-composition, i.e. jϕ = j ◦ ϕ.
This action gives rise to a locally trivial fibration:

(2.8) G→ E → E/G
where the latter is the space of 3-discs in R3. Let now R = E/Ge. This is the
space of parametrised 3-discs in R3. We have a locally trivial fibration:

(2.9) R → E/G
whose fibre is G/Ge.

Now G/Ge is the mapping class group of D3. Since G is locally path-connected,
the quotient space is discrete (every connected component is open and we are
shrinking them to points). Since 2.92.9 is a locally trivial fibration with discrete fibre,
it is a covering of E/G.

The strategy now is to show that this cover is trivial. This would imply that
G/Ge = π0(D

3) = 0 as follows. E is connected and hence R is connected as well,
being its quotient. If 2.92.9 is a trivial cover, then R ∼= (G/Ge × E/G). For this to
hold, we need that G/Ge

∼= ∗, since both spaces have to be connected and G/Ge

is trivial.
To summarise what we obtained so far: the triviality of R → E/G implies

π0(DiffD3) = 0 which in turn implies Γ4 = 0.
There is a last equality that comes from Cerf’s proof of the weak Schoenflies

conjecture (smooth). More precisely, we can identify the base space E/G with
F/H. So in the end, what we really want to show is the triviality of R → F/H.

To show this, Cerf finds a continuous section p of the covering map. His argument
is rather long and complicated, involving Thom’s Transversality theorems and a
stratification of the base space F/H [Cer68Cer68]. It is worth to mention that the section
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p is originally defined on a subset (F/H)0∪(F/H)1, and then extended using some
general topology results over the whole F/H. □

2.2. Eliashberg’s contact geometry approach. We now present a proof of
2.12.1 that is somehow quite direct and does not require the chain-of-reformulations
approach that Cerf uses in his seminal work (see [Eli92Eli92]). The powerful tools
Eliashberg used come from the world of contact geometry. We cannot give a full
introduction to the topic here, so we refer the reader to [Etn03Etn03] for a complete
discussion of basic results in contact geometry.

Figure 1. A movie presentation of S3 in C2. The red circles are
∂Dt

s and they bound holomorphic discs. The black dots are the
poles, which alltogether form K.

Sketch of the proof. Before actually working on the proof, we need to set up some
notation and make some important observations. Let S3 ↪→ C2 be the unit sphere
in C2, where we endow the complex plane with coordinates zi = xi + iyi for i =
1, 2. Let H : S3 → R be the height function given by the projection to the y2
coordinate. For t ∈ (−1, 1), the level sets St : = H−1(t) define a smooth foliation
of S3 \ {0, 0, 0,±1}.

Let qt± = (0, 0,±
√
1− t2, t) be the north and south poles of the spheres St

and let K the unknot in S3 given by the union of all the poles (including the
points (0, 0, 0,±1)). Then S3 \K is foliated by circles spanning holomorphic discs

Dt
s : = D4 ∩ (C×{x2 = s, y2 = t}) for |t| < 1, |s| <

√
1− t2. ∂Dt

s foliate S
t \ {qt±},

we call this foliation Ft (see Figure 11).
Let now φ ∈ Diff S3 an orientation preserving diffeomorphism. Recall that

we can always move freely in its isotopy class if we want to understand whether φ
extends toD4, we discussed this in the previous proof. So it will be more convenient
for us to choose a representative φ that possesses nice properties. The first one is
”local triviality”. Due to the disc theorem, we know that given a D3 in S3 and a
self-diffeomorphism φ, there is always a diffeomorphism φ′ s.t. φ′|D = id.

The second property we want is φ being a contactomorphism. This notion comes
from contact geometry and, roughly speaking, means that φ preserves the contact
structure. To give a bit more detail, we can endow S3 with its standard tight
contact structure ξstd and require that φ∗ξstd = ξstd. The reason this additional
requirement on φ is helpful will become clear soon.
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Eliashberg beautiful idea originates from the fact that S3 has a unique tight
contact structure up to isotopy. Using this extremely powerful result, we can show
that each o.p. diffeomorphism φ can be isotoped to be a contactomorphism.

More precisely, let φ : (S3, ξstd) → S3. Then φ∗ξstd defines a tight contact struc-
ture on S3. Using Eliashberg uniqueness result, we know there is an isotopy H of
S3 such that H0 = Id and (H1)∗φ∗ξstd = ξstd. We can then use H ◦ φ to istope φ
to H1φ, where the latter is now a contactomorphism of (S3, ξstd).

Now to show that we every o.p. diffeomorphism of S3 extends to the whole D4,
we can assume that our starting map is a contactomorphism of (S3, ξstd) fixing a
neighborhood of K. We will show that such maps always extend, concluding our
proof.

So let f be a contactomorphism of (S3, ξstd) that fixes a neighborhood of K.
The standard tight contact structure gives a foliation Fstd of each 2-sphere St by
“spiraling” leaves that emanate from the north pole qt+ and terminate at the south
pole qt−. This is the characteristic foliation obtained by intersecting the tangent
planes with the contact planes. The two poles are elliptic singularities.

We can C0-perturb the singular foliation so that the leaves are now meridians of
St. Note that this foliation is now transverse to Ft. Since f is a contactomorphism,
it preserves the foliation Fstd. Hence, each sphere f(St) is foliated by f(Fstd), which
is isotopic to Fstd (note that the singular points are fixed since f is the identity near
K). By another C0-perturbation, we can make sure that f(St) is also foliated by
meridians. Now both St and f(St) are foliated by Fstd and the leaves are preserved

;

Figure 2. Perturbing the characteristic foliation we can make sure
each St is foliated by meridians.

by f . Since both foliations are transverse to Ft, we can reparametrise f along the
leaves so that it preserves Ft.
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To recap, we have a smooth foliation of S3 \K by circles that span holomorphic
discs, and this foliation is preserved by the map f . Thus, extending f over D4 \K
is equivalent to extend f |∂Dt

s
to Dt

s. This is a famous result by Alexander: we know

that every o.p. diffeomorphism of S1 extends over D2. Thus f can be extended
“disc by disc” as a smooth map F : D4 \K → D\K. Since we started by assuming
f was the identity near the unknot K, we can further extend F via the identity to
obtain the desired diffeomorphism D4 → D4. □

2.3. Hatcher’s Theorem. We briefly discuss the homotopy type of Diff S3.

Theorem 2.10 (Hatcher, [Hat83Hat83]). Diff S3 ≃ O(4).

Note this immediately recovers the triviality of the mapping class group of S3.
While this is the more concise and direct way to state the result, Hatcher’s

formulation was rather different. For the sake of completion, we will state the
original theorem.

Theorem 2.11 (Hatcher, [Hat83Hat83]). Let gt : S
2 → R3 be a smooth family of C∞

embeddings, t ∈ Sk. Then this extends to ĝt : D
3 → R3 for all k ≥ 0.

We show that the two formulations are indeed equivalent.
First, we know that:

(2.12) Diff Sn ≃ O(n+ 1)×Diff(Dn, Sn−1)

for all n. The statement Diff S3 ≃ O(4) is then equivalent to Diff(D3, S2) ≃ ∗. Why
is the latter statement equivalent to the one in Hatcher’s original work? Theorem
2.112.11 says that the natural map ρ : E → F is surjective on πk for all k ≥ 0.

Consider the following commutative diagram:

Emb(Dn,Rn) Emb(Sn−1,Rn)

GL(n,R)

≃

ρ

Here the lower left map is given by evaluating the derivative at a point (giving us
an homotopy equivalence), and the lower right map is evaluating the derivative at a
point and adjoining the normal vector. From the diagram we see that ρ is injective
on πk for all k. Moreover, ρ is a fibration whose fibre is just Diff(Dn, Sn−1). Hence
we see that Diff(D3, S2) ≃ ∗ iff ρ is also surjective on all πk. This shows that the
two statements are indeed equivalent.

3. The mapping class group of S1 × S2

In this section we will compute the mapping class group of S1 × S2. This com-
putation is due to Glück [Glu61Glu61, Glu62Glu62]. We will begin by presenting the original
motivation behind studying this space, and then move on to the computation,
which we will break down into several stages.

3.1. Motivation.
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3.2. Statement of the theorem, and overview of the proof. First, let us
describe some self-homeomorphisms of the manifold in question, S1 × S2. Let
a : S2×S2 be the antipodal map and let s : S1×S1 be the conjugation map, i.e. if
we parameterise S1 as the unit complex numbers, then s is the map sending z ∈ C
to its complex conjugate z∗. In an abuse of notation, we will then define maps
a, s : S1 × S2 → S1 × S2 as IdS1 ×a and s × IdS2 , respectively. We define a final
map, the so-called Glück twist, as

T : S1 × S2 →S1 × S2,

(θ, x) →(θ, rθ(x))

where rθ : S
2 → S2 is the map given by a positive rotation by angle θ about the

vertical axis (from south pole to north pole).
We can now state the theorem, i.e. the computation of the mapping class group

of S1 × S2.

Theorem 3.1 (Glück, [Glu61Glu61, Glu62Glu62]). The mapping class group of S1 × S2 is
computed to be

π0(Homeo(S1 × S2) ∼= Z/2⊕ Z/2⊕ Z/2,
where the three generators of the Z/2-summands are a, s and T .

We now lay out the strategy of the proof of this theorem. First, note that we
have a homomorphism

φ : π0(Homeo(S1 × S2)) → Z/2⊕ Z/2
which sends a representative homeomorphism to its induced map on H1(S

1×S2) ∼=
Z paired with its induced map on H2(S

1 × S2) ∼= Z. Given a homeomorphism,
both of these induced maps are the ±1 maps on these homology groups and, since
isotopic homeomorphisms must induce the same maps, this gives us the well defined
homomorphism φ above.

We will reduce proving Theorem 3.13.1 to proving the following theorem.

Theorem 3.2. We have that kerφ ∼= Z/2, generated by T .

The proof of the above theorem will constitute most of the section. First, how-
ever, we will prove Theorem 3.13.1, assuming that Theorem 3.23.2 holds.

Proof of Theorem 3.13.1. We have the following short exact sequence.

0 → kerφ→ π0(Homeo(S1 × S2))
φ−→ Z/2⊕ Z/2 → 0

where the last map is surjective since the maps a, s and a ◦ s induce all of the
non-trivial elements in Z/2⊕ Z/2. In fact, this map is split, since a and s give us
a splitting Z/2⊕ Z/2 → π0Homeo(S1 × S2).

Since kerφ ∼= Z/2 by Theorem 3.23.2, we conclude that π0Homeo(S1 × S2) ∼=
Z/2⊕ Z/2⊕ Z/2 as required. □

Theorem 3.23.2 trivially follows from the following two propositions.

Proposition 3.3. Let f ∈ kerφ be a representative homeomorphism. Then f is
isotopic to Id or T .
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Proposition 3.4. The Glück twist T represents an order two element in the map-
ping class group of S1 × S2. In particular, it is not isotopic to the identity.

And we will now prove these.

3.3. Proof of Proposition 3.33.3. The proof will be split up into a number of steps.
The aim is to pick a representative homeomorphism in kerφ and then step by step
build an isotopy from it to either the identity map or the Glück twist.

First we define some notation. Let S := {1} × S2 ⊂ S1 × S2, let N ∈ S2 be the
north-pole, and let α := S1 × {N}. Let C denote a tubular neighbourhood of α,
and let ∂C be the boundary torus.

Pick f : S1 ×S2, a homeomorphism representing an isotopy class in kerφ. Then
the steps are as follows.

(i) Isotop f to a map which fixes S pointwise.
(ii) Isotop this new map to one which fixes S and α pointwise.
(iii) Isotop this new map to one which fixes S pointwise and fixes ∂C setwise.
(iv) Isotop this new map to one which fixes S pointwise and whose restriction to

∂C is the n-fold twist map.
(v) Isotop this new map to one which fixes S pointwise and whose restriction to

∂C is either the identity, or the 1-fold twist map.
(vi) Isotop this new map to either the identity map or the Glück twist T .

We will look at steps (i), (ii), (v) and (vi) specifically.

Step (i). First, we can isotop f such that f(S) does not intersect S. Now, consider
the two regions of S1 ×S2 bounded by f(S) and S. By the annulus theorem, both
of these regions are homeomorphic to I × S2. It follows that f can be further
isotoped such that f(S) = {−1} × S2, and then a rotational isotopy gives that we
can further isotop f such that f(S) = S.

Now f restricts to a map f |S : S2 × S2 which is degree one since we assumed
that f ∈ kerφ. Hence, by Smale, f |S is isotopic to the identity, and so f is isotopic
to a map which fixes S pointwise.

Step (ii). This step actually has a different interpretation, which we will explain
now. Let K : S1 ↪→ S1 ×S2 be a knot in S1 ×S2. We have an invariant associated
to K, denoted g(K), called the geometric winding number, which is defined as the
minimal possible transverse intersections of K with S. We then have the following
lemma.

Lemma 3.5 (Lightbulb trick). Let K be a knot in S1 × S2 with g(K) = 1. Then
K is unknotted, i.e. isotopic to α ⊂ S1 × S2.

Given the above lemma, the step is easy to complete. We can see that f(α) is a
knot in S1 × S2, and clearly g(K) = 1, so we can use the lemma to say that f(α)
is isotopic to α, meaning that f can isotoped such that f(α) = α.
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Step (v). Parameterise ∂C as S1 × S1 where the first S1 factor corresponds to the
S1-factor in S1 × S2 and the second corresponds the meridian S1-factor. Then

f |∂C : S1 × S1 →S1 × S1,

(x, y) 7→(x, yxn)

is the n-fold twist map. We can change n by an even number 2k by performing
k belt moves, as in [REF HERE]. This defines an isotopy of f to a map whose
restriction to ∂C is either the identity map (the 0-fold twist map) or the 1-fold
twist map.

Step (vi). This is the final step, and the one where we use that π0Homeo(D3, ∂) is
trivial. Assume that f restricts to the identity ∂C. Then S1 × S2 \ ∂C consists of
two 3-cells, and f cannot interchange them. Then since π0Homeo(D3, ∂) is trivial,
there exists an isotopy of f restricted to each of these 3-cells to the identity map
that fixes the boundary throughout the isotopy. Hence, f is isotopic to the identity.

If we now assume that f restricts to the 1-fold twist map on ∂C, then f ◦ T−1

restricts to the identity map on ∂C, and hence by the previous paragraph we have
that f ◦ T−1 is isotopic to the identity. Hence f is isotopic to T .

This completes the proof of Proposition 3.33.3. □

3.4. Proof of Proposition 3.43.4.

4. The mapping class group of lens spaces

In this section we will compute the mapping class group of lens spaces as pre-
sented by Bonahon in [Bon83Bon83]. The main result at the core of the computation is
the following:

Theorem 4.1. Up to isotopy, the lens space L(p, q) contains a unique torus sepa-
rating it into two solid tori.

The importance of this theorem does not come from the existence of such a
torus, as it is part of the definition of a lens space, but it concerns its uniqueness.
Moreover, this result was already known before Bonahon, as it had been proved
by Schubert in [Sch56Sch56]. This was done in the context of viewing lens spaces as the
double branched cover of S3 over a two-bridge knot, and considering an involution
τ on said cover; he then showed that up to τ -equivariant isotopy, L(p, q) contains
a unique torus preserved by τ and separating L(p, q) into two solid tori.

This result was largely ignored for some time, until Bonahon presented a readapted
proof and used it to compute π0(Diff L(p, q)). We can also derive the classification
of lens spaces from Theorem 4.14.1. Furthermore, it is worth noting that the mapping
class group of lens space was computed independently by Hodgson and Rubinstein
in 1983 [HR85HR85].

We will now briefly mention the methods behind the proof of Theorem 4.14.1, but
a complete discussion can be found in [Bon83Bon83, Hat01Hat01]. The idea is to consider two
tori T and T ′ in L(p, q), each separating it into two solid tori. We want to show
that T and T ′ are isotopic, after viewing each of them in a different light.
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Since T separates L(p, q) into solid tori V1 and V2, we consider a map i : D →
L(p, q), whereD is a disc, such that i(∂D) is the core of V2 , i|∂D : ∂D → i(∂D) is a
p-sheeted cover, and i|

∫
(D) is an embedding avoiding i(∂D). Bonahon calls i(D) a

generalised projective plane and notes that T is isotopic to a tubular neighbourhood
of i(∂D).
Next we consider a Morse function f : L(p, q) → R with one critical point for each
order 0,1,2 and 3, such that T ′ is isotopic to a level surface between critical points
of index 1 and 2. The idea is then to isotope i(D) so that its singular curve i(∂D)
is as simple as possible with respect to the Morse function f . Finally, prove that if
i(D) is in a level surface of f , then T is isotopic to T ′.

4.1. Defining L(p, q). This short subsection provides two definitions of a lens
space. There are many equivalent definitions possible, but the one we will work
with in this survey is actually the second definition of this subsection. Note that we
are focusing on 3-dimensional lens spaces, but these definitions can be generalised
to work with n-dimensional lens spaces. Throughout this section let p ∈ N, q ∈ Z
be such that gcd(p, q) = 1.

The lens space L(p, q) can be defined as the orbit space S3/Z/p. Here the three-
sphere is seen as S3 = {(z1, z2) ∈ C2 ||z1|2 + |z2|2 = 1} and Z/p acts on it by

the rotation ρ : S3 → S3 defined as ρ(z1, z2) = (e
2πi
p z1, e

2πqi
p z2). Only the identity

element fixes a point on S3, this can be seen as a consequence of the fact that p and
q are coprime. Hence the action is free. Note that when p = 2, ρ is the antipodal
map and L(2, 1) ∼= RP 3.

The next definition is the one we are going to refer to for the remainder of the
section. Let V1 ∼= V2 ∼= S1 × D2 be solid tori. Define L(p, q) := V1 ∪θ V2, where
θ : ∂V1 → ∂V2 is a diffeomorphism of degree −1 defined by θ(u, v) = (urvp, usvq),
with qr − ps = −1. Note that S1 and D2 are seen as the set of complex num-
ber with modulo equal and less than or equal to 1, respectively. From the def-
inition it is clear that the lens space is actually determined by what happens
on the boundary tori during the gluing, that is by the isotopy class of θ. Thus
θ ∈ π0(Diff(S1 × S1)) ∼= SL2(Z). With this definition in mind, θ can also be seen

as the matrix

(
r p
s q

)
which maps a meridian of T

(
0
1

)
to

(
p
q

)
. Note that we

may always substitute the parameters of θ with r′, s′, q′ such that q′r′ − ps′ = −1
and q′ ≡ q mod p.

Remark 4.2. For the rest of this discussion we will assume p ≥ 2. Thus L(1, 0) ∼=
S3 and L(0, 1) ∼= S1 × S2 will be regarded as exceptions and be excluded from
consideration.

4.2. Consequences of Theorem 4.14.1. The most interesting consequences of The-
orem 4.14.1 for us concern the mapping class group of lens spaces. Indeed, a first
consequence is that any diffeomorphism of L(p, q) is isotopic to a diffeomorphism
preserving the torus T = ∂V1 = ∂V2.
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Among such diffeomorphisms we always have the involution τ preserving both
V1 and V2, parametrised on V1 ∼= V2 ∼= S1 ×D2 by τ(u, v) = (u, v).

In general, there are no diffeomorphisms of L(p, q) exchanging the solid tori V1
and V2, except when q2 ≡ ±1 mod p. When q2 ≡ +1 mod p there exists an
involution σ+ of degree +1 which can be described by the map (u, v) ∈ V1 ↔
(u, v) ∈ V2. Similarly, when q2 ≡ −1 mod p, there exists a diffeomorphism σ−
of degree −1 and order 4, which can be expressed by (u, v) ∈ V1 7→ (u, v) ∈ V2
and (u, v) ∈ V2 7→ (u, v) ∈ V1. Both diffeomorphisms σ+ and σ− can be recovered
by choosing appropriate parametrisations for V1, V2 (that is r = −q and r = q,
respectively), and by checking that reiterated composition with θ is well-defined.
Moreover, note that τ commutes with σ+ and σ−, and that σ2− = τ .

Proposition 4.3. Any diffeomorphism of L(p, q) is isotopic to an element of the
group generated by τ , and possibly σ+ and σ−.

Observe that it is necessary to exclude L(0, 1) ∼= S1 × S2, as the Dehn twist
along {1} × S2 is not isotopic to a composition of τ , σ+, and σ−.

Proof. Let φ be a diffeomorphism of L(p, q), which by Theorem 4.14.1, can be isotoped
so that φ(T ) = T = ∂V1 = ∂V2. After possibly composing with σ+ and σ−, we can
furthermore suppose φ(V1) = V1 and φ(V2) = V2. Let mi be the generator of the
kernel of H1(T ) → H1(Vi), for i = 1, 2. We have that the mi are distinct, and that
m1 ·m2 ̸= ±1, as a consequence of the fact that p ̸= 0, 1. Moreover, φ∗(mi) = ±mi

in H1(T ), and thus φ∗ is multiplication by ±1 on H1(T ). After possibly composing
φ with τ , we can suppose φ∗ is the identity on T . Conclude the proof by using
meridian discs in V1 and V2 providing an isotopy that fixes T between φ and the
identity. □

The following lemma will be of use in the computation of π0Diff L(p, q):

Lemma 4.4. If q ≡ ±1 mod p, there exists an isotopy of L(p, q) exchanging V1
and V2. Furthermore, if p = 2, there exists an isotopy of L(2, 1) ∼= RP 3 coinciding
with τ on T = ∂V1 = ∂V2.

Proof. The solid torus V1 is isotopic to U(C1), which denotes the tubular neigh-
bourhood of C1 = S1×{0}, the core of V1. If q ≡ ±1 mod p, it is possible to choose
a parametrisation of V1, V2 such that r = ±1. Now, C1 is isotopic to C = S1×{1}
in ∂V1, which is also the curve with parametrisation z ∈ S1 → (zr, zs) in ∂V2.
Since r = ±1, C is isotopic to C2, the core of V2. The latter is clearly isotopic to
U(C2), and thus we have found an isotopy from V1 to V2.

If p = 2, then L(2, 1) ∼= RP 3 and C1 is isotopic to RP 1 ⊂ RP 2 ⊂ RP 3. There
exists an isotopy of RP 2 which reverses the orientation of RP 1 and which can be
extended to RP 3. After composing this isotopy of RP 3 with suitable isotopies
between V1 and U(RP 1) we obtain the desired result. □

The lemma presented can also be rephrased in a more convenient form for our
next computation. That is:

• If q ≡ 1 mod p, σ+ is isotopic to τ ;
• If q ≡ −1 mod p, σ+ is isotopic to the identity;
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• If p = 2, both σ+ and τ are isotopic to the identity.

4.3. Computing the mapping class group.

Theorem 4.5. The group π0(Diff(L(p, q)) for p ≥ 2 is isomorphic to:

(a) Z/2, generated by τ , if q2 ̸≡ ±1 mod p;
(b) Z/2⊕ Z/2, generated by τ and σ+, if q

2 ≡ 1 mod p and q ̸≡ ±1 mod p;
(c) Z/2, generated by τ , if q ≡ ±1 mod p and p ̸= 2;
(d) Z/4, generated by σ−, if q

2 ≡ −1 mod p and p ̸= 2;
(e) Z/2, generated by σ−, if p = 2.

Proof. LetG(p, q) be the abstract group with generators τ , and when L(p, q) admits
so, σ+ and σ−. The relations will be the obvious ones from the corresponding
maps: τ2 = σ2+ = Id, σ2− = τ , τσ+ = σ+τ , and only when p = 2, σ+σ−σ+ = σ−1

− .
Therefore, the group G(p, q) is isomorphic to:

(i) Z/2 when q2 ̸≡ ±1 mod p;
(ii) Z/2⊕ Z/2 when q2 ≡ 1 mod p and p ̸= 2;
(iii) Z/4 when q2 ≡ −1 mod p and p ̸= 2;
(iv) D8 when p = 2.

We are now interested in the following composition of maps:

G(p, q)
f−→ π0Diff L(p, q)

g−→ AutH∗L(p, q).

Note that by Proposition 4.34.3 f is surjective, thus we need to compute the kernel
of f to determine π0Diff L(p, q). Moreover, note that on H1L(p, q) ∼= Z/2 the
maps τ , σ+, σ− act by multiplication by −1, −q, and q, respectively. From this
it follows that when q ̸≡ ±1 mod p the homomorphism g ◦ f is injective and thus
π0Diff L(p, q) ∼= G(p, q).

Keeping in mind these observations, we can now proceed to prove the different
cases.

(a) If q2 ̸≡ ±1 mod p, then q ̸≡ ±1 mod p and, by the aforementioned state-
ments, π0Diff L(p, q) ∼= G(p, q) ∼= Z/2. Note that in this case G(p, q) is just
generated by τ .

(c) Let q ≡ 1 mod p and p ̸= 2. This implies that q2 ≡ 1 mod p and thus
G(p, q) ∼= Z/2⊕Z/2. Note that τσ+ acts trivially on H1L(p, q), so ker(g◦f) ∼= Z/2.
By Lemma 4.44.4 σ+ is isotopic to τ , thus ker(f) ∼= Z/2. Hence π0Diff L(p, q) ∼= Z/2.

Now suppose q ≡ −1 mod p and p ̸= 2. Again, it follows that q2 ≡ 1 mod p and
G(p, q) ∼= Z/2⊕Z/2. In this case σ+ acts trivially on H1L(p, q), so ker(g◦f) ∼= Z/2.
By Lemma 4.44.4 σ+ is isotopic to the identity, so ker(f) ∼= Z/2 and π0Diff L(p, q) ∼=
Z/2.

(e) Suppose p = 2. Then in this case q2 ≡ 1 ≡ −1 mod p, and clearly
q ≡ 1 ≡ −1 mod p. In this case G(p, q) ∼= D8

∼= Z/4 ⋊ Z/2. Note that τ ,
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σ+, σ− act trivially on H1L(p, q), but σ− acts non-trivially on H3L(p, q). Hence
ker(g ◦ f) ≡ Z/2. By Lemma 4.44.4, σ+ and τ are both isotopic to the identity, hence
ker(f) ∼= Z/2⊕ Z/2. Thus π0Diff L(p, q) ∼= Z/2.

(d) Now suppose that q2 ≡ −1 mod p and p ̸= 2. Note that we are sup-
posing that q ̸≡ ±1 mod p, because if this were not the case, we would be in
case (c). The action of τ and σ− is not trivial on H1L(p, q), and we already
know that σ− acts non-trivially on H3L(p, q). Therefore g ◦ f is injective, and
π0Diff L(p, q) ∼= G(p, q) ∼= Z/4.

(b) Finally let q2 ≡ 1 mod p and p ̸= 2. Once again, note that we are assuming
that q ̸≡ ±1 mod p, hence g ◦ f is injective. Indeed note that τ , σ+ and τσ+ act
non-trivially on H1L(p, q). Then π0Diff L(p, q) ∼= G(p, q) ∼= Z/2⊕ Z/2. □

This computation concludes the discussion about the mapping class group of lens
spaces. We once again highlight the importance of Theorem 4.14.1, which serves as
the basis for successive results. Finally, although not discussed in this section, we
remark that the Smale conjecture holds for lens spaces, as proved by Waldhausen
in [Wal68Wal68], and more recently by Ketover and Liokumovich in [KL23KL23].

5. Elliptic manifolds

In this section, we will discuss elliptic manifolds. In particular, we will present
their classification, discuss how to compute their isometry groups as well as their
mapping class groups and discuss the generalised Smale conjecture.

Throughout this sectionM will denote a closed 3-manifold. We start by defining
elliptic manifolds:

Definition 5.1. A closed 3-manifold M is called elliptic, if it is of the form M =
S3/G where G is a finite subgroup of SO(4) acting freely on S3.

The definition of an elliptic manifold M is equivalent to requiring that M ad-
mits a Riemannian metric of constant curvature 1. Note that if M = S3/G, then
π1(M) ∼= G and therefore every elliptic manifold has finite fundamental group. The
converse follows from Thurston’s geometrisation conjecture implying that elliptic
manifolds are exactly the ones with finite fundamental group.

Lens spaces are exactly the elliptic manifolds with G being a cyclic group. Since
we discussed lens spaces in the previous section, we will restrict here to a discussion
of elliptic manifolds with non-cyclic fundamental group. We start by presenting
the classification of such manifolds.

5.1. Classification. We present the classification of elliptic manifolds with non-
cyclic fundamental group. From the definition of elliptic manifolds, it follows that
there is a one-to-one correspondence between isomorphism classes of elliptic mani-
folds and conjugacy classes of finite G ⊂ SO(4) acting freely on S3. Therefore, we
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need to study subgroups of SO(4).

We equip S3 with the group structure arising from viewing it as the unit sphere
in the space of quaternions. Each element in S3 acts on S3 by left (or right)
multiplication and hence defines an orientation preserving isometry of S3 or in other
words an element of SO(4). Consider now the following Lie group homomorphism

F : S3 × S3 → SO(4),

(q1, q2) 7→ (x 7→ q1xq
−1
2 ).

F is the universal covering of SO(4) and ker(F ) = {(1, 1), (−1,−1)} ∼= Z/2Z.

Let P be the 2-sphere of unit quaternions with real part 0. Then P ⊂ S3 and
since conjugating by an element in S3 preserves the condition of having real part
0, we obtain a map

S3 → Isom+(P ),

q 7→ (cq)|P

where cq : S
3 → S3, x 7→ qxq−1. Since Isom+(P ) ∼= SO(3), we can view the above

as a map

H : S3 → SO(3).

In fact this map is the universal covering of SO(3) and ker(H) = {1,−1} ∼= Z/2Z.

Let D2n be the dihedral group of order 2n. Furthermore, let T12, O24 and I60
be the groups of orientation preserving symmetries of the tetrahedron, octahedron
and icosahedron respectively. (The subscripts denote the order of the respecting
group.) Then D2n, T12, O24, I60 are subgroups of SO(3) and in fact (apart from
cyclic ones) they are the only finite subgroups. Denote by D∗

4n, T
∗
24, O

∗
48, I

∗
120 the

preimages of the above groups in S3 under the map H. These groups are called
the binary dihedral group, binary tetrahedral group etc.

Let {1, i, j, k} be the standard quaternionic basis. Then the setQ8 := {±1,±i,±j,±k}
forms a subgroup of S3 called the quaternion group.

For n ∈ N, let ξn := cos 2π
n + i sin 2π

n . Then ξn generates a cyclic subgroup of S3

of order n, which we will denote by Cn.

We are now ready to present the classification of elliptic manifolds. Table 11 con-
tains all the groups (apart from cyclic ones that correspond to lens spaces) arising
as fundamental groups of elliptic manifolds. Furthermore, for each group G below,
there is a unique conjugacy class in SO(4) consisting of isomorphic copies of the
G, which implies that for every G there is a unique elliptic manifold (up to isomor-
phism) with fundamental group G. (Note that this is not true in the case of lens
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spaces where G is cyclic.)

Table 1. Classification of elliptic manifolds

D∗
4n prism

D∗
4n × Cm prism

“index 2” prism

T ∗
24 tetrahedral

T ∗
24 × Cn tetrahedral

“index 3” tetrahedral

O∗
48 octahedral

O∗
48 × Cn octahedral

I∗120 icosahedral

I∗120 × Cn icosahedral

Q8 quaternionic

Q8 × Cn quaternionic

The groups “index 2” and “index 3” stand for certain index 2 subgroups of
D∗

4n×C4m with (n,m) = 1 and certain index 3 subgroups of T ∗
24×C6n with n odd

and divisible by 3. The names “prism” etc. stand for how the corresponding mani-
folds are called, for example octahedral manifolds are exactly the elliptic manifolds
with a subgroup of their fundamental group isomorphic to O∗

48. Note that all the
groups in the above table are naturally subgroups of S3 × S3, that are mapped to
an isomorphic image under F and therefore can also be seen as subgroups of SO(4).

5.2. Isometries. In this section, we will determine the isometry groups of all
the elliptic manifolds occurring in the classification table from the previous sec-
tion. This means that we will again omit discussing lens spaces. Since only cer-
tain lens spaces admit orientation reversing isometries, for our discussion we have
Isom(M) = Isom+(M), where M is any elliptic manifold with non-cyclic funda-
mental group.

Let G ⊂ SO(4) such that M = S3/G is elliptic. Given f ∈ SO(4), we can define
a unique f̄ ∈ Isom(M) such that the following diagram commutes

S3 S3

M M,

f

f̄

if and only if:

∀x ∈ S3 ∀g ∈ G ∃g′ ∈ G : f(g(x)) = g′(f(x)).
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This last condition is equivalent to f ∈ Norm(G) = {h ∈ SO(4) : hGh−1 = G}.
Hence, we obtain a map Norm(G) → Isom(M) which sends f to f̄ . Since S3 is
simply connected, every isometry of M can be lifted (not uniquely) to an isometry
of S3, which implies that the map Norm(G) → Isom(M) is surjective. Any two
lifts of an isometry of M differ by a deck transformation, i.e. an element of G, so
we have the short exact sequence

1 → G→ Norm(G) → Isom(M) → 1.

We summarise the above discussion as a proposition.

Proposition 5.2. For an elliptic manifold M = S3/G with G not cyclic, it holds
that Isom(M) ∼= Norm(G)/G.

Note that the above proposition also holds for lens spaces that do not admit
orientation reversing isometries. If a lens space does admit orientation reversing
isometries, its isometry group is an extension of Z/2Z by Norm(G)/G.

In table 22 we present all elliptic manifolds with non-cyclic fundamental group
and their isometry groups. We also compute the group of connected components
π0(Isom(M)) which we denote by I(M).

Table 2. Isometry groups of elliptic manifolds

G Isom(M) I(M)

D∗
4n SO(3)× Z/2Z Z/2Z

D∗
4n × Cm O(2)× Z/2Z Z/2Z× Z/2Z

“index 2” O(2)× Z/2Z Z/2Z× Z/2Z
T ∗
24 SO(3)× Z/2Z Z/2Z

T ∗
24 × Cn O(2)× Z/2Z Z/2Z× Z/2Z

“index 3” O(2) Z/2Z
O∗

48 SO(3) 1

O∗
48 × Cn O(2) Z/2Z
I∗120 SO(3) 1

I∗120 × Cn O(2) Z/2Z
Q8 SO(3)× S3 S3

Q8 × Cn O(2)× S3 Z/2Z× S3

5.3. Mapping class groups. Let M = S3/G be an elliptic manifold. (We should
note that everything in this section also holds for lens spaces.) The mapping
class group of M is Γ(M) = π0(Diff(M)). In the previous section, we already
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computed I(M) = π0(Isom(M)). The following theorem (also known as the π0-
Smale conjecture) shows that these two groups are the same.

Theorem 5.3. The inclusion ι : Isom(M) → Diff(M) is a bijection on path com-
ponents.

Proof. See ([McC02McC02], Theorem 3.1). □

The proof of this theorem relies on already knowing most of the groups Γ(M),
since historically these were determined earlier.

We want to present a sketch of how Γ(M) can be computed without knowing
I(M) for prism manifolds (i.e. the ones having a dihedral group as a subgroup of
their fundamental group). See ([Asa78Asa78]) for a detailed proof.

Consider the following construction. Take an orientable S1-bundle π : N → B
over a Möbius band B. Then the boundary ∂N is a torus. Glue a solid torus V
to N along their boundaries. The resulting manifold M turns out to be a prism
manifold and in fact every prism manifold can be constructed this way.

Let α be the core curve of B. Then π−1(α) =: K is a Klein bottle. One can
show that K is the unique incompressible Klein bottle inM up to isotopy and that
every diffeomorphism of M can be isotoped such that it fixes K. Furthermore,
any diffeomorphism of K extends to one of M yielding a surjective homomorphism
ρ : Γ(K) → Γ(M). It is known that Γ(K) ∼= Z/2Z×Z/2Z and therefore computing
the kernel of ρ (which will depend on the gluing used in the construction of M)
determines Γ(M).

We end this section by presenting the so called realisation theorem, which states
that the mapping class group can be modelled as a group of isometries. Let
ι : Isom(M) → Diff(M) and p : Diff(M) → Γ(M) be the natural inclusion and
projection maps respectively. Let ϕ = p ◦ ι be the composition.

Theorem 5.4. There is a subgroup Θ ⊂ Isom(M) such that the map

ϕ : Isom(M) → Γ(M)

restricted to Θ induces an isomorphism Θ
∼=−→ Γ(M).

Proof. Consider the short exact sequence

1 → isom(M) → Isom(M) → I(M) → 1,

where isom(M) denotes the component of the identity of Isom(M) and I(M) =
π0(Isom(M)). By checking every possible case for every M in table ?? one sees
that the above sequence splits. (The same holds for all lens spaces.)

Let s : I(M) → Isom(M) be a section of the natural map Isom(M) → I(M)
and let Θ := Im s. Restrict ϕ : Isom(M) → Γ(M) to the subgroup Θ, i.e. consider
ϕ|Θ : Θ → Γ(M). By the definition of Θ and Theorem 5.35.3, we obtain that ϕ|Θ is
an isomorphism. □
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5.4. Smale conjecture. LetM be an elliptic manifold. The Smale conjecture asks
whether Isom(M) → Diff(M) is a homotopy equivalence. From theorem 5.35.3 we
know that Isom(M) and Diff(M) have the same π0, i.e. the same path components.
Hence the Smale conjecture in the case of elliptic manifolds is equivalent to the
weak Smale conjecture which asks whether the inclusion of the components of the
identity isom(M) → diff(M) is a homotopy equivalence. This has recently been
proven affirmatively, leading to the following theorem.

Theorem 5.5. Let M be an elliptic manifold. Then Isom(M) → Diff(M) is a
homotopy equivalence.

Proof. See ([HKMR12HKMR12]). □

6. Haken 3-manifolds

Throughout this section, 3-manifolds, denoted byM , will be compact, orientable,
and connected.

Definition 6.1. Let M be a compact, connected, orientable 3-manifold.

(1) We say that M is irreducible if and only if every 2-sphere in M bounds a
copy of D3 in M .

(2) We say that an orientable embedded surface F in M with ∂F ⊆ ∂M is
compressible if either
(a) there exists a curve k ⊆ F̊ , homotopically essential in F , and a disc

D ⊆M with D̊ ⊆ M̊ and D ∩ F = ∂D = k; or
(b) there exists a ball E ⊆M with E ∩ F = ∂E.

(3) We say that M is boundary irreducible if and only if ∂M is incompressible.
(4) We say that M is Haken (or sufficiently large) if it contains an incompress-

ible surface.

Remark 6.2.

(1) If ∂M ̸= ∅, then M is Haken. This is because a small properly embedded
boundary parallel disc is incompressible. So even D3 is Haken, although it
is not boundary irreducible.

(2) A Seifert fibred space is Haken unless it has base orbifold S3 and at most
two singular fibres.

Lemma 6.3. Let M be irreducible, boundary irreducible, and Haken. Then M ≃
K(π1(M), 1), with π1(M) infinite.

Proof. The sphere theorem implies that π2(M) = 0. We argue that π1(M) is
infinite. Suppose that ∂M = ∅. Then M contains a closed incompressible surface
F , which must have positive genus because M is irreducible. By the loop theorem,
π1(F ) injects into π1(M), and hence π1(M) is infinite. Now suppose that ∂M ̸= ∅.
If ∂M contains S2 as a connected component, then M ∼= D3 by irreducibility.
But ∂D3 is compressible, and M is boundary incompressible, hence M is not
D3. It follows that every component of ∂M has positive genus. Since ∂M is
incompressible, π1(∂M) → π1(M) is injective, and hence π1(M) is infinite.
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Now we consider the universal cover M̃ ofM . We have π1(M̃) = 0, and π2(M̃) =

π2(M) = 0 by the sphere theorem. Since π1(M) is infinite, M̃ is a noncompact

3-manifold, so H3(M̃) = 0. Hence Hi(M̃) = 0 for all i > 0. By the Hurewicz

theorem, πi(M̃) = 0 for all i > 0. So M ≃ K(π1(M), 1) as desired. □

As a consequence of the lemma, when M is closed, there is a bijection between
homotopy classes of homotopy equivalences of M and outer automorphisms of
π1(M).

We can now state Waldhausen’s main result [Wal68Wal68] on the mapping class groups
of Haken 3-manifolds.

To state it we introduce the notation Aut∂(π1(M)), for the automorphisms of
π1(M) that preserve the peripheral structure. Here an automorphism ψ of π1(M) is
said to preserve the peripheral structure if for every connected component F ⊆ ∂M ,
ψ(π1(F )) ⊆ A, for some subgroup A that is conjugate to π1(G) ⊆ π1(M), for some
connected component G ⊆ ∂M .

Theorem 6.4 (Waldhausen). Let M3 be irreducible, boundary irreducible, and
Haken. Then taking the induced action on π1 determines an isomorphism

π0Diff(M)
∼=−→ Aut∂(π1(M))/ Inn(π1(M)).

More generally, after Waldhausen, Hatcher and Ivanov [Hat76Hat76, Iva76Iva76] proved the
following theorem. Here on both sides the boundary must be fixed pointwise.

Theorem 6.5 (Hatcher, Ivanov). Let M3 be irreducible, boundary irreducible, and
Haken. Then the forgetful map is a homotopy equivalence

Diff∂(M)
≃−→ hAut∂(M).

Another interesting theorem on mapping class groups of Haken 3-manifolds is
due to Johannson [Joh79Joh79].

Theorem 6.6 (Johannson). LetM3 be irreducible, boundary irreducible, and Haken.
Suppose also that every incompressible annulus or torus in M is boundary parallel.
Then π0Diff(M) is finite.

This includes cases where the analogous algebraic fact is hard to see, so Johann-
son also proved new algebraic results on finiteness of outer automorphism of some
groups, in this way.

Now we begin to outline the methods used in Waldhausen’s proof. The key is
Haken’s notion of hierarchies.

Definition 6.7 (Hierarchies). Let M1 be an irreducible 3-manifold. A hierarchy
for M1 of length n is a sequence of triples

(Mj , Fj ⊆Mj , N(Fj))

for j = 1, . . . , n, where Fj ⊆ Mj is an incompressible surface, and N(Fj) is a

tubular neighbourhood of Fj , such that Mj+1 = Mj \ ˚N(Fj) and Mn+1 is a union
of 3-balls.
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Theorem 6.8 (Existence of hierarchies). Let M1 be an irreducible 3-manifold with
∂M1 ̸= ∅. Then there exists finite n and a hierarchy for M1 of length n, {(Mj , Fj ⊆
Mj , N(Fj)) | j = 1, . . . , n} such that 0 ̸= [∂Fj ] ∈ H1(∂Mj) for all j.

To apply the theorem to a closed Haken manifold, we first cut along the given
incompressible surface. The condition that 0 ̸= [∂Fj ] is important in the use of the
theorem, but this will not be used in these notes.

To prove Theorem 6.86.8, Waldhausen defined a complexity of a handle decompo-
sition, in terms of three nonnegative integers. He took an incompressible surface,
and modified it to be a ‘normal surface’. Cutting along a normal surface reduces
the complexity, and hence the procedure terminates in finite time.

To sketch the proof of surjectivity in Waldhausen’s theorem, we will follow Scott’s
exposition [Sco72Sco72], and use the following proposition, which fixes a homotopy equiv-
alence to be a homeomorphism on surfaces in M .

Proposition 6.9. Let M be irreducible and boundary irreducible. Let f : M →M ,
with f−1(∂M) = ∂M , be a homotopy equivalence. Let F ⊆ M be incompressible

and either non-separating or if M \ ˚N(F ) has two components, then neither has
fundamental group π1(F ). Then f ∼ g such that

(a) g| : g−1(F ) → F is a homeomorphism; or
(b) g(M) ⊆ ∂M , andM is an interval bundle over F , i.e.M ∼= F×I orM ∼= F ×̃I.

We want to use this to sketch the proof of surjectivity in Theorem 6.46.4. We prove
the following theorem.

Theorem 6.10. Let M be irreducible and boundary irreducible. Let f : M → M ,
with f−1(∂M) = ∂M , be a homotopy equivalence. Then

(a) f is properly homotopic to a homeomorphism g : M →M ; or
(b) f is properly homotopic to g with g(M) ⊆ ∂M , and M is an interval bundle

over F , i.e. M ∼= F × I or M ∼= F ×̃I.

The theorem almost implies surjectivity in Waldhausen’s theorem. First, be-
causeM is an Eilenberg-MacLane space, every automorphism of π1 is realised by a
homotopy self-equivalence. If (a) occurs, then we are done. If (b) occurs, then we
know that homotopy equivalences of surfaces are homotopic to a homeomorphism,
and we can apply this and some further arguments in [Wal68Wal68] to conclude. We will
sadly not discuss the further arguments needed to deal with the case of interval
bundles.

Also note that it suffices to find a homeomorphism, by Hatcher’s theorem that
every homeomorphism between 3-manifolds is isotopic to a diffeomorphism.

Sketch proof of Theorem 6.106.10. Choose a hierarchy forM as in Theorem 6.86.8. Induct
on the length of the hierarchy. Let F ⊆ M be irreducible. Apply Proposition 6.96.9.
If (b) holds in the proposition, then (b) holds in the theorem. If (a) holds in the
proposition, then label one copy of M as N and think of f as a map f : M → N .
Cut N along F and cut M along f−1(F ). We obtain a map

f ′ : M ′ → N ′



MAPPING CLASS GROUPS OF 3-MANIFOLDS 25

between the cut manifolds. Either f ′ satisfies the hypotheses of the theorem or
M ′ = N ′ is a union of copies of D3. Also f |∂M ′ is a homeomorphism (use the
approximation for surfaces to any boundary components where this is not yet the
case), By the inductive hypothesis, and the fact that the length of the hierarchy for
M ′ is less than the length for M , either (a) or (b) hold. But f |∂M ′ is a homeomor-
phism, and the homotopy is proper, so (a) must hold, therefore f ′ is homotopic to
a homeomorphims. Glue back together to obtain a homeomorphism.

For the base case, iof the hierarchy has length one, then after cutting we have a
union of 3-balls. But every homotopy equivalence of D3 that is a homeomorphism
on the boundary is homotopic to a homeomorphism by the Alexander trick. □

7. Hyperbolic manifolds

In this section, we will consider the case of hyperbolic manifolds. We will begin
by discussing the basic properties of hyperbolic 3-manifolds. We will then dis-
cuss Mostow rigidity [Mos68Mos68] as well as its consequences for mapping class groups.
Next we will discuss the work of Gabai [Gab97Gab97] and Gabai–Meyerhoff–Thurston
[GMT03GMT03] on completing the proof that π0(Diff(M)) ∼= π0(Isom(M)) ∼= Out(π1(M))
for closed hyeprbolic 3-manifolds. Finally, we will discuss the resolution of the
Smale conjecture for closed hyperbolic 3-manifolds due to Gabai [Gab01Gab01].

Throughout this chapter, all manifolds will be assumed to be smooth and con-
nected. From now on, we will write ∼=Isom and ∼= when two manifolds are isometric
or diffeomorphic respectively. We will write ∼ when two maps between manifolds
are isotopic.

7.1. Definition and properties. We will begin by defining what it means for a
manifold to be hyperbolic.

Definition 7.1. For n ≥ 2, an n-manifold M is hyperbolic if it admits a complete
Riemannian metric of constant curvature −1.

Our prototypical example of a hyperbolic n-manifold is real hyperbolic space Hn.
This has multiple definitions (which are equivalent up to isometry) but, for our
purposes, it will be convenient to use the Poincaré disc model where Hn = IntDn

is taken to be the open unit ball in Rn with metric

dx21 + · · ·+ dx2n
(1− (x21 + · · ·+ x2n))

2
.

Proposition 7.2. Every simply connected hyperbolic n-manifold is isometric to
real hyperbolic space Hn.

An important isometry invariant of a hyperbolic manifold M is its volume:

vol(M) :=

∫
M
ωg

where ωg is the volume form associated to a choice of (hyperbolic) Riemannian
metric g.
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If M is a hyperbolic n-manifold, then its universal cover is a simply connected
hyperbolic n-manifold and so is isometric to Hn. This implies that M ∼= Hn/G for
some G ≤ Isom(Hn).

We will now consider the case of hyperbolic 3-manifoldsM and, as usual, we will
restrict to the case where M is compact. The following generalised an observation
made in the previous chapter.

Proposition 7.3. Let M be a compact hyperbolic 3-manifold. If ∂M ̸= ∅ or M is
non-orientable, then M is Haken.

It therefore suffices to consider the case of closed orientable hyperbolic 3-manifolds.
Since Isom+(H3) ∼= PSL2(C) where PSL2(C) := SL2(C)/ ± 1, every closed ori-
entable hyperbolic 3-manifold is therefore of the form H3/G where G ≤ PSL2(C)
is a discrete subgroup which is of finite covolume in the sense that vol(H3/G) <∞
(sinceM is closed). Such groups G are known as Kleinian groups. Not all Kleinian
groups correspond to manifolds since, in general, H3/G will be an orbifold rather
than a manifold.

Examples of hyperbolic 3-manifolds:

(1) Complements of hyperbolic knots are compact hyperbolic 3-manifolds. Since
they have boundary, they are Haken.

(2) Arithmetic hyperbolic 3-manifolds. If O is an order in a quaternion algebra
A defined over Q then, subject to certain conditions, one can construct
a Kleinian group GO ≤ Isom+(H3) and a corresponding closed orientable
hyperbolic 3-manifold MO = H3/GO.

(3) Hyperbolic Dehn surgery. This is an operation which can be used construct
further hyperbolic 3-manifolds from existing ones. It can be used to produce
infinitely many (non-diffeomorphic) hyperbolic 3-manifolds with vol(M) ≤
V for some constant V > 0.

(4) It was shown by Jørgensen [Jr77Jr77] that there exists a compact hyperbolic
3-manifolds M which fibres over S1.

Remark 7.4. (a) There is no analogue of hyperbolic Dehn surgery in higher di-
mensions. In fact, for all n ≥ 4 and V > 0, there are finitely many hyperbolic
n-manifolds M with vol(M) < V (up to diffeomorphism). So, in some sense, there
are not that many hyperbolic n-manifolds for n ≥ 4. This is another reason why
hyperbolic 3-manifolds are especially interesting.

(b) Following Example (44) above, one can also ask in what other dimensions
n ≥ 4 does there exist a hyperbolic n-manifold which fibres over S1. Such examples
do not exist for n even for elementary reasons. An example in the case n = 5 was
found by Italiano-Martelli-Migliorini [IMM23IMM23] in 2023 but the case of n ≥ 7 odd
remains open.

Properties of closed hyperbolic 3-manifolds.

(1) They are aspherical since M̃ ∼= H3 is contractible. This implies, for exam-
ple, that π1(M) = Γ is torsion-free.

(2) They are irreducible and atoroidal. Conversely, by Thurston’s hyperboli-
sation theorem, every closed irreducible atoroidal 3-manifold which is not
Seifert fibred is hyperbolic.
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(3) If M is a closed hyperbolic 3-manifold, then π1(M) is a hyperbolic group
(in the sense of Gromov). This follows from the fact that π1(M) acts freely
by isometries on H3 and so, by the Milnor-Svarc lemma, the Cayley graph
of π1(M) is quasi-isometric to H3, from which the result follows. In fact,
this is true even for fundamental groups of closed hyperbolic n-manifolds
for all n ≥ 2.

(4) For every closed hyperbolic 3-manifoldM has a finite coverM ′ →M where
M ′ fibres over the circle. This is (a special case of) the virtual fibreing
conjecture, and was shown by Agol in 2013 [Ago13Ago13].

Let M be a closed hyperbolic 3-manifold. Since M is aspherical, we have
that M ≃ K(π1(M), 1). Recall that, for a topological space X, hAut(X) de-
noted the space of homotopy automorphisms with the C0 topology. It follows
that π0(hAut(X)) ∼= hAut(X)/ ≃, i.e. the set of homotopy automorphisms of X
considered up to homotopy.

Lemma 7.5. Let X be a K(G, 1)-space where G is a group. Then, for each choice
of basepoint x0 ∈ X and identification G = π1(X,x0), there is an isomorphism

ϕ : π0(hAut(X)) → Out(G)

given by sending f 7→ [(fγ)∗] where(fγ)∗ : G → G, [α] 7→ [γ · (f ◦ α) · γ−1] where
γ : [0, 1] → X is any choice of path from x0 to f(x0).

Remark 7.6. The map is well defined only in the quotient Out(G) = Aut(G)/ Inn(G),
and the different choices of γ correspond to changing [(fγ)∗] by an element of
Inn(G).

In particular, for a closed hyperbolic 3-manifold M , we have that

π0(hAut(M)) ∼= Out(π1(M)).

7.2. Mostow rigidity. We will now discuss the following famous result, due to
Mostow [Mos68Mos68].

Theorem 7.7 (Mostow rigidity). Let M , N be closed hyperbolic 3-manifolds. If
f :M → N is a homotopy equivalence, then f is homotopic to an isometry.

Remark 7.8. (a) This was generalised to not necessarily-closed finite volume hy-
perbolic 3-manifolds in 1971 by Prasad.

(b) This holds for closed hyperbolic n-manifolds for all n ≥ 3 but fails for n = 2
where there are many the surfaces Σg admit infinitely many inequivalent hyperbolic
metrics for any g ≥ 2. Hyperbolic 3-manifolds therefore occupy a middle ground
where the dimension n = 3 is large enough for Mostow rigidity but small enough
that infinitely many hyperbolic 3-manifolds exist with bounded volume.

(c) The Borel conjecture can be viewed as a broad generalisation of Mostow
rigidity. Let M and N be closed aspherical n-topological manifolds. Then the
Borel conjecture is that, if f : M → N is a homotopy equivalence, then f is
homotopic to a homeomorphism. This is true for n = 3 by Perelman’s resolution
to Thurston’s geometrisation conjecture.
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In particular, if two closed hyperbolic 3-manifolds are diffeomorphic, then they
are isometric. That is, the choice of hyperbolic metric g on a closed hyperbolic
3-manifold M is unique. Moreover, we have:

Corollary 7.9. Let M , N be closed hyperbolic 3-manifolds. Then:

M ∼=Isom N ⇔ M ∼= N ⇔ M ≃ N ⇔ π1(M) ∼= π1(N).

We will now discuss the general idea of the proof of Mostow rigidity. First define
H3 ∼= D3 to be the closure of H3 and then ∂H3 := H3\H3 (∼= S2).

Sketch of proof. Let f :M → N be a homotopy equivalence between closed hyper-

bolic 3-manifolds M and N . Then f induces a homotopy equivalence F : M̃ → Ñ .

Since M̃ ∼= H3 and Ñ ∼= H3, we will write this as F : H3 → H3.
The proof now consists of the following three steps:

(1) Show that there exists a (continuous) extension F : H3 → H3 such that
F |∂H3 : ∂H3 → ∂H3 is a conformal diffeomorphism (i.e. an angle-preserving
diffeomorphism).

(2) There is a one-to-one correspondence between isometries of H3 and confor-
mal diffeomorphisms of ∂H3 given by

Isom(H3)
∼=−→ ConfDiffeo(∂H3), G 7→ G |∂H3 .

(3) Pick G ∈ Isom(H3) such that F |∂H3= G |∂H3 . Then show that G induced
an isometry g :M → N such that f ≃ g. □

We conclude this section by noting that this does not suffice to compute the
mapping class group Γ(M) = π0(Diff(M)) = Diff(M)/ ∼.

It is well-known and can be proven using an elementary argument that, for M
closed hyperbolic 3-manifold, the set of isometries Isom(M) is finite. In particular,
we have that Isom(M) and π0(Isom(M)) = Isom(M)/ ∼ coincide. By combining
with the results at the end of the previous section, we have the following diagram:

π0(Isom(M))︷ ︸︸ ︷
Isom(M)/ ∼

Γ(M)︷ ︸︸ ︷
Diff(M)/ ∼

Isom(M)/ ≃ Diff(M)/ ≃ hAut(M)/ ≃︸ ︷︷ ︸
π0(hAut(M))

Out(π1(M))
∼= ∼= ∼=

where the bottom arrows are all bijections. The missing ingredient is whether
homotopic diffeomorpisms f, g :M →M are actually isotopic.

7.3. The Gabai-Meyerhoff-Thurston theorem. The aim of this section will be
to discuss the following major theorem due to Gabai, Meyerhoff and N.Thurston
[GMT03GMT03], building upon a previous result of Gabai [Gab97Gab97]. In the case where M
is Haken, this was proved in the previous chapter.
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Theorem 7.10 (Gabai-Meyerhoff-Thurston). Let M be a closed hyperbolic 3-
manifold. If f, g ∈ Diff(M) and f ≃ g, then f ∼ g. In particular, we have

π0(Isom(M)) ∼= Γ(M) ∼= π0(hAut(M)) ∼= Out(π1(M)).

Remark 7.11. (a) The main result in [GMT03GMT03] actually proved much more. LetM
be a closed 3-manifold and let N be a closed hyperbolic 3-manifold. If f :M → N
is a homotopy equivalence, then f is homotopic to an isometry. (In particular, M
is a hyperbolic 3-manifold.)

(b) As mentioned in the previous section, π0(Isom(M)) is finite and so the above
theorem shows that mapping class groups of closed hyperbolic 3-manifolds are
finite. In fact, every finite group arises as the mapping class group of a closed
hyperbolic 3-manifold [Koj88Koj88].

The remainder of this section will be dedicated to a discussion of the proof of
this theorem. We will begin with the work of Gabai [Gab97Gab97] which proved the
theorem subject to a certain technical condition which we will now discuss.

Definition 7.12. Let M be a closed hyperbolic 3-manifold and let δ be a simple
closed geodesic in M . Then δ lifts to a set of hyperbolic lines {δi} in H3. For each
i ̸= j, define the orthocurve sij to be the shortest hyperbolic line segment in H3

between δi and δj . Define the midplane Dij to be the hyperbolic place in H3 which
meets sij orthogonally at its midpoint.

By considering the completion H3 and corresponding boundary ∂H3 (∼= S2), we
have a curve λij = ∂Dij which separates the pair of points ∂δi from ∂δj . The set of
simple closed curves {λij | i ̸= j} in ∂H3 is known as the Dirichlet insulator family
associated to the geodesic δ.

We say that a Dirichlet insulator family {λij | i ̸= j} is non-coalescable if there
does not exist i, j1, j2, j3 such that λij1 ∪λij2 ∪λij3 separates the points in ∂δi. See
Figure 33 for an example where this condition fails.

Gabai defined a more general notion of insulator family, which is slightly more
general than the notion of a Dirichlet insulator family, and proved the following.

Theorem 7.13 (Gabai). Let M be a closed hyperbolic 3-manifold. Suppose there
exists a simple closed geodesic δ in M which has an associated non-coaloscable
insulator family. Then, if f, g ∈ Diff(M) and f ≃ g, then f ∼ g.

Since this result is known already in the Haken case, it suffices to treat the case
where M is a closed non-Haken hyperbolic 3-manifold. This assumption plays an
important role in the proof.

If M contains a hyperbolic tube of radius log(3)/2 (≈ 0.5) about a simple closed
geodesic δ, then its associated Dirichlet insulator family is non-coalescable.

In order to prove Theorem 7.107.10, it remains to prove the result in the case where
M is a closed hyperbolic 3-manifold such that no simple closed geodesic is contained
in a hyperbolic tube of radius log(3)/2. This is achieved by Gabai-Meyerhoff-
Thurston as follows:

Theorem 7.14 (Gabai-Meyerhoff-Thurston). Let M be a closed hyperbolic 3-
manifold such that no simple closed geodesic is contained in a hyperbolic tube of
radius log(3)/2. Then:
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Figure 3. Example of a Dirichlet insulator family which is not
non-coalescable: the four pairs of points are ∂δi, ∂δj1 , ∂δj2 , ∂δj3 ,
the circles are λij1 , λij2 , λij3 and the diagram is drawn on a patch
of the boundary sphere ∂H3 ∼= S2.

(a) M is contained in one of seven families R0, · · · ,R6 (which can be viewed as
subsets of C2).

(b) For each M ∈ Ri for i = 1, · · · , 6, the shortest geodesic δ has an associated
Corona insulator family {κij} which is non-coalescable.

(c) The set R0 consists of a single manifold Vol3 and δ in Vol3 has a non-coalescable
insulator family (whose definition combines parts of the definition of the Corona
and Dirichlet insulator families).

It would be interesting to know whether or not any of the more recent develop-
ments in 3-manifold topology (e.g. the work of Perelman and Agol) could be used
to simplify the proof of the Gabai-Meyerhoff-Thurston theorem.

7.4. Smale conjecture. The following was shown by Gabai [Gab01Gab01], building
upon the Gabai-Meyerhoff-Thurston theorem. This resolves the Smale conjecture
for closed hyperbolic 3-manifolds.

Theorem 7.15 (Gabai). Let M be a closed hyperbolic 3-manifold. Then the in-
clusion map

Isom(M) ↪→ Diff(M)

is a homotopy equivalence.

The idea of the proof is as follows. Since Isom(M) is finite, we have that
Isom0(M) = ∗. Since π0(Isom(M)) ∼= π0(Diff(M)) by Theorem 7.107.10, it therefore
suffices to prove that Diff0(M) ≃ ∗ (which, in this case, is equivalent to proving the
weak Smale conjecture). By Mostow rigidity, Diff0(M) can be viewed equivalently
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as the space of hyperbolic metrics Hyp(M) on M . Gabai shows that this space is
contractible using a generalisation of the methods used in [Gab97Gab97] (in particular,
using the theory of insulators to reduce to the case of Haken 3-manifolds).

8. JSJ decompositions and mapping class groups

8.1. JSJ decompositions.

Definition 8.1. Let a, b ∈ Z+ with gcd(a, b) = 1. Let fa,b : D
2 → D2, z 7→

e2πib/az. A standard fibred torus is the mapping torus of fa,b for some a, b, i.e.
D2 × I/(z, 0) ∼ (fa,b(z), 1), foliated by {z} × I for every z.

Since b/a ∈ Q, each leaf of the foliation is an embedded S1.

Definition 8.2. M3 is Seifert fibred if it is foliated by copies of S1 such that each
leaf has a neighbourhood that is a standard fibred torus.

Example 8.3. S3 is Seifert fibred (via the Hopf map). More generally, every lens
space is Seifert fibred (via its decomposition into two tori). More generally, every
elliptic manifold is Seifert fibred, see ... .

Definition 8.4. M3 is atoroidal if every incompressible torus is boundary parallel.

Theorem 8.5 (JSJ, 1979). Suppose that M3 is oriented, irreducible and ∂M ≈⊔k T 2 for some k ≥ 0. Then
a) There is an m ≥ 0 and a submanifold

⊔m
i=1 Ti ⊂ M such that for every i,

Ti ⊂M is an incompressible torus, and each component of M cut along
⊔m

i=1 Ti is
Seifert fibred or atoroidal.

b) Any two minimal submanifolds with the above property are isotopic.

Recall that by the elliptisation theorem (Perelman) if π1(M) is finite, then M is
elliptic (hence Seifert fibred). Recall that if M is hyperbolic, then it is atoroidal.

Theorem 8.6 (Hyperbolisation theorem (Perelman)). Suppose that M3 is ori-

ented, irreducible and ∂M ≈
⊔k T 2 for some k ≥ 0. If M is atoroidal and π1(M)

is infinite, then it is hyperbolic with finite volume or diffeomorphic to S1 × D2,
T 2 × I or the nontrivial I-bundle over the Klein bottle.

Note that all 3 exceptional manifolds are Seifert fibred.

Theorem 8.7 (Geometrisation theorem). Suppose thatM3 is oriented, irreducible,

and ∂M ≈
⊔k T 2 for some k ≥ 0.

(a) There is an m ≥ 0 and a submanifold
⊔m

i=1 Ti ⊂ M such that for every i,
Ti ⊂M is an incompressible torus, and each component ofM cut along

⊔m
i=1 Ti

is Seifert fibred or hyperbolic.
(b) Any two minimal submanifolds with the above property are isotopic.

Proof. By the previous observations “each component is Seifert fibred or hyper-
bolic” ⇔ “each component is Seifert fibred or atoroidal”. □
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Proposition 8.8 (...). Suppose that M3 is oriented, irreducible, ∂M ≈
⊔k T 2 for

some k ≥ 0, and M is not diffeomorphic to S1 × D2, T 2 × I or the nontrivial
I-bundle over the Klein bottle. Then M is Seifert fibred if and only if it has a
geometry other than hyperbolic or Sol.

Remark 8.9. There is also a unique minimal decomposition into geometric com-
ponents, which is different from the JSJ decomposition in general (it may contain
fewer tori). The Sol components may be decomposed further to get a JSJ decom-
position.

8.2. Mapping class groups. The goal of this section is to relate the mapping
class group of M to those of its JSJ components.

Remark 8.10. If M3 has a nontrivial JSJ decomposition, then it is Haken.

Fix M3. Suppose that M3 is oriented, irreducible, ∂M ≈
⊔k T 2 for some k ≥

0. Fix also a JSJ decomposition T =
⊔m

i=1 Ti ⊂ M , let M1, . . . ,Mn denote the
components.

Definition 8.11. Define Diff+(M,T ) := {f ∈ Diff+(M) | f(T ) = T}.

Proposition 8.12. There is a fibration

Diff+(M,T ) → Diff+(M) → (Emb(T,M)/Diff(T ))T

where Emb(T,M)/Diff(T ) is the moduli space of submanifolds of M diffeomorphic
to T and (Emb(T,M)/Diff(T ))T is the path component of T .

Proof. There is a map t : Diff+(M) → Emb(T,M)/Diff(T ) given by t(f) = f(T ).
By the uniqueness part of the JSJ theorem, Im(t) ⊆ (Emb(T,M)/Diff(T ))T . By
isotopy extension Im(t) ⊇ (Emb(T,M)/Diff(T ))T . One must check that t is a
fibration. □

Corollary 8.13. There is a long exact sequence

· · · → π1(Emb(T,M)/Diff(T ))T → π0Diff+(M,T ) → π0Diff+(M) → 1

Remark 8.14. π1(Diff+(M),Diff+(M,T )) ∼= π1(Emb(T,M)/Diff(T ))T is called
the motion group of the pair (M,T ).

From now on we consider π0Diff+(M,T ).

Definition 8.15. We define Diff+(M, (Ti), (Mj)) := {f ∈ Diff+(M,T ) | f(Ti) =
Ti, f(Mj) =Mj for every i, j}.

Definition 8.16. Let G = (V,E, α) be the decorated graph with V = {Mj | 1 ≤
j ≤ n}, E = {Ti | 1 ≤ i ≤ m} and α(Mj) = [the diffeomorphism class of Mj ].

Proposition 8.17. There are exact sequences

1 → Diff+(M, (Ti), (Mj)) → Diff+(M,T ) → Aut(G)

1 → π0Diff+(M, (Ti), (Mj)) → π0Diff+(M,T ) → Aut(G)

Definition 8.18. We define Diff
+
(M, (Ti), (Mj)) = {f ∈ Diff+(M, (Ti), (Mj)) |

f
∣∣
Ti
: Ti → Ti is orientation preserving for every i}.
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Remark 8.19. If every Ti is separating, then Diff
+
(M, (Ti), (Mj)) = Diff+(M, (Ti), (Mj)).

Definition 8.20. Let G = (V,E, α) be the 1-dimensional ∆-complex with decora-
tion that is (the geometric realisation of) G.

Remark 8.21. There is a natural surjective map Aut(G) → Aut(G), but it is not
injective if G contains loops.

Proposition 8.22. There are exact sequences

1 → Diff
+
(M, (Ti), (Mj)) → Diff+(M,T ) → Aut(G)

1 → π0Diff
+
(M, (Ti), (Mj)) → π0Diff+(M,T ) → Aut(G)

From now on we consider π0Diff
+
(M, (Ti), (Mj)).

Definition 8.23. Define

Diff+
c (N) := {f ∈ Diff+(N) | f(S) = S for every connected component S of ∂N}.

For every connected component S of ∂N there is a natural restriction map
Diff+

c (N) → Diff+(S).

Definition 8.24. Define a diagram D in the category of topological groups as
follows. The objects are Diff+

c (Mj) and Diff+(Ti) for every j and i. There is a
morphism (or two) Diff+

c (Mj) → Diff+(Ti) if Ti is a boundary component of Mj .
π0D is the diagram in the category of groups obtained from D by applying π0

to every object and morphism.

Proposition 8.25. Diff
+
(M, (Ti), (Mj)) ∼= limD and π0Diff

+
(M, (Ti), (Mj)) ∼=

limπ0D.

9. Mapping class groups of reducible 3-manifolds

9.1. The diffeomorphism group of reducible 3-manifolds. Let M be a re-
ducible 3-manifolds with prime factors P1, . . . , Pn that are different from the 3-
sphere S3 plus k S1 × S2 summands. We introduce a space C(M) modelling ways
of representing M as a connected sum, possibly with some trivial S3 summands.

Given a finite connected graph G whose fundamental group is a free group gen-
erated by k generators with n of the vertices being labelled as 1, . . . , n and all
unlabelled vertices have valence at least 3. We assign Pi to the vertex labelled i,
and assign a copy of S3, viewing as a metric object that is isometric to the standard
sphere of radius 1, to each unlabelled vertex.

Each edge e corresponds to a connected-sum operation by choosing an embedding
B3

e → Pi for each labelled vertex or an embedding B3
e → S3 for each unlabelled

vertex connected to e and attach a product S2
e×Ie. Everything is done isometrically

by viewing S2
e × Ie as the product of a sphere with radius re and interval length le,

and B3
e being the metric ball bounded by S2

e . For unlabelled vertices, we further
require that the embedding we choose is an isometry on the boundary sphere S2

e .
We perform the operations such that all products attached are disjoint in the
resulting manifold.
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The products S2
e × Ie attached are called tubes and parts of the 3-spheres re-

mained in M are called nodes.
In the above process, we have made various choices including the radii, lengths

and embeddings of 3-balls into the prime factors Pi and trivial 3-spheres. Letting
these invariants vary gives rise to a space CG(M) for every such G. By allowing
the following operations, we glue CG(M) into a single space C(M):

• Collapse tubes between two distinct nodes.
• Collapse tubes between one node and one prime factor.

Both gives a point in CG/e(M) where e is the tube being collapsed. The space
C(M) is defined as the union of all CG(M) up to adding or collapsing degenerate
tubes (tubes of length 0).

If we choose a base point c0 ∈ C(M), then for any c ∈ C(M), an exterior
diffeomorphism of Mc is given by a diffeomorphism fc : Mc → Mc0 restricting to
the identity map on ∪i∂Pi. The group of exterior diffeomorphisms is denoted by
Diffext(M). We state the theorem by Hendriks-Laudenbach [HL84HL84], cf. [CdSR79CdSR79].

Theorem 9.1 (Cesar de Sa–Rourke, Hendriks–Laudenbach). There is a principal
fibre bundle from Diffext(M) to C(M) which has structure group Diff(M,∂).

Taking the loop suspension gives rise to the following principal fibration ΩC(M) →
Diff(M,∂) → Diffext(M).

IfM has one sphere boundary component S0, then it can be constructed by tak-
ing connected sums of a 3-ball P0 with Pi and the S1×S2 factors. LetDi denote the
connected sum disc in Pi, there is a (delicately defined by Hendriks–Laudenbach)
subcomplex of C1(M) of C(M) such that we have the following theorem:

Theorem 9.2 (Hendriks-Laudenbach [HL84HL84]). There are H-space maps:

α : (Fk)
n → Diff(M,∂)

β : ΩC1(M) → Diff(M,∂)

γ :
∏
i

Diff(Pi, ∂Pi ∪Di)× ΩO(3)k → Diff(M,∂).

such that the map

h : (Fk)
n × ΩC1(M)×

∏
i

Diff(Pi, ∂Pi ∪Di)× ΩO(3)k → Diff(M,∂)

(x, y, z) 7→ α(x) ◦ β(y) ◦ γ(z)

is a homotopy equivalence.

For (xi) ∈ (Fk)
n, the image α(x) corresponds to the composition of the slidings

of Pi along loops represented by xi. By the Smale conjecture, the ΩO(3) factors
correspond to Diff(S2 × I, ∂).

Let B denote the closure of the complement of the n+ 2k connected-sum discs
in P0. In this case, the homotopy type of C1 is described through the following
proposition.
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Proposition 9.3 (Hendriks-McCullough [HM87HM87]). The composition

(Fg)
n × ΩC1

α·β−−→ Diff(M,∂)
ρ−→ Embe(B,M ;S0)

is a homotopy equivalence, where Embe(B,M ;S0) is the space of embeddings re-
stricting to the inclusion on S0 and extendable to a diffeomorphism of M rel ∂,
and ρ is the restriction map.

As an example, we look at the case n = 0 and k = 2, so M is the closure of
S1×S2#S1×S2 \B3. In this case it turns out that C1 = C and can be understood
by listing the following three possible graphs: The proposition implies that ΩC is
homotopy equivalent to Embe(B

3 \ {four points},M ;S0).

9.2. Finite presentation of the 3-manifold mapping class groups. We now
turn to the question about finite presentation.

Theorem 9.4 (Hatcher-McCullough [HM90HM90]). Let M be a compact orientable 3-
manifold with a prime decomposition. If the mapping class group of each irreducible
summand is finitely presented, then Γ(M) is also finitely presented.

Their proof, which we shall outline now, relies on a simplicial complex called the
sphere complex S(M).

Suppose M is reducible, we define a simplicial complex S(M) whose vertices are
isotopy classes of embedded 2-spheres that don’t bound 3-balls. A collection of iso-
topies classes [S′

0], . . . , [S
′
n] spans an n-simplex if and only if there is a submanifold

S0 ∪ · · · ∪ Sn of disjoint, pairwise non-isotopic embedded 2-spheres with none of
them bounding 3-balls such that Si is isotopic to S′

i for all i.

Theorem 9.5. The space S(M) is simply-connected.

Proposition 9.6. The quotient S(M)/(Γ(M)) is finite.

The proof of Theorem 9.49.4 is divided into the following steps.

• It suffices to prove the result forM with no 2-sphere boundary components
and M ̸= S1 × S2.

• Prove by induction on the number of summands that the stabiliser of each
simplex in S(M) under the action of Γ(M)/R(M) is finitely presented where
R(M) is the subgroup sphere twists (will be defined later).

• Prove that the stabiliser of each simplex in S(M) under the action of Γ(M)
is finitely presented.

• Apply a theorem by K. Brown (stated later) on simplicial group actions.

The following proposition takes care of step 1.
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Proposition 9.7. Let M be a connected 3-manifold with finitely generated funda-
mental group, and suppose S is a 2-sphere boundary component of M . Let M̂ be
the manifold obtained from M by filling the S2-boundary with a 3-ball. Then Γ(M)

is finitely presented if and only if Γ(M̂) is finitely presented.

In the rest of this section we give an outline to step 2,3 and 4.
For an embedded 2-sphere S in M , one can define a homeomorphism called

the sphere twist about S by letting a non-contractible loop in π1SO(3) based at
the identity act on a product neighbourhood of S. The group of isotopy classes
of sphere twists is denoted by R(M). R(M) is isomorphic to (Z/2)q for some
non-negative integer q.

Proposition 9.8. R(M) acts trivially on S(M), thus the action of Γ(M) on S(M)
induces an action of Γ(M)/R(M) on S(M).

It follows that for any σ ∈ S(M), the stabiliser under the action of Γ(M) is
finitely presented if and only if the stabiliser under the action of Γ/R(M) is finitely
presented. This proves that step 2 is equivalent to step 3.

Now suppose M has no 2-sphere boundary components. Let σ ∈ S(M) repre-
sented by pairwise disjoint 2-spheres S0, . . . , Sn. We cut M along σ gives rise to
components M1, . . . ,Mm. Denote H̄∂(Mj) to be the group generated by elements
of Γ(Mj)/R(Mj) that take each component of ∂Mi to itself, and restrict to a degree
1 homeomorphism on each 2-sphere boundary component. There is a well-defined
homomorphism

i :
∏

H̄∂(Mj) → Γ(M)/R(M)

by choosing representatives restricting to the identity on each 2-sphere boundary
component and glueing them together.

Proposition 9.9. The map i is injective.

By construction, the image of i lies in the stabiliser of σ. Conversely, take an
element [h] in the stabiliser of σ, by (potentially) passing to a finite index subgroup,
we can assume h does not reverse sides of any Si. Furthermore, h preserves each
Mj and is isotopic to the identity on each Si. It follows that the image of i has
finite index in the stabiliser. Since the spheres Si do not bound 3-balls, each Mj

has fewer summands thanM . By induction, the stabiliser of each simplex is finitely
presented. This takes care of step 2.

Finally, the following theorem by K. Brown finishes the proof.

Theorem 9.10 (K. Brown, 1984). Let G be a group that acts simplicially on a
simply-connected complex such that each vertex stabiliser is finitely presented, and
edge stabiliser is finitely generated so that the quotient has finite 2-skeleton, then
G is a finitely presented group.

9.3. The mapping class group of #nS
1 × S2. We now focus on the manifold

Mn = #nS
1 × S2, the connected sum of n copies of S1 × S2. The group of sphere

twists R(Mn) ∼= (Z/2)n is generated by the twists about the core spheres {∗}× S2

of the n summands, and is a normal abelian subgroup of Γ(Mn). The mapping
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class group Γ(Mn) acts on the fundamental group π1(Mn) up to conjugation which
gives rise to a homomorphism

ρ : Γ(Mn) → Out(π1(Mn)) ∼= Out(Fn)

Laudenbach discovered the short exact sequence:

1 → R(Mn) → Γ(Mn) → Out(Fn) → 1.

Proof sketch.

• Prove that the composition of ρ with the quotient map Aut(Fn) → Out(Fn)
is surjective. The automorphism group Aut(Fn) has a countable set of
standard generators:For distinct 1 ≤ i, j ≤ n, elements Lij and Rij defined
via the formulas:

Lij(ak) =

{
ajak if k = i

ak otherwise
Rij(ak) =

{
akaj if k = i

ak otherwise

for 1 ≤ k ≤ n, and elements

Ii(ak) =

{
a−1
k if k = i

ak otherwise

for 1 ≤ i ≤ n.
One way of viewing Mn is removing 2n disjoint 2-spheres from S3 and

identifying the boundary in pairs. We can consider Mk bounding two dif-
ferent 4-manifolds ♮nS

1 × D3 and ♮nS
2 × D2 related by surgeries. These

generators can be realised by sliding one of the 2-handles (or 1-handles)
corresponding to one pair of 2-spheres over another.

• Cut Mn along the core spheres to get an n-punctured S3, denoted by M ′
n,

whose mapping class group is generated by boundary sphere twists, and
prove that any diffeomorphism in the kernel of ρ fixes π2(Mn) hence comes
from Γ(M ′

n). □

Brendle-Broaddus-Putman [BBP23BBP23] proved that this short exact sequence splits,
i.e. there exists a section Out(Fn) → Γ(Mn). Furthermore, if we choose a trivilisa-
tion [σ0] (up to homotopy classes) of the tangent bundle ofMn, then the section can
be chosen such that the image of this section is the stabiliser of σ0. Since R(Mn)
is an abelian normal subgroup, it follows that the mapping class group Γ(Mn)
is isomorphic to the semi-direct product of the twist group R(Mn) and the above
mentioned stabiliser. The proof is based on the notion of a crossed homomorphism.

Let G, H be groups with G acts on H on the right. A crossed homomorphism
from G to H is a map λ : G→ H such that λ(g1g2) = λ(g1)

g2λ(g2).

Lemma 9.11. Let 1 → A → G → Q → 1 be a short exact sequence such that
A is an abelian normal subgroup and Q = G/A, then the sequence splits if and
only if there exists a crossed homomorphism λ : G → A that is the identity on A.
Moreover, one can choose a splitting Q→ G such that the image is ker(λ).
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To construct such a crossed homomorphism Γ(Mn) → R(Mn), we start by con-
structing a so called derivative crossed homomorphism

D : Γ(Mn) → [Mn,GL+
3 (R)]

. The upcoming construction works for general 3-manifolds as well but we focus
on the case #nS

1 × S2.
Let Fr(TMn) denote the frame bundle of Mn whose elements are orientation-

preserving linear isomorphisms τ : R3 → TpMn for p ∈ Mn. Note that Fr(TMn) is
a principle GL+

3 (R)-bundle with GL+
3 (R) acting on the right by composition.

Recall that the set of oriented trivialisations Triv(Mn) consists of sections σ : Mn →
Fr(TMn). The set of continuous maps C(Mn,GL+

3 (R)) inherits a group struc-
ture from GL+

3 (R) and acts simply transitively on the right on Triv(Mn) via
σ · ϕ = (p→ σ(p) · ϕ(p)) for ϕ ∈ C(Mn,GL+

3 (R)).
The diffeomorphism group Diff(Mn) acts on the right on Triv(Mn) via σf =

(Df−1)∗◦σ◦f for f ∈ Diff(Mn) where (Df
−1)∗ is the induced map of the derivative

Df−1 on Fr(TMn) by composition. It also acts on the right on C(Mn,GL+
3 (R)) by

composition ϕf = ϕ ◦ f for f ∈ Diff(Mn) and ϕ ∈ C(Mn,GL+
3 (R)).

The above actions are compatible in the sense that for f ∈ Diff(Mn), ϕ ∈
C(Mn,GL+

3 (R)) and σ ∈ Triv(Mn), we have (σ · ϕ)f = σf · ϕf .
Choose a base trivialisation σ0 ∈ Triv(Mn), for f ∈ Diff(Mn), there is a unique

ϕf ∈ C(Mn,GL+
3 (R)) such that σf0 = σ0 · ϕf . We define the derivative crossed

homomorphism
D : Diff(Mn) → C(Mn,GL+

3 (R))
by D(f) = ϕf

−1. One can verify that by the compatibility condition between
the actions, this is indeed a crossed homomorphism. It turns out that passing to
homotopy classes gives rise to a derivative crossed homomorphism

D : Γ(Mn) → [Mn,GL+
3 (R)].

By composing with the π1-functor, we have the following map

T : Γ(Mn) → [Mn,GL+
3 (R)] → H1(Mn;Z/2) ∼= Hom(π1Mn,Z/2).

Proposition 9.12. The restriction of T to R(Mn) is an isomorphism.

Thus T is the crossed homomorphism we need to prove the splitting of this short
exact sequence:

1 → R(Mn) → Γ(Mn) → Out(Fn) → 1

and the kernel Ker(T) is isomorphic to Out(Fn).

Sketch proof of the proposition. Let S be an embedded 2-sphere in Mn, the sphere
twist TS about S is constructed by a loop l : [0, 1] → SO(3) based at the identity
which rotates S about an axis by a full twist. Let p0 be one of the intersection points
of this axis with S. For a closed embedded curve γ in Mn, we can homotope it to
some γ′ that intersects a neighbourhood S × [0, 1] only in the form of {p0} × [0, 1]
hence Ts fixes γ pointwise.

The loop D(Ts)(γ) in GL+
3 (R) represents T(Ts)([γ]) in π1GL+

3 (R) = Z/2 which
counts the Z/2-algebraic intersection number of γ with S. Thus T(Ts) is the
Poincare dual of [S]. □
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10. Homological stability of mapping class groups

In this section we present a method of studying mapping class groups of 3-
manifolds from a more global perspective. In particular we look at a powerful
stability result for calculating the homology of mapping class groups associated to
certain 3-manifolds.

Definition 10.1. A sequence of groups

G0 G1 G2 . . .
ϕ0 ϕ1 ϕ2

is called homologically stable if, for all k, the induced maps Hk(Gn)
∼=−→ Hk(Gn+1)

are isomorphisms for n sufficiently large with respect to k.

Knowing that a family of groups exhibits homological stability is an invaluable
tool for examining the general behaviour of the entire family. It is most useful
when used in conjuction with stable homology.

Definition 10.2. Let {Gn} be a sequence of groups with associated inclusions.
Then G∞ :=

⋃∞
i Gi is defined to be the limit of these groups, and we say that

Hk(G∞) is the stable homology of {Gn}.

Thus homological stability tells us that Hk(Gn) ∼= Hk(G∞) in a range of degrees
which increases as n increases. It would be very useful to know homological stability
for mapping class groups, as it would simplify homology calculations considerably.

So let us suppose that M is a connected, compact, orientable 3-manifold with
boundary. We are interested in the case that M is obtained by taking the connect
sum of some manifold N with a number of copies of another manifold P . In this
case we will denote M by

NP
n = N#P#P# · · ·#P

where n is the number of times we have connect summed N with P to obtain M .
Suppose further that ∂N ̸= ∅, with a chosen component ∂0N of ∂N . Fix a

compact subsurface R of ∂N which contains ∂0N . We work with the mapping
class groups of diffeomorphisms of M that fix R, and denote this mapping class
group by

ΓP
n (N,R) = Γ(NP

n , R) = π0Diff(NP
n rel R).

We can obtain NP
n+1 from NP

n by taking a copy of P , removing a disc, and iden-
tifying the resulting boundary sphere with a disc in ∂0N . This gives the obvious
inclusion map NP

n ↪→ NP
n+1. Now, we can extend diffeomorphisms on NP

n to

diffeomorphisms on NP
n+1 by just taking them to be the identity on this new P

component, which gives us a map

ϕn : ΓP
n (N,R) → ΓP

n+1(N,R).

Since we have a natural inclusion of the spaces NP
n ↪→ NP

n+1, it might be tempting
to conclude that the maps ϕn must be trivially be inclusions too. Indeed, they do
define injections, but this is a subtle and non-trivial thing to prove. See Hatcher-
Wahl [HW10HW10] for details.
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In summary, we have a collection of groups ΓP
n (N,R), and inclusions ϕn :

ΓP
n (N,R) → ΓP

n+1(N,R). This sequence exhibits homological stability.

Theorem 10.3 (Hatcher-Wahl [HW10HW10]). For any compact, connected, oriented
3-manifolds N and P and compact subsurface R of ∂N as above, the sequence
{ΓP

n (N,R), ϕn} satisfies homological stability

Hk(Γ
P
n (N,R))

∼=−→ Hk(Γ
P
n+1(N,R))

for n > 2k + 2.

This is a powerful theorem. Notice that we do not impose any extra conditions
on P , meaning that we have stability of mapping class groups under the connect
sum of any compact, connected, oriented 3-manifold. This provides us with a
wealth of examples.

However, the question of calculating the stable homology of this family of map-
ping class groups in all degrees is still open.

11. Artin groups and 3-manifold groups

Since diffeomorphisms of 3-manifoldsM do not necessarily fix a given base-point,
the action of the mapping class group MCG(M) on the fundamental group π1(M)
is only well-defined up to conjugation. This gives a homomorphism

ρM : MCG(M) → Out(π1(M)).

Unlike the case of compact surfaces, the homomorphism ρM is not always an iso-
morphism. However, if M is irreducible, boundary irreducible and Haken then the
homomorphism ρM is an isomorphism onto the group

Out∂(M) = {ϕ ∈ Out(π1(M)) | ϕ preserves the peripheral structure}
since Theorem 6.46.4 can be applied. Hence, a characterization of the outer automor-
phism group of a 3-manifold group is useful to understand the mapping class group
of an irreducible, boundary irreducible and Haken 3-manifold.

Artin groups provide an infinite family of 3-manifold groups. In this section
we survey the classification of all the Artin groups isomorphic to the fundamental
group of a 3-manifold. In particular, we will apply Theorem 6.46.4 for some of the
3-manifolds with fundamental group isomorphic to some Artin groups.

Definition 11.1. Let Γ be a finite graph without loops or multiple edges, such
that every edge is labeled by an integer greater or equal to 2. Suppose V(Γ) is the
set of vertices of Γ and let mij be the labels on the edges with endpoints ai and
aj . The Artin group of type Γ is the finitely presented group

A(Γ) =
〈
a1, . . . , an ∈ V(Γ) | aiajai . . .︸ ︷︷ ︸

mij times

= ajaiaj . . .︸ ︷︷ ︸
mij times

if ai and aj are adjacent
〉
.

Suppose Γ is a triangle with each edge labeled with 2. The respective Artin
group is isomorphic to Z3. In particular, the abelian free group Z3 is isomorphic
to the fundamental group of a 3-dimensional torus.
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q

︸︷︷︸
q times

Figure 4. The link Kq.

If Γ consists of two vertices connected by an edge labeled by 2, then the Artin
group associated is isomorphic to Z2. The abelian free group of rank 2 is isomor-
phic to the fundamental group of a 3-manifold too, which is the complement in S3
of a tubular neighborhood of the Hopf link.

More generally, if Γ consists of two vertices connected by an edge with an inte-
ger label q ∈ {2, 3, . . . } then A(Γ) is isomorphic to the fundamental group of the
complement of a (2, q) torus-link Kq in S3. The link Kq can be obtained from a
braid group element as in Figure 44, starting from two vertical strands twisted q
times in the same direction and with respective vertical endpoints reconnected by
an arc. Moreover, the link Kq is a knot if and only if q is odd.

Proposition 11.2. Let Γq be the labeled finite graph consisting of one edge labeled
by q. The fundamental group of the complement in S3 of a tubular neighborhood of
Kq is isomorphic to A(Γq).

Proof. Let ν(Kq) a tubular neighborhood of Kq. The Wirtinger presentation
method provides the fundamental group of S3 \ ν(Kq) with the following presenta-
tion

⟨a, b | a2 = bq⟩.
The map

⟨a, b | a2 = bq⟩ → ⟨x, y | xyx . . .︸ ︷︷ ︸
q times

= yxy . . .︸ ︷︷ ︸
q times

⟩ = A(Γq)

a 7→ (xy)q

b 7→ xy

is a well-defined homomorphism of groups. □

The following is an easy corollary of the above proposition.

Corollary 11.3. If q is odd, the mapping class group of S3 \ ν(Kq) is cyclic of
order 2.

Proof. Let G be a one-relator group generated by two elements a, b ∈ G. If G
is torsion-free with non-trivial center, the outer automorphism group Out(G) is
cyclic of order 2 provided the abelianization Gab contains a copy of Z [GHMR00GHMR00,
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Theorem C]. In particular, the class of automorphisms represented by ϕ : G → G
such that ϕ(a) = a−1 and ϕ(b) = b−1 generates Out(G).

The Artin groups A(Γq) satisfy all the above properties if q is odd: by Lemma
6.36.3 the group A(Γq) is a K(π, 1) and therefore is torsion-free; the group element
a2 = bq is in the center since it commutes with both a and b; the abelianization
A(Γq)

ab is isomorphic to Z through the homomorphism deg : A(Γq) → Z mapping
every generator ai ∈ V(Γ) to 1 [Mul02Mul02, Proposition 3.1].

We only need to check that ϕ preserves the peripheral structure in order to
apply Theorem 6.46.4. The boundary ∂(S3 \Kq) is a torus with fundamental group
generated by the elements ab−1 and bq. The image of the subgroup ⟨ab−1, bq⟩ of
A(Γ) through the automorphism ϕ is ⟨a−1b, bq⟩, conjugated with ⟨ab−1, bq⟩ via the
group element b−1a. □

Let now Γ be a labeled tree. The Artin group A(Γ) is the 3-manifold group of
the complement of a link LΓ in S3, where LΓ is a connected sum of tori-links as in
Figure 55.

More specifically, whenever two edges with labels q1 and q2 share a common
vertex, the closure of the tubular neighborhoods of the associated tori-links Kq1

and Kq2 can be glued together on a disk. The link LΓ can then be obtained by
gluing tori-links for every pair of adjacent edges in Γ.

3

2 2

Figure 5. An example about how to construct LΓ from a tree Γ.

Theorem 11.4 (Brunner [Bru92Bru92]). Let Γ be a labeled tree. The Artin group A(Γ)
is isomorphic to the fundamental group π1(S3 \ ν(LΓ)), where ν(LΓ) is a tubular
neighborhood of the link LΓ.

However, not all Artin groups are 3-manifold groups. The following theorem
provides us with an obstruction.

Theorem 11.5 (Scott [Sco73Sco73]). Every finitely generated subgroup of a 3-manifold
group is finitely presented

Sketch of the proof. Suppose the fundamental group π1(M) of a 3-manifold is finitely
generated. Then, there exists N a compact submanifold of M such that the inclu-
sion map ι : N ↪→M induces an isomorphism of groups π1(N) ∼= π1(M). However,
every compact manifold has the homotopy type of a finite CW-complex and there-
fore the fundamental group π1(N) is finitely presented. Hence, the fundamental
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group π1(M) is also finitely presented.

More generally, if H ≤ π1(M) is a finitely generated subgroup, then there exists
a covering map MH → M such that π1(MH) is isomorphic to H. Since MH is a
3-manifold then H is a finitely generated 3-manifold group and in particular finitely
presented. □

Suppose Γ is a square graph with 4 vertices and 4 edges labeled with 2. The
Artin group A(Γ) associated is not coherent or, in other words, there exists a
finitely generated subgroup of A(Γ) that is not finitely presented.

22

2

2

2 2

2

Figure 6. The simplicial complex ∆Γ associated with the graph
on the left of the picture is not simply connected. However, the
simplicial complex ∆Γ associated with the triangle on the right-
hand-side is contractible.

Theorem 11.6 (Bestvina-Brady [BB97BB97]). Let Γ be a finite graph with each label
equal to 2 and let ∆Γ be the maximal simplicial complex with the graph Γ as 1-
skeleton. Then, the kernel of the map deg : A(Γ) → Z is finitely generated if and
only if Γ is connected and finitely presented if and only if ∆Γ is simply connected.

In particular, the simplicial complex ∆Γ associated with the square graph Γ with
all labels equal to 2 coincides with Γ, that is connected but not simply connected.

Given Theorem 11.511.5 as the main obstruction for an Artin group to be a 3-
manifold group, Hermiller-Miller [HM99HM99] first and Gordon then [Gor04Gor04] gave their
contributions by proving the following result.

Theorem 11.7. An Artin group A(Γ) is the fundamental group of a connected
3-manifold if and only if Γ is either a tree or a triangle with each edge labeled 2.

Sketch of the proof. Suppose Γ contains a circuit of length greater or equal to 4.
Hermiller-Miller proved that the kernel of the degree homomorphism deg : A(Γ) →
Z is finitely generated but not finitely presented.

Every Artin group A(Γ) comes with a reflection group W (Γ) by adding the
relations a2i = 1 for every ai ∈ V(Γ). Moreover, the inclusion of labeled graphs
induces injective homomorphisms of Artin groups [Van94Van94]. Gordon proved that if
A(Γ) is coherent and Γ contains a triangle Ω, then the Artin group A(Ω) associated
with the triangle Ω has a finite reflection groupW (Ω). However, such Artin groups
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have been classified [SB72SB72] and the Theorem follows after checking that all the
possibilities result in a not coherent Artin group unless Γ is a tree or a triangle
with each edge labeled 2. □
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