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Our goal is to explain the classification of closed, connected, oriented, topological 4-manifolds
with fundamental group isomorphic to Z, up to homeomorphism.

In [FQ90], the statement and an outline of a proof is given. But they state that there is
“no formal proof provided”, and that they leave the proof as an “extended exercise”. Later
Kreck [Kre99] gave a proof in the spin case, and later still this was completed by Hambleton-
Kreck-Teichner[HKT09] as a special case of their classification of 4-manifolds with geometrically
2-dimensional fundamental group. We shall explain an outline of a proof that differs from the
proofs that have previously appeared, in that we apply the surgery exact sequence.

Closed 4-manifolds with fundamental group Z are classified, roughly speaking, by the inter-
section form on π2 and by the Kirby-Siebenmann invariant. The classification has two parts.
First we describe a realisation result for the invariants, then we show that any automorphism of
the invariants is realised by a homeomorphism.

The intersection pairing of a closed 4-manifold M with fundamental group Z is defined on
π2(M) ∼= H2(M ;Z[Z]) and denoted

λM : H2(M ;Z[Z]) × H2(M ;Z[Z]) → Z[Z].

It is nonsingular, Hermitian, and sesquilinear with respect to the involution on Z[Z] = Z[t, t−1]
sending t 7→ t−1. The Kirby-Siebenmann invariant is

ks(M) ∈ H4(M ; π3(TOP / PL)) ∼= H4(M ;Z/2) ∼= Z/2.

1 The existence theorem
Theorem 1.1 (Existence). Let (H, λ) be a nonsingular, Hermitian, sesquilinear form over Z[Z]

λ : H × H → Z[Z],

where H ∼= ⊕nZ[Z] is a finitely generated free Z[Z]-module. Let k ∈ Z/2. If λ is even (i.e.
λ(x, x) = q + q for some q ∈ Z[Z]) assume that

k ≡ sign(λ ⊗Z[Z] R)/8 mod 2.

Then there exists a closed, connected, oriented, topological 4-manifold M with π1(M) ∼= Z,
ks(M) = k ∈ Z/2, and such that there is an isomorphism θ : H

∼=−→ H2(M ;Z[Z]) inducing an
isometry θ : λ

∼=−→ λM .

Proof. Start with S1 × D3. Its boundary is S1 × S2. Attach n 2-handles to S1 × S2 with
framing-linking matrix λ(0). Then add clasps to the handle attaching maps by doing a finger
move around an element of π1(S1 × S2) and then clasping. Do this for each summand ±tk

with k > 0 on the diagonal of a matrix representing λ, and for each ±tk summand with k ̸= 0
above the diagonal of λ. The sign of the clasp should correspond to the ± and the element of
π1(S1 × S2) should correspond to k. With these 2-handles attaching maps we obtain a compact,
oriented smooth 4-manifold W with π1(W ) ∼= Z and λW

∼= λ.
We want to fill in ∂W with N ≃ S1 × D3. To get a smooth 4-manifold, we would need to add

3- and 4-handles, but this may not be possible. The manifold N will be good enough to obtain
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a topological 4-manifold with the right algebraic topology, however. Since π1(W ) ∼= Z, we have
that H1(W ;Z[Z]) = 0. The long exact sequence of the pair with Z[Z] coefficients yields:

H2(W ) j−→ H2(W, ∂W ) → H1(∂W ) → 0.

By Poincaré duality and universal coefficients

H2(W, ∂W ;Z[Z]) P D,∼=−−−−→ H2(W ;Z[Z]) UC,∼=−−−→ HomZ[Z](H2(W ;Z[Z]),Z[Z]).

The composition

UC ◦ PD ◦ j : H2(W ;Z[Z]) → HomZ[Z](H2(W ;Z[Z]),Z[Z])

is the adjoint of the intersection pairing, which by assumption is nonsingular, so this composition
is an isomorphism. Therefore H1(∂W ;Z[Z]) = 0. In other words ∂W is a Z[Z]-homology S1 ×S2

i.e. the homology is Z in degrees 0 and 2 and is otherwise trivial. We will apply the following
theorem.

Theorem 1.2. Let M be a closed, oriented, connected 3-manifold. Suppose there exists a
homomorphism φ : π1(M) ↠ Z with H1(M ;Z[Z]) = 0 Then there exists a compact, oriented,
connected 4-manifold N with homotopy equivalence g : N → S1 with ∂N ∼= M , such that
π1(M) → π1(N) g∗−→ π1(S1) ∼= Z agrees with φ.

Proof of Theorem 1.2. This proof is based on that in [FQ90, Section 11.6]. First we find some
4-manifold whose boundary is M , with a map to S1 realising φ. We use framed bordism. Every
oriented 3-manifold admits a framing of its tangent bundle.

Ωfr
3 (BZ) ∼= Ωfr

3 ⊕ Ωfr
2

∼= Z/24 ⊕ Z/2.

We consider the image of (M, φ) in here. The first summand can be killed by changing the choice
of framing of the tangent bundle of M . The second summand is detected by an Arf invariant.
It turns out that this is determined by the order of H1(M ;Z[Z]), evaluated at t = −1. Since
H1(M ;Z[Z]) = 0, the Arf invariant vanishes and so (M, φ) = 0 ∈ Ωfr

3 (BZ). Therefore there
exists a framed 4-manifold Y with framed boundary M , such that the map M → S1 associated
with φ extends over Y .

Let
X := M(M φ−→ S1)

be the mapping cylinder. Then we claim that (X, M) is a Poincaré pair. To see this note that
X ≃ S1 so its only nontrivial homology with Z[Z] coefficients is H0(X;Z[Z]) ∼= Z. Similarly
the relative homology H∗(X, M ;Z[Z]) vanishes apart from H3(X, M ;Z[Z]) = Z. We can also
compute that the cohomology of X is H1(X;Z[Z]) ∼= Z and is otherwise zero. We have
H4(X, M ;Z) ∼= H3(M ;Z) ∼= Z. A generator is a fundamental class for X. For a complete
argument one needs to show that cap product with this generator gives the correct isomorphisms.

This uses that H1(M ;Z[Z]) = 0. The pair (X, M) will be our target space. If M = S1 × S2

then we would have X ∼= S1 × D3. We can construct a degree one normal map(
(F, Id) : (Y, M) → (X, M)

)
∈ N(X, M).

The set N(X, M) consists of normal bordism classes of degree one normal maps over X, where
a bordism restricts to a product cobordism homeomorphic to M × I between the boundaries.
Our goal is to do surgery on the interior of the domain (Y, M) to convert this into a homotopy
equivalence.

Since the fundamental group Z is a good group, surgery theory says that this is possible,
which implies that the structure set S(X, M) is nonempty, if and only if σ−1({0}) is nonempty.
Here

σ : N(X, M) → L4(Z[Z])
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is the surgery obstruction map. Essentially it takes the intersection pairing on H2(Y ;Z[Z]) and
considers it in the Witt group of nonsingular, Hermitian, even forms over Z[Z] up to stable
equivalence, where stabilisation is by hyperbolic forms(

Z[Z] ⊕ Z[Z],
[
0 1
1 0

])
Shaneson splitting implies that

L4(Z[Z]) ∼= L4(Z) ⊕ L3(Z) ∼= L4(Z) ∼= 8Z.

The last isomorphism is given by taking the signature.

Theorem 1.3 (Freedman). There exists a closed, oriented, simply connected, topological 4-
manifold Z with intersection form E8 and therefore sign(Z) = 8.

Using Theorem 1.3 we take the connected sum of Y with copies of Z or −Z, to arrange that
the signature becomes zero. Then the resulting normal map Y #ℓZ → X has trivial surgery
obstruction in L4(Z) and therefore has is normally bordant to a homotopy equivalence

(F ′, Id) : (N, M) → (X, M)

as desired. □

We return to the proof of Theorem 1.1. Apply Theorem 1.2 with M = ∂W . Then

U := W ∪M −N

is a closed, connected, oriented, topological 4-manifold with π1(U) ∼= Z and λU
∼= λ. For even λ,

this automatically has the correct Kirby-Siebenmann invariant by Rochlin’s theorem (we may
have to first stabilise by copies of S2 × S2 to get a smooth 4-manifold, to which we can apply
Rochlin. But this does not change the signature nor the Kirby-Siebenmann invariant. It remains
to realise both Kirby-Siebenmann invariant 0 and 1 for λ odd. We do not know whether the
manifold U we have constructed has ks(U) = 0 or ks(U) = 1. So we need a method to alter the
invariant. For this we need the following theorem.

Theorem 1.4 (Freedman). Let Σ be a Z-homology 3-sphere. Then there exists a contractible,
compact topological 4-manifold V with ∂V = Σ.

In fact, we have already seen this in disguise, since this result was used in the construction of
the E8-manifold Z from Theorem 1.3. Attaching 2-handles to D4 along an 8-component link
with linking-framing matrix equal to the E8 form gives a compact 4-manifold with boundary an
integral homology 3-sphere. Capping off with the contractible manifold V from Theorem 1.4
yields Z.

Now, however, we need Theorem 1.4 to construct a manifold called ∗CP2 which is homotopy
equivalent but not homeomorphic to CP2. Attach a 2-handle D2 ×D2 to D4 along a (+1)-framed
trefoil. The boundary is an integral homology 3-sphere, and this time capping off with V from
Theorem 1.4 yields ∗CP2. It has ks(∗CP2) = 1. For comparison to obtain CP2 one can add a
2-handle to D4 along a (+1)-framed unknot and then cap off with D4. Moreover, in fact the
construction we gave works for any knot K in place of the trefoil. Up to homeomorphism, we
obtain CP2 if and only if Arf(K) = 0 and ∗CP2 if and only if Arf(K) = 1. So the Arf invariant
coincides with the Kirby-Siebenmann invariant.

Now we use ∗CP2 to realise ks. Let M be a closed, oriented, connected, topological 4-manifold
with π1(M) ∼= Z, λM

∼= λ and λ odd. Consider

M# ∗ CP2

and consider f : S2 → M# ∗ CP2 representing the generator of the π2(∗CP2) ∼= Z summand.
Since M is odd, an application of the sphere embedding theorem implies that f is regularly
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homotopic to an embedding. Having an embedding of a sphere whose normal bundle has Euler
number +1 is the same as having a CP2 connected summand. So we can write

M# ∗ CP2 ∼= ∗M#CP2

where this equation defines ∗M . It turns out that M ≃ ∗M so that λ∗M
∼= λM

∼= λ. By additivity
of the Kirby-Siebenmann invariant under connected sum we have that ks(∗M) ̸= ks(M). This
competes the proof that we can realise both the Kirby-Siebenmann invariants by manifolds,
therefore completing the proof of Theorem 1.1. □

2 The uniqueness theorem
Now that we have understood the existence part of the proof, realising our collection of

invariants, we show that these invariants also classify the manifolds.

Theorem 2.1 (Uniqueness). Let M and N be closed, connected, oriented, topological 4-manifolds
with π1(M) ∼= Z ∼= π1(N). Suppose that ks(M) = ks(N) ∈ Z/2. Let

h : H2(M ;Z[Z]) → H2(N ;Z[Z])

be an isometry of the intersection form, i.e. h : λM
∼=−→ λN . Then there exists an orientation

preserving homeomorphism f : M
∼=−→ N inducing h.

In particular it follows that, up to homeomorphism, there is (are) exactly one (two) 4-manifolds
with π1 ∼= Z and a given intersection form λ, if λ is even (odd).

Proof. We will give a proof that explicitly uses the surgery exact sequence. Since the Whitehead
group Wh(Z[Z]) = 0, every homotopy equivalence is a simple homotopy equivalence, so we will
not use K-theory decorations. The surgery sequence for N is:

N(N × I, ∂) → L5(Z[Z]) → S(N) → N(N) → L4(Z[Z]).
We want to compute the structure set S(N) and then take the quotient by the action of the
self-homotopy equivalences. In the topological category, the action of L5(Z[Z]) is defined, and
the surgery sequence is exact, because π1(N) ∼= Z is a good group.

First we investigate the Wall realisation action of L5(Z[Z]) on the structure set. We have
L5(Z[Z]) ∼= L5(Z) ⊕ L4(Z) ∼= L4(Z) ∼= 8Z.

The generator of this group is in the image of a degree one normal map with domain N ×
I#S1Z × S1, where Z is the E8 manifold from Theorem 1.3. Here #S1 denotes connected sum
along the 1-skeleton. The surgery obstruction of this rel. boundary normal map is 8 ∈ 8Z. It
follows that the action of L5(Z[Z]) on S(N) is trivial.

Now we look at the right hand end of the surgery sequence. For some n, we have
N(N) ∼= [N, G/ TOP] ∼= H2(N ;Z/2) ⊕ H4(N ;Z) ∼= (Z/2)n ⊕ Z,

since there is a 5-equivalence
G/ TOP → K(Z/2, 2) × K(Z, 4).

Recall that L4(Z[Z]) ∼= L4(Z) ∼= 8Z. The map from H4(N ;Z) ∼= Z → 8Z is an isomorphism, and
the map H2(N ;Z/2) → 8Z is the zero map. We deduce that

S(N) ∼= (Z/2)n.

Now we start to prove the theorem. We will assume the following proposition. Its proof is
nontrivial, and would be needed in order for this note to be able to claim to contain a complete
proof of the uniqueness theorem.

Proposition 2.2. Let M and N be as in Theorem 2.1. Then there is a homotopy equivalence
f : M → N inducing h : H2(M ;Z[Z]) → H2(N ;Z[Z]).
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This gives us elements in the structure set (M, f) with the desired properties on homology. We
will show that either f is homotopic to a homeomorphism, or that there is a modified homotopy
equivalence f ′ : M → N that induces the same isometry on H2(−;Z[Z]), that is homotopic to a
homeomorphism. In general we need to modify the chosen f , since its image in N(N) ∼= (Z/2)n

may be nontrivial.
Given x ∈ π2(N) with x · x ≡ 0 mod 2, and with x ̸= 0 ∈ H2(N ;Z/2), there is a homotopy

equivalence
θx : N

pinch−−−→ N ∨ S4 Id ∨(η◦Ση)−−−−−−−→ N ∨ S2 Id ∨x−−−→ N.

The first map takes a D4 embedded in N , and identifies ∂D4 to a point. The second map uses
the generator of π4(S2) ∼= Z/2, and the third map sends the S2 back into N . It turns out that
θx induces the identity on H2(N ;Z[Z]) and that taking the composition

M
f,≃−−→ N

θx,≃−−−→ N

changes the image of (M, f) in ker(N(N) → L4(Z[Z])) ∼= H2(N ;Z/2) under S(N) → N(N) by
the dual to x in H2(N ;Z/2).

If λN
∼= λM is even, we can use this procedure to kill all classes, and thus obtain a homotopy

equivalence f ′ : M → N that equals Id: N → N in S(N). Here we use that π2(N) → H2(N ;Z/2)
is onto. In other words, we have seen that

S(N)/ hAut(N) ∼= {[N ]}.

By definition of the structure set, this means that there is a homeomorphism g : M → N such
that g = Id ◦g ∼ f ′ : M → N are homotopic. So indeed f ′ is homotopic to a homeomorphism.
This homeomorphism induces the same map h : H2(M ;Z[Z]) → H2(N ;Z[Z]) as the original
homotopy equivalence f from Proposition 2.2. This completes the proof of the theorem in the
case that λN is even.

If λN is odd, then one class in H2(N ;Z/2) cannot be killed using the homotopy equivalence θx.
But on the other hand we know from Theorem 1.1 that there exist at least two homeomorphism
classes of manifolds in the homotopy class, distinguished by the Kirby-Siebenmann invariant,
which we know can be realised when λN is odd. Therefore we have

S(N)/ hAut(N) ∼= {[N ], [∗N ]}.

To complete the proof of the theorem, we assumed that ks(M) = ks(N) in the hypotheses of
Theorem 2.1, so we can in fact obtain a modified homotopy equivalence f ′ : M → N with trivial
image in ker(N(N) → L4(Z[Z])) ∼= H2(N ;Z/2), so that f ′ is homotopic to a homeomorphism.
This completes the proof in the case that λN is odd, and therefore completes the proof of
Theorem 2.1. □

Remark 2.3. Conway-Powell extended the classification of closed 4-manifolds with fundamental
group Z to the classification of 4-manifolds with boundary provided H1(∂M ;Q(t)) = 0 and
π1(∂M) → π1(M) ∼= Z is surjective.
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