TOPOLOGICAL MANIFOLDS ARE EUCLIDEAN NEIGHBOURHOOD
RETRACTS

RAPHAEL FLORIS

ABSTRACT. We show that every topological n-manifold M embeds into R®*"*! as a closed
subspace and is a retract of some neighbourhood U C R*"**,

Introduction

For smooth manifolds the following well-known result holds.

Theorem 0.1 (Whitney Embedding Theorem). Every smooth n-manifold M admits a closed
smooth embedding v: M — R2"T1,

Furthermore, it can be shown that every embedded smooth manifold M C RY has a tubular
neighbourhood.

Theorem 0.2 (Tubular neighbourhood Theorem). Let M C RN be an embedded smooth
manifold. Then M possesses a tubular neighbourhood, i.e. there exists an open neighbourhood
U C RN of M that is diffeomorphic to a set V.C NM of the type

V={(z,v) € NM | |v| < d(x)},

where §: M — (0,00) is continuous and NM denotes the normal bundle of M, via the map
6: NM — RN, (z,v) — 2+ v.

Let us recall the definition of ENRs.

Definition 0.3. A topological space X is a Euclidean Neighbourhood Retract (ENR) if there
exists a closed embedding ¢: X — RY for some N € N and an open neighbourhood U C R¥ of
t(X) such that U is a retraction of U, i.e. there exists a continuous map r: U — ¢(X) satisfying

7l x) = id,(x)-

It can be shown that any embedded smooth manifold M C R is a retract of every tubular
neighbourhood of M, hence we have the following.

Corollary 0.4. Every smooth manifold is an ENR.
A detailed account is given in [Leel3, Chapter 6].

In this talk, we want to prove the following corresponding results for toplogical manifolds.

Theorem 2.1. Let X be a second-countable locally compact Hausdorff space such that every
compact subspace of X has dimension at most n € N. Then X admits a closed embedding
L: X — R

Theorem 3.3. FEvery topological manifold is an ENR.

This is essentially due to Hanner [Han51]. We mainly follow indications by Munkres [Mun00]
and unpublished notes by Kirby and Kister [KK] adding many details.

Remark. Throughout these notes, we denote by N := {1,2,...} the set of positive integers and
by Ng :={0,1,2,...} the set of non-negative integers.
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1 Dimension Theory

Definition 1.1. Let X be a topological space and let U be an open covering of X. A refinement
of U is an open cover ¥ of X such that every V € { is contained in some U € U, i.e. V CU.

Definition 1.2. Let X be a topological space.
(1) A collection A of subsets of X has order m € Ny if m is the largest integer such that
there are m + 1 elements of A having a non-empty intersection.
(2) X is called finite-dimensional if there exists some m € Ny such that every open cover of
X possesses a refinement of order at most m.
The smallest such m is called the (topological) dimension of X, denoted by dim X.

If X is a topological space and A is a collection of subsets of X, then A has order m if and
only if there exists some x € X that lies in m + 1 elements of A and no point of X lies in more
than m + 1 elements of A.

Let us illuminate the notion of topological dimension with an example.

Example 1.3. Let [ := [0, 1] denote the closed unit interval. We want to show that dim I = 1.
Let U be an open cover of I. Since [ is a compact metric space, U has a positive Lebesgue
number A > 0, i.e. every subset of I having diameter less than A is contained in an element of U.
For k € Ny, let Jy := ((k ~1)-3,(k+1)- %) Since diam J, = 3 < A, we can conclude that
V= {Jp N I}ken, is a refinement of U. Since ¥ has order 1, this shows dim I < 1.

In order to show that dim I > 1, we consider the open over U := {[0,1), (0,1]}. If dim I =0, U
would have a refinement ¢ of order 0. Since ¥ refines U, we get card (¢/) > 2 (note that 0 € V;
and 1 € V3 for some V1, V5 € ¢ and because { refines U, we get V3 C [0,1) and V2 C (0, 1] and
thus Vi # V). Let V be any element of ¢/ and let W be the union of all V! € ¥\ V. Then
both V and W are open and VUW = I and V NW = (), because ¥ has order 0, which is a
contradiction since I is connected.

Thus, dim I > 1 and therefore dim I = 1.

We can use Lebesgue numbers to show a more general result that will be needed throughout
this section.

Theorem 1.4. Let n € N. Every compact subspace of R™ has topological dimension at most n.
Proof. Let us first divide R™ into unit cubes. Let

G :={(k,k+1)}rez

K = {{K} ez
If 0 < d < n, we define C4 to be the set of all products

Ay x -+ x A, CR",

where precisely d of the sets A1,..., A, are an element of § and the remaining n — d ones are
an element of K.
Set C:=CyU---UC,. Then for every z € R™ there exists a unique C' € C such that x € C.

Claim. Let 0 < d < n. For every C € C4, there exists an open neighbourhood U(C) of C
satisfying:
(1) diam U(C) < 3
(2) U(C)NU(D) = 0 whenever D € Cy\ {C}.

Proof of claim. Let x = (z1,...,z,) € C. We will show that there exists a number 0 < e(z) < %
such that the open cube centered at x with radius e(x), i.e. the set

We@) () = (21 — &(), 21 + () X - X (20 — &(2), 20 + £(2)),
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intersects no other element of C4. If d = 0, choose (x) := % If d > 0, exactly d of the numbers
Z1,...,Z, are not integers. Choose 0 < e(z) < % such that for each 1 < i < n that satisfies
v; ¢ Z, the interval (z; — (), z; + &(x)) contains no integer. If y = (y1,...,Yn) € We(z)(z), we
have y; ¢ Z whenever x; ¢ Z. Thus, either y € C or y € C’ for some C’ € Cy where d’ > d. In
conclusion, W, () intersects no other element of Cy.

Now let U(C') be the union of all W.) where x € C. Then obviously U(C)NU(D) = () whenever

D € ¢4\ {C}. This proves (2).
If 2,y € U(C), we have v € W) (¢') and y € W, (y') for some 2,y € C. By the triangle
2 2

inequality
/ / / / 1 1 3
1z = Ylloo < llz = 2lloc + 112" = Ylloo + [ = ylloo = 7 +1+ 7 =3,
hence establishing (1). O

Now let A := {U(C) | C € C}. Then A is an open cover of R™ of order n by (2). Let K C R"
be compact and let U be an open cover of K. Since K is compact metric, U has a positive
Lebesgue number A\ > 0.

Consider the homeomorphism f: R"™ — R", x % - x. Since A is an open cover of order n,
sois A = {f(U(C)) | C € €}. Since diam f(U(C)) < 3 < A for all C € C, we get that
{f(U(C)) N K}cee is an open cover of K that refines U and has order at most n.

Thus, dim K < n, as desired. O

We need some more elementary properties of the topological dimension before we can proceed
to manifolds.

Lemma 1.5. Let X be a finite-dimensional topological space and let Y be a closed subspace of
X. Then'Y is also finite-dimensional and dim Y < dim X.

Proof. Let d := dim X. Let U be an open cover of Y. For every U € U there exists some open
U' C X such that U =U'NY. Let A :={U'}yey U{X \ Y}. Then A is an open cover of X
and thus possesses a refinement B of order at most d. Therefore, V := {BNY }pcg is an open
cover of Y of order at most d that refines U. This proves dim Y < d. O

Theorem 1.6. Let X be a topological space and assume X = X1 U Xy for some closed finite-
dimensional subspaces X1, X9 C X. Then X is also finite-dimensional and

dim X = max{dim X, dim X»}.

Let us fix a notion for the proof of this theorem. If U is an open cover of X and Y C X is a
subspace of X, we say that U has order m € Ny in Y if there exists some point y € Y that is
contained in m + 1 distinct elements of U and no point of Y is contained in more than m + 1
distinct elements of U.

Proof. By Lemma 1.5, it suffices to prove dim X < max{dim X;,dim X5}.

Claim. Let U be an open cover of X and let Y be a closed subspace of X such that dim Y < d < oo.
Then U possesses a refinement that has order at most d in Y.

Proof of claim. Let A := {U NY }yey. Since A is an open cover of Y and dim Y < d, there
exists a refinement B of A of order at most d. For every B € B, there exists some open set
Up C X such that B =UpgNY. Furthermore, there exists some Ag € U such that B C AgpNY.
Then, {Up N Ap}peg U{U \ Y }yeu is an open cover of X that refines U and has order at most
dinY. O

Now, let d := max{dim X;,dim X5} and let U be an open cover of X. We need to show that
U has a refinement ¥ of order at most d.
Let A4 be a refinement of U of order at most d in X and let A3 be a refinement of A4 of order
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at most d in X9. We can define a map f: Ay — A; as follows. For every U € Ay choose an
element f(U) € A; such that U C f(U).

For all S € Ay, let V(S) be the union of all U € As that satisfy f(U) = S and finally let
V= {V(S)}sen,.- Then, ¥ is an open cover of X: For if z € X, then x € U for some U € As
and because U C V(f(U)), we can deduce x € V(f(U)). Furthermore, ¢ refines A, because
V(S) C S for every S € A;. Since A; refines U, the cover ¥ must refine U.

Finally, we need to show that ¢ has order at most d. Suppose x € V(S1)N---NV(Sk), where the
sets V(S1),...,V(Sg) are distinct. Thus, the sets Sy, ..., Sk are distinct. For all 1 <1i <k, we
can find a set U; € Ay such that x € U; and f(U;) = S;, because x € V(S;). Because Si, ..., Sk
are distinct, so are Uy, ..., U,. Thus, we have the following situation:

relUin---NU, CV(S)N---NV(Sp) CSiN---NSi

Because X = X7 U Xo, we have z € X7 or x € Xs. If x € X4, then k < d + 1, because A7 has
order at most d in X;. If z € X9, we can also conclude & < d + 1, because A9 has order at most
d in X2.

Thus, k£ < d+ 1, proving that ¢ has order at most d, as desired. U

A simple induction argument then yields the following corollary.

Corollary 1.7. Let X be a topological space and let X1,..., X, C X be closed finite-dimensional
subspaces of X such that

Then X 1is also finite-dimensional and
dim X = max{dim Xj,...,dim X,}.
We can now apply these results to manifolds.
Corollary 1.8. Let M be a topological n-manifold. If C C X is compact, then dim C < n.

Proof. Since M is locally Euclidean, C' can be covered by finitely many compact n-balls
Bi,...,Br € M. By Theorem 1.4 and Lemma 1.5

dim (B;NC) <dim B; <n

(note that B; is homeomorphic to a compact subset of R™) for all 1 < j < k.
Since C = U?:l(Bj N C), Corollary 1.7 yields dim C' < n. O

As a special case, we can note that every compact n-manifold is finite-dimensional and its
topological dimension is at most n. In fact, this result can be extended to general n-manifolds.
For this, we need a technical lemma.

Lemma 1.9. Let X be a topological space and assume X = ;2 C;, where every C; is closed,
Co =0, C; C Ci+1 and there exists some d € Ny such that dim Cj1q \ C; < d for all i € Ny.
Then X is finite-dimensional and dim X < d.

Proof. We will construct a sequence of covers (V;);en, of X such that V1 refines ¢ and ¥ has
order at most d in C; and Vj := U. Under these hypotheses,

V:={VCX|FeN:VeandVNCi_q #0}

is a refinement of U of order at most d: Let x € X. Then z € C;_1 for some 7 € N. Since {; is
an open cover of X, we get x € V for some V € ¥;. But this means V N C;_; # () and hence
V € ¥, proving that ¢ is an open cover of X. Suppose now that Uy, ..., Uy are distinct elements
of ¥ having nonempty intersection and let z be an element of their intersection. Then, there
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exists some 79 € N such that x € C;,—;. For each 1 < 5 <k, there exists some i; € N such that
Uj € Vi; and U; N Cj;—1 # 0. Letting i := max{io, i1, ..., }, we get Uy,..., U, € V; and
k
T e ﬂ Uj N C;.
j=1
Since V; has order at most d in C;, we get £ < d+ 1, i.e. ¥ has order at most d, as desired.
All that is left now is constructing the sequence (V});cn. Set ¢ = U and suppose V1, ..., 1; have
already been constructed. Just as in the proof of Theorem 1.6 we can find a refinement ¥ of 1),
that has order at most d in Cj;1 \ C;. Define a map f: W — ¥, by choosing f(W) such that
W C f(W) for all W € W. For U € V;, we define V(U) to be the union of all W € ¥/ such that
f(W) =U. We define V11 to consist of three types of set: V1 contains all U € ¥} such that
UNCi—1 # 0. Furthermore, {11 contains all V(U) where U € V; such that U N C;—1 = () and
UNC; #0. Finally, ;41 contains all W € ¥ such that W N C; # 0.

Claim. Viy1 is a refinement of Vj; that has order at most d in Cj1.

Proof. Let x € X. We need to show the existence of some U € V1 satisfying x € U.
Suppose x € C;_1. Since V; is an open cover of X, we have x € U for some U € {);. Because of
UNC;—1 # 0, we can conclude U € V1. If x ¢ C,,_1, we can find W € W satisfying z € W. If
WNC; =0, then W € V;1;. Otherwise, f(W) CW. If f(W)NCi—1 # 0, then z € f(W) € V4.
If f(W)NCi—1 =0, then z € V(f(W))) and V(f(W)) € V;41, because f(W) N Ci—1 = 0 and
In conclusion, V1 is an open cover of X. It is obvious that {41 refines {/.
Now let Uy,..., U € V341 be k distinct subsets of {41 and suppose x € Cjy1 such that
T € ﬂ?zl U;. If x € C;_1, then necessarily Uy, ..., U, € V; by the definition of V11 and thus
k < d+ 1, because V; has order at most d in Cj.
If x € C;\ Ci_1, then Uy = V(S1),...,Ux = V(Sk) for some distinct Si,..., S € V; satisfying
Sjﬂcif1 =0 and SNC; 7&@ (1 <7< k‘) Thus,
k k
T € ﬂV(S])g ﬂSj
j=1 J=1
implying that k£ < d + 1, because ¥} has order at most d in Cj.
Finally if z € Cj41 \ C;, then Uy, ..., Ux € W, hence k < d + 1, because ¥/ has order at most d
in Cij41 \ C;. In conclusion, V41 has order at most d in Cj41. O

This completes the proof of Lemma 1.9. (]

If X is a second-countable locally compact Hausdorff space, then we can decompose X as in
the statement of Lemma 1.9.

Lemma 1.10. Every second-countable locally compact Hausdorff space X can be exhausted by
compact subsets, i.e. there exist compact subsets (C;)ien such that C; C Ciyy and X = ;2 C;.

Proof. Let B be a countable basis of the topology of X and let

B':={V € B |V is compact}.
Since X is locally compact, B’ is again a basis of X. Let us now write B’ = {V;};cn. Let
Cy := V1. Assume now, that compact subsets C1, ..., Cj, satisfying V; C C; and Cj_; C C} for
all 1 < j < k (where Cp := () have already been constructed. Because Cj is compact, there
exists some my, < k + 1 satisfying Cx C U/ V). Letting Cyy1 := Uj2 Vj, we see that Cyq
is compact and Cy C C’;:H as well as V11 € Cgy1. Thus (C)ien is an exhaustion of X by
compact subsets. O

Now, we can finally prove that all topological manifolds are finite-dimensional.
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Theorem 1.11. Let M be a topological n-manifold. Then M is finite-dimensional and dim M <
n.

Proof. Since M is a second-countable locally compact Hausdorff space, M can be exhausted
by compact subsets (C;);en. Each C; is closed and furthermore each Cj;q \ C; is compact
since Cj11 \ C; C Ciy1. Thus, dim Ci11 \ C; < n by Corollary 1.8. Lemma 1.9 now yields
dim M < n. O

2 The embedding theorem

We want to make use of the fact that manifolds are finite-dimensional. The aim of this section
is the proof of the following statement.

Theorem 2.1. Let X be a second-countable locally compact Hausdorff space such that every
compact subspace of X has dimension at most n € N. Then X admits a closed embedding
L: X — R2HL

Since every n-manifold M is a second-countable locally compact Hausdorff space such that
dim C < n for all compact C' C M, we can thus conclude that M admits a closed embedding
M —s R2n+1.

If X is a topological space, we denote by C(X,R") the set of all continuous maps X — R",
We shall equip RY with the metric

5($,y) = min{L H.’IJ - yHOO}7

where z,yy € RY. Then § induces the same topology on RY as ||-|| and (RY,d) is a complete
metric space. We equip C(X,R") with the metric

p(f,g) == sup é(f(x),g(x)),

reX

where f,g € C(X,RY). Since (RY,§) is complete, so is (C(X,RN), p).

Our proof of Theorem 2.1 is based on [Mun00, p. 315, Exercise 6].
T—r 00

Definition 2.2. Let X be a topological space and let f € C(X,RY). We write f(z) =% oo, if
for all R > 0 there exists some compact subset C' C X such that ||f(z)|c > R for all z € X \ C.

Remark. Note that f(z) “—2 oo whenever X is compact.

Lemma 2.3. Let X be a topological space and let f,g € C(X,RN) such that p(f,g) < 1 and

f(z) 2225 00. Then also g(z) === co.

Proof. Let R > 0. There exists some compact subset C' C X such that || f(z)]|cc > R+ 1
whenever z € X \ C. The triangle inequality yields

1 (@)oo < llg(2)lloe + 1 (z) = g(2)lloc < llg(@)l[oc +1
and hence ||g(z)|lsc > R whenever z € X \ C. This proves g(z) = co. O

Lemma 2.4. Let f € C(X,RN) such that f(z) == o0o. Then f is proper, i.e. f~'(K)
is compact whenever K C RN is compact. If f is injective as well, then f is also a closed
embedding.
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Proof. Let K C RY™ be compact. Thus, K C [~R, R} for some R > 0. We can find a
compact subset C' C X such that |f(z)]|e > R whenever z € X \ C. Therefore, f~}(K) C

1 ([—R, RN ) C C. This shows that f~!(K) is compact as a closed subset of the compact

space C'. Therefore, f is proper.
Since f is proper and RY is locally compact Hausdorff, f must also be closed. Thus, if f is
injective, then it will be a closed embedding. O

Suppose X is a second-countable locally compact Hausdorff space. We can choose a metric
d on X that induces the topology of X (see [Bre97, Chapter I, Theorem 12.12]). For every
f€C(X,RY)and C C X compact, we let

A(f,0) := sup diam f~'({z}).

z€f(C)
Lemma 2.5. Given ¢ >0 and C C X compact, we let
U:(C) == {f € C(X,RY) [ A(f,C) < e}.
Then U-(C) is open in C(X,RN).
Proof. Let f € U-(C) and let b > 0 such that A(f,C) < b < e. Furthermore, let
A:={(x,y) € C xC|d(z,y) > b}.
Since A is closed in the compact space C' x C, A is also compact. The continuous map

X XX =R, (x,y) — o(f(x), f(y))

min, y)ea 0(f (), f(y)) satisfies 7 > 0. We will show
y) € A, then §(f(z), f(y)) > 2r.

is strictly positive on A and thus r : %
that B,(f,r) C U.(C): Let g € B,(f,r), i.e. p(f,g) <r. If (x,y)

Since §(f(z),g(x)) < r and 6(f(y),g(y)) < r, we get g(x) # g(y). Thus, by contraposition, if
g(x) = g(y) for some x,y € C, then (z,y) ¢ A and thus d(z,y) < b.

This shows A(g,C) <b<e. O

We recall the notion of affine independence.

Definition 2.6. A set of points S C R" is affinely independent if for all distinct po, ..., py € S
and ag,...,ar € R, the equations

k k
Zai-pi:O and Zai:O
i=0 i=0

imply that ag =--- = a = 0.

Geometrically speaking, if S C R¥ is affinely independent and card(S) = k, then the points
of S uniquely determine a k-plane in RY.

Lemma 2.7. Let x1,...,z, € RN be distinct points and let r > 0. Then, there exist distinct
points Y1, ..., yn C RY such that:
(1) |lzi — yilloo <7 for alll <i<mn.
(2) {y1,...,yn} is in general position, i.e. every subset S C {y1,...,yn} such that card(S) <
N + 1 is affinely independent.

Proof. We construct the points v, ..., y, inductively. Let y; := z;. Now, suppose y1, ..., Yk
have already been constructed and are in general position as well as ||z; — yil|o < 7 for all
1 <4 < k. Consider the union P of all the affine subspaces that are generated by subsets
A C {y1,...,yx} such that card(A) < N. Since every I-plane in R” is closed and has empty
interior whenever | < N, we can deduce P = (), because RY is a Baire space as a complete
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metric space (see [Bre97, Chapter I, Theorem 17.1]). Choose any yr41 € RV \ P satisfying
|Zk+1 — Yk+1lloo < 7. This process yields the sought points yi, ..., yn. O

Another fact from point-set topology that we need are partitions of unity. We shall only state
the result here and omit the proof.

Theorem 2.8. Let X be a paracompact space and let U = {U;}icr be an open cover of X.
Then there exists a partition of unity {¢;};c; subordinate to U, i.e.
(1) Each ¢;: X — [0,1] is a continuous map.
(2) supp ¢; C U; for allie€ 1.
(3) {supp ¢i}ier is locally finite, i.e. each point x € X has a neighbourhood that intersects
only finitely many of the {supp ¢; }ier.
(4) >ier ¢i(x) =1 for all x € X.

For a proof see [Mun00, Theorem 41.7]. Recall that second-countable locally compact Hausdorff
spaces are paracompact.

Lemma 2.9. Suppose, X is a second-countable locally compact Hausdorff space such that every
compact subspace of X has topological dimension at most n € N. If ) # C C X is compact, then
U-(O) is dense in C(X,RYN) for every e > 0.

Proof. Choose a metric d on X and let f € C(X,R?**!) and let 1 > r > 0. We need to find
a g € U (C) satisfying p(f,g) < r. Since C is compact, we can cover C' by finitely many open
(open in C) sets Uy, ..., Uy, C C such that

(1) diam U; < § for all 1 <i < m,

(2) diamf(U;) < g forall 1 <i<m,

(3) {U1,-, U} has order at most n.

Let {¢1,...,¢m} be a partition of unity subordinate to {U,...,Up}. For each 1 <i <m
choose a point z; € U;. Then choose 21, ..., 2, € R?"*! such that ||f(2;) — 2i|leo < 5 and
{#1,...,2m} is in general position (Lemma 2.7). Finally, let

§: C = R*™1 sy Zqﬁz(x) - 2.
i=1
Claim. ||g(x) — f(x)|leoc <7 forall z € C.

Proof of claim. For all x € C, we have
9(@) = f(@) =D di(@) - (2 — fza) + D dilx) - (f2s) — f(2)),
i=1 i=1

where we have used Y7i" | ¢;(x) = 1. We have [|z; — f(2i)|lcoc < § for all 1 <4 < m. Also if
¢i(x) # 0, then x € U; and since diam f(U;) < §, we can conclude || f(z;) — f(2)]|oo < 5. Thus,

~ m T m r
[G(z) = f(@)]loo <> dil) - 5+ 3 () - s
i=1 i=1
U
Claim. 1If z,y € C satisfy g(x) = g(y), then d(z,y) < 5.

Proof of claim. We will prove that g(z) = g(y) implies x,y € U; for some 1 < i < m. Since
diam U; < 5, the claim follows.

g(x) = g(y) implies > 1" (¢i(x) — ¢i(y)) - zi = 0. Because the cover {Ui,..., Uy} has order
at most n, at most n + 1 of the numbers ¢1(z),...,¢n(x) and at most n + 1 of the numbers
?1(y), ..., dm(y) are non zero. Letting

S:={z|1<i<mand ¢(x) — ¢i(y) # 0},
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we can deduce card(S) < 2n + 2. Note that >/"(¢i(z) — ¢i(y)) = 0 and since {z1,...,2m} C
R2"+L are in general position and card(S) < 2n+1+ 1, we can conclude ¢;(z) — ¢;(y) = 0 for all
1 <i < m. Since ¢;(x) > 0 for some 1 <i < m, we get ¢;(x) = ¢;(y) > 0 and thus z,y € U;. O

In conclusion,
h: C — [-r, T]Q”'H, x = f(x) — g(x)

is a well-defined continuous map. As a locally compact Hausdorff space, X is also normal. Thus,
we can apply the Tietze extension theorem (see [Mun00, Theorem 35.1]): h can be extended to
a continuous map H : X — [—r,r]*" "L, Letting

g: X = R 2 f(z) — H(z),
we have g|c = g and thus A(g,C) < § < e and p(f,g) <. O

Let X be as in Theorem 2.1 or Lemma 2.9 and choose a metric d on X. Since (C(X,R?"! p)
is a Baire space, every intersection of countably many open dense subsets of C(X,R?"*+1) is

again dense in C'(X,R?"*1). Consider an exhaustion of X by compact subsets (Cy)ren (Lemma
1.10). Then the set N7 Uy /5 (C) is dense in C(X,R?"+1).

Lemma 2.10. Every f € (g2, Uy,(Ck) is injective.

Proof. Let x,y € X such that f(z) = f(y). There exists some ky € N such that x,y € C
whenever k > ko. Because f € Uy ,(C), we get d(x,y) < % for all k > ko. Hence, d(z,y) =0
and therefore z = y. O

Lemma 2.11. If X is a second-countable locally compact Hausdorff space, then there exists a
T—r00

map f € C(X,RN) such that f(z) =" oco.

Proof. Tt suffices to consider the case NV = 1. Let {Ug }ren be cover of X by open sets such that
Uy is compact for each k£ € N. Since X is second-countable locally compact Hausdorff, X is
paracompact and we can find a partition of unity {¢x}ren subordinate to {Uy}ren. Letting

f: X =R, x»—)ik‘qﬁk(x),
k=1

we see that f(z) 2= co. O

We can now proceed to the proof of Theorem 2.1.

Proof. Begin with a continuous map f: X — R?"*! such that f(x) 2% 50 from Lemma 2.11.
Consider an exhaustion of X by compact subsets (Cy)ren (Lemma 1.10). Since N2 Uy /,(Ck)
is dense in C(X,R?"*1), we can find ¢« € (2 Uy, (Cy) such that p(f,:) < 1. Then ¢ is injective
by Lemma 2.10 and () =3 oo by Lemma 2.3. Then, t: M < R?"*! is a closed embedding

by Lemma 2.4, as desired. O

3 ANRs and ENRs

Definition 3.1. A topological space X is called an Absolute Neighbourhood Retract (ANR) if
for every paracompact space P and every continuous map f: A — X, where A C P is closed,
there exists an extension f: W — X of f where W is an open neighbourhood of A.

Why are we interested in ANRs? In this section, we want to prove the following.

Theorem 3.2. FEvery topological manifold is an ANR.
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Why do we want to prove this? Here is the reason.
Theorem 3.3. Every topological manifold is an ENR.

Proof. Let M be a topological n-manifold and let ¢: M — R?"*! be a closed embedding. Because
M is an ANR by Theorem 3.2, so is ¢(M). Since (M) C R?"*! and R?"+! is paracompact, the
map f: (M) — (M), © — x can be extended to a map r: U — «(M) where U is an open
neighbourhood of ¢(M). This r is a retraction. O

We will prove Theorem 3.2 by a series of lemmas and we will follow [KK].
Lemma 3.4. Every open subset of an ANR is again an ANR.

Proof. Let X be an ANR and let U C X be open. Let f: A — U be continuous where A C P is
closed, P is paracompact. Letting f :=io f, where i: U < X is the standard embedding, f can
be extended to a map f: W — X, where W is an open neighbourhood of A. Then, f|?71(U) is
the sought extension. O
Lemma 3.5. Let X be paracompact and assume further dim X <n. If U is an open cover of
X, there exist n + 1 collections of open subsets Vi, ...,V such that V := Up_y Vi is a locally
finite refinement of U.

Proof. Since dim X < n, we can assume that U = {U,};c; has order at most n. Let {¢;} be a
partition of unity subordinate to U. For each i € I, we let

Vii= {o € X V)€ I\ {i}: dila) > ¢(a)}.

Then V; C supp ¢; C U; and V; NV, = ) whenever ¢ # j. Let V) := {V; }icr.
Now let 0 < k <n and let ig,...,7; € I be distinct indices. Let

Viosir = {z € X | ¢i(x) > ¢;(x) whenever i € {ig,...,ip} and j ¢ {ig,...,ix}}
Note that Vi, s, NVj....j, = 0 whenever {io, ..., i} # {Jjo, ..., jr}, because for ¢ € {ig,...,ix}\
{jo,-- -, jx} and j € {Jo,-.., 7k} \ {é0,..., 9k} we have ¢;(z) > ¢;(z) for all x € Vj, . ; and
®j(y) > ¢iy) for ally € Vj, .
Define 1, be the set of all such V;, _;, andlet ¥ := J;_q Vk.
We need to show that ¢ covers X. Let z € X and let J := {i € I | ¢;i(z) > 0}. Then,
card(J) < n + 1 since U has order at most n. Writing J = {jo,...,jx}, we get = € Vj, ;.
Obviously, ¥ is a refinement of U. It only remains to show that ¥ is locally finite. Let z € X.
There exists a neighbourhood N of x that intersects only finitely many of the {supp ¢;}icr. Let
J:={ieI|supp ¢; " N # 0}. Then card(J) < co. Assume Vj, _j € ¢ intersects N. Let
y € NNVj, .. Then ¢j(y) >0 for all 1 <1 < k. Thus {jo,...,jx} € J. But there are only
finitely many subsets of J and hence only finitely many elements of ¥ intersect N. O

Lemma 3.6. Let X be paracompact space and let U := {Ui}ié] be an open cover of X. Then
there exista a locally finite cover © = {V;}ier of X satisfying V; C U; for alli € 1.

For a proof see [Mun00, Lemma 41.6].

The following lemma is needed for local-to-global results.

Lemma 3.7. Let X be a paracompact space and suppose dim X < n. Let U be an open cover
of X satisfying the following.

(1) If V C X is open and V C U for some U € U, then V € U.

(2) If V CU and Vi N'Va =0 for any Vi,Va € U such that Vi # Va, then Uy <y V € U.

(3) If Uy,Uy € U and V1, Vo C X are open and V1 C Uy, Vo C Us, then V1 U Vs € U.
Then X € U.



TOPOLOGICAL MANIFOLDS ARE EUCLIDEAN NEIGHBOURHOOD RETRACTS 11

Proof. Let ¥ := Up_y Vk as in Lemma 3.5. Since ¢ is a refinement of U, we have ¥ C U by
(1). Thus, by (2), we have V;, := Uy¢y, V € U for all 0 < k < n. Then {Vj}o<k<n is an open
cover of X by n+ 1 elements of U. By Lemma 3.6, there exists an open cover {Wj}o<r<p of
X satisfying Wy C V;, for all 0 < k < n. Then Wy U W € U by (3). By using (1), we see
that {Wo U Wq,...,W,} is an open cover of X by n elements of U. Repeat this process with
{WoUWry,...,W,} instead of {Wj }o<k<n to get a covering of X by n — 1 elements of U and so
on until X is covered by one element of U, which eventually yields X € U. O

Before we proceed to the proof of Theorem 3.2, we should notice that the closed unit interval
I is an ANR as a consequence of the Tietze extension theorem and hence so is I" for any n € N.
We now come to the proof of Theorem 3.2.

Proof of Theorem 8.2. Let M be a topological n-manifold and let U be the collection of all open
subsets of M which are ANRs. Then, U is an open cover of M since every point p € M lies in a
neighbourhood that is homeomorphic to an open subset of I™ and is thus an ANR by Lemma
3.4.

We will be done, once we show that U satisfies the conditions (1) - (3) in Lemma 3.7. Condition
(1) ia met since every open subset of an ANR is again an ANR.

For condition (2) consider a subset ¢ := {V;};,c; of U that consists of disjoint sets and let
f: A=V :=U;c; Vi be a continuous map where A is a closed subset of a paracompact space P.
Each V; is clopen in V since the {V;};cr are disjoint. Thus, 4; := f~!(V;) is closed in P for each
i€l asis J;ey A forall J C 1.

If we can find a disjoint collection of open sets {W;};cr of P such that A; C W; for all i € I, we
will be done: Then we can extend f|4,: A4; — V; to f;: W/ — V;, where W/ is open in P (because
V; is an ANR) and define W := {J;c;(W; N W) as well as f: W — V by ?‘WiﬂWiI = TZ-]WZ,QW{.

Claim. If P is paracompact and {A;};cs is a disjoint collection of closed sets such that |J;c; A;
is closed for any J C I, then there exists a disjoint collection {W;};cr of open sets such that
A; CW; forallie I.

Proof of the claim. P is normal as a paracompact space und thus we can find open sets {Y; }ics
such that A; CY; and Y; N Ujep iy Ai = 0. Let A= U;es Ai. Then {Yi}ies U{P\ A} is an
open cover of P. By Lemma 3.6, there is a locally finite open cover {Z;};c; U {Z} such that
Z; CYforallie I and Z C P\ A. By local finiteness, the equality U;c; Z; = U;cs Z; holds
for any J C I, hence U,c; Z; is closed. Thus, W; := Z; \ Uje]\{i} Z; is an open set such that
A; C W; and the {W; };er are disjoint. O

This proves condition (2). All that is left is proving condition (3). Let Uy, Us € U and let
Vi, Vo € M be open such that V; C U; and Vo C Uy. We need to show that V; UV, € U, i.e.
ViU Vs is an ANR.

Let f: A — V1 UV, be continuous, where A is a closed subset of a paracompact space P. Let
Bo:= f~Y(VinVy), By := f~YV1), By := f~1(V3). Then, By, By and By are closed subsets of
P. Let Ag := f~}(U1 UUy). Then Ay is open in A, hence there exists some open subset Xog C P
such that Ay = Xo N P. Because P is normal as a paracompact space, we can find an open
subset Yy C P such that By C Yy C Y C Xj.

Since f(YoN A) C Uy UUy and U; N Uy is an ANR, we can extend f‘Yo N A to a map
fo: Zo — Uy N Uy where Z is an open neighbourhood of Yy N A. Use normality again to find
an open set Wy C P such that By C Wy C Wy C Yo N Z.

Thus f, is defined on Wy and extends f|W0r1A' For i € {1,2}, let fi: B{UWy — U; be defined by
fi(x) == f(x) for all x € B; and f(x) := fy(x) for all x € Wy. We can extend f; to f,: Z; — U;

where Z; is an open neighbourhood of B; U Wy, because U; is an ANR.
Since

(B1\ Wo) N (B2 \ Wy) = (B1 N Ba) \ Wy = By \ Wy = 0,
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and both By \ Wy and By \ W) are closed, we can once again use normality to find disjoint open
sets Wi, Wa C P such that B; \ Wo C W; C Z; for each i € {1,2}.
Finally, let f: WoUW;UWy — Uy UUs be defined by f|w, := f;|w, where i € {0,1,2}. By letting

W = Tﬁl(Vl U V3), we can conclude that f|y is an extension of f to an open neighbourhood
W of A. This proves (3) and therefore, M is an ANR. O
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