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Abstract. We show that every topological n-manifold M embeds into R2n+1 as a closed
subspace and is a retract of some neighbourhood U ⊆ R2n+1.

Introduction
For smooth manifolds the following well-known result holds.

Theorem 0.1 (Whitney Embedding Theorem). Every smooth n-manifold M admits a closed
smooth embedding ι : M ↪→ R2n+1.

Furthermore, it can be shown that every embedded smooth manifold M ⊆ RN has a tubular
neighbourhood.
Theorem 0.2 (Tubular neighbourhood Theorem). Let M ⊆ RN be an embedded smooth
manifold. Then M possesses a tubular neighbourhood, i.e. there exists an open neighbourhood
U ⊆ RN of M that is diffeomorphic to a set V ⊆ NM of the type

V = {(x, v) ∈ NM | |v| < δ(x)},
where δ : M → (0,∞) is continuous and NM denotes the normal bundle of M , via the map

θ : NM → RN , (x, v) 7→ x+ v.

Let us recall the definition of ENRs.
Definition 0.3. A topological space X is a Euclidean Neighbourhood Retract (ENR) if there
exists a closed embedding ι : X ↪→ RN for some N ∈ N and an open neighbourhood U ⊆ RN of
ι(X) such that U is a retraction of U , i.e. there exists a continuous map r : U → ι(X) satisfying
r|ι(X) = idι(X).

It can be shown that any embedded smooth manifold M ⊆ RN is a retract of every tubular
neighbourhood of M , hence we have the following.
Corollary 0.4. Every smooth manifold is an ENR.

A detailed account is given in [Lee13, Chapter 6].

In this talk, we want to prove the following corresponding results for toplogical manifolds.
Theorem 2.1. Let X be a second-countable locally compact Hausdorff space such that every
compact subspace of X has dimension at most n ∈ N. Then X admits a closed embedding
ι : X ↪→ R2n+1.
Theorem 3.3. Every topological manifold is an ENR.

This is essentially due to Hanner [Han51]. We mainly follow indications by Munkres [Mun00]
and unpublished notes by Kirby and Kister [KK] adding many details.

Remark. Throughout these notes, we denote by N := {1, 2, . . .} the set of positive integers and
by N0 := {0, 1, 2, . . .} the set of non-negative integers.
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1 Dimension Theory
Definition 1.1. Let X be a topological space and let U be an open covering of X. A refinement
of U is an open cover V of X such that every V ∈ V is contained in some U ∈ U, i.e. V ⊆ U .

Definition 1.2. Let X be a topological space.
(1) A collection A of subsets of X has order m ∈ N0 if m is the largest integer such that

there are m+ 1 elements of A having a non-empty intersection.
(2) X is called finite-dimensional if there exists some m ∈ N0 such that every open cover of

X possesses a refinement of order at most m.
The smallest such m is called the (topological) dimension of X, denoted by dim X.

If X is a topological space and A is a collection of subsets of X, then A has order m if and
only if there exists some x ∈ X that lies in m+ 1 elements of A and no point of X lies in more
than m+ 1 elements of A.

Let us illuminate the notion of topological dimension with an example.

Example 1.3. Let I := [0, 1] denote the closed unit interval. We want to show that dim I = 1.
Let U be an open cover of I. Since I is a compact metric space, U has a positive Lebesgue
number λ > 0, i.e. every subset of I having diameter less than λ is contained in an element of U.
For k ∈ N0, let Jk :=

(
(k − 1) · λ4 , (k + 1) · λ4

)
. Since diam Jk = λ

2 < λ, we can conclude that
V := {Jk ∩ I}k∈N0 is a refinement of U. Since V has order 1, this shows dim I ≤ 1.
In order to show that dim I ≥ 1, we consider the open over U := {[0, 1), (0, 1]}. If dim I = 0, U
would have a refinement V of order 0. Since V refines U, we get card (V) ≥ 2 (note that 0 ∈ V1
and 1 ∈ V2 for some V1, V2 ∈ V and because V refines U, we get V1 ⊆ [0, 1) and V2 ⊆ (0, 1] and
thus V1 6= V2). Let V be any element of V and let W be the union of all V ′ ∈ V \ V . Then
both V and W are open and V ∪W = I and V ∩W = ∅, because V has order 0, which is a
contradiction since I is connected.
Thus, dim I ≥ 1 and therefore dim I = 1.

We can use Lebesgue numbers to show a more general result that will be needed throughout
this section.

Theorem 1.4. Let n ∈ N. Every compact subspace of Rn has topological dimension at most n.

Proof. Let us first divide Rn into unit cubes. Let
J := {(k, k + 1)}k∈Z
K := {{k}}k∈Z.

If 0 ≤ d ≤ n, we define Cd to be the set of all products
A1 × · · · ×An ⊆ Rn,

where precisely d of the sets A1, . . . , An are an element of J and the remaining n− d ones are
an element of K.
Set C := C0 ∪ · · · ∪ Cn. Then for every x ∈ Rn there exists a unique C ∈ C such that x ∈ C.

Claim. Let 0 ≤ d ≤ n. For every C ∈ Cd, there exists an open neighbourhood U(C) of C
satisfying:

(1) diam U(C) ≤ 3
2

(2) U(C) ∩ U(D) = ∅ whenever D ∈ Cd \ {C}.

Proof of claim. Let x = (x1, . . . , xn) ∈ C. We will show that there exists a number 0 < ε(x) ≤ 1
2

such that the open cube centered at x with radius ε(x), i.e. the set
Wε(x)(x) = (x1 − ε(x), x1 + ε(x))× · · · × (xn − ε(x), xn + ε(x)),
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intersects no other element of Cd. If d = 0, choose ε(x) := 1
2 . If d > 0, exactly d of the numbers

x1, . . . , xn are not integers. Choose 0 < ε(x) ≤ 1
2 such that for each 1 ≤ i ≤ n that satisfies

xi /∈ Z, the interval (xi − ε(x), xi + ε(x)) contains no integer. If y = (y1, . . . , yn) ∈Wε(x)(x), we
have yi /∈ Z whenever xi /∈ Z. Thus, either y ∈ C or y ∈ C ′ for some C ′ ∈ Cd′ where d′ > d. In
conclusion, Wε(x)(x) intersects no other element of Cd.
Now let U(C) be the union of allW ε(x)

2
where x ∈ C. Then obviously U(C)∩U(D) = ∅ whenever

D ∈ Cd \ {C}. This proves (2).
If x, y ∈ U(C), we have x ∈ W ε(x′)

2
(x′) and y ∈ W ε(y′)

2
(y′) for some x′, y′ ∈ C. By the triangle

inequality

‖x− y‖∞ ≤ ‖x− x′‖∞ + ‖x′ − y′‖∞ + ‖y′ − y‖∞ ≤
1
4 + 1 + 1

4 = 3
2 ,

hence establishing (1). �

Now let A := {U(C) | C ∈ C}. Then A is an open cover of Rn of order n by (2). Let K ⊆ Rn
be compact and let U be an open cover of K. Since K is compact metric, U has a positive
Lebesgue number λ > 0.
Consider the homeomorphism f : Rn → Rn, x 7→ λ

3 · x. Since A is an open cover of order n,
so is A′ := {f(U(C)) | C ∈ C}. Since diam f(U(C)) ≤ λ

2 < λ for all C ∈ C, we get that
{f(U(C)) ∩K}C∈C is an open cover of K that refines U and has order at most n.
Thus, dim K ≤ n, as desired. �

We need some more elementary properties of the topological dimension before we can proceed
to manifolds.

Lemma 1.5. Let X be a finite-dimensional topological space and let Y be a closed subspace of
X. Then Y is also finite-dimensional and dim Y ≤ dim X.

Proof. Let d := dim X. Let U be an open cover of Y . For every U ∈ U there exists some open
U ′ ⊆ X such that U = U ′ ∩ Y . Let A := {U ′}U∈U ∪ {X \ Y }. Then A is an open cover of X
and thus possesses a refinement B of order at most d. Therefore, V := {B ∩ Y }B∈B is an open
cover of Y of order at most d that refines U. This proves dim Y ≤ d. �

Theorem 1.6. Let X be a topological space and assume X = X1 ∪X2 for some closed finite-
dimensional subspaces X1, X2 ⊆ X. Then X is also finite-dimensional and

dim X = max{dim X1, dim X2}.

Let us fix a notion for the proof of this theorem. If U is an open cover of X and Y ⊆ X is a
subspace of X, we say that U has order m ∈ N0 in Y if there exists some point y ∈ Y that is
contained in m+ 1 distinct elements of U and no point of Y is contained in more than m+ 1
distinct elements of U.

Proof. By Lemma 1.5, it suffices to prove dim X ≤ max{dim X1, dim X2}.

Claim. LetU be an open cover ofX and let Y be a closed subspace ofX such that dim Y ≤ d <∞.
Then U possesses a refinement that has order at most d in Y .

Proof of claim. Let A := {U ∩ Y }U∈U. Since A is an open cover of Y and dim Y ≤ d, there
exists a refinement B of A of order at most d. For every B ∈ B, there exists some open set
UB ⊆ X such that B = UB ∩ Y . Furthermore, there exists some AB ∈ U such that B ⊆ AB ∩ Y .
Then, {UB ∩AB}B∈B ∪ {U \ Y }U∈U is an open cover of X that refines U and has order at most
d in Y . �

Now, let d := max{dim X1, dim X2} and let U be an open cover of X. We need to show that
U has a refinement V of order at most d.
Let A1 be a refinement of U of order at most d in X1 and let A2 be a refinement of A1 of order
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at most d in X2. We can define a map f : A2 → A1 as follows. For every U ∈ A2 choose an
element f(U) ∈A1 such that U ⊆ f(U).
For all S ∈ A1, let V (S) be the union of all U ∈ A2 that satisfy f(U) = S and finally let
V := {V (S)}S∈A1 . Then, V is an open cover of X: For if x ∈ X, then x ∈ U for some U ∈A2
and because U ⊆ V (f(U)), we can deduce x ∈ V (f(U)). Furthermore, V refines A1, because
V (S) ⊆ S for every S ∈A1. Since A1 refines U, the cover V must refine U.
Finally, we need to show that V has order at most d. Suppose x ∈ V (S1)∩· · ·∩V (Sk), where the
sets V (S1), . . . , V (Sk) are distinct. Thus, the sets S1, . . . , Sk are distinct. For all 1 ≤ i ≤ k, we
can find a set Ui ∈A2 such that x ∈ Ui and f(Ui) = Si, because x ∈ V (Si). Because S1, . . . , Sk
are distinct, so are U1, . . . , Uk. Thus, we have the following situation:

x ∈ U1 ∩ · · · ∩ Uk ⊆ V (S1) ∩ · · · ∩ V (Sk) ⊆ S1 ∩ · · · ∩ Sk
Because X = X1 ∪X2, we have x ∈ X1 or x ∈ X2. If x ∈ X1, then k ≤ d+ 1, because A1 has
order at most d in X1. If x ∈ X2, we can also conclude k ≤ d+ 1, because A2 has order at most
d in X2.
Thus, k ≤ d+ 1, proving that V has order at most d, as desired. �

A simple induction argument then yields the following corollary.

Corollary 1.7. Let X be a topological space and let X1, . . . , Xr ⊆ X be closed finite-dimensional
subspaces of X such that

X =
r⋃
i=1

Xi.

Then X is also finite-dimensional and

dim X = max{dim X1, . . . ,dim Xn}.

We can now apply these results to manifolds.

Corollary 1.8. Let M be a topological n-manifold. If C ⊆ X is compact, then dim C ≤ n.

Proof. Since M is locally Euclidean, C can be covered by finitely many compact n-balls
B1, . . . , Bk ⊆M . By Theorem 1.4 and Lemma 1.5

dim (Bj ∩ C) ≤ dim Bj ≤ n

(note that Bj is homeomorphic to a compact subset of Rn) for all 1 ≤ j ≤ k.
Since C =

⋃k
j=1(Bj ∩ C), Corollary 1.7 yields dim C ≤ n. �

As a special case, we can note that every compact n-manifold is finite-dimensional and its
topological dimension is at most n. In fact, this result can be extended to general n-manifolds.
For this, we need a technical lemma.

Lemma 1.9. Let X be a topological space and assume X =
⋃∞
i=0Ci, where every Ci is closed,

C0 = ∅, Ci ⊆ ˚Ci+1 and there exists some d ∈ N0 such that dim Ci+1 \ Ci ≤ d for all i ∈ N0.
Then X is finite-dimensional and dim X ≤ d.

Proof. We will construct a sequence of covers (Vi)i∈N0 of X such that Vi+1 refines Vi and Vi has
order at most d in Ci and V0 := U. Under these hypotheses,

V := {V ⊆ X | ∃i ∈ N : V ∈ Vi and V ∩ Ci−1 6= ∅}

is a refinement of U of order at most d: Let x ∈ X. Then x ∈ Ci−1 for some i ∈ N. Since Vi is
an open cover of X, we get x ∈ V for some V ∈ Vi. But this means V ∩ Ci−1 6= ∅ and hence
V ∈ V, proving that V is an open cover of X. Suppose now that U1, . . . , Uk are distinct elements
of V having nonempty intersection and let x be an element of their intersection. Then, there
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exists some i0 ∈ N such that x ∈ Ci0−1. For each 1 ≤ j ≤ k, there exists some ij ∈ N such that
Uj ∈ Vij and Uj ∩ Cij−1 6= ∅. Letting i := max{i0, i1, . . . , ik}, we get U1, . . . , Uk ∈ Vi and

x ∈
k⋂
j=1

Uj ∩ Ci.

Since Vi has order at most d in Ci, we get k ≤ d+ 1, i.e. V has order at most d, as desired.
All that is left now is constructing the sequence (Vi)i∈N. Set V0 = U and suppose V1, . . . ,Vi have
already been constructed. Just as in the proof of Theorem 1.6 we can find a refinement W of Vn
that has order at most d in Ci+1 \ Ci. Define a map f : W → Vi by choosing f(W ) such that
W ⊆ f(W ) for all W ∈W. For U ∈ Vi, we define V (U) to be the union of all W ∈W such that
f(W ) = U . We define Vi+1 to consist of three types of set: Vi+1 contains all U ∈ Vi such that
U ∩ Ci−1 6= ∅. Furthermore, Vi+1 contains all V (U) where U ∈ Vi such that U ∩ Ci−1 = ∅ and
U ∩ Ci 6= ∅. Finally, Vi+1 contains all W ∈W such that W ∩ Ci 6= ∅.

Claim. Vi+1 is a refinement of Vi that has order at most d in Ci+1.

Proof. Let x ∈ X. We need to show the existence of some U ∈ Vi+1 satisfying x ∈ U .
Suppose x ∈ Ci−1. Since Vi is an open cover of X, we have x ∈ U for some U ∈ Vi. Because of
U ∩ Ci−1 6= ∅, we can conclude U ∈ Vi+1. If x /∈ Cn−1, we can find W ∈W satisfying x ∈W . If
W ∩Ci = ∅, then W ∈ Vi+1. Otherwise, f(W ) ⊆W . If f(W )∩Ci−1 6= ∅, then x ∈ f(W ) ∈ Vn+1.
If f(W ) ∩ Ci−1 = ∅, then x ∈ V (f(W ))) and V (f(W )) ∈ Vi+1, because f(W ) ∩ Ci−1 = ∅ and
∅ 6= W ∩ Ci ⊆ f(W ) ∩ Ci.
In conclusion, Vi+1 is an open cover of X. It is obvious that Vi+1 refines Vi.
Now let U1, . . . , Uk ∈ Vi+1 be k distinct subsets of Vi+1 and suppose x ∈ Ci+1 such that
x ∈

⋂k
j=1 Uj . If x ∈ Ci−1, then necessarily U1, . . . , Uk ∈ Vi by the definition of Vi+1 and thus

k ≤ d+ 1, because Vi has order at most d in Ci.
If x ∈ Ci \ Ci−1, then U1 = V (S1), . . . , Uk = V (Sk) for some distinct S1, . . . , Sk ∈ Vi satisfying
Sj ∩ Ci−1 = ∅ and S ∩ Ci 6= ∅ (1 ≤ j ≤ k). Thus,

x ∈
k⋂
j=1

V (Sj) ⊆
k⋂
j=1

Sj ,

implying that k ≤ d+ 1, because Vi has order at most d in Ci.
Finally if x ∈ Ci+1 \ Ci, then U1, . . . , Uk ∈W, hence k ≤ d+ 1, because W has order at most d
in Ci+1 \ Ci. In conclusion, Vi+1 has order at most d in Ci+1. �

This completes the proof of Lemma 1.9. �

If X is a second-countable locally compact Hausdorff space, then we can decompose X as in
the statement of Lemma 1.9.

Lemma 1.10. Every second-countable locally compact Hausdorff space X can be exhausted by
compact subsets, i.e. there exist compact subsets (Ci)i∈N such that Ci ⊆ ˚Ci+1 and X =

⋃∞
i=1Ci.

Proof. Let B be a countable basis of the topology of X and let
B′ := {V ∈ B | V is compact}.

Since X is locally compact, B′ is again a basis of X. Let us now write B′ = {Vi}i∈N. Let
C1 := V1. Assume now, that compact subsets C1, . . . , Ck satisfying Vj ⊆ Cj and Cj−1 ⊆ C̊j for
all 1 ≤ j ≤ k (where C0 := ∅) have already been constructed. Because Ck is compact, there
exists some mk ≤ k + 1 satisfying Ck ⊆

⋃mk
j=1 Vj . Letting Ck+1 :=

⋃mk
j=1 Vj , we see that Ck+1

is compact and Ck ⊆ ˚Ck+1 as well as Vk+1 ⊆ Ck+1. Thus (Ci)i∈N is an exhaustion of X by
compact subsets. �

Now, we can finally prove that all topological manifolds are finite-dimensional.
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Theorem 1.11. Let M be a topological n-manifold. Then M is finite-dimensional and dim M ≤
n.

Proof. Since M is a second-countable locally compact Hausdorff space, M can be exhausted
by compact subsets (Ci)i∈N. Each Ci is closed and furthermore each Ci+1 \ Ci is compact
since Ci+1 \ Ci ⊆ Ci+1. Thus, dim Ci+1 \ Ci ≤ n by Corollary 1.8. Lemma 1.9 now yields
dim M ≤ n. �

2 The embedding theorem
We want to make use of the fact that manifolds are finite-dimensional. The aim of this section

is the proof of the following statement.

Theorem 2.1. Let X be a second-countable locally compact Hausdorff space such that every
compact subspace of X has dimension at most n ∈ N. Then X admits a closed embedding
ι : X ↪→ R2n+1.

Since every n-manifold M is a second-countable locally compact Hausdorff space such that
dim C ≤ n for all compact C ⊆M , we can thus conclude that M admits a closed embedding
M ↪→ R2n+1.

If X is a topological space, we denote by C(X,RN ) the set of all continuous maps X → RN .
We shall equip RN with the metric

δ(x, y) := min{1, ‖x− y‖∞},

where x, y ∈ RN . Then δ induces the same topology on RN as ‖·‖∞ and (RN , δ) is a complete
metric space. We equip C(X,RN ) with the metric

ρ(f, g) := sup
x∈X

δ(f(x), g(x)),

where f, g ∈ C(X,RN ). Since (RN , δ) is complete, so is (C(X,RN ), ρ).

Our proof of Theorem 2.1 is based on [Mun00, p. 315, Exercise 6].

Definition 2.2. Let X be a topological space and let f ∈ C(X,RN ). We write f(x) x→∞−−−→∞, if
for all R > 0 there exists some compact subset C ⊆ X such that ‖f(x)‖∞ > R for all x ∈ X \C.

Remark. Note that f(x) x→∞−−−→∞ whenever X is compact.

Lemma 2.3. Let X be a topological space and let f, g ∈ C(X,RN ) such that ρ(f, g) < 1 and
f(x) x→∞−−−→∞. Then also g(x) x→∞−−−→∞.

Proof. Let R > 0. There exists some compact subset C ⊆ X such that ‖f(x)‖∞ > R + 1
whenever x ∈ X \ C. The triangle inequality yields

‖f(x)‖∞ ≤ ‖g(x)‖∞ + ‖f(x)− g(x)‖∞ < ‖g(x)‖∞ + 1

and hence ‖g(x)‖∞ > R whenever x ∈ X \ C. This proves g(x) x→∞−−−→∞. �

Lemma 2.4. Let f ∈ C(X,RN ) such that f(x) x→∞−−−→ ∞. Then f is proper, i.e. f−1(K)
is compact whenever K ⊆ RN is compact. If f is injective as well, then f is also a closed
embedding.
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Proof. Let K ⊆ RN be compact. Thus, K ⊆ [−R,R]N for some R > 0. We can find a
compact subset C ⊆ X such that ‖f(x)‖∞ > R whenever x ∈ X \ C. Therefore, f−1(K) ⊆
f−1

(
[−R,R]N

)
⊆ C. This shows that f−1(K) is compact as a closed subset of the compact

space C. Therefore, f is proper.
Since f is proper and RN is locally compact Hausdorff, f must also be closed. Thus, if f is
injective, then it will be a closed embedding. �

Suppose X is a second-countable locally compact Hausdorff space. We can choose a metric
d on X that induces the topology of X (see [Bre97, Chapter I, Theorem 12.12]). For every
f ∈ C(X,RN ) and C ⊆ X compact, we let

∆(f, C) := sup
z∈f(C)

diam f−1({z}).

Lemma 2.5. Given ε > 0 and C ⊆ X compact, we let
Uε(C) := {f ∈ C(X,RN ) | ∆(f, C) < ε}.

Then Uε(C) is open in C(X,RN ).

Proof. Let f ∈ Uε(C) and let b > 0 such that ∆(f, C) < b < ε. Furthermore, let
A := {(x, y) ∈ C × C | d(x, y) ≥ b}.

Since A is closed in the compact space C × C, A is also compact. The continuous map
X ×X → R, (x, y) 7→ δ(f(x), f(y))

is strictly positive on A and thus r := 1
2 ·min(x,y)∈A δ(f(x), f(y)) satisfies r > 0. We will show

that Bρ(f, r) ⊆ Uε(C): Let g ∈ Bρ(f, r), i.e. ρ(f, g) < r. If (x, y) ∈ A, then δ(f(x), f(y)) ≥ 2r.
Since δ(f(x), g(x)) < r and δ(f(y), g(y)) < r, we get g(x) 6= g(y). Thus, by contraposition, if
g(x) = g(y) for some x, y ∈ C, then (x, y) /∈ A and thus d(x, y) < b.
This shows ∆(g, C) ≤ b < ε. �

We recall the notion of affine independence.

Definition 2.6. A set of points S ⊆ RN is affinely independent if for all distinct p0, . . . , pk ∈ S
and α0, . . . , αk ∈ R, the equations

k∑
i=0

αi · pi = 0 and
k∑
i=0

αi = 0

imply that α0 = · · · = αk = 0.

Geometrically speaking, if S ⊆ RN is affinely independent and card(S) = k, then the points
of S uniquely determine a k-plane in RN .

Lemma 2.7. Let x1, . . . , xn ∈ RN be distinct points and let r > 0. Then, there exist distinct
points y1, . . . , yn ⊆ RN such that:

(1) ‖xi − yi‖∞ < r for all 1 ≤ i ≤ n.
(2) {y1, . . . , yn} is in general position, i.e. every subset S ⊆ {y1, . . . , yn} such that card(S) ≤

N + 1 is affinely independent.

Proof. We construct the points y1, . . . , yn inductively. Let y1 := x1. Now, suppose y1, . . . , yk
have already been constructed and are in general position as well as ‖xi − yi‖∞ < r for all
1 ≤ i ≤ k. Consider the union P of all the affine subspaces that are generated by subsets
A ⊆ {y1, . . . , yk} such that card(A) ≤ N . Since every l-plane in RN is closed and has empty
interior whenever l < N , we can deduce P̊ = ∅, because RN is a Baire space as a complete
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metric space (see [Bre97, Chapter I, Theorem 17.1]). Choose any yk+1 ∈ RN \ P satisfying
‖xk+1 − yk+1‖∞ < r. This process yields the sought points y1, . . . , yn. �

Another fact from point-set topology that we need are partitions of unity. We shall only state
the result here and omit the proof.
Theorem 2.8. Let X be a paracompact space and let U = {Ui}i∈I be an open cover of X.
Then there exists a partition of unity {φi}i∈I subordinate to U, i.e.

(1) Each φi : X → [0, 1] is a continuous map.
(2) supp φi ⊆ Ui for all i ∈ I.
(3) {supp φi}i∈I is locally finite, i.e. each point x ∈ X has a neighbourhood that intersects

only finitely many of the {supp φi}i∈I .
(4)

∑
i∈I φi(x) = 1 for all x ∈ X.

For a proof see [Mun00, Theorem 41.7]. Recall that second-countable locally compact Hausdorff
spaces are paracompact.

Lemma 2.9. Suppose, X is a second-countable locally compact Hausdorff space such that every
compact subspace of X has topological dimension at most n ∈ N. If ∅ 6= C ⊆ X is compact, then
Uε(C) is dense in C(X,RN ) for every ε > 0.
Proof. Choose a metric d on X and let f ∈ C(X,R2n+1) and let 1 > r > 0. We need to find
a g ∈ Uε(C) satisfying ρ(f, g) ≤ r. Since C is compact, we can cover C by finitely many open
(open in C) sets U1, . . . , Um ⊆ C such that

(1) diam Ui <
ε
2 for all 1 ≤ i ≤ m,

(2) diamf(Ui) ≤ r
2 for all 1 ≤ i ≤ m,

(3) {U1, ·, Um} has order at most n.
Let {φ1, . . . , φm} be a partition of unity subordinate to {U1, . . . , Um}. For each 1 ≤ i ≤ m
choose a point xi ∈ Ui. Then choose z1, . . . , zm ∈ R2n+1 such that ‖f(xi) − zi‖∞ < r

2 and
{z1, . . . , zm} is in general position (Lemma 2.7). Finally, let

g̃ : C → R2n+1, x 7→
m∑
i=1

φi(x) · zi.

Claim. ‖g̃(x)− f(x)‖∞ < r for all x ∈ C.
Proof of claim. For all x ∈ C, we have

g̃(x)− f(x) =
m∑
i=1

φi(x) · (zi − f(xi)) +
m∑
i=1

φi(x) · (f(xi)− f(x)),

where we have used
∑m
i=1 φi(x) = 1. We have ‖zi − f(xi)‖∞ < r

2 for all 1 ≤ i ≤ m. Also if
φi(x) 6= 0, then x ∈ Ui and since diam f(Ui) < r

2 , we can conclude ‖f(xi)− f(x)‖∞ < r
2 . Thus,

‖g̃(x)− f(x)‖∞ <
m∑
i=1

φi(x) · r2 +
m∑
i=1

φi(x) · r2 = r.

�

Claim. If x, y ∈ C satisfy g̃(x) = g̃(y), then d(x, y) < ε
2 .

Proof of claim. We will prove that g̃(x) = g̃(y) implies x, y ∈ Ui for some 1 ≤ i ≤ m. Since
diam Ui <

ε
2 , the claim follows.

g̃(x) = g̃(y) implies
∑m
i=1(φi(x) − φi(y)) · zi = 0. Because the cover {U1, . . . , Um} has order

at most n, at most n+ 1 of the numbers φ1(x), . . . , φm(x) and at most n+ 1 of the numbers
φ1(y), . . . , φm(y) are non zero. Letting

S := {zi | 1 ≤ i ≤ m and φi(x)− φi(y) 6= 0},
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we can deduce card(S) ≤ 2n+ 2. Note that
∑m
i=1(φi(x)− φi(y)) = 0 and since {z1, . . . , zm} ⊆

R2n+1 are in general position and card(S) ≤ 2n+ 1 + 1, we can conclude φi(x)−φi(y) = 0 for all
1 ≤ i ≤ m. Since φi(x) > 0 for some 1 ≤ i ≤ m, we get φi(x) = φi(y) > 0 and thus x, y ∈ Ui. �

In conclusion,
h : C → [−r, r]2n+1, x 7→ f(x)− g̃(x)

is a well-defined continuous map. As a locally compact Hausdorff space, X is also normal. Thus,
we can apply the Tietze extension theorem (see [Mun00, Theorem 35.1]): h can be extended to
a continuous map H : X → [−r, r]2n+1. Letting

g : X → R2n+1, x 7→ f(x)−H(x),
we have g|C = g̃ and thus ∆(g, C) ≤ ε

2 < ε and ρ(f, g) ≤ r. �

Let X be as in Theorem 2.1 or Lemma 2.9 and choose a metric d on X. Since (C(X,R2n+1, ρ)
is a Baire space, every intersection of countably many open dense subsets of C(X,R2n+1) is
again dense in C(X,R2n+1). Consider an exhaustion of X by compact subsets (Ck)k∈N (Lemma
1.10). Then the set

⋂∞
k=1 U1/k(Ck) is dense in C(X,R2n+1).

Lemma 2.10. Every f ∈
⋂∞
k=1 U1/k(Ck) is injective.

Proof. Let x, y ∈ X such that f(x) = f(y). There exists some k0 ∈ N such that x, y ∈ Ck
whenever k ≥ k0. Because f ∈ U1/k(Ck), we get d(x, y) ≤ 1

k for all k ≥ k0. Hence, d(x, y) = 0
and therefore x = y. �

Lemma 2.11. If X is a second-countable locally compact Hausdorff space, then there exists a
map f ∈ C(X,RN ) such that f(x) x→∞−−−→∞.

Proof. It suffices to consider the case N = 1. Let {Uk}k∈N be cover of X by open sets such that
Uk is compact for each k ∈ N. Since X is second-countable locally compact Hausdorff, X is
paracompact and we can find a partition of unity {φk}k∈N subordinate to {Uk}k∈N. Letting

f : X → R, x 7→
∞∑
k=1

k · φk(x),

we see that f(x) x→∞−−−→∞. �

We can now proceed to the proof of Theorem 2.1.

Proof. Begin with a continuous map f : X → R2n+1 such that f(x) x→∞−−−→∞ from Lemma 2.11.
Consider an exhaustion of X by compact subsets (Ck)k∈N (Lemma 1.10). Since

⋂∞
k=1 U1/k(Ck)

is dense in C(X,R2n+1), we can find ι ∈
⋂∞
k=1 U1/k(Ck) such that ρ(f, ι) < 1. Then ι is injective

by Lemma 2.10 and ι(x) x→∞−−−→∞ by Lemma 2.3. Then, ι : M ↪→ R2n+1 is a closed embedding
by Lemma 2.4, as desired. �

3 ANRs and ENRs
Definition 3.1. A topological space X is called an Absolute Neighbourhood Retract (ANR) if
for every paracompact space P and every continuous map f : A→ X, where A ⊆ P is closed,
there exists an extension f : W → X of f where W is an open neighbourhood of A.

Why are we interested in ANRs? In this section, we want to prove the following.

Theorem 3.2. Every topological manifold is an ANR.
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Why do we want to prove this? Here is the reason.

Theorem 3.3. Every topological manifold is an ENR.

Proof. LetM be a topological n-manifold and let ι : M ↪→ R2n+1 be a closed embedding. Because
M is an ANR by Theorem 3.2, so is ι(M). Since ι(M) ⊆ R2n+1 and R2n+1 is paracompact, the
map f : ι(M) → ι(M), x 7→ x can be extended to a map r : U → ι(M) where U is an open
neighbourhood of ι(M). This r is a retraction. �

We will prove Theorem 3.2 by a series of lemmas and we will follow [KK].

Lemma 3.4. Every open subset of an ANR is again an ANR.

Proof. Let X be an ANR and let U ⊆ X be open. Let f : A→ U be continuous where A ⊆ P is
closed, P is paracompact. Letting f̃ := i ◦ f , where i : U ↪→ X is the standard embedding, f̃ can
be extended to a map f : W → X, where W is an open neighbourhood of A. Then, f |

f
−1(U) is

the sought extension. �

Lemma 3.5. Let X be paracompact and assume further dim X ≤ n. If U is an open cover of
X, there exist n + 1 collections of open subsets V0, . . . ,Vn such that V :=

⋃n
k=0 Vk is a locally

finite refinement of U.

Proof. Since dim X ≤ n, we can assume that U = {Ui}i∈I has order at most n. Let {φi} be a
partition of unity subordinate to U. For each i ∈ I, we let

Vi := {x ∈ X | ∀j ∈ I \ {i} : φi(x) > φj(x)}.
Then Vi ⊆ supp φi ⊆ Ui and Vi ∩ Vj = ∅ whenever i 6= j. Let V0 := {Vi}i∈I .
Now let 0 ≤ k ≤ n and let i0, . . . , ik ∈ I be distinct indices. Let

Vi0,...,ik := {x ∈ X | φi(x) > φj(x) whenever i ∈ {i0, . . . , ik} and j /∈ {i0, . . . , ik}}
Note that Vi0,...,ik∩Vj0,...,jk = ∅ whenever {i0, . . . , ik} 6= {j0, . . . , jk}, because for i ∈ {i0, . . . , ik}\
{j0, . . . , jk} and j ∈ {j0, . . . , jk} \ {i0, . . . , ik} we have φi(x) > φj(x) for all x ∈ Vi0,...,ik and
φj(y) > φi(y) for all y ∈ Vj0,...,jk .
Define Vk be the set of all such Vi0,...,ik and let V :=

⋃n
k=0 Vk.

We need to show that V covers X. Let x ∈ X and let J := {i ∈ I | φi(x) > 0}. Then,
card(J) ≤ n + 1 since U has order at most n. Writing J = {j0, . . . , jk}, we get x ∈ Vj0,...,jk .
Obviously, V is a refinement of U. It only remains to show that V is locally finite. Let x ∈ X.
There exists a neighbourhood N of x that intersects only finitely many of the {supp φi}i∈I . Let
J := {i ∈ I | supp φi ∩ N 6= ∅}. Then card(J) < ∞. Assume Vj0,...,jk ∈ V intersects N . Let
y ∈ N ∩ Vj0,...,jk . Then φjl(y) > 0 for all 1 ≤ l ≤ k. Thus {j0, . . . , jk} ⊆ J . But there are only
finitely many subsets of J and hence only finitely many elements of V intersect N . �

Lemma 3.6. Let X be paracompact space and let U := {Ui}i∈I be an open cover of X. Then
there exista a locally finite cover V = {Vi}i∈I of X satisfying Vi ⊆ Ui for all i ∈ I.

For a proof see [Mun00, Lemma 41.6].

The following lemma is needed for local-to-global results.

Lemma 3.7. Let X be a paracompact space and suppose dim X ≤ n. Let U be an open cover
of X satisfying the following.

(1) If V ⊆ X is open and V ⊆ U for some U ∈ U, then V ∈ U.
(2) If V ⊆ U and V1 ∩ V2 = ∅ for any V1, V2 ∈ V such that V1 6= V2, then

⋃
V ∈V V ∈ U.

(3) If U1, U2 ∈ U and V1, V2 ⊆ X are open and V 1 ⊆ U1, V 2 ⊆ U2, then V1 ∪ V2 ∈ U.
Then X ∈ U.



TOPOLOGICAL MANIFOLDS ARE EUCLIDEAN NEIGHBOURHOOD RETRACTS 11

Proof. Let V :=
⋃n
k=0 Vk as in Lemma 3.5. Since V is a refinement of U, we have V ⊆ U by

(1). Thus, by (2), we have Vk :=
⋃
V ∈Vk

V ∈ U for all 0 ≤ k ≤ n. Then {Vk}0≤k≤n is an open
cover of X by n+ 1 elements of U. By Lemma 3.6, there exists an open cover {Wk}0≤k≤n of
X satisfying W k ⊆ Vk for all 0 ≤ k ≤ n. Then W0 ∪W1 ∈ U by (3). By using (1), we see
that {W0 ∪W1, . . . ,Wn} is an open cover of X by n elements of U. Repeat this process with
{W0 ∪W1, . . . ,Wn} instead of {Wk}0≤k≤n to get a covering of X by n− 1 elements of U and so
on until X is covered by one element of U, which eventually yields X ∈ U. �

Before we proceed to the proof of Theorem 3.2, we should notice that the closed unit interval
I is an ANR as a consequence of the Tietze extension theorem and hence so is In for any n ∈ N0.
We now come to the proof of Theorem 3.2.

Proof of Theorem 3.2. Let M be a topological n-manifold and let U be the collection of all open
subsets of M which are ANRs. Then, U is an open cover of M since every point p ∈M lies in a
neighbourhood that is homeomorphic to an open subset of In and is thus an ANR by Lemma
3.4.
We will be done, once we show that U satisfies the conditions (1) - (3) in Lemma 3.7. Condition
(1) ia met since every open subset of an ANR is again an ANR.
For condition (2) consider a subset V := {Vi}i∈I of U that consists of disjoint sets and let
f : A→ V :=

⋃
i∈I Vi be a continuous map where A is a closed subset of a paracompact space P .

Each Vi is clopen in V since the {Vi}i∈I are disjoint. Thus, Ai := f−1(Vi) is closed in P for each
i ∈ I as is

⋃
i∈J Ai for all J ⊆ I.

If we can find a disjoint collection of open sets {Wi}i∈I of P such that Ai ⊆Wi for all i ∈ I, we
will be done: Then we can extend f |Ai : Ai → Vi to f i : W ′i → Vi, whereW ′i is open in P (because
Vi is an ANR) and define W :=

⋃
i∈I(Wi ∩W ′i ) as well as f : W → V by f |Wi∩W ′i := f i|Wi∩W ′i .

Claim. If P is paracompact and {Ai}i∈I is a disjoint collection of closed sets such that
⋃
i∈J Ai

is closed for any J ⊆ I, then there exists a disjoint collection {Wi}i∈I of open sets such that
Ai ⊆Wi for all i ∈ I.
Proof of the claim. P is normal as a paracompact space und thus we can find open sets {Yi}i∈I
such that Ai ⊆ Yi and Y i ∩

⋃
j∈I\{i}Ai = ∅. Let A :=

⋃
i∈I Ai. Then {Yi}i∈I ∪ {P \ A} is an

open cover of P . By Lemma 3.6, there is a locally finite open cover {Zi}i∈I ∪ {Z} such that
Zi ⊆ Yi for all i ∈ I and Z ⊆ P \A. By local finiteness, the equality

⋃
j∈J Zj =

⋃
j∈J Zj holds

for any J ⊆ I, hence
⋃
j∈J Zj is closed. Thus, Wi := Zi \

⋃
j∈I\{i} Zj is an open set such that

Ai ⊆Wi and the {Wi}i∈I are disjoint. �

This proves condition (2). All that is left is proving condition (3). Let U1, U2 ∈ U and let
V1, V2 ⊆ M be open such that V 1 ⊆ U1 and V 2 ⊆ U2. We need to show that V1 ∪ V2 ∈ U, i.e.
V1 ∪ V2 is an ANR.
Let f : A→ V1 ∪ V2 be continuous, where A is a closed subset of a paracompact space P . Let
B0 := f−1(V 1∩V 2), B1 := f−1(V 1), B2 := f−1(V 2). Then, B0, B1 and B2 are closed subsets of
P . Let A0 := f−1(U1 ∪U2). Then A0 is open in A, hence there exists some open subset X0 ⊆ P
such that A0 = X0 ∩ P . Because P is normal as a paracompact space, we can find an open
subset Y0 ⊆ P such that B0 ⊆ Y0 ⊆ Y 0 ⊆ X0.
Since f(Y 0 ∩ A) ⊆ U1 ∪ U2 and U1 ∩ U2 is an ANR, we can extend f |Y 0

∩ A to a map
f0 : Z0 → U1 ∩ U2 where Z0 is an open neighbourhood of Y 0 ∩A. Use normality again to find
an open set W0 ⊆ P such that B0 ⊆W0 ⊆W 0 ⊆ Y0 ∩ Z0.
Thus f0 is defined onW 0 and extends f |W 0∩A. For i ∈ {1, 2}, let fi : Bi∪W 0 → Ui be defined by
fi(x) := f(x) for all x ∈ Bi and f(x) := f0(x) for all x ∈W 0. We can extend fi to f i : Zi → Ui
where Zi is an open neighbourhood of Bi ∪W 0, because Ui is an ANR.
Since

(B1 \W0) ∩ (B2 \W0) = (B1 ∩B2) \W0 = B0 \W0 = ∅,
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and both B1 \W0 and B2 \W0 are closed, we can once again use normality to find disjoint open
sets W1,W2 ⊆ P such that Bi \W0 ⊆Wi ⊆ Zi for each i ∈ {1, 2}.
Finally, let f : W0∪W1∪W2 → U1∪U2 be defined by f |Wi := f i|Wi where i ∈ {0, 1, 2}. By letting
W := f

−1(V1 ∪ V2), we can conclude that f |W is an extension of f to an open neighbourhood
W of A. This proves (3) and therefore, M is an ANR. �
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