TOPOLOGICAL MANIFOLDS ARE EUCLIDEAN NEIGHBOURHOOD RETRACTS

RAPHAEL FLORIS

ABSTRACT. We show that every topological *n*-manifold M embeds into \mathbb{R}^{2n+1} as a closed subspace and is a retract of some neighbourhood $U \subseteq \mathbb{R}^{2n+1}$.

Introduction

For smooth manifolds the following well-known result holds.

Theorem 0.1 (Whitney Embedding Theorem). Every smooth n-manifold M admits a closed smooth embedding $\iota: M \hookrightarrow \mathbb{R}^{2n+1}$.

Furthermore, it can be shown that every embedded smooth manifold $M \subseteq \mathbb{R}^N$ has a *tubular* neighbourhood.

Theorem 0.2 (Tubular neighbourhood Theorem). Let $M \subseteq \mathbb{R}^N$ be an embedded smooth manifold. Then M possesses a tubular neighbourhood, i.e. there exists an open neighbourhood $U \subseteq \mathbb{R}^N$ of M that is diffeomorphic to a set $V \subseteq NM$ of the type

$$V = \{ (x, v) \in NM \mid |v| < \delta(x) \},\$$

where $\delta: M \to (0,\infty)$ is continuous and NM denotes the normal bundle of M, via the map

$$\theta \colon NM \to \mathbb{R}^N, \ (x,v) \mapsto x+v.$$

Let us recall the definition of ENRs.

Definition 0.3. A topological space X is a *Euclidean Neighbourhood Retract (ENR)* if there exists a closed embedding $\iota: X \hookrightarrow \mathbb{R}^N$ for some $N \in \mathbb{N}$ and an open neighbourhood $U \subseteq \mathbb{R}^N$ of $\iota(X)$ such that U is a retraction of U, i.e. there exists a continuous map $r: U \to \iota(X)$ satisfying $r|_{\iota(X)} = \mathrm{id}_{\iota(X)}$.

It can be shown that any embedded smooth manifold $M \subseteq \mathbb{R}^N$ is a retract of every tubular neighbourhood of M, hence we have the following.

Corollary 0.4. Every smooth manifold is an ENR.

A detailed account is given in [Lee13, Chapter 6].

In this talk, we want to prove the following corresponding results for toplogical manifolds.

Theorem 2.1. Let X be a second-countable locally compact Hausdorff space such that every compact subspace of X has dimension at most $n \in \mathbb{N}$. Then X admits a closed embedding $\iota: X \hookrightarrow \mathbb{R}^{2n+1}$.

Theorem 3.3. Every topological manifold is an ENR.

This is essentially due to Hanner [Han51]. We mainly follow indications by Munkres [Mun00] and unpublished notes by Kirby and Kister [KK] adding many details.

Remark. Throughout these notes, we denote by $\mathbb{N} := \{1, 2, ...\}$ the set of positive integers and by $\mathbb{N}_0 := \{0, 1, 2, ...\}$ the set of non-negative integers.

1 **Dimension** Theory

Definition 1.1. Let X be a topological space and let \mathcal{U} be an open covering of X. A refinement of \mathcal{U} is an open cover \mathcal{V} of X such that every $V \in \mathcal{V}$ is contained in some $U \in \mathcal{U}$, i.e. $V \subseteq U$.

Definition 1.2. Let *X* be a topological space.

- (1) A collection \mathcal{A} of subsets of X has order $m \in \mathbb{N}_0$ if m is the largest integer such that there are m+1 elements of \mathcal{A} having a non-empty intersection.
- (2) X is called *finite-dimensional* if there exists some $m \in \mathbb{N}_0$ such that every open cover of X possesses a refinement of order at most m.

The smallest such m is called the *(topological)* dimension of X, denoted by dim X.

If X is a topological space and \mathcal{A} is a collection of subsets of X, then \mathcal{A} has order m if and only if there exists some $x \in X$ that lies in m+1 elements of \mathcal{A} and no point of X lies in more than m+1 elements of \mathcal{A} .

Let us illuminate the notion of topological dimension with an example.

Example 1.3. Let I := [0, 1] denote the closed unit interval. We want to show that dim I = 1. Let \mathcal{U} be an open cover of I. Since I is a compact metric space, \mathcal{U} has a positive Lebesgue number $\lambda > 0$, i.e. every subset of I having diameter less than λ is contained in an element of \mathcal{U} . For $k \in \mathbb{N}_0$, let $J_k := \left((k-1) \cdot \frac{\lambda}{4}, (k+1) \cdot \frac{\lambda}{4} \right)$. Since diam $J_k = \frac{\lambda}{2} < \lambda$, we can conclude that $\mathcal{V} := \{J_k \cap I\}_{k \in \mathbb{N}_0}$ is a refinement of \mathcal{U} . Since \mathcal{V} has order 1, this shows dim $I \leq 1$.

In order to show that dim $I \ge 1$, we consider the open over $\mathcal{U} := \{[0,1), (0,1]\}$. If dim $I = 0, \mathcal{U}$ would have a refinement \mathcal{V} of order 0. Since \mathcal{V} refines \mathcal{U} , we get card $(\mathcal{V}) \geq 2$ (note that $0 \in V_1$) and $1 \in V_2$ for some $V_1, V_2 \in V$ and because V refines \mathcal{U} , we get $V_1 \subseteq [0, 1)$ and $V_2 \subseteq (0, 1]$ and thus $V_1 \neq V_2$). Let V be any element of V and let W be the union of all $V' \in V \setminus V$. Then both V and W are open and $V \cup W = I$ and $V \cap W = \emptyset$, because V has order 0, which is a contradiction since I is connected.

Thus, dim I > 1 and therefore dim I = 1.

We can use Lebesgue numbers to show a more general result that will be needed throughout this section.

Theorem 1.4. Let $n \in \mathbb{N}$. Every compact subspace of \mathbb{R}^n has topological dimension at most n. *Proof.* Let us first divide \mathbb{R}^n into unit cubes. Let

$$\mathcal{G} := \{(k, k+1)\}_{k \in \mathbb{Z}}$$
$$\mathcal{K} := \{\{k\}\}_{k \in \mathbb{Z}}.$$

If $0 \leq d \leq n$, we define C_d to be the set of all products

$$A_1 \times \cdots \times A_n \subseteq \mathbb{R}^n$$
,

where precisely d of the sets A_1, \ldots, A_n are an element of \mathcal{G} and the remaining n - d ones are an element of \mathcal{K} .

Set $\mathcal{C} := \mathcal{C}_0 \cup \cdots \cup \mathcal{C}_n$. Then for every $x \in \mathbb{R}^n$ there exists a unique $\mathcal{C} \in \mathcal{C}$ such that $x \in \mathcal{C}$.

Claim. Let $0 \leq d \leq n$. For every $C \in C_d$, there exists an open neighbourhood U(C) of C satisfying:

- (1) diam $U(C) \leq \frac{3}{2}$ (2) $U(C) \cap U(D) = \emptyset$ whenever $D \in C_d \setminus \{C\}$.

Proof of claim. Let $x = (x_1, \ldots, x_n) \in C$. We will show that there exists a number $0 < \varepsilon(x) \leq \frac{1}{2}$ such that the open cube centered at x with radius $\varepsilon(x)$, i.e. the set

$$W_{\varepsilon(x)}(x) = (x_1 - \varepsilon(x), x_1 + \varepsilon(x)) \times \cdots \times (x_n - \varepsilon(x), x_n + \varepsilon(x)),$$

intersects no other element of C_d . If d = 0, choose $\varepsilon(x) := \frac{1}{2}$. If d > 0, exactly d of the numbers x_1, \ldots, x_n are not integers. Choose $0 < \varepsilon(x) \le \frac{1}{2}$ such that for each $1 \le i \le n$ that satisfies $x_i \notin \mathbb{Z}$, the interval $(x_i - \varepsilon(x), x_i + \varepsilon(x))$ contains no integer. If $y = (y_1, \ldots, y_n) \in W_{\varepsilon(x)}(x)$, we have $y_i \notin \mathbb{Z}$ whenever $x_i \notin \mathbb{Z}$. Thus, either $y \in C$ or $y \in C'$ for some $C' \in C_{d'}$ where d' > d. In conclusion, $W_{\varepsilon(x)}(x)$ intersects no other element of C_d .

Now let U(C) be the union of all $W_{\frac{\varepsilon(x)}{2}}$ where $x \in C$. Then obviously $U(C) \cap U(D) = \emptyset$ whenever $D \in C_d \setminus \{C\}$. This proves (2).

If $x, y \in U(C)$, we have $x \in W_{\frac{\varepsilon(x')}{2}}(x')$ and $y \in W_{\frac{\varepsilon(y')}{2}}(y')$ for some $x', y' \in C$. By the triangle inequality

$$||x - y||_{\infty} \le ||x - x'||_{\infty} + ||x' - y'||_{\infty} + ||y' - y||_{\infty} \le \frac{1}{4} + 1 + \frac{1}{4} = \frac{3}{2},$$

hence establishing (1).

Now let $\mathcal{A} := \{U(C) \mid C \in C\}$. Then \mathcal{A} is an open cover of \mathbb{R}^n of order n by (2). Let $K \subseteq \mathbb{R}^n$ be compact and let \mathcal{U} be an open cover of K. Since K is compact metric, \mathcal{U} has a positive Lebesgue number $\lambda > 0$.

Consider the homeomorphism $f : \mathbb{R}^n \to \mathbb{R}^n$, $x \mapsto \frac{\lambda}{3} \cdot x$. Since \mathcal{A} is an open cover of order n, so is $\mathcal{A}' := \{f(U(C)) \mid C \in \mathcal{C}\}$. Since diam $f(U(C)) \leq \frac{\lambda}{2} < \lambda$ for all $C \in \mathcal{C}$, we get that $\{f(U(C)) \cap K\}_{C \in \mathcal{C}}$ is an open cover of K that refines \mathcal{U} and has order at most n. Thus, dim $K \leq n$, as desired. \Box

We need some more elementary properties of the topological dimension before we can proceed to manifolds.

Lemma 1.5. Let X be a finite-dimensional topological space and let Y be a closed subspace of X. Then Y is also finite-dimensional and dim $Y \leq \dim X$.

Proof. Let $d := \dim X$. Let \mathcal{U} be an open cover of Y. For every $U \in \mathcal{U}$ there exists some open $U' \subseteq X$ such that $U = U' \cap Y$. Let $\mathcal{A} := \{U'\}_{U \in \mathcal{U}} \cup \{X \setminus Y\}$. Then \mathcal{A} is an open cover of X and thus possesses a refinement \mathcal{B} of order at most d. Therefore, $\mathcal{V} := \{B \cap Y\}_{B \in \mathcal{B}}$ is an open cover of Y of order at most d that refines \mathcal{U} . This proves dim $Y \leq d$.

Theorem 1.6. Let X be a topological space and assume $X = X_1 \cup X_2$ for some closed finitedimensional subspaces $X_1, X_2 \subseteq X$. Then X is also finite-dimensional and

$$\dim X = \max\{\dim X_1, \dim X_2\}.$$

Let us fix a notion for the proof of this theorem. If \mathcal{U} is an open cover of X and $Y \subseteq X$ is a subspace of X, we say that \mathcal{U} has order $m \in \mathbb{N}_0$ in Y if there exists some point $y \in Y$ that is contained in m + 1 distinct elements of \mathcal{U} and no point of Y is contained in more than m + 1 distinct elements of \mathcal{U} .

Proof. By Lemma 1.5, it suffices to prove dim $X \leq \max\{\dim X_1, \dim X_2\}$.

Claim. Let \mathcal{U} be an open cover of X and let Y be a closed subspace of X such that dim $Y \leq d < \infty$. Then \mathcal{U} possesses a refinement that has order at most d in Y.

Proof of claim. Let $\mathcal{A} := \{U \cap Y\}_{U \in \mathcal{U}}$. Since \mathcal{A} is an open cover of Y and dim $Y \leq d$, there exists a refinement \mathcal{B} of \mathcal{A} of order at most d. For every $B \in \mathcal{B}$, there exists some open set $U_B \subseteq X$ such that $B = U_B \cap Y$. Furthermore, there exists some $A_B \in \mathcal{U}$ such that $B \subseteq A_B \cap Y$. Then, $\{U_B \cap A_B\}_{B \in \mathcal{B}} \cup \{U \setminus Y\}_{U \in \mathcal{U}}$ is an open cover of X that refines \mathcal{U} and has order at most d in Y.

Now, let $d := \max\{\dim X_1, \dim X_2\}$ and let \mathcal{U} be an open cover of X. We need to show that \mathcal{U} has a refinement \mathcal{V} of order at most d.

Let \mathcal{A}_1 be a refinement of \mathcal{U} of order at most d in X_1 and let \mathcal{A}_2 be a refinement of \mathcal{A}_1 of order

at most d in X_2 . We can define a map $f: \mathcal{A}_2 \to \mathcal{A}_1$ as follows. For every $U \in \mathcal{A}_2$ choose an element $f(U) \in \mathcal{A}_1$ such that $U \subseteq f(U)$.

For all $S \in \mathcal{A}_1$, let V(S) be the union of all $U \in \mathcal{A}_2$ that satisfy f(U) = S and finally let $\mathcal{V} := \{V(S)\}_{S \in \mathcal{A}_1}$. Then, \mathcal{V} is an open cover of X: For if $x \in X$, then $x \in U$ for some $U \in \mathcal{A}_2$ and because $U \subseteq V(f(U))$, we can deduce $x \in V(f(U))$. Furthermore, \mathcal{V} refines \mathcal{A}_1 , because $V(S) \subseteq S$ for every $S \in \mathcal{A}_1$. Since \mathcal{A}_1 refines \mathcal{U} , the cover \mathcal{V} must refine \mathcal{U} .

Finally, we need to show that \mathcal{V} has order at most d. Suppose $x \in V(S_1) \cap \cdots \cap V(S_k)$, where the sets $V(S_1), \ldots, V(S_k)$ are distinct. Thus, the sets S_1, \ldots, S_k are distinct. For all $1 \leq i \leq k$, we can find a set $U_i \in \mathcal{A}_2$ such that $x \in U_i$ and $f(U_i) = S_i$, because $x \in V(S_i)$. Because S_1, \ldots, S_k are distinct, so are U_1, \ldots, U_k . Thus, we have the following situation:

$$x \in U_1 \cap \dots \cap U_k \subseteq V(S_1) \cap \dots \cap V(S_k) \subseteq S_1 \cap \dots \cap S_k$$

Because $X = X_1 \cup X_2$, we have $x \in X_1$ or $x \in X_2$. If $x \in X_1$, then $k \leq d+1$, because \mathcal{A}_1 has order at most d in X_1 . If $x \in X_2$, we can also conclude $k \leq d+1$, because \mathcal{A}_2 has order at most d in X_2 .

Thus, $k \leq d+1$, proving that \mathcal{V} has order at most d, as desired.

A simple induction argument then yields the following corollary.

Corollary 1.7. Let X be a topological space and let $X_1, \ldots, X_r \subseteq X$ be closed finite-dimensional subspaces of X such that

$$X = \bigcup_{i=1}^{r} X_i.$$

Then X is also finite-dimensional and

 $\dim X = \max\{\dim X_1, \ldots, \dim X_n\}.$

We can now apply these results to manifolds.

Corollary 1.8. Let M be a topological n-manifold. If $C \subseteq X$ is compact, then dim $C \leq n$.

Proof. Since M is locally Euclidean, C can be covered by finitely many compact n-balls $B_1, \ldots, B_k \subseteq M$. By Theorem 1.4 and Lemma 1.5

$$\dim (B_j \cap C) \le \dim B_j \le n$$

(note that B_j is homeomorphic to a compact subset of \mathbb{R}^n) for all $1 \leq j \leq k$. Since $C = \bigcup_{j=1}^k (B_j \cap C)$, Corollary 1.7 yields dim $C \leq n$.

As a special case, we can note that every compact n-manifold is finite-dimensional and its topological dimension is at most n. In fact, this result can be extended to general n-manifolds. For this, we need a technical lemma.

Lemma 1.9. Let X be a topological space and assume $X = \bigcup_{i=0}^{\infty} C_i$, where every C_i is closed, $C_0 = \emptyset$, $C_i \subseteq C_{i+1}$ and there exists some $d \in \mathbb{N}_0$ such that $\dim \overline{C_{i+1} \setminus C_i} \leq d$ for all $i \in \mathbb{N}_0$. Then X is finite-dimensional and $\dim X \leq d$.

Proof. We will construct a sequence of covers $(\mathcal{V}_i)_{i \in \mathbb{N}_0}$ of X such that \mathcal{V}_{i+1} refines \mathcal{V}_i and \mathcal{V}_i has order at most d in C_i and $\mathcal{V}_0 := \mathcal{U}$. Under these hypotheses,

$$\mathcal{V} := \{ V \subseteq X \mid \exists i \in \mathbb{N} \colon V \in \mathcal{V}_i \text{ and } V \cap C_{i-1} \neq \emptyset \}$$

is a refinement of \mathcal{U} of order at most d: Let $x \in X$. Then $x \in C_{i-1}$ for some $i \in \mathbb{N}$. Since \mathcal{V}_i is an open cover of X, we get $x \in V$ for some $V \in \mathcal{V}_i$. But this means $V \cap C_{i-1} \neq \emptyset$ and hence $V \in \mathcal{V}$, proving that \mathcal{V} is an open cover of X. Suppose now that U_1, \ldots, U_k are distinct elements of \mathcal{V} having nonempty intersection and let x be an element of their intersection. Then, there

exists some $i_0 \in \mathbb{N}$ such that $x \in C_{i_0-1}$. For each $1 \leq j \leq k$, there exists some $i_j \in \mathbb{N}$ such that $U_j \in \mathcal{V}_{i_j}$ and $U_j \cap C_{i_j-1} \neq \emptyset$. Letting $i := \max\{i_0, i_1, \ldots, i_k\}$, we get $U_1, \ldots, U_k \in \mathcal{V}_i$ and

$$x \in \bigcap_{j=1}^k U_j \cap C_i.$$

Since V_i has order at most d in C_i , we get $k \leq d+1$, i.e. V has order at most d, as desired. All that is left now is constructing the sequence $(V_i)_{i\in\mathbb{N}}$. Set $V_0 = \mathcal{U}$ and suppose V_1, \ldots, V_i have already been constructed. Just as in the proof of Theorem 1.6 we can find a refinement \mathcal{W} of V_n that has order at most d in $\overline{C_{i+1} \setminus C_i}$. Define a map $f \colon \mathcal{W} \to \mathcal{V}_i$ by choosing $f(\mathcal{W})$ such that $W \subseteq f(\mathcal{W})$ for all $W \in \mathcal{W}$. For $U \in \mathcal{V}_i$, we define V(U) to be the union of all $W \in \mathcal{W}$ such that f(W) = U. We define V_{i+1} to consist of three types of set: V_{i+1} contains all $U \in \mathcal{V}_i$ such that $U \cap C_{i-1} \neq \emptyset$. Furthermore, V_{i+1} contains all V(U) where $U \in \mathcal{V}_i$ such that $U \cap C_{i-1} = \emptyset$ and $U \cap C_i \neq \emptyset$. Finally, V_{i+1} contains all $W \in \mathcal{W}$ such that $W \cap C_i \neq \emptyset$.

Claim. V_{i+1} is a refinement of V_i that has order at most d in C_{i+1} .

Proof. Let $x \in X$. We need to show the existence of some $U \in \mathcal{V}_{i+1}$ satisfying $x \in U$.

Suppose $x \in C_{i-1}$. Since \mathcal{V}_i is an open cover of X, we have $x \in U$ for some $U \in \mathcal{V}_i$. Because of $U \cap C_{i-1} \neq \emptyset$, we can conclude $U \in \mathcal{V}_{i+1}$. If $x \notin C_{n-1}$, we can find $W \in \mathcal{W}$ satisfying $x \in W$. If $W \cap C_i = \emptyset$, then $W \in \mathcal{V}_{i+1}$. Otherwise, $f(W) \subseteq W$. If $f(W) \cap C_{i-1} \neq \emptyset$, then $x \in f(W) \in \mathcal{V}_{n+1}$. If $f(W) \cap C_{i-1} = \emptyset$, then $x \in V(f(W))$ and $V(f(W)) \in \mathcal{V}_{i+1}$, because $f(W) \cap C_{i-1} = \emptyset$ and $\emptyset \neq W \cap C_i \subseteq f(W) \cap C_i$.

In conclusion, V_{i+1} is an open cover of X. It is obvious that V_{i+1} refines V_i .

Now let $U_1, \ldots, U_k \in \mathcal{V}_{i+1}$ be k distinct subsets of \mathcal{V}_{i+1} and suppose $x \in C_{i+1}$ such that $x \in \bigcap_{j=1}^k U_j$. If $x \in C_{i-1}$, then necessarily $U_1, \ldots, U_k \in \mathcal{V}_i$ by the definition of \mathcal{V}_{i+1} and thus $k \leq d+1$, because \mathcal{V}_i has order at most d in C_i .

If $x \in C_i \setminus C_{i-1}$, then $U_1 = V(S_1), \ldots, U_k = V(S_k)$ for some distinct $S_1, \ldots, S_k \in V_i$ satisfying $S_j \cap C_{i-1} = \emptyset$ and $S \cap C_i \neq \emptyset$ $(1 \le j \le k)$. Thus,

$$x \in \bigcap_{j=1}^{k} V(S_j) \subseteq \bigcap_{j=1}^{k} S_j,$$

implying that $k \leq d+1$, because V_i has order at most d in C_i . Finally if $x \in C_{i+1} \setminus C_i$, then $U_1, \ldots, U_k \in W$, hence $k \leq d+1$, because W has order at most d in $\overline{C_{i+1} \setminus C_i}$. In conclusion, V_{i+1} has order at most d in C_{i+1} .

This completes the proof of Lemma 1.9.

If X is a second-countable locally compact Hausdorff space, then we can decompose X as in the statement of Lemma 1.9.

Lemma 1.10. Every second-countable locally compact Hausdorff space X can be exhausted by compact subsets, *i.e.* there exist compact subsets $(C_i)_{i \in \mathbb{N}}$ such that $C_i \subseteq C_{i+1}$ and $X = \bigcup_{i=1}^{\infty} C_i$.

Proof. Let \mathcal{B} be a countable basis of the topology of X and let

$$\mathcal{B}' := \{ V \in \mathcal{B} \mid \overline{V} \text{ is compact} \}.$$

Since X is locally compact, \mathscr{B}' is again a basis of X. Let us now write $\mathscr{B}' = \{V_i\}_{i \in \mathbb{N}}$. Let $C_1 := \overline{V_1}$. Assume now, that compact subsets C_1, \ldots, C_k satisfying $V_j \subseteq C_j$ and $C_{j-1} \subseteq \mathring{C}_j$ for all $1 \leq j \leq k$ (where $C_0 := \emptyset$) have already been constructed. Because C_k is compact, there exists some $m_k \leq k+1$ satisfying $C_k \subseteq \bigcup_{j=1}^{m_k} V_j$. Letting $C_{k+1} := \bigcup_{j=1}^{m_k} \overline{V_j}$, we see that C_{k+1} is compact and $C_k \subseteq \mathring{C}_{k+1}$ as well as $V_{k+1} \subseteq C_{k+1}$. Thus $(C_i)_{i \in \mathbb{N}}$ is an exhaustion of X by compact subsets.

Now, we can finally prove that all topological manifolds are finite-dimensional.

Theorem 1.11. Let M be a topological n-manifold. Then M is finite-dimensional and dim $M \leq n$.

Proof. Since M is a second-countable locally compact Hausdorff space, M can be exhausted by compact subsets $(C_i)_{i \in \mathbb{N}}$. Each C_i is closed and furthermore each $\overline{C_{i+1} \setminus C_i}$ is compact since $\overline{C_{i+1} \setminus C_i} \subseteq C_{i+1}$. Thus, dim $\overline{C_{i+1} \setminus C_i} \leq n$ by Corollary 1.8. Lemma 1.9 now yields dim $M \leq n$.

2 The embedding theorem

We want to make use of the fact that manifolds are finite-dimensional. The aim of this section is the proof of the following statement.

Theorem 2.1. Let X be a second-countable locally compact Hausdorff space such that every compact subspace of X has dimension at most $n \in \mathbb{N}$. Then X admits a closed embedding $\iota: X \hookrightarrow \mathbb{R}^{2n+1}$.

Since every *n*-manifold M is a second-countable locally compact Hausdorff space such that dim $C \leq n$ for all compact $C \subseteq M$, we can thus conclude that M admits a closed embedding $M \hookrightarrow \mathbb{R}^{2n+1}$.

If X is a topological space, we denote by $C(X, \mathbb{R}^N)$ the set of all continuous maps $X \to \mathbb{R}^N$. We shall equip \mathbb{R}^N with the metric

$$\delta(x, y) := \min\{1, \|x - y\|_{\infty}\},\$$

where $x, y \in \mathbb{R}^N$. Then δ induces the same topology on \mathbb{R}^N as $\|\cdot\|_{\infty}$ and (\mathbb{R}^N, δ) is a complete metric space. We equip $C(X, \mathbb{R}^N)$ with the metric

$$\rho(f,g):=\sup_{x\in X}\delta(f(x),g(x)),$$

where $f, g \in C(X, \mathbb{R}^N)$. Since (\mathbb{R}^N, δ) is complete, so is $(C(X, \mathbb{R}^N), \rho)$.

Our proof of Theorem 2.1 is based on [Mun00, p. 315, Exercise 6].

Definition 2.2. Let X be a topological space and let $f \in C(X, \mathbb{R}^N)$. We write $f(x) \xrightarrow{x \to \infty} \infty$, if for all R > 0 there exists some compact subset $C \subseteq X$ such that $||f(x)||_{\infty} > R$ for all $x \in X \setminus C$.

Remark. Note that $f(x) \xrightarrow{x \to \infty} \infty$ whenever X is compact.

Lemma 2.3. Let X be a topological space and let $f, g \in C(X, \mathbb{R}^N)$ such that $\rho(f, g) < 1$ and $f(x) \xrightarrow{x \to \infty} \infty$. Then also $g(x) \xrightarrow{x \to \infty} \infty$.

Proof. Let R > 0. There exists some compact subset $C \subseteq X$ such that $||f(x)||_{\infty} > R + 1$ whenever $x \in X \setminus C$. The triangle inequality yields

$$||f(x)||_{\infty} \le ||g(x)||_{\infty} + ||f(x) - g(x)||_{\infty} < ||g(x)||_{\infty} + 1$$

and hence $||g(x)||_{\infty} > R$ whenever $x \in X \setminus C$. This proves $g(x) \xrightarrow{x \to \infty} \infty$.

Lemma 2.4. Let $f \in C(X, \mathbb{R}^N)$ such that $f(x) \xrightarrow{x \to \infty} \infty$. Then f is proper, i.e. $f^{-1}(K)$ is compact whenever $K \subseteq \mathbb{R}^N$ is compact. If f is injective as well, then f is also a closed embedding.

Proof. Let $K \subseteq \mathbb{R}^N$ be compact. Thus, $K \subseteq [-R, R]^N$ for some R > 0. We can find a compact subset $C \subseteq X$ such that $||f(x)||_{\infty} > R$ whenever $x \in X \setminus C$. Therefore, $f^{-1}(K) \subseteq f^{-1}([-R, R]^N) \subseteq C$. This shows that $f^{-1}(K)$ is compact as a closed subset of the compact space C. Therefore, f is proper.

Since f is proper and \mathbb{R}^N is locally compact Hausdorff, f must also be closed. Thus, if f is injective, then it will be a closed embedding.

Suppose X is a second-countable locally compact Hausdorff space. We can choose a metric d on X that induces the topology of X (see [Bre97, Chapter I, Theorem 12.12]). For every $f \in C(X, \mathbb{R}^N)$ and $C \subseteq X$ compact, we let

$$\Delta(f, C) := \sup_{z \in f(C)} \operatorname{diam} f^{-1}(\{z\}).$$

Lemma 2.5. Given $\varepsilon > 0$ and $C \subseteq X$ compact, we let

$$U_{\varepsilon}(C) := \{ f \in C(X, \mathbb{R}^N) \mid \Delta(f, C) < \varepsilon \}.$$

Then $U_{\varepsilon}(C)$ is open in $C(X, \mathbb{R}^N)$.

Proof. Let $f \in U_{\varepsilon}(C)$ and let b > 0 such that $\Delta(f, C) < b < \varepsilon$. Furthermore, let

$$A := \{ (x, y) \in C \times C \mid d(x, y) \ge b \}$$

Since A is closed in the compact space $C \times C$, A is also compact. The continuous map

$$X \times X \to \mathbb{R}, (x, y) \mapsto \delta(f(x), f(y))$$

is strictly positive on A and thus $r := \frac{1}{2} \cdot \min_{(x,y) \in A} \delta(f(x), f(y))$ satisfies r > 0. We will show that $B_{\rho}(f,r) \subseteq U_{\varepsilon}(C)$: Let $g \in B_{\rho}(f,r)$, i.e. $\rho(f,g) < r$. If $(x,y) \in A$, then $\delta(f(x), f(y)) \ge 2r$. Since $\delta(f(x), g(x)) < r$ and $\delta(f(y), g(y)) < r$, we get $g(x) \neq g(y)$. Thus, by contraposition, if g(x) = g(y) for some $x, y \in C$, then $(x, y) \notin A$ and thus d(x, y) < b. This shows $\Delta(g, C) \le b < \varepsilon$.

We recall the notion of affine independence.

Definition 2.6. A set of points $S \subseteq \mathbb{R}^N$ is affinely independent if for all distinct $p_0, \ldots, p_k \in S$ and $\alpha_0, \ldots, \alpha_k \in \mathbb{R}$, the equations

$$\sum_{i=0}^{k} \alpha_i \cdot p_i = 0 \text{ and } \sum_{i=0}^{k} \alpha_i = 0$$

imply that $\alpha_0 = \cdots = \alpha_k = 0$.

Geometrically speaking, if $S \subseteq \mathbb{R}^N$ is affinely independent and $\operatorname{card}(S) = k$, then the points of S uniquely determine a k-plane in \mathbb{R}^N .

Lemma 2.7. Let $x_1, \ldots, x_n \in \mathbb{R}^N$ be distinct points and let r > 0. Then, there exist distinct points $y_1, \ldots, y_n \subseteq \mathbb{R}^N$ such that:

(1) $||x_i - y_i||_{\infty} < r$ for all $1 \le i \le n$.

(2) $\{y_1, \ldots, y_n\}$ is in general position, i.e. every subset $S \subseteq \{y_1, \ldots, y_n\}$ such that $\operatorname{card}(S) \leq N+1$ is affinely independent.

Proof. We construct the points y_1, \ldots, y_n inductively. Let $y_1 := x_1$. Now, suppose y_1, \ldots, y_k have already been constructed and are in general position as well as $||x_i - y_i||_{\infty} < r$ for all $1 \le i \le k$. Consider the union P of all the affine subspaces that are generated by subsets $A \subseteq \{y_1, \ldots, y_k\}$ such that $\operatorname{card}(A) \le N$. Since every l-plane in \mathbb{R}^N is closed and has empty interior whenever l < N, we can deduce $\mathring{P} = \emptyset$, because \mathbb{R}^N is a Baire space as a complete

metric space (see [Bre97, Chapter I, Theorem 17.1]). Choose any $y_{k+1} \in \mathbb{R}^N \setminus P$ satisfying $||x_{k+1} - y_{k+1}||_{\infty} < r$. This process yields the sought points y_1, \ldots, y_n .

Another fact from point-set topology that we need are partitions of unity. We shall only state the result here and omit the proof.

Theorem 2.8. Let X be a paracompact space and let $\mathcal{U} = \{U_i\}_{i \in I}$ be an open cover of X. Then there exists a partition of unity $\{\phi_i\}_{i \in I}$ subordinate to \mathcal{U} , *i.e.*

- (1) Each $\phi_i \colon X \to [0,1]$ is a continuous map.
- (2) supp $\phi_i \subseteq U_i$ for all $i \in I$.
- (3) $\{ \sup \phi_i \}_{i \in I}$ is locally finite, i.e. each point $x \in X$ has a neighbourhood that intersects only finitely many of the $\{ \sup \phi_i \}_{i \in I}$.
- (4) $\sum_{i \in I} \phi_i(x) = 1$ for all $x \in X$.

For a proof see [Mun00, Theorem 41.7]. Recall that second-countable locally compact Hausdorff spaces are paracompact.

Lemma 2.9. Suppose, X is a second-countable locally compact Hausdorff space such that every compact subspace of X has topological dimension at most $n \in \mathbb{N}$. If $\emptyset \neq C \subseteq X$ is compact, then $U_{\varepsilon}(C)$ is dense in $C(X, \mathbb{R}^N)$ for every $\varepsilon > 0$.

Proof. Choose a metric d on X and let $f \in C(X, \mathbb{R}^{2n+1})$ and let 1 > r > 0. We need to find a $g \in U_{\varepsilon}(C)$ satisfying $\rho(f,g) \leq r$. Since C is compact, we can cover C by finitely many open (open in C) sets $U_1, \ldots, U_m \subseteq C$ such that

- (1) diam $U_i < \frac{\varepsilon}{2}$ for all $1 \le i \le m$,
- (2) diam $f(U_i) \leq \frac{r}{2}$ for all $1 \leq i \leq m$,
- (3) $\{U_1, \cdot, U_m\}$ has order at most n.

Let $\{\phi_1, \ldots, \phi_m\}$ be a partition of unity subordinate to $\{U_1, \ldots, U_m\}$. For each $1 \leq i \leq m$ choose a point $x_i \in U_i$. Then choose $z_1, \ldots, z_m \in \mathbb{R}^{2n+1}$ such that $||f(x_i) - z_i||_{\infty} < \frac{r}{2}$ and $\{z_1, \ldots, z_m\}$ is in general position (Lemma 2.7). Finally, let

$$\tilde{g} \colon C \to \mathbb{R}^{2n+1}, \ x \mapsto \sum_{i=1}^m \phi_i(x) \cdot z_i.$$

Claim. $\|\tilde{g}(x) - f(x)\|_{\infty} < r$ for all $x \in C$.

Proof of claim. For all $x \in C$, we have

$$\tilde{g}(x) - f(x) = \sum_{i=1}^{m} \phi_i(x) \cdot (z_i - f(x_i)) + \sum_{i=1}^{m} \phi_i(x) \cdot (f(x_i) - f(x)),$$

where we have used $\sum_{i=1}^{m} \phi_i(x) = 1$. We have $||z_i - f(x_i)||_{\infty} < \frac{r}{2}$ for all $1 \le i \le m$. Also if $\phi_i(x) \ne 0$, then $x \in U_i$ and since diam $f(U_i) < \frac{r}{2}$, we can conclude $||f(x_i) - f(x)||_{\infty} < \frac{r}{2}$. Thus,

$$\|\tilde{g}(x) - f(x)\|_{\infty} < \sum_{i=1}^{m} \phi_i(x) \cdot \frac{r}{2} + \sum_{i=1}^{m} \phi_i(x) \cdot \frac{r}{2} = r.$$

Claim. If $x, y \in C$ satisfy $\tilde{g}(x) = \tilde{g}(y)$, then $d(x, y) < \frac{\varepsilon}{2}$.

Proof of claim. We will prove that $\tilde{g}(x) = \tilde{g}(y)$ implies $x, y \in U_i$ for some $1 \leq i \leq m$. Since diam $U_i < \frac{\varepsilon}{2}$, the claim follows.

 $\tilde{g}(x) = \tilde{g}(y)$ implies $\sum_{i=1}^{m} (\phi_i(x) - \phi_i(y)) \cdot z_i = 0$. Because the cover $\{U_1, \ldots, U_m\}$ has order at most n, at most n + 1 of the numbers $\phi_1(x), \ldots, \phi_m(x)$ and at most n + 1 of the numbers $\phi_1(y), \ldots, \phi_m(y)$ are non zero. Letting

$$S := \{ z_i \mid 1 \le i \le m \text{ and } \phi_i(x) - \phi_i(y) \ne 0 \},\$$

we can deduce $\operatorname{card}(S) \leq 2n+2$. Note that $\sum_{i=1}^{m} (\phi_i(x) - \phi_i(y)) = 0$ and since $\{z_1, \ldots, z_m\} \subseteq \mathbb{R}^{2n+1}$ are in general position and $\operatorname{card}(S) \leq 2n+1+1$, we can conclude $\phi_i(x) - \phi_i(y) = 0$ for all $1 \leq i \leq m$. Since $\phi_i(x) > 0$ for some $1 \leq i \leq m$, we get $\phi_i(x) = \phi_i(y) > 0$ and thus $x, y \in U_i$. \Box

In conclusion,

$$h: C \to [-r, r]^{2n+1}, \ x \mapsto f(x) - \tilde{g}(x)$$

is a well-defined continuous map. As a locally compact Hausdorff space, X is also normal. Thus, we can apply the Tietze extension theorem (see [Mun00, Theorem 35.1]): h can be extended to a continuous map $H: X \to [-r, r]^{2n+1}$. Letting

$$g \colon X \to \mathbb{R}^{2n+1}, x \mapsto f(x) - H(x),$$

we have $g|_C = \tilde{g}$ and thus $\Delta(g, C) \leq \frac{\varepsilon}{2} < \varepsilon$ and $\rho(f, g) \leq r.$

Let X be as in Theorem 2.1 or Lemma 2.9 and choose a metric d on X. Since $(C(X, \mathbb{R}^{2n+1}, \rho))$ is a Baire space, every intersection of countably many open dense subsets of $C(X, \mathbb{R}^{2n+1})$ is again dense in $C(X, \mathbb{R}^{2n+1})$. Consider an exhaustion of X by compact subsets $(C_k)_{k \in \mathbb{N}}$ (Lemma 1.10). Then the set $\bigcap_{k=1}^{\infty} U_{1/k}(C_k)$ is dense in $C(X, \mathbb{R}^{2n+1})$.

Lemma 2.10. Every $f \in \bigcap_{k=1}^{\infty} U_{1/k}(C_k)$ is injective.

Proof. Let $x, y \in X$ such that f(x) = f(y). There exists some $k_0 \in \mathbb{N}$ such that $x, y \in C_k$ whenever $k \ge k_0$. Because $f \in U_{1/k}(C_k)$, we get $d(x, y) \le \frac{1}{k}$ for all $k \ge k_0$. Hence, d(x, y) = 0 and therefore x = y.

Lemma 2.11. If X is a second-countable locally compact Hausdorff space, then there exists a map $f \in C(X, \mathbb{R}^N)$ such that $f(x) \xrightarrow{x \to \infty} \infty$.

Proof. It suffices to consider the case N = 1. Let $\{U_k\}_{k \in \mathbb{N}}$ be cover of X by open sets such that $\overline{U_k}$ is compact for each $k \in \mathbb{N}$. Since X is second-countable locally compact Hausdorff, X is paracompact and we can find a partition of unity $\{\phi_k\}_{k \in \mathbb{N}}$ subordinate to $\{U_k\}_{k \in \mathbb{N}}$. Letting

$$f: X \to \mathbb{R}, \ x \mapsto \sum_{k=1}^{\infty} k \cdot \phi_k(x),$$

we see that $f(x) \xrightarrow{x \to \infty} \infty$.

We can now proceed to the proof of Theorem 2.1.

Proof. Begin with a continuous map $f: X \to \mathbb{R}^{2n+1}$ such that $f(x) \xrightarrow{x \to \infty} \infty$ from Lemma 2.11. Consider an exhaustion of X by compact subsets $(C_k)_{k \in \mathbb{N}}$ (Lemma 1.10). Since $\bigcap_{k=1}^{\infty} U_{1/k}(C_k)$ is dense in $C(X, \mathbb{R}^{2n+1})$, we can find $\iota \in \bigcap_{k=1}^{\infty} U_{1/k}(C_k)$ such that $\rho(f, \iota) < 1$. Then ι is injective by Lemma 2.10 and $\iota(x) \xrightarrow{x \to \infty} \infty$ by Lemma 2.3. Then, $\iota: M \hookrightarrow \mathbb{R}^{2n+1}$ is a closed embedding by Lemma 2.4, as desired.

3 ANRs and ENRs

Definition 3.1. A topological space X is called an Absolute Neighbourhood Retract (ANR) if for every paracompact space P and every continuous map $f: A \to X$, where $A \subseteq P$ is closed, there exists an extension $\overline{f}: W \to X$ of f where W is an open neighbourhood of A.

Why are we interested in ANRs? In this section, we want to prove the following.

Theorem 3.2. Every topological manifold is an ANR.

Why do we want to prove this? Here is the reason.

Theorem 3.3. Every topological manifold is an ENR.

Proof. Let M be a topological n-manifold and let $\iota: M \hookrightarrow \mathbb{R}^{2n+1}$ be a closed embedding. Because M is an ANR by Theorem 3.2, so is $\iota(M)$. Since $\iota(M) \subseteq \mathbb{R}^{2n+1}$ and \mathbb{R}^{2n+1} is paracompact, the map $f: \iota(M) \to \iota(M), x \mapsto x$ can be extended to a map $r: U \to \iota(M)$ where U is an open neighbourhood of $\iota(M)$. This r is a retraction. \Box

We will prove Theorem 3.2 by a series of lemmas and we will follow [KK].

Lemma 3.4. Every open subset of an ANR is again an ANR.

Proof. Let X be an ANR and let $U \subseteq X$ be open. Let $f: A \to U$ be continuous where $A \subseteq P$ is closed, P is paracompact. Letting $\tilde{f} := i \circ f$, where $i: U \hookrightarrow X$ is the standard embedding, \tilde{f} can be extended to a map $\overline{f}: W \to X$, where W is an open neighbourhood of A. Then, $\overline{f}|_{\overline{f}^{-1}(U)}$ is the sought extension.

Lemma 3.5. Let X be paracompact and assume further dim $X \leq n$. If U is an open cover of X, there exist n + 1 collections of open subsets V_0, \ldots, V_n such that $V := \bigcup_{k=0}^n V_k$ is a locally finite refinement of U.

Proof. Since dim $X \leq n$, we can assume that $\mathcal{U} = \{U_i\}_{i \in I}$ has order at most n. Let $\{\phi_i\}$ be a partition of unity subordinate to \mathcal{U} . For each $i \in I$, we let

$$V_i := \{ x \in X \mid \forall j \in I \setminus \{i\} \colon \phi_i(x) > \phi_j(x) \}.$$

Then $V_i \subseteq \text{supp } \phi_i \subseteq U_i$ and $V_i \cap V_j = \emptyset$ whenever $i \neq j$. Let $\mathcal{V}_0 := \{V_i\}_{i \in I}$. Now let $0 \leq k \leq n$ and let $i_0, \ldots, i_k \in I$ be distinct indices. Let

$$V_{i_0,...,i_k} := \{x \in X \mid \phi_i(x) > \phi_j(x) \text{ whenever } i \in \{i_0,...,i_k\} \text{ and } j \notin \{i_0,...,i_k\}\}$$

Note that $V_{i_0,\ldots,i_k} \cap V_{j_0,\ldots,j_k} = \emptyset$ whenever $\{i_0,\ldots,i_k\} \neq \{j_0,\ldots,j_k\}$, because for $i \in \{i_0,\ldots,i_k\} \setminus \{j_0,\ldots,j_k\}$ and $j \in \{j_0,\ldots,j_k\} \setminus \{i_0,\ldots,i_k\}$ we have $\phi_i(x) > \phi_j(x)$ for all $x \in V_{i_0,\ldots,i_k}$ and $\phi_j(y) > \phi_i(y)$ for all $y \in V_{j_0,\ldots,j_k}$.

Define \mathcal{V}_k be the set of all such V_{i_0,\ldots,i_k} and let $\mathcal{V} := \bigcup_{k=0}^n \mathcal{V}_k$.

We need to show that \mathcal{V} covers X. Let $x \in X$ and let $J := \{i \in I \mid \phi_i(x) > 0\}$. Then, card $(J) \leq n + 1$ since \mathcal{U} has order at most n. Writing $J = \{j_0, \ldots, j_k\}$, we get $x \in V_{j_0, \ldots, j_k}$. Obviously, \mathcal{V} is a refinement of \mathcal{U} . It only remains to show that \mathcal{V} is locally finite. Let $x \in X$. There exists a neighbourhood N of x that intersects only finitely many of the $\{\text{supp } \phi_i\}_{i \in I}$. Let $J := \{i \in I \mid \text{supp } \phi_i \cap N \neq \emptyset\}$. Then $\text{card}(J) < \infty$. Assume $V_{j_0, \ldots, j_k} \in \mathcal{V}$ intersects N. Let $y \in N \cap V_{j_0, \ldots, j_k}$. Then $\phi_{j_l}(y) > 0$ for all $1 \leq l \leq k$. Thus $\{j_0, \ldots, j_k\} \subseteq J$. But there are only finitely many subsets of J and hence only finitely many elements of \mathcal{V} intersect N.

Lemma 3.6. Let X be paracompact space and let $\mathcal{U} := \{U_i\}_{i \in I}$ be an open cover of X. Then there exists a locally finite cover $\mathcal{V} = \{V_i\}_{i \in I}$ of X satisfying $\overline{V_i} \subseteq U_i$ for all $i \in I$.

For a proof see [Mun00, Lemma 41.6].

The following lemma is needed for local-to-global results.

Lemma 3.7. Let X be a paracompact space and suppose dim $X \leq n$. Let U be an open cover of X satisfying the following.

(1) If $V \subseteq X$ is open and $V \subseteq U$ for some $U \in U$, then $V \in U$.

(2) If $\mathcal{V} \subseteq \mathcal{U}$ and $V_1 \cap V_2 = \emptyset$ for any $V_1, V_2 \in \mathcal{V}$ such that $V_1 \neq V_2$, then $\bigcup_{V \in \mathcal{V}} V \in \mathcal{U}$.

(3) If $U_1, U_2 \in \mathcal{U}$ and $V_1, V_2 \subseteq X$ are open and $\overline{V}_1 \subseteq U_1$, $\overline{V}_2 \subseteq U_2$, then $V_1 \cup V_2 \in \mathcal{U}$. Then $X \in \mathcal{U}$. Proof. Let $\mathcal{V} := \bigcup_{k=0}^{n} \mathcal{V}_k$ as in Lemma 3.5. Since \mathcal{V} is a refinement of \mathcal{U} , we have $\mathcal{V} \subseteq \mathcal{U}$ by (1). Thus, by (2), we have $V_k := \bigcup_{V \in \mathcal{V}_k} V \in \mathcal{U}$ for all $0 \leq k \leq n$. Then $\{V_k\}_{0 \leq k \leq n}$ is an open cover of X by n + 1 elements of \mathcal{U} . By Lemma 3.6, there exists an open cover $\{W_k\}_{0 \leq k \leq n}$ of X satisfying $\overline{W}_k \subseteq V_k$ for all $0 \leq k \leq n$. Then $W_0 \cup W_1 \in \mathcal{U}$ by (3). By using (1), we see that $\{W_0 \cup W_1, \ldots, W_n\}$ is an open cover of X by n elements of \mathcal{U} . Repeat this process with $\{W_0 \cup W_1, \ldots, W_n\}$ instead of $\{W_k\}_{0 \leq k \leq n}$ to get a covering of X by n - 1 elements of \mathcal{U} and so on until X is covered by one element of \mathcal{U} , which eventually yields $X \in \mathcal{U}$.

Before we proceed to the proof of Theorem 3.2, we should notice that the closed unit interval I is an ANR as a consequence of the Tietze extension theorem and hence so is I^n for any $n \in \mathbb{N}_0$. We now come to the proof of Theorem 3.2.

Proof of Theorem 3.2. Let M be a topological *n*-manifold and let \mathcal{U} be the collection of all open subsets of M which are ANRs. Then, \mathcal{U} is an open cover of M since every point $p \in M$ lies in a neighbourhood that is homeomorphic to an open subset of I^n and is thus an ANR by Lemma 3.4.

We will be done, once we show that \mathcal{U} satisfies the conditions (1) - (3) in Lemma 3.7. Condition (1) ia met since every open subset of an ANR is again an ANR.

For condition (2) consider a subset $\mathcal{V} := \{V_i\}_{i \in I}$ of \mathcal{U} that consists of disjoint sets and let $f: A \to V := \bigcup_{i \in I} V_i$ be a continuous map where A is a closed subset of a paracompact space P. Each V_i is clopen in V since the $\{V_i\}_{i \in I}$ are disjoint. Thus, $A_i := f^{-1}(V_i)$ is closed in P for each $i \in I$ as is $\bigcup_{i \in J} A_i$ for all $J \subseteq I$.

If we can find a disjoint collection of open sets $\{W_i\}_{i\in I}$ of P such that $A_i \subseteq W_i$ for all $i \in I$, we will be done: Then we can extend $f|_{A_i} \colon A_i \to V_i$ to $\overline{f}_i \colon W'_i \to V_i$, where W'_i is open in P (because V_i is an ANR) and define $W := \bigcup_{i\in I} (W_i \cap W'_i)$ as well as $\overline{f} \colon W \to V$ by $\overline{f}|_{W_i \cap W'_i} := \overline{f}_i|_{W_i \cap W'_i}$.

Claim. If P is paracompact and $\{A_i\}_{i \in I}$ is a disjoint collection of closed sets such that $\bigcup_{i \in J} A_i$ is closed for any $J \subseteq I$, then there exists a disjoint collection $\{W_i\}_{i \in I}$ of open sets such that $A_i \subseteq W_i$ for all $i \in I$.

Proof of the claim. P is normal as a paracompact space und thus we can find open sets $\{Y_i\}_{i\in I}$ such that $A_i \subseteq Y_i$ and $\overline{Y}_i \cap \bigcup_{j\in I\setminus\{i\}} A_i = \emptyset$. Let $A := \bigcup_{i\in I} A_i$. Then $\{Y_i\}_{i\in I} \cup \{P \setminus A\}$ is an open cover of P. By Lemma 3.6, there is a locally finite open cover $\{Z_i\}_{i\in I} \cup \{Z\}$ such that $\overline{Z}_i \subseteq Y_i$ for all $i \in I$ and $\overline{Z} \subseteq P \setminus A$. By local finiteness, the equality $\bigcup_{j\in J} \overline{Z}_j = \bigcup_{j\in J} \overline{Z}_j$ holds for any $J \subseteq I$, hence $\bigcup_{j\in J} \overline{Z}_j$ is closed. Thus, $W_i := Z_i \setminus \bigcup_{j\in I\setminus\{i\}} \overline{Z}_j$ is an open set such that $A_i \subseteq W_i$ and the $\{W_i\}_{i\in I}$ are disjoint.

This proves condition (2). All that is left is proving condition (3). Let $U_1, U_2 \in \mathcal{U}$ and let $V_1, V_2 \subseteq M$ be open such that $\overline{V}_1 \subseteq U_1$ and $\overline{V}_2 \subseteq U_2$. We need to show that $V_1 \cup V_2 \in \mathcal{U}$, i.e. $V_1 \cup V_2$ is an ANR.

Let $f: A \to V_1 \cup V_2$ be continuous, where A is a closed subset of a paracompact space P. Let $B_0 := f^{-1}(\overline{V}_1 \cap \overline{V}_2), B_1 := f^{-1}(\overline{V}_1), B_2 := f^{-1}(\overline{V}_2)$. Then, B_0, B_1 and B_2 are closed subsets of P. Let $A_0 := f^{-1}(U_1 \cup U_2)$. Then A_0 is open in A, hence there exists some open subset $X_0 \subseteq P$ such that $A_0 = X_0 \cap P$. Because P is normal as a paracompact space, we can find an open subset $Y_0 \subseteq P$ such that $B_0 \subseteq Y_0 \subseteq \overline{Y}_0 \subseteq X_0$. Since $f(\overline{Y}_0 \cap A) \subseteq U_1 \cup U_2$ and $U_1 \cap U_2$ is an ANR, we can extend $f|_{\overline{Y}_0} \cap A$ to a map

Since $f(\overline{Y}_0 \cap A) \subseteq U_1 \cup U_2$ and $U_1 \cap U_2$ is an ANR, we can extend $f|_{\overline{Y}_0} \cap A$ to a map $\overline{f}_0: Z_0 \to U_1 \cap U_2$ where Z_0 is an open neighbourhood of $\overline{Y}_0 \cap A$. Use normality again to find an open set $W_0 \subseteq P$ such that $B_0 \subseteq W_0 \subseteq \overline{W}_0 \subseteq Y_0 \cap Z_0$.

Thus \overline{f}_0 is defined on \overline{W}_0 and extends $f|_{\overline{W}_0 \cap A}$. For $i \in \{1, 2\}$, let $f_i \colon B_i \cup \overline{W}_0 \to U_i$ be defined by $f_i(x) := f(x)$ for all $x \in B_i$ and $f(x) := \overline{f}_0(x)$ for all $x \in \overline{W}_0$. We can extend f_i to $\overline{f}_i \colon Z_i \to U_i$ where Z_i is an open neighbourhood of $B_i \cup \overline{W}_0$, because U_i is an ANR. Since

$$(B_1 \setminus W_0) \cap (B_2 \setminus W_0) = (B_1 \cap B_2) \setminus W_0 = B_0 \setminus W_0 = \emptyset,$$

and both $B_1 \setminus W_0$ and $B_2 \setminus W_0$ are closed, we can once again use normality to find disjoint open sets $W_1, W_2 \subseteq P$ such that $B_i \setminus W_0 \subseteq W_i \subseteq Z_i$ for each $i \in \{1, 2\}$.

Finally, let $\overline{f}: W_0 \cup W_1 \cup W_2 \to U_1 \cup U_2$ be defined by $f|_{W_i} := \overline{f}_i|_{W_i}$ where $i \in \{0, 1, 2\}$. By letting $W := \overline{f}^{-1}(V_1 \cup V_2)$, we can conclude that $\overline{f}|_W$ is an extension of f to an open neighbourhood W of A. This proves (3) and therefore, M is an ANR.

References

- [Bre97] Glen E. Bredon. Topology and geometry, volume 139 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1997. Corrected third printing of the 1993 original.
- [Han51] Olof Hanner. Some theorems on absolute neighborhood retracts. Ark. Mat., 1:389–408, 1951.
- [KK] Robion C. Kirby and James Kister. Unpublished notes.
- [Lee13] John M. Lee. Introduction to smooth manifolds, volume 218 of Graduate Texts in Mathematics. Springer, New York, second edition, 2013.
- [Mun00] James R. Munkres. *Topology*. Prentice Hall, Inc., Upper Saddle River, NJ, 2000. Second edition of [MR0464128].

UNIVERSITÄT BONN Email address: s6raflor@uni-bonn.de