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 The geometry of finitely generated
 kleinian groups*

 By ALBERT MARDEN

 To my father on his 70th birthday

 TABLE OF CONTENTS

 Introduction .......................................... 383
 1. Topological preliminaries .............................. 386
 2. Basic properties of kleinian groups .................... 394
 3. Quasi-fuchsian groups .................................. 401
 4. Fundamental polyhedra ................................ 406
 5. Function groups ........................................ 410
 6. The assumption and resulting structure theorem ........ 422
 7. The boundary estimate ................................ 427

 8. The isomorphism theorem .............................. 429
 9. Stability .......................................... 436

 10. The deformation space ................................ 450

 11. Composition of groups ................................ 455
 12. An extension of the assumption ........................ 458
 13. Appendix .......................................... 460
 References .......................................... 461

 Introduction

 Until recently little of a general nature was known about finitely gen-

 erated kleinian groups, indeed it could well have been questioned whether

 any general theory was possible. Poincare, in his fundamental paper of 1883,

 attempted to treat these groups in a manner analogous to his treatment of

 fuchsian groups: He recognized that they can be extended from acting on

 the complex plane to acting on upper half space (hyperbolic 3-space) and

 therefore that there are fundamental polyhedra which play the role of the

 fundamental polygons for fuchsian groups. At this point, however, his gen-

 eral analysis ended. Even though a few additional general facts were dis-

 covered in the interim, the state of knowledge was essentially unchanged

 until the appearance in 1964 of Ahlfors' finiteness theorem and soon after-

 wards by Bers' inequalities giving actual estimates for Ahlfors' theorem.

 Their beautiful results were proved by deep analytic methods enabling them

 to construct from the group certain spaces of differentials on the quotient

 surfaces; the depth of these results is merely confirmed in our present study.

 Kra has woven their results into an elegant cohomology theory.

 * Supported in part by the National Science Foundation.
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 384 ALBERT MARDEN

 In contrast to the analytic approach of Ahlfors and Bers, Maskit has

 pioneered in the study of kleinian groups by purely geometric methods in

 the complex plane. His work complements the insight provided by the ana-

 lytic approach and yields some very deep and fundamental knowledge con-

 cerning certain special classes of groups. In particular Maskit develops the

 concept that the class of "nice" groups, that is the class for which generali-

 zations of the classical results for fuchsian groups can be fruitfully sought,

 is the class of constructible groups. These are the groups that arise from his

 far-reaching generalizations of the Klein combination theorems. Although

 we have taken a different path in this paper, Maskit's work has been a great

 influence. Indeed, there are many points of contact between his work and

 ours although the precise relation remains unclear.

 The program of this paper is to carry forward Poincare's original ap-

 proach towards the goal of providing a general theory of kleinian groups.

 Following Poincare, we view a (finitely generated) group G as giving rise to

 a 3-manifold YR(G) with boundary. A large number of problems concerning

 G can be reformulated as topological questions about DR(G) and a major

 share of our work consists of a topological analysis of 9R(G). This is possible

 at the present time only because understanding of the topology of 3-mani-

 folds has reached a rather mature stage. We will use most directly some

 striking recent results of Waldhausen; how much we are indebted to his work

 will be clear to the reader.

 The topological analysis of 9T(G) does not directly involve the limit set

 A(G) of G. To pass from information about 9R(G) to information about A(G)

 we consistently use Gehring's extension theorem which says that a quasi-

 conformal map of upper half space can be extended to be quasiconformal on

 the bounding plane. This is applied by lifting a piecewise linear map between

 two (for instance) compact manifolds Ot(G) and OT(H) with smooth triangu-

 lations. Like Mostow (see below) we find this theorem plays a very funda-

 mental, yet incompletely understood, role in determining the possible defor-

 mations of G.

 The analysis in this paper is concerned with groups without elliptic

 elements (groups without torsion). We plan to supplement this material at

 a later date with a discussion of the more general case; in some cases the

 extension is immediate, in others somewhat different techniques are required.

 In any case, with this restriction the fundamental group of 9R(G) is isomorphic
 to G.

 This paper is divided into two main parts. The first is directed toward

 a topological analysis of Ahlfors' theorem and Bers' inequality (Chapters
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 KLEINIAN GROUPS 385

 3-7). In order to carry out a complete topological analysis we find it neces-

 sary to make certain assumptions (?? 6.1, 12.3) on the 3-manifolds involved.
 This is because of the lack of information about non-compact manifolds

 although very recently G. P. Scott made an important breakthrough in this

 direction (see Chapter 13). In particular his results imply that the assump-

 tions are satisfied if G is not a free product. It seems reasonable to believe

 this is true in general. In any case the 3-manifolds involved can be rather
 well described in their relation to compact manifolds (Theorem 6.4). Our

 work includes new proofs of some of Maskit's theorems and in particular
 provides the 3-dimensional analogue to his study of B-groups (Chapters 3

 and 5). With the assumptions we are also able to recover the topological

 part of Ahlfors' theorem and a sharpened form of Bers' inequality (Chapter
 7).

 The second part of this paper is directed toward analyzing that class C

 of groups which have a finite-sided fundamental polyhedron in hyperbolic 3-

 space. This assumption is a natural generalization of the usual assumption
 in Lie group theory that the coset space 2/F have finite volume for a discrete

 subgroup IF of 2 (see Lemma 4.7). But more important is the fact that the

 groups in C are exactly those groups for which 9R(G) can be compactified in

 a natural way (Proposition 4.2). There are two principal results concerning

 the groups in C. One (Theorem 8.1) implies that if A: G - H, G E C, is an
 isomorphism induced by a quasiconformal homeomorphism of regular sets

 f: Q(G) - Q(H), then f has a quasiconformal extension to the extended plane.
 A consequence of this might be regarded as the analogue for kleinian groups

 of Mostow's rigidity theorem (see Theorem 8.3 for its most general expres-

 sion), namely: If f above is conformal, then G and H are conjugate groups.

 We also prove (Theorem 10.1) that a G E C is "strongly stable". In other

 words every small homomorphism q: G - SL(2, C)/+ 1 which sends parabolic
 elements to parabolic elements is in fact an isomorphism induced by a quasi-

 conformal map of the extended plane with small dilatation. This result is

 just what is required to fit the groups in C into Bers' deformation theory for

 kleinian groups (? 10.6: This general theory includes the classical Teichmiiller

 space theory). Together with his results one now knows that the deforma-

 tion space T(G) based on a fixed G E C is a manifold with a natural complex

 analytic structure induced from the matrices, or more precisely from the

 deformation variety of G. Perhaps surprisingly, the dimension of T(G)

 depends only on the topological type of the boundary of the 3-manifold 9R(G)
 associated with G, not on the "internal structure" of the manifold itself. On

 the other hand this fact can be regarded as being consistent with Mostow's
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 386 ALBERT MARDEN

 rigidity theorem, which can be interpreted to say in particular that T(G),

 for a discrete subgroup G of SL(2, C)/? 1 of finite volume, is a point (Corol-

 lary 9.5).

 In Chapter 11, we try to indicate the relation of constructive methods

 to the theory we have presented. This is done by displaying certain forms

 of the Klein combination theorems which have general applicability in con-

 structing more complicated groups from simpler ones, and then showing that

 C is preserved under these operations.

 It is a pleasure for me to acknowledge the advice and inspiration I

 received in discussions with L. Bers, B. Maskit, and C. Papakyriakopoulos.

 1. Topological preliminaries

 1.1. Throughout our study, and in particular in this chapter, we will be

 concerned with oriented 3-manifolds 'D (usually with boundary o39R) which

 have a C- differential structure. Later on, the manifolds will actually have

 a natural conformal structure and the Co structure will be taken from that.

 Neither 'DR nor a&9 will necessarily be compact. Of course 3-manifolds can be

 triangulated but for analytic purposes we will need not just a topological

 triangulation but a "smooth" triangulation. It is known that 'D has a Co

 triangulation and in fact a Co triangulation of at9 can be extended to a Co

 triangulation of 'D (for details and definitions we refer to Munkres' book

 [44]). Smoothly imbedded simplices are required for the following reason.

 Definition. A homeomorphism f: (x1 )9R2 between two C- manifolds
 is quasiconformal if there exist coordinate coverings (ui, hi) of 'DR, and (u;, h;)
 of 9R2 and a constant K, 1 < K < cA, such that the composed mappings

 h'ofoh-1, whenever they are defined, are K-quasiconformal in the euclidean

 sense.

 Of course for the study of quasiconformal maps of manifolds, this defini-

 tion is not satisfactory because K is not invariantly defined. However, for

 our purposes, as illustrated by the following result, this is sufficient.

 LEMMA 1.1. A piecewise linear (PL) homeomorphism between two com-

 pact C- manifolds with C- triangulation is quasiconformal.

 We omit the proof since it is a direct consequence of the basic properties

 of quasiconformal mappings (see [16, 41]).

 1.2. Notation and conventions. 'OR denotes the interior of OR and R-

 the closure of O in some larger manifold. If < c 'D is a submanifold we will

 make frequent use of the notation a07 for the relative boundary of ) n OWR
 in OR0.
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 KLEINIAN GROUPS 387

 Unless otherwise specified our work will be carried out in the PL category

 but using only C- triangulations. When, because of the nature of the prob-

 lem, a shift to the Co category is necessary, it will be explicitly described.

 If S is a compact surface imbedded in OR., S will always be assumed to (i)

 be non-singular, and (ii) satisfy AS = at n s.

 A regular neighborhood N(S) of S is a compact submanifold of OR such

 that there exists a homeomorphism (PL)f: N(S) - S x [0, 1] for which f(S) =
 S x {1/2}. By sufficiently subdividing the triangulation of OR. near S, N(S)

 can be made arbitrarily close to S.

 A non-trivial loop in a surface S is a loop which is not contractible in S

 to a point.

 H1(OT) denotes the first integral homology group.

 1.3. We begin with two lemmas that relate the first homology group

 H1QaR) of atR to H1(JY).

 LEMMA 1.2 (cf. [27]). If g is the total genus of OR. (= sum of genera of

 the components of &9R) then g < rank H1(DR).

 LEMMA 1.3. Assume 'OR is compact and the inclusion map H1(aOT)

 H1(OT) is surjective. If g is the total genus of &9T then rank H(OCR) = g.

 Proof. Observe that the first Betti numbers satisfy ,1(OTR) <,81(9R) = 2g
 and the first relative Betti number satisfies 1(OR, 8R) = m - 1 where m is

 the number of components of OR. Indeed, choose (m - 1) 1-chains connect-

 ing the m components of OR. Given any relative 1-cycle y0 in OR. there is a

 1-chain on aOR and a linear combination v, of the connecting chains so that

 when these are added to y0 we obtain a 1-cycle v. Since v is homologous to a

 cycle on aOR we see that y0 is homologous, mod 9h, to vc. Now the double

 OR of OR is compact so the Euler characteristics satisfy 2 X(OTC) - x(9Rt) =

 xQ(tY) = 0. Using Lefschetz duality and the facts 83(9) = 0, So(S) = 1,
 90(&91) = ,G209R) = m, Lemma 1.3 follows from

 2(- /83 + /82 - 81 + 80)(DR) = (82 - 81 + 80W)(&)

 1.4. The contemporary theory of 3-manifolds is based on Dehn's lemma,

 the loop theorem, and the sphere theorem which we will use in the following

 special forms.

 LEMMA 1.4 (Papakyriakopoulos [45], [46]). If y is a non-trivial loop in

 aDR which is contractible to a point in 9R, and if v c Nc OR. is a neighbor-

 hood of y, there is a simple loop y0 c N, non-trivial in &91, which bounds a

 disk D in 91. If v is a simple loop, D can be chosen so that AD = v.

 LEMMA 1.5 (Papakyriakopoulos [45], Whitehead [52]). If w2(911) # 0,
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 388 ALBERT MARDEN

 then OR' contains a sphere which does not bound a ball; if r2(1'1) = 0 and

 wl1(911) is infinite, then wr,(91) = 0.

 The following result will be frequently used to cut up our manifolds.

 LEMMA 1.6 (Waldhausen [49]). THE CYLINDER THEOREM. Suppose y1

 y2 are mutually disjoint loops on &91 neither of which is homotopic to a point

 in 91. Assume -1 is freely homotopic in 91 to 72 and y1 c N1, 72 CA N2 are

 disjoint neighborhoods. Then there exist simple loops a1 c N1, a2 c N2, neither

 of which is contractible in 91, which are the boundary components of a

 cylinder in 91. If y1 and 72 are simple loops, we can take a, = y1 and a2 = /2.

 The corresponding fact for surfaces is in [28].

 1.5. The following test for compactness will also turn out to be useful.

 LEMMA 1.7. Suppose O1R and 2 have no boundary and satisfy I72(1i) =
 w3(9l) = 0, i = 1, 2. Assume O1R is compact and w1(9111) is isomorphic to

 w1(912). Then the integral homology group Hk(9R1) is isomorphic to Hk(912),
 k = O 1, 2, 3. In particular 9112 is also compact.

 Proof. As always O1R, 912 are oriented 3-manifolds. There exists a con-

 tinuous map f: 91 D92 which induces the given isomorphism r1(9l) )

 w1(912) ([19, p. 198]). It follows from the Whitehead theorem ([19, p. 167])
 that f induces an isomorphism between the integral homology groups. The

 group H3(912) tells that 92 is compact.

 1.6. LEMMA 1.8. (van Kampen [39].) In the notation of Lemma 1.4, if

 On-D has two components 9R1, 92 then ir(9DR) = 1w1(911)*1w1(912) (free product);

 if there is only one component, then r1(91) = r,(DR- D)*Z.

 LEMMA 1.9. (Grushko [39].) If G = G1*G2 then the ranks satisfy r(G) =

 r(Gl) + r(G2).
 1.7. We will be in the fortunate position that the universal covering

 spaces of the manifolds ORO under consideration in Chapter 2 and beyond

 will turn out to be euclidean space R3. A simple, but for our purposes ex-

 tremely important, consequence of this is that every imbedded 2-sphere in

 OR bounds a ball in 9R. (A manifold with this property is called irreducible.)

 This follows from Alexander's theorem which asserts that the closure of

 each complementary component of a polyhedral 2-sphere in S3 is a 3-cell.
 Because our manifolds have this property, the fact that the Poincare con-

 jecture is unproved in no way affects our work.

 Of course in addition it is true that the homotopy groups wr2(91R)=

 I('R) = 0.
 For the rest of this section, the universal covering space of OR' is assumed
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 KLEINIAN GROUPS 389

 to be R3.

 LEMMA 1.10 (Waldhausen [50]). Suppose 'OR is compact with OR. 0.

 If wr(91) is a non-trivial free product then there exists a disk D in OR, AD c

 &91, which induces some splitting of r1(OR) into a non-trivial free product.

 Definition. A compact surface S c OR. with AS = atRn S is incompres-

 sible if ker (w1(S) - 1w(9R)) = 0.

 LEMMA 1.11. The following statements are equivalent (w: R3 OR1' is the
 natural projection).

 (i) S is incompressible in IR.

 (ii) Each component of i-'(S0) in R3 is simply connected.

 (iii) No non-trivial simple loop in S bounds a disk in 'DR -S.

 Proof. These results seem pretty standard. The implications (ii) (i)

 and (ii) (iii) are trivial. If a component S* of ir-'(S0) is not simply con-
 nected, by the general van Kampen theorem [39] applied to S* and the two

 components of R3 - S*, there exists a non-trivial loop a* c S* which is con-

 tractible in one of the components of R3 - S*. By Lemma 1.4 there is a non-

 trivial simple loop ao c S * which bounds a disk D* with D*? c R3-S - .

 Now D* intersects only a finite number of components of ir-'(S0). We

 can assume all of these intersections consist of simple loops in D*. From this

 finite set of simple loops choose an innermost one a*; a* bounds a disk D* c
 D*. But a* also appears as a simple loop in a component S* of ir-'(S0). The

 projection a2 of ao* is a non-trivial loop in S which violates (i) and, via Lemma
 1.4, (iii) as well.

 In the following lemma, H+ denotes the closed upper half space in R3.

 LEMMA 1.12. Let P be a simply connected, complete, polyhedral surface

 in R3. Then R3 - P has two components and the closure of each is topologically

 equivalent to H+.

 Proof. We begin by recalling that Alexander's theorem implies that if

 a is a polyhedral 2-sphere in R3, R3 - a has two components and the closure

 B of the bounded component is a 3-cell. It is also true that if D c B is a disk

 with Dn Da = aD then the closure of each component of B - D is a 3-cell.

 That R3 - P has two components follows from elementary homology

 considerations.

 Fix a compact set K in R3 such that K n P is connected. We will show

 that there exists a (polyhedral) sphere a such that

 (i) K lies in the bounded component of R3 - a,

 (ii) a n P is a simple loop.
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 390 ALBERT MARDEN

 Start with a sphere a1 with property (i). We may assume that a, n P

 consists of a finite number of simple loops and along each of these, a1 crosses

 P. We will successively reduce the number of components of a, n P, preserv-
 ing property (i), until we obtain a sphere which also satisfies (ii).

 Suppose a is a component of a1 n P and D is the closure of the bounded

 component of P - a; D is a disk. Assume D n K = 0. If necessary, by

 replacing a by an innermost loop in the set a, n D, we can also assume that

 a, D0 = 0. Now al - a has two components whose closures D1, D2 are disks.
 Each of D U D1, D U D2 are spheres and exactly one of them, say D U D1, is

 such that K is contained in the bounded component of R3 - D U D1. By

 moving D U D1 slightly away from P near D, we obtain a new sphere a2

 which satisfies (i) but such that a2 n P has one fewer component than a1 n P.

 Repeating this process at most a finite number of times we end up with a

 sphere am which satisfies property (i) and has the additional quality that if a

 is a component of am ,n P, then the bounded component of P - a contains
 P n K.

 If am n P is connected we are done. Otherwise, let a be the innermost

 component of am n P, i.e., the component for which Do n am = 0. Find the

 component , of am n P which is closest to a; then a U , is the boundary of a

 closed annulus A c P with Ao n a.m 0. a U 8 is also the boundary of a closed
 annulus A' in am.

 Let am+i denote the sphere that is obtained from am by replacing A' by
 A. We claim that the bounded component Bmi of R3 - a,., contains K. To
 see this first observe that Al lies in the unbounded component of R3-

 This is true because the bounded component D0 of P - a lies in the bounded

 component Bm of R3 -_ m since it intersects K. Secondly, the torus A U A'

 bounds a solid torus T. T' lies in the unbounded component of R3 -m

 because A' does. Consequently Bm = (Bi U T)' contains K. Moving auj
 slightly away from P near A we obtain a sphere a+2 such that um?2 n P has
 two fewer components than am,, n P. Repeating this process at most a finite

 number of times we obtain a sphere a = a, which has both properties (i) and

 (ii).

 With this preliminary step, Lemma 1.12 is easily proved. We can find

 inductively a sequence of spheres {an} such that (i) the closure B, of the

 bounded component of R3 - au, contains an- in its interior; (ii) an n P is con-

 nected; and (iii) lim an = cX . Let H be the closure of one of the two compo-

 nents of R - P. Each B,,, nH is a cell and so is (B,, - B)- n H (its boundary
 is a sphere).

 In R3 choose a sequence {(a} of standard spheres with the properties (i),
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 KLEINIAN GROUPS 391

 (ii), (iii) with respect to the plane AH+. This will be our model. Let B +

 denote the closure of the bounded component of R3 - a+. Working step by

 step, we can set up homeomorphisms, B1 f Ha B+ fl H+, (B.,1 - By)- n
 H )(B+, - B+)- n H+, which agree on the common boundary as we pass
 from the Ith to the (n + l)st stage. In this way we can construct a homeo-

 morphism of

 H= (B1 nH)U4 [(B,+, -B)- nH] H+

 - (B+ n H+)U- [(BA+,- Bq+)- n H+].
 COROLLARY 1.13. Assume S is incompressible in OR and OR - S has two

 components ORl OR2. Then if 71 c OL, is freely homotopic to 72 C OR,, there
 is a loop in S which is freely homotopic in 9ni to yi, i = 1, 2.

 Proof. Fix a component OR* of w'(OR&) where w: R3 OR' is the natural
 projection. Lemma 1.12 implies that OR* is a topological ball since each

 component of r-'(S0) is simply connected (Lemma 1.11). The lift of y1 from

 a point x E ORL* terminates at T(x) for some cover transformation T. Although

 T(9OlV) = 0R* T may not preserve any component of aORL*. But the hypo-
 thesis on 72 implies that T also preserves a component of w1(9L). This forces

 T to preserve at least one component S * of DOOR*. It follows that 71 is freely

 homotopic to a loop in S0. The same reasoning holds for 72.

 1.8. In this section we shall gather together some useful results con-

 cerning pasting together mappings of 3-manifolds, both in the PL and Co

 categories.

 LEMMA 1.14. Let S be a closed, orientable, triangulated (resp. C-) sur-

 face and f, g two orientation preserving PL homeomorphisms (resp. diffeomor-

 phisms) of S onto itself which are homotopic. Consider the 3-manifold S x

 [0, 1] triangulated so as to extend the given triangulation of S _ S x {0}-

 S x {1} (resp. with the product Co- structure). Interpret f, g as acting as fol-

 lows: f: S x {0} - S x {0}, g: S x {1} - S x {1}. There exists a PL homeo-
 morphism (resp. diffeomorphism) F: S x I S x I which restricts to f and
 g on S x {0} and S x {1} respectively.

 Proof. Case 1: f and g are PL maps. There exists an isotopy H con-

 necting f and g [12] which can be interpreted as a level-preserving homeo-

 morphism S x I - S x I which restricts to f and g on the boundary. A

 theorem of Bing [9, Theorem 9] implies that H can be approximated arbitra-

 rily closely (with respect to any given distance function) by a PL homeo-

 morphism F, with the additional property that F is equal to H and hence to

 f and g on the boundary components S x {0}, S x {1} of S x [0, 1].
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 392 ALBERT MARDEN

 Case 2: f and g are diffeomorphisms. The work of Earle and Eells [10]

 shows that two orientation preserving diffeomorphisms of a compact, closed

 surface onto itself, which are homotopic, in fact lie in the same path com-

 ponent of the group of diffeomorphisms of the surface onto itself. According

 to Munkres [43, p. 523] it is known that when this occurs for a manifold

 there is actually a differentiable isotopy h between the two diffeomorphisms.

 In other words there exists a diffeomorphism F(x, t): S x I S x I such

 that F(x, 0) = f(x) and F(x, 1) = g(x) which is defined by (x, t) - (h(x, t), t).

 COROLLARY 1.15. Let OR be a compact, oriented, triangulated (resp. Coo)

 3-manifold and f: DT - D9R a PL homeomorphism (resp. diffeomorphism)
 which is homotopic to the identity on each component of D1. Then there

 exists a PL homeomorphism (resp. diffeomorphism) F: 9a a 9with Fl D.=

 f.

 Proof. Assume first aDR is connected. If f is PL, take a closed neighbor-

 hood N of HDo which is PL equivalent to &DR x [0, 1]. Apply Lemma 1.14 in

 N to the maps f and identity on at and AN - aDt respectively. Extend the

 resulting map to 'DR - N by setting it equal to the identity.

 In the smooth case apply the collaring theorem [44, Theorem 5.9] to

 obtain a compact, C submanifold Nc9 'DR with &DR c AN and a diffeomor-

 phism h: N D91R x I. Because of this and Lemma 1.14 there exists a dif-

 feomorphism F1: N-o N such that F1D1O = f and f restricted to R = AN-
 at is the identity. Extend F1 to all 9R by setting F1 = identity in 9R - N.

 Then F1 is a diffeomorphism except possible near R. Using Munkres' tech-

 nique [42], F, can then be smoothed in a neighborhood of R.

 The case in which DR is not connected is handled in the same way.

 The proof used for the following lemma can obviously be applied to prove

 a much more general result, but this special case is the only one we will

 encounter here.

 LEMMA 1.16. Suppose f and g are orientation preserving PL homeomor-

 phisms (resp. diffeomorphisms) of the cylinder A = {z E C: 1/2 <? -z < 1} onto

 itself which preserve the boundary components. Consider the manifold A x I

 with a triangulation which restricts to that of A A x {0} A x {1} (resp.

 product Co structure). Interpret the maps f and g as acting on A x {0},

 A x {1} respectively. Then there exists a PL homeomorphism (resp. diffeo-

 morphism) F: A x I A x I such that FIA x {0} = f, FFA x {1} = g.
 Proof. Case 1: f and g are PL maps. Since f and g are homotopic (in

 fact homotopic to the identity), hence isotopic, in A there exists a level-

 preserving homeomorphism H: A x I - A x I which restricts to f and g on
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 KLEINIAN GROUPS 393

 A x {0} and A x {1}. However, H is not necessarily PL on the remainder of

 a(A x I), namely on the two annuli A1 = {z: lzI = 1/2} x I and A2 = {z lzI =
 1} x I. On Al, for example, H is a PL map of each component of aA1 onto

 itself. From [12] we deduce that HIA, is isotopic to a PL homeomorphism of
 Al onto itself via an isotopy which keeps the components of aA1 pointwise
 fixed. Using this isotopy on A1 and a corresponding one on A2 we can adjust

 H so as to obtain a homeomorphism H, of A x I n A x I which is PL on

 a(A x I) and also restricts to f and g. Now Bing's theorem [9] is applicable

 and there is a PL homeomorphism F: A x I A x I with F I(A x I)
 H1lD(A x I).

 Case 2: f and g are diffeomorphisms. The proof is a repetition of the

 corresponding case of Lemma 1.14 but this time we refer to Earle and Schatz

 [11] to find that f and g are in the same path component of the space of

 diffeomorphisms of A onto itself. Again [44, p. 523] asserts the existence of

 a differentiable isotopy joining f and g. This in turn can be interpreted as

 a diffeomorphism of A x I which preserves each shell A x {t}, 0 < t ? 1.

 1.9. We shall also have occasion to use the following two results. The

 first is required in shifting between the PL and C- categories. The second

 is a smoothing theorem.

 LEMMA 1.17. Suppose S is a finite union of mutually disjoint compact,

 C- submanifolds of 'DR such that AS n aDR = s n aDt and, if S n am D 0, s
 is transverse to I'd along S nf aD. Then there exists a Co triangulation of

 'Dt which restricts to a triangulation of S.

 Proof. For simplicity assume S is connected. The hypothesis implies

 that the double D(S) of S is a Co submanifold of the double D(^DR) of TR. As
 submanifolds of D('DR), D(S) and DITC intersect transversely and have no

 boundaries. As a consequence of the bicollaring theorem [40, Corollary 3.6]

 there is a Co triangulation of a closed neighborhood in D(mR) of each of the
 surfaces &DR, D(S) which restricts to a triangulation of 8DR, D(S) respec-

 tively. By [44, 10.11] there is a Co triangulation of a closed neighborhood

 of aT U D(S) in D(^DR) which restricts to a triangulation of both aDR and
 D(S). Now apply [44, 10.7] which asserts that this induced triangulation of

 DaTR U D(S) can be extended to a Co triangulation of D(mDR). This in turn

 restricts to a triangulation of 'DR.

 LEMMA 1.18. Suppose f: 'DR, 'RT2 is a homeomorphism, d a metric on

 'DR2, and a a positive continuous function on DR1. There exists a diffeomor-

 phism g: 'TDR ( xf2 such that d(f(p), g(p)) < &(p) for all p E (X1. In addition
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 394 ALBERT MARDEN

 suppose AO and A are closed subsets of 'D,1 such that AO c AO and A has a Co
 triangulation which restricts to a triangulation of AO. Then if f is already

 a diffeomorphism in a neighborhood of A, g can be chosen so that g = f in a

 neighborhood of AO.

 Proof. The first statement is due to Munkres [43]. The second is too,

 after some preliminary observations. By a C- triangulation of A we mean

 a Co imbedding of a euclidean complex into DR1, whose image is A. By sub-
 dividing the triangulation if necessary, we can find a closed set A1 such that

 AO c A' c A, c AO and the triangulation of A also restricts to a triangulation

 of A1. There is also a Co triangulation of f(A) with respect to which f: A

 f(A) is a PL map. By [44, 10.7] the restriction of these triangulation to A1,

 f(A1) can in turn be extended to Co triangulations of TR1, 'TD2 respectively.

 Now the homeomorphism f: 'DR1 1 'TD2 is PL on A1 -<(A1). Bing's theorem
 [9, Theorem 9] allows us to approximate f arbitrarily closely by a PL homeo-

 morphism f1: 'TD1 1 'TD2 with the property that f1 = f on A1. Apply Munkres'

 smoothing process [43] to fl. This process consists of smoothing ft in small
 neighborhoods of the 2-, 1-, and 0-simplices of the triangulation of 'TR1. In

 particular, in a neighborhood of AO, f' = f can be left undisturbed.

 Remark. The PL version of Lemma 1.18 is also true. It is due to Bing

 and we have used it in the course of the above proof.

 2. Basic properties of kleinian groups

 2.1. We will consider the group M of Mobius transformations {z v-*

 (az + b)/(cz + d), ad - bc = 1} usually viewed as acting on the Riemann

 sphere, which will be denoted by a&. Other representations of M are the

 simple Lie groups SL(2, C)/? 1 with the obvious identification and SO(1, 3)/+ 1
 with identification via stereographic projection and homogeneous coordinates.

 There is a standard classification that T e M is loxodromic, parabolic (unipo-

 tent), or elliptic according to whether T is conjugate in M to kei?z, k # 1 (T

 is hyperbolic if e = 0), to z + 1, or to ei?z, e # 0 (mod 2z), respectively.
 These expressions allow us to see the geometry of each transformation T.

 As Poincare [47] first observed, each Mobius transformation acting, say,

 on the 2-sphere &1 has a unique extension to a conformal automorphism of

 the 3-ball 1. In this way M extends from &1 to the group of orientation

 preserving isometries of hyperbolic 3-space B. In different language M

 extends to a certain closed subgroup of SO(1, 4) which has B as its associated

 symmetric space.

 The point p E @- is a limit point of a subgroup G of M if there is an
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 KLEINIAN GROUPS 395

 infinite sequence {A"} of distinct elements of G and a point q E A- such that

 limrnA(q) = p. Let A(G) denote the set of limit points which lie on aI. It

 turns out (cf. [22]) that A(G) is a closed set on a&. The complementary open

 set Q(G) on &1 is called the regular set.

 As a matrix subgroup of SL(2, C)/? 1, G is discrete if and only if it acts

 discontinuously on the open ball $. This means no p E B is a limit point. If

 G is discrete its limit set with respect to the closed ball @- is precisely A(G).

 If in addition Q(G) # 0, G is traditionally called a discontinuous group, but
 it is also true that the requirement Q(G) / 0 in itself implies discreteness.

 A kleinian group is a discontinuous group G which has more than two limit

 points. In particular G is not finite, cyclic, or free abelian of rank 2. The

 limit set A(G) of a kleinian group is a perfect, nowhere dense subset of &1

 and the components of Q(G) are either simply or infinitely connected (provided

 G is finitely generated).

 2.2. Throughout this paper we will assume that the kleinian group G is

 finitely generated and has no torsion (i.e., contains no elliptic elements).

 Then G acts freely on ? U Q(G). Q(G)/G = U Si is a union of Riemann sur-

 faces Si none of which is conformally a sphere, nor a once or twice punctured
 sphere, nor a torus. We will assign to the 3-manifold

 OR(G) = Jq U Q(G)/G

 the orientation, C"o structure, and conformal structure induced from B U Q(G)

 by the natural projection

 7r: U Q(G) IDR(G)

 Of course aDR(G) = U Si and, since there is no torsion, 7r,() - G.
 As we have already discussed in ? 1.7, 1TC(G) has the fortunate property

 that every imbedded 2-sphere bounds a ball.

 We will use the following terminology. A loop y c OTL(G) determines the

 transformation T e G if for some x* E {wz-(x)}, where x is the initial point of
 ay, the lift of y from x* terminates at T(x*). Any two transformations deter-

 mined by y are conjugate in G. Conversely if T is determined by y and T,
 is conjugate to T in G then T1 is also determined by v. Thus we can also

 speak of the conjugacy class of transformations in G determined by 'v.

 In a different direction, if y1 is freely homotopic to y then y and y,
 determine the same conjugacy class of transformations in G. Conversely

 two loops Y, y1 which determine the same conjugacy class are freely homo-

 topic.

 It should be emphasized that the configuration w: B U Q(G) D9(G) may
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 396 ALBERT MARDEN

 have two characteristics which are unusual from a topological point of

 view. The first is that a component S of DTR may have a puncture p. By

 this we mean that p is an isolated ideal boundary component of S which has

 a neighborhood conformally equivalent to a once punctured disk. It follows

 from [29], for example, that if y is a simple loop in S retractible to p then

 transformation in G determined by y is parabolic. The converse of this state-

 ment is false as we will discover later. The geometry of parabolic transfor-

 mations will be discussed in ? 2.5 below.

 The second possibility we want to mention is that a component S* of

 r-'(S) is not necessarily the universal covering surface of S because S * need

 not be simply connected. It is simply a regular planar covering.

 2.3. Example 1. A(G) = {z: Iz = 1}. Then G is a fuchsian group of the

 first kind and Q(G) has exactly two components which correspond under the

 map z )oo. Q(G)/G is the union of two finitely punctured compact surfaces
 S1, S2 which are anti-conformally equivalent. In a simple geometric manner

 1DT(G) may be realized as S1 x [0, 1].

 Example 2. If a component Qo of Q(G) is invariant under G then G is

 called a function group; if in addition Q, is simply connected, G is called a
 B-group. For these groups the inclusion w1(S) - wj('R(G)), S = Qo/G, is an
 isomorphism and the structure of 'DR is considerably simplified as we shall
 discover. It is also true that the topology of Q(G) and of a9R can be expressed

 directly in terms of Q. and subsurfaces of S. For B-groups this situation was
 completely worked out by Maskit [35], and several years ago I found a direct

 proof of Ahlfors' finiteness theorem as applied to the invariant region for

 function groups (unpublished). The simplest type of function group not a

 B-group is the classical Schottky group. This is generated by transforma-

 tions which pair 2g circles bounding a 2g-connected region (or more generally

 analytic Jordan curves), sending the exterior of one onto the interior of its

 partner. In this case Q(G) is connected and infinitely connected, Q(G)/G is a

 compact surface of genus g, and 1DT(G) is a handlebody of genus g.

 Example 3. G is a degenerate group if Q(G) is connected and simply

 connected. These peculiar groups exist and represent every conformal type

 of surface (arising from a kleinian group) save the triply punctured sphere.

 Degenerate groups were found by Bers [7] using the boundary corresponding

 to his imbedding of Teichmiiller space in a space of quadratic differentials,

 and by Maskit in some unpublished work, using geometric methods on ai.

 It is an open question whether 9TL(G) (Q(G)/G) x [0, 1].

 2.4. AHLFORS' FINITENESS THEOREM [2]. If G is a kleinian group with
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 KLEINIAN GROUPS 397

 N < generators, then a9R(G) is a finite union of surfaces, each of which
 is a finitely punctured compact surface.

 Note that this says in particular that no components of AdT are disks.

 This is false if N =0 (Accola [1]). The fact that every ideal boundary
 component of a component of D9T is conformally a puncture in itself, gener-
 ally, is highly non-trivial. For example no geometic proof of this fact is

 known for degenerate groups.

 If one did not insist on proving that every ideal boundary component on

 9RT(G) is a puncture, then the work here would be independent of Ahlfors'
 theorem. In particular this is the case in Chapters 5-7 (cf. Lemma 3.1).

 However, we will not be so dogmatic and will always refer to ideal boundary

 components as punctures.

 Bers found a very important refinement of Ahlfors' theorem as follows.

 BERS' ESTIMATE [6]. If a9h(G) = U S is the decomposition of a9t into

 its components Si and if Si has genus gi and bi punctures then

 A (2gi + bi - 2) < 2(N - 1) .

 2.5. Suppose p is the fixed point of a parabolic transformation in the

 kleinian group G. The subgroup

 Mp= {T G: T(p) = p}

 is the maximal parabolic subgroup corresponding to p. It is known that Mp
 contains only parabolic transformations and furthermore that Mp is either
 infinite cyclic or free abelian of rank two.

 Denote by ap(r) the sphere with radius r which is internally tangent to

 aq at p and let 8p(r) c( J be the open ball bounded by ap(r). Both up and 1p
 are invariant under all T e Mp.

 For all sufficiently small r, ,8p(r) has the property that T(,fp(r)) n 8p(r)
 0 for all T e G, T V Mp . When Mp is free abelian of rank two, Fatou's proof
 of this [13, p. 159] is complete. On the other hand, as A. Beardon has pointed

 out, his proof for cyclic Mp has a serious gap. However, Beardon [5] among
 others has given a direct, elementary proof which is valid in all cases.

 Case 1. Mp is free abelian of rank two. In this case, for each small r,

 (O'p(r) - {p})/Mp is a torus in OR(G). It will be called a canonical cusp torus.

 This torus bounds p1'(r)/Mp1 S' x {z e C: 0 < JzJ < 1} (S' is the 1-sphere).
 The closure of this will be referred to as a canonical solid cusp torus. Each

 solid cusp torus has finite hyperbolic volume.

 Suppose T1, ?2 are two mutually disjoint, canonical solid cusp tori in
 DT(G) (or in different manifolds XT(G) and DR(H)). There is a natural Co
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 398 ALBERT MARDEN

 quasiconformal map f: 1 - ?2. Fix components ?* of r'(?i) and represent

 ,TY2 as closed upper half space SC ={(xl, x2, X3): X3 }, i = 1, 2. There is a
 level-preserving affine map f* YC S C which induces an isomorphism of the
 group of cover transformations of T* onto that of T*. Its projection is f.

 Case 2. M, is infinite cyclic. In this case for each small r, (a,(r) - {p})/Mp
 will be called a doubly infinite cylinder associated with p. It is naturally
 imbedded in IDR(G) and bounds there a region f3p(r)/Mp homeomorphic to

 Iz GC: O < IZI < 1} x (O. 1).
 In each case as we vary r, for small r we obtain a nested family of the

 above objects. Since there are at most a countable number of conjugacy
 classes of maximal parabolic subgroups of G, it is possible to choose the
 associated canonical cusp tori and doubly infinite cylinders so as to be mutu-
 ally disjoint in OTR(G). Note too, they are Co submanifolds of OTR(G).

 2.6. In the case of cyclic M,, in general nothing is known regarding its
 effect on ODR(G) beyond the existence of the doubly infinite cylinders which
 can be constructed from spheres. However, in a certain situation, which we

 will now examine, one can say much more. This special case will be very

 important in the remainder of our work.

 A closed submanifold T of t(G) is a tube if T -{z C C: 0 < lz ? 1} x [0, 1].

 Definition 2.1. Suppose p, and P2 are distinct punctures on aDR(G). p1
 and P2 are said to be paired if there is a (closed) cylinder C and a tube 1T in
 OR(G) such that

 (i) C n aDD = ac n awn consists of two simple loops, one retractible in
 &ThR to p1, the other retractible in M to P2*

 (ii) ao(U n mo) = co (ao denotes the relative boundary in ORo).
 (iii) (UI n a9R)o is the union of a neighborhood of p1 and of P2' each one

 conformally equivalent to a once punctured disk.

 We will refer to p1 and P2 as paired by the pairing cylinder C or the
 pairing tube U.

 Assuming p, and P2 are paired we will construct a family of canonical
 pairing cylinders and tubes. To do this consider the situation in Q(G) c _D-k.

 Let a1, a2 denote the two components of C n aDn where C is a pairing
 cylinder. Fix a lift a* of a1 in Q(G). Then a* determines a parabolic trans-
 formation A C G. There is also a lift a* of a2 which determines A. Let v*

 denote the component of 7r-x(ai) which contains a4, i = 1, 2. Then v*, 7* are
 both open Jordan arcs in Q(G) invariant under A. When the fixed point p
 of A is added, y*, yi* become Jordan curves "tangent" to each other at p.

 The maximal subgroup M, is infinite cyclic and generated by A.
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 KLEINIAN GROUPS 399

 The Jordan curves y1 U {p}, y* U {p} bound mutually disjoint topological

 disks D*, D2* c Q(G) with A(D*) = D*; wr(D*) is a neighborhood of the punc-
 ture pi. It is known [22] that there exist circles C1(r), C2(r) of radius r which
 lie on I3 such that for all sufficiently small r,

 (i) C1(r), C2(r) are tangent at p,

 (ii) CQ(r)cD D U {p}, i = 1, 2,
 (iii) A(C,(r)) = C,(r), i = 1, 2

 The existence of the circles is usually formulated in the case that A is of the

 form z - z + 1 and C1, C2 are the horizontal lines in the plane {y = + N} for
 large N > 0.

 Let a'(r), a'(r) denote the spheres orthogonal to I3 along Cl(r), C2(r)

 respectively and set o,(r) = u'(r) n X. Let X,(r) denote the component of
 u- (r) which is adjacent to a subset of D*, i = 1, 2. Determine the radius

 r= r1(r) of fl(r,) (cf. ? 2.5) as follows. Let p* be the diametrically opposite
 point to p. Under a conformal map f of g- to closed upper half space with

 f(p) = oo, f(p*) 0 , the three regions f(X1(r)), f(X2(r)), f(,fl(r)) are to be
 equidistant from 0. Then let f*(r) denote the relative closure in 3 U Q(G) of

 fl,(r,) U X,(r) U X2(r).

 LEMMA 2.2. For all sufficiently small r, w(fl*(r)) is a tube in Dn(G)

 pairing p1 and P2. If q1 and q2 are also paired punctures on a91T(G) (or on a

 different aR(G1)) then for all sufficiently small r there is a function r2 = r2(r)

 such that w(,fl*(r)) is conformally equivalent to w(,fl(r2)) in such a way that
 p1 corresponds to q1 and r2 0 as r, 0.

 Proof. For sufficiently small r, fl(r) has the property that T(fl*(r)) n
 fl*(r) = 0 for all TG G, T X Mp while TG Mp preserves fl(r). If Y is a tube
 pairing p1 and P2. take r small enough so that rc(fl*(r)) a J. The second
 statement follows from the fact that any two parabolic transformations are

 conjugate in M and from our normalized choice of r1(r).

 The pairing tubes wr(,8*(r)) are called canonical pairing tubes and the
 closures of the relative boundaries nO(w(fl)(r)) n are called canonical
 pairing cylinders.

 Our work leads to the following algebraic characterization.

 LEMMA 2.3. Two distinct punctures on &91l(G) are paired if and only if

 they determine the same conjugacy class of parabolic transformations in G.

 Proof. The necessity is trivial. If the two punctures determine the

 same conjugacy class, the construction above can be applied directly to obtain

 a canonical cylinder which pairs the punctures.
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 400 ALBERT MARDEN

 2.7. Although Lemma 2.2 contains the basic result we need on "com-

 pactifying" manifolds, there are certain additional technical complications

 that must be ironed out. These have to do with the fact that if TY is a canoni-

 cal pairing tube, OR - fT is not a C- submanifold of OT because there are

 "corners"9 on TY.

 In order to get an explicit picture of what a canonical pairing tube T

 looks like, it is convenient to replace 3 by upper half space XC = {(xl, x2, x3) G

 R3: x3 > 0} and assume A is the translation (x1, x2, x3) (x1 + 1, x2, x3) (notation
 as in ? 2.6). The intersection of ,8*(r) with the plane {xl = 0} is the comple-

 ment R in the closed half plane {x3 > 0} of some open rectangle as in Fig. 1.

 X2

 FIG. 1.

 T is obtained by identifying the faces R x {O}, R x {1} of R x I under A.
 By rounding the corners of R as indicated in Fig. 1, (8T)- becomes a Co

 submanifold of OT(G), transverse to aTh(G). This smoothing can be done in

 a canonical way for all canonical pairing tubes so that both assertions of

 Lemma 2.2 continue to hold. We will speak of these smoothed tubes T as

 smoothed canonical pairing tubes. The closure of the relative boundaries

 (8T)~ will be called smoothed canonical pairing cylinders.

 Suppose T and T1 are smoothed canonical pairing tubes such that T c T',.
 We claim

 LEMMA 2.4. T1 - T' is diffeomorphic to {z e C: 1/2 < Izl < 1} x L

 Proof. The intersection of ,B*(rl) - 8*(r)0 with the plane {xl = O} is the
 closed region R in Fig. 2. There is a conformal map h of R' onto a rectangle

 RO, the four arcs of AR corresponding to the four sides of R1. The boundary
 properties of conformal mappings and the reflection principle show that h is

 Co" in R. Hence the map (z, t) (h(z), t) of R x I R1 x I is a diffeomor-
 phism. Lemma 2.4 now follows.

 In reference to Lemma 1.17 we obtain the following.

 LEMMA 2.5. If S is a canonical cusp torus or a smoothed canonical
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 KLEINIAN GROUPS 401

 pairing cylinder in DR(G), there is a Co triangulation of RT(G) with respect

 to which S is a polyhedral surface.

 X3

 x2

 FIG. 2.

 2.8. Our approach to the limit set A(G) of a kleinian group G will always

 be by means of the following theorem. It plays a very fundamental role in

 passing from the group action on B to the group action on si.

 GEHRING'S EXTENSION THEOREM [16]. A quasiconformal homeomorphism

 B can be extended to a quasiconformal homeomorphism A- -.

 3. Quasi-fuchsian groups

 3.1. We will begin with a lemma which has considerable application

 here and in later chapters.

 LEMMA 3.1. Suppose C is a closed cylinder in RT = DR(G) such that

 (i) c n aQ = aC consists of two simple loops in aDt not homotopic to a
 point in RT nor freely homotopic on aDt, and

 (ii) for some base point 0 n - C0 the inclusion w1rQ(DT - C0; 0)
 w1QDTh0; 0) is an isomorphism.

 Then there are two punctures p1, P2 on DhR, uniquely determined by C, which

 are paired by C. Furthermore, no puncture p3 on R, p3 # p PY2 is paired
 with either p1 or P2.

 Proof. Hypothesis (ii) implies C separates OR, for otherwise there would

 be a loop in RT with non-zero intersection number with C. One component

 of RT - C contains 0; denote the closure of the other component by T.

 Hypothesis (i) implies that C is incompressible in RT and Corollary 1.13

 then says that the inclusion wr1(C) - wr1(,T) is an isomorphism. Let R be one

 of the components of UJ n amn. We claim that the inclusion w1(R) - w1(U) is
 an isomorphism, in particular that wr1(R) is infinite cyclic and because of (i),
 ,T n aD has two components.

 If this is not the case, there is a non-trivial loop y c R' in the kernel of
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 402 ALBERT MARDEN

 this inclusion. By Lemma 1.4 there is a non-trivial simple loop y0 ci R?which

 bounds a disk D in U with D n R = AD = yo. D separates U and moreover,
 if Ro is the component of R - 70 that does not border on a component of

 c n aOR, every loop in Ro is freely homotopic to a loop on C0 = aT and hence
 to a loop on D. In other words every loop in Ro is trivial in TY and conse-

 quently in DR. We conclude that every component of w1-'(R,) in Q(G) is
 homeomorphic to Ron This is possible only if Ro is a disk.

 Thus each of the two components R1, R2 of 1T n aOn has an infinite cyclic

 fundamental group. Either by applying Ahlfors' finiteness theorem or by

 simple direct analysis we conclude that each of these components is a once

 punctured disk. That is, C is a cylinder pairing two punctures Pi, P2 on aOR.
 Finally, a puncture p3 # P1, P2 cannot also be paired with p1 The easiest

 way of seeing this is as follows. Fix components R* of w'(R), i 1, 2,

 which are "tangent" at the fixed point p of the parabolic transformation

 Te G. Each of R* U {p} is a topological disk invariant under T (we may

 even assume N(R* U {p}) is a circle). If p3 were paired with p, also there
 would be a third topological disk R* U {p}, with R* n R* = R* n R* = 0,
 also invariant under T. The simple geometric properties of T rule out such

 a configuration.

 Remark. It is possible that two punctures on the same component of
 a9Ol are paired.

 3.2. Definition. The (finitely generated, torsion free) kleinian group G is

 quasi-fuchsian if two of the components of Q(G) are each invariant under G.

 In this chapter, we shall completely describe the topological structure

 of OR(G) for quasi-fuchsian groups G.

 LEMMA 3.2. For a quasi-fuchsian group G, exactly two components, say

 Q1, Q2, of Q(G) are invariant under G and each of these is simply connected.

 Each of S1 = Q1/G and S2 = Q2/G is a finitely punctured compact surface.

 Proof. The first statement is proved in Accola [1] and also follows from
 the topological considerations of Chapter 1. The second is a consequence of
 Ahlfors' finiteness theorem, or more simply, an elementary analysis of each
 of the at most finite number of ideal boundary components of S, and S2.

 We remark that two punctures on the same component S1 or S2 cannot

 be paired. Two curves in S,, for example, which are freely homotopic in 9OR
 are freely homotopic in S, since the inclusion w1,(S1) - w1(9T) is an isomorphism.
 However, the totality of punctures on S, is paired with the totality of punc-
 tures on S2 as we shall see in the next lemma.
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 LEMMA 3.3. For a quasi-fuchsian group G with invariant components

 Qi, Q2 of Q(G), IDR(G) is diffeomorphic to (Q,/G) x [0, 1].

 3.3. Proof. Case 1: S1 = Q,/G is compact. This case was proved by
 Waldhausen [51, Lemma 5.1]. Because we will have to use his construction

 in the general case, it is appropriate to outline his proof here. Take a system

 of simple loops axi, 1 < i < 2g, on S1, g - genus Si, such that a, intersects
 air1 exactly once (transversely) while ai n aj 0, j # i, i + 1. Applying
 Lemma 1.6, there exists a corresponding set f{r} of simple loops on S2 = Q2/G

 such that (i) each pair (a,, ao) bounds a cylinder C, in 'TD, and (ii) Ct n c3 is
 a simple arc from ai n ai+ to aor na z1 while Ci n Cj = 0 for j i i, i + 1.

 Let N(C) be a regular neighborhood of C = U Ci (? 1.2). Then aN(C) =
 AN(C) n 'DRo is an open cylinder in 'DR and (aN(C))- n Si is a simple loop that
 bounds the region D1 = [S - Si N(C)]- which is a disk. But also D2 =
 [s2 -S2 f N(C)]- is a disk in S2. For the simple loop aD2 bounds the disk
 aDN(C) U D1 in 'DR. Since the inclusion map w1(S2) - w1DTh(R) is injective, aD2
 is homotopic to a point in S2 as well as in 'DR. This implies aD2 bounds a disk,

 necessarily D2, in S2.

 Set M = [OR - N(C)]-. We have just seen that aMis a 2-sphere, namely
 the union of the cylinder a(N(C) and two caps D1, D2. Consequently (cf.

 ? 1.7) M is a ball and is homeomorphic to D1 x [0, 1] in such a way that
 (aN(C))- corresponds to aD1 x [0, 1]. Adjoining N(C) to Mwe obtain Lemma
 3.3 in this case.

 3.4. Case 2: Now suppose S1 has punctures. Following Waldhausen's

 proof take the simple loops {fa} on Si, 1 < i < 2g, g = genus Si, and construct
 the corresponding cylinders C, exactly as above. For a thin regular neigh-

 borhood N(C) about C U Ct. each region Ri = [St - Si n N(C)]-, i 1, 2
 is again planar since all the handles on Si and consequently S2 have been
 accounted for in the construction of the Ci. But in this case, R1 is not simply
 connected since it contains all the punctures of S1 (this is why N(C) is taken

 to be thin; it is thin enough that all punctures of Si U S2 lie in R1 U R2).
 At this point we make the important observation that each component

 M* of w'-I(M0), where M = - N(C), is a topological ball in $. This follows

 from Lemma 1.12 because each component of w'-I((3N(C)) is simply connected

 by Lemma 1.11. Furthermore, each of M*- n Q,, i 1, 2, is connected and
 simply connected. Thus if T e G preserves M*- n Q,, then T also preserves
 m*- nQ2

 The next step is to construct mutually disjoint canonical pairing tubes

 in M between the punctures in R1 and those in R2. This construction proceeds

This content downloaded from 
�������������51.7.16.27 on Sun, 01 Oct 2023 20:10:35 +00:00������������� 

All use subject to https://about.jstor.org/terms



 404 ALBERT MARDEN

 as follows. Choose a puncture p in R1 and a small simple loop y1 and R1 con-

 tractible to p. Because Q2, as well as Q1, is invariant under G, and in view

 of the observation above, 71 is freely homotopic in M to a loop 72 in R2. By

 Lemma 1.6, 72 can be taken as a simple loop which together with y1 bounds

 a cylinder C in M. But since the inclusion w1,(S,) * wDTh(D) is an isomorphism,
 the hypotheses of Lemma 3.1 are satisfied. Consequently C pairs p with a

 uniquely determined puncture on R2.

 Continuing in this manner to obtain disjoint pairing tubes, and then

 using Lemma 2.2, we obtain mutually disjoint canonical pairing tube T,,
 pairing in M the totality of punctures in R1 with the totality of punctures

 in R2,

 3.5. Now (changing notation) let M denote the closure in OR of OR -

 N(C) - UTj and set R1 = MS S1, R2 = MS S2. M has the properties (i)
 (aM)- is the union of cylinders ((aN(C))- and (a(Sh)-) and AM - (M)- is
 the union of the homeomorphic planar regions R1 and R2, (ii) each component

 of 7r-'(M0) is a topological ball and each component of 7r-'(R,) is simply con-
 nected, (iii) the inclusion w1(R,) r w1(M) is an isomorphism, i = 1, 2. (Recall
 a3M is the relative boundary of M n 9fi in O'T.) To complete the proof it
 suffices to show that

 (*) M -R1 x [0, 1] in such a way that (aM)- -R, x [0, 1]

 It will then follow that RT(G)- S x [0, 1].
 The proof of (*) proceeds by induction on the number of components of

 aDM as M ranges over the set of submanifolds of RT(G) which satisfy pro-

 perties (i)-(iii) above. The case that aDM has one component has been settled

 in ? 3.3. Assuming that (*) is true for those M such that aDM has n compo-

 nents, consider an M with aDM having n + 1 components.

 Fix two (cylindrical) components C1, C2 of (aM)-. Choose three simple,

 closed arcs a1, a2, a3 in aM as follows: (a) a1 in C1 from a point p1 on C1 n R2

 to a point q1 on C1 n R1; (b) a2 in R1 from q1 to a point q2 on C2 n R1; (c) a3 in

 C2 from q2 to a point p2 on C2 n R2. We will show below that p2 can be con-
 nected to p1 by a simple arc in R2 such that the resulting simple loop 7 is

 homotopic to a point in M. Note that 7 is non-trivial in aM since C, --7 n C1,
 for example, is connected.

 Assuming that 7 can be constructed as specified, by Lemma 1.4 the

 simple loop 7 is the boundary of a closed disk D with D? c M'. Note that

 M- D is connected. Let N(D) be a regular neighborhood of D and denote by

 M1 the closure in M of M - N(D). M1 has the required topological properties

 (i), (ii), (iii) and (a.M1)- is the union of n cylinders, so by the induction hypo-
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 KLEINIAN GROUPS 405

 thesis, (*) is true for M1. Using our construction, we see that (*) is true for

 M as well.

 3.6. Let a be the simple arc from Pi to p2, constructed above, that
 consists of a segment a1 in CQ, a segment a2 in R1, and a segment a3 in 02.
 Fix a component M* of 2r-'(M) and a component ao* of i-r(a) in AM*. Let

 Pi, P* denote the initial and terminal point of the simple arc a* and choose
 a simple arc ,8* in R* (= the component of i-'(R2) that lies in aM*) from

 P* to PI*
 We claim that ,8* can be suitably chosen so that fi = w(fl*) is a simple

 arc in R2. Since M* is a ball and v* = a* U fl* a simple loop in AM*, this

 will complete the proof of Lemma 3.3.

 Because the proof uses standard techniques in surface topology (cf. [26])

 we shall only provide an outline. Fix a set F of simple loops which are free

 generators of w1(R1 U {P2} P2). We may assume fi = (II fla) *,f where each af,
 i > 1, is an element of F and fl. is a simple arc in R2 from P2 to p1. Let y*
 be a lift # v* of y = w(y*); 7* is a simple loop.

 By our construction y* can intersect v* only in the segment ,l*. Now

 ,8* divides R* into two components. If Y* meets both of these (open) com-
 ponents, there is a relatively compact region K1* in R* such that aKl* consists
 of segments of ,8* and of 7*. At most a finite number of lifts of 7 intersect

 K>*. Let K2* be a component of K* - Kj* n {r-(7)} and set K2 = w(K2*).
 Then K2 is a relatively compact region in R2 U {P2} bounded by some combi-
 nation of elements of the set {r, 8,f}. This is impossible since F is a set of
 free generators.

 We conclude that no lift 7v* of 7 crosses 7*. By analyzing the order

 in which the At, i > 0, comprising fi appear about the point P2, it follows
 that e must be homotopic to a simple arc in R2.

 3.7. PROPOSITION 3.4. Given a quasi-fuchsian group G there exists a

 fuchsian group H and a quasiconformal diffeomorphim f: KT(H) -R(G).

 Proof. Lemma 3.3 says that if S1 = Q1/G then DR(G) _ S1 x [0, 1]. Let

 H be a fuchsian group such that A/H is quasiconformally equivalent to S1,

 where A is the open unit disk. Then also DR(H) -S1 x [0, 1] (all homeomor-
 phisms are orientation preserving).

 Case 1. S1 is compact. Starting with a homeomorphism DR(H) k (G),
 Lemma 1.18 gives a diffeomorphism f: DR(H) -R(G). In this case f is

 automatically quasiconformal.

 Case 2. For simplicity of notation assume S1 has only one puncture.

 Thus there are two punctures on aR(H) and these are paired. Fix four
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 406 ALBERT MARDEN

 nested and smoothed canonical pairing tubes At in Jt(H) such that 2-i, c J?
 1 < i < 3. Take 2, sufficiently thin so that there exists a conformal map X

 which maps each hi onto a smoothed canonical pairing tube 2' in DR(G). In

 addition X can be chosen to satisfy 2- n (A/H) - nS S. By Lemma 1.17
 there exists a Co triangulation of DR(H) which restricts to a triangulation

 of each 2i. Using X the triangulation of 2- determines a triangulation of 2,
 and then all J'. Applying [44, ? 10.7] the restriction of this particular trian-

 gulation to 2` can in turn be extended to a Coo triangulation of DR(G).

 X: 2 2 is PL. From now on however we will restrict X to 23.
 The proof of Lemma 3.3 shows that there exists a PL homeomorphism

 f: DR(H) - 2-1 DR(G) - 2`0 which sends (a022)- (a02)9 and (ao22y o
 (A/H) a(a0o2)- n S1. Now apply the PL version of Lemma 1.16 to interpolate
 in 22 -?3 between the maps f on the cylinder (&022)- and X on (a023)-. This

 gives us a PL homeomorphism g: DR(H) -R(G) with g = X in 23.

 Of course g is also a quasiconformal map. To get a quasiconformal map

 which is a diffeomorphism, apply Lemma 1.18 to obtain h such that h = X
 in 24.

 COROLLARY 3.5 (Maskit [36]). If G is a quasi-fuchsian group, there is

 a fuchsian group H and a quasiconformal map of a3 onto itself which

 induces an isomorphism G o H.

 Proof. Lift the quasiconformal map given by Proposition 3.4 to $ U Q(H)

 and apply Gehring's theorem.

 4. Fundamental polyhedra

 4.1. Fix a point 0 e $. To each T in a kleinian group G, T # id., cor-
 responds the hyperbolic plane

 H(T) = H(T; 0) = {p e $: d(O, p) = d(p, T(O)) = d(0, T-1(p))}

 where d is the hyperbolic distance in $. We note that H(T)- n H(T-')- is

 empty if T is hyperbolic, is a point p if T is parabolic with fixed point p, but

 otherwise is an arc of a circle orthogonal to a$, or a point on aU.

 The convex polyhedron

 = {p e $ : d(O, p) < d(p, T(O)) for all Te G},

 which is relatively closed in $ is a "fundamental region" for G in $ and will

 be called a Poincare fundamental polyhedron for G with center at 0. Its

 faces are arranged in distinct pairs (f, f') where Tf' = f for some T C G and

 f'c H(T-1), f e H(T). In fact 9PO may be equally well defined as the inter-
 section
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 KLEINIAN GROUPS 407

 9=0 =nTG UC(T)

 where UC(T) is the closed half space in 6 determined by the plane H(T) and

 containing 0.

 We will always work with 9P, the euclidean closure of 9P0 in a-. gP n Q(G)
 is a fundamental set for G in Q(G). DR(G) is the manifold resulting from

 identification of the opposite faces of gP n (a U Q(G)). This will be considered
 in much greater detail in Chapter 9.

 4.2. Among the properties of 9P that we need, the following is not too

 familiar.

 LEMMA 4.1. Assume that the polyhedron 9P for any choice of center has

 a finite number of faces. Then the center 0 can be chosen so that

 (i) no two parabolic fixed points in 9P are equivalent under G.

 If p e 9P is a parabolic fixed point and M, the maximal parabolic subgroup at p,

 (ii) if M, is cyclic then p lies on exactly two faces of U' which are tangent
 at p and paired by a generator of Mp,

 (iii) otherwise p lies on exactly four faces of 9P, the opposite faces of each

 pair are tangent at p and are paired by a generator of Mp,

 (iv) p H(T)-for all TeG, T M,
 Proof. We will outline the proof as follows. If T is loxodromic or para-

 bolic but not in M, and the parabolic fixed point p lies in H(T)-, then there
 is a uniquely determined hyperbolic plane H1(T; p) orthogonal to H(T) with

 0, T(O) e H1(T; p). The equation of H1(T; p) depends on p and T but not on

 0. In fact if T = (az + b)/(cz + d) acts in upper half space and p = O then

 H1(T; p) = {(x, y, d), z = x + iy: jcj2d + tcz + dl2 = 1, e > 0} where c # 0 since
 T cannot share a fixed point with a parabolic transformation in M,. Observe
 that any point 0, e H1(T; p) has the property that p lies on the plane H(T; 0)-

 since T: 0, = (z0, dj) (T(z,), do) (see [13, p. 159]).
 There are countably many transformations in G and countably many

 planes H1(T; p). The orbit under G of these planes yields the planes for the

 conjugacy class of p. Do this for each of the countable number (actually we

 will show below there are a finite number) of conjugacy classes of parabolic

 fixed points to obtain in the end a countable system of planes in J. As long
 as we choose the point 0 so that it does not lie on any of these planes, the

 corresponding polyhedron 9P will have the desired properties.

 4.3. The following result is the bridge between statements about the

 group G and statements about the manifold DR(G). Recall that aDRO denotes

 the relative boundary of 'lRO n '1R(G)0 in '1R(G)0 for a submanifold tR.
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 408 ALBERT MARDEN

 PROPOSITION 4.2. G has a finite sided Poincarefundamental polyhedron

 Q- if and only if there is a compact submanifold ORO of DR(G) such that each

 component of (a,9RJ- is either a canonical cusp torus or a canonical cylinder
 pairing two punctures on aDt(G) (cf. ?? 2.5, 2.6). If one Poincare' polyhedron

 is finite sided, they all are.

 In particular each component of OR - RO is homeomorphic either to

 {0 < lzJ < 1} x [0, 1] or to {0 < lzJ < 1} x S'.
 Proof. Assume first that DR(G) has the structure described but Q has

 an infinite number of faces. Then there is a component Y of OR - DR, which
 contains the projection of infinitely many faces of 2. Because any given

 compact set in i3 U Q(G) is covered by a finite number of images of Q2 under

 G, the projections of only a finite number of faces of Q- intersect a0y. Con-

 sequently there is a component R, of - n fl (og) which contains infinitely
 many of the projected faces in ir(aO9) in its boundary (aO9Q is the relative
 boundary of Q n G3 in A).

 Set R* = i-'(R1) n S. R* is contained in a component A of {w'(r)} and

 therefore uniquely determines a maximal parabolic subgroup M, of G 'whose
 common fixed point p lies in the closure of R,* in g-. In fact if 0 is the center
 of 2, then R* is contained in the cusp

 C,(O) = {x e U: d(O, x) < d(x, T(O)) for all Te M} .

 If {f,,} is an infinite sequence of faces of Q- contained in aOR* then limfb, = p.

 An infinite number of the opposite faces {f,'} cannot also bound R* since
 T(r2*) n a = 0 for all To M. Consequently there is another component

 R, # R, of - n fl (og) whose lift R* to Q- contains (as we may assume)
 the opposite faces {f,'} in its boundary. Like R*, R* determines a maximal
 parabolic subgroup Mq, q # p.

 Let {SI} denote the necessarily distinct transformations in G which pair
 fA, and fn: Sn(fn) = fn. Then Mq is conjugate in G to M, and in fact Mq =
 S-'MpSn since a conjugating transformation is determined by any arc in r2(90)
 which connects the opposite sides of any w(f).

 Moreover, the regions R* and S1(R*) which are adjacent along ft must

 lie in C, = CQ(0) U Cp(S1(O)). C, in turn is contained in a finite number of
 images of C,(O) under M,. This implies T(c1) n C1 # 0 for at most a finite
 number of elements of M,. But each SnSj1 is in M, and SS7i(C1) nl c1 / 0.
 We conclude that at most a finite number of SnSj1 can be distinct, which is

 impossible.

 The converse is more classical. Suppose Q- has a finite number of sides.

 Only parabolic fixed points can lie in 2, for the non-euclidean line joining two
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 KLEINIAN GROUPS 409

 fixed points of T e G is preserved by T. In particular each limit point of G
 in Q- lies on the boundary of a face. A standard argument (see [18]) shows

 that a limit point p e Q is a parabolic fixed point and furthermore N n Co(0),
 where N is a small neighborhood of p in g-, is covered by a finite number of

 images of Q- under G. The desired result is clear if M, is of rank two. If M,
 is infinite cyclic, N n c(o)- n a - {p} lies in Q(G) and projects to U1 U U2,
 where U. is a neighborhood of a puncture in @<T(G).

 4.4. The proof above works for any non-euclidean fundamental poly-
 hedron g' which has the face-pairing properties of 2, the property that only
 a finite number of images of 9P under G intersect any given compact set in

 B U Q(G), and the following property which was critical for our proof: If p G 9P
 is a parabolic fixed point, then 9P is contained in a finite number of images of

 CG(O') under M, for some, and hence any, 0' C J3. No doubt this last condition
 can be weakened, perhaps entirely eliminated, but in any case it is satisfied

 by the usual "canonical" fundamental polyhedra.

 We note that the Poincare polyhedron with center at the origin of J3 was
 called the isometric fundamental polyhedron by Ahlfors [3]. He described it

 as the set of those x e U U Q(G) for which IA'(x)l < 1 for all A # id in G.
 Here IA'(x)l denotes the linear ratio IdA(x)l/ldxl which is independent of
 direction.

 Proposition 4.3 can be expressed in terms of the classical isometric funda-

 mental region of Ford [14]. We define the closed isometric fundamental set
 as

 I(G) = {z e C: IT'(z)I < 1 for all Te G}I
 assuming of course that oo e Q(G).

 COROLLARY 4.4. I(G) has the following two properties if and only if
 DY(G) has the structure described in Proposition 4.3. (i) I(G) is the union of
 a finite number of finite sided circular polygons and at most a finite number
 of isolated points, and (ii) to each p e I(G) corresponds a neighborhood N on
 aB such that N-N - I(G) can be covered by the interiors of a finite number
 of isometric circles.

 Proof. I(G) is the set of points lying in the closed exterior of each

 isometric circle {z e C: I T'(z)l = 1, T # id, T e G}. Identify C U {oo } with aj3.
 Each circle extends to a sphere orthogonal to a3. Let I*(G) denote the set

 of points in q- which lie in the closure of the exterior of every one of these
 spheres. With a natural interpretation I*(G) can be said to be a fundamental
 polyhedron for G. If I(G) = I*(G) nf a satisfies (i) and (ii), I*(G) can have
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 410 ALBERT MARDEN

 only a finite number of faces in 3 and the converse is clear as well. The

 proof of Proposition 4.3 applies to I*(G) and Corollary 4.4 is true as a con-

 sequence.

 4.5. COROLLARY 4.5. If 'R(G) has the structure described by Proposi-
 tion 4.3, then the limit set A(G) of G has 2-dimensional Lebesgue area zero.

 Proof. This follows from the remark in ? 4.4 and the result of Ahlfors

 [3] that if the isometric fundamental polyhedron has a finite number of sides,
 then A(G) has area zero.

 For more general kleinian groups, the area of A(G) is not known.

 4.6. We conclude with an important negative result of L. Greenberg

 which is a Corollary of Lemma 1.3.

 COROLLARY 4.6 (Greenberg [18]). A degenerate group cannot have a

 finite sided fundamental polyhedron.

 Proof. If G is degenerate with a finite sided fundamental polyhedron

 then DR(G) must be compact. For the classical half of Proposition 4.3 shows

 that a parabolic fixed point corresponds to two punctures P1, p2 in Q(G)/G-

 aDR(G) (degenerate groups have no free abelian subgroups of rank 2). Fur-

 thermore, small circles c1, c2 about p1, p2 respectively are freely homotopic

 in O1R and hence in aDR because the inclusion w1(aR) - w1('1R) is an isomor-
 phism. This is impossible since G is not cyclic. Thus DR(G) is compact. Now

 Lemma 1.3 is applicable and shows that dim H1(DR) = g, which is impossible.

 4.7. Suppose more generally that G is a discrete group. Exactly as

 above a Poincare fundamental polyhedron 9P can be constructed. The follow-

 ing result has been proven by Lie group methods.

 LEMMA 4.7 (Selberg [48], Garland-Raghunathan [15]). If 9P has finite

 hyperbolic volume then 9P has a finite number of faces.

 COROLLARY 4.8. 9P has finite hyperbolic volume if and only if there is a

 compact submanifold OR0 of DR(G) with each component of DR(G) -OR a
 canonical solid cusp torus (? 2.5).

 5. Function groups

 5.1. In this chapter we will analyze those manifolds DR(G) that arise

 from a function group G. This is of interest in itself but also the topological

 methods employed here are required in the more general situation of Chapter

 6.

 We recall that G is a function group if a component QO of Q(G) is invariant
 under G. Special cases are quasi-fuchsian groups and B-groups defined below.
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 KLEINIAN GROUPS 411

 Definition. A function group G is a B-group if an invariant component

 Q0 of Q(G) is simply connected.
 The analysis of B-groups, which occupies most of this chapter, is the 3-

 dimensional analogue of Maskit's fundamental work [36].

 Notation for Chapter 5. Given a function group G and an invariant

 component Q, of Q(G), set S = Q,/G and denote the remaining components
 (Q(G) - Qo)/G of DR(G) by S1, S2 * - ... When only one group G is under discus-
 sion we will frequently write O1R for DR(G).

 5.2. The fact that G is a function group is characterized by the property

 that the inclusion map w1(S) - w1(nO(G)) is surjective. This basic property
 allows enormous simplification in the structure of DR(G).

 It is also true that each of the inclusion maps 7rl(Sk) -w1('tR(G)) is in-
 jective, i.e., each component of wl-'(Sk) is simply connected. To prove this one

 can either appeal to Accola [1] or use the following topological argument. If

 an inclusion 7l(Sk) - w1(OR(G)) is not injective by Lemma 1.4 there exists a
 simple loop y c Sk which bounds a disk D c (-R with D n am = a. Now D

 divides OR since H1Q() is generated by cycles on S (which are therefore
 disjoint from D). Let R be the component of Sk - 7 which D separates from

 S. Then every loop in R is freely homotopic to a loop in Sy hence to a loop
 on D, and therefore to a point in M. This implies that each component of
 r-'(R0) is homeomorphic to RK; the only possibility is that R is a disk.

 5.3. Case 1. G is a B-group. This case is characterized by the fact that

 the inclusion homomorphism w1(S) - r1(,() is actually an isomorphism. In
 the course of our analysis we shall prove in particular the following result.

 PROPOSITION 5.1. Let G be a B-group. Either G contains a degenerate

 group or DTt(G) has the following structure. There are a finite number of
 mutually disjoint tubes X, in KT(G) which pair some of the punctures of U Sk

 such that if &O = (OR - UYt,-) then Mo-- S x [0, 1]. In particular aR0
 is the union of S and a surface homeomorphic to S.

 We will first dispose of two special cases. The first is that some Sk is

 compact. In this case, G is a quasi-fuchsian group. Indeed, 7rl(Sk) is isomorphic

 to a subgroup of w1(S). Since subgroups of free groups are free, w1(S) cannot

 be a free group; therefore S is also a compact surface. Exactly the analysis

 used to investigate quasi-fuchsian groups shows that OR -S x [0, 1] and

 therefore that G is quasi-fuchsian.

 5.4. Before proceeding to the second special case we have to show that

 there are at most a finite number of components Sk and each of these is a

This content downloaded from 
�������������51.7.16.27 on Sun, 01 Oct 2023 20:10:35 +00:00������������� 

All use subject to https://about.jstor.org/terms



 412 ALBERT MARDEN

 finitely punctured compact surface. Of course this is a consequence of the

 finiteness theorem but the methods that are involved in the topological proof

 are also important in future work. By Lemma 1.2 the genus of U S, is finite.
 The cylinder theorem (Lemma 1.6) implies that to each non-trivial simple

 loop y' on Sk corresponds a simple loop y on S which together with Y' bounds

 a cylinder C in DR. Let M be a component of nR - C. Each component M*

 of r-'(M0) is a topological ball (Lemma 1.12) and the component of w-'(aM n s)
 contained in AM* is simply connected. The same is true of the components

 of r-'(aMn Sk) in AM*. Therefore, if 7, is a non-trivial simple loop in aM n Sk,
 Y1 is not only freely homotopic in OR to a loop in S, but is freely homotopic in

 M to a loop in aM nS. This argument may be extended so as to conclude
 that, given mutually disjoint, non-trivial simple loops 71, 72, ... in Sk there

 exist mutually disjoint cylinders CQ, C2, ... , in Oil which are bounded by
 71, 7,2 ... together with simple loops on S.

 Now there are only a finite number of mutually disjoint simple loops on

 S. no two of which are freely homotopic. Suppose 71, 7, are two non-trivial
 simple loops on Sk which are not freely homotopic on Sk. If y1 and 72 are

 freely homotopic to loops on S which are freely homotopic on S then 71 and

 72 are freely homotopic in Oe. By Lemma 3.1 this implies 7, and 72 are retrac-
 tible on Sk to distinct punctures. It follows that Sk is a finitely punctured

 compact surface.

 The same argument shows there are only a finite number of punctures

 on U S, and therefore there are only a finite number of components Sk.

 5.5. Before dealing with the second special case we will introduce the

 following definition.

 Definition. A loop 7 in S determines an accidental parabolic trans-

 formation T e G if T is a parabolic transformation determined by 7 (cf. ? 2.2),

 yet 7 is not retractible to a puncture in S.

 Suppose there is a component, say S1, of a9n, S, # S, with the following

 property: none of those loops on S which are freely homotopic to loops on S1

 determines an accidental parabolic transformation. Then G is a quasi-fuchsian

 group.

 Assume S, has punctures, for otherwise ? 5.3 shows that G is quasi-

 fuchsian. Since there are no accidental parabolic transformations determined

 on S, every puncture on S, is paired with a puncture on S. More generally
 every loop on S, is freely homotopic to a loop on S. Now the topological

 situation is identical to that involved in Lemma 3.3, Case 2. That proof

 applies to show OR -S x [0, 1]- S x [0, 1].
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 KLEINIAN GROUPS 413

 5.6. We shall now return to our analysis of a general B-group G.

 Assume that no Sk is compact. Take a small simple loop c; about each punc-

 ture on U S, and draw a cylinder cj in ORL bounded by cj and a simple loop c'
 on S. c; determines a conjugacy class of accidental parabolic transforma-

 tions in G if and only if c' is not contractible in S to a puncture. We can take

 the Cj to be mutually disjoint.
 If c' and c' are freely homotopic on S then they bound an annulus in S.

 Replace c' by c' so that Ci n Cj n S = ca. Observe that when it is moved
 slightly away from S, CQ U Cj becomes a cylinder pairing two punctures on
 U Sk.

 Let M be a component of R - U Cp. Note that it is conceivable that a
 Cj does not separate 9R and therefore the two "sides" of Cj may comprise
 two of the relative boundary components of M in 9R. However, we will soon
 find that this possibility does not occur (although aMn S may lie on both
 sides of the loop C, n S because of our convention setting c' = c' as above).

 Fix a component M* of r-'(M0). Then M* is a topological ball because

 M* is obtained from 93 by dividing 93, in general infinitely often, by the

 components of -'(CQ) which are simply connected (Lemma 1.12). For the
 same reason we see that AM* f Q0 is connected and simply connected. Con-
 sequently M n S is connected.

 An immediate consequence is that the inclusion wz1(M n S) -,1(M) is an
 isomorphism. For since AM* n Q0 is simply connected, this inclusion is injec-

 tive. And because any element of G that preserves M* must also preserve

 -Mm* n Q0, it is also surjective.

 Moreover, MS S is not a neighborhood of a puncture on S unless M-

 itself is a tube pairing a puncture on S with a puncture on U Sk. For in this

 case &(M n A) is one of the cylinders, say C1. C, must separate OR since a set
 of generators for r1(OI) lies in OR - C. Now apply Lemma 3.1.

 Suppose then that M- is not a pairing tube. Set R= M n S and assume

 aM contains a component R1 of Mn (U Sj) which is not the neighborhood of a
 puncture (the other case will be analyzed in ? 5.8). For some k, R1 c Sk.

 Each component of Sk - Ry is the neighborhood of a puncture. We have yet

 to rule out the possibility that AM contains both "sides" of some Cj; in this
 case the neighborhood of a puncture on Sk may also appear as a component

 of MSSk.

 Denote by R* the component of '-'(R) in AM* and let R* be a component

 of wr-(R1) in aM*; both are simply connected. Let G, be the subgroup of G
 which preserves M*. Go is also the subgroup of G that preserves R*. Con-

 sequently the regular set Q(G0) has a simply connected invariant component
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 414 ALBERT MARDEN

 (oo which contains R*. We see that wo/Go is obtained from R by adjoining
 once punctured disks to the components of AR (two components of AR may

 consist of the opposite "sides" of some loop C, n s).

 Some component (o of Q(Go) contains R*. In fact (o is identical with the

 component Q1 of 7r-'(Sk) that contains R>. For every transformation of G

 that keeps Q1 invariant also keeps RF invariant.

 Denote the natural projection 3 U Q(Go) - OlR(Go) by p. Every loop in

 p(ol) is freely homotopic in OR(Go) to a loop in p(oo) = wo/Go. In addition, by
 our construction, no loop in p(ol) determines an accidental parabolic trans-
 formation (with respect to P(aoo)) in Go. Hence Go is a quasi-fuchsian group
 (? 5.5).

 We conclude that Q(Go) = (oo U (ol and M is just O91(Go) less a finite number
 of tubes which pair all the punctures. That is, M R x [0, 1] in such a way

 that R corresponds to R x {O}, R1 to R x {1} and a union of Cj to AR x [0, 1].

 In other words if Sk is the component of Sk - Sk n (U Ci) which is not
 the neighborhood of a puncture, then S' is paired with a uniquely determined

 component of S -S n (U Cj).

 5.7. Before analyzing those components M such that every component

 of M n (U Si) is the neighborhood of a puncture, we simplify the picture as
 follows: Each C, either pairs a puncture on S with a puncture on Sk or else

 pairs a simple loop on S not retractible to a puncture with a puncture p on

 some Sk. Remove all cylinders which satisfy the former condition. For the

 latter condition there may also be another cylinder Cj # C, that pairs aCi n s

 with a puncture p' # p on U Sk. (p and p' do not necessarily lie on different
 components of U Sk.) In this case replace the two cylinders Ci, Cj by a single
 canonical pairing cylinder and canonical tube ST pairing p and p'. Repeating

 this process as often as possible, we end up with a finite number of canonical

 pairing tubes {Uf} pairing only punctures on U Sk. The UT may be assumed
 to be mutually disjoint and disjoint also from those cylinders Cj which have
 not been eliminated.

 Set ODR' = (OR - U S)-. Let N be a component of OR' - U Cj (these are
 the cylinders remaining after the elimination process above). No component

 of N n s is the neighborhood of a puncture. We claim that there are two

 possibilities for N.

 The first is that aN is the union of a component R of S - S n (U Cj), a

 component R1 of D'1' - D1' ln (U Cj) disjoint from R, and some of the
 cylinders Cp, in such a way that N R x [0, 1] where R corresponds to
 R x {0} and R1 to R x {1}. The second possibility for N is that every compo-
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 KLEINIAN GROUPS 415

 nent of N n (U Sk) is the neighborhood of a puncture and aN is the union of

 these neighborhoods, a component R of S - S n (U Cj), and some cylinders
 Ci.

 Suppose not every component of Nn (usk) is the neighborhood of a
 puncture. The proof that the first possibility holds can be accomplished in

 either of two ways, neither of which we will carry out in detail. One method

 of proof is to show exactly how N is formed from the components M of ? 5.6,

 namely by pasting together adjacent components of OR - U Cj (notation of
 ? 5.6). Another method is to note that the topological methods of ? 5.6 can

 be applied without change to N in place of M there. That is, fix a component

 N* of 7r-'(N0) and consider the subgroup Go of G that stabilizes N*. One

 shows that aN* n (3 U Q(G)) is the union of

 (a) two simply connected regions invariant under G0, one R* a compo-
 nent of 7r-1(R), the other R* of r'(R1), and

 (b) a collection of components of {w-'(Cj)}.
 Furthermore, N* U R* U R/Go- R x [0, 11 R1 x [0, 11. A close analogy
 with a quasi-fuchsian group can be made if one enlarges N, and correspondingly

 N*, by adjoining to N along each of those cylinders Cj which appear in aN

 a tube pairing two punctures in a9R(Go). Denoting the enlarged N by N1,

 OR(G) - N1 consists of tubes pairing punctures on a9R(Go). In general, Go is
 not itself quasi-fuchsian.

 5.8. Finally we have to deal with the case that aN is the union of N n S

 (which is connected), certain cylinders which we may label CQ, ***, Cm, and
 the neighborhoods Ui of the punctures pi on U Sk which are bounded by the
 simple loops Ci n (USk), 1 < i ? m. For this case we must embark on a
 sequence of modifications. A rough description of the first of these is as

 follows. Shrink each U. to pi and correspondingly modify Ci, changing it to
 C', so as to end up with N' where N' n S = Nn S, N' n (Usk) = 0 and
 each component C' of aN' - N' n S is a half open cylinder {z e C: 0 < lzj < 1}.

 Specifically we can proceed as follows. Insert in OR mutually disjoint,

 .',x'~ U

 Ci -C

 FIG. 3.
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 416 ALBERT MARDEN

 doubly infinite cylinders Zi corresponding to the punctures pi (? 2.5). These
 can be made sufficiently small so as to lie in N. Change Ci to C' c N- which
 differs from C. in that instead of terminating at Ci n (U Sk) (which is contrac-

 tible to pi), it terminates at a simple loop Ci nl x. Take Ci so that Ci n Ct =
 ci n S. Then C, c N-. There is a closed, half infinite section X' of XZ bounded
 by Ci n xt such that C' = C, U X' has the following property. C, U C' bounds
 a subregion Ui' of N which is retractible in N onto Us. Set N' = N - U UV'.
 Then aN' is the union of N n S and the half infinite cylinders C'.

 Definition. aN' will be called a punctured compact surface. The open

 cylinders C"0 are neighborhoods of the punctures pa on AN'. The cylinder

 Ci U Ci pairs pi and p'.
 Now making changes only near N' n s we want to "lift" N' slightly

 away from S so that N' becomes a non-compact submanifold 9{1t of OR whose
 boundary &91Th is contained in 9OR'. There is a minor complication in carrying

 this out because N' n s itself may have punctures qj. This is dealt with in
 exactly the same manner as were the punctures on U S, in the construction

 of the CQ for N': i.e. doubly infinite cylinders associated with the qj are
 inserted and &91{R is so chosen that a half infinite portion of each of these

 cylinders becomes a neighborhood of each of the "punctures" qj on D9111. The

 punctures qj on S and qj on a91{, can be paired by a cylinder indicated in the
 previous construction.

 So we end up with a submanifold OR, of ORl such that

 (i) DOI1R is a non-compact incompressible surface in OR', and

 (ii) the inclusion r1(a&91{) - r1(91{1) is an isomorphism.

 Furthermore, we have defined the term "puncture" on D9101 and each such

 puncture can be paired by a cylinder with a puncture on aDR.

 5.9. LEMMA 5.2. Suppose G is a kleinian group and a) is a submanifold
 of 911(G) such that

 (i) ay) is a finitely punctured (in the sense of ? 5.8) compact surface in
 91OR which is incompressible and

 (ii) the inclusion c1(ray) - wc1(iY) is an isomorphism. Suppose iY* is a

 component of w7-1(i)) and Go is the subgroup of G that preserves 77*. Then if
 Go is a B-group, Go is in addition a degenerate group (cf. ? 2.3).

 Proof. The hypothesis implies that 8a* n Q(G) = 0. Let P: 3 U Q(G0)

 O91(GJ) denote the natural projection. Then poWr is a homeomorphism of i7
 onto a submanifold of O91(GJ) which we shall also denote by i7 (here r-1 denotes

 the 1 to cc map ) -2*- n i). Consider the submanifold 67 = 911(Go) - .
 The inclusions r1(jaT) - rw(i1) - rw(O91(Go)) are all isomorphisms since a77
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 KLEINIAN GROUPS 417

 is incompressible. Therefore, there is only one component of p-'(aT) and it is
 simply connected and contained in Day* where Y)* is the single component of
 p-'()I). Since Go is a B-group, there is a simply connected invariant compo-

 nent Qo(Go) of Q(G0) of necessity contained in ay)*. Thus the topological
 situation is identical to that of a quasi-fuchsian group with 72* replacing $
 and p`'(aD), Qo(Go) serving as the invariant components for Go. Furthermore,
 every ideal boundary component of ay is a puncture so the analogy includes

 even this. Consequently Lemma 3.3 holds for this situation and we conclude

 that i) Da x [0, 1]. In particular Q(G0) has only one component, QO(Go), in
 aC2*. But since 8ay* does not contain any components of Q(G0) we see that
 Qo(Go) must be the only component. That is, Go is degenerate.

 Remark. If Go is not known to be a B-group, then all we can assert

 about () is that it has the structure of a manifold associated with a B-group
 (and we are in the process of analyzing these). The component p`'(aD) of Y)*
 plays the role of an invariant, simply connected component of the "B-group",

 Go acting in (* U P-'(aT) U Q(G0).

 COROLLARY 5.3. Let OR, be the submanifold of G (here a B-group) con-
 structed in ? 5.8. Suppose Go is the subgroup that preserves the component

 9R* of w'(9R0). Then Go is a degenerate group.

 Proof. In order to apply Lemma 5.2 we need only check to see whether

 Go itself is a B-group. Referring back to our construction, OR* is contained

 in a component N* of r-'(N0) which is also preserved under Go (OR' is topologi-
 cally the same as NO and in fact retractible onto NO). AN* contains one

 component R* c w7'(R), R = N n S, and this too is preserved under Go since
 the inclusion w1:(R) - w1:(N) is an isomorphism (? 5.6). Let c0o denote the
 component of Q(GO) that contains R*.

 The boundary AR of R in S consists of a number of simple loops C, n s,

 for some cylinders Cj c AN. The surface cwo/Go is obtained from R = R*1Go
 by adjoining once punctured disks to the components of AR. More precisely,
 each component a of r-'(aR) n R*- is an open Jordan arc with end points at

 the fixed point p of a parabolic transformation T e Go (T(a) = a). One of the
 components D* on a3 determined by a U {pI is disjoint from R*. D*/{T} is
 the punctured disk to which we just referred. c0o is obtained from R* by

 adjoining all such regions D*. Consequently (oo is simply connected and
 invariant under Go; that is, Go is a B-group.

 5.10. It remains to combine all our information. From ? 5.7 we have

 the manifold ORt' which is the complement in 91O of the (interior of) tubes

 pairing certain punctures on USk. In OR' there are cylinders Cj pairing
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 418 ALBERT MARDEN

 simple loops on S, not retractible to punctures on S, with some punctures on

 awn{ n (U Sk). Given a component R' of a9R' - S the loops (U Ci) n R' bound
 small neighborhoods of some of the punctures on R'; denote by R" the result

 of deleting the closure of these neighborhoods from R'. Corresponding to R"

 are a component R of S - S n (U Cj) and a component N of 9O'- U Cj such
 that R and R" correspond to the levels R x {O}, R x {1} in the homeomor-

 phism N R x [0, 1]. The remaining components of S - S n (U ci) and
 adjacent components N of 9O - U Cj have the same product structure after

 a non-compact submanifold 91OR of N is removed from N and each Cj c aN is

 changed to Cj which pairs C, n S with a puncture on O91{,. Furthermore, the
 cylinder Cj U Cj pairs this puncture on &91{1 with a puncture on 91' - S.

 Putting together the information about each component N of 9O' - U Cj,
 we obtain the following description of 9k(G).

 PROPOSITION 5.4. Assume G is a B-group with invariant component QO

 of Q(G). Set S = Qo/G and let S1, * * *, Sn denote the remaining components

 (necessarily a finite number). Then

 (a) There are afinite number of finitely punctured(cf. definition in ? 5.8),

 compact, incompressible surfaces Wi in 911(G)0 each of which is the boundary
 in 911(G) of a non-compact submanifold V. For each i, the inclusion wc1( Wi)-

 w11(i) is an isomorphism and the subgroup of G which preserves a given
 component of w'(D) is degenerate.

 _--_

 t I / I

 l4ot

 FIG. 4.
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 KLEINIAN GROUPS 419

 (b) A certain number of punctures in (U Sk) U (U WJ) can be joined by
 tubes fj in OlR' - Oilt - U such that the manifold 9110 (9D' - UTj)- is
 homeomorphic to S x [0, 1].

 In short, every B-group has a fuchsian-like structure which has been

 topologically recaptured above. See Fig. 4.

 COROLLARY 5.5. A B-group G has a finite sided fundamental polyhedron

 if and only if 911(G) has the following structure. There are a finite number

 of mutually disjoint tubes St pairing some of the punctures on U Sj such

 that if ORo R(G)- U:r, then ORtO S x [0, 1].
 5.11. We shall make one more refinement of Proposition 5.4.

 COROLLARY 5.6. The surfaces Wi c: 911(G)0 of Proposition 5.4 (a) can be

 chosen so that a loop a c Wi determines a parabolic transformation in G if

 and only if a is retractible to a puncture on Wi.

 Proof. Suppose a c Wi determines an "accidental parabolic transfor-
 mation" T e G. That is, T is parabolic but a is not retractible to a puncture

 in Wi. a is freely homotopic to a loop a' c S with respect to which T is an
 accidental parabolic transformation. For each puncture on S is paired with

 a puncture on (D)l{,- S). If a were freely homotopic in O1RO to a loop about
 a puncture on (aDlto- S) then a would be freely homotopic in ('olt0 -S) to

 this loop. Since DR, S x [0, 1], this is impossible.

 Let p denote the fixed point of T and insert in ORl a doubly infinite cylin-

 der X associated with p (? 2.5) so small that Xn wi W 0. Z can only be
 located in 10i. Construct a cylinder C in 10i with one component of AC a

 simple loop on X, the other a simple loop on Wi not retractible to a puncture.
 Let N(C) be a regular neighborhood of C in Xi (i.e., the result of "thickening"

 C) and set 10' - 1i- N(C)0. I has one or two components depending on
 whether or not AC nf W separates Wi. Replace Xi and Wi by A and 8X.
 After a finite number of changes of this sort, Corollary 5.6 is proved.

 Remark 5.7. There is a set {ai} of mutually disjoint simple loops ai on S
 with the properties

 (i) each ai determines an accidental parabolic transformation,
 (ii) if a c S is a loop which determines an accidental parabolic trans-

 formation, then a is freely homotopic to a power of some ai.

 Suppose S has genus g and b punctures. The set {ai} has at most 3g +
 b - 3 elements and S - U ai has at most 2g + b - 2 components.

 5.12. We digress for a moment to use the decomposition obtained for

 B-groups G to compute the dimension v(G) of the complex vector space of
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 cusp forms for G [7]. This will be required in Chapter 10 for those groups

 G with a finite-sided fundamental polyhedron so we will restrict ourselves

 here to that case (this computation also appears in [361).

 Suppose S = Q0(G)/G is a b-times punctured compact surface of genus g

 and there are a < 3g + b - 3 mutually disjoint simple loops {Ti} dividing S

 into n ? 2g + b - 2 regions S' such that each vi determines an accidental
 parabolic transformation. Corresponding to each S' is exactly one component

 Sj # S of 86X(G) which is topologically obtained from S' by attaching a once
 punctured disk to each boundary component of S' in S (if S' appears on both

 sides of a vi then punctured disks are attached to both sides of viJ.

 Suppose S' has genus gj, bj punctures, and is bounded by aj of the loops
 {rnij; a v* both sides of which lie in S' is counted twice. Then E aj = 2a. The
 a loops {diJ bound n regions S' so they satisfy (n - 1) relations in H1(S).
 Hence

 g = gj + a - (n -1)

 Recalling that the space of cusp forms for a y-times punctured compact

 surface of genus x has dimension 3x + y - 3 we find

 ((H) = jn (3gj + bj + aj-3) + 3g + b-3 , or

 )(H) = 6g + 2b-a-6 .
 5.13. PROPOSITION 5.8. If Q0(G) is not simply connected then G has a

 decomposition into a free product of subgroups

 G = Gi* *G *Gi*(Tl* *.. *(Ar*iA}* *S *{As}*{Ti}* *e *{Tn}

 where each Gi is a B-group, (Gj is a free abelian group of rank two with two
 parabolic generators, {Ak} is the cyclic group generated by the parabolic

 transformation Ak, and {T1} is the cyclic group generated by the loxodromic

 transformation T,. Furthermore, each parabolic transformation in G is con-
 jugate in G to one in a listed subgroup. G has a finite-sided fundamental

 polyhedron if and only if all the groups Go do.

 Proof. Applying Dehn's lemma and the loop theorem (Lemma 1.4) there

 exists a simple loop v c S = Q,(G)/G, not homotopic to a point on S, which
 bounds a disk D c m-1(G).

 Case 1. D divides 9)(G). Let OR,, 9R2 denote the closure of the two
 components of 9)(G) - D. Then by Lemma 1.8, 771(<l(G)) =7w1(91)*7w1(9)12).
 Let S1, S2 be the two components of S - y so labeled that S1 c &M1 S2 c O.

 Then one component of aiTh is just Si with a disk attached along a, i 1, 2.
 Fix adjacent components 9OL*, 9OR* of 7r7(9)l), w1(9)l in B and denote
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 KLEINIAN GROUPS 421

 by G1, G2 the subgroups of G that preserve these two components. Then

 G = G1 * G2. Furthermore, we can regard A* as imbedded in 9R(G*), i = 1, 2,

 and then we see that (9R(Gi) - R)o is connected and a topological ball.
 Now Gi preserves 9R- n Q,(G) which is necessarily connected. So if Gi

 is not elementary, it is a function group. If neither G1 nor G2 is elementary

 repeat the decomposition process with each of them separately. If no further

 decomposition is possible for G1, say, then G1 is a B-group.

 Next suppose for example that G1 is cyclic. Then aDR(G1) is either a

 torus or a twice punctured sphere. In the former case there is a simple loop

 y' in &R(G1) that does not separate &9R(G1) but bounds a disk D' in DR(G1).
 We may assume D' lies in OR1 c 9)(G1). In this case we will replace the

 original y by y' and the separating disk D with the non-separating D'. This
 puts us in Case 2.

 If &9ln(G1) is a twice punctured sphere then G1 is generated by a parabolic

 transformation A. In this case and also in the situation that G1 is free abelian

 of rank two, repeat the decomposition process with G2 (if it is not an ele-

 mentary group).

 Case 2. D does not divide 911(G). Then wr,(DR) = 71(D - D)*Z. Inter-
 preting this decomposition in ?3 we find that G = G1 * { T} where T is loxodromic

 and G1 is a function group. Note that in this case [DR(Gl) - (DR(G) - D)]o
 is the union of two topological balls.

 Continue this decomposition process in the obvious way. The process

 ends after a finite number of steps because each decomposition reduces the

 ranks of the groups (Lemma 1.9).

 The assertion in Proposition 5.8 about parabolic transformations is true

 because the conjugacy class of a maximal parabolic subgroup M, corresponds
 to either a cusp torus or a doubly infinite cylinder in 9)(G). Neither of these
 need be disturbed by the introduction of the cutting disks D.

 The necessary and sufficient condition for 9)(G) to have a finite-sided

 polyhedron is a direct consequence of Proposition 4.2.

 5.14. Finally in preparation for Chapter 10 we will extend the computa-

 tion of ? 5.11 to compute the dimension a(G) of the space of cusp forms for

 an arbitrary function group G which has a finite-sided fundamental poly-
 hedron.

 Referring back to ? 5.13, let {S*} be the components obtained by cutting

 S = Q,(G)/G along the simple loops AD* where {D*} is a complete set of cutting
 disks used in the decomposition of G (we can assume these are mutually

 disjoint). If S* is a component of 7,1(S*) in Q,(G), the subgroup Hi of G that
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 preserves S,* is either a cyclic parabolic group, free abelian of rank two, or
 a B-group. In each case an invariant region Q%(Hi) for Hi is obtained by
 adding to S* the disks in aS which are bounded by the relative boundary

 components of S* in Q%(G). Hi is conjugate to one of the subgroups Gi, (ci,
 or {Ak} constructed in Proposition 5.8. Label the {Si} so that Si, 1 < i < m,

 corresponds to the group Gi while Si, m + 1 < i < m + r, corresponds to

 (Gim and Si, m + r + 1 < i < m + r + s, corresponds to {Aimr}.

 Suppose Si has genus gi, bi punctures, and is bounded by ti of the simple

 loops aDj, counting a loop twice if Si lies on both sides of it. Then E ti = 2t
 where t is the number of disks Dj. The t loops aDj satisfy m + r + s rela-

 tions in H1(S) because they bound the Si. One of these relations is a con-
 sequence of the others, hence from Proposition 5.8 if S has genus g,

 g =m+r+s gi + t - (m + r + s - 1) = Er gi + n.
 Now each Si, 1 ? i? m, corresponds to a cluster of components # S of

 a9R(G) which are joined together by cylinders pairing some of their punctures

 in the manner of ? 5.10. Refer back to ? 5.11 and replace the group G there

 by Gi, a by ai, and b by bi for 1 < i < m. Since b ( bi) + 2s is the total
 number of punctures on S we obtain (cf. (1))

 ((G) = ?= (3gi + bi- a -3) -+ (3g + b-3) , or
 ((G) = 6g+2b - 3(m+r+ n+ 1) -2s- a

 (define a = 0 for i> m, and a = 1n a*).

 6. The assumption and resulting structure theorem

 6.1. From a number of possibilities we have chosen the following assump-

 tion on the grounds of its simplicity and ease of interpretation in the ball I.

 Assumption 6.1. There exists a set of generators K0 of 7r1(R; p) for some

 p and a compact set K D K0 such that every loop in OR - K which bounds a

 disk in OR bounds a disk in OR - K, (By a disk we mean a non-singular
 disk.)

 It will be clear from the analysis below that if OR(G) satisfies Assumption

 6.1 for some K0 and if 1y *..., Y is any set of generators of 7r1(R; p), there
 exists a set {yt}, y' homotopic to v*, 1 < i < n, which also can be taken as K,

 Topologically it is easy to find examples which violate the assumption;

 paste two 3-manifolds together across a disk in the boundary of each and

 then remove the joined boundary component. The disk remains and becomes

 an infinite disk which separates the fundamental group into a free product.

 We shall generalize our assumption in ? 12.3 to include this case. What we
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 KLEINIAN GROUPS 423

 are really forced to exclude is the situation in a manifold where y. = aDn is
 a sequence of simple loops approaching the "ideal boundary" of O1{ while the

 Dn are non-singular disks which oscillate with ever-increasing frequency

 through a set of generators of w1. (However it seems unlikely that this

 occurs; see ? 13.1).

 Function groups clearly satisfy Assumption 6.1 as do groups with a

 finite-sided fundamental polyhedron, as we see from Proposition 4.3. We

 know of no groups which fail to satisfy either Assumption 6.1 or its generali-

 zation in ? 12.3. (Also see Chapter 13.)

 This chapter is devoted to a topological analysis of those manifolds D)(G)

 which satisfy Assumption 6.1. We will discover exactly how they are related

 to compact manifolds. In particular we will prove

 THEOREM 6.2. If G is a finitely generated group which satisfies Assump-

 tion 6.1, then either G has a finite-sided fundamental polyhedron or G con-

 tains a degenerate B-group (cf. ? 6.4).

 6.2. Before beginning the analysis of 9D1(G) we wish to point out the

 relation of our work to Ahlfors' finiteness theorem (? 2.4), part of which we

 are going to use. If G satisfies Assumption 6.1, we will prove independently

 of Ahlfors' theorem that 9)(G) has a finite number of boundary components,

 each of finite topological type. But without Ahlfors' theorem we cannot say

 that every isolated ideal boundary component of a9l(G) is a puncture, al-

 though in the special case that two ideal boundary components are "paired"

 it is not hard to give a geometric proof. On the other hand, it will follow

 from our analysis that there are at most a finite number of conjugacy classes

 of maximal parabolic subgroups of G, a fact that the finiteness theorem does

 not reveal.

 We begin our analysis of 9)(G) by inserting a complete, mutually disjoint

 collection of (a) doubly infinite cylinders {Xi} (cf. ? 2.5), one corresponding to
 each conjugacy class of cyclic maximal parabolic subgroups, and (b) canonical

 cusp tori {aj} (cf. ? 2.5), one corresponding to each conjugacy class of rank

 two maximal parabolic subgroups. Let 2i, U'j denote the component of
 9T(G) - xi, 9)(G) - aj respectively which does not meet a9)(G). Each com-
 ponent of {7r-'(i)}, {7r-'(j)} is a topological ball. Let W' = -U {7r-(2i)} U
 {7r'l(Q)}, where the union is over all components of 7r`(.) and all i, j, and

 set OR' = 3' U Q(G)/G. 9)(G) - M)' is the union of the regions 'i and aj.
 By choosing the Xi and aj sufficiently small K will lie in OR'. If Assump-

 tion 6.1 holds in 9)(G) with respect to K and K0 it also holds in 9)'. For if
 D is a disk in D)(G) - K with AD c 9)' then AD also bounds a disk in OR' - K.
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 424 ALBERT MARDEN

 This is seen by analyzing D n Xi and Dn af in the manner of the proof of
 Lemma 1.12. The converse is also true.

 We can find a compact submanifold j of Olt' which has the following

 properties: (i) Kc r?. (ii) The relative boundary &7 of r in ORt has a finite

 number of components each of which is a closed surface in OR" or the interior

 of a compact bordered surface S with border S n avert = as n a9T'. (iii) (a&7)-
 is disjoint from the cusp tori in a&R'. Because H1(Or') is generated in K, each

 component of &o?? divides 9A'.

 Now eliminate the superfluous handles on &7 by repeated use of Lemma

 1.4 in the light of Assumption 6.1. In outline form this process is as follows.

 Suppose y c &7 is a non-trivial loop on &7 which bounds a disk in 9R' -a

 and hence a disk D in OR' - KO - a.7 Thicken D to D' (i.e., let D' be a
 regular neighborhood of D in OR1' - n/ or in A) and form A' by adding or

 deleting D' from r depending on whether D' extends into the exterior or the

 interior of A. Denote by , the component of A' which contains Ko. After a
 finite number of repetitions of this process (the (j + 1)St step either de-

 creases the total genus of aOj or increases the number of components of ar7j)
 we obtain a submanifold DlRo of OR' with the property that no non-trivial loop

 on a.9Th bounds a disk in M' - KO - &0TRO. In carrying this out we have
 made use of the fact that each succeeding simple loop can be pushed off the

 previously adjoined disks so as to lie in the original &a.

 Now we can apply Lemma 1.11 to conclude that for each component R

 of &o9RO, ker (w1,(R) - wr1(OR')) = 0 and each component of 77-1(R) in 93 is simply
 connected. Consequently each component of 7r-w'(DO) is a topological ball

 (Lemma 1.12).

 Finally we can assume that no component of Olk' - OR' is compact.

 Otherwise it can be added to ORO.

 6.3. Let m be a component of OR' - Al The relative boundary So = a
 of r in 9? is either a closed surface or the interior of a compact bordered

 surface S- with aS0 c OR'. It is important to recognize two basic properties

 of r which follow directly from an application of the argument of Corollary

 1.13.

 (1) Two loops in r which are freely homotopic in OR' (or in O0R(G)) are

 freely homotopic in A.

 (2) The inclusion 7rwj() - 7rw() is an isomorphism.

 From these two properties we deduce that the inclusion 7r1(# - S0)
 7r1Q) is injective. The argument required to show this is exactly that used

 for B-groups in ? 5.2.
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 KLEINIAN GROUPS 425

 Let S be the component of a7) that contains SO. Each component a of aSI
 either lies on 8X1(G) or on one of the doubly infinite cylinders inserted in

 9T(G)?. In the first case a bounds a component R of S - S0 which lies in

 9M(G). We can assume RI is conformally a once punctured disk. For since

 the inclusion wc1(R) - wl() is injective, by (1) and (2) every non-trivial loop
 in R is freely homotopic in S to a non-trivial loop in SO, and therefore to a

 loop in a (as a point set); that is, either w1(R) is infinite cyclic or is trivial in

 which case RI is a disk. We can assume the latter possibility does not occur

 by a small modification of our construction.

 In the second case a is a simple loop on some doubly infinite cylinder Xi

 and exactly one of the two components, say R, determined by a on this

 cylinder lies entirely in r and hence in S. Consistent with the terminology

 of ? 5.8 we will say that a surrounds a puncture on S.

 6.4. Fix a component A* of 7r-1(r?) (I a fixed component of OR' - OR0)

 and let Go = {Te G: TV* = A*}. Then Go acting on A* preserves the compo-

 nent S* of 7r-1(S) which lies in a&*. Since S* is simply connected we can

 think of G. as a "B-group" with S* playing the role of the invariant compo-
 nent of the "regular set" S* U (Q(G) n a*-) and the union of A* and those
 components of I - s' adjacent to 7* - S* playing the role of I. That is,
 the topological analysis of Chapter 5 as summarized in Proposition 5.4 applies

 without change. However, the assertion in part (a) of Proposition 5.4 concern-

 ing certain degenerate subgroups becomes more complicated. For this, the

 following definition is needed.

 Definition 6.2. A degenerate B-group is a kleinian group H such that

 there exists a B-group H' with a finite-sided fundamental polyhedron, an

 isomorphism q: H e H', and a quasiconformal homeomorphism f of Q(H)

 onto a proper subset of Q(H') which induces 9.

 The hypothesis on f in Definition 6.2 insures that f projects to a quasi-

 conformal homeomorphism f*: &OR(H) 91R(H') - U S', where {So} is a non-
 empty, proper subset of the set of components of &OR(H'). A topological

 model for 9R(H) might be conjectured to be 9R(H') -U S.
 In particular a degenerate group is also a degenerate B-group. A degen-

 erate B-group which is not also a degenerate group is sometimes referred to

 as a partially degenerate group.

 LEMMA 6.3. A degenerate B-group H does not have a finite-sidedfunda-

 mental polyhedron.

 Outline of proof. Let H' be as in Definition 6.2 and f* be as in the

 paragraph following it. Also set S' = Q,(H')/H' where Q,(H') is an invariant
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 426 ALBERT MARDEN

 region for H'. If the set {So} contains all the components of &OR(H') except

 S' then H' is a degenerate group and Lemma 6.3 reduces to Corollary 4.6.

 At the other extreme, if there is only one S' and this one is S' then H again

 has the topolopical structure of a degenerate group. For a subset of the

 punctures on &OR(H) can be joined by pairing cylinders so as to obtain a 3-

 manifold with one boundary component. (This pairing is dictated by the

 pairing in OR(H') - S'). In the other cases we see from looking at &OR(H')

 that not all punctures on &'R(H) are paired.

 6.5. Rather than restate Proposition 5.4 for each x obtained in ? 6.3 we

 will simply present the final result which is obtained by putting together

 the results for each A. The details are omitted.

 We recall that the definition of a finitely punctured compact surface in

 some 01R(G)0 was given in ? 5.8 (also see ? 6.3).

 THEOREM 6.4 (BASIC STRUCTURE THEOREM). Assume that the kleinian

 group G satisfies Assumption 6.1. There is a submanifold 0DR1 c 01R(G) with

 &OR(G) c OR1 and a compact submanifold 0DR, c C R(G) with the following
 properties:

 (i) The inclusion map 7r1(01) 7-1(OT(G)) is an isomorphism.
 (ii) Each relative boundary component W of (R, in 01R(G)0 bounds a non-

 compact component V of On(G) - OR'. There are at most a finite number of

 the surfaces W.

 (iii) W is a finitely punctured compact surface which is incompressible

 in 01(G)0 and the inclusion w1( W) - 1(U) is an isomorphism. The universal
 covering surface of W is the disk.

 (iv) The subgroup GO of G that stabilizes a component of r-1(U) is a

 degenerate B-group. G. is a degenerate group if and only if every parabolic

 transformation in G. is determined by a puncture on W.
 (v) The punctures on 8(1R (= the union of a01R(G) and the surfaces W)

 are arranged in a finite number of distinct pairs (pi, p'). The pairs are in
 1-1 correspondence with the conjugacy classes of maximal parabolic sub-

 groups of G which are cyclic. pi and p' are paired by a pairing tube T* in
 nR1.

 (vi) There are a finite number of solid cusp tori (j in '1DR which are in
 1-1 correspondence with the conjugacy classes of maximal parabolic sub-

 groups of G which are free abelian of rank two.

 (vii) The Ti and (Gj can be taken to be mutually disjoint and the comple-
 ment in 'D1 of their interiors is a compact submanifold 'DR of OR(G). The

 Ti and (G account for all the parabolic elements of G.
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 KLEINIAN GROUPS 427

 The last assertion of (v) is true because the conjugacy class of each

 maximal parabolic subgroup which is cyclic, determines a doubly infinite

 cylinder in a&R', all of which are accounted for in the process described in

 ?? 6.3 and 5.11.

 It follows from Theorem 6.4 that G has a finite-sided fundamental poly-

 hedron if and only if none of the surfaces W appear.

 6.6. We close this chapter with a result that will be required in Chapter

 10. Although formulated as a corollary, it could have been proven at a much
 earlier stage.

 COROLLARY 6.5. Suppose G is a kleinian group with a finite-sided

 fundamental polyhedron, Q1 is a component of Q(G), and G1 { T E G: TQ1 = Q1}

 Then G, also has a finite-sided fundamental polyhedron.

 Ouline of proof. Assume G1 # G. G1 is a function group with invariant
 region Q1.

 Case 1. Q1 is simply connected. If G1 has no parabolic transformations

 then G, is a quasi-fuchsian group since Q1 # Q(G) implies the complement

 on ai has interior points. More generally there is a set {ai} of mutually dis-

 joint simple loops on Q1/G1, not retractible to punctures, which determine

 accidental parabolic transformations in G and G1 (Chapter 5). To each ai

 correspond two punctures (pi, p') on aOR(G) (Theorem 6.4) and two cylinders

 Ci, C' in M(G), one boundary component of each being ai, the other retrac-
 tible to pi or p'. Furthermore, C* n fc = ai. In addition all the punctures

 on QI/G, are paired by cylinders in OTR(G) with punctures on aOR(G). This
 implies that the {ai} and the punctures on Q1/G1 are correspondingly paired
 in OR(G1). In fact all the pairing cylinders can be interpreted as imbedded

 in 1(G1) as well as in OR(G). Since all the parabolic transformations of G,
 are accounted for, Corollary 6.5 follows from Proposition 5.4.

 Case 2. Q, is not simply connected. In this case the corollary can be
 proved by applying the method of Proposition 5.6.

 7. The boundary estimate

 7.1. We begin with the decompositions DR,{, 'OR of 9)R(G) obtained in
 Theorem 6.4. The relative boundary of 'R, in 9R(G)0 consists of finitely many
 finitely punctured compact surfaces. The punctures on &OR, are arranged in
 pairs and 'DR, is the compact manifold resulting from the introduction into

 9R of cylinders joining the paired punctures and of cusp tori corresponding to
 the free abelian subgroups of rank 2. We need the following list of notation.

 N is the number of generators of G.

This content downloaded from 
�������������51.7.16.27 on Sun, 01 Oct 2023 20:10:35 +00:00������������� 

All use subject to https://about.jstor.org/terms



 428 ALBERT MARDEN

 gi is the genus of the ith component of a9R(G); bi is the number of its
 punctures; X is the number of components of 9R(G); Xpct is the number that

 have punctures; g = E gi, b = E bi-
 g' is the genus of the ith relative boundary component of OR1 in DR(G)0; b'

 is the number of its punctures; X1 is the number of relative boundary compo-

 nents of OR, in DR(G)0; X'ct is the number that have punctures; g' = E go;
 b' = E b'.

 t is the number of cusp tori in hDRi.

 X* is the number of components of hDRi.

 7.2. The total genus of &OR is the total of the number of handles on OR1,
 the number of cusp tori, and something contributed by the adjoined cylinders.

 The totality of simple loops, one around each adjoined cylinder, is subject to

 one relation for each punctured surface in &OR,. These relations are not
 completely independent however: If S is a component of &OR formed by

 joining several punctured surfaces, then the relation contributed by one

 punctured surface involved in S is a consequence of the remaining ones.

 Therefore, from Lemma 1.2 we obtain

 (1) E gi + - g' + (1/2)(- bi + E be) + X*X-X1 < N.
 This can be written as

 (2) ~ + Eb'_ go + ] + [b (gi + bi/2 -1) + Ebt#0 ( + b/2 - 1)]
 + X* - t -(X -X -(X - Xct) < N.

 From (2) we also obtain

 (3) X + X1 - (1/2)(Xpct + Xlct) + X* < N.

 For given N, X is largest when X1 = t = 0, X = Xpt and X* = 1. We
 have proved

 THEOREM 7.1. If G satisfies Assumption 6.1 then Oa(G) has at most

 2N - 2 components. In the maximal case each component is either a triply

 punctured sphere or a once punctured torus. The punctures can be pairwise

 joined by cylinders so as to form a compact surface of genus N.

 We also note that in the maximal case there are always at least N - 2

 triply punctured spheres. Furthermore, two punctures on the same triply

 punctured sphere are not joined by one of the cylinders (in a non-maximal

 situation this is possible however; for an example see [34]). For any N it is
 not difficult to construct G so that OR(G) is a union of 2(N - 1) triply

 punctured spheres.

 Inequality (2) is a sharpened form of Bers' inequality (? 2.4). From it
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 KLEINIAN GROUPS 429

 we deduce that there is equality (in the case G satisfies Assumption 6.1) in

 Bers' estimate

 E (gi + bi/2 - 1) = N - 1

 if and only if the punctures on Ot can be pairwise joined by cylinders to

 form a compact surface of genus N (which bounds a compact submanifold).

 8. The isomorphism theorem

 8.1. In view of the fact that we do not have a topological characteriza-

 tion of the manifolds corresponding to degenerate groups, it is natural to

 restrict our attention to those manifolds which can be compactified in our

 sense. Proposition 4.2 tells us that these come from kleinian groups with a

 finite-sided fundamental polyhedron. With our problems reduced to those

 involving compact manifolds, some deep results of Waldhausen [51] become
 available. Making use of these we obtain the following theorem.

 THEOREM 8.1. Suppose G and H are kleinian groups such that

 (i) G has a finite-sided fundamental polyhedron,

 (ii) There exists an orientation preserving homeomorphism' f: Q(G)

 92(H) which induces an isomorphism 9: Go H.

 Then there exists a quasiconformal homeomorphism of the closed ball g: $3-

 U- which induces 9. If f is quasiconformal, f has a quasiconformal exten-

 sion to ai. If f is conformal, then 9 is an inner automorphism.

 8.2. Proof. Hypothesis (ii) implies that f projects to a homeomorphism

 fI: OR(G) - O'R(H). Underf* the ideal boundary components of OR(G) cor-
 respond to those of OR(H). Using Ahlfors' finiteness theorem we can say

 that f maps each puncture p on OR(G) to a puncture f*(p) on OR(H)

 (Ahlfors' theorem is not necessary here; an alternative proof can be given

 using some of the methods below). It is also true that if p1, P2 are paired

 punctures on &OR(G), thenf*(p,), f*(p2) are paired on &OR(H). For f*(p,) and
 f*(p2) are distinct and 9 preserves the algebraic characterization of Lemma
 2.3.

 Let {1i} be a complete set of mutually disjoint (smoothed) canonical
 pairing tubes in OR(G); 5* pairs two punctures pi and qi on OR(G). Choose

 a set of mutually disjoint canonical tubes {I} in OR(H) so that E pairs f*(pi)
 and f*(qi). These tubes can be so chosen that 5* is conformally equivalent to
 A' in such a way that pi is mapped to f*(pi) (Lemma 2.2).

 In addition G may contain free abelian subgroups of rank two. Corre-

 The proof will in fact show it suffices to assume that f maps a(G) into a(H).
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 430 ALBERT MARDEN

 sponding to each of these, there is a canonical solid cusp torus fj in OR(G)
 and, via the isomorphism p, a canonical solid cusp torus 2; in On(H). There

 is a quasiconformal map 2Tj -2 (? 2.5). Our choices can be made so that
 the total collection of submanifolds {5j, Tjl}, {35, T} are mutually disjoint in
 OR(G) and 9R(H) respectively.

 Then 9Ro(G) = m(G) - U o - U S is compact. We do not yet know that
 9Ro(H) = OR(H) -U 3O-U - fU is also compact. In any case we will work
 with these manifolds, the corresponding "regular sets" Qr(G) = 7r-l(a9Ro(G)),

 and Qr(H) = j-'(aDmo(H)), and the topological balls J30 = wj-l(9Ro(G)o) and
 = w1(9ht(H)?) (here wr denotes the respective natural projections S3 U Q(G)

 9)R(G), ?3 U Q(H) 9)R(H)).
 Referring to Lemma 1.17 we see that there is a C- triangulation of 9R(G)

 which induces a triangulation of 9&(G). The same is true of 9R(H) and
 9)1(H) but we must show that the triangulation can be chosen so that in

 addition the conformal maps u,: 3% -3 and the C- quasiconformal maps
 Zj: T2 -2 are PL. To do this observe that ui extends conformally and zj
 C- quasiconformally to neighborhoods of 3i, Tj respectively in 9O1(G). Making
 use of f* we can obtain a homeomorphism C of a tubular neighborhood of
 a911o(G) onto one of 9)Ro(H) which agrees with cry, zj near %, SiFj respectively,

 for all i and j. In addition we can assume C is a diffeomorphism (Lemma 1.18).
 C induces a C- triangulation of a neighborhood of a911(H). Applying [44,10.71
 this triangulation near D&9(H) can be extended to a C- triangulation of

 9)o(H). To obtain the desired triangulation of 9)(H), carry the given tri-

 angulations of 3%, 2j over to 3', T~ by the maps ui, zj.
 Now that the triangulations of 9)o(G) and 91o(H) are fixed, change f*

 as follows (cf. C above): f* is homotopic to a PL homeomorphism &a9(G)
 &a9(H) which restricts to a homeomorphism g*: a9Ro(G) nf &(G) a+91o(H) n

 &a9(H) with the proper boundary values so as to have the following property.

 There exists a PL homeomorphism g*: 0&9(G) - D&9(H) which is equal to g*
 on D&9(G) nf aD(G), to ui on the canonical cylinder bounding 3t, and to Zj
 on the torus bounding 2j, for all i and j. g* has a lift g: Qr(G) Qr(H) which
 induces 9.

 8.3. Case 1. Each component of Qr(G) is simply connected. We will

 first show that 9Ro(H) is compact. The double D()O1(G)) is compact without
 boundary and w1(D(9Ro(G))) can be obtained purely algebraically from w11(9Ro(G))

 and 1r(&a9o(G)) by application of van Kampen's theorem (for a proof see [56,
 Prop. 2.1]). Since wr1(D(9Ro(H))) of the double D(9)o(H)) of 9Ro(H) is obtained
 in exactly the same manner by way of g* 9 extends to an isomorphism
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 w1r(D(9Ro(G)))-*w1(D(9Ro(H))). Now the homotopy groups wr2 and wr3 of D(9RO(H))
 and D(9Ilto(H)) are zero: wr2 = 0 because of the sphere theorem and wr3 = 0

 because the universal covering space is not compact [19, pp. 154, 167]. By
 Lemma 1.7, D(9R0o(H)) is compact.

 We are now in a position to apply Waldhausen's result [51] that the

 isomorphism q*: 1z(9mRo(G)) - w1r(9Ro(H)) is induced by a PL homeomorphism
 h: 9Ro(G) - 9o(H). But h and g* are homotopic on &9Ro(G) since all compo-
 nents of Qr(G) are simply connected. Consequently by an application of

 Lemma 1.14 we can assume hla&llo(G) = g,. Rename h to be gu.
 Because of our special choice for the boundary values of g* on a9RO(G),

 gu can be extended to a map a)R(G) - &9R(H) which is conformal in the
 regions S and quasiconformal in the 2T.

 If g is the lift of g* to S3 which induces P: G H, then g is quasicon-
 formal in S3. By Gehring's theorem (? 2.8), g extends to be quasiconformal
 on ag3 as well.

 8.4. Case 2. Not all components of Qr(G) are simply connected. If R is

 one of those which are not, then by Dehn's lemma and the loop theorem,

 there is a disk D1 in 9o)(G) with aD1 c R a non-trivial simple loop. By Lemma
 1.8, D, splits w1(,m10o(G)): G = G1*G2 where neither G1 nor G2 is trivial. Per-
 form this construction as often as possible. In the step-by-step cutting down

 of 91o(G), the boundary of an added disk can always be pushed off the pre-

 viously added disks. Since 9o)(G) is compact the process terminates after a

 finite number of steps. It will be convenient for us to write 9o)(G) = Ub=l 9R(G)
 where the 9i(G) are the closures of the components of 9RO determined by the
 totality of disks, although this notation requires some explanation: i.e., the

 boundary aDThi(G) may contain both sides of one or more of the disks D.

 Each component in S3 = (wr-1(911o(G))0)- of 1(&~uI(G)) is simply connected
 (otherwise the reduction process could be carried further, see Lemma 1.11).

 Fix a component 9i(G)* of 1(OuI(G)o) in 30. The relative boundary a091i(G)*
 in J30 is the union of a set Y2d(Gi) of topological disks, none of which is invariant

 under the subgroup G, of G that preserves 9i(G)* (if G, # id). The bound-
 aries of the disks Yd(Gi) form a set Y(Gi) of mutually disjoint simple loops on
 Qr(G).

 We will soon need the following three facts.

 1. A limit point p of G lies in 9i(G)*- only if p is also a limit point of
 Gi. For if p were not a limit point of Gi then p would not be the limit of a
 sequence of disks in Yd(Gi). At the same time p would be the limit of a
 sequence of distinct components of {w-1(9TR(G)o)}. This is an impossible situa-
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 tion since each of these components is separated from 9Ri(G)* by a disk in
 Yd(Gi).

 2. Let R be a component of Qr(G), o the subset of Y(G,) lying in R, and

 assume Y, # 0. Then Y, is a finite set if and only if 9i(G)0 is a ball and
 G. = {id}. To see this, set R. = R n a9T(G)*. If 1. is finite no element T z id
 of the subgroup of G that preserves R also preserves R. since Y, = a&R.. For
 no such T to exist, each component of a9i(G) that meets w(R.) must be a
 sphere (since each component of w1(-(a&9(G)) is simply connected). The only
 possibility is that a9i(G) is a sphere bounding the ball 9i(G)0.

 3. If 9i(G)0 is not a ball then a component R1 of Qr(G) - Y(G,) lies in
 aDRi(G)* if and only if R, is preserved by an infinite subgroup of Gi.

 8.5. Carrying on with the proof of Case 2, g maps Y(G,) onto a set Y(H,)

 of mutually disjoint loops in Qr(H); Hi = 9(G,) preserves Y(HJ). Each
 ,y G (H,) projects to a non-trivial simple loop on a9RT(H) which therefore
 bounds a disk in 9Th(H). More generally the set Y(H,) bounds a set of mutually

 disjoint disks yd(Hf) in @ = w1(tU(H)o) each of which projects 1-1 to a disk

 in 9){(H). We have to prove that yd(Hf) is the relative boundary in 90 of a

 region 9Th(H)* topologically the same as 9Ri(G)* in the sense that the methods
 of Case 1 can be applied to 9Ri(G)* and 9Ri(H)*.

 We will first dispose of the case that 9i(G)0 is a ball. In this case
 a9T(G)* n Qr(G) is a connected, compact region R bounded by the finite set

 Y(G,). Then g(R) U 2d(HI) is the boundary in 90- of a subregion 9Ri(H)*.

 Extend g to yd(G,) to give a (PL) homeomorphism &9Ri(G)* a9Ri(H)*, but
 g must be subjected to the following restriction: If TD1 = D2 for D1, D2 G

 Y2d(G,), Te G, then gfD2 = 9(T)oglD1. Then g extends to a homeomorphism

 9Ri(G)* 9TRi(H)* which projects to g*: 9Ri(G) - 9i(H), where 9i(H)0 is a
 ball in 9Ro(H) and &09o(H) is the union of (possibly both sides of) the disks
 w(d(HH)).

 Return now to the general case and assume that Riz(G) is not a ball.
 First we will show that no disk in yd(Hf) separates in 90 two other disks of

 Y2d(Hf). To do this consider the manifold Xi = 9 U Qr(H)/Hi which satisfies
 w1(1J(C~) _w7r1(9(G)). Each D G Ed(HJ) projects 1-1 to a disk D* in Xi with
 aD* a simple loop on aXi. By Lemma 1.10, D* cannot cut Xi so as to de-
 compose r1(,)C) into a non-trivial free product because 9i(G) can be reduced
 no further. Therefore, one of the two components of iC - D* is a ball b*(D).
 We have yet to show that b*(D) does not contain the projection of any disk
 in yd(Hf).

 Let {b(Dj)} denote the lifts of b(D*) to S3; the relative boundary a&b(Dj)
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 of b(Dj) in 3 is a disk Dj C Gd(HJ. The balls b(Dj) are mutually disjoint and

 the subset {Dj} of Yd(HJ) consists of precisely those disks which project to D*
 in Xi. Furthermore, the closure b(Dj)- in j3'- contains no limit point of Hi

 for such a point would have to lie on aDj.
 Suppose for j = 1, b(D1) contains D' C Gd(Hf) (necessarily D' / Dk for

 all k). Examine the position of the simple loops g-1(D'), g-'(&D,) C Y(Gi) in
 Q,(G).

 On the one hand, these two loops cannot lie in different components of

 Qr(G). For by facts (1) and (2) of ?8.4, g-'(&D') together with infinitely many

 other loops {aj} of I(Gi) bound a subregion of Q,(G). Consequently applying
 g we see that aD, does not separate AD' from the {g(aj)} in L(H). That is

 b(DY)- contains limit points of Hi, a contradiction.
 On the other hand, g-'(&D') and g-'(&D,) cannot lie in the same component

 of Q,(G) either. Again this follows from fact (2) but this time we have to use
 the assumption that 9T(G) is not a ball.

 We conclude that the union of the disks in yd(Hf) is the relative boundary

 in ?3 of a topological ball 9Th(H)* which projects to the interior of a submani-

 fold 9T(H) of 9o(H). Fact (3) of ? 8.4 holds for 9Th(H)* for the same reason

 it holds for 9Th(G)*. Therefore, g is a homeomorphism 9Thi(G)* fQ,(G)
 9Th(H)* n Q(H). Extend g to a homeomorphism Yd(Gi) ld(Hf) which
 satisfies the additional requirement that if T(D1) = D2 for D1, D2 C 'd(Gi),
 Te G, then gJD2 = 9P(T)gID1.

 Now we have exactly the situation of Case 1. Using the result of that

 case we can extend g* from a homeomorphism 8<i(G) - a9i(H) to a homeo-
 morphism 9Ti(G) - 9i(H). Note that g* is also a homeomorphism of the
 disks r(Yd(Gi)) in 9o)(G) onto w(1d(H)).

 Now that g has been extended to 9Ri(G)*, take a region 9U1j(G)* which
 is adjacent to 9Ri(G)* and repeat this process until @, is completely filled
 up. In doing this make sure that once g has been extended to a disk D,

 its extension to T(D) for any T e G is determined by the equation gJ T(D) =
 9(T)g D. Then down in 9oT(G), as we pass from 9i(G) to an adjacent 9)j(G),
 the projection g* will dictate how to attach 9)i(H) to 9nh(H). After joining
 all the 9Th(H) we must obtain 9oT(H), because the relative boundary compo-
 nents of 9RT(H)0 in 9o)(H)0 are disks all of which are accounted for in this
 joining process. Thus the original g*: 9TRO(G) - 9o*(H) can be extended to
 a (PL) homeomorphism g*: 9Ro(G) -*M(H).

 The final extension of g* to a homeomorphism DR(G) 9R(H) proceeds
 exactly as in Case 1. After that is done, the lift of g* which induces p has
 a quasiconformal extension to 3-.
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 434 ALBERT MARDEN

 8.6. We can now prove the second part of Theorem 8.1. If f is the given

 quasiconformal homeomorphism Q(G) ->Q(H) and g is the quasiconformal map

 3- J3- obtained in ? 8.5 then h = g'lf restricted to Q(G) is a quasicon-

 formal map Q(G) - Q(G) which induces the identity automorphism of G. f
 has a quasiconformal extension to a9 if and only if h does.

 That h does have a quasiconformal extension is a consequence of a theorem

 of Maskit [37]. Maskit's proof proceeds by showing first that h has a con-

 tinuous extension which is the identity on A(G) and second that, by a direct

 calculation, the extension is quasiconformal. However, we will provide another

 proof of this fact which from our point of view is natural and casts further

 light on Maskit's theorem. The goal is to extend h to DR(G) in order to apply

 Gehring's theorem. But the fact that h is not necessarily smooth forces us

 to take a small detour.

 Let [e(z) be the complex dilation of h in Q(G) and let ho be a solution of

 the Beltrami equation (a * &az) = [(& * /&z) which is a quasiconformal homeomor-
 phism on &$3. Then hoh-1 induces an isomorphism between kleinian groups

 *: G - K and is a conformal homeomorphism Q(G) - Q(K). Rename hoh-1 to
 be h; we will show that h has a quasiconformal extension to a93.

 Assume first that &aTh(G) is compact. It will be clear from our proof that

 it is no additional restriction to assume &DTh(G) is connected as well. The

 projection h,: D(G)- aDT(K) is a diffeomorphism. By the collaring theorem
 [44, Theorem 5.9] there are compact, Co submanifolds Uc (-Th(G), Vc (-DT(K)

 with O9R(G) c a U, &R(K) c a V, and diffeomorphisms f: U-s R x I, g: V

 R x I where R _-Th(G), I = [0, 1].
 Set M = DT(G) - U', N = DT(K) - V0. h* determines a diffeomorphism

 h': AM A &N and by the first part of Theorem 8.1 there is a PL homeomor-

 phism X1: M-y N whose restriction to AM is homotopic to h'*. Smoothing X,
 [43] we obtain a diffeomorphism X: My N which restricts to a diffeomorphism

 AM ~ aN homotopic to h'*.

 Then the maps gh*f-1 and gXf' are diffeomorphisms of the surfaces,
 say R x {O} and R x {1} respectively. Applying Lemma 1.13 there is a dif-

 feomorphic extension of them to R x I. This in turn yields a diffeomorphic

 extension of h* to all DRT(G) and Gehring's theorem shows that any lift of h*
 to 13 U Q(G) has an extension to Sir.

 Now consider the case that DRT(G) is not compact. For simplicity we will

 assume OR(G) contains no cusp tori (cusp tori can be dealt with by a simpler

 version of the technique that will be used below). There are a finite number

 of mutually disjoint canonical pairing tubes 3i in DRT(G) such that M= OR(G) -

 3S? is compact (Proposition 4.2). The 3i can be taken smoothly attached to

This content downloaded from 
�������������51.7.16.27 on Sun, 01 Oct 2023 20:10:35 +00:00������������� 

All use subject to https://about.jstor.org/terms



 KLEINIAN GROUPS 435

 a9R(G) (cf. ? 2.7). If these tubes are sufficiently small there are corresponding

 tubes St in 911(K) and conformal maps Xi: t - 5'. Also by the first part of
 Theorem 8.1, N = OR(K) - UF'0 is compact.

 It is not hard to show that the projection h,: a&R(G) -&9(K) of h can
 be changed in a small neighborhood of (U S) n &aTR(G) so as to obtain a dif-

 feomorphism h': aR(G) -* &(K) which is homotopic to h* and agrees with
 Xi in a neighborhood of hi n9aDT(G), for all i. Extend h' to each Si by setting
 it equal to Xi there. In particular we then obtain a diffeomorphism AM- aN.
 The argument above using Lemma 1.13 allows us to extend h' to a diffeomor-

 phism M- N.

 Let h' be the lift of h' that agrees with h on Q(G) except on a neighbor-

 hood of r-1(U s) n Q(G). By Gehring's theorem, h' has a quasiconformal

 extension to the limit set A(G). But the only limit point on the closure of

 each component Ri of r-1(U si) o Q(G) is a parabolic fixed point. It follows
 that the extension of h defined by setting h = h' on A(G) is quasiconformal

 (change h' to h first near R7, then R-, etc.).

 To complete the proof of Theorem 8.1, if f is conformal on Q(G) it also

 has a quasiconformal extension to &a3 as above. Since, however, A(G) has 2-

 dimensional measure zero, f is conformal everywhere.

 8.7. In particular we have proved the following result.

 COROLLARY 8.2. Suppose G, H are kleinian groups, OR(G) is compact

 and ': wz1(9R(G)) - w1('J(H)) is an isomorphism. If f: aDR(G) a-U(H) is
 a diffeomorphism such that

 i'(f(w1(&9R(G)))) = (P(i(w1D(R9(G))))

 for some canonical inclusions i': w1(aDR(H)) - w1r(9R(H)), i: w1(a&OR(G))

 w1(OnR(G)), then f can be extended to a diffeomorphism On(G) On(H) which
 induces (P.

 Proof. By a canonical inclusion i, we understand the following. Fix a

 point pi on each component S of &9R(G) which is to serve as the origin of
 w11(S). Fix a point 0 C OR(G) as the origin of w1(rlOR(G)) and join each pi to 0
 by an arc. The choice of these arcs determines an inclusion i. The hypothesis

 enables us to lift f to a diffeomorphism Q(G) Q(H).

 Remark 1. With simple modifications, Theorem 8.1 holds as well if f is

 orientation reversing. One merely adds the terms orientation reversing and

 anti-conformal at the appropriate places in the hypotheses and conclusions.

 The statement that (P is an inner automorphism must then be interpreted in

 a larger group than SL(2, C)/+ 1.
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 436 ALBERT MARDEN

 Remark 2. There is an analogue of Theorem 8.1 for "constructible

 groups" due to Maskit.

 8.8. Theorem 8.1 should be contrasted with the following result which

 is an elaboration of Mostow's rigidity theorem.

 THEOREM 8.3. Suppose G and H are discrete subgroups of SL(2, C)!/ 1
 such that

 (i) G has finite volume (i.e., G has a fundamental polyhedron withfinite

 hyperbolic volume), and

 (ii) there exists an isomorphism 7': G H.

 Then 7' is an inner automorphism (by a conformal or anticonformal map of

 ae).

 Proof. The isomorphism q determines a one-to-one correspondence be-

 tween cusp tori in DT(G) and in RT(H). By Corollary 4.8, DT(G) can be com-

 pactified by the insertion of cusp tori. By Lemma 1.7 as applied in ? 8.3, the

 same is true of Yf(H).

 If HJ(OYf(G)) is not a finite group then Waldhausen's work is applicable
 and we conclude as in ? 8.3 that 9 is induced by a PL homeomorphism

 f: Yf(G) - RT(H). We have also seen that f can be taken to be quasicon-
 formal (this requires adjustment in cusp tori). Now f liftes to a quasicon-

 formal homeomorphism 3 13 and Mostow's rigidity theorem [41] can be

 applied to complete the proof for this case.

 If H1(O(G)) is finite then in general Waldhausen's construction does not

 work. However, in this case 9T(G) must be compact so some recent results

 obtained independently by Margulis [30] and Mostow [42] can be applied to

 finish the proof. Their results are obtained as follows. Since OR(G) and

 OR(H) are K(w, 1) spaces, 7' is induced by a PL map g which is not necessarily

 a homeomorphism. A lift g* of g maps $ $ B. It can be shown by elementary

 geometrical methods (see references listed in [30]) that even though g* is not

 a homeomorphism, it can be extended to a$ to be a homeomorphism and even

 to be quasiconformal there. This is all that is needed for Mostow's theorem.

 Remark. Garland and Raghunathan [15, ? 10] have extended Mostow's

 theorem to the non-compact case for hyperbolic space of dimension > 6.

 9. Stability

 9.1. Definition. Let A1, *, An, be a set of generators for the kleinian

 group G. An -deformation (with respect to Al, ... An) is a homomorphism
 7': G SL(2, C)!/ 1 satisfying

 (i) 1'(Ai) - Ail <e, 1 < i ? N, in a suitable matrix representation,
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 and

 (ii) if Te G is parabolic, then 9( T) is parabolic.

 Definition. G is quasiconformally stable if given a basis A1, l , An, of
 G there exists e0 > 0 such that each e-deformation of G with s < s, is induced
 by a quasiconformal homeomorphism f of the 2-sphere ag (that is, 9(G) =

 fGf-').
 Clearly, if G is quasiconformally stable with respect to one set of genera-

 tors, it is stable with respect to any other set. The goal of this chapter is

 to prove

 PROPOSITION 9.1. If G has a finite-sided fundamental polyhedron then

 G is quasiconformally stable.

 9.2. Before beginning the proof we will fix our notation and terminology

 as follows. Given a finite-sided hyperbolic polyhedron _2 in Sib, the faces

 lying on a13 are called free faces; without the adjective free, a face lies in S3

 except perhaps for its edges or vertices. Likewise vertices or edges contained

 in a3 are called free vertices and free edges to distinguish between those

 objects lying in S3 except perhaps for their boundary. All these objects,

 polyhedra, faces, etc., are taken to be closed in 3-.

 Thus _2 n ag is a finite union of circular polygons and isolated free

 vertices. An isolated free vertex lies on at least three edges as does an ordi-

 nary vertex of S. But a free vertex p which is also a vertex of one of the

 polygons n 0 a3 may not lie on any edge of -S. In this case two faces of -2
 are tangent at p and p lies on two free edges. We single this situation out

 for special attention only in the following circumstances. The facesf, f' are

 called cusp faces with cusp point p with respect to a Mobius transformation

 T if T is parabolic with fixed point p and Tf ' = f. -2 has an open cusp at p

 if p lies on no other face of S. If there are two pairs of cusp faces at p with

 respect to T1, T2 respectively and p lies on no other face of Q, then the four

 faces are said to form a closed cusp at the closed cusp point p with respect
 to T1 and T2

 9.3. We begin by proving

 LEMMA 9.2. For all sufficiently small e, if A' is an s-deformation then

 %)(G) is a discrete group and q' is an isomorphism.

 First we will prove Lemma 9.2 under the assumption that G does not

 contain parabolic transformations and then show that, with a minor elabora-

 tion, the proof works for the general case as well.

 A rough idea of the proof is as follows. G has a finite-sided fundamental
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 438 ALBERT MARDEN

 polyhedron CI. When G is deformed slightly then in particular the transfor-

 mations pairing the opposite faces of 9P are deformed and consequently the

 faces of 9P change slightly but still form a polyhedron CUD close to CP. We are

 going to show that for all small e, SP, is a fundamental polyhedron for 9(G).
 What makes this true is that the relations in G force a certain rigidity on 9P

 with respect to its property of being a fundamental set. To describe how

 this is so we must analyze the relationship between a fundamental polyhedron

 for a group and the relations in a group. For this reason we must proceed

 rather formally as follows.

 9.4. Definition. Given N, fix two sets of letters f1,f', * * f, fN and

 F1, ..., FN. A formal polyhedron 92 is a non-euclidean polyhedron in S3-

 such that

 (i) 9? has 2m faces (free faces are not included), m < N, which are

 labeled from the set of letters (f1, * *, f,). This labeling has the property
 that if fj (resp. fj) is one face then fj' (resp. fj) is another face.

 (ii) Corresponding to a pair of faces (fj, fj) is a Mobius transformation
 labeled Fj such that Fj(fj) = fj. Fj and Fy-' are called face pairing trans-
 formations.

 (iii) None of the transformations F* associated with Q are elliptic or

 parabolic.

 Suppose 92 is a formal polyhedron, el an edge of 2, and g, (= some fj or

 fj) a face of 92 containing el. There is a face pairing transformation G, (=F

 or Fy-') which maps g' (= fj' or fj) onto g, and an edge e, of g' with Ge, = el.
 Since G, is not elliptic e, ? el. There is exactly one face g, ? g' which also

 contains e,. Find the face g' and the side pairing transformation G, for which

 G,(g2) = g,. There is an edge e, of g' for which G,(e,) = e, etc. In this specific
 manner we obtain a sequence of edges (el, e,, ...) such that for each (k + 1)
 there is a face pairing transformation Gk with Gk(ek?l) = ek. Then GG2 . . . Gk

 (Gk first) maps ek+l onto el and the polyhedra X, Gl(2), i l, G,2 G, Gk(Q)
 are arranged in cyclic order about el.

 LEMMA 9.3. If ek = e* for 1 < i < k then ej = el for some 1 < j < k.

 Proof. Choose the smallest possible k with the requisite property. ek is

 the common edge of g',- and g, while e* is the common edge of g'-, and gi.
 Since ek = e*, Gk-1 maps one of the faces containing e* onto the face gk-
 containing ek, with Gk-,(e*) = Gk,(ek) = ek.-. That is, either g'-, = g'_l and

 Gkl= G_1,, or g i, = g* and Gk-l = Ga' (since gk-l = g9. In the former case
 ek, = e*_, contradicting the minimal choice of k unless i = 2 in which case

 ekl = el. In the latter case ek-1 = ej, Again this contradicts the minimal
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 choice of k provided k -1 > i + 1. Trivially we cannot have k - 1 < - + 1.

 If k = i + 2 then ei,2 = ek = e*. For this to occur either g',, = gi or g'+l

 gi1. The first case is clearly impossible since gi+l # g'. In the second case
 the four sides g!-l, gi, g', gi+l form a closed loop which is also not possible.

 In view of Lemma 9.3 there is a smallest n > 1 for which e,+1 = el, that
 is, for which the transformation G1 ... Go maps el onto itself. The n words

 G19 G1G2 9.., G1G2 *.. Go when expressed in terms of the 2N letters F1,

 F-', ... , F71 are called edge pairing words corresponding to el. The word
 G1G2 ... Gn, when expressed in the letters Fj, Fy-', is also called an edge
 relation at el. There is a finite set of edge pairing words and one edge rela-
 tion for each edge of SQ.

 9.5. We now apply the same process to vertices (not free vertices) of 2.

 Choose a vertex v, and one of the least three faces g, (= some fj or fj) that
 share vl. The face g' (= fj or fj) paired with g1 by G, (= Fj or Fy-') contains
 a vertex v, with G,(v2) = vl. Since G1 is not elliptic, v2 # vl. There are at
 least two choices for a face g2 ? g' which also contains v2. A choice for g2
 determines the vertex V3, etc. We thus obtain a sequence of vertices (vl,
 V2*9.) where GkVk+l = Vk for a face pairing transformation GkO for each k.
 The transformation G, ... Gk maps Vk+l onto v, and the polyhedra Q, Gl(2), ...*

 GlG2 ... Gk(O) all have vl as a common vertex; one is adjacent to the next
 along a common face.

 Note that if v* = v; for some i < j then the sequence (vi, v+l, ***, vjl)
 arises from a face pairing procedure as above starting at v* instead of vl.

 Furthermore, if we obtain a sequence (vl, ... , ve) with vn+, = vl then there is

 a least k for which there is a subset (vl, v', ..., vk) such that v',, = v, but
 v' # vP for 1 < i < ? k. For if v* = vj with 1 i X < j ? n then the shorter
 sequence (v,, ..., v*, vj+ *, vn) also arises from a face pairing procedure
 above. (However, we cannot assert that as transformations G, ... =

 We will admit a sequence (vl, ..., ve) only if vn,+ = vl and v* ? v; for
 1 < i K] ? _n. The corresponding words G,, GlG2, 9 . GlG2 ... Ga, when
 expressed in the letters F-, F-', 1 ? j < N, are called vertex pairing words

 for vl. The word G, ... G, in addition is called a vertex relation of vl. In
 general there are many, but still a finite number, of admissible sequences at

 a given vertex vi. Each of these sequences has a corresponding set of vertex
 pairing words. On the other hand, we do not assert that every vertex of 2

 has an admissible sequence as above. However, it is clear that at least some

 vertices of 2 do.
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 Define the following two finite sets of words in the 2N letters F1,
 F1 1,.., F'-.

 ?(S) = {the set of all vertex pairing words and edge pairing words

 for all vertices and edges of 92},

 ZR(Q) = {the set of all vertex relations and edge relations in ?(S2)}.

 9.6. Definition. Two formal polyhedra 921 and 92 are equivalent if there

 exists a homeomorphism 91 9- which maps faces onto faces, edges onto
 edges, vertices onto vertices, such that a face named fi (resp. fi') of 921 is
 mapped onto a face of 92 which is also named fi (resp. f*').

 Obviously if 921 is equivalent to 92 then U(9-1) = U(D22) and 9i(9-1) = i(%2).
 Also, there are only a finite number of equivalence classes of formal poly-

 hedra. Hence we can consider the large, but still finite, sets of words in the

 2N letters F1, F-1, ... , F;71,

 UW= U W(2), A 9= U z(2)

 where the unions are taken over all equivalence classes of formal polyhedra.

 9.7. Now we are ready to begin the proof of Lemma 9.2. Fix a point

 0 e S13 and let 9P denote the finite-sided fundamental polyhedron for G with
 center 0 (9 is closed in B-). Set O = {Te G: T(9P) n 9P ? 0, T ? identity}.
 Then O is a finite set of transformations and T e T if and only if T-1 e '.

 Hence T contains an even number 2N of elements. Enumerate these elements:

 S19 S7', * *, SN, SN.-
 Now given this number N consider all formal polyhedra as in ? 9.5. We

 will interpret 9P as one of these formal polyhedra in the following specific
 way. Label a pair of faces of 9P as (fi, fl) if and only if Si is the transfor-
 mation such that S*(fi') = f*. Then set F_ Si.

 Let i denote the abstract free group generated by N letters, i=
 <Fi, ..., FN>. Extend the correspondence

 a(F*) = Si , 1 < 1 i? N,
 to F to create a homomorphism A m G. A word We GU(^) is also in Ai(RP)
 if and only if a( W) = id. (U and 9Z are subsets of W.)

 9.8. We will now deform G. Recall first the definition

 H(T)? = {p e p: d(p, 0) = d(p, T(0))}

 and H(T) is the closure in Z- of H(T)0. It is important to observe that
 H(T)fnlP 0, TeG, if and only if TeG. In particular, for We G,
 H(a(W)) n P ? 0 if and only if a(W) eG , if a(W) ? id.

 Moreover, there exists a neighborhood U of P in Z- for which
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 H(T)n U= 0, T id e G.T T.

 Fix this neighborhood.

 If 9 is an s-deformation we will consider the finite-sided polyhedron

 '> {p eG : d(p, 0) ? d(p, 9%(T)(O)) , for T = S.', 1 ? i _ N},

 and its closure 9 s in $Z3-. For T = id, Pst reduces to P. We will consider

 deformations so small that 9)fs looks like 9 except perhaps for additional faces
 arising in small neighborhoods of the vertices and edges of 9. It suffices to

 impose the following conditions.

 The admissible s-deformations. There exists s, sufficiently small so that

 all e-deformations, determined with respect to S,, * * , SN, with e < l,, satisfy
 the following conditions:

 (i) 9) c U.
 (ii) H(9(a(W))) n u = 0 for all words We? such that a( W) ? id,

 a(W) X T.

 (iii) (a) If there is a face of 9 in H(T) there is a face of 9)S in H(,P(T)).
 (b) If f ci H(9(T-1)), Te G3, is a face of 9)s and p is any half open ray from

 0 tending to a point on q(T)(f), then p n H(9(V)) = 0 for all those Ve '
 such that V-'(H(T) n 9) is disjoint from 9.

 (iv) 9(Sj) is not elliptic, parabolic, or the identity, 1 _ j ? N.
 Note the admissible V in (iii) (b) are just those for which H(V) does not

 meet the face, edge, or vertex H(T) n 9. It is possible to satisfy (i) and (iii)

 because H(T) depends continuously on the parameters of T. For condition

 (ii) we also need the fact that U is a finite set of words.

 LEMMA 9.4. The faces of 9C,, are arranged in pairs, paired by some of

 the transformations T(Sj), 1 ? j < N.

 Proof. Consider a face f ci H(9(T-1)) of 9),, Te ', and let x be any
 point in the interior of f. We will show that q'(T)(x) also lies on a face of

 9)fP. From this it follows that T(T)(f) ci H(99(T)) is also a face of 9,.
 Let v, v' be any two vertices of 9 such that T(v) = v'. Let T1 e '3, T1 ,

 T-1, be any transformation such that Tl(v,) = v for some vertex v, of 9.
 Obviously T T1 e '. Conversely any Ve ', with V(v,) = v' for some vertex

 V, ? v, is of the form T T, for some such T,. Note also that v' e H(T T1).
 Similar observations hold in case there are edges e, e' of 9 with T(e) = e'.

 If T, ? T-' maps an edge e, onto e then T T1 e ' and any Ve ' which maps
 an edge # e onto e' is of this form. Of course e' c H(T T,).

 Since d(O, x) = d(O, q9(T)(x)) and d(O, x) < d(x, 9q(V)(O)) for all Ve GT

 V # T', we see in particular that
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 d (O. T( T)(x)) < d (T(T)(x), T( T Ti)(0))

 for all T1 as above. This says that q(T) (x) is not separated from 0 by any

 of the planes H(T(T T1)).

 Now because of (iii) (b), the ray p from 0 to T(T) (x) does not cross any
 planes H(p( V)) for those Ve V for which V maps neither an edge nor a

 vertex into H(T) nf . But the remaining Ve O, V # T, are of the form

 T T, considered above. We have just seen that p cannot cross any of their

 planes H(T T1) either. Hence q(T) (x) lies on a face of P, as asserted.
 Make P, into a formal polyhedron in the following way. A pair of faces

 of P, is labeled (fi, f*') if and only if they are paired by q(Si) in the manner
 q(S*) (fi') = fit. Then set F* = p(Si). If q = id, 9), reduces to the formal
 polyhedron 9.

 Recall that T denotes the free group <F1, , FN>. We have already

 introduced the homomorphism a: Tm G defined by u(FJ) = Si. A homomor-
 phism F -) >(G) is determined by 9o : F* - 9(S). To each word We GU(9)9)
 corresponds the transformation W., = (a( W)) e 9(G) and this correspon-
 dence is the natural one determined by the construction of W.

 9.9. Preliminary to the lemma below are the following two obser-

 vations.

 (a) T(u( W))(9).) n fl9 = 0 for all We X such that a( W) ? id, a( W) X O3
 (b) 9(S)(9)o) n 9)0 = 0 for all S e '.

 The first is true because of condition (ii) in the choice of el and the second

 is true because of the definition of 9i,

 LEMMA 9.5. If 9 is an -deformation of G, s < s1 where as is given above,

 then 9(G) is a discrete group and 9, is the fundamental polyhedron for 9(G)
 with center at 0.

 Proof. The proof is based on the following two facts.

 (1) If We t(9S) then either o( W) = id or a( W) e A.
 (2) If We ?(9S) then a( W) = id.

 The first is true because of (a) above since W*, (9@) n fl9, 0 where
 W*, =9?oa( W). If the second assertion is false then from (1), a( W) = St' for
 some j and W., = T(Sj)+'. But since W*, must preserve a vertex of 9)1, or
 map an edge onto itself, either W, = id or W*, is elliptic. Both possibilities

 are impossible by condition (iv) of ? 9.8.

 Consider an edge of 9), and the corresponding cyclic arrangement of
 polyhedra about el; in the notation of ? 9.4 this cycle is 9), G1(PS), . * .,

 G ... G"(g9D) = 9), (the last equality is true because of (2)). The interiors of
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 KLEINIAN GROUPS 443

 the polyhedra of this cycle are mutually disjoint. For suppose G1G2 * * * G*(9PD) n

 G1G2 *** Gj(9P) # 0, i < j. Then G*+1 * * Gi(91') n F9l P 0. But as a word,
 G*+1 ... Gj e X(NSP). Again as a transformation by (1), G1 * * * Gj = (P(Sk) or
 q(S-') for some k. Thus we have a contradiction to (b) above.

 The analogous property is true at the vertices but requires that we

 re-examine ? 9.5 in the light of the more extensive information available on

 P, than on arbitrary formal polyhedra. The extra information we now have
 is that (P(a( W)), We (@P.), fixes a point, in particular a vertex of 9),,, only
 if 9q(a( W)) = id. This implies that there is at least one admissible cycle

 (v, v2, .*., v") with v, = v at each vertex v; one such sequence arises from
 the edge cycle of an edge of 9SD containing v.

 Moreover the following is true. In the notation of ? 9.5 suppose T1 =

 Gi * * * G*, -2 =G * * G. are two vertex pairing transformations at v arising
 from the sequences (v, v2, I., v*), (v, v', ..., v) respectively. We also can

 write T1 = q(a(W1)), T2 =7 (a(W2)) for W1, W2 e t ). Then

 Tl'T2 = T(aU(W7')6(W2)) = T W(U WW))
 but it is not necessarily true that Wv-' W2 e ?W(9)). However, it is true that

 Ty-'T2 is a vertex pairing transformation arising from a "reduced" version of
 Wg-' W2 in D(9P,). This reduction is done by eliminating all redundant vertices

 in the sequence (vi, vi,, * , v2, v, v2, * , v') to obtain a sequence (vi, vq', * *
 vk'9, v') and corresponding transformation G"' ... G'k'. Now we use the extra
 information about 9),D to deduce that

 G. * * * GP? = G* .1** G -'G' .-. . Gt = T~-'T2

 Suppose now that T1, T2 are two vertex pairing transformations at
 v: Tl(v) = v = T2(v,). We claim that unless T, = T1, T,(?) f T2(95 ) = 0.
 For we have just shown that T' `T, is a vertex pairing transformation at v,
 if it is not the identity. This implies that Tg'T, = T(Sk) or 9(S-1) for some
 k and hence Tv-'T,(9) n !1P= 0.

 In other words we have just shown that under application of the vertex

 pairing transformations at a vertex v of 91, the images of 9),D are arranged
 in a non-overlapping manner about v. Furthermore, it is easy to see that

 these images of 9SD completely cover a sufficiently small neighborhood of v in

 $. We have also proved the analogous statements about edges.

 9.10. All that is needed now to complete the proof of Lemma 9.5 is to

 apply what is sometimes known as Poincare's theorem (see [381). According

 to this theorem, since 91, satisfies the vertex and edge conditions that we
 have verified above, the face pairing transformations of $P), generate a discrete
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 444 ALBERT MARDEN

 group necessarily q(G), which has 9y as a fundamental polyhedron. For the

 readers' convenience we will sketch a proof of this as follows.

 Since hyperbolic distance is preserved under Mobius transformations, it

 follows that the orbit of 97' = - 9l-C n a$ under q(G) covers $. Therefore,

 the abstract configuration $3 resulting from successively joining images of

 9s' together as dictated by the face pairing transformations can be regarded
 as an unlimited covering of $ with the natural projection map. What we

 have shown above is that every point on an edge or a vertex has a neigh-

 borhood in $ homeomorphic to a ball. The simple connectivity of $ implies

 that $1= $. Therefore, p(G) is discrete and 91fl is a fundamental polyhedron.

 We remark that the free edges and vertices of 9sz play no role in this

 result.

 9.11. In this section we will complete the proof of Lemma 9.2 for the

 case that G has no parabolic transformations. In view of Lemma 9.5 it

 remains only to show that 9 is an isomorphism for all s-deformations q' with

 s <s. This is a consequence of the following known fact.

 If H is a discrete group of M6bius transformations in $, each relation

 in H is a consequence of the edge relations for a fundamental polyhedron ?

 (which need not be finite-sided). To see this, note that a relation in H cor-

 responds to a simple loop -y in $ not passing through the orbit of the vertices

 of 2. If for example the relation is F1F2F3 = 1, we might take for y a path

 from C (= center of 2) to F3(C) to F2F3(G) to FlF2F3(C) = C. y bounds a
 singular disk: There is a continuous map f: A $13 of the unit disk A, with
 f(9A) = y and f(A) transverse to all edges and not passing through any vertex

 in the orbit of 2 under H. If IF denotes the network of edges in S3 (_ orbit

 of edges of 2) then f-i(r n f(A)) is a finite number of points. The relation
 determined by y is a consequence of the edge relations determined by small

 loops around these points. That is, aA (with the proper base point) is homo-

 topic in A - f -(r n f(A)) to a product of loops, each surrounding only one

 of these points. It is of course possible that 2 has no edges so that each face

 is a full hyperbolic plane. In this case H is a free group. (For more details

 of this sort of analysis see [22, p. 233].)

 Returning to our discrete group 9(G), the above result can be applied

 as follows. The kernel N of the homomorphism 0o6: T - 9(G) is the normal
 subgroup generated by the words We G(Ps) such that W is an edge relation.

 If q is not an isomorphism there is a transformation T e G such that T + id

 yet 9(T) = id. Express T as a word in the elements SJ:1 of U. Replacing
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 S*' by Fc' we obtain a word T* e F such that a(T*) T. But T* e N. Now
 fact (2) of ? 9.9 implies that a( W) = id for all W e N since this is true of the

 generators. Hence T= a(T*) = id, a contradiction.

 In other words, because every edge relation of 9f, comes from a relation
 in Ai(RP), the homomorphism q is an isomorphism.

 9.12. The case in which G contains parabolic transformations. A number

 of small modifications are necessary so that the preceding proof also applies

 to the general case. These are as follows.

 1. Choose the center 0 of the fundamental polyhedron 9P of G so that a

 parabolic fixed point p e 9P only if p is a cusp point of an open or closed cusp
 of SP (in the terminology of ? 9.2). The associated parabolic transformation(s)

 are to be generators of M,. This choice of 0 is possible by Lemma 4.1.
 Suppose 9P has r open cusps and s closed cusps.
 2. The definition of formal polyhedra in ? 9.4 must be revised as follows.

 Each formal polyhedron 2 must have r open cusps and s closed cusps. As

 before, the faces of 2 are labeled from the letters f, * * *, fk but now we make
 the convention that the letters fN-r-28+1, * , fN2. be used for the faces of the

 open cusps, and fN-2s+, * * fk, for the faces of closed cusps. In the latter
 case each sequence of four starting with (fN-2s+1 ... ,fN-2s+2) is to be used
 for one closed cusp. Of course the parabolic transformations associated with

 the cusps are also to be face pairing transformations of 2.

 The condition to replace (iii) of ? 9.4 is that no face pairing transforma-

 tion F* of 2 is elliptic or parabolic, except those associated with a cusp.

 3. Let 9T+ denote the result of deleting the cusp points from 9P. Then
 define (cf. ? 9.7)

 T) = {Te G T(9P+) Pn A'+ 0, T id}
 and correspondingly enumerate the elements of ': S1, ..., S'1 so that

 SN-r-2s+l1 * * * , SN-2. pair the faces of the open cusps and SN.2?+19 * * *, SN pair the

 faces of the closed cusps. Each sequence of two starting with (SN-2?+1, SN-2s+2)
 is associated with a single cusp.

 4. The changes required in ? 9.8 to determine the allowable deformations

 are as follows. First suppose that 2 is a formal polyhedron and p E 2 is a

 cusp point. A cusp nreighborhood f(p) for p is an open ball in 93, internally
 tangent to a93 at p, so small that ,8(p)- intersects only those faces of D_ that

 are cusp faces at p. A cusp neighborhood f for 92 is the union of cusp neigh-
 borhoods, one for each cusp point.

 Now recall from Lemma 4.1 that for each cusp point p of 9P,

 (1) H(T)fl {p} =0 all TeG, T Mp
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 446 ALBERT MARDEN

 Therefore, there exists a neighborhood U+ of 9T+ such that

 (2) H(T)n u+ = o all T #idin g, T i '.

 There exists s, > 0 so small that any -deformation q' with s < s satisfies
 the following conditions (cf. (i)-(iv) of ? 9.8).

 (i)l+ 9) has r open and s closed cusps, the associated parabolic transfor-

 mations being the image under q of the corresponding ones in '.

 (i)+ For each cusp point q of 9), H(qa( W)) n {q} 0 for all W ?(^)
 such that a(W) X Mp, for the corresponding cusp point p of P.

 (i)+ There exists a cusp neighborhood 6,l for 9), such that P, -
 PlS n eD c- u+.

 (ii)+ H((Pa(W)) n u+ 0 for all words We U such that a(W) ? id,
 a(W) i 1), and a(W) X Mp for all cusp points p of P.

 (iii)+ This is the same as (iii) of ? 9.8.

 (iv)+ p(Sj) is not elliptic, parabolic, or the identity, 1 < i ? N - r - 2s.

 These conditions can be satisfied using (1) and (2) becasue T and U are

 finite sets. An immediate consequence of (i)+ is that if We G U(9P) then a( W),

 the element of 9(G) determined by W, cannot fix a cusp point of P. unless
 it pairs two faces or edges of that cusp. With this fact in mind the proof

 proceeds exactly as in the more restrictive case already discussed.

 9.13. Proposition 9.1 will be deduced from Lemma 9.2 by applying

 Theorem 8.1. To do this we have to analyze the relation of a9R(q(G)) to

 aDR(G) for an -deformation q (small s). First we will show that a91t(q(G))

 is homeomorphic to aDR(G). We will begin the necessary analysis by taking

 note of the structure of P =P n aj, where 9P is the fixed fundamental poly-
 hedron for G.

 P is the union of a finite number of finite-sided circular polygons and a

 finite number of isolated points. Each of these is either a cusp point of a

 closed cusp of P or is what will be called an isolated vertex of P. In addition
 a vertex v of P may be a tangent vertex. This is the case that two faces of

 P are tangent at v; however, v may or may not be an open cusp point of CP.

 In P we will interpret this situation to be that of two sides si, 82 of P being
 tangent at v.

 The sides of P are arranged in pairs but more than one pair of sides may

 be associated with a given side-pairing transformation (a face of 9P may
 determine more than one side of P). The side-pairing transformations of P

 are the restrictions to a93 of the relevant face-pairing transformations of SP'.

 If v is a tangent vertex for the sides so, 82 then the image v1 on the side s'
 paired with s, may or may not also be a vertex of P. If v is a cusp point
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 then s' = 82 and there is nothing more to be said. Otherwise, if v1 is also a

 vertex (necessarily a tangent vertex), find v2, etc. Ultimately, since w(v) is
 an interior point of 8a(G), we must reach a point ve which is not a vertex

 of P. However, it will be convenient in what follows to regard such a point
 ve as a vertex too. That is, any point on P equivalent under G to a vertex
 of P will also be called a vertex.

 P, = 9A n a1 is similar to P allowing for the following possibilities: (a)
 a polygon which is a component of P may gain additional sides near a vertex,

 (b) an isolated vertex of P may disappear, (c) instead of an isolated vertex

 a small polygon may appear, or (d) a tangent vertex may disappear or be

 replaced by ordinary vertices. It is helpful to keep these possibilities in mind.

 Rather than show how each of these changes can arise topologically in au(G),
 we will proceed as follows.

 9.14. Consider the vertices v of P which are not cusp points of 9P. Fix
 open euclidean disks D(v), D1(v) centered at v such that (a) D(v)- c D(v),

 (b) the disks {D1(v)} for all v are mutually disjoint, and (c) if v1 # v2 then

 T(Di(v1)) n D1(v2) =0 for all T e G unless T(v1) = v2 in which case D1(v2) =
 T(D1(v,)). In other words, D1(v) is the lift of a small neighborhood of r(v) e
 aDR(G).

 Choose '2 < so (so as chosen in ? 9.12) so that all s-deformations (P with
 6 < 62 satisfy

 (i) q(T)(Di(v1)) n D1(v2) =0 for all Te T (cf. ? 9.7) with T(v1) # V2,
 (ii) a side of P extending between D(v1) and D(v2) determines a side of

 P,, which also extends between D(vl) and D(v2),
 (iii) a side of P, which does not arise from a side of P lies in some disk

 D(v).

 Since each side pairing transformation of P, is 9(T) for some T E U, we
 see these conditions can be satisfied.

 If V(v) - v' for (non-cusp) vertices v' + v' of PS, VG (G), then we
 know that V = 9(T) for some T e '. Moreover, it is important to observe

 that if vG e D(v1) and vG e D(v2) it follows from (i) that T(v1) = v2 and v, ? v2.
 Fix a vertex of P which is not an isolated or tangent vertex or equivalent

 to a tangent vertex. There is a cyclic arrangement of images of P about v

 and a corresponding sequence of transformations G1, G1, G29 * * G1G2 * * * Gn =

 id, where each Gi is a side pairing transformation of P. Suppose (P is an S-
 deformation with s < S2 and v' is any vertex of P, which lies in D(v). Since
 each q(GJ) is a side pairing transformation of PS, the sequence

 Po 9,(G1)(P9), ...* * (G1 ... Gn)(Pg) = Pq

This content downloaded from 
�������������51.7.16.27 on Sun, 01 Oct 2023 20:10:35 +00:00������������� 

All use subject to https://about.jstor.org/terms



 448 ALBERT MARDEN

 is a cyclic arrangement of distinct images of P., each adjacent to the previous
 and to the succeeding region along a common side. Let Q,(v) denote the
 union of these X regions. We have to make one more restriction on '2 as

 follows: s2 must be so small that for all -deformations q' with s < s,

 (iv) Qg(v) covers D,(v) - D(v) for all vertices of P not isolated or tangent
 vertices. The exceptional cases will be included after the discussion below.

 Note that (iv) is the extension of (ii) to the polygons in the cycle at v.

 We claim that QSD(v) must in fact cover D(v) as well as D,(v) - D(v). If
 this is not the case there is a point v' e D(v), v' e aQ,(v), such that v' is a

 vertex of QSD(v). By replacing QSD(v) by Qq((G1 ... Gk)-(v)) for a suitable k
 if necessary, we can assume that v' is a vertex of P,. There is a cyclic
 arrangement of images of P, about v' and a corresponding sequence of trans-
 formations V,, V V2, , V, V2 ... Vm = id, where each Vj is a side pairing
 transformation of P. and V1 * Vk maps a vertex v' # v' of P. onto v',
 k Km. But by (i), V1 * * * Vk = 'p(T) for some T e 'C and moreover if v' e D(v,),

 T(v1) = v. This implies T = G, * ** Gj for some j. But then V1 *** Vk(P,,) is
 already contained in Q5D(v). Since this is true for all k, we have a contra-

 diction.

 An isolated vertex v of P has a cycle about it and there is an analogous

 Qq(v). Since there is a T e 'C such that T(v) is an ordinary vertex of P, the
 proof above shows that for small enough 2, Q,(w) covers D1(v) D D(v).

 On the other hand, if v is a tangent vertex of P, but not a cusp point,

 there are two vertices w1, w2 which are interior points of the sides s, 82 of P

 which are equivalent to v by transformations in 'C. It suffices to examine

 the situation at w1. There is a relation of the form G1 ... Gn T = id where

 each Gi is a side pairing transformation of P and T(w,) = w2, T(s1) = 82
 Each G1 ... Go, i < n, maps a tangent vertex of P to w,. For sufficiently
 small 2, the analysis of Q,(w1) and hence Q,(v) proceeds as before so that

 Q5D(v) covers not only D,(v) - D(v) but also D(v).

 The fact that the cycles about the vertices of P. cover the disks D(v)
 together with property (i) of e2 imply the following statement. For any $-

 deformation (P with e < e2 the natural projection wr5D of D(v) into aDm(9(G)) is

 injective.

 9.15. Let P+ denote the result of removing the cusp points and isolated

 vertices from P. The orbit Q+ of P+ under the subgroup G+ of G generated

 by the side pairing transformations of P+ is a union of components of Q(G)

 and has the property that Q+/G+ = aOR(G). The complement in Q+ of the

 orbit of R = P+- P+ n (U, D(v)) under G+ is a countable union of mutually
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 disjoint disks.

 Compare R and R, = -P+ n (UD(v)), where Pa+ is obtained from
 P5D by removing cusp points and isolated vertices. Each component of R is a
 finite-sided circular polygon and is homeomorphic as a polygon (sides corre-

 spond to sides) to a component of R, which is close to it. This is true because
 of properties (ii) and (iii) of p. Furthermore, this homeomorphism R - R,
 induces a 1-1 correspondence between side pairing transformations. In fact

 we can choose the homeomorphism f: R - R, so that if S is a side pairing
 transformation of P and p, S(p) are points of R then f(S(p)) = p(S)(f(p)).

 Let Q be the union of those components Q' of Q(9(G)) for which T(R,) ci Q'
 for some Te p(G+). We claim that f extends to a homeomorphism Q+ Q(
 It is clear that the isomorphism P: G+ -p 'p(Gt) determines an extension,

 again called f, to a homeomorphism between the orbits G+(R) - (G+)(R9).
 Each component D of Q+ - G+(R) is a disk and the circle AD is the union of

 simple arcs, one each on say T1(R), * . ., Tk(R), for Tj e G+, 1 < j < k. Since
 the natural projection D - aD9(9(G)) is injective (as observed above), D is

 also a component of Q + - p(G+)(R9,). Our restrictions on s which force R, to
 be close to R and the analysis in ? 9.14 show that AD is also the union of

 simple arcs on p(T1)(R9), ***, 'P(Tk)(R,) with the order and orientation the
 same as when R is used. Thus we see f can be extended to D, and since D

 is arbitrary, to all Q'.

 Finally f is extended to all Q(G) as follows. G is a countable union of

 right cosets of G+. Each coset G+T can be identified with T(Q+) since

 T(Q+) n Q+ = 0 unless Te G+ (otherwise T(P) = T1(P) for some T, e G+).
 Similarly the distinct right cosets of p(G+) are in 1-1 correspondence with

 disjoint regions p(T)(Q+). Consequently by the use of p, f can be extended

 to a homeomorphism Q(G) Q(-(G)).
 The conditions of Theorem 8.1 are now all fulfilled and Proposition 9.1

 follows at once.

 9.16. The methods developed above can also be used to prove

 COROLLARY 9.5. Let G be a discrete subgroup of SL(2, C)/? 1 which has

 a finite-sided fundamental polyhedron of finite volume. Then there exists

 e0 > 0 such that for every e-deformation P with e <eA, the homomorphism

 G -9 p(G) is induced by a quasiconformal homeomorphism 'r(G) + ((G)).
 Our proof of Proposition 9.1 shows that for some se, p is an isomor-

 phism for each e <es. If for example H1(9T(G)) is not a finite group then
 Waldhausen's theorem [51] implies that 9T(G) and D1(P(G)) are quasicon-
 formally equivalent. If however H1(9R(G)) is finite the quasiconformal map
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 must be explicitly constructed. However, the proof following the lines intro-

 duced for Proposition 9.1 works in all cases. It is based on the fact that CUD

 of ? 9.8 is geometrically the same as 9P except in a small neighborhood of the

 edges. This implies that DR(p(G)) is homeomorphic to RT(G), using 9P and SP,
 to construct the homeomorphism. We will omit the details since Corollary

 9.5 is also a special case of Theorem 8.3 once it is known that 9p is an isomor-
 phism.

 Remark. In the case that OTC(G) is compact the assertion that 9 is an

 isomorphism is a special case of a much more general result contained in A.

 Weil's classic papers [52]. From a somewhat different point of view it is also

 contained in Macbeath's paper [23]. Of course Theorem 8.3 implies that P
 is in fact an inner automorphism. But for small deformations, this fact too

 is contained in [52]. Weil's work approaches the subject from the point of

 view of cohomology.

 10. The deformation space

 10.1. Terminology: A K-quasiconformal deformation f of the kleinian

 group G is a K-quasiconformal homeomorphism of a93 that induces an isomor-

 phism v of G onto another kleinian group. That is, the correspondence

 9: T f Tf' , T E G, is an isomorphism between kleinian groups.

 Definition. The kleinian group G is strongly stable if (i) given K > 1

 there exists se > 0 such that every e-deformation 9 of G with e <,e0 is induced

 by a K-quasiconformal deformation of G, and (ii) each quasiconformal defor-
 mation H of G also satisfies (i).

 THEOREM 10.1. If G has a finite-sided fundamental polyhedron then G

 is strongly stable.

 Proof. We have already proved (Proposition 9.1) that for s sufficiently

 small each e-deformation 9 is induced by a quasiconformal deformation go of

 G. We need only show that for s small enough go can be taken with maximal

 dilatation < K. Now the projection g, of g* to aDt(G) is a quasiconformal
 map &9T(G) -DM(9(G)). Let S be a component of Da9(G). It is enough to
 show that for all sufficiently small e there is a K-quasiconformal map f,: S-o

 S,= g(S) which is homotopic to g,. For the result of replacing g* by the
 corresponding lift fit of f, in each component of Q(G) over S again yields a
 quasiconformal homeomorphism of Di (Theorem 8.1). And then, using the

 fact that the limit set A(G) has 2-dimensional measure zero, when this process

 is completed for all components S of DRT(G) we obtain a K-quasiconformal

 deformation of G.
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 Furthermore, if we can verify condition (i) of the definition of strong

 stability then (ii) follows automatically. For G has a finite-sided fundamental

 polyhedron if and only if f Gf -' does, wheref is a quasiconformal deformation

 of G.

 Thus consider a component Q, of Q(G) over a component S of aDR(G) and

 the subgroup H of G that keeps Q, invariant. In view of what has been said
 above, Theorem 10.1 will follow if, in particular, we can prove that the func-

 tion group H is itself strongly stable. For Q, is an arbitrary component of
 Q(G) and the initial so obtained needs to be reduced at most once for each
 component of aD9(G). In applying what follows it is necessary to recall that

 Corollary 6.5 says that the subgroup H also has a finite-sided fundamental

 polyhedron.

 10.2. LEMMA 10.2. Suppose H is a B-group with a finite-sided funda-

 mental polyhedron. Then H is strongly stable.

 Proof. As usual, Qo(H) denotes an invariant component of Q(H). We

 have proved that for eo sufficiently small, there exists a quasiconformal map

 g: Q(H) , Q(9(H)) which induces 9. Set Q0(99(H)) = g(Q0(H)). In view of
 the discussion in ? 10.1 it suffices to show that for sufficiently small eo, there

 is a K-quasiconformal map f: Qo(H) , Q0(99(H)) which induces 9. For if we
 can show this, the argument can be repeated for each component # Qo(H) of
 Q(H) and the corresponding quasi-fuchsian subgroup of H.

 Before continuing the proof, we will consider the following lemma.

 LEMMA 10.3. Given a compact set oi in Qo(H) there exists eo > 0 so small
 that oi ci Qo(9(H)) for all s-deformations 9 with s < se.

 Proof. If 9P is a fundamental polyhedron for H, set P =0 n Qo(H). Then
 co can be covered by a finite number of images {Pj} of P under H. We see

 from our analysis in ? 9.14 that P is covered by the union of P, = 9,D n Qo(9(H))
 and those translates of P, under 9(H) that adjoin PS, for all sufficiently
 small e-deformations 9. The same is true of each Pi and we choose so so
 small as to serve for all j. This proves Lemma 10.3.

 10.3. Continuing the proof of Lemma 10.2, in the sense of Lemma 10.3,

 lim QO(9(H)) = Qo(H) as so - 0. This is the kind of convergence required to
 apply the Caratheodory convergence theorem. The application of this theorem

 is as follows.

 For sufficiently small so, we can find a point C e Qo(H) such that C E Qo(e(H))

 for all -deformations 'p with e <so. Let f, be the conformal map Qo(Q(H))
 A = {z: jzj < 1} normalized by f,() = 0, f,() > 0; the corresponding con-
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 452 ALBERT MARDEN

 formal map for Qo(H) is denoted by f. Each fuchsian group F, = fp(H)f-
 is isomorphic to F = fHf-' under the correspondence

 A(A) = fp(f-'Af)f7'-l, A e F.
 Clearly A(T) is parabolic if and only if T is, since these T are induced by

 punctures on Qo(H)/H. Moreover, Q = f(P) and Q, = f,(P,) are fundamental
 sets for F and F> respectively in A.

 Suppose then o is a given compact set of Qo(H) which contains P in its

 interior oi, except for small neighborhoods of its cusps. For sufficiently small

 'So O also contains PO, except for small neighborhoods of its cusps. It follows
 from the Caratheodory convergence theorem that given s, so can be chosen
 so small that

 If(z) - f(z) < sly If(z) - f'(z)l <,SI
 fw'(w) - f-'(w)l <,Sl I(f7)'(w) - (f-)'(w) <,

 for all z e co, w e f(co), and all -deformations p withs <es.

 F is generated by the side pairing transformations A1, ..., AN of Q. the
 images under f of the side pairing transformations of P (which, it is easily

 seen, generate H). Using the set {At} as generators consider the s-deforma-

 tions of F as a fuchsian group (essentially homomorphisms into SL(2, R)/? 1).

 It is known [7], [8] that 2> 0 can be chosen so small that every e-deformation

 of F with e <e2 is induced by a K-quasiconformal homeomorphism of A onto

 itself. We will show below that for small enough se, for every -deformation

 p with e <es, the isomorphism A: F , F, is an e-deformation of F as
 a fuchsian group with e <2. Assuming this, if * is induced by the K-
 quasiconformal map h, then p is induced by the K-quasiconformal map

 f,;,hf-l: Qo(H) - Qo(p(H)).
 To prove our assertion above, recall that given p, q e A and 0 ? e < 2wr,

 a Mobius transformation T (which preserves A) is uniquely determined by

 the requirements T(p) = q and arg T'(p) = 0. Furthermore, T depends con-

 tinuously on the parameters p, q and exp (jO). In particular given p E A and

 a Mobius transformation A, there is a neighborhood N of p and a number p

 such that any M6bius transformation T which satisfies

 (2) T(N) n A(N) # 0 I T'(p) - A'(p)l <)t

 also satisfies (in the matrix sense) IT - Al < e2
 We will apply this fact to show that so may be chosen so small that

 *(Ai) - Ai < 2, 1 < i ? N. Consider for example A = Al and choose p E f((o)
 so that A(p) e f((o0). Find a neighborhood Nc oi? (and A(N) c oj?) about p

 and a number p which fulfill the conditions above with respect to A. Examine
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 KLEINIAN GROUPS 453

 the expressions

 A(A) = fP'(B)ff ', B = f 'Af,
 Af(A)'( p) =[ f, (cp7(B )) (f; ( p)) ][cp(B)' ( f l(p)) ][(fwe'Pa)'(p)]

 In view of (1) it is clear that for se, and ultimately so, small enough, the

 element T = *(A) will satisfy (2). This completes the proof of Lemma 10.2.

 10.4. In order to complete the proof of Theorem 10.1 we have to make

 use of the following object.

 Definition 10.4. Suppose G is a kleinian group. The deformation variety

 V(G) for G is the algebraic variety constructed as follows. Describe G group-

 theoretically in terms of its generators A,, ..., AN and relations

 (1) W,(A1, . , AN) = id, i = 1,2, *@

 where each Wi is a word in the Ap, 1 ? j < N. Furthermore, there are con-
 ditions involving the trace

 (2) tr2 W*(A1, * ,AN) = 4 j= 1,2,

 that arise from the parabolic elements of G. The coefficients in a matrix

 representation of the Ai, 1 < i < N, can be interpreted as the homogeneous
 coordinates of a point in the product complex projective 3-space P3(C)N . As

 we range through every ordered set of N normalized matrices {B.} whose

 entries satisfy (1) and (2) we describe a Zariski open subset V(G) of an

 algebraic variety in PI.

 The points of V(G) are in 1-1 correspondence with homomorphisms

 9: G - SL(2, C)/? 1 which send parabolic transformations of G to parabolic
 transformations. For this reason the notation Homa (G, SL(2, C)/? 1) is also
 used for V(G).

 V(G) is said to be locally irreducible at a point x e V(G) if x has a neigh-

 borhood in V(G) which is manifold.

 10.5. LEMMA 10.5. Suppose H is a function group which is not a B-

 group. If H has a finite-sided fundamental polyhedron, then H is strongly
 stable.

 Proof. According to Bers [8, Props. 1, 2], a necessary and sufficient

 condition for the uniform stability (--condition (i) in the definition of strong

 stability) of a kleinian group G is that V(G) be locally irreducible at the point

 corresponding to G and have there complex dimension v(G) + 3. Here v(G)
 is the complex dimension of the space of cusp forms for G (cf. [8]). We will

 prove Lemma 10.5 by applying this result.

 The first step is to decompose Has dictated by Proposition 5.8 to obtain
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 H = H1** *Hm*.i*. **(*{A1}*.* *{A}*{T}*. **T

 where each Hi is a B-group with a finite-sided fundamental polyhedron, (Gj
 is a free abelian group of rank two with two parabolic generators, {Ak} is the

 cyclic group generated by the parabolic Ak, and {T1} is the cyclic group

 generated by the loxodromic transformation T1. By Lemma 10.2 and Bers'

 criterion, V(Hj) is locally irreducible at Hi for each i. The varieties V((Gj),
 V({Ak}), V({T1}) are all manifolds. The deformation variety V(H) is the
 product of these individual varieties and therefore is locally irreducible at

 H. Lemma 10.4 will follow once we prove that dim, V(H) = v(H) + 3.

 Now dim V(Gj) = 3 since the two parabolic generators have a common
 fixed point, and dim V({Ak}) = 2, dim V({T1}) = 3. Therefore, from the fact

 that dim V(HJ) v(Hj) + 3 using ? 5.12 (1) we find, in the notation of ? 5.12
 except introducing the subscript i for H.,

 dim V(H) = ' (6g. + 2bi - a, - 3) + 3n + 3r + 2s .

 But if g is the genus of Q0(H)/H and b is the number of punctures, then

 g = E1 g? + r + an, b =- E1 bi + 2s .
 Consequently if a = Yajy

 dim V(H) 6g + 2b - 3(r + n + m) - 2s - a.

 On the other hand referring back to ? 5.14 (2) we find

 a(H) = dim V(H) -3 .
 This proves Lemma 10.5 and completes the proof of Theorem 10.1.

 10.6. The main application of Theorem 10.1 is to the theory of moduli.

 Definition, 10.6. If G is a kleinian group, the deformation space T(G)

 for G is the set of all pairs (h, 9T(H)), where h: 9T(G) - 9T(H) is a homeo-
 morphism, with the identification (h1, T(H1)) = (h2, (H2)) if and only if

 h1h-': 9T(H2) 9T(H1) is homotopic to a conformal map.

 Bers defines T(G) as the set of equivalence classes of isomorphisms

 : G -*(G) e M SL(2, C)/? 1 which are induced by quasiconformal homeo-
 morphisms of Di. Two isomorphisms are called equivalent if they differ by
 an inner automorphism of M.

 LEMMA 10.7. If G has afinite-sidedfundamental polyhedron the Defini-

 tion 10.6 of T(G) is equivalent to Bers' definition.

 Proof. A homeomorphism h: OR(G) - OR(H) is homotopic to a PL homeo-

 morphism h1. By the method of Proposition 3.4, h, is homotopic to a quasi-
 conformal map h2 which is conformal or quasiconformal outside a compact set
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 KLEINIAN GROUPS 455

 (i.e., conformal in the solid cusp tori, quasiconformal in the pairing tubes).

 A lift of h~j9m(G)0 to 3 is quasiconformal and consequently has a quasicon-
 formal extension to Dg (Gehring's theorem).

 The converse is a consequence of Theorem 8.1.

 Recall that the dimension v(G) of the complex vector space of cusp forms

 for G is

 u(G) - Y(3gi + bi - 3)

 where gi is the genus of the ith component of aD9(G) and bi is the number
 of its punctures.

 On combining Theorem 10.1 with some results of Bers we obtain

 THEOREM 10.8. Assume G is a kleinian group with a finite-sided funda-

 mental polyhedron. Then T(G) is a u(G)-dimensional complex analytic

 manifold and there is a canonical holomorphic bijection of T(G) x M onto

 an open subregion of the deformation variety V(G) (defined in ? 10.4).

 Other definitions of T(G) are due to Maskit [37] and quite recently Kra

 [21]. Their theories are more general in that they apply to all kleinian groups

 and show that T(G) is always a complex analytic manifold. However, the

 price paid is that these results do not say how T(G) appears in the defor-

 mation variety V(G). For further details of this work which show in par-

 ticular how T(G) is related to the TeichmUller spaces of the individual

 components of aDR(G), we must refer to the references cited above.

 11. Composition of groups

 11.1. In a series of papers [31, 32, 35], Maskit has presented some

 procedures for building up kleinian groups from simpler ones. These results

 extend the original Klein combination theorems. It is interesting to express

 his techniques in terms of 3-manifolds. We will not seek the most general

 formulation but will be content with the most practical, namely, combination

 techniques involving circles.

 Suppose G is a kleinian group (without torsion) and wr is the natural map

 w: 3 U Q(G) (G). An oriented hyperbolic plane h divides ? into two
 parts which we distinguish as the right R(h) and left L(h) sides of h. R(h) n

 T(R(h)) = 0 for all Te G if and only if wr: R(h) , OT(G) is infective. In this
 case w(h) is an open disk in 9T(G). In the case Ah c Q(G), wr(Dh) bounds a
 disk in aD9(G) and wr(R(h)) will be referred to as a trivial ball.

 If a parabolic A e G with fixed point p is induced by a puncture on OR(G),
 we can find a plane h with p e Ah c Q(G) U {p} so small that for a suitable

 orientation of h, R(h) n T(R(h)) = 0 for all Te G, TX M, (the maximal
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 456 ALBERT MARDEN

 parabolic subgroup corresponding to p). If T e M, we require T(R(h)) = R(h).
 Then r(h)- is a half-infinite cylinder in mT(G); R(h) is referred to as an

 invariant ball corresponding to M,.
 If a component Q, of Q(G) is a euclidean disk on D@, we can erect a plane

 h on aQ,. One of the regions, say R(h), determined by h has the property
 that T(R(h)) n R(h) = 0 unless T e G1, the subgroup that preserves Q1 (there

 are two choices for R(h) only if G is fuchsian). r(R(h)) - (Q1/G,) x (0, 1) and
 R(h) is called the invariant ball determined by G1.

 The three types of combinations, in order of the frequency with which

 they can be applied, are as follows. In each case the proofs are immediate.

 G, G1, G2 denote kleinian groups and h, h1, h2 oriented hyperbolic planes.
 The notation <X, Y> is used to denote the group generated by the groups

 Xand Y.

 (la) Suppose R(hl), R(h2) are disjoint trivial balls for G. Let T be any

 Mobius transformation such that T(R(h2)) = L(h,). Then H = <G,Y{ T}> is
 kleinian.

 (lb) Suppose R(h) is a trivial ball for G1 and L(h) is trivial for G2. Then

 H <G1, G2> is kleinian.

 (2a) Suppose R(h,), R(h2) are disjoint invariant balls corresponding to
 the maximal parabolic subgroups Mp, Mq of G. Find a Mobius transformation

 T for which T(R(h2)) = L(h,) and TMqT-' M. Then H = <G,{T}> is
 kleinian.

 (2b) Suppose M, is a maximal parabolic subgroup for both G1 and G2 and
 R(h), L(h) corresponding invariant balls for G1 and G2 respectively. Then

 H = <G1, G2> is kleinian.
 (3a) Suppose Q1, Q2 are two components of Q(G) which are euclidean disks

 and let R(hl), R(h2) denote the invariant balls corresponding to the subgroups
 G1 and G2 which preserve Q1 and Q2 respectively. Assume there is a Mobius

 transformation T such that G1 = TG2T-' and T(R(h2)) = L(h,). Then H =
 <G, {T}> is kleinian.

 (3b) Suppose Q1 is a component of Q(G1) which is a euclidean disk and

 likewise Q2 of Q(G2). Assume R(h) is an invariant ball for the subgroup K1

 of G1 that preserves Q, and likewise L(h) and K2 for Q2. If K1= K2 then
 G K <G1, G2> is kleinian.

 In (la), H = G*{T}. In the cases (2a) and (3a) the relations in H are con-

 sequences of the relations in G and the relations arising from the conjugation.

 For the cases (b), H = G1*,G2 where Kc G1, G2 is the common subgroup that
 preserves h.

 The manifold 9 (H) is obtained topologically (not analytically) from the
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 KLEINIAN GROUPS 457

 original ones as follows. In the cases (a), let A, A2, be the open euclidean
 disks in a3 which are bounded by ah1, ah2 and are adjacent to R(h1), R(h2)

 respectively. To obtain 9R(H), identify Al/K1 with A2/K2 where K1, K2 are
 the subgroups of G preserving hl, h2 respectively. 9R(H) contains the non-

 dividing surface h1/K= h2/K2. For the cases (b), to obtain 9t(H) identify

 A1/K ( e3aD1(G1) with A2/K c- at(G2), where A1l A2 are the complementary
 components on &s9 which are bounded by Ah and K is the common subgroup

 preserving h. 9t(H) is divided by the surface h/K.

 11.2. PROPOSITION 11.1. Let C be the class of kleinian groups which

 have a finite-sided fundamental polyhedron. Then C is preserved by the

 operations (1), (2), (3) above.

 Proof. If G e C, there exists a compact OtR c 9t(G) such that 9t(G) O-R'
 is a finite union of pairing tubes and solid cusp tori. In view of Proposition

 4.2 and the topological interpretation of the various procedures (1)-(3),

 Proposition 11.1 will follow once we recognize the fate of the pairing tubes

 under these operations. Combinations of type (1) do not affect these tubes

 so Proposition 11.1 is immediate in this case. For the remaining cases it

 suffices to illustrate the situation for a combination of type (2a) since the

 others are dealt with in the same way.

 Combination (2a) results in the conjugation of a puncture p1 in a com-

 ponent S1 of 9t(G) and a puncture P2 # PA of S2 (possibly S2 = S1). There
 also results identification of a punctured disk A1 c S1 about p, with a
 punctured disk A2 C S2 about P2* S1 and S2 become a single component

 (S1 - A1) U OAllOA2 (S2 - A2) of aDt(H). In addition there is a cylinder C1 pairing
 p1 with another puncture p' of 9t(G) with 3A1 c -aC1 and C2 pairing P2 with

 P2, A2 Cc aC2. If p1 and P2 determine the same conjugacy class of parabolic
 transformations, take Cl = C2. Otherwise we can assume C, n c2 = 0. In the
 case Cl # 02, C = Cl U aA12 C2 becomes a new cylinder pairing p' and p'. If
 Q = 02, then C is a torus corresponding to the conjugacy class of a maximal
 parabolic subgroup which is free abelian of rank two. In either case a9t(H)

 contains two fewer punctures than 9t(G) but has one higher genus (if S1 = S2)

 or one fewer component (if S1 # S2). Using these facts we see that the

 operation can be carried out in OR, (properly constructed), the result is
 compact in 9r(H), and the complementary components are (the interiors of)

 pairing tubes and solid cusp tori. Q.E.D.

 Incidently, if @<(G) has 2n paired punctures, we have shown how to

 eliminate all of them by adding n generators to G and creating n conjugacy

 classes of free abelian subgroups of rank two of H.
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 458 ALBERT MARDEN

 Maskit [31] has used combinations (1) and (2) to construct all possible

 function groups.

 COROLLARY 11.2. Suppose G and H are kleinian groups such that

 (i) Gee',
 (ii) all components of Q(G) and Q(H) are euclidean disks,

 (iii) the components of @9<(G), a9T(H) are arranged in distinct pairs

 (Ri, R9) and (Si, S') where R* and R', Si and S' are anticonformally equivalent,
 (iv) there is an orientation preserving homeomorphism f: Q(G) Q(H)

 which induces an isomorphism q: G H and a injection between the pairs

 (R*, R') )(Si, S').
 Then G and H are conjugate groups.

 Proof. Combination (3a) allows us to identify the paired components of

 a91(G) to obtain a manifold 1'1(G) without boundary but of finite hyperbolic

 volume. Similarly we can obtain Or'(H) from D1(H). With the help of f,
 the isomorphism q can be extended to an isomorphism wr(ORt(G)) -r1(9rt(H)).
 Now apply Theorem 8.3.

 11.3. It is not unreasonable to ask whether in some sense an arbitrary

 G e C can be built up from simpler groups by repeated application of combi-

 nations (1)-(3). For the case that G has no parabolic elements, Waldhausen

 [51] has shown how to break up On(G) into a union of balls by successively

 introducing incompressible surfaces in Or(G). This process could indeed be

 formulated in terms of a combination process for kleinian groups in C although

 it would require a significantly more complicated version of combination 3.

 Furthermore, this process would extend to all groups of C. However, the

 more interesting question is whether there is some a priori way of doing

 this for each G. This would depend on knowing a "canonical" form for each

 manifold Dt(G). In contrast to the situation for surfaces, such a detailed

 classification for 3-manifolds is not yet known.

 12. An extension of the assumption

 12.1. The assumption in ? 6.1 is not broad enough to include all known

 groups. For Maskit has a method whereby he can "degenerate" the invariant

 component of the regular set for some function groups which are not B-
 groups. In order to include Maskit's groups, we shall make a more general

 assumption which evidently encompasses all known groups.

 Definition. A kleinian group G is reducible if G = G1*G2 is a non-trivial
 free product of subgroups with the property that if Q, is a component of Q(G)
 and H the subgroup of G that preserves Q1, then H is conjugate in G to a
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 subgroup of either G1 or G2

 Note that at least one of the groups G1, G2 appearing in a reducible

 decomposition of G is kleinian; the other is either kleinian, cyclic, or free

 abelian of rank two. For given a component Q1 of Q(G), for some Te G, T(Q1)

 is a component of either Q(G1) or Q(G2). Obviously function groups are not

 reducible nor are groups for which 9r(G) is compact and each component of

 Q(G) simply connected (Lemma 1.10). Probably no group with a finite-sided

 fundamental polyhedron is reducible but we shall not pursue this question

 here.

 12.2. Given a kleinian group H, denote the number of components of
 a98(H) by b(H). If H is cyclic or free abelian of rank two, set b(H) = 1.

 LEMMA 12.1. If G = G1*G2 is a reducible decomposition,

 b(G) < b(G1) + b(G2)-2 .

 Proof. Assume G1 is kleinian and denote by G(Q') the subgroup of G

 that preserves the component Q' of Q(G). If TG(Q')T-1 c G1, Te G, then

 G(T(Q')) c G1. Hence there is a maximal set of components Q1, * * *, Qn. of Q(G)

 such that (i) the groups G(Q,) are non-conjugate (in G1) subgroups of G1, and

 (ii) if G(Q') is conjugate in G to a subgroup of G1, then T(Q') = Q, for some i
 and Te G. That condition (ii) can be satisfied depends on the fact that two

 elements of G. which are conjugate in G are actually conjugate in G1 [24,

 Corollary 4.1.5].

 Let F be the orbit of U Q. under G, and let F* denote the exterior of F
 with respect to a9. If Te G, T G1, then T(Q1) c r*. For otherwise T(Q1) =

 S(Qi) for some i and S e G1 so that S-1 TG(Qi)T--S = G(Q1) and T-1S e G1, a
 contradiction. We conclude that the open set F* # 0 and r* n Q(G1)/G1 is
 the union of the components of 91t(G1) which do not appear in a91(G).

 Q.E.D.

 For any kleinian group G we can consider reducible decompositions into

 subgroups

 (1) G = G1*. .. *Gm*{ T}**** *{Tj*(l*.. *CT , m > 1,

 where each G. is kleinian, each {TJl is cyclic, and each (T free abelian of rank
 two. The ranks satisfy r(G) = ?r(G,) + n + 2r (Lemma 1.9) and Lemma

 12.1 implies that

 (2) b(G) < *m b(Gi)- 2m - -r + 2 .

 Suppose A is an infinite polyhedral disk in '1(G) whose ideal boundary

 "approaches" an end of 'D(G) (i.e., A has no limit points in 'r(G)). Then A
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 splits r1(9'(G)) into a free product G = G1*G2. One sees that the set of limit

 points of A viewed as a subset of 91(Gj) is contained in a component of aD1(Gj).
 It is not known whether all reducible decompositions are determined by such

 disks A. Even for Maskit's example this is unclear.

 12.3. Assumption 12.2. G has a reducible decomposition (1) where every

 subgroup G* satisfies Assumption 6.1.

 The next result follows at once from (2) and Theorem 7.1 which says that

 if H satisfies Assumption 6.1 and has N generators then b(H) < 2N - 2.

 PROPOSITION 12.3. Assume G satisfies Assumption 12.2 and has N gener-

 ators. Then if G has the decomposition (1) and a91(G) has b(G) components,

 b(G) < 2N- 4m - 3n - 5r + 2.

 If b(G) = 2N - 2 then G is not reducible.

 We hasten to add that Bers' inequality shows that Proposition 12.3 holds

 without Assumption 12.2. Of course we have more information on the struc-

 ture of 9r(G) since Theorem 6.4 tells us about each Dt(G,).

 13. Appendix

 13.1. Recently G. P. Scott proved a result which has very important

 implications for (finitely generated) kleinian groups G. As applicable to our

 situation his result is as follows.

 THEOREM 13.1 (Scott [551). There is a compact submanifold M of 9)1(G)
 such that the inclusion map w1(M) rw1(9R(G)) is an isomorphism.

 The following result, which is an immediate consequence, has also been

 obtained earlier by Scott [54] and independently by Shalen.

 COROLLARY 13.2. G is finitely presented.

 COROLLARY 13.3. If G is not a (non-trivial) free product then Assump-

 tion 6.1 is satisfied.

 Proof. Either apply the techniques of Chapter 6 or refer directly to

 Scott's paper [54].

 13.2. Particularly in view of the results cited above, the basic reasons

 for the validity of Ahlfors' finiteness theorem and Bers' inequality seem much

 clearer. Of course there is still the very important problem of extending the

 above results to the general case that G is a free product. But one cannot

 resist posing in addition the following two problems which appear insur-

 mountable at this time.

 1. Is DR(G)0 homeomorphic to the interior of a compact manifold?
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 KLEINIAN GROUPS 461

 2. Is there a necessary and sufficient condition on wr(C) that the 3-mani-
 fold C be homeomorphic to OR(G) for some G (of course, 9 is orientable,

 irreducible, aspherical and r1(,) has trivial center)?
 INSTITUTE FOR ADVANCED STUDY
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