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A3:,T?P.C:I' NIIJ3RO!JPS OF FINITE P.BELIAN GROUPS 

Robert Dawson Martin 

This thesis deals wi.th the following proble.rn: given TI a f i ni.t;e 

abal.i.an group, compute ~ns_ (,~rr). Here Nl<:i_ (R) = Ker(IS_ (R[ t]) -►is_ (R)) 
wher-e the map is that induc2rl by 2.ugmentation. The group NK1(~n) 

appears as a direct su:rrrnand in the group is_(;1r1) where Tr' is 

finitely generated abelian and ;r is the torsion part of 1r'. 

These calculations consist of two parts. In the first parrt it is 

shown that NIS_\~rr):.: o for Tr of square free order. In the second 

we show th3.t otherwise the group rn<.1 (1T1) can be infinite. In par­ 

ticular we show that if l1r(p)l>p2 p odd and Tr(p) cyclic then 

NlS. (Zn) (p) is infinite 'tor-s ion and p-pr-imary · 

In addition seve.ral general facts aJ:out NK1 and NK2·are also proved 

and utilized in these computations. 

independent interest. 

i) 

The folJ.owjng results are of 

A surjective map of Art.in Rings R -s induces a sur­ 
jection 

ii) A surj cctior. of finite c:1.b'::!lfa.n groups n --->-E' 

induces a surjection NK1 (,Z;1T) --►NK1 (~;rr') - 

Some other examples are g ivan wher·e t:he hypotheses of the +heor-ems 

proved cannot be weakened and certain other examples for infinite 

Nrl(, 1 ·s arr=> D""~-+ ',.., ,,,-' L J. ..,.., ..,. ·.L .........,.._._u,_.._,J • 
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nrrRODUCTION ... ·- -· -···-· - .. ·== --- :--~. 

The purpose oi this thesis is the computation of nilgroups of finite 

cyclic groups. In order> to put these computations in their proper p~r­ 

spectivc we first r-cca l.L the definitions of the functors 1<0, l\ and K2• 

Let A be an associative ring with unity and denote by GLC.A) the union 

over all n of GL (A). Here we view G,L (A)cGL +l (/\) by the rmp , n n n . 

If e .. is the standard matr-ix unit, (i.e. the ijth entry of P- •• is 1, 
~ ~ 

a.11 other entries 0) we consider the subgroup E(A) of GL(A) generated 

by matrices of the form I +ae- , i+J. i,J· <n acA: It can be shown that n -iJ r ~ 
E(A) is a perfect group and moreover is the commutator• subgroup of 

GL(A). Consequently GL(A)/E(A) is an abelian group denoted K1 (A). 

An, at first seemingly unrelated functor K0(A) can be defined as follows, 

L2t P(A) denote the category o:f finitely generated projective A-modules. 

For each PsP(A), let ( P) denote the isomorphism class of P. Then MA, 

the set of all such classes, is a rnonoicl under the binary operntion 

(P)@(Q)= (RIQ), induced by direct sum. Since M11 is abe l i.an there exists 

an abelian group K0 ( A) and an additive IIB.p 0 A: MA>-\/A) , such that for 

all dd · ti' p 1 .... !1 >-D. '-111'""re G i· c. 0n1 abe Li.an group, ·there exists a ~- a lr l" _ V,?. l1B. ·:; . /( •.:,) es '--. ~ u.i - 

homorn .)..,...pJ-·1i· C'"M rfi • K ( /1) ,.r such thJ.t f-c1i )'" A s imi.Iar- const.r-uc Lion can ])P __ l '--.:, a.(.;.. . "'"' S • Q .!"i - i, , ( .. - al VI\.• 

ca_n..,ied out for srr.all ca+egor.i.es with a product ( [?.], [1?]). We~ shall 

par-t i.cu Lar-Ly e.:,act sequences relating these to yet a third functor K/\· 

(i) 



To defi.ne 'rr "' '-~ c Jn-·· le f. t t· l 'd t. . ,__ ., - ,
2 
... -.- ~ , ::,_Le. r .ar-s some _ -orrna 1 en i ties s.rt i.sf ied by 

E(A). 
a 

Eij :: I n 
identities. 

+ ae .. cE(A). 
1] 

Let 

Then one can easily veri.fy the following ,:, 

E<:. Eb .. = 
l] l] a, b s A 

2) 
1 if ifk, lfj 

a 1f1 J ={E°:b [E .. ' J] if j=J<: 
]_,Q,. 

We can then define the Steinberg group St(A) as the free group on the 

symbo'l.s i:-., asA subject to the relations 2) 
l] 

placing E':. ~ 
. l] 

epimorphism of groups St(A)+E(A). 

above with x':". re­ JJ 

from this def ini tio_n it is appar_ent that_ there is an . 

The kernel of this homomor>phir;m is 

an abelia,n group denoted K2 (A) ( [_7], [10]) • 

In the work of J. H. C. Whitehead a certain quotient group of 1S_ (A) wa.s 

found to contain valuable topological information when A = ZTT and ·n­ 

is the fundamental group of a c.W. complex. Since then in the work 

of C.T.C. Wall ( . [16] 
) and others ( see [11]) the computation 

of l<i (gn) has becO!lle of considerable interest to topologists. 

This corrmutation for an arbitrary group, n, is difficult. Of the 
k - 

little that is known in general, the nontrivial theorems apply to 

essentially thcee situations. 

1° 1r is finite. 
2° 

1
r is fin:i.telY generated and abeli.:m. 

3 ° 1T is a generalized fcee p1,oduct. 

(ii) 



i,: 

'"?:'1e r2su1-es rier-e apply to -the first tvio situations. In particular 

th2 study of K1 (Irr) for 1T finitely generzrted and abelian is rosed upon 

two cons.i.der-at i.ons , f ir-st; a detailed study of related questions when n 

is f irri.te , and second, considerations relating to the so called funda­ 

mental theorem of Algebr·aic K-Theory. Since the latter is easerrt ie.L 

for our purposes we recall briefly its statement. 

,! 

Let F be any functor from r-ings to abelian groups. Let t denote an 

Lnde tersni.narrt , If i:A[t}+A is the augmentation t l+l we define, 

3) NF(A)=Ker(F(A[t]~ F(A)) 

4) LF(A) =coker(F(A[ t]) EB F(A[t-,l'J )->-F(A[ t, t'.'." 1])) 

where the latter map is induced by the obvious inclusions. In this 

situation we have a natural decomposition 5) and a sequence 6) 

5) F(A[t])=F(A) EBNF(A) 

6) O+F(A)hF(A[t]) EB F(A[ t'-1 J -- F(A[t ;t""l] ~ IJf(A)-- 0 
In 6) o is induced by the map o:A->A[t]EBAh-1],c')(x)=(x,-x). · It is 

obvious from these definitions that 6) is exact, except perhaps at 

r(A[t]EBF([t-1]), and that the composition of any -i:wo morphisms is zero. 

Vie shall be concerned when 6) is a contractible complex of groups, 

'that is, when it is exact and p has a nat.ura.l sect ion. We call F 

contr,acted if for all r:i.ngs A this is the case. It follows that if 

F is contracted there is a naturaf. decomposition 7). 

7) F(A[·t, t .. 1]) =F(A) 8 NF(/\.) ffi NFA EB LF(A) 

,.,Je can now state the fundareerrta'l theorem ( [2], [12]). 

f1n~d?.,1Lental }'heor·em K0, K1, K2 are contracted funo'tors . 

is a nertur'a I iso:no:--phism LK.~K. 1 i=l,2. J. l- 

Moreover th2rc' 

(iii) 



Trii.s app l i.es not.ao'ly to the computation of F(];,r) when F=K i i=O ,1, 2 

and 1r is finitely generated and abo'l ian , One proceeds inductively 

on the rank r of TI. ·1r r<O then 1r is finite abelian and this situ- 

ation must be treated directly ([2],[S],fl3]). If r >O write 

1r = TI
0
;,.-'.l', where T is an infinite cyclic group ancl TI

0
has rank r-1. 

Then putting A=J~n O we have z·iT=A[ t, t-1]. By the f undamerrta L theorem 

we find 

This proceedu:re effectively reduces t.he computation of l\{{11) to the 

computation of F and related func tor-s for 1(TI0) • We , will be con- 

cerned particularly in the case n0 1.s finite (i.e. rvmk 1r=l). 
I 

To illustrate the ki.nds of questions we seek to cmi,wer about K/7:tTI) 

we re-':er> to the work of Bass and Murth~ ( . [ S] ) see· also 

([2] pg 663). TI1e investigation in ( [SJ ) began as an attempt to 

answer- the following question of Milnor ([3]_ pg 408). If TI is finitely 

generated abelian is Wh1 (TI) finitely generated? Here Wh1 (1r) is ·the 

quotient of lS_ (,7.~n) by the subgroup of GL1 (~TI) of elements of the form 

±g, gm. Since 1r is finitely genern.tecl this is essentialJ.y the same 

as asking whether K1(J,:rr) is finitely generated. For 1r of rank 1, 

this is a question as to finite generation of Ki (~,110h=O,l and 

tHS_ (k'rr0). F.i11ite generation for. Ki <1n0)i=O,l has been settled 

([13], [3] ) . As for 1rs cz~no) the questlon r-ema.incd unscrtt Led prior 

to this th2r:;if,. For rank: 1r>l, NK0(~n0) is a subgroup of K1(~1r0) and 

this qucs t ion w,1s completely settled by computing NKc/Z,110) · We ex­ 

p.l.io i.tLy describe t nese r-esu'Lts be Low. The p-pr irnsr-y st1bgroup of an 

(iv) 
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.!..._,';_: l. -r be finite abelian, then NK0 (Z1r) .i.s a countable 

torsion group. 

1) If I rr (p) l~P, then (NK0~,1T) \ptO 

2) If j 1r (p) l~p", then (NKO (I1T)) (p) lS infinite, 

3) Consequently NK0 (ZP) = 0 if f I TI I is square free. 
Although we cannot prove the analogue of this theoC'em with 1S_ replac­ 
ing K0, we have obtained partial results which we indicate as theorem B. 

-To~9r~ B Let 1T be as in the theorem A, then NK1 (=~1r) is a countable 
torsion group. 

1) 

2) 
If I 1T (p) ISP th~n (NK1z·rr\pto 
Tf'rr (p) is cyclic and 

P odd and I 1f Cp) 1~P/. 
or } then NK1(J1r) (p) lS infinite 

p=2 and 11Tc 11'~8 p' . 

3) Consequently NK1(Z.1r)=O if 11TI is squarefree. 

The approach we take in proving these results can be outlined as fol­ 

lows. We first prove 3) as theorem 2.1, this is simply an application 

of the functorialty of the NK. i=0,1 developed in section 1. To prove 
l 

2) we first show th-J.t a sur-jec t ion ·rr+1r1 of finite abdian groups rn-· 

duces an epinorphi.sm l'fl\ (~1r)->-NKi (gTI1) for i=O,l. This reduces 2) to 

the case wher-e 1r itself is cyclic of prurne power order. The proof of 

l) when 11 is not squarefree can then be handled using the machinery 

set up 1n sect ions 2 and 3. 

I would li}'.:e to take this opportunity to thank my tlesis advisor, HyTJ1an 

Bass, withcu.t wrDs8 patience, this th-~sis vou Id not have been written. 

New York August 1, 1975 

(v) 
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. 0 ?:C'elii---r.inaries on Car-tes ian Squar es 
.·- ·-·-- 

In thfr; section ,,e r'eca'l.I the representation of group rings ac:.; cartesian 

products. Most of the results here are well known. Recall that a com­ 

rr.utative square 1) of additive groups and homomorphisms is culled cart-­ 

esian if A = { (a1 ,a2 hA1}:A2 ! f (a· )-f (a ) } 11~2·2 .. 

1) 

J:::.Y~kJh1 In 1) above put A1 =A2 and A' = { 0} the:n if 1) is cartesian A 

is no+rring more than the direct product A=~ xA1• 

If in 1) above the groups have additional structure (e.g. rrings , k­ 

modules, k-algebras) and the morphisms preserve this additional s tr-uct'ur-e 

we speak of a cartesian square of rings, k-modules,k-algebras. Given a 

commutative square 1) we can defineµ homomorphism 

2) h: A xA -. ->A' 1 2 

Then clearly ker his the cartesian product of A1and A2 over A. We have 

proved: 

~--~~1 The comnutative square l) is car-tes ian iff the sequence 3) 

is exact. 

3) 

We no» can const'ruct the two princ.i.pa l. types of cartesian squares which 

are import:1nt in what follows. 



?Sa--u:'k: This pr·o_;:-osition will be used repeatedly in the following sit- 

ua.tion A, A' are rings and Sf two sided ideal of A' . Then, clear l.y 11) 

will be a carte.c;i-:in square of rings. 

fr_C)2f_ We must show that 12) is exact, 'that; .i.s ker- h = p1 xp2 (A) 

12) 
plxp2 h 

O --,A - - - A/_yf._ - -->- A' /_y; 

Let (a+if ,a') E ker h. Thus a+ =a' +5-f i.e. a-a' E A. This .irnpf.i.es 

a' EA. Since clear•ly (a+_:rf ,a') = (a'+ Sf' ,a') = p1 xp/z1') ,¥~ have 

p
1
xp/a) c ker h. Mor1eover p1 xp2 is c1mr:ly injective. 

f~~-~-~ In 0. 5 we let A = -~'TT where 'TT is a finite group. We put& 

the integral closure of ZTT in QTT and 5f = foE]T, j a(!}~ l,,TT} t11e · conductor 

from (!}to ~TT. Then !ff is non-zero ([2J pg 535) and the resulting 

square will be referred to as the conductor situation. 

We can use proposition 0.2 to produce further examples of cartes:ian 

squares via 

lr:9__p_Q_. 7 Letr) be A cartesian square of k-rnodul.es , and assume B is 

flat k-module. Then the square 13) is cartesian. 

13) 

Exactness of lti) and k-f'Iarneas of B iJ11pJies exactness of 15). 

Thus 13) is cartesian by proposition 0.2, and the natural isomorphism 

(A YA ) @, B~(A 0 B) x (A 0:i B) 
12 K lk 2k 

lit) 



2 

Sup?:::se. th:n: l) is car-tes.ian and f1 and f2 are sur-jcct ive . 

Tnen there exist subgroups a., of A such that 
l 

J_0ana =:{O} 
I .i, 

2° Ala, =!\1, Ala =A a 2 
3° Al a,~a)s = A 1 

conversely r;iven an additive group and two subgroups a and r, , the 
square 4) (all rrorphisms just quotient maps) is cartesian with f1 ancl 

f2 subjective. 

t+) A/an b - ·•-r.Va 
1 l 
Nb --->A/a+ b 

f0:_2,__gf: Assume that 1) is cartesian and put a. c: ker- p. . Then ker- 
I I 

(i)1xp2) =a,net;i,= {O} by proposition 0.2. Moreover p1 is sur-ject.ive . In 

effect let a, c A1 and consider f 1 (a1) i::A' , sud ectivity of r2 implies 3 
an a2sA2 

such that f2Ca2)=f1 (a1) and therefore an (c11,a1h:A such t.bat 

P1(a1 ,a2
)=a

1
• SiJnilarly p2 is surjective and ther·efore A1 = Ala, A/:A/o.2• 

Since f 
1 

and f
2 
are surjective A' is a quotient of A(say AIIJ ) , we have 

a COJrmutative diagram 5) with exact rows. By the "snake lemma" g is 

an isrnorphism hence fJ = a1+ a11.. 

5) 

6) 

O +A· 

11 

•+- Ala x A/ll+ Alf)+ O I .,_, 

II 
O ->- A -► A/ a x Al o , ->- Al a+ a ·-'" 0 

I - I ';t 

We note that k.er f.1 = pJ ( <t),:-! a . And that by syrrnnetry k:er ., 'l- ·,,_ 

1t) is cartes.ian by propos it ion 0.2. 



3 
7) 

8) 

A/gA y--+- A/fA+f,A 
2 

Of particular importan~e is the situation where, for a fixed rational 

prime p, we write. 

9) 

'Then; 

f(t) = x-1 

p-1 p-2 
g(t) = x + X. +.· .. +l 

n-1 
X = tP. 

10) 

A/fgA = Z1r =n 

AlgA = l[fnJ 

A/fA =Z1r = n-1 

A/fA+gA =~ n-l 

= 1· Z/ n 7fn the eye a.c group ,~ p 6A 

nth . r. -a pnimi.t ive p root of unity n 

(F = the fie1d with 1) elements). =p 

Under this identification the :irrage oft will play the role of a gen­ 

erator for m · respectively .. 7f 1 · in A/fgA, respectively in A/fA, 
n n-. 

A/fA+gA, and the role of Sn in A/gA. the rraps in 8) then becom~ re- 

duction modulo the obvious ideals. In the special case that n=l we 

notice that p
1 

is the (split) augmentation f1T1--+z.;,. 

Prop O. 5 Let~C AC A' be a adcli tive groups. Then the square 11) a.s 

car-tcs:ian, wh<?.r'e the vertical arrows a.re the quotient maps. 

11) 
A C A' 
t J 
Al:£' C A I /_y;' 
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lS) C -'>-A 0 B ->- (A 0 B) x (A ® B) ->-A 1 0 B k 1·k 2 k ·k 

Cor 0.8 
_c:_··-··-.-,---· 

Let l) be a cartesian square of rings and let T be a monoid. 

Then 16) is a cartesian square of rings. 

p [T] 
AiTJ _l ->A

1 
[T] 

P2[T] l lfl[T] 

A2 [T] ->A' [T] 

f}TJ 

!1:s£f_ ]JT] is free hence flat over k· .. 
Re~~~ This applies notably when T=~ or ~ when we recover A[T]=A[ t] 

-1 or A[t;t ]. 
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1. _Ca:-,te,~ian" Squc1re::, and Exact __ Seciue.nces 

In this section we present the irnportant exact sequences of algebraic 

K-theory within the framework of cartesian squares. With the nB. chin­ 

ery devoJ.pcd in the last section we show how to deduce the analogu!2S 

of these results for the functors HK. i=0,1,2. Our approach differs 
]_ 

somewhat from that of Bass ( [2] p 656 ) .in being less axiomrt ic , The 

methods we use allow us to prove 'these results with less 11~,J.chinc!ry. 

We begin this discussion with a definition. 

Definition 1.1 Let f:A ->-B be a rnonomorphism of rings and assume B 

admits a decomposition as a finite product of r:ings say 

1) 
n 

B = II B .• 
. l 
1=1 

If p. denotes the projection p. : B ->-B. and all of the composites 
l l l 

Psof '. l 
A +B. are surjective we call fa subdirect monomorphism. 

l 

We give some examples of this phenomenon. 

L){~~le 1.:-1 If a 1, .•• , an are two sided ideals in A then the mono­ 

morphism 2 ) 

2) 
n 
IT Akx. . l 
i:;1 

induced by the maps A/ a n ... na + /\/ a · ire; a subjinx:t monomorphi cw'. 1 n J 

In par-t i.cul.ar- if 3) 1s cartesian and D and p'.' are sur-ject.ive then ' ·, 1 .!. 

the map I\ x p
2 

: A ->-/\1 x /\.2 is a sul:xhrect monomorphism. 
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p 
}. 

/.:..;. >-A 
I 1 

3) P2 I fl 
+ s-0 + J_ 2 
A'2 --A' 

Example 1.3 If k is a flat g - algebra and f: A ->B is a subd.i.roct 

monomorphism, then so is lf) 

lt) f G<_v l : zk A0_ k ·>-BCXJ k. z z 

The importance of t:his concept: can be seen u1 the following tl1eorem of 

Milnor see ([0],[6] App 2) 

Theorem ' l . 4 Let 3 )be a cartesian square of rungs and assume either 

1) 

2) 

f and f are surjective, or 
1 2 

f 1 is surjective and p1 is a subdirect monorror phi.srn. 

Then there is an exact sequence 5) which is na'tur-aL in the category of 

cartesian · squares of rings. 

5) K2(A)+K2(A_1x A )·>-K?(A') ->-K (A)-i-K (A x A )-->-K A'-K A+K (A xA )+l< A' 
2 - l 11 2 l O 012 Cl 

The importance of this result is that is allows us to "approximate" the 

group~-; KL(/\)· via the intervening groups, which are in rmny cases be I: ter 

understood. By virtue of coro.l.Lary O. 8 w,~ can extend this result as 

follows (see also [2] pg 67lt) 

Theor-ern l . S Under e i th-'=r of th? n:n::othef,2S of 1 . 11 +her'e is an exact; 

sequence G) Natural in th2 category of ca1-,t2c,j an squares of r-mgs . 

6) Tri<2(A)>-H!<:2(A1x.A2)+ HK/A')->- tr1<1 (/\)->- :'fl<1(A1x:\2)+ Nl~l (A')+ 

hf>' (1"<)->- ),y,r ( '\ -,D )-• !,Tj;- ( /\ 1) , •'•ri · • · 1 '0 · r .. ~ ·2 · · 'o n 

Proof By cx-,ur>µle 1.3 and coro'lIar-y D.8 thee ca.r'lef,ian square '/) satisfi.-~'-, 
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the hyp::.ithes2s oi 1.4 if 3) does. We cun therefore uppJ.y 1.5 twice 

and deduce a homo;;:orphism of exact sequences 8). 

p [T] 
A2 r.TJ L.-+Al [T] 

7) P2[T] l lfl[T] 
AiTJ -->-A I [T] 

fiTJ 

This homorphism· is induced by the augmentation E: A[t] ->- A and therefore 

al] the vertical maps split. From this we deduce exac tness for the 

sequence of ker-ne Ls 6) . 

From this result we can recover the exact sequence relating to a 

surjective homomorphism f: A+ Ala. Define A(a) by the cartesian 

square 9). 

9) 

f A __ ___,. A/ a 

Then t'"' , ~r- °' t 1 h OTT' ,,i ·,,m J\ ·" >- ti(' a) ;::,·J.V•")l by J\ (a) = (a,a) .1.1 -·, 1:e,rc:; .L.::., c.. na. ·ura • om .. or:i:.,.,1J.~"•u-r, - •• o. ~ u 

wlri.ch ::: . .s sp.l i.t by both p1 .and p2. 
If we apply l. 't we ~~et an exact 

P1 
sequence 10) putrt.ing K.(A,a) = ker(K.A(a)--l-](.(A)) i = O, 1, 2 

l '. l l 

he easily deduce the exact sequence 11). 
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10 ) 

11) 

By virtue of the fact that cartesian products corrnnute with flat rose 

change (Proposition 0.7),we have that 

12) A[ t] ( a [t]) = A( a ) [ t J, 

and therefore can deduce an exact sequence 13), by the same method as 

The only thing we need to show is tha.t NK
1
. (A,a) = ker (K. (A[ t], a [t]) 

l 

->-K. (A,a.)) is a direct surrmand. TI1is follows from the coTirrutative 
l 

d.iagrarn 1 i~) • 

ll[) 

0 0 0 

i t t 
0-+ NK.(A,a.)-+ K. (A[t],a.[t])-+ K.(A,a) -➔• 0 lj_ l l ll 
0-+ NK.A(a) -. K. A( o: )[t]--->- 1<.A( a) ->- O lJ. l t .1i 
0 + NK.A --,>- K.A[t] ---- K.A ----) 0 ll l l ll 

0 0 0 

Here all vertical sequenc2s are split exact and induced by the 

projections and all rows except possibly the first row (of kernels) 
. ' ' 

a-::-'<~ split exact , 'I'her-efor-e the fir-st row of J_!r) is alrn spIi.t exact 

and we have established 13). 
Another n::::ult which we will requir-~ is the ability to oornpar-e 

ti:<:.(A,n) 2inJ NK.(A,{3) whencver o c; {3 ar-c icl22.1s in A. In this 
l l 

connect ion \-7~ have the f o'l Lowing result ( [ 10 l Vi~ S6) . 
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1)2?T<"!1_1_ l ~--~- Let a c {3 be ideals in A. Then there. are exact sequences. 

15) 
K/A/a, (3/a) + K

1
(A,a) + K1(A,~) + IS(A/a, (3/a) 

->- K
0
CA,a) + K

0
(A,/3) + K0(A/a, {3/a) 

16) NK/A/a {3/a) + NK
1 
(A, a) ·>- NK1 (A,{3) ->- N1<1 (A/a, {3 la ) 

->- NKO (A, a) ->-NKO (A, {3 ) + Nl<o (A/ a , {31 a ) . 

As was remarked above 15) is well known, 16) follows from llJ.) applied to 

ac{3cA and a [t] c ~ [t] c A[t] and by the splitting argument .inmed'iat e- 

ly above. 
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2. Res11lts on the Varii.shin« of Nilgrouns 
~-:--·--·- ··.- .. ~-------._ _- __ _,___ • ...=;;....~_:,;.~.-::.=-:--·--: .• ~-· ··=-. _l_ - ::::.-:::::.:.... •..• ..:-- -- .-.::;c __ -· - -~-:-- .. ---·-:; 

In this sect ion we. use the machinery so fur developed to prove some 

results concerrririg the van.i.sh.ing of the group NK
1 
(A). 

Ar1 associative ring A is called right regular in case A is right 

Noetherian and finitely generated right A-modules have finite pro­ 

jective d.imens i.on , The rm in result which we. require for thi~; db- 

cuss ion is due to Baas , Heller. Swan ( [4 J ) and Quillen 

( [12] ). 

Theorem 2.1 If A is rig:.-:: regular- then NK.(A) = O, i = O, 1, 2. 
- -- .-,----·-·.•·-· . . - l . -~-=--·-- -·-···--···-··~- 

We can now state the main result of this section. It i~, interesting 

to note that this theorem gives examples of r ings , A, which are not 

regular but for which NK. (A) = 0 i = 0,1. TI1e case i = 0 was already 
l 

known to fuss and Murthy but our method of proof will allow us to 

handle both cases at once. 

Theorem 2. 2 Let R denote the nth cycJotumic extension of the .irrtcger-a , n . 

and let Tr be an abelian group of order i 1r I . Then if I Tr I is square- 
free and either 

1 ) ( I 1T I ' 71) = l 0.[' 

2 ) ( ! 'ii j , n) = 2 and L1 -r n 
then HK. CR ,r) =O, i.=0,1. 

l !1 
,· 

Proof The D::,:,of ,-1i.ll be DY induction. If m 1.s a SCJ.tkl.YY.;f r-ee integee 

,.-;-2 riefi ne r ne lc:t:;tr1 9v (:-:i) -:0 b2 the number- of pt· ime fact.or-s of m. 

Suppos2 ': i: :-;t 9. ( j 1T I ) = l, ~,-,,, I "1 i .l ., ·, t.,.e.Jl. j I I .. :, '-• prurne p and we can obt.a.i.n 

the Ccn•tc-::::·,an SClU2X'e frn' :, TT 2) by te;-,c;ot:'ing the square 1) for f~Tf 
cl 



--~~---. -'·=-·---·--=--·· ====--~~~----- ~?.,..,, ::~-:_;)IN.>-• ; 
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with R ( 1 ·, o n s-2e GY::--~,-~.Li1,'Y • 8 and example O. Lt). 

l) 

R p 

l 
Z ->- r ~"'p 
l 2) 

R 1r ->- R ® R n n Z p l r, - 
R ->R 0 F 
n n ii =p 

Regarding square 2) there are two cases to consider, if hypothes:is 

l) holds 'then R and _Z_[ t J are linearly disjoint in C (tha.t is their n - p •= 

quotient f.i.e.Lds are). Therefore we can identify R ®Zff ] wit11 n -• D 

Since Rn® Ip~ Rn/pRn and (p,n) =l,P1 does not ramify in Rn thus 

J\/PRn is reduced and therefore regular. In case hypothesis ?. ) 

above holds and t ( j 1T I ) =l we have 1r cyclic of order 2 and R =R n 2m 

with (m, 2) =l. In this situation we can obtain the square for 

~TT 4) by tensoring the square for ,Z;rr 3) with Rn. 

3) 
Z1T--z r T ~ ~r2 

R 1r --· >-R n n 
Rf -->R+®F n n 2 

Again · 2Z, do· es not ramify in R unless t;,f'n R ® f since the prime =-= n n =2 

i8·a pte<lu::::t of fields. In either case the proof of 2.2 for 

Z( J ,r I) =l follows· from 

R np 

J~rmn::i 2. 3 Let 5) be a cartcsian square and assume tJn t 
·- -··-•::: __ ;--- ---·- --:-·.,,:_-;;:._ 

NK. (A ) = N1<. (A ) = NK. _ (A') =O(e.g,1\1,A2 and A' re.2:ulc1r) for i=O 
l 1 .1. 2 r+i 

or .i=L. Th'2n NK. (A) = .o. 
l 

I!.:22L If we apply rhen J. 5 to 5) we obtain an exact sequence 6). 

The exact.nesn of G) togethe:'.'' with the hypotlx:!ses .irnp.li.cs the result. 

5) 

A ----->-i\. 

I l1 y 'y 

1'\ ----';-A I 
''.) 



--~ 
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when 9, ( j 1r I ) -= r Her-e we write TT =TT x 1r' TI = a cyclic group of order: p 
p p 

where 9, ( j 1r i I ) = r-1 ( p, I •,r I ) = 1. If we tensoc 1) with R TT' we obtain the n 

cartesian square 7) 

7) 

R 1[ ---->-R TT 1 n n 

t t 
R 0 R 'IT I ->-R 0 z I 71

1 

n Z, p n = --p 

Under hypotheses 1) and 2) R ®z R "' R and .Q( l·n' I) = H j1rj )-1 therefore 
n d, p np 

the rings ad jacerrt to R ,r in '/) have trivial NK. by .i nduct ion. On the other 
ll l 

hand Rn® Zr~ u-~ a product; of fields whose characteristic p does not 

divide l TT I so Rn ®z; J~1r1 is semi.s.impl'e hence regular. We are done by 

lemma 2. 3. Note +hat; if 2 = ( n, I TT I ) the hypothesis L~fn cannot be re Laxed 
(see 3.9). 

'111is theorem which I proved in 1972 produced the first known examples of 

rings R which although not regular have NK1 (R)=O. '111is type of vanishing 

also occurs in the fallowing context. Let A be a Noetherian ring of 

Kru.l L dimension = 1. Assume that L:he integral closure B of A, in the 

ring of fractions of A is finite over A. In this situation 

Y!= {bsB I bB C A} is a nonzero ideal of B contained in A. We call¼' 

the conductor from B to A, and if {.'1:f = '(;" we call such A L:;t:mir1orrnal. 

By a s irni.Lar- technique vie can deduce the next r-esu L t. 

'I'heor-em 2. 5 L2.t A be senrinorrm.l , then HK. (A) = 0, i = 0, 1. 
-~_.;..•--·-··'----·•··--·:-:.-----:--_~-;:;:--:-- ]_ 

Proof Using th'2 notation above and proposition O. Lt we have a cartesicm 

square 8). Sine(; Bis the integral closure of/\, Krull dim. B == 1. 

Com;(<Iu2rrtly B/:f/ i::; finite, and s i.nce ~;- :::~ B/ Sf is r educcd . Th0re­ 

_foc,,3 Al:C is a lso fi.n.i.te and r-cduced . Consequent l y A/Sf and D/Sfare 



~,::.·oducts of -r12gular local rings thus regular. Since B is integrally 

closed it is also regular. We finish by applying Lerrma 2. 3. 

Fl) 
A C B 

l l 
AI_CC C B/5;" 

I2;~~nole _2. G In 2. 5 the· hypothesis that W ::_CC is essential to the 

theorem. Consider Jl2i] (Gaussian integers with even imaginary part), 

then ~[2i] has 1Ji] as its .irrtcgra L closure, but the conductor 2]Ji]:&:' 

is not its own radical, e.g. (l+i/ :: 2ic5:f'. WiLh this in mind 8) 

becomes 9). 

9) 

Z[2B · C 

""\ 
+ + 

I2 = 1J2iJ/2]JiJ C ]JiJ/2JJiJ 

Z[i] ~I 

By applying theorem 1. 5 to 9) we get NJS1 (0[2i]) = N1/J:2[d) 
We prove, in Chapter 3, that NK/IiEJ) = IitJ. 
J<r2IT1.al'l<:: We can produce examples of this phenomenon for all pr-iines p name} y 

the r,j_r,g Z + pZ[ l ] . 
L-~= =•p It also can be shown that if I ·i1 I = p the ring 

6d[p·rr] will also have large NK1 (Here if t = a generator', of 1T, or- 

S the rings described above arc! the subr-ings cons in ting of elements p 

of the form x =Z0 +. pZ1t + pZ2t
2 + ... +pZP_1tP-\zicZ:· 



15 

} ._1::xwanishing for NK
1 

_(Z,r) ._ ··-----.~---- ------ 

In this rather long section we prove 'the result; 1) and 3) alluded 

to in the introduction. We begin by recalling some fairly well known 

results about the functor K1• 

\.-Jhen R is a commutative ring the de+errrri.narrt homomorphism clet :GL (R)+ n n 

U(R) (units of R) induces a homorrorphism det :GL(R)-+ U(R) which upon 

abelianization induces a homomorphism Det: K1 (R)-►U(R) which is easily 

seen to be split by the inclusion U(R)C K1 (R). This resul.ts in a c1i-­ 

rect product decomposition 1). 

l) K1 (R) = SK1 (R) EB U(R) 

Here SK1 (R) denotes the kernel of Det. Applying this decomposi t.i.on 

to K
1
(R[t]) we obtain a similar decomposition for NK1(R) 2). 

To understand NK1(R) we study each summand separately. The less ex­ 

otic piece NU(R) is completely understood. 

P_n:mosition _3.L ( [2] pg 671) When R is commutative there is an Lso­ 

morphism. l + Nil(R)[t].t ~ NU(R). Consequent.Ly 

if R is reduced +hen NU (R) :: 0. 

Proof: If g(t)<JJ.il(R)[t].t then the: binomial theorem shows that g(t) 

.i.s rii.Lpot.ent , thi-3I'e'~f ore 1 +g ( t) is a unit congruerrt to l rrodul.o ·tR[ t J. 

Con'.1cc;..,cly if f(t)c.NUCR) then f(t):=:l (mod tR[t] ) and being a unit 
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thi:=:; forces the coefficients of ti i>O to all be nilnoterrt( [l] Chapt 1). 

The next proposit ion s~Y)W~, that when R is an integral group ru.ng 
tho.t NU(R)=O. 

Pronosition 3. 2 Let R be a,1 integral doma.i,n wi.th quotient field k, ·-·.::::· •·.;::;;:;:-· •-- -:. ..... --~--=-'--· .· ~ 

and TT a finitely genervrred abelian groLtp. Let TT 0 
denote the torsion part of 1r and assume; 

1) k has characteristic p and ( \1r0\ ,p)=l,or 

2) k has char-ac+er-i.s't i,c O. 

111en RTT is reduced. 

Proof'. In either situation above the Maschke theorem assures us that 
k1r0 is semi.simple hence reduced. Consequently Rrr0Ck:1r0 is also re­ 
duced. The theorem now fo l.Lows by viewing Rrr as a Lccal.i.zat ion of the 
r-educed polynomial ring Rtr O [ t O, ••• , tn] at the multiplicative set gen­ 

erated by t , ... ,t. o n 

vlith these results we can now concentrate our attention on the groups 

NSK1 (R). The cornerstone of this investigation is the following theorem 

due to Bass ([2] pg 685). 

Theorem 3. 3 Let R be a commrt-rt ive Ar+i.n ring. Then NSK.
1 
(R)=O. Conse- 

querrt ly , if S-->-R :is a ho:,tr.XrYJ~"'):·1ism vii th S cunmutrrt ivo and reduced Hien 

Using this result 1;-.'e can }-!l'.'O'Je an int:e-:--'-2sting r-esuL t concerriing 

~ TV for- A .... -1-..: r 1'·1· 1,ac: ···'2 - ..1.1.. ·- -. . .l.1l - .... o'--·' 

-r.:hen t11e. 'J'' ( r) . l r,2 .t. • 
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Let I c3en:Yte t:1,2 kernel of f. Then by (page ~), 11).) we have 

It is clear ( [10] pg 54) that the .irnage of the map cS is corrta.i.ned 

in the group NSK1 CR, I). Hence the result ·will follow if we~ show tha. t 
this latter group is trivial. Recall that NSK1 (R ,I) is the kernel 
of the map NSK1 (R(I)) ---+ NSK1 (R) induced by p1 in th~ car+esian 
square 4). 

R(I) ----+R 

!f) P1 J l 
R --PJI 

This square gives rise to an exact sequence of R-modules 5). 

5) 0->- R(I)->- R EB R+ R/I->- 0 

Here R acts on R(I) via the diagonal !:,.: R>- R(I). Thus when R is Noe­ 
therian, or more generally when I is finitely generated, R(I) is a 
finitely generated R-module. R Artin implies that R(I) has finite 
length as an R-module and is therefore also Ar-t.in. The theorem now 

follows from 3. 3. 

As an .inmedi.a to consequence of this we obtain 

Theore."'Tl 3. 5 ~- let a C {3 be icleaJ.s of a commutative r-mg R and assume 
thc1t R/ a is Artin. Then the naturaL homorrorphi.sm 6) is 

sur-j ect i.ve. 

6) NSK1(R,a) 

Proof. 1~! 1, 13) i.:hc::c•e is c.1~1 exact soquence , p2,t·t of hnich is 7). 
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ii ;, 
I 
I 

7) 

u . sing the natucality f t1 d · 
1 

• 2) bo 
o · ··· 1e ecomposr.::1on a ve we obtain the ex- 

act - sequence 8). 

8) NSKl (R,(.t') ->- NSK1 (R,{3) ->- NSr~ (R/a,{3/a) 

Since RI · 
· a is f\rtin then by 3.lf Rfa({3/a) is also Artin, therefore we 

have that NSKl (Rla,fJ!a):::O. 

In order t.o h h Jc ( ) . . . . . s a., t at t 0K
1 
z,,r 1s nonzero in many :interesting cases 

l t is con· - · t -- · · t b t · · veru.enr: to reduce thJ.S question --o one a. our varJ.ous special 

cases· The next result accomplishes this• 

Theorem 3 6 Let ,, · t · ' ' ., f' f · · _,_ b J · ··•--~ .~. · ,
0
-,. 1fj_ be a suriec .ave nonvmorpnism o mice a e .i.an 

groups . Then the induced map NK1 (gn0)·>NK1 (\\n1l is sur- 

jective. 

Pro f 
-:---2--· We consider the embeddings gnco'i of the integral group rings 
into their Il13Xll1Bl orders ( [H] pg 53). 1he unique extension of the 

surjection gTT
0
->- 'AYi cto the isuriectiOn .Q•o·• J2rr1 induces a surjective 

ho . · · · · • rrorrorphism e,
0
.,. e,

1 
of the integral closures . 1ett1ng .lai denote the 

respective conductors and f the suri ection of the rraidmal orders we 

clearly have that r<5s'cs;- Thus tl1e diagram 9) cormnutes- 

9) 

Heve ~,. . . . '''"Y" >"c•C I'r """ verucals cl enote the canoni,,~l quot tent .1c "'"'°' p, ,,or,o. om 
these consiclerntions it is clear tWl the cub,e 10) co.runutes- 11,is di­ 

agnim is by clef :i.nition a nonlOiCDPPhicS"'• of the car.•wsi.m1 square,; which 

oompPlsc the rrorrt and Md' faces of the cube, FunctorialitY of the 
exact sequences 

O
f 

1 
. 
5 
yi olds the co•cemrtat iw disgrnrn with exact rcMs 

11) .. 



~ I 

l~l 

10) 

NK2 ( 6',/ 5C O) NK1 (Jilf O) - NK1(giT0/ 5:f0) 

ll) l l l 
NK2 ( 6' / ~ 1) >- NKl (l,;n-1) >- NK1 (gn/Sf 1) 

Now in 11) both maps tl1<11ni->- Ni-s_1n/Sf i are trivial by virtue of 3.2 
and 3. 3. Moreover NK2 00! ~ 0 ->- NK2 0/ .'G"'1 is surjective by theorem 

3.4. By exuctness, the result follows by considering the dia[;ram 12), 

--------+ ~JK '/11 ---------->- ('1 k,J_.'. 0 

12) 

NK2 00/:f; 0 

l y 

With tho foll01.1ing fc,'-' c2sults we will be set to prove the. nuin result 

of this sect ion. 
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rings and assume e.i.t.hcr- 

l) f is surjective. O:>'. ' 

2) f is a subd ir-ec+ monomor-phi.sm , Cl,l) 
I : ' 

Let a and (3 be idealr:; sv t . f(a)::(3. '_;_'hen NKJ (A,a) "" NK1CB,S) 

Proof Und,-:;r> either of the hyoothese,3 above it is known ( [10 7 p~ 55, [ ::>] 

pg 1f8L\) t.hat ther2 1.s an .i.sorrorphi.srn -~ (A,a) "" K1 (B, S). As flat base 

change preserves .1 and 2 ,-;e also have in this si l:uation 

1s_ (A[ t J, a [ t]) ~ :Kl ( B [ t], (J [ t] .) . Co,r;:nuta.ti~ily of 13) plus exactness 

of the co'Iumns and all except possibly the first row yields the 

conclusion. 

0 

l 
0 

l 

13) 

0 ---> NK1r,a ) 
0 --->- K

1 
(A[t], a [t]) 

l 
0 -----r K

1 
(A, a ) 

l 
---->- K (B ~ ) 

l 
0 

>- NK (B {3 ) -->- 0 

l 
->- K1 (B [t], {3[t]) --->- O 

l 

0 

----->- 0 

Prcm.~J.8 Let llf) be a cartesian square of rings and asaume f1cmd r2 
surjectivc and A? reguJ.ar. Then N}'.'1. (A) ~ NK1 (A1, ker £1) 

F ~2 
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:~x)-: Sin:::~ 1,;) ..c .. :, car:esian f1 sur-j ect ive implies g2 sur-ject.ive , 

Sy inspection of the eza.ct sequence of ·the surjection g2 15) one d2duces 

NKl(/,) ~ 'l'' c~ 1,~-. a) -F~ +he .::,o 1 ··t '"'I'- . .. - 1,, ,1 ,,, ,E .. 1 02 ~r om ~ r, .. 0u .. arJ .. y O.L .-\
2
. 

15) 

sult. 

We can now give an examp'Le of a nonzero: NKJ for an .irrtegra'l group r .. mg 
I - 

and at the same time sr,ow that ( see tl1c;prem 2. 2) in pr ov .ing that 
) 

N1S_(Rn1r) = 0 when !1rj i<> square frc,e an
1

i (n,jnJ),.,2, th": hypother.Ls 
l tH'n cannot be deleted. Below we let n .I be a cyclic group of order p 

7 
f,-.xamili 3. 8 .. N1S_ Cg1r2xn1) is infinite tv-j::J-torsion when p=2. 

To see this we consider the car-tes ian square 16) . 

16) 

X TT2 --->- ~[i]1r1 

l 
The exact sequence of 16) reads in part 

17) 

l• c• _, 

Since I/ Tr 1 x Try is llY'tin and all other intervening r-i.ngs are reduced 

Ilic result w:i.11 f'o.l.Iov. ;:::c:::xu an explicit computation of tht:~ Latter: trroup. 

'I'o c:,,,,., ·'·'n-"'[· N"t·' 7 r·: .] ·,r ....) ,_,,.,__r.._.. .._ •-l • • "· '·~_"·-' L .L. l "!S .inf.i n.i.t e we:. apply 3. 8 to the cartes i.an square 

by ·~_c_ ..... ,·l,.'',,')"1·~~--;- __ ;;_·, lrr <.7-j-;-~n 7 [·'L] - " - ~ - ,:.'. 1 . -- _, .. ) - - ... 

97C 



19) 

ZJihl--->- =~[iJ 

l l g 

From 3. 8 we have t:x1 (Z[ilrr1) =Nl\ (Z[i], ker- g). Since 

I2 ~~=iJi]c.~I2[sJ ("Dual numbers" over £2) and g is just r-educt i.on 
modulo the ideal 2 ZJi], regularity of ?Ji] implies thc:1t 

rTrC1 (?Ji], ker- g )"':rK2 QJEJ) To complete this example v:•~ have only to 

show that NK2.[[sJ is infinite (a later quoted result will show that 

it is torsion. To see this we first quote a. highly non--trivial 

theorem of Va.r1 cler Killen ( 

TheoFem 3.10 Let R be a commutative ring. '111en K2CR[c]):::K2REfW(R) 

where; 

VCR) is an abelian group with the following 

presentation 

generators: d(r), rsR 

' I . I 
relations: d(r+r ·) = d(r)+d(r· ·) + F(rr ·) where (F(r)=d(r+l)-d(r) 

I I 
+ r d(r) d(rr ) = rel.Cr) 

' I p(r) F(r+r·) - F(r) + F(r ), 

"her-e is a na'tur-s.I sur-jcc+ion VCR-,. nR/~z.O{)(l<zi.l1ler differentials). It 

i.s bijective if 2 s R' or R is a perfec
1
; field. 

fr~ n.-c,r>/_.=Q (['.:;] D;; 71 )1•.'e have Nl<,,f[2:l - VC£2[t]) .. \'le show that ~ I, L·- 



c::_-_s latter gro,__,:_) ::_s :-:,::,:izero by considering the fundamental exact 

sequence for n C [ 9 J Theor-arn 5 7 ) 

'I'ly~g['C::irl~3 __ JJ. Let Y- --•.A ·>-B be hcmorrror-phi.sms of rings. Then the se- 

quence 20) is 

20) n -• 
B/K 

n -➔
BIA 

0 

For a definition 0£ the rnaps the reader .i s ref erred to (Loe. Cit. ) . 

= I[t] and using th: fact t1at nF/Z =O, 
=~2 "-" 

we have Stf' __ [t]/7' = nF [t]/fc ~£itl ([91 pg JJJ!J). Since 
=~'.l = ~:- 2 =~2 

Putting K = l'c, A = £,2, 3 

VC£itJ) -> nF [t]/Z is sur·jective this completes 3.9. 
,c=2 = 

We now turn to the proof o'f, the main result of this section namely 

.Theor-ern 3 .12 As::;u.:;:e ,::hat either p is. .odd and,n .> 2 or p is .even and 
·-- · _ _:.=:-_=·-------~•·_;. 

n ~3 then Nl<i(Z1\
1
) is infinite torsion. 

:_=--=---...::::..-_-:; .. ::==.=··~--=- -·::_ . ======== 
In the course of t::e proof we shall isolate certain other n~sults 

which are of indeper;dent interest. By the next result due to Bass we 

know ins_ (Zn) is 'toz-s ion for finite abelian TI. ( [2] p 648 ) 

Theorem 3. 13 Let AC B be a sutx:lirect rronomorphi.srn of rings with B 

a regular ring and e ssume mBCA for some rnc::z~- Then if T denotes a 

finitely generated ":::>:'~?::: ':rx:,:r:utative mono.id then any eJ cmerrt of 

L c.:. ker(K:L(A[T])---;-:::1 (A) h2-3 m0der dividing some power of m. 

By t.heor-em 3. 6 we c~:1 assu:,:2 n· = 2 if p is odd and r> ·- 3 if p = 2. 

_'t•J:J. 3. Fr -··:._. .,;:: ..:--: .. :;;·:•.--: l or +l.en thet'e 1.s a. na tur-a L L,omorphi sm 

( :~ •. , 
!,L 

Ti ) 
:-1 

}'K (T.> "f T) ]' 
''j '1 l, I -l ' l \. _ m n-_ m ·n ) n--1 



Under ei t her- of: t:-,e above hypotheses the ring R . n !C:! R 0 R n. Ther-efore mp m p 
cartesj an square 2:_) obtained by tensoring the square for ·z·ir ( 

- := n 

with R sat i.sf i.es ·:}!e hypo thea i.s of 3. 8. m 

0.7 ) 

1''.o:i:0cover a~_; f is }.:3-c reduction modulo p R m TT n-l the result fo l.Lows 

21) 

R ·1r ·--->- }( TI · m n m 
1

. n-_J. 

l f 
::,. r· · ·:r+ · ,.-y, R !, n---► I, . 1~ mo =-· D n-. m l , 

By cons ider.i.ng +hi.s situation with m = ? we get 

22) NK (Z,r n) !C:! m<1(Z,1r l' p __ Z!1r1.1_1) 1 =z .... n- 

Thus we can prove 3 .12 if we can show that the Latrer' group JS infinite 

under the hypo+hes i.s p odd,n > 2 or p = 2,n > 3. - 
'I'heorom 3 . 15 If p odd and n > 2 or p = 2 r. > 3 then NK1 (,"?:rrn-1' P.~1rn-l) 
---.·- ----···---- 

is infinite. 

We can assume that if p is odd n = 2 and if p = 2 n = 3 since by 22) 

and Theorem 3. 6 the natura.t IIBp 

23) NK1(z_,r. ,pirr:.K)-=»NK1(Z,TT .• l p_irr .. 1) - l - l - ,l- - l- 

is surjective. For the rest of this proof let rr1 denote a cyclic group 

of cdd prime order and 1r 2 a cyclic group of order' l~. 

z,r i can be embed:'le,:: ( sulxri.rec+Iy) in a 

Now Z1r. is a Z-order 
=i = 

in the serni.s irnp'Ie fl algeb:::0a .Q;rr i. It is well known ([llf J pg 63) 'that; 

maxiira l Z-orcle:l'.' (!} .. 
l 

Since 0. 
l 

.i.s rr.ax irra L 6\ is r.0,:,:,ecl:i.tar:1y hence r·egular ([Jt+:J p gt~). In this situ- 

ation w2 ;.uve a car-t es i.an souarc 23) wher-e Y,' . denoter; any 
- . 1. 

f} . :i d.:cal 
1. 

23) 

---~:rr. C rJ. 
-- 7 ., r :t. li'f_C e!I.Y1. 
. , l. J. 
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t\ I :tf'. ->- NKi 6'i, ~fi) --; NKl ( f,i'i) 
l . . 

Since !TT'.! 6'.C _2)r_. ([lt+J pg.6,3) 
l .L -- .. L 

we can take ~. :: I ·If • I e . . 
. l J. i Since 

q is regular the exact sequence of the surjection f2 24) yields 

~'. NK
1
( 6'.,CC.). 

. l l 
Moreover a direct comput::ition yields. 

25) 
e
1 

== 1,, x z'. [ r J 
~ = Z, x 1 x I [i] 

26) 

accorxri.ng to the scheme 2 7) . 

th .· f a primitive· p root of 1 

It is clear ·that NK2 <CY/-~1) is infinite since e\/-~1 maps surjective­ 

ly onto I-p [ c l (apply 3. t+). Moreover Dennis and Stein ( [ 8 J pg 14 ) have 

shown ·that NK2(g /11-~) is an infinite elementary two group of countable 

rank, hence NK2 (~ I 5.f2hs Li.kewi.se infinite. 

To complete the proof we notice that NK1 (~TT i '-~i) = NK1 ( (3 i, Sf" i) by 3 • 7 

and furthermore that NK1 Cf 1ri, pgTTi) maps surjectively to NK1 (g1\,~i.) 

by apply.ing 3. 5 ·to oZn. C ~c.. Thus we. have constn1ct:(-cd a cha.in of maps 
"~--" l. ·-"" l 

l\'K ( ,:,:;, 'r.C' ) ,~ '2 C< .• ~ _'f:, • 
.. .:L. 1. 

J2G), with 1. = :t 

NK,/ f 
1
[r:]) tt-- NK/F n[T]) 

,,. · l 3. ti t· 

'I 
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Combining 27) with theorem 3 .13 we see a surjection 

NK1 (Z,r} -➔ NK2 (rp[T]) which gives the following corolary 

Corollar_y_ 3. 16 Every element of NK
2 

(F [T]) i.s p-torsion c=p 

This does not appear to follow easily from the preserrtat ion for 

[8] ) . 
We can use theoreIT1s 2. 5, 3. 6 and 3 .15 to show if 1r 1s cyJ.ic and 

l~ ,t- I TT I t.hen NlS_Z~11 = 0 iff I 1r I is square free. TJ 1c t.roub'losome 

r'es trrirrt.ion lf r ! ,r I is. d1ie': to the fact +hirt '.th~ore.m 3 .15 docs not apply 

to the cyclic group of order 4. At the moment there is no indication 

as to NK1 ( ZTr) , TT cyclic j TT I = 1+ is nonzero or not. Also we have no 

.ind.icat ion as to the behavior• of rns_lTT for TT and elementary p- group 

of rank >2. To examine this case it suffices by 3. 6 to first look at the 

rank 2 case. We show next that the compor-tmerrt of Nl\ (i;rr) for TI 

elementary of rank 2 can be reduced to the study of a par-t ia'l converse 

of 2.5. 

Pro--12Q9ition _.3 .17 Let p be a rational prime and TI a cyclic group of 

order p. 'Then there is an isomorphism 

28) NlS_ CgTIXff) ·--NY].(~[ r Jrr, (1- r ) fi[ ( Jrr) 
(·~ r . . . . tht f . ·t· ) 11ere ~ is a pr-Irm.t i ve p roo · o . um .. y. 

P:r.vof We cons.ider: the cartesian square 29) for Z,11 x TT and note 'that; 

f1 is a split ep:imorphism. 

'c 
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Tt follows that the Nil exact sequence for f1 reads 

30) 0 -r-NK1 CZ,,TIXTi ,ker f1) ->-NK1 (~TIXTT) -->-NK1 (,Z';rr) 

by theorem 2.9 Nl<1(ZTT) = 0 hence, 

By excision s1nce f2 is surjective we deduce 

32) 

Sjnce the kernel of g2 is ( s-l)l[n,r the result is clear. Notice that 

NK1 f 2 is a c:.;urj ec t ive map, this is by cons i derring t.he Mayer V:i.etoris 

sequence of 29) and using the fact that the far right hand map is 

trivial 3 3) . 

33) 

Now the ring z[_n 
:NiS_ (~mm) ->-NS (11T) -►Nl\ (~JnTI) ·►NK1£p1r 

= R TT ·.·'.is the simplest example of the fa'i.Iur-e p 
of the hypothesis in 2. 5 that the order of the extension and that of the 

group be r·elatively prime. (Compare with example 3. ~l). We ask is 

NY-, CR 1r);iO ? We now turn to the proof of 1) in theore.in B Above . 
.. L p 

Theorem _3 .18) Let n be finite abelian and assume +bat: I TT (p) I= p then 
N't<1(~TT)(p)= 0. 

J-=:.s£..9i.. We can wr-i.te Z1r=Z1r1xn where TT is cyclic of order p and 
~-= = p p 

( ! rr 1 I , p) = 1. This allows us to express lTT as a cartesian product 3L1) • 

s-a primitive pth root of unity. 

i'r:,m the fact that (p, l·i) = 1 we deduce scmisimplicity for the ring· 

F ,rt, hence it3 reguJ.ari ty. The Nil exact; sequence fo:r 3Lf), is therefore 
"P 
'.::S'). 
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From the fact that passing to p - torsion is exact ,·:e r'ecover- 36) 

36) 0 -->-NKl (Z:rr) ( ) -->-NKl (_'0_,r 1 ) ( )~ NKl C~[ t In 1 ) ( ) ->-0 ·- p . ···- p - p 

Now for any Dedekind doma.i.n R with quotient field of c1:aracter.istic 0 

we have 

37) 

for any R or-der- tJ ::; Rrr. Hence .it follows that zir l , Z [ r ]1r l satisfy the 
hypotheses of 3.13 with Ba maximal order and m = \TI1 \. It follows that 

th2 groups NK1(_Z_TT
1)(p) and NK

1
(z[f}rr1)(p)are trivial (p,ITT1!) = 1). 
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A" \ 1 t th ..., vas remarked above the techniques developed here do not app Y - 
0 

e 

situation where 1r is cyclic of order 4 or elementary abelian of rank 

.::'_ 2 · If we could prove results analogous to those treated in 
th
eoreJTI B 

Concluding Remarks -·--·- -.--- --· -·-- - ~ 

f.B..rt 2) · we could prove theorem A with K 1 replacing 
To extend 

these r-es 1·t K t b come ava i. Labl,e c u s more knowledge of the functor _2 mus · e · · 

1:Je J l t a .so reITB.1 .... k that the techniques employed here will not extenc -o 

analogous r-esul.rs for NK
2
. This is because the Mayer...:,Vietoris r:equence 

( ) does not extend to K
3
. (For a discw,sion of this we refer 

the r'eader- t fJ r.1 • • • • K 'I-,i.., ~~ o , . 1"1. Swan. Excision in Algebraic - .11eOI"Y • 

Pure a rid App Li. ed Al l , . ge )ra 1, J.~171) 

Journal of 

Some in,te- r-es t.in g t · f f · d · th followll· ,er · opa.cs ·or urther consa eration are e 'b 

questions: 

D::ies a surjection TI ->- TI1 of finite gr•oups induce a surjection for 

rJKl C];rr) _. NKl (~TI i ) ? 

1) 

2) Same question for NK2• 

TT, TT1 are abelian? 

In particular what can be said D1 case 

It l 8 iou.Id be remarked her-e that an affirmative resv:mse to 2) or 3) 

telow in the abe l.i.an case would allow us to deduce the results alluded 

to in the first paragraph. 

3) Compute '{'; ( ·7 ) f · I 1,2 ,"..;11 or cyclic groups 

3gu.arefr2e? 

Ext.end the r-esurt s of ·this thesis to arbi.tra 1~y f · · t _ .arn. ·e groups. 

T_,_-. • r•. • ~ 'IT J_,; X 111 J .. tE.:~ squa.refree? 
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!'ind -,o· . · , . 
sccbona0ce nessese,c,ry and sufficient conditions on a ring A 

so t1 1at NK (f..1)-0 1 L - • 

Wa ~ r'erna .. rk her-e that 

H" llbert n • rsasa.s 

the tedmiques of sections 1) and 2) along >1i th the 

\ and Syzygy\theorerns allow us to as~:ert 
\ 

K. (A[T]) = 1(. (A) 
1 l 

i = 0 1 

for any f 
·initel.y generate/2 free commutative monoid and anY ring A satis· 

bying the hypotheses of theorems 2. 2 or 2. 5 • 

6) T 0 
what extent does this hold in gene1~al i.e. does 

Nl\ (A)=O i -1 m1-) Y HK
1 
(A[t] ):::0'? 
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