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ABSTFACT NILGROUPS OF FINITE ABELTAN GROUPS

Robert Dawson Martin

This thesis deals with the following problem: given w a finite
abelian group, compute NKiggﬁ). Here NKi(R)‘= Ker(Kl(R[t]) *Kl(R))
where the map ic that inducsd by augmentation. The group NKWQZ“)
appears as a direct sumand in the group Klggw') where 1' is

finitely generated abelian and w is the torsion part of w'.

These calculations consist of two parts. In the first part it is
shown that leggn) = o for m of square free order. In the second
we show that otherwise the group leggn) can be infinite. In par-

ticular we show that if Iwcp)[>p2 p odd and w(p) cyclic then

NKWQZH)(p) is infinite torsion and p-primary.

In addition several general facts about NKl and NKz'are also proved

and utilized in these computations. The following results are of

indeperdent interest.

i) . A surjective map of Artin Rings R —8 induces a sur-
jection NKZ(R) ~4NK2(S).

ii) A surjectior of finite abzlian groups Il -—Ii'
induces a surjection NKlggw)-**NKlggw').

Some other examples are given where the hypotheses of the thsorems
proved cannot be weakened and certain other examples for infinite

le's are produced.
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JLNTRODUCTION
The purpcse of this thesis is the computation of nilgroups of finite
cyclic groups. In order to put these computations in their proper per-

Spective we first recall the definitions of the functors KO’ Kl and K2

Let A be an associative ring with unity and denote by GL(A) the union

over all n of GLn(A). Here we view GLn(A)CGLn +1(/\) by the mp.

1) M k—»(gg)

If eij is the standard matrix unit, (i.e. the ijth entry of e.‘ij is 1,
all other entries 0) we consider the subgroup E(A) of GL(A) generated
by matrices of the form In-taeij ity i,j<n aeA. Tt can be shown that
E(A) is a perfect group and moreover is the commutator subgroup of

GL(A). Consequently GL(A)/E(A) is an abelian group denoted Kl(A).

An, at first seemingly unrelated functor KO(A) can be defined as follows,

Let P(A) dernote the category of finitely generated projective A-modules.
For each PeP(A), let (P) denote the isomorphism class of P. Then MA’
the set of all such classes, is é monoid under the binary operation

(PYD(Q)=(FEG), induced by direct sum. Since M, is abelian there exists
an abelian group KO(A) and an additive map (—)A:MA—r>KD(A), such that for
all additive map ‘E:MA- 5, where G is an abelian group, there exists a

homomorphism @:KO(A)-"G such that £=000,. A similar construction can be
carried out for small categories with a product ( [2], [121). We shall

Soe later there 1s an intimate relationship between 1(0 and Kl more

particulariy exact sequences relating these to yet a third functor KA.

(i)



To define }(2 5 2 consider first some formal identities satisfied by
E(A). If G is any group t ~ut [a,bl = aba ‘b ! for all a,beG. Let

a |
Eij = 1 + ae. ]El(/\) Then one can easily verify the following

identities.
2. = path
ij iy }
a, beA
2)

b 1 if idk, 1§
(2, By -
}f ab e s
o if )=k
12

Steinberg group gt(A) as the free group on the

We can then define the
the pelations 2} above with X?j re—

symbols X?j’ acA subject tO

n t‘ms deflnltlon it is ap
The kernel of this homomor’phj sm 1s

placing Ec;, . Fror parent that there is an

gpoup% qt(A)—*F(A)
) ( [7] HOD

eplmor'phlcm of

an abellan group denofed 1( (A

In the work of J.H.C. Whitehead a certain quotient group of K_L(A) was
found to contain valuable topological information when A = Zw and W
is the fundamental group of a C.W. complex. Since then in the work

y and others ( see [111 ) the computation

of C.T.C. Wall ( " [16]

become of considerable interest to topologists.

of K, (zm) has
an arbitrary groubs 7, is difficult. Of the
the nontrivial theorems apply to

1little that is known in general,

This computation for
essentially three oituations.

10 g is finite-

2% v is Finitely gener'a'tcd and abelian.
Jeralized free product.

50 ¢ is a gef

(ii)




ne results here apbly to the first two situations. In particular
the study of Kl(Zj) for 7 finitely generated and abelian is based upon
Two

considerations, first a detailed study of related questions when T

is finite, and second, considerations relating to the so called funda-
mental theorem of Algebraic K-Theory. Since the latter 1s essential

for our purposes we recall briefly its statement.

let F be any functor from rings to abelian groups. Let t denote an

indeterminant. If €:A[t1>A is the augmentation t bl we defline,

3)  NF(A)=Ker(FATtTIEL F(a))

W) LE(A)=coker(F(ATED @ F(ALE ™ )F (AT, £711))

whare the latter map is induced by the obvious inclusions. In this
situation we have a natural decomposition 5) and a sequence 6)

5) FCALtD=F(A) ®NF(A)

i

|
6) O>FASFAtD OF (AL ™) — F(A[—t,t‘“]}ﬂ LT(A)— 0

i
{
|
Tn 68) § is induced by the map 8:A>ALtI®ALt 11,6(x)2(x,-x). It is
obvious from these definitions that 6) is exact, except perhaps at

F(A[tIEF([t™']), and that the composition of any two morphisms is zero.

We shall be concerned when 6) is a contractible complex of groups,

that is, when it is exact and p has a natural section. We call ¥
contracted if for all rings A this is the case. It follows that if

T is contracted there is a natural decomposition 7).

7y FCALt,t 'D=F(A)@NF(A)YDNFADLF(A)

We can now state the fundamental theorem ( [27, [121).

Pandamental Theorem KO’ Kl’ K2 are contracted functors. Moreover there

is a natural isomorphism LszKi 1 i=1,2.

(1id)



T - JE M- o |
nis applies notanl

v to the computation of T(Zw) when F=K . i=0,1,2
and 1 is finitely generated and abelian. One proceeds inductively
on the rank r of w. 'If r=0 then w is finite abelian and this situ-
ation must be treated directly ([2]3,051,1131). If r >0 write

T = WOXT, where T is an infinite cyclic group and ﬂohas rank r-1.

Then putting A=Zm, we have Zi=Alt,t ']. By the fundamental theorem

wa find
8) F(Zm)=F(Ln) & 2E (G )@ LF (i ).

This proceedure effectively reduces the computation of I'(Zw) to the
coﬁputation of F and related functors for zﬁﬂo)- We .will be con-
cerned particularly in the case U is finite (i.e. rank m=1).

To illustrate the kinds of questions we{seek to answer about K, (Zm)

we refer to the wiork of Rass and Murth\J(, [5] ) see’also

([2] pg 663). The investigation in ( t5]' ) began as an attempt to
answer the following question of Milmor ([3) pg 408). If w is finitely
generated abelian is Whl(ﬂ) finitely generated? Here Whl(ﬂ) is the
quotient of Kl(zﬁ) by the subgroup of GLl(gﬁ) of elements of the form
+g, gen. Since T is finitely generated this is essentially the same

as asking whether X,(Zw) is finitely generated. TFor 7 of rank 1,

this is a question as to finite generation of Ki(gpo)i=0,l and
NKl(ZﬁO). Tinite generation for Ki(;ﬁo)i:O,l has been settled

(f133, [3]1 ). As for NKl(ZﬁO) the question remainced unsettled prior

to this thesis. For rank w1, NKU(gjO) is a subgroup of Kl(gno) and
this question was completely settled by computing NKO(ZFO)- Ve ex-
plicitly describe these results below. The p-primary subgroup of an

abelizn group v will b dennted T(p)"

(iv)



lev 7T be Tinite abelian, then NK, (Zm) is a countable

torsion group.

1) If |ﬂ(p)|§p, then (NKOQN))(p):U

. L e ¢ e e
2) If ]ﬂ(P)lg ,then (NKO(éﬁ))(p) is infinite.

3) Consequently NK,(Zm)=0 iff |n] is square free.
Although we cannot prove the analogue of this theocrem with Kl replac-
ing KO, we have obtained partial results which we indicate as theorem B.

Theorem B Let m be as in the theorem A, then NKlQéﬂ) is a countable
torsion group.

1) IflTr(p)]g:p thgn (NKl_z_;n}

Y . 3 : . (p)
2) Ifn(p) is cyclic and

podd and |m(y|>p o :
or } ‘then Nthéﬂ)(p) 18‘1nf1n1te
p=2 and Iﬂ(p)f2;8

3) Consequently NK, (Zm)=0 if |7| is squarefree.

The approach we take in proving these results can be outlined as fol-
lows. We first prove 3) as theorem 2.1, this is simply an application
of the functorialty of the NKi i=0,1 developed in section 1. To prove
2) we first show that a surjection ' of finite abelian groups in-
duces an epimorphisﬁ NKi(gﬁ)~»NKi(gﬁ') for i=0,1. This reduces 2) to
the case where T itself is cyclic of prime power order. The proof of
1) when 7 is not squarefree can then be handled using the machinery

set up in sections 2 and 3.
T would like to take this opportunity to thank my thasis advisor, Hyman
Bass, without whose patience, this thesis would not have been weitten.

New York  August 1, 1975
(v)
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Preliminaries on Cartesian Squares

In this section we recall the representation of group rings as cartesian

b b

¢

products. Most of the results here are well known. Recall that a com-
mutative square 1) of additive groups and homomorphisms is called cart-

esjan if A :{(al,az)aAleQ] fl(ai):fz(JQ)}.

1 L A
b) ]
22 PR
£, -
[&2”*2—"‘[.;\"‘

Example 0.1 In 1) above put A1=A2 and A'={0} then if 1) is cartesian A
is nothing more than the direct product A=A1XA1.

If in 1) above the groups have additional structure (e.g. rings, k-
modules, k-algebras) and the morphisms preserve this additional structure
we speak of a cartesian square of rings, k-moduleS, k-algebras. Given a

commutative square 1) we can define a homomorphism

. AL = -
2) h: AleQ. A h(al,az) fl.(al) f2(a2)

Then clearly ker h is the cartesian product of Aland A2 over A. Ve have
proved:
Prop 0.2 The commutative square 1) is cartesian iff the sequence 3)

is exact.

plpr h
3) 0 —n —= -———*Ale ?-«>A'

We now can construct the two principal types of cartesian squares which

are important in what follows.



Pomark: This trotosition will be used repeatedly in the following sit-
uation A, A' are rings and & two sided ideal of A'. Then clearly 11)

Will be a cartesian square of rings.

Proof We must show that 12) is exact, that is ker h = plXPZ(A)

PPy h
12) 0—hA ——5 A/~ AV /E

Let (at¥,a') € ker h. Thus at =a'+t+¥%i.e. a-a'e A. This implies
a'eA. Since clearly (a+¥,a') = (a'+t%,a') = plxpz(a') we have
plxpz(a) g ker h. Moreover D XP, is clearly injective.

Example 0.6 In 0.5 we let A = Zm where 7 is a finite group. We put®
the integral closure of Zm  ip Qn and 55’:»{a§;n|ag?g;gﬁ} the'condﬁotor
from @to Zr. Then % is non-zero ([2} pg 535) and the resulting

square will be referred to as the conductor sitvation.

We can use proposition 0.2 to produce further examples of cartesian

squares via

gggg 0.7 letl) be A cartesian square of k-modules, and assume B is

flat k-module. Then the square 13) is cartesian.

Pl@:’ 1
) g
13)  P,®L f,© 1
£, @
278 A® B
A, BB Uk

Proof  Exactness of 1) and k-flatness of B implies exactness of 15).
Thus 13) is cartesian by proposition 0.2, and the natural isomorphism

\ e <) o~ w A, QT
(8 %A,) & B(A, &, B) x (A, & B)

1) 0 -.»Aw;AleQ-»A'



ron. 0,3 Suppese that 1) is cartesian and fl and [ , are surjective.
Then there ezist subgroups ai, of A such that

N0 -I'n

i°aNa ={0}

o] =N -

20 Ma, =), Ala =A,

3° A/a‘»bax: Al
conversely given an additive group and two subgroups a and b , the
square 4) (all morphisms just quotient maps) is cartesian with f1 and

~

f, subjective.

1) AlaN b ---A/a
| !
Ay —A/a+ Db

Proof: Assume that 1) is cartesian and put a,= ker D - Then ker

(plxp2) :a'ﬂ a = {0} by proposition 0.2. Moreover Py is surjective. 1In
effect let a,c A; and consider f,(a )eA’, surjectivity of {,, implies E
an a2€A2 such that f2(a2)=f1(al) and therefore an (al,al)e/-\ such that
Pl(al,az):al. Similarly P, is surjective and therefore Al = Ala, AzzA/az .
Since f 1 and f2 are surjective A' is a quotient of A(say A/} ), we have

a comutative diagram 5) with exact rows. By the "snake lemma" g is

an ismorphism hence § = a+a,.

0~ A ~Aa xAbxrA/h>0

5) |l le

8) 0> A~ Alax A/(Il* A/(ITCI;\ 0

Renmark:  We note that ker fl = Py ((}Qﬂa, 5 Bnd that by symmetry ker

= pz(ker p])z ker Py Converszly the exactness of 6) implies that

Kol

RN ?

4) is cartesian by proposition 0.2.

Zrample,

i Let A =20t] and F, g ezlt] satisfy 7), equivalently

famd g have no common prime factor). Then the square 8) 1s cartesian.



7 FANZA = fgA
Py
8) A/fg[\ ~A/FA
Py | U
A/gh > B/ fA+gA
2

Of particular importance is the situation where, for a fixed rational

prime p, we write.

fi(t) = %1
p-1 p-2
9) gty =x  +x  Fetl
pnfl
=t
Then; %
A/fgh = zr m = the eyelic group Z/pqé
3 c e n th .
10) A/gA —:é[fn] - §-@ primitive p root of unity
A/fA  =Zm
A

AJEA+gA Egg‘n_l sz‘: the field with p elements).

Under this identification the image of t will play the role of a gen-
erator for ﬁ%irespectively ”nn_l'in A/fgh, respectively in A/fA,

A/ TArgA, and the role of fn in A/gA. the maps in 8) then become rc-
duction moculo the obvious ideals. In the special case that n=1 we

notice that 1 is the (split) augmentation gﬁl—fg.

Prop 0.5 Let%CACA' be a additive groups. Then the square 11) is

cartesian, where the vertical arrows are the quotient maps.

A C At
11) \ \:
ASg C AYE



13 SA® B > (A6 ¢ (A, 6, B) A
5) 0 A® B > (A0 B) x (4,0, 8) »A'®, B

Cor 0.8 ILet 1) be a cartesian square of rings and let T be a monoid.

Then 16) is a cartesian square of rings.

P_[T]
1 4 [T]

A2[T]

P, [T] l lfl[T]
A,LT] A" [T]

fz[T]

Proof Z[T] is free hence flat over Z.

Remark This applies notably when T=N or Z when we recover ALTI=Alt]
.

or Alt,t



1. Carteslan Squares and Exact Sequences

In this section we present the important exact sequences of algebraic
K-theory within the framework of cartesian squares. With the machin-
ery devolped in the last section we show how to deduce the analogues
of these results for the functors NKi i=0,1,2. Our approach differs
somewhat from that of Bass ([2] p 656 ) in being less axiomatic. The
methods we use allow us to prove these results with less machinery.
We begin this discussion with a definition.

Definition 1.1 Let f:A »B be a mopomorphism of rings and assume B

admits a decomposition as a finite product of rings say
n '
1) B :.H B, -
1=1

If P; denotes the projection p; * B —>Bi and all of the composites

piofx‘. : A +Bi are surjective we call f a subdirect monomorphism.

We give some examples of this phenomenon.
Dramole 1.2 If ay,...,a are two sided ideals in A then the mono-

morphism 2)
n
2) Ao NN~ 1] A,
1 n . 1
1=
induced by the maps A/ Cic N.. .ﬂan > N« i 1s a subdivect monomorphism,
In particular if 3) is cartesian and p, and p, are surjective then

the map p; X p, : A —>A] x /\2 is a subdirect monomorphism.



A T
t
1
¥y +
A 2“"'—4'.-—“'*/\ !

gffﬁgffwéw? If X is a flat Z - algebra and f: A »B is a

subdirect

monomorphism, then so is U4)

1) fo 1l ARk -B® k.
YARS 7, 7

3

The importance of this concept can be seen in the following theorem of

Milnor see ([0],[6] App 2)

Theorem 1.4 Let 3)be a cartesian square of rings and assume either

1 f1 and f2 are surjective, or

2) f1 is surjective and Py is a subdirect monomorphism.

Then there is an exact sequence 5) which is natural in the category of

cartesian- squares of rings.
K (A e 1Yy —K (A . A i, . ' ¢ Ao - '
5) 1(2(!\) KQ(Alx AQ) *KQ(A ) >‘<l([';,, »}(l(Alx A2)>}<lA _'+}\0A>K()(A]_XA2))-K0A

The importance of this result is that is allows us to "approximate" the
groups Kl(A)*Via'the intervening groups, which are in many cases belter
understood. By virtue of corollary 0.8 w2 can extend this result &as

followa (see also [2]1 pg 674)

Pl

Theorem 1.5 Under either of the hypotheses of 1.4 there is an exact

soquence 5) . Natural in the category of cartesian squaves of rings.

6) nh,(A)>“v (n AA ) TK (A")> 4V (A)> NK (A <A ), NKL(A')+

NS . N A SN S N !
NiC () M (A ) WK (A1)

Prqu By esamble 1.3 and corollary 0.8 the captesian square 7) satisfies



the hypotheses or 1.4 if 3) does. We can therefore apply 1.5 twice

and deduce a homomerphism of exact sequences 8).

SP

p. L
a1
A2[1] -~_Jﬂ§l[T]

7) p2[T] J 1f1[T]
AQET]

A}Al [T:]
f2[T]

S ey % N 5 tr. ~><_ . >, ",,,’/\ AY )
h2§ALtJ) hz((AleQ)Lt]) KZ(A (th }l(A[t] kO(A Lt
8)

4
Ky(A) — K, (A3A) ——— K (A1) — K (A) ».. oK (A")

This homorphism'is induced by the augmentation e: Alt] -~ A and therefore
all the vertical maps split. From this we deduce exactness for the
sequence of kernels 6).

From this result we can recover the exact sequence relating to a
surjective homomorphism £f: A -+ A/a . Define A(a) by the cartesian

square 9).

Py
Ala ) — A

» P, £

A.—E;—wa'A/a

Then there is a natural homomorphism A:A + A(a) given by A(a) = (a,a)

which is split by both pl.and D If we apply 1.4 we get an exact

)
Py

sequence 10) pulting Rﬁ(Aq o) = keP(KiA((Y) >K1‘A)) i=0, 1, 2

we easlly deduce the exact sequence 11).



10) KQ(A ) - KQ(A X A) » KQ(A/a ) > Kl(A(Cl))+... > KO(A/a )

1) 0> Ky(h, e = K, (A) 2K (A/a) 55 (A, @) > K (A)7K (A/a)>. K (M)

By virtue of the fact that cartesian products commute with flat base
change (Proposition 0.7),we have that

12) Alt] (alth = ACa)[t],

and therefore can deduce an exact sequence 13), by the same method as
in 1.5.

13) 0 > N (A, 00) -NK,(A) SNK, (A7) - NK (8, @) > NK, (A)

> NK1 (Al ) -~ NKO(A,Cl) > NKO(A) +‘NKO(A/U ).

The only thing we need to show is that NKi(AJX) = kepr (Ki(A[t],CYFT])
+Ki(A,a)) is a direct summand. This follows from the commutative

diagram 14).
0 0 0}

l } }

0> NK. (A, ) » K, (Alt], a[t]) ~ K. (A,x) > 0
1 1 ] 1

0+ NK.A(x ) — K. ACa)[t] —— K A(a) — 0
1 L : 1

1

1)

0 - NK.A - » KAlt] ———— KA ———> 0
1 1 l ll o
‘ Y
0 0 0

Here all vertical sequences are split exact and induced by the
projections and all rows except possibly the first row (of kernels)
are split exact. Therefore the first row of 14) is also split exact

and we have established 13).

Another result which we will requira 15 the ability to compare
NKi(A,<Y) and NKi(A,B) whenever a C 8 arc ideals in A, In this

connection we have the following result ([10] ng 56).



i

10

iyle) em 1.6 Let ¢ Cf Dbe ideals in A. Then there. are exact sequences.

-+ Ko (4 - A ] /e )
K, (a/a, Bla) > K (&) K (8, B) > K (A, fla

15)
> K (A a) > Ky (A, ~ K, (M, B/e)

16y MK (A/a B/or) > NKj (B, @) NK, (A, ) > MKy (A/e, /e )

> NKO (A, ) -NK, A, B) > NKO(A/a , Bla ).

AS was pemarked above 15) is well known, 16) follows from 14) applied to
acfBcA and alt] c B [tlC A[t] and by the splitting argument Ummediate-

ly above.
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11ts on the Vanishing ™ of Milgroups

In this section we use ths machinery so far developed to prove some
results concerning the vanishing of the group NK._L(A).

An associative ring A is called right regular in case A is right
Noetherian and finitely generated right A-mcdules have finite pro-
Jective dimension. The main result which we require for this dic-
cussion is due to Bass,Heller.Swan (  [4] } and Quillen

¢ [i21 .

Theorem 2.1 If A is right regular then NKi(A) =0,1=0,1, 2.

Ve can now state ths main result of this section. It is interesting

to note that this theorem gives examples of rings, A, which are not

.

regular but for which NKi(A) =041 =0,1. The case 1 = 0 was already

known to Bass and Murthy but our method of proof will allow us to
~handle both cases at once.

Theorem 2.2 let Rndeno_te the nth cyclotomic extension of the integers,
and let 7 be an abelian group of order |w|. Then if || is square-

free and either

V rl, n) =1 or

N

~’

~—~

o)

~
1

2 and 4+n
then NK. (R _w) =0, i=0,1. ,
1 n

Proof  The proof will be by induction. If m is a squarelree integer

we defins the lenstn 20n) *o be the number of prime Factors of m.

1, then |

s
il

I is & prime p and we can obtain

-

the cartesian square for 7_7 2) by tenzoring the square 1) for Znm



| — — I
. ,_-:_;{4.}; H X,‘ é
e . ! ; j‘
LI
iE

12 ;

with R (see corollarvy 0.8 and example 0.4).
n

Zmw > R Rnw —> Rn ®7 Rp

| ] S

Y
A R, DR L

Regarding square 2) there are two cases to consider, if hypothesis

1) holds then R and Z[ {1 are linearly disjoint in C (that is their
e e} == p =

Therefore we can identify R & yAKS ?_i with Rnp

quotient fields are).
. . . %
Since R ®F =~ R /pRn and (p,n) =1,PZ does not ramify in R thus 2
no=p n .
Rn/pR is reduced and therefore regular. In case hypothesis 2)
n
above holds and & (|w]) =1 we have T cyclic of order 2 and R =R,
With (m,2) =1. 1In this situation we can obtain the 'squar*e for
RnTT 4) by tensoring the square for Zm 3) with R .
_Zi'” ————f>_7;_ 1) Rn'lf ; .r_f\n :
3) ¥ Rt _rler :
{ —1 RO :;

' Fy s ifn R ®F
Again since the prime 27 does not ramify in R unless Lin R ® E,

i¢'a produst of fields. In either case the proof of 2.2 for

2(|m]) =1 follows from
lemma 2.3 Let 5) be a cartesian Square and assume that
S5 2.0 B , A and A' regular) for i=0

NK. = ¢ = (A") —O(e.g.A 28 joA | l
Ky (Al) Nl\i(Az) M<‘i+l 1289 |

or iz1. Then NKi'(A) = 0. {
on 1.5 to 5) we obtain an exact sequence 6). !

! ) - +he .1 +he hypotheses dmplics the result.
" The exactness of 6) together with the hyr |
> exactnass of 6) toge |
|
A - > [’\1 :
E r At SNV = {. )
, 6) N‘Kiﬂ (A") m}\i(A) >N}’l(/\1 /\2)
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2 rext consider the general cas
when £(|n|) =r Here we write 7 =T, X ! Ty = eyelie group of order p
vhere (|w'|)= r-1 (p, |n]|)= 1. If we tensor 1) with R m' we obtain the
cartesian square 7)
R iR '

7 l
Rn ®ZRP1T -——>R ®. z F_Pﬂ

<—3

Under hypotheses 1) and 2) R ®7 Rp" R - and 8(|a']) = 2(}7])-1 therefore
the rings adjacent to Rnﬂ :Lr} /) have trivial NKi by induction. On the other
hand Rn(>l<> 7L 1s a product of fields whbse characteristic p does not

divide |7] so P‘n®7 %}w' is semisimple hence regular. We are done by

lemma 2.3. Note that if 2 = (n,|m|) the hypothesis h cannot be relaxed
(see‘3.9).

This theorem which T proved in 1972 produced the first known examples of
rings R which although not regular have NKl(R):O. This type of vanishing
also occurs in the following context. Let A be a Nostherian ring of

Keull dimension =1. Assume that the integral closure B of A, in the

ring of fractions of A is finite over A. In this situation

¥

{beB|bB C A} is a nonzero ideal of B contained in A. We call %
the conductor from B to A, and if ’E/g =% we call such A seminorimal.
By a similar technique we can deduce the next result.

Theorem 2.5 Let A be seminormal, then _F*IKJ._(A) =0, i =0,1.

Proof  Using the notation above and proposition 0.4 we have a cariasian

4
L.

square §8). Since B is the integral closure of A, Krull dim. B = L.
s .. . B~ ¢ . _—
Consequently B/% is finite, and since \/52 =¥ B/%is reduced. Tnere-

fore A/%1s also Finite and reduced. Consequently A/g and B/ % are
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sroducts of regular local rings thus regular. Since B is integrally

closed it is also regular. We finish by applying Lemma 2.3.

A C B

) l l

Al C B/¥

Example 2.6 In 2.5 the hypothesis that Y& =¥is cosential to tha
theorem. Consider 7Z[2i] (Gaussian integers with even imaginary part),
then Z[2i] has z[i]l as its integral closure, but the conductor 2Z[il1Z
is not its own radical, e.g. (lw‘i)2 = 2ie¥. With this in mind 8)

becomes 9).

7241 C  2lil

¥ ¥

E, = 2[2i1/22001 C Z01/22080 = E L] (¢7=0)

By applying theorem 1.5 %0 E;) we get N=1§1(=Z[2i]) = Nﬁz(gz[e])

We prove, in Chapter 3, that NK2(£2[E:]) = =—E2[t]'

Remark: We can produce examples of this phencmenon for all primes p namely
the ring 2 + pal{ p'_l, It also can be shown that if |w] = p the ring
Zlpr] will also have large NKl- (Here if + = a generator of w, or

{ the rings described above arc the subrings consisting of elemerils
p

~ > 2 p-l P I
£ the for = + pZ,t + t Z.ch.
of the form x 4y +. let k pz.,zt ... pr_lL , lz:j__



3. Moanvanishing for NKlw(Zﬂ).

Tn this rather long section we prove the results 1) and 3) alluded

to in the introduction. We begin by recalling some fairly well known

results about the functor Kl'

When R is a commutative ring the deterrinant honomorphism detn:GLn(R)+
U(R) (units of R) induces a homomorphism det: :GL&R)+ U(R) whichi upon
abelianization induces a homomorphism Det: Kl(R)+U(R) which is easily
seen to be split by the inclusion U(R)CﬁKl(R). This results in a di-

rect product decomposition 1).

N _ X
1) Kl(R) SKl(R)(B U(R)
Here SKl(R) denotes the kernel of Det. Applying this decomposition

to Kl(R[t]) we obtain a similar decomposition for NKl(R) 2).

2) NKl(R) = NSKl(R)GB NU(R)

To understand NKl(R) we study each summand separately. The less ex-

otic piece NU(R) is completely understood.

Proposition 3.1.([2] pg 671) When R is comutative there is an iso-
morphism. 1 + Nil(R)[tl.t = NU(R). Conscquently
if R is reduced then NU(R)=0.
Proof: If g(t)eNiL(R)[t].t then the binomial theorem shows that g(t)
is nilpotent, therefore 1tg(t) is a unit congruent to 1 modulo tRlt].

Conweraely Lf £0)eNU(R) then F(1)21 (mod tR[t] ) and being a unit
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this forces the co=2fficients of t— i>0 to all be nilpotent([1] Chapt 1).

The next proposition shows that when R is an integral group ring
that NU(R)=0.

Proposition 3.2 Let R be an integral domain with quotient field k,

and 1 a finitely generated abelian group. let T
denote the torsion part of m and assume;

1) k has characteristic p and (|my[,p)=1,o0r

?2) k has characteristic 0.

Then Rm is reduced.

Proof.In either situation above the Maschke theorem assures us that
]cnU is semisimple hence reduced. Consequently RWOC:kﬂO is also re-
duced. The theorem now follows by viewing Rr as a localization of the
reduced polynomial ring Rwo[ to,...,tn] at the multiplicative set gen-
erated by to""’tn'

With these results we can now concentrate our attention on the groups

NSKI(R). The cornerstone of this investigation is the following theorem

due to Bass ([2] pg 685).

let R be a commrtative Artin ving. Then NSK,(R)=0. Conse-

quently, if

S—R is a honomorshism with S cummutative and reduced then
HK, (8)-—1K, (R) is zero.

Using this result we can prove an interesting result concerning

i

) for Artin vings (oompare [31, po 12 thru 27).

tet £: RS ke a surjeative homomorphizsm of comnutative

Artin rings, then

TNS Inoasal Onomd:

HKz(R}—M%((S) is surjactive.
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?rocf, Let I denots the kernel of £. Then by (page 9, 11).) we have

S .

3) NK? (R} ——1X, (8)——~> 1~11<1 ( R,1)

It is clear (L2101} pg 54%) that the image of the map § is contained
in the group NSK._]‘(R,I). Hence the result will follow if we show that
this latter group is trivial. Recall that NSKl(R ,I) is the kernel
of the map NSKl(R(I)) —e NSKl(R) induced by 2 in the cartesian

square 4).

1) Py
J i
R — R/I

This square gives rise to an exact sequence of R-modules 5).
5) 0> R(I)» R® R+ R/I> 0

Here R acts on R(I) via the diagonal A: R» R(I). Thus when R is Noe-
therian, or more generally when I is finitely generated, R(I) is a
finitely generated R-module. R Artin implies that R(I) has finite
length as an R-module and is therefore also Ar't_in. The theorem now

follows from 3.3.
As an immediate conseguence of this we obtain

Theoren 3.5. Iet aC B be ideals of a commitative ring R and assune

that R/« is Aytin. Then the natural homomorphism 6) 1s
surjective.
6) HSK) (R,) ~ 118K, (8,0)

Proof. By 1, 13) there is an exact sequence, part of vhich is 7).



n) T ko) b
M Ry Ky (R, f3) NKl(R/a,B/a)

U%ln
g the naturality of the decompositl n 2) above we obtain the ex-

st
C L qequ-c"llk oo 8 )

8) oy
NSK, (R,@) > NSK, (R, B - NS}';l(R/a,ﬁ/a)

Sine
e R/q is Artin then bY 3.4 Rla(B/a) 15 also Artin, therefore we

have tha ‘
that NS}\l(R/a,ﬂ/a)ZO-

In

ord . - . . . .

. er to show that NSK (Zm) 18 nonzero 1 mary interesting cases

it is .
convenient to reduce this ques

hes this.

tion to one sbout: various special

cas
es. The next result accomplis

The : e
leorem 3.6 Let 7y :rl be a surjective horomorphism of finite abelian :
map NKy (Zmg )>NKy (Zm) is sur- 7

groups. Then the induced 1

jective.
gs ZnC ﬁ. of the integral group rings
xtension of the

Pro
Proof. We consider the embeddin,
The unique €

induces a surjective
: i
denote the !

orders wWe

lm:(.) their maximal oradepg ([14. PE 63) -
Surjection Zmy> 27 7 to the surjectlon Qg™ A
homomorphism ﬁ - ﬁ of the 1ntegfa1 c
respective LOndUC‘tOI’S and £ the suJ tection ©

cl
early have that f (5{’)(: j Thus the

losures . Letting SZi

£ the maximal

diagram 9 y commutes.

7 7
9) 0 , 17
A G 14 ’

o vanonical quoneﬂt hdmomorph:i_sms . From
1ear that +he cub2 10) ¢

Lulﬂf

omnates. This di-

1 squares which

Ho:
HNepre th
the verticals denote the

these considerations it 38 &
agram is Ly definition & hOMOTOLDH e carteslal
ok faces of the cube. 1-‘1mc’ccmi.a',hi‘ty of the
o cormmutd rive diagral with exact YOS
{

cCompris
prise the Mot and b
5 ‘Ilc'lds the

91\(1" -~ .-
sequences of 1.5

1.
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:'.:,TT > @1
‘ / /

re /
. VA | 0
10) v

)/ Gy O
1 / !

NS N ——

NK,C T/ £ )~ NK (Fir ) = NK, (Zr o/ &)
11) X X

Now in 11) both maps NKI_ZéTTi - Nx\lZ'IT / % are trivial by virtue of 3.2

and 3.3. Moreover NK, @0/ ¥ o K @O 1%, is surjective by theorem

3.4. By exactness, the result follows by considering the diagram 12),
K & W7 s i e
NK, @O/ %, ——> NK Ym > 0 i
)
12) :
Y h g ‘1
ne 7 —————e Y T, e (0
}\)l\,z Ol/% 1 I“ l’é’n‘—l e ot

With the following few results we will be set to prove the main result
-

ol this section.
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Trooren 3.7, (}IKj - Excision). let f: A > B bz a homomorphism of
rings and assume either

i) f 1s surjective or

2) £ is a subdirect monomorphism, (1,1)

let ¢« and B be ideals s.t. f(a)=Q. fﬁen NKI(A,&) = NKl(B,B)
Proof Under either of the hyootheses above it is known ({1071 pz 55, [2]
pg 48u4) that there is an isomopphism“Kl(A,a) i Kl(B,B). As flat base
change preserves .1 and 2 w2 also have in this situation

Kl(A[t],¢1[t]) x:Kl(B [+1, A [th. CQ?““??FiYity of 13) plus exactness

of the columns and all except possibly the first row yields the

conclusion.
. 0 0
| l
0 o MK (A, —— NK, (B, B ) == O
13)

— Kl(A[t],a th > Kl(B [tl1, Bt —— 0

l |

0 ———r Kle,m e K (B, f ) > O
0 0

Prop. 3.8 let 14) be a cartesian square of rings and assune fland f?

surjective and A2 regilar, Then NKl(A) = NKl(Al, ker fl)

g
e Al
1) :l L‘rl
L\ A
v
¢
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surjective implies 298 surjective.

——y ' S A - PR =
ro0f  Sincs 14) Is cartesian f

SR 1

By inspection of the exact sequence of the surjection g, 15) one deduces

NKl(A) = N‘(l(/\, en 0?) from the regularity of A2.
I\ e - 5\‘ { o - ( / - N'K

15) ﬂ\2(A2) .‘Yl(A, ker gz) » NI J_(A) > (/\2)

As g1 is surjective 3.7 implies \TH(A ker £y )~ N j_(A , ker f ) and the re-

sult. ,

r\‘er - g - 7 - i 2 = 2 T .
We can now give an example of a nonzero NK, for an integral group ring
and at the same time show that (see theprem 2.2) in proving that

NKl(RnW) = 0 when ]ﬂ] is square free and (n,|w])=2, the hypolhenis
, ' | :
4n cannot be deleted. Below we let . be a cyclic group of order pl

Ixample 3.9 NKl(germTl) is infinite tv.ia—“torsion when p=2.

To see this we consider the cartesian square 16).

iy X My :Z':[l]"lfl
16) ' l
Y
___@rl X ﬂl —> :F:Tl’l X 'ﬂ'l

The exact sequence of 16) reads in part

17) NK]_(; X, ) ->\IK1( Zor, T, )G)NK (Z[ﬂﬂ ) -NK_L(FO”T-L\Y )

Since ¢ 2(7r1x Tfl) is Artin and all other intervening rings are reduced
we have a surjection.

18) NKl(;Zr z(lf7) > ‘J‘\’ (Z[ﬂn ).

The result will follow from an explicit computation of the latter group.

is tre simplest examole of failure For the above

To see that NI ZLL] o is infinite w2 apply 3.8 to the cartesian square

19) obtainzd by tensoring Zi, with Z2Lil.

87¢
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Zlide— » 7fi]
19) l g
Y
VAN > P @ Z[i]
.9’,2 ==
From 3.8 we have NK VARNE: )=N}<l('Z.[i], ker ¢). Since

L, ® Z[l] Fotel ("Pual numbers" over E,) and g is just reduction
modu,Lo the ideal 23Z[il, regularity of Z[i] implies that
I‘Kl(?;[iL ker g)z}TKZ (ffel) To complete this example we have only to
show that NK, Ele] is infinite (a later quoted result will show that
it is torsion. To see this we first quote a highly non-trivial
theorem of Van der Kdllen ( (151 .
Theorem 3.10 let R be a comnutative ring. Then K,Z(T-’\[G])ZKQRG)V(R)
where;

V(R) is an abelian group with the following
Presentation ;

generators: d(r), reR

relations: d(r+r") = d(r)+d(r'!'.) + F(I’I’") where (F(r)=d(r+l)-d{(r)
drr') = rd(@ ) + v dlx)
F(pir ) = F(p) + F(r" y, P(r)

‘here is a natural surjection V(R —¢ /7(‘{)(1\@11@0 differentials). It

13 bijective if 2 € R or R is a perfeqt field.

otice that from this theoram K, (Fle,tD=K, (2}__‘:' tehavr, [t:l) and

—

/70 (Since F?_L s perfect and K,;ELJ ® KI=0).

‘\'ﬂ

&

K (e D= K0 0 () = Q)

,_
t_

As Q-T?r)/,.:O (F2] g 71 dwe have NK, F[el V(F [H) .We show that
2/7



tnis latter grous 1s nonzero by considering the fundamental exact

("r-

a SN0 £
sequer nee ror Q o L:)_] inaorem 5/)

coran 3.11 Let ¥ -A B be homormorphisms of rings. Then the se-

quence 20) is cxact.

20) Q ., ®B — Q — 0 - g
AKX A B/K B/A ‘

For a definition of thz maps the reader is referred to (lLoc. Cit. ).

Putting K = Z2,A = Z,,3 = E[t] and using the fact that QF’/Z =0,

viea have Q;E:,Z[t]/; = Q:EQLL:]/ . = Ez[t] (ral Pe, 118u). ‘Since

V(__E;?[t]) — QF [+1/7 is surjective this completes 3.9.
L :‘_;2 w /;

i
N

We now turn to the oroof 0% the main result of this section namely

The 2orem 3. 12 Assume _i:’nat'either’ p.is.odd and.n.> 2 or p is .even and

n° >3 then NK‘(Z’ITT‘) is infinite torsion.

In 'the course of the proof we shall isolate certain other results
which are of indepsndent interest. By the next result due 1o Bass we
know N“kxl(ZTr) is tcorsion for finite abelian w. ([2] p 648 )

Theorem 3.13 Let ACB be a subdirect monomorphism of rings with B

a regular ring and assums mBCA for some meZ. Then if T denotes a
finitely generated tresz commutative monoid then any element of

L = ?(lf (ALT -1 (A) 'has order dividing some povw of m.

By theoram 3.6 we can assure n = 2 if pis odd andn = 3 if p = 2,
We have however thz Tollowing result valid Ffor all n.

() = 2.t n

I { or +hen there is a natural isomorphizm
(o) = 1
FLGEL ) 2 NK(R v L, DR )
17N 17m n-1’ Pl Mo
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Under either of tha above hypotheses the ring Rm‘p n = Rn® an. Therefore
. 1
Cartesian square 22) obtainad by tensoring the square for Zi”n ¢ 0.7 )

with RI " satisfies the hypothesis of 3.8.
I

Mopeover as f is just reduction modulo p R 7 -1 the result follows

’

R M- *R_7
m n S mtin~l
21) f
2 ro @ @R
N ] ————> T )
mpp T p‘ 1'1—-1 m

By considéring this situation .withm = 2 we get
9 \q’ /, . ~ \ < ,. r_l N )
22) | N l(’Z‘ﬂ n) NI 1(___Z:1Tn_l, pﬁ,n_.l)

Thus we can prove 2.12 if we can show that the latter group is infinite

under the hypothesis p odd,n > 2 or p = 2,n > 3.
Thaorom 23.15 If poddand n> 2 or p = 2 1 > 3 then NKj (LZ»'-'"'Tn—l’ R@n-l)

is infinite.
Ve can assumne that if p is odd n = 2 and if p = 2 n = 3 since by 22)
and Theorem 3.6 the natural map

7. )
1 P

is surjective. TFor the rest of this proof let ™ denote a cyclic group

23) 7, .- Ly P S G = & :
NKl (Z__’]Tl . pé'rr‘i}\) NK1 (=Z=Tr.i—

of odd prime order and w, a cyclic group of order 4. Now ;_7_,:1ri is a Z-order

2

in +he semisimple Q algebra Qr.. Tt is well known ([14] pg 63) that

Zw. can be embedded (subdirectly) in a maximal Z-order @’i. Since ﬁi

is maximal &, is hereditary hence regular ([14] p gy ). In this situ-

ation w2 have a carieslian saouire 23) where _Sf,’j denotes any /ji idzal
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24) NK, @: - 1K, c./ gl —> NK4( é’i, ¥ :) = K, (€ /’/’Q ‘

Since lﬂll @,iC Zg ([147 p=.63) we can take _Sfi = hrj l@.. Since
. L . - 1
ﬁi is regular the exact sequence of the surjection f2 24) yields
NK2 G/ = NKI( é’i, %i). Moreover a direct computation yields.
ﬁ = _Z: X Zﬂ [ g' ]

25) . 1 ) {a primi:tive'p'th root of 1
&, =24x2lxZ ]

} p-1 _
2 Ep * :1-:1[57] ’ -
26) | |
o, %, - Zng * Zyg * 23 g

It is clear that NK2 (O l/ 55'1) is infinite since ﬁi/ }fl maps surjective-
1y onto %)[e] (apply 3.1). iioreove'p Dennis and Stein ([8] pg 14 ) have
shown ‘that NK2 (Z'/42) is an infinite elementary two group of countable
rank, hence NK, (@é /552),15 likewise infinite.

To complete the proof we notice that NKl(-—ZTYi’%i) = NKl(@ia % i) by 3.7

and furthermore that NKl (Z Mo p'./___.ﬂi) maps surjectively to NKl(,_?_ﬁE- ,ﬁé’i )
by applying 3.5 1o P_Z{”'ic _Gfi. Thus we have constructed a chain of maps -

according to the scheme 27).

3.14
B (i MK (T T
1‘;1(,:_‘/:,:111.!_1) < Nk ].(T/-"rl.l_’p' ‘fL)
2.5
27) NK ('.7}. ) we (B v
RS S 2" A

iQG), with 1 = 1

MK, ( E, [eD 45——”_ NI, (FP[T D



26
Combining 27) with theorem 3.13 we see a surjection
NK, (Zar)) — NKQ('J:"p[T 1) vihich gives the following corolary

'Fl . e .
’ (:‘——-p[T]) is p-torsion

Corollary 3.16 Every element of NK
This does not appear to follow easily from the presentation for

K, Pp[f',t] of Dennis & Stein. ( [8] ).

Ve can use theorems 2.5, 3.6 and 3.15 to show if w is cylic and

4 f|m| then NK Zi = 0 iff |7| is square free. 'The troublesome
restriction U+ || is chié'to the fact thirt theorem 3.15 does not: apply
to the cyclic group of order 4. At the moment there is no indication

as to NKl(Z'rr), T cyclic |m| = 4 is nonzero or not. Also we have no
indication as to the behavior of NKTZ_jr for 7 and elementary p- group

of rank >2. To examine this case it suffices by 3.6 to first look at the
rank 2 case. We show next that the comportment of NKl (Zr) for w
elementary of rank 2 can be reduced to the study of a partial converse
of 2.5.

Proposition 3.17 Let p be a rational prime and m a cyclic group of

order p. Then there is an isomorphism 4

28) NK, () =K (2L § Ty (=8 208 Im) |
(here ¢ is a primitive p’th root of unity)

Proof Ve consider the cartesian square 29) for Zm x m and note that

f‘L is a split epimorphism. :

r i

AP »zl (o

29) £y l 29
Y

> [T
lzl =D

't
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It follows that the Nil exact sequence for fl reads
30) 0 -NK, (Zwxm,ker £,) >NK, (Zrxr) >NK, (Z)
by ‘theorem 2.9 NKl(ZTT) = 0 hence,
3L NK; (Zmrxar, - ker f_l) = NK, (Zmxm) .
By excision since f2 is surjective we deduce
32) I\TKl(;Z-:TFX'!T, ker fl) = N}Q_L(___Z:[f]n, ker 82)'

Since the kernel of g, is ({~1)Z[{1r the result is clear. Notice that

2
NKlf2 is a swjective map, this is by considering the Mayer Vietoris
sequence of 29) and using the fact that the far right hand map is

trivial 33).

. . i e (TE Y _
33) NI (Zarx) MK (Zm) NI (208D N Em
Now the ring Z[{] = Rp'rr “+is the simplest example of the failure

of the hypothesis in 2.5 that the order of the extension and that of the
group be relatively pmme (Compare with example 3.9). We ask is

NK_l (Rpﬂ);fO ?  We now turn to the proof of 1) in theorem B Above.

Theorem 3.18) Let m be finite abelian and assume that |m (p)I: p then

l\Fr(l(:Z:TT)(p)= 0.

Proof We can write __ZzTr:-:Z___Tl'.l'X‘ITD where Tfp is aeyelic of order p and

Py

(|7*},p) = 1. This allows us to express Zrm as a cartesian product 3u4).

A
314) 1 -[
¢

Y
> I ot {-a primitive pth root of unity.

'ﬁjf) = 1 we deduce semisimplicity for the ring

ieom the fact that (p,

E‘__;rl,‘hence it5 regularity. The Nil exact sequence for 34), is therefore
o :

55).
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55) 0 =K (Z) —K (Zart) —NK, (2l Ity =0

From the fact that passing to p - torsion is exact we recover 36)

36) 0 NI (Z) oy —NK ()

o 1 —
NK, (@[ § T )(p) C

(p) (py

Now for any Dedekind domain R with quotient field of characteristic 0

we have

37) [n|& C R

for any R erder & T Rr. Hence it follows that Zn', 2[ { Jn! satisfy the
hypotheses of 3.13 with B a maximal order and m = |n'|. Tt follows that

the groups Nl(l(:Z:Trl)(p) and NKl(Z[f]wl)( are trivial (p,|n!|) = 1).

D)
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¢ ped here do not apply 1o the

S was pemarked above the techniques develo

3 o . . > sy le
Sltuation where 7 is cyclic of order W or elementary abelian of ranx

N ' the B
> 2. If we could prove results analogous 1o those treated 1n theorem

Part 2) we could prove theorem A with K, replacing  Kg- To extend

VRN N at | le.
these results more knowledge of the functor K.2 must become availab

We also remark that the techniques employed here will not extend to

analogous results for NKQ. This is because the 5/1(71}76!“-5\7;.\.91201‘5_8 sequence
€ 1 ) does not extend to K,. (Fora discussion of this we refer

the reader to R.W. Swan Excision in Algebraic K-Theory. Journal of

Pure and Applied Algebra 1, 1971)

Some interesting topics for further consideration are the following

questions:
1) Does a surjection m — 7' of finite groups induce & surjection for

Ny (2 — NK (Zrt)?

2)  Same question for NKQ. In particular what can be said in case

1 )
T, T° are abelian?

It should be remarked here that an affirmative rasponse to 2) or 3)

below in the abelian case would allow us to deduce the results alluded

to in the first paragraph.

>

1) Compute NK2 (Zn) for cyclic groups . Is NK, (Zm) trivial for ||
3quarefree?
M) Twtend the results of this thesis to arbitrary finite groups.

1

LT ds finite does NK (Zn)=0 for ] squarefree?
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) Tind peasonar s . :
a peasonaple NeSSASHALY and sufficient conditions on & ring A

£0 that NK, (A)=0
1 .

We is SRR . 3
emark here that the techniques of sections 1) and 2) ajong with the

Hilbert . |
rt Basis and S_‘/’Z‘J’gy‘atheorems allow US +to assert
\
K.,(A[Tﬁ]) = K. (A) i=0 1
1 1 5
ing A satis-

fop
any fini ) .
y finitely generated free commitative nonoid and any ¥

bying -
g the hypotheses of theorems 2.2 oY 2.5.
8) T
o what extent does this hold in general j.e. doss

NK. (AY=q i
1 (A)=0 imply NKl(A['t]):O?
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