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THE SMALE CONJECTURE FOR SEIFERT FIBERED

SPACES WITH HYPERBOLIC BASE ORBIFOLD

Darryl McCullough & Teruhiko Soma

Abstract

Let M be a closed orientable 3-manifold admitting an H
2 × R

or S̃L2(R) geometry, or equivalently a Seifert fibered space with
a hyperbolic base 2-orbifold. Our main result is that the con-
nected component of the identity map in the diffeomorphism group
Diff(M) is either contractible or homotopy equivalent to S1, ac-
cording as the center of π1(M) is trivial or infinite cyclic. Apart
from the remaining case of non-Haken infranilmanifolds, this com-
pletes the homeomorphism classifications of Diff(M) and of the
space of Seifert fiberings SF(M) for compact orientable aspherical

3-manifolds. We also prove that when M has an H
2×R or S̃L2(R)

geometry and the base orbifold has underlying manifold the 2-
sphere with three cone points, the inclusion Isom(M) → Diff(M)
is a homotopy equivalence.

Let M be a smooth closed manifold and Diff(M) the space of diffeo-
morphisms ofM with the C∞-topology. The path component of Diff(M)
containing the identity IdM is denoted by diff(M). In this paper, we fo-
cus on the case when M is a closed orientable 3-manifold admitting an

H
2×R or S̃L2(R) geometry, or equivalently M is a Seifert fibered space

with a hyperbolic base 2-orbifold. Waldhausen [Wa] and, for the non-
Haken cases, Scott [Sc3] together with Boileau-Otal [BO] proved that
for such M , an element f of Diff(M) belongs to diff(M) if and only if
f is homotopic to IdM , and consequently homotopic diffeomorphisms
are isotopic. In [So], the second author gave a new proof based on the
insulator methods of Gabai [Ga1]. Our main result is:

Main Theorem. Let M be a closed orientable Seifert fibered space
with a hyperbolic base 2-orbifold. Then diff(M) is contractible or is ho-
motopy equivalent to S1, according as the center of π1(M) is trivial or
infinite cyclic.

As we will see, combined with known results the Main Theorem re-
duces two longstanding conjectural pictures in the topology of compact
orientable aspherical 3-manifolds to a single remaining case, namely
that of non-Haken infranilmanifolds. The first conjectural picture is the
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homeomorphism classification of Diff(M). It is known that Diff(M) is an
infinite-dimensional separable Fréchet manifold, so its homeomorphism
type is determined by its homotopy type. Moreover, since Diff(M) is
a topological group, any two components are homeomorphic. Therefore
the homeomorphism type of Diff(M) is determined by the cardinality
of the mapping class group Mod(M) and the homotopy type of diff(M).

Here and throughout, we denote by k = k(M) the rank of the center
of π1(M), which is 0 if M does not admit a Seifert fibering. When M is
Seifert-fibered, k is 3 if M is the 3-torus, is 1 when M is the orientable
circle bundle over the Klein bottle that admits a cross-section, and in all
other cases is 1 or 0 according as the base 2-orbifold of M is orientable
or not. By (S1)k, we mean the product of k copies of S1, where (S1)0

means a single point.
From work of Hatcher [Ha1] and Ivanov [I1, I2], we know that for

Haken 3-manifolds, possibly with nonempty boundary, diff(M) ≃ (S1)k

except in two cases: the solid torus, for which diff(M) ≃ S1 × S1,
and D3, for which diff(M) ≃ SO(3) [Ha2]. Apart from these excep-
tional cases, the path component isom(M) of IdM in the isometry group
Isom(M) is (S1)k, when one uses a metric on M of maximal symmetry
(that is, one for which the Lie group Isom(M) has maximal dimen-
sion and maximal number of components), and the homotopy equiva-
lence (S1)k → diff(M) is simply the inclusion isom(M) → diff(M). For
the exceptional Haken cases, isom(M) → diff(M) is still a homotopy
equivalence. For hyperbolic M , Haken or not, Gabai [Ga2] proved that
diff(M) is contractible; in this case k = 0 and isom(M) is a point, so
isom(M) → diff(M) is again a homotopy equivalence.

Among the closed orientable aspherical 3-manifolds, there remain
only the non-Haken Seifert fibered cases. It is well-known that such a
manifold must have as base orbifold a 2-sphere with three cone points,
and such a Seifert fibered manifold is non-Haken if and only if its first
homology group is finite [Wa1]. They have k = 1 and (as we will check)
isom(M) = S1. There are two classes:

1. The non-Haken manifolds among those of the Main Theorem.
2. The non-Haken infranilmanifolds. A nilmanifold is a 3-manifold

that is a quotient of Heisenberg space by a torsion-free lattice;
topologically these are the S1-bundles over the torus with nonzero
Euler class. An infranilmanifold is a finite quotient of a nilmani-
fold. Their base orbifolds have cone points of types (2, 4, 4), (2, 3, 6),
or (3, 3, 3).

The homotopy equivalence S1 → diff(M) in the Main Theorem is
realized as the inclusion isom(M) → diff(M), when M has its standard
geometry. Therefore, combining the previous results, we have
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Theorem 1. Let M be a compact orientable aspherical 3-manifold
with a metric of maximal symmetry, other than a non-Haken infranil-
manifold. Then the inclusion isom(M) → diff(M) is a homotopy equiv-
alence.

Since any two infinite-dimensional separable Fréchet spaces are home-
omorphic, we have as a corollary to Theorem 1 the homeomorphism
classification of Diff(M) in the compact orientable aspherical case:

Corollary 1. Let M be a compact orientable aspherical 3-manifold,
other than a non-Haken infranilmanifold. Give M a metric of maximal
symmetry. Then Diff(M) is homeomorphic to Mod(M)× isom(M)×F ,
where F is an infinite-dimensional separable Fréchet space.

The homotopy equivalence in Theorem 1 may be viewed as a weak
form of the original Smale Conjecture, which asserts that Isom(S3) →
Diff(S3) is a homotopy equivalence for the round 3-sphere. The original
Smale Conjecture was proven in two stages by J. Cerf [Cerf] and A.
Hatcher [Ha2]. For Haken 3-manifolds, Isom(M) → Diff(M) often fails
to be surjective on path components, but for the “small” manifolds
among those in the Main Theorem, we will obtain the strong form of
the Smale Conjecture.

Theorem 9.3. Let M be a closed orientable Seifert-fibered 3-manifold

having an H
2 × R or S̃L2(R) geometry, and as base orbifold a 2-sphere

with three cone points. Then the inclusion Isom(M) → Diff(M) is a
homotopy equivalence.

The same statement was proven for closed hyperbolic 3-manifolds by
Gabai [Ga2]. It is known for some elliptic 3-manifolds but not others;
see [HKMR].

The second conjectural picture affected by the Main Theorem con-
cerns the space of Seifert fiberings SF(M), defined in Section 9. It is
also a separable infinite-dimensional Fréchet manifold. For Haken 3-
manifolds, possibly with boundary, Theorem 3.14 of [HKMR] is

Theorem 2. Let Σ be a Seifert-fibered Haken 3-manifold. Then each
component of SF(Σ) is contractible.

Problem 3.47(A3) of the Kirby Problem List [Ki] is the conjecture that if

M has either theH2×R or S̃L2(R) geometry, then SF(M) is contractible.
We will prove that in Section 9:

Corollary 9.2. Let M be a closed orientable Seifert-fibered 3-mani-
fold with a hyperbolic base orbifold. Then SF(M) is contractible.

Combining this with Theorem 2 yields

Corollary 2. Let M be a compact orientable aspherical Seifert fibered
space, other than a non-Haken infranilmanifold. Then each component
of SF(M) is contractible.
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Since the Seifert fiberings on compact 3-manifolds are completely clas-
sified, Corollary 2 gives an effective homeomorphism classification of
SF(M) for almost all compact aspherical 3-manifolds:

Corollary 3. Let M be a compact orientable aspherical Seifert fibered
space, other than a non-Haken infranilmanifold. Then SF(M) is home-
omorphic to E × F , where E is the discrete set of equivalence classes
of Seifert fiberings, and F is an infinite-dimensional separable Fréchet
space.

The methods of our paper do not adapt to infranilmanifolds, since
we rely heavily on the hyperbolicity of the base orbifold. But we know
of no reason not to expect that all of the previous results that exclude
these manifolds are actually true for them as well. Consequently, as dis-
cussed at the beginning of Section 6, we have structured the applications
sections in such a way that if the Main Theorem is proven in the in-
franilmanifold case, then all the results listed above will be established
in that case as well.

Section 1 will give a brief overview of the proof of the Main Theorem,
while Sections 2 through 5 of this paper will give the details. Section 9,
preceded by three sections of background results, gives the proofs of
Corollary 9.2 and Theorem 9.3.
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1. Sketch of the proof of the Main Theorem

Palais [Pa] showed that diff(M) has the homotopy type of a CW-
complex, so by use of the Whitehead Theorem, it suffices to show that
πn(diff(M)) is isomorphic to πn(S

1) for all n ∈ N. When M is Haken,
the Main Theorem follows from the work of Hatcher [Ha1, Ha2] and
Ivanov [I1, I2]. So we may assume that M is non-Haken, in which
case the base orbifold is hyperbolic with the 2-sphere as its underlying
space and singular locus consisting of three points. Note that in these
cases, k(M) = 1.

Our proof of the Main Theorem incorporates many of the ideas of
Gabai’s proof of the Smale Conjecture for closed hyperbolic 3-manifolds
[Ga2]. His approach draws on his rigidity theorem for hyperbolic 3-
manifolds in [Ga1]. In place of the latter, we will use results from [So],
in which Scott’s rigidity theorem for Seifert fibered spaces [Sc1] was
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obtained as a 2-dimensional (and hence easier) version of Gabai’s rigidity
theorem.

The first step, carried out in Sections 2 and 3, is to consider an arbi-
trary Riemannian metric ν on M and show, using least-area techniques
from [So], that the preimage c♮ in M of a fixed cone point of highest
order in the base orbifold is the core circle of a canonical (open) solid
torus. The canonical torus depends only on ν and has certain key limit-
ing properties as ν is varied. Roughly speaking, the canonical solid tori
for a convergent sequence of metrics converge to an open solid torus
that contains the canonical torus for the limit metric. These properties
are developed and used in the proof of Lemma 4.1.

Lemma 4.1 corresponds to the Coarse Torus Isotopy Theorem of
Gabai [Ga2, Theorem 4.6]. Given a continuous map f : Sn → diff(M),
its output is a family of solid tori associated to the cells of a cell de-
composition of an (n+1)-ball Bn+1 with boundary Sn. These solid tori
satisfy the following: (1) for y ∈ Sn, f(y)(c♮) is a core of each solid
torus associated to a cell that contains y, and (2) they are nested ac-
cording to the corresponding nesting of the cells of Bn+1. The key idea
of the proof is Gabai’s: push forward the standard metric of M using
the diffeomorphisms of f to obtain a map from Sn to the contractible
space of Riemannian metrics on M , extend this map to Bn+1, and use
the canonical solid tori associated to these metrics to get started on
constructing the solid tori of the conclusion.

The final part of the proof, in Section 5, uses the nested solid tori
from Lemma 4.1 to construct an extension of a representative f : Sn →
diff(M) of an element of πn(diff(M)) to a map F : Bn+1 → diff(M).
Unlike the hyperbolic case, however, diff(M) is not simply connected;
indeed π1(diff(M)) ∼= π1(S

1) is generated by a circular isotopy that
moves points vertically around the fibers. To handle π1(diff(M)), we
utilize a maximal-tree argument to reduce to the case when each diffeo-
morphism associated by f to a point of Sn carries c♮ into a fixed solid
torus neighborhood of c♮. Under this assumption, f can be seen to be
homotopic to a well-defined element of π1(isom(M)).

2. Least area annuli with bounded deviation

Throughout the remainder of this paper, all 3-manifolds are assumed
to be orientable.

Let M be a closed Seifert fibered space with the Seifert fibration
σ : M −→ O over a hyperbolic triangle orbifold O = O(p, q, r), where
p, q, r are integers with 2 ≤ p ≤ q ≤ r and 1/p + 1/q + 1/r < 1. The
cyclic subgroup 〈γ〉 of π1(M) generated by the element γ represented
by a regular fiber of M coincides with the center Z(π1(M)) of π1(M).

Let a : F −→ O be an orbifold covering such that F is a closed
hyperbolic surface and â : H2 −→ F the universal covering. Consider
the natural quotient epimorphism ϕ : π1(M) −→ πorb

1 (O) = π1(M)/〈γ〉
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and the covering p : X −→ M associated to ϕ−1(a∗(π1(F ))) ⊂ π1(M).
The Seifert S1-fibration σ lifts to an S1-fibration σX : X −→ F . We
have also an S1-fibration σ̂ : X̂ −→ H

2 and a covering p̂ : X̂ −→ X in
the following commutative diagram.

X̂
σ̂

−−−−→ H
2

p̂

y
yâ

X
σX−−−−→ F

p

y
ya

M
σ

−−−−→ O

We regard G := πorb
1 (O) as an isometric properly discontinuous trans-

formation group on H
2, and also as the covering transformation group

on X̂ with respect to p ◦ p̂. Then, σ̂ is G-equivariant.
Let RM(M) be the space of Riemannian metrics on M with C∞-

topology. The metrics on X̂ and X induced from ν ∈ RM(M) are also
denoted by ν. Since the ν-lengths of the S1-fibers σ̂(x)−1 (x ∈ H

2) are
uniformly bounded, σ̂ is a quasi-isometry. In particular, the boundary

∂∞X̂ of X̂ as a Gromov hyperbolic space is naturally identified with
S1
∞ = ∂H2.
For a closed subset J of H2, letNd(J,H

2) denote the closed d-neighbor-
hood {y ∈ H

2 | dist(y, J) ≤ d} of J in H
2. For any geodesic line α ∈ H

2,

A♮
α = σ̂−1(α) is an open annulus properly embedded in X̂ . For C > 0,

we set LC(α) = σ̂−1(NC(α,H
2)), which is a closed neighborhood of A♮

α

in X̂ . Note that LC(α) does not depend on the Riemannian metric ν

on X̂ .
A (compact) annulus A0 embedded in X̂ is ν-least area if A0 has the

least area among all immersed annuli A′
0 in X̂ with ∂A′

0 = ∂A0 with

respect to the metric ν on X̂ . An open annulus A properly embedded

in X̂ is said to be a ν-least area annulus associated to α if A satisfies
the following conditions.

• There exists C > 0 with A ⊂ LC(α) such that A is properly

homotopic to A♮
α in LC(α). Here we say that C is a deviation of

A.
• A is ν-least area. This means that any compact non-contractible

annulus in A is a ν-least area annulus in X̂ .

The following lemma is a stronger version of Lemma 2.1 in [So].

Lemma 2.1. Let K be a non-empty compact subset of RM(M).
Then there exists a constant CK > 0 such that, for any geodesic line α

in H
2 and any ν ∈ K, there exists a ν-least area annulus in X̂ associated
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to α with deviation CK . Moreover, CK is a deviation of any ν-least area

annulus in X̂ associated to α.

Proof. The base orbifold of M is divided by three geodesic segments
u1, u2, u3 into two hyperbolic triangles having interior angles π/p, π/q,
π/r. Since the Fuchsian group π1(F ) is residually finite, we may assume
that a−1(u1 ∪ u2 ∪ u3) is a union of simple closed geodesics l1, . . . , ln, if
necessary replacing F by a suitable finite covering space.

We will first construct least area annuli associated to geodesic lines

that project to one of the li. The preimage T ♮
i = σ−1

X (li) is an embedded
incompressible torus in X. By Freedman-Hass-Scott [FHS], there exists
an embedded torus Ti,ν in X which is ν-least area among all tori homo-

topic to T ♮
i in X. Since K is compact, sK = supν∈K{Areaν(T

♮
i )} < ∞.

Each component Ai,ν of p̂−1(Ti,ν) is a ν-least area open annulus associ-
ated to a component of â−1(li).

Next we obtain a uniform deviation C ′
K for these least area annuli.

Since Areaν(Ti,ν) ≤ sK for all ν ∈ K and infν∈K{infx∈X{injν(x)}} > 0,
the Ascoli-Arzelà Theorem implies that any sequence {Ti,νm}

∞
m=1 with

νm ∈ K has a subsequence converging uniformly to a torus in X homo-
topic to Ti. This shows that the Ai,ν (ν ∈ K) have a common deviation
C ′
K,i. We set C ′

K = maxi{C
′
K,i}.

To define CK , consider any geodesic line α in H
2 and let L be the

set of geodesic lines λ in H
2 with â(λ) ⊂ l1 ∪ · · · ∪ ln. Denote by L∨(α)

the subset of L consisting of the λ disjoint from α. For any λ ∈ L∨(α),
let e(λ) be the component of H

2 \ NC′

K
(λ) disjoint from α. As was

shown in the proof of [So, Lemma 2.1], there exists a constant CK > 0,
independent of α, with NCK

(α,H2) ⊃ H
2 \

(⋃
λ∈L∨(α) e(λ)

)
. Figure 2.1

illustrates CK .

Figure 2.1. The shaded region represents
⋃

λ∈L∨(α) e(λ).

We are ready to construct a least area annulus Aα of deviation CK

associated to α. For any λ ∈ L∨(α), take a ν-least area annulus Aλ in X̂
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associated to λ with deviation C ′
K . Let E(λ) be the component of X̂\Aλ

quasi-isometric to e(λ) via σ̂. Let {J+
n }, {J−

n } be sequences of mutually

disjoint ν-least area annuli in X̂ associated to elements of L \ (L∨(α) ∪

{α}) which converge to distinct endpoints of α in ∂∞X̂ = S1
∞ and such

that, for any n, the union J+
n ∪J−

n excises from X̂\
⋃

λ∈L∨(α)E(λ) a solid

torus Vn(α) with Vn(α) ⊂ Vn+1(α) and X̂ \
⋃

λ∈L∨(α)E(λ) = V∞(α),

where V∞(α) =
⋃

n Vn(α). Since the boundary of Vn(α) has non-negative
mean curvature, by [FHS] there exists a properly embedded ν-least
area annulus An in Vn(α) connecting simple non-contractible loops d±n
in J±

n , as seen in Figure 2.2. As in the proof of [So, Lemma 2.1], one

Figure 2.2

can show that {An} has a subsequence converging locally uniformly to
a ν-least area annulus Aα associated to α. Since An ⊂ V∞(α), we have
Aα ⊂ V∞(α) ⊂ LCK

(α). In particular, CK is a deviation of Aα.
Now let A′ be any ν-least area annulus associated to α. For any n,

let λ
(n)
1 , . . . , λ

(n)
k be the elements of L∨(α) such that A

λ
(n)
i

meets Vn(α)

non-trivially. Choose m ∈ N with m > n so that J+
m ∪ J−

m is disjoint
from A

λ
(n)
1

∪ · · · ∪A
λ
(n)
k

. For τ ∈ {+,−}, A′ contains a non-contractible

simple loop lτ contained in the component of X̂ \ Jτ
m disjoint from

A
λ
(n)
1

∪ · · · ∪ A
λ
(n)
k

. Since the sub-annulus A′
0 of A′ with ∂A′

0 = l+ ∪ l−

is ν-least area, A′
0 ∩ (A

λ
(n)
1

∪ · · · ∪ A
λ
(n)
k

) = ∅. This shows that A′
n =

A′
0 ∩ Vn(α) is an annulus properly embedded in Vn(α) and connecting

non-contractible simple loops in J+
n and J−

n . Since A′ =
⋃

nA
′
n, A′

is contained in V∞(α) ⊂ LCK
(α). We conclude that CK is a common

deviation for all ν-least area annuli associated to α. q.e.d.

Lemma 2.2. For any ν ∈ K and any geodesic line α in H
2, let Aν(α)

be the set of all ν-least area annuli in X̂ associated to α. Then one of
the following alternatives holds.
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(i) Aν(α) consists of a single element Aout
α[0] (= Aout

α[1]).

(ii) Aν(α) contains two elements Aout
α[0], A

out
α[1] with Aout

α[0]∩A
out
α[1] = ∅ such

that any other elements A of Aν(α) lie between Aout
α[0] and Aout

α[1],

that is, A is contained in the component U of X̂ \Aout
α[0]∪Aout

α[1] with

U ⊂ LCK
(α).

The open annuli Aout
α[k] given in Lemma 2.2 are called the outermost

elements of Aν(α).

Proof. We continue to use the notation of Lemma 2.1. In particular,
there is a region V∞(α) ⊂ LCK

(α) for which any A ∈ Aν(α) is contained
in V∞(α), and for any n ∈ N, A ∩ Vn(α) is a ν-least area annulus
bounding non-contractible simple loops in J+

n and J−
n .

The closure ∂0Vn(α) of ∂Vn(α) \ (J+
n ∪ J−

n ) in X̂ consists of two
annuli. We claim that some neighborhood of these annuli is disjoint
from

⋃
Aν(α). If not, then there would exist a sequence {Am} in Aν(α)

converging to an element A∞ in Aν(α) with A∞ ∩ ∂0Vn(α) 6= ∅. Then,
some A

λ
(n)
i

given in the proof of Lemma 2.1 and A∞ would have a

tangent point but no transverse points. A fundamental fact in minimal
surface theory implies that A∞ = A

λ
(n)
i

. This contradicts the fact that

A∞ ⊂ V∞(α), establishing the claim.
By the claim, there exist sub-annuli Qτ

n of Vn(α)∩ Jτ
n for τ ∈ {+,−}

such that IntQτ
n contains

(⋃
Aν(α)

)
∩ Jτ . We then have mutually dis-

joint ν-least area annuli An,0 and An,1 in Vn(α) with ∂An,0 ∪ ∂An,1 =
∂Q+

n ∪∂Q
−
n such that the union An,0∪An,1∪Q

+
n∪Q

−
n bounds a solid torus

Wn in Vn(α) with (
⋃

Aν(α)
)
∩ Vn(α) ⊂ Wn \ (An,0 ∪ An,1). Passing if

necessary to subsequences, we may assume that both {An,0} and {An,1}
converge locally uniformly to elements Aout

α[0], A
out
α[1] ∈ Aν(α) respectively.

Since An,0 ∩ An,1 = ∅ for all n ∈ N, if Aout
α[0] ∩ Aout

α[1] 6= ∅, then any ele-

ments of the intersection are tangent points but not transverse points.
This implies that Aout

α[0] = Aout
α[1] and hence Aν(α) is the single element

set {Aout
α[0]}. In the case of Aout

α[0] ∩Aout
α[1] = ∅, since

(⋃
Aν(α)

)
∩ Vn(α) ⊂

Wn \ (An,0 ∪An,1) for any n ∈ N, any elements of Aν(α) \ {A
out
α[0], A

out
α[1]}

lie between Aout
α[0] and Aout

α[1] in X̂. q.e.d.

3. Canonical solid tori

For any geodesic line α in H
2 and ν ∈ RM(M), let Aout

α[0], A
out
α[1] be the

outermost annuli in Aν(α). In this section we will use these annuli to
construct solid tori in M . These tori are canonical in that they depend
only on the choice of Riemannian metric ν.

In the base orbifold O = O(p, q, r), where 2 ≤ p ≤ q ≤ r, fix once
and for all a singular point x0 that corresponds to the fixed point of an
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elliptic element of G = πorb
1 (O) of order r. Fix x0 ∈ (a ◦ â)−1(x0) and

write the orbit Gx0 as {xi}i∈Γ, where Γ is an index set containing 0. For
any i, j ∈ Γ with i 6= j, let αi:j = αj:i denote the perpendicular bisector
line of the geodesic segment in H

2 connecting xi with xj. For ℓ = 0, 1,
we write Aout

i:j[ℓ] for A
out
αi:j [ℓ]

.

Let Hi≺j[k] be the component of X̂ \ Aout
i:j[k] quasi-isometric to the

component of H2 \ αi:j containing xi via σ̂. If Hi≺j[0] ⊂ Hi≺j[1], then

we set H inn
i≺j = Hi≺j[0]. Otherwise set H inn

i≺j = Hi≺j[1]. In particular, our

definition implies that H inn
i≺j ∩H inn

j≺i = ∅.
A simple loop c in an open solid torus U is a core if U \c is homeomor-

phic to (D◦ \ {0})× S1, where D◦ is the open unit disk in R
2 centered

at the origin 0. A core of a solid torus V is a core of IntV .
As in the proof of [So, Lemma 3.1], one can show that, for any

ν ∈ RM(M) and any i ∈ Γ, just one component of the intersection⋂
j∈Γ\{i}H

inn
i≺j is an open solid torus Ûi,ν such that a core of Ûi,ν is also

a core of X̂ , and all other components are open 3-balls.

Since G acts on both H
2 and X̂ν isometrically, the uniqueness of the

outermost annuli implies that

g(Aout
α[0] ∪Aout

α[1]) = Aout
g(α)[0] ∪Aout

g(α)[1]

for any g ∈ G. Consequently, if xi = g(x0) for g ∈ G, Ûi,ν = g(Û0,ν).

From our construction of Ûi,ν , we know that the stabilizer stabG(Ûi,ν)
of Ui,ν in G is isomorphic to the stabilizer stabG(xi) for the action of G

on H
2. Since stabG(xi) ∼= Zr, Uν = p ◦ p̂(Ûi,ν) is an open solid torus in

M and the restriction qi : Ûi,ν −→ Uν of p ◦ p̂i on Ûi,ν is an r-fold cyclic
covering. This Uν is called the ν-canonical solid torus.

Since M is a Seifert fibered space with hyperbolic base orbifold, there

exists a metric on M modeled on either H2×R or S̃L2(R); see [Th, Sc2]
for details. Fix such a metric, which we will call the base metric on M
and denote by ν♮.

We show that, for any geodesic α in H
2, A♮

α = σ̂−1(α) is the unique
ν♮-least area annulus associated to α. For suppose that A is any ν♮-least
area annulus associated to α. If A 6= σ̂−1(α), then σ̂(A) \ α would be
non-empty. Hence we have a γ ∈ Isom(H2) such that α ∩ γ(α) = ∅ but
σ̂(A)∩γ(σ̂(A)) is a non-empty compact set. Then there exists a isometric

transformation γ̂ on X̂ν♮ covering γ such that A ∩ γ̂(A) is a non-empty
compact set. This contradicts that both A and γ̂(A) are ν♮-least area;

see for example [FHS, Lemma 1.3]. This shows that A = A♮
α.

Since A♮
i,j = σ̂−1(αi,j) is the unique ν♮-least area annulus associated

to αi,j, we have Aout
i,j[0] = Aout

i,j[1] in X̂ν♮ . Therefore ĉ♮ = σ̂−1(xi) is a

geodesic core of Ûi,ν♮ and c♮ = qi(ĉ
♮) is a geodesic core of Uν♮ .
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4. Two key lemmas

The two lemmas in this section correspond respectively to the Coarse
Torus Isotopy Theorem and the Local Contractibility Theorem of Gabai
[Ga2, Theorems 4.6 and 6.3].

To set notation, denote by Bn+1 the unit (n+1)-ball in R
n+1 centered

at the origin 0, and by Sn = ∂Bn+1 the unit sphere with basepoint
y0 = (1, 0, . . . , 0) ∈ R

n+1. We always suppose that Sn and Bn+1 have
the Riemannian metrics induced from the standard Euclidean metric
on R

n+1.
For any cell-decomposition ∆ of Bn+1, the set of i-cells in ∆ will be

denoted by ∆(i) and the union ∆(0) ∪ ∆(1) ∪ · · · ∪ ∆(i) by ∆[i]. For a
subset ∆0 of ∆, |∆0| :=

⋃
σ∈∆0

σ is the underlying space of ∆0. For two
solid tori W,V , the relation W ⋐ V means that W ⊂ IntV and W and
V have a common core. Similarly, c ⋐ V means that c is a core of V .

Suppose that f : K −→ diff(M) is a continuous map. For y ∈ K,
write fy for the diffeomorphism f(y), and for any L ⊂ K, write fL
for f |L.

Lemma 4.1. Let f : Sn −→ diff(M) be continuous. Then there ex-
ist a cell-decomposition ∆ of Bn+1 and a map V on ∆ satisfying the
following conditions.

(i) For any σ ∈ ∆, Vσ := V (σ) is a solid torus in M such that if κ is
a face of σ, then Vκ ⋐ Vσ.

(ii) For any y ∈ σ ∩ Sn, fy(c
♮) ⋐ Vσ.

Proof. Let νS : S
n −→ RM(M) be the continuous map defined by

the push forward metrics νS(y) = (fy)∗(ν
♮) (y ∈ Sn). Since RM(M) is

contractible, νS extends to a continuous map ν : Bn+1 −→ RM(M).
We first examine the limiting behavior of canonical solid tori. Sup-

pose that {ym} is a sequence in Bn+1. Passing if necessary to a subse-
quence, we assume that {ym} converges to a point y∞ ∈ Bn+1. For any

j ∈ Γ \ {i}, let Aout
i:j,m be the outermost ν(ym)-least area annulus in X̂

with Aout
i:j,m = Fr(H inn

i≺j). By Lemma 2.1, again passing if necessary to a

subsequence, we may assume that these annuli Aout
i:j,m converge locally

uniformly to ν(y∞)-least area annuli Ai:j,∞ in X̂ associated to αi:j ; see
[HS, Lemma 3.3], [Ga1, Lemma 3.3], and also the proof of [So, The-
orem 0.2]. The Ai:j,∞ may not be outermost ν(y∞)-least area annuli.
But as in the proof of [So, Lemma 3.1],

⋂
j∈Γ\{i}Hi≺j contains a unique

open solid torus component Û to which the open solid tori Ûi,ν(ym) con-
verge locally uniformly as embeddings from the standard open solid

torus D◦ × S1, where Hi≺j is the component of X̂ \ Ai:j,∞ containing

H inn
i≺j. Since each Ûi,ν(ym) is G-equivariant, Û is also G-equivariant. Thus

U = p ◦ p̂(Û) is an embedded open solid torus in M containing Uν(y∞).
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Now, for any y ∈ Bn+1, fix a solid torus Vy,n+1 ⋐ Uν(y). For any
y ∈ Sn, since fy : Mν♮ −→ M(fy)∗(ν♮) is isometric, we may take Vy,n+1

so that fy(c
♮) ⋐ Vy,n+1.

We claim that there exists δy,n+1 > 0 such that Vy,n+1 ⊂ Uν(z) if

dist(y, z) < δy,n+1. If not, then we would have a sequence {zm} in Bn+1

with dist(y, zm) < 1/m and Vy,n+1 6⊂ Uν(zm). Passing if necessary to a
subsequence, we may as above assume that the Uν(zm) converge locally
uniformly to an open solid torus U with U ⊃ Uν(y). Since Vy,n+1 is a
compact subset of Uν(y) ⊂ U , Vy,n+1 would be contained in Uν(zm) for
all sufficiently large m, a contradiction.

Let B◦
n+1(y) denote the open δy,n+1-neighborhood of y in Bn+1. We

choose the δy,n+1 so that B◦
n+1(y) ∩ Sn = ∅ if y ∈ IntBn+1. Moreover,

since fy(c
♮) moves continuously on y ∈ Sn, we may choose the δy,n+1 > 0

so that fz(c
♮) ⋐ Vy,n+1 for any z ∈ B◦

n+1(y) ∩ Sn.

Fix a finite collection {B◦
n+1(y1), . . . , B

◦
n+1(yk)} that covers B

n+1. Let

∆∗
n+1 be a piecewise smooth cell decomposition on Bn+1 such that any

(n + 1)-cell σ of ∆∗
n+1 is contained in at least one of the B◦(yi). Then,

put V ∗
σ = Vyi,n+1 for some yi with B◦

n+1(yi) ⊃ σ.

Next, we will define a subdivision ∆∗
n of ∆

∗[n]
n+1. Let z be any element

of Bn+1. As above, there exists δz,n > 0 and a solid torus Vz,n satisfying
Vyi,n+1 ⋐ Vz,n ⊂ Uν(w) for any w ∈ B◦

n(z) and any yi (i ∈ {1, . . . , k})

with z ∈ B◦
n+1(yi). For any element τ of ∆

∗(n)
n+1, there exists a finite subset

{z1, . . . , zl} of τ such that {B◦
n(z1), . . . , B

◦
n(zl)} covers τ . Then we take a

cell decomposition ∆∗(τ) of τ such that each n-cell of ∆∗(τ) is contained
in at least one of the B◦

n(zi) (i = 1, . . . , l). We set ∆∗
n =

⋃
τ∈∆

∗(n)
n+1

∆∗(τ).

If σ ∈ ∆∗(τ)(n) ⊂ ∆
∗(n)
n , then we set V ∗

σ = Vzj ,n for some zj with

B◦
n(zj) ⊃ σ. If σ is contained in a face of σ′ ∈ ∆

∗(n+1)
n+1 , then τ is the

face. It follows that V ∗
σ′ = Vyi,n+1 ⋐ Vzj ,n = V ∗

σ .
Repeating this process on descending skeleta, we define cell complexes

∆∗
n−1, . . . ,∆

∗
0 and extend the domain of the function V ∗ to ∆

∗(n−1)
n−1 ∪

· · · ∪∆
∗(0)
0 so that ∆∗

i is a subdivision of ∆
∗[i]
i+1 and V ∗

σ′ ⋐ V ∗
σ whenever

σ ∈ ∆
∗(i)
i is in a face of σ′ ∈ ∆

∗(i+1)
i+1 . The union

∆∗ = ∆
∗(n+1)
n+1 ∪∆∗(n)

n ∪ · · · ∪∆
∗(0)
0

is a cell decomposition on Bn+1.
Now form the double d∆∗ of ∆∗ along ∆∗|Sn , obtaining a cell decom-

position on dBn+1 = Sn+1. Let (d∆∗)∗ be the dual cell decomposition
of d∆∗. The set ∆ of all non-empty σ∩Bn+1 and σ∩Sn for σ ∈ (d∆∗)∗

defines a cell decomposition on Bn+1. We define the map V satisfying
conditions (i) and (ii) of this lemma as follows:

• If σ ∩ Sn = ∅, then Vσ = V ∗
τ for τ ∈ ∆∗(n+1−i) dual to σ.
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• If σ ∩ Sn 6= ∅ and σ 6⊂ Sn, Vσ = V ∗
τ for τ ∈ ∆∗(n+1−i) dual to the

double dσ of σ.
• If σ ⊂ Sn, then Vσ is a solid torus in IntVσ′ obtained by slightly
shrinking Vσ′ , where σ′ is the cell of ∆ with σ′ 6⊂ Sn and σ =
σ′ ∩ Sn.

This completes the proof. q.e.d.

Let W , V be solid tori in M with c♮ ⋐ W ⋐ V . One can choose a
Seifert fibration F on M so that W is a union of fibers and c♮ is an
exceptional fiber of order r. The restriction FN of F on N = M \ IntW
defines a Seifert fibration over a disk with two exceptional fibers.

Let Emb(W, IntV ) be the space of embeddings of W into IntV with
the C∞-topology, and emb(W, IntV ) the arcwise connected component
containing the inclusion i : W ⊂ IntV . According to Lemma 5.1 and
Remark 5.2 of [Ga2],

emb(W, IntV ) ≃ diff(W ) ≃ diff(∂W ) ≃ S1 × S1,

where S1 × S1 represents a free action on ∂W preserving the fibration
F|∂W . The S1-action from the left factor preserves each fiber of F|∂W
as a set, and the one from the right factor preserves some simple loop
in ∂W meeting each fiber of F|∂W transversely in a single point. The
left factor action extends to a fiber-preserving S1-action on M , which
defines a continuous map ϕ : S1 −→ diff(M) with ϕy0 = IdM .

For any m ∈ Z, we define ϕm : S1 −→ diff(M) as follows.

• (ϕ0)y = IdM for any y ∈ S1.
• For any m > 0 (resp. m < 0), (ϕm)y : M −→ M (y ∈ S1) is the
composition of |m| copies of ϕy (resp. (ϕy)

−1).

Let ZV be the subgroup of π1(emb(W, IntV )) generated by the left factor
S1-action.

Lemma 4.2. Suppose that f : Sn −→ diff(M) is a continuous map
with fy0 = IdM and fy(c

♮) ⋐ V for any y in Sn.

(i) If n = 1, then f is homotopic rel. y0 to ϕm for some m ∈ Z. More-
over, if f is contractible in diff(M), then f extends to a continuous
map F : B2 −→ diff(M) with Fz(c

♮) ⋐ V for any z ∈ B2.
(ii) If n 6= 1, then f extends to a continuous map F : Bn+1 −→ diff(M)

with Fz(c
♮) ⋐ V for any z ∈ Bn+1.

Proof. Let W be a solid torus with c♮ ⋐ W ⋐ V , sufficiently slim
so that fy(W ) ⋐ V for any y ∈ Sn. When n = 0, it is not hard to
construct a homotopy F : [0, 1] −→ diff(M) such that F0 = fy0 , F1 =

fy1 , and Ft(c
♮) ⋐ V for any t ∈ [0, 1], where S0 = {y0, y1}. In fact,

there exists an extension F[0,1/2]∪{1} of fy0 and fy1 with Ft(c
♮) ⋐ V

for any t ∈ [0, 1/2] and F1/2|W = F1|W . Since the Seifert fibration on
N = M \ IntW has a base orbifold with a disk as its underlying space
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and with two exceptional fibers, N has a unique essential annulus up
to ambient isotopy. This implies that F1/2|N is isotopic to F1|N , and

consequently there is an extension F[0,1] of F[0,1/2]∪{1} with F[0,1](c
♮) ⊂

IntV .
Suppose now that n ≥ 1. As in the proof of [Ga2, p. 146, Claim] (us-

ing the Palais-Cerf covering isotopy theorem), there exists a continuous
map K : Sn × [0, 1] −→ diff(M) satisfying the following conditions.

• K(y,0) = fy for any y ∈ Sn and K(y0,t) = IdM for any t ∈ [0, 1].
• K(y,t)(W ) ⋐ V for any (y, t) ∈ Sn × [0, 1].
• K(y,1) (y ∈ Sn) fixes W as a set. Moreover, when n = 1, K(y,1)

(y ∈ S1) defines an S1-action on ∂W preserving F|∂W .

Consider first the case of n = 1. If the element of π1(emb(W, IntV ))
represented by K(y,1) (y ∈ S1) were not contained in ZV , then the re-

striction of K(y,1)|N to a basepoint n0 ∈ ∂N for y ∈ S1 would not lie in
the subgroup of π1(N,n0) generated by a nonsingular fiber, contradict-
ing the fact that the restriction of a circular homotopy to any basepoint
must represent a central element of the fundamental group. So we may
choose the homotopy K to satisfy K(y,1)|W = ϕm

y |W (y ∈ S1) for some
m ∈ Z.

From Hatcher [Ha1], the subspace of diff(M) consisting of diffeomor-
phisms g with g|W = IdM |W is contractible. Since K(y0,1) ◦ϕ

−m
y0 = IdM ,

it follows that K(y,1) ◦ (ϕ
−m)y (y ∈ S1) is contractible in diff(M) and

hence f is homotopic to ϕm rel. y0 in diff(M). This proves the first part
of (i).

Assume now that f is contractible, and fix a basepoint x0 in M . The
trace homomorphism

α : π1(diff(M)) −→ Z(π1(M)) ∼= Z

is defined by putting, for any g : S1 −→ diff(M) with gy0 = IdM , α([g])
equal to the element represented by the loop gy(x0) (y ∈ S1) in M . In
particular, α maps the class represented by ϕm to m ∈ Z. Since f is
contractible, m = 0. Regard B2 as obtained from S1× [0, 1] by shrinking
S1 × {1} to a point. Since (ϕ0)y = IdM for any y ∈ S1, K induces a
continuous map F : B2 −→ diff(M) with F |S1 = f , F (0) = IdM , and
Fz(W ) ⋐ V for any z ∈ B2. This proves the remainder of (i).

Suppose now that n > 1. Since πn(emb(W, IntV )) = {0}, we may
apply the argument in part (i) to K(y,1) itself instead of to K(y,1) ◦

(ϕ−m)y, obtaining an extension F : Bn+1 −→ diff(M) of f as in (ii).
q.e.d.
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5. Proof of the Main Theorem

As noted in Section 1, we may assume that M is non-Haken, and
it suffices to prove that πn(diff(M)) ∼= πn(S

1) for all n ≥ 1. We first
examine n = 1.

Lemma 5.1. Any continuous map f : S1 −→ diff(M) with fy0 = IdM
is homotopic to ϕm rel. y0 for some m ∈ Z.

Proof. Fix a cell decomposition ∆ of B2 and a map V of ∆ satisfying
conditions (i) and (ii) of Lemma 4.1. Select a maximal tree T in ∆(1)

such that the complement ∆(1) \ T consists of elements σ1, . . . , σk with
y0 ∈ σk ⊂ S1, S1 \ σk ⊂ |T | and such that, for any i = 1, . . . , k, there
exists τi ∈ ∆(2) with σi ⊂ ∂τi ⊂ |Ti| := |T | ∪ σ1 ∪ · · · ∪ σi; see Figure
5.1 (a).

Figure 5.1

For each vertex v of T |S1 , we have fv ∈ diff(M) with fv(c
♮) ⋐ Vv,

and for each edge σ of T |S1 , we have fy(c
♮) ⋐ Vσ for all y ∈ σ. Consider

an edge σ in T having one endpoint v in S1 and the other endpoint w
in the interior of B2. Since Vv ⋐ Vσ and Vw ⋐ Vσ, we can obtain by
isotopy extension a map Fσ : σ → diff(M) with Fv = fv, Ft(c

♮) ⋐ Vσ

for t ∈ σ, and Fw(c
♮) ⋐ Vw. Inducting on the distance from |T | ∩ S1,

we have F|T | : |T | → diff(M) such that Fv(c
♮) ⋐ Vv for each vertex of T

and Ft(c
♮) ⋐ Vσ for each t in each edge σ of T .

Now parameterize σ1 and ∂τ1 \ Intσ1 respectively by [0, 1] and [1, 2]
so that ‘0 = 2’ in ∂τ1, as in Figure 5.1 (b). We have F0(c

♮) ⋐ Vσ1 and
F1(c

♮) ⋐ Vσ1 , and it follows that there is an extension of F1 to F[1/2,1],

such that F1/2 = F0 and Ft(c
♮) ⋐ Vσ1 ⋐ Vτ1 for any t ∈ [1/2, 1].

Applying Lemma 4.2 (i) to F−1
0 ◦Ft (1/2 ≤ t ≤ 2) and V := F−1

0 (Vτ1),
we have j ∈ Z such that the loop product of (ϕj)2t (t ∈ [0, 1/2]) and
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F−1
0 ◦ Ft (t ∈ [1/2, 2]) is contractible in diff(M), where the domain

S1 of ϕj is supposed to be the quotient space obtained from [0, 1] by
identifying 0 with 1 and regarding the point 0 (= 1) as the basepoint y0
of S1. Thus the extension F[0,2] of F[1/2,2] defined by Ft = F0 ◦ (ϕj)2t
(0 ≤ t ≤ 1/2) is contractible in diff(M) and satisfies Ft(c

♮) ⋐ Vσ1 for
any t ∈ [0, 1].

So far, f|T |∩S1 has been extended to F|Tj | satisfying the following
conditions.

(a) Ft(c
♮) ⋐ Vσi

whenever t ∈ σi for i = 1, . . . , j.
(b) For any simple loop λ in |Tj |, the restriction Fλ is contractible in

diff(M).

Repeating the argument, we obtain an extension F|Tk−1| satisfying (a)

and (b). Using f on σk, we extend F|Tk−1| to F|Tk | satisfying (a).
By the condition (b) for j = k − 1, for any simple loop λ in |Tk−1|,

Fλ is contractible. Therefore the original f is homotopic rel. y0 to the
loop F∂τk . Since Ft(c

♮) ⋐ Vσi
⋐ Vτk for each t ∈ σi ⊂ ∂τk, Lemma 4.2(i)

shows that F∂τk is homotopic rel. y0 to ϕm for some m ∈ Z. q.e.d.

Proof of the Main Theorem. In Lemma 4.2 we defined the trace homo-
morphism α : π1(diff(M)) −→ Z(π1(M)). Lemma 5.1 shows that α is an
isomorphism, that is, π1(diff(M)) ∼= Z. Moreover, the S1-action which
moves each point vertically in its fiber defines a map S1 → diff(M)
which induces an isomorphism on fundamental groups, so it remains to
show that πn(diff(M)) = 0 for n > 1.

Suppose that n > 1 and let f : Sn −→ diff(M) be any continuous
map with fy0 = IdM . Let ∆ be a cell decomposition on Bn+1 and V a
map of ∆ satisfying the conditions of Lemma 4.1. Let T0 be a maximal
subcomplex of ∆ such that |T0| is simply connected and Sn ⊂ |T0| ⊂
Sn∪ |∆(1)|. We set ∆(1) \T0 = {σ1, . . . , σk} and |Ti| = |T0|∪σ1∪ · · ·∪σi
for i = 1, . . . , k. As in the proof of Lemma 5.1, we can extend f to F|T0|

satisfying the conditions (a) and (b) in the proof of Lemma 5.1.
Next we will extend F|T0| to σ1 so that F|T1| satisfies (a) and (b).

Let v,w be the endpoints of σ1. Fix an arc α in |T0| from w to v. As
in the proof of Lemma 5.1, parameterize σ and α as [0, 1] and [1, 2] so
that v = 0 = 2, and extend F|T0| to [1/2, 1] so that F0 = F1/2. Since

F0(c
♮) ⋐ Vv ⋐ Vσ1 , Lemma 5.1 implies that F[1/2,2] is homotopic relative

to {1/2, 2} to a path in diff(M) with Ft(c
♮) ⋐ Vσ1 at each time. Using

the reverse of this path on [0, 1/2] gives an extension of F|T0| to F|T1|

such that Fσ1∪α is a null-homotopic loop. Since the restriction of F|T0| to
any loop in |T0| is contractible, this implies that Fλ1 is also contractible
for any loop λ1 in |T1|.

Repeating this process on σi (i = 2, . . . , k), we obtain an extension
F|Tk| = F|∆(1)|∪Sn satisfying (a) and (b). In particular, its restriction to
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the boundary of any 2-cell in ∆ is null-homotopic. So Lemma 4.2(i) im-
plies that F|∆(1)|∪Sn extends to F|∆(2)|∪Sn , satisfying Fz(c

♮) ⋐ Vτ for

any z in each τ ∈ ∆(2). Then, by applying Lemma 4.2 (ii) repeat-
edly on the higher skeleta of ∆, one can extend F|∆(2)|∪Sn to all of

|∆(n+1)| = Bn+1. It follows that f : Sn −→ diff(M) is contractible and
hence πn(diff(M)) = 0. q.e.d.

6. Deforming homotopy equivalences to diffeomorphisms

The fiber-preserving diffeomorphisms of Seifert-fibered 3-manifolds
are well-understood; see for example Section 1 of Neumann and Ray-
mond [NR]. Apart from a few simple exceptions, Seifert fiberings of
Seifert-fibered 3-manifolds with infinite fundamental group are unique
up to isotopy (see Lemma 2.1 and Corollary 2.3 of [Oh]), and conse-
quently any diffeomorphism is isotopic to a fiber-preserving one.

It is also true that when M is a closed Seifert-fibered 3-manifold and
π1(M) is infinite, any homotopy equivalence from M to M is homotopic
to a diffeomorphism. This is certainly well-known in the Haken case, by
Waldhausen’s celebrated results [Wa]. For the non-Haken cases, it was
proven in [So] when the base orbifold is hyperbolic. Although we do not
actually need the non-Haken infranilmanifold case for our work here, it
is appropriate to include a proof in order that all of our applications will
also extend if our Main Theorem can be established in the infranilman-
ifold case (the only explicit invocation of the Main Theorem is in the
proof of Theorem 9.1). Consequently we have included Proposition 6.1
below, which includes all non-Haken cases.

Although we are not aware of a published proof of Proposition 6.1
for the infranilmanifold case, we remark that it can be established using
the work of J. Hass and P. Scott in [HS1]. (Fix a homotopy equivalence
g : M → M and an immersion j : T → M that satisfies the 1-line 4-plane
property, which exists by [Sc1]. Starting with the immersions j and gj,
the argument of Theorem 5.2 in [HS1] adapts to produce the required
diffeomorphism h, the key point being that the equivariance of the iso-
morphism in Theorem 4.3 of [HS1] implies that h and g induce the same
outer automorphism on π1(M).) In addition, K.-B. Lee has shown us a
proof of Proposition 6.1 using the theory of Seifert fiberings. Acknowl-
edging those precedents, we will include here an elementary and nearly
self-contained argument. It requires some notational preliminaries, but
they are needed for our later work anyway.

For the remainder of this section, we assume that M is Seifert-fibered
over an orbifold O which is the 2-sphere with exactly three cone points,
and that π1(M) is infinite. To set notation, we recall a standard descrip-
tion of a Seifert-fibered structure on M . Remove from O the interiors
of three disjoint disks, each containing one of the cone points, to obtain
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a disk-with-two-holes F . Then π1(F ) = 〈Q1, Q2, Q3 | Q1Q2Q3 = 1〉,
with the three boundary circles representing the Qi. Form F ×S1, with
π1(F×S1) = π1(F )×〈T 〉. To the boundary tori, use fiber-preserving dif-
feomorphisms to attach suitably Seifert-fibered solid tori, each contain-
ing an exceptional fiber, so that the meridian curves represent Qαi

i T βi ,
1 ≤ i ≤ 3. The pairs of relatively prime integers (αi, βi) with αi ≥ 2 are
called the (unnormalized) Seifert invariants. Different choices of βi can
yield the same (up to orientation-preserving diffeomorphism) topologi-
cal fibering, but all choices are congruent modulo αi.

From the construction, we obtain the presentation

π1(M) = 〈q1, q2, q3, t | tqit
−1 = qi, q

αi
i tβi = 1, 1 ≤ i ≤ 3, q1q2q3 = 1〉,

where the principal fiber represents the element t which generates the
center C of π1(M). Putting t = 1 gives the quotient

πorb
1 (O) = 〈q1, q2, q3 | q

αi
i = 1, 1 ≤ i ≤ 3, q1q2q3 = 1〉.

Since M is aspherical, our next result implies that any homotopy
equivalence from M to M is homotopic to a diffeomorphism.

Proposition 6.1. Suppose that M is Seifert-fibered over an orb-
ifold O which has three cone points and the 2-sphere as its underly-
ing manifold, and that π1(M) is infinite. Let θ be an automorphism
of π1(M). Then there exists an orientation-preserving fiber-preserving
diffeomorphism of M whose induced automorphism on π1(M) equals θ
in Out(π1(M)).

Proof. Since C is the center of π1(M), there is a commutative diagram

1 −−−−→ C −−−−→ π −−−−→ πorb
1 (O) −−−−→ 1

y θ|C

y
yθ θ

y
y

1 −−−−→ C −−−−→ π −−−−→ πorb
1 (O) −−−−→ 1

where the vertical maps are automorphisms. Theorem 5.8.3 of [ZVC],
stated in our language, says that there is an orbifold diffeomorphism
gorb : O → O that induces θ on πorb

1 (O). We may assume that gorb(F ) =
F , and we write g : F → F for the restriction of gorb.

Since g is a diffeomorphism, we have g#(Qi) = ΓiQ
ǫ
σ(i)Γ

−1
i for some

elements Γi ∈ π1(F ), some permutation σ of {1, 2, 3}, and ǫ = 1 or
ǫ = −1 according as g preserves or reverses orientation. Since θ = gorb# ,

we can write θ(qi) = γiq
ǫ
σ(i)γ

−1
i tni for some integers ni, where γi is

obtained from Γi by replacing each Qi by qi.
We claim that n1 + n2 + n3 = 0. We have in π1(F ) that

1 = g#(Q1Q2Q3) = Γ1Q
ǫ
σ(1)Γ

−1
1 Γ2Q

ǫ
σ(2)Γ

−1
2 Γ3Q

ǫ
σ(3)Γ

−1
3 .
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Since the latter word is trivial in π1(F ), it is freely equivalent to a
product of conjugates of Q1Q2Q3 and (Q1Q2Q3)

−1. Therefore the corre-
sponding element γ1q

ǫ
1γ

−1
1 γ2q

ǫ
σ(2)γ

−1
2 γ3q

ǫ
σ(3)γ

−1
3 in π1(M) is freely equiv-

alent to a product of conjugates of q1q2q3 and (q1q2q3)
−1. Since the re-

lation q1q2q3 = 1 holds in π1(M), this word is trivial in π1(M) and we
have

1 = θ(q1q2q3) = γ1q
ǫ
1γ

−1
1 γ2q

ǫ
σ(2)γ

−1
2 γ3q

ǫ
σ(3)γ

−1
3 tn1+n2+n3 = tn1+n2+n3 .

Since C is infinite, this shows that n1 + n2 + n3 = 0.
Assume for now that θ(t) = t. We have

t−βi = θ(t−βi) = θ(qαi
i ) = γiq

ǫαi

σ(i)γ
−1
i tniαi .

This implies that Qαi

σ(i) = 1 in πorb
1 (O), so ασ(i) divides αi. Since this is

true for all i, we have ασ(i) = αi. Therefore

t−βi = γit
−ǫβσ(i)γ−1

i tniαi = t−ǫβσ(i)+niαi ,

so ǫβσ(i) − βi = niαi.
Suppose for contradiction that ǫ = −1. Then βσ(i) + βi = −niαi,

and since ασ(i) = αi we have βσ(i)/ασ(i) + βi/αi = −ni. Summing this

for 1 ≤ i ≤ 3 and using n1 + n2 + n3 = 0 gives
∑ βi

αi
= 0 (if we

already knew that θ arose from a fiber-preserving diffeomorphism, then
this would amount to the fact that when a Seifert-fibered 3-manifold
has an orientation-reversing fiber-preserving diffeomorphism, the Euler
number of its Seifert fibration is 0). If all αi = 2, this is impossible, so
we assume that α1 ≤ α2 ≤ α3 with α3 ≥ 3. Since βσ(3)/ασ(3) + β3/α3

is an integer, σ(3) 6= 3 and we may assume that σ(3) = 2 and α2 = α3.
But then,

−
β1
α1

=
β2
α2

+
β3
α3

would be an integer, a contradiction.
Let T1, T2, and T3 be the boundary tori of F × S1, and fix disjoint

vertical annuli A1 and A2 connecting T3 to T1 and T2 respectively. Since
n1+n2+n3 = 0, there is a product j of fiber-preserving Dehn twists in a
neighborhood of A1 ∪A2 such that j#(Qσ(i)) = Qσ(i)T

ni for each i. Let

h = j ◦(g×1S1), a fiber-preserving diffeomorphism of F ×S1. In π1(F ×
S1) we have h#(T ) = T and h#(Qi) = ΓiQσ(i)Γ

−1
i T ni . Using βσ(i)−βi =

niαi, we have h(Qαi
i T βi) = ΓiQ

ασ(i)

σ(i) Γ−1
i T niαiT βi = ΓiQ

ασ(i)

σ(i) T βσ(i)Γ−1
i .

That is, h takes meridian curves in the boundaries of the fibered solid
tori of M − F × S1 to meridian curves. Therefore h extends to a fiber-
preserving diffeomorphism of M inducing θ. Since ǫ is 1, g and therefore
h are orientation-preserving.

Suppose now that θ(t) = t−1. There is an orientation-preserving fiber-
preserving diffeomorphism τ ofM that reverses the direction of the fiber;
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on O it induces a reflection through a circle containing the three cone
points, and on each of the three fibered solid tori it is a hyperelliptic
involution. Since τ#θ(t) = t, the previous case gives an orientation-
preserving fiber-preserving diffeomorphism h such that τ#θ = h# and
hence θ = (τ−1 ◦ h)# in Out(π1(M)). q.e.d.

The following immediate corollary can also be proven by considera-
tion of Euler numbers.

Corollary 6.2. Suppose that M is Seifert-fibered over an orbifold
O which has three cone points and the 2-sphere as its underlying man-
ifold, and that π1(M) is infinite. Then every diffeomorphism of M is
orientation-preserving.

Proof. Since M is aspherical, two diffeomorphisms are homotopic if
and only if they induce the same outer automorphism of π1(M). By
Proposition 6.1, every homotopy class contains an orientation-preserving
diffeomorphism, and the corollary follows since M is closed. q.e.d.

7. Isometries

Throughout this section we continue to assume that M is Seifert-
fibered over an orbifold O which is the 2-sphere with exactly three cone
points, and that π1(M) is infinite. We also continue to use the notation
set up in the previous section. In this section we will analyze the isometry
groups of these M .

It is known that M admits an H
2 × R, S̃L2(R), Nil, or Euclidean

geometry such that the fibers of M are geodesics. Our reference for
Seifert-fibered 3-manifolds and their geometries is [Sc2]. Every isometry
of M is fiber-preserving: In all cases except the Euclidean geometry,

every isometry of the universal cover M̃ preserves the R-fibers, so this
is immediate. For the Euclidean geometry, the induced automorphism
of any isometry of M must preserve the center of π1(M), so it takes the
central element t represented by the principal fiber to either t or t−1

in π1(M). This implies that the lifted isometry preserves the R-fibers

of M̃ .

Proposition 7.1. Give M its standard H
2 ×R, S̃L2(R), Nil, or Eu-

clidean geometry. If θ is any automorphism of π1(M), then there ex-
ists an isometry of M whose induced automorphism on π1(M) equals θ
in Out(π1(M)).

Proof. From Proposition 6.1, there exists a fiber-preserving diffeo-
morphism f : M → M with f# = θ.

In the E3-case, let T (M) be the Teichmüller space of Euclidean struc-
tures on M with unit volume. For the other cases, T (M) will denote
the Teichmüller space of all geometric structures on M . For σ ∈ T (M),
let lσ denote the length of a regular fiber of Mσ.
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If M has an H × R, E3, or Nil geometry, then by [Oh, Theorems
2.4, 2.6, 2.7] T (M) is homeomorphic to R, which corresponds to the
parameter log(lσ) for σ ∈ T (M). (The statement of Theorem 2.4 in
[Oh] contains a misprint: the exponent for the closed orientable case we
use here should be 3−4χ(X)+2k. We remark that T (M) was also found
for all of these cases by R. Kulkarni, K.-B. Lee, and F. Raymond [KLR]
by a different method, although in the E

3-case T (M) is given there as
R
2 since the volume is not normalized to be 1.) Since f : Mσ → Mf∗(σ)

is isometric, lσ = lf∗(σ) and hence σ = f∗(σ) in T (M). It follows that f
is isotopic to an isometry.

IfM has an S̃L2(R) geometry, then by [Oh, Theorem 2.5] (or [KLR]),
T (M) is a single point. Again, f is isotopic to an isometry. q.e.d.

The quotient orbifold O has a unique hyperbolic structure when∑
1/αi < 1, and a unique Euclidean structure up to scaling when∑
1/αi = 1. An isometry of M induces an isometry of O, so the map

Isom(M) → Difforb(O) taking each isometry f to its induced diffeomor-
phism f has its image in Isom(O).

We will need some specific isometries.

Lemma 7.2. Give M its standard H
2×R, S̃L2(R), Nil, or Euclidean

geometry.

(i) There is an isometric involution of M that preserves each excep-
tional fiber, reverses the direction of the fibers, and induces an
orientation-reversing reflection on O.

(ii) Suppose that the Seifert invariants (αj , βj) and (αk, βk) of two ex-
ceptional fibers of M satisfy αj = αk and βj ≡ βk mod αj. Then
there is an isometric involution of M that interchanges these ex-
ceptional fibers, preserves the fiber direction, and on O induces an
orientation-preserving isometry that interchanges the cone points
corresponding to these two exceptional fibers.

Proof. For (i), consider an orientation-reversing reflection on O whose
induced automorphism θ on πorb

1 (O) is θ(q1) = q−1
1 , θ(q2) = q−1

2 , and

θ(q3) = q2q1q
−1
3 q−1

2 q−1
1 . This extends to an automorphism of π1(M) by

putting θ(t) = t−1. Applying Proposition 7.1 gives an isometry as in (i)
inducing θ.

For part (ii), we have by assumption that βk − βj = nαj for some
integer n. We proceed as in part (i), using an automorphism θ such that
θ(t) = t, θ(qj) = qkt

n, θ(qk) = qjt
−n, and for the remaining qi, θ(qi) is

determined by the relation θ(q1q2q3) = 1. q.e.d.

For s ∈ R, let ϕ(s) : M → M be induced by translation by sL in the

R-fibers of M̃ , where L is the length of the principal fiber of M . Each
ϕ(s) = ϕ(s + 1), so we regard ϕ : S1 → Isom(M) as a circular isotopy
of M . These are vertical, that is, they take each fiber of M to itself. We
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denote vertical maps of M by a subscript v, so the vertical isometries
form a subgroup Isomv(M). Corollary 6.2 yields immediately

Lemma 7.3. No vertical diffeomorphism of M can reverse the fiber
direction. Consequently, Isomv(M) = S1.

The isometry group Isom(O) is finite of the form C2 ×G, where the
C2-factor is generated by an orientation-reversing reflection that fixes
the cone points, and G is orientation-preserving and is either trivial,
C2, or D3 according as the orders α1, α2, and α3 of its cone points
are distinct, exactly two are equal, or all three are equal. Note that
Isom(O) → Out(πorb

1 (O)) is injective.

Proposition 7.4. The homomorphism Isom(M) → Out(π1(M)) is
surjective, with kernel Isomv(M). Consequently, Isom(M) is homeomor-
phic to Out(π1(M))× S1.

Proof. The surjectivity is from Proposition 7.1. An element f of the
kernel must induce the identity outer automorphism on πorb

1 (O), so f is
the identity on O and therefore f is vertical. q.e.d.

8. Fiber-preserving diffeomorphisms

For a Seifert-fibered 3-manifold M , the fiber-preserving diffeomor-
phisms form a subgroup Difff (M) of Diff(M). From Theorem 2.2 of
[HKMR], Difff (M) is a separable Fréchet manifold, so it is homotopy
equivalent to a CW-complex.

Each element of Difff (M) induces an orbifold diffeomorphism of the
base orbifold O, and by Theorem 3.9 of [HKMR], the map Difff (M) →

Difforb(O) is a fibration over its image, with its fiber the vertical diffeo-
morphisms Diffv(M).

We will need a description of the connected component of the identity,
diffv(M). Provided that M has an orientable base orbifold, it has a
circular vertical isotopy that rotates each nonsingular fiber one full turn,
such as the ϕ in the special case of Section 7.

Lemma 8.1. Let M be an orientable Seifert-fibered 3-manifold with
orientable base orbifold. Any circular vertical isotopy ϕ : S1 → diffv(M)
that rotates each nonsingular fiber one full turn defines a homotopy
equivalence S1 ≃ diffv(M).

Proof. Fix a basepoint m0 in a nonsingular fiber. Restriction to m0

defines a map (actually a fibration) e : diffv(M) → S1. The composi-

tion S1 ϕ
−→ diffv(M)

e
−→ S1 is a homeomorphism, so ϕ# : π1(S

1) →
π1(diffv(M)) is injective.

Now, consider a parameterized family f : (Sq, s0) → (diffv(M), IdM ),
for q ≥ 1. To complete the proof that ϕ is a homotopy equivalence, we
show that f is null-homotopic, when q > 1, or homotopic to a power
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of ϕ, when q = 1. Multiplying f by a power of ϕ, when q = 1, we may

assume that Sq f
−→ diffv(M)

e
−→ S1 is null-homotopic.

Let F be the surface obtained from the base orbifold by removing the
interiors of disjoint disk neighborhoods of the cone points, or if there
are no cone points, by removing the interior of some disk. Consider
the restriction of f to a parameterized family g : Sq −→ diffv(F × S1)

of vertical diffeomorphisms of F × S1. Since Sq f
−→ diffv(M)

e
−→ S1 is

null-homotopic, we can lift g to g̃ : Sq −→ diffv(F×R) such that g̃(s0) =
IdF×R. Note that for any s ∈ Sq, g̃(s) is equivariant. This means that if
we write g̃(s)(x, t) = (x, ωs(x, t)) for (x, t) ∈ F×R and regard S1 as R/Z,
then ωs(x, t+ 1) = ωs(x, t) + 1. The homotopy g̃u : S

q −→ diffv(F ×R)
(u ∈ [0, 1]) defined by

g̃u(s)(x, t) = (x, (1− u)ωs(x, t) + ut)

satisfies g̃0(s) = g̃(s), g̃1(s) = IdF×R for any s ∈ Sq and g̃u(s0) = IdF×R

for any u ∈ [0, 1]. Moreover, from the construction of g̃u, each g̃u(s)
is equivariant. Thus g̃u covers a homotopy gu : S

q −→ diffv(F × S1)
between g and IdF×S1 , which is naturally extended to a homotopy
fu : S

q −→ diffv(M) between f and IdM . This shows that f is con-
tractible in diffv(M). q.e.d.

We remark that when M has nonorientable base orbifold, there is no
circular isotopy such as ϕ, and diffv(M) is contractible, but we will not
need this information.

Lemma 8.2. Suppose that M is a Seifert-fibered 3-manifold with
its base orbifold a 2-sphere with three cone points, and that π1(M) is
infinite. Then diffv(M) = Diffv(M).

Proof. We must show that any vertical diffeomorphism j of M is
vertically isotopic to the identity. By Lemma 7.3, j cannot reverse the
fiber direction. By vertical isotopy, we can make j the identity on an
exceptional fiber F0, and then the identity on a fibered solid torus neigh-
borhood V of F0. In N = M \ int(V ), there is a vertical annulus that
separates N into two solid tori T1 and T2, each intersecting V in a ver-
tical annulus. By a vertical isotopy fixing V , we can make j the identity
on T1. It is now the identity on ∂T2, so by vertical isotopy we can make
it the identity on T2 as well. q.e.d.

Proposition 8.3. Suppose that M is a Seifert-fibered 3-manifold with
its base orbifold a 2-sphere with three cone points, and that π1(M) is in-

finite. Give M its standard H
2×R, S̃L2(R), Nil, or Euclidean geometry.

In the sequence

Isom(M) → Difff (M) → Diff(M) → Out(π1(M)),

each of the three maps is bijective on path components.
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Proof. By Proposition 7.1, the composition of all four maps is surjec-
tive, and hence so is Diff(M) → Out(π1(M)). By results of Scott [Sc3]
and Boileau-Otal [BO], any diffeomorphism of M that is homotopic to
the identity is isotopic to the identity, so Diff(M) → Out(π1(M)) is in-
jective on path components. This proves the lemma for the third map,
and that the second map is surjective on path components.

As usual, let F be the surface obtained from the base orbifold by
removing the interiors of disjoint disk neighborhoods of the cone points.
Consider a fiber-preserving diffeomorphism f of M that is isotopic to
the identity. By fundamental group considerations, f cannot reverse
the direction of the fiber, and must preserve each exceptional fiber.
So by fiber-preserving isotopy we may assume that f is the identity
on M − F × S1. Every orientation-preserving diffeomorphism of F that
preserves each boundary component is isotopic to the identity, allowing
us to change f to be the identity in the F -coordinate of F × S1. Since
f is now vertical, Lemma 8.2 shows that f is vertically isotopic to the
identity. We conclude that the second map is bijective and the first map
is surjective on path components.

By Proposition 7.4, Isom(M) → Out(π1(M)) is injective on path
components, and hence so is the first map. This completes the proof.
q.e.d.

9. The space of Seifert fiberings and the Smale Conjecture

Let M be a Seifert-fibered 3-manifold. Two (smooth) Seifert fiber-
ings of M are considered equivalent if there is a diffeomorphism of
M that takes fibers of one to fibers of the other. The coset space
Diff(M)/Difff (M) is the space of Seifert fiberings equivalent to the
given one. Since fiberings equivalent under Diff(M) produce conjugate
subgroups for Difff (M), the homeomorphism type of Diff(M)/Difff (M)
is independent of the particular fibering within its equivalence class.
Taking the disjoint union of copies of Diff(M)/Difff (M), one for each
equivalence class of Seifert fibering, we obtain the space SF(M) of Seifert
fiberings of M . By Theorem 3.12 of [HKMR], SF(M) is a separable
Fréchet manifold locally modeled on an infinite-dimensional separable
Fréchet space, and consequently it has the homotopy type of a CW-
complex.

In this section, we will prove that when M is a closed orientable
Seifert fibered 3-manifold with a hyperbolic base 2-orbifold, SF(M) is
contractible. If in addition the base orbifold is a 2-sphere with three

cone points, and M has its standard H
2 × R or S̃L2(R) geometry, then

the inclusion Isom(M) → Diff(M) is a homotopy equivalence. Both of
these facts rely upon the following result:
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Theorem 9.1. Let M be a closed orientable Seifert-fibered 3-manifold
with a hyperbolic base orbifold. Then the inclusion Difff (M) → Diff(M)
is a homotopy equivalence.

Proof. When M is Haken, this is Theorem 3.13 of [HKMR], so we
need only consider the case when the base orbifold is a 2-sphere with
three cone points. By Proposition 8.3, the inclusion is a bijection on
path components, so it remains to prove that difff (M) → diff(M) is a
homotopy equivalence.

According to Theorem 3.9 of [HKMR], the induced map Difff (M) →

Difforb(O) is a fibration over its image, and consequently the restriction

difff (M) → difforb(O) is a fibration. The fiber is Diffv(M) ∩ difff (M),

which must be diffv(M) by Lemma 8.2. Moreover, diff orb(O) is con-
tractible, since it is essentially diff(S2 \ {three points}), and it follows
that the inclusion diffv(M) → difff (M) is a homotopy equivalence.

Consider the composition S1 ϕ
−→ diffv(M) → difff (M) → diff(M).

The first map is the homotopy equivalence of Lemma 8.1, and we have
just seen that the second map is a homotopy equivalence. By the Main
Theorem, the entire composition is a homotopy equivalence, and hence
so is the third map. q.e.d.

The quotient map Diff(M) → Diff(M)/Difff (M) is a fibration, by
Theorem 3.12 of [HKMR]. Therefore Theorem 9.1 yields

Corollary 9.2. Let M be a closed orientable Seifert-fibered 3-mani-
fold with a hyperbolic base orbifold. Then SF(M) is contractible.

As another consequence of Theorem 9.1, we have the Smale Conjec-
ture for our class of non-Haken manifolds:

Theorem 9.3. Let M be a closed orientable Seifert-fibered 3-manifold

having an H
2×R or S̃L2(R) geometry, and base orbifold a 2-sphere with

three cone points. Then the inclusion Isom(M) → Diff(M) is a homo-
topy equivalence.

Proof. According to Theorem 9.1, it suffices to show that the inclusion
Isom(M) → Difff (M) is a homotopy equivalence.

As already noted, Theorem 3.9 of [HKMR] shows that the induced

map Difff (M) → Difforb(O) is a fibration over its image, which we will

denote by Difforb
0 (O). This gives the second row of the diagram

Isomv(M) −−−−→ Isom(M) −−−−→ Isom0(O)

α
y

y β
y

Diffv(M) −−−−→ Difff (M) −−−−→ Difforb
0 (O)

In the first row, Isom0(O) is the image of Isom(M) → Isom(O). The
second map is a homomorphism with kernel Isomv(M), so the first row
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is also a fibration. The inclusion α is a homotopy equivalence by Lem-
mas 7.3, 8.1, and 8.2.

We claim that the inclusion β is also a homotopy equivalence, from
which it follows that the middle vertical map is as well. Each non-
identity element of Isom0(O) is nonisotopic to the identity on diff(S2 \
{three points}), so β is injective on path components. Let f ∈ Difff (M)

induce f on O. By Proposition 8.3, f is isotopic through fiber-preserving
diffeomorphisms to an isometry, so f is orbifold-isotopic to an isometry
of O. That is, β is surjective on path components. Finally, the compo-
nents of Difforb(O) are contractible, and the components of Isom0(O)
are points, so β is a homotopy equivalence and the proof is complete.
q.e.d.
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