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Université de Rennes 1
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1. Introduction

In [9] Mostow proved that two closed hyperbolic manifolds having the same funda-
mental group are isometric.

Theorem 1 (Mostow’s Rigidity Theorem). Let M1 and M2 be connected, com-
pact, oriented hyperbolic manifolds of dimension n ≥ 3 and φ : π1(M1) → π1(M2) a
group isomorphism. Then there exist an isometry f : M1 → M2 such that the mor-
phism f∗ induced between the fundamental groups is φ.

It is equivalent to show that π1(M1) and π1(M2) are conjugate in the group of
isometries of the hyperbolic space. Note that in dimension 2 the result is false. In
fact, there is a 6g − 6 dimensional space of possible hyerbolic metrics on each closed
orientable surface of genus g ≥ 2 (see B.4, [1]). On the other hand, Mostow’s Rigidity
Theorem is also true for the finite volume case.

Our aim is to give three different proofs of Mostow’s Rigidity Theorem: a proof
given by Gromov and Thurston [12], a proof by Besson, Courtois, and Gallot [2], and
a proof by Tukia [13].

The first step is common to all proofs of Mostow’s Theorem. It involves showing
that any isomorphism between the fundamental groups of two closed hyperbolic ma-
nifolds induces a homotopy equivalence f : M1 → M2 which lifts to a quasi-isometry
f̄ : Hn → Hn between the universal cover. The map f̄ gives rise to a homeomorphism
of the boundary of the hyperbolic space to itself,

∂f̄ : ∂Hn → ∂Hn,

which satisfies the equivariance condition,

∂f̄ ◦ γ = φ(γ) ◦ ∂f̄ for all γ ∈ π1(M1).

For the Gromov-Thuruston and Tukia’s proofs, the objective is to show that ∂f̄ is
the trace of an isometry of the hyperbolic space. Then by using the equivariance we
can extend it to H̄n and passing it to the quotient, obtain the wanted isometry .

In order to achieve this objective, the Gromov-Thurston’s basic strategy is to show
that the ∂f̄ sends regular ideal simplices to regular ideal simplices. To see that this
is the case, one uses the fact that the Gromov norm of the fundamental class is
proportional to the volume of the manifold.
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Theorem 2 (Gromov-Thurston). If M is an oriented compact hyperbolic manifold
then

‖M‖ =
vol(M)

vn
.

This theorem is of independent interest because it says that the volume of any
oriented compact hyperbolic manifold is bounded above from above by the number
of simplexes of any triangulation.

Tukia’s proof of Mostow’s Theorem uses that if f̄ is a quasi-isometry then ∂f̄ is
quasi-conformal and by the Radamacher-Stepanov Theorem we have that it is also
a.e. differentiable. On the other hand, since the manifolds in question are cocompact,
every point in ∂Hn is a conical limit point. Mostow’s Rigidity Theorem follows then
if we apply the next theorem to h = ∂f̄ :

Theorem 3 (Tukia). Suppose Γ1 is any discrete subgroup in SO0(n, 1), with ξ a
conical point, h : Sn−1 → Sn−1 a homeomorphism which is differentiable at ξ with
nonzero derivative and hΓ1h

−1 ⊂ SO0(n, 1). Then h is a Möbius transformation.

Finally, Besson, Courtois, and Gallot obtain Mostow’s Theorem as a consequence
of a more general result. Recall that the volume entropy h(g) for (Y, g) a compact
connected Riemannian n−manifold is:

h(g) := lim
R→∞

1

R
log V olgp(R).

Where V olgp(R) is the volume of the ball of radius R centered at the point p in Ỹ ,
the universal covering of Y.

Theorem 4 (Besson, Courtois, and Gallot). Let (Y, g) and (X, g0) be two com-
pact and negatively curved Riemannian manifolds, such that (X, g0) is hyperbolic.
Suppose that X and Y are homotopically equivalent. Then, if dimX = dimY = n ≥ 3
we have

i) h(g)nV ol(Y, g) ≥ h(g0)nV ol(X, g0).

ii) Equality holds if and only if X is isometric to Y (after rescaling g by h(g)
h(g0)

).

Mostow’s Theorem follows immediately by noticing that h(g) = n − 1 for hy-
perbolic manifolds. The existence of the boundary map is crucial in the proof of
Theorem 4, as X̃ and Ỹ are δ−hyperbolic spaces, we can also obtain ∂f̄ homeo-
morphic, φ−equivariant map between the respective boundaries of their universal
covers. In [2] Besson, Courtois, and Gallot’s proof relies on the fact that ∂f̄ extends
to a smooth map F̄ : Ỹ → X̃ (barycentric extension or the Douady-Earle extension)
which descends to F : Y → X homotopic to f̄ and also by giving tight estimates on
the Jacobian of F.

This text is organized as follows:

Section 2 is a collection of definitions and facts about hyperbolic geometry, isome-
tries of the hyperbolic space and hyperbolic manifolds.
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In section 3 we prove the first common step of Mostow’s Theorem, which involves re-
lating by quasi-isometry an hyperbolic manifold with its fundamental group (Milnor-
Svarc Theorem). And constructing the boundary map ∂f̄ using Morse Lemma.

In section 4 we give the Gromov-Thurston proof of Mostow’s Theorem. We intro-
duce the topological invariant, the Gromov norm and by using measure homology we
proof Theorem 2 which relates the topology and geometry of the manifold.

In section 5 we show the Besson, Courtois, and Gallot’s proof of Mostow’s Theorem
by constructing the barycentric extension using the Paterson-Sullivan measures and
the barycenter of a non atomic measure on the boundary.

And in section 6 we present the Tukia’s proof of Mostow’s Theorem, using quasi-
conformal maps on the sphere of dimension n ≥ 2 and the Radamacher-Stevanov
Theorem.

2. Preliminar

The n−dimensional hyperbolic space Hn is the unique simply connected n−manifold
with sectional curvature −1. The models used in this text to represent the hyperbolic
space will be the upper half-space model and the Poincaré model.

The group of orientation-preserving isometries Iso+(Hn) is isomorphic to the iden-
tity component of the Lorenz group SO(n, 1). For n small there are far identifications,
Iso+(H2) = PSL(2,R) and Iso+(H3) = PSL(2,C). In general the group Iso(Hn)
acts on ∂Hn = Sn−1 as the group of Möbius transformations, i.e. compositions of
inversions in round spheres.

An hyperbolic manifold is a Riemannian manifold with sectional curvature −1, or
equivalently, a manifold which is the quotient of Hn by a torsion free and discrete
subgroup of SO0(n, 1). Emphasize that many geometric and topological properties
of hyperbolic manifolds also hold in the case where the sectional curvature is non-
positive. For example, every complete, simply connected manifold of non-positive
curvature is diffeomorphic to Rn and its distance function is convex.

Furthermore, the ideal boundary of X the universal covering of a Riemannian mani-
fold with non-positive sectional curvature, can be characterized in a very concrete way
as follows. We say that two unit speed geodesics β1, β2 : [0,∞) → X are asymptotic
if

lim sup d(β1(t), β2(t)) <∞.
The ideal boundary ∂X is the set of equivalence classes in the geodesics rays space
under the relation of being asymptotic. So we denoted the class of β1 by [β1].

Given z1, z2 ∈ ∂X and p ∈ X, there exist a unique geodesic ray β1 and β2 from p,
with unit speed, such that zi = [βi]. Define

]p(z1, z2) := angle between β′1(0) and β′2(0).

Define similarly the angle between z ∈ ∂X and q ∈ X. And the cone

Cp(z, ε) := {q ∈ X ∪ ∂X | p 6= q, ]p(z, q) < ε}.
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The cone topology on X ∪ ∂X is the topology generated by the open sets in X and
these cones. The induced topology on ∂X is called the sphere topology. We have that
qi converges to z ∈ ∂X if and only if for every p ∈ X, d(p, qi)→∞ and ]p(z, qi)→ 0.

There exist a homeomorphism between the unit sphere Sn−1 ⊂ TpX and ∂X which
associates to each unit vector v at p the class [βv] represented by the geodesic ray
issuing from p with initial velocity v. One shows that X∪∂X is homeomorphic to the
unit closed ball in Rn. Moreover, if γ is an isometry of X. There is a natural extension
of γ to ∂X sending [β] to [γ ◦ β].

Another remark is that if we have f : Hn/Γ1 → Hn/Γ2 a homotopy equivalence
between closed, connected, orientable, hyperbolic n−manifolds. Let π1 : Hn → Hn/Γ1

and π2 : Hn → Hn/Γ2 be the quotient maps. Let γ be an element of Γ1 and let
f̄ : Hn → Hn be the lift of f. Then we have

π2 ◦ f̄ ◦ γ = f ◦ π1 ◦ γ = f ◦ π1 = π2 ◦ f̄ .
Hence, there is a unique element f∗(γ) of Γ2 such that

f̄ ◦ γ = f∗(γ) ◦ f̄ .
In this case we say that f is equivariant with respect to the action of Γ1 and Γ2 on
Hn, or simply that f is f∗−equivariant. Moreover, f∗ : Γ1 → Γ2 is a morphism.

This gives us another way of thinking about isometries between hyperbolic man-
ifolds. If f is an isometry then f∗ is certainly a isomorphism where f lifts to an
isometry f̄ that is equivariant with respect to the action of the respective fundamen-
tal groups on Hn. Going back, any isometry f̄ that is equivariant with respect to the
action of the fundamental groups descends to an isometry f.

In the case where the fundamental groups are isomorphic we have an homotopy
equivalence thanks to the next result.

Theorem 5 (Whitehead’s theorem). If a map f : X → Y between connected
CW−complexes induces isomorphisms f∗ : πn(X) → πn(Y ) for all n then f is a
homotopy equivalence.

Since we can represent any closed connected hyperbolic manifold as a CW−complex
by considering the fundamental domain, and that Hn is contractible so the high
homotopy groups of M are trivial. Then we can apply the Theorem 5 in the follow
result whose proof can be found in (Thm.C.5.2, [1]).

Corollary 6. If M1 and M2 are closed hyperbolic manifolds with φ : π1(M1)→ π1(M2)
a group isomorphism, then there exist a homotopy equivalence f : M1 →M2 such that
the morphism f∗ = φ. Moreover, f is unique up to homotopy.

3. Boundary map

The goal of this section is to prove that an isomorphism between the fundamental
groups of closed hyperbolic manifolds induces a quasi-isometric homeomorphism be-
tween the boundary of their universal covers, which is equivariant under the action of
the fundamental groups. The standard references typically prove this by constructing
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a homotopy equivalence out of the isomorphism between fundamental groups. Our
argument is a little diferent we avoid this step, instead the idea of the proof is that
φ induce a quasi-isometry f̄ by using the Milnor-Svacr Theorem 8 which induces the
homeomorphism ∂f̄ .

Theorem 7. Suppose Γ1 and Γ2 are subgroups of SO0(n, 1) such that Hn/Γ1 and
Hn/Γ2 be n−dimensional connected, compact, oriented manifolds endowed with a hy-
perbolic structure. If φ : Γ1 → Γ2 is a isomorphism then there is a homeomorphism
∂f̄ : ∂Hn → ∂Hn that is φ−equivariant.

3.1. Quasi-isometry and δ−hyperbolic spaces. We have the groups Γi acting
properly discontinuously cocompactly on Hn. In order to induced the desired isometry,
firstly we will approach by defining a metric to any finitely generated group G, known
as the Cayley Graph of G.

Let FG ⊂ G be a finite generating set for G. Let FG
∗ denote the set of words in the

elements of FG and their inverses. Then we can define a metric on G (depending on
FG) as follows:

|g|FG = min{length(w) | w ∈ FG∗ w =G g}.
Then for any g, h ∈ G define

dFG(g, h) = |gh−1|FG .

Notice that G acts on the right by isometries on the Cayley Graph.

Of course, the generating sets changes the metric. But there is a notion of equiv-
alence between metric spaces such that if FG and F ′G are generating set of the same
group G. Then (G, dFG) and (G, dF ′G) are equivalent in a sense that we precise next.

Given two metric spaces (X, dX) and (Y, dY ), a map f : X → Y is a (λ, ε)−quasi-
isometry if there are constants λ ≥ 1 and ε ≥ 0 such that for all x1, x2 ∈ X

1

λ
dX(x1, x2)− ε ≤ dY (f(x1), f(x2)) ≤ λdX(x1, x2) + ε

And if,

Y ⊂ Nε(f(X)).

One of the ideas to proof Theorem 7 is to construct a quasi-isometry between Hn and
a group of isometries that acts freely, properly discontinuously and cocompactly on
Hn. This will be given by the next result.

Theorem 8 (Milnor-Svarc Theorem). Let X be a geodesic metric space. Suppose
that Γ acts properly discontinuously and cocompact by isometries of X. Then Γ is
finite generated. If A is any finite generating set for Γ and x0 is any base point, the
map (Γ, dA) 3 γ → γ ∗ x0 ∈ (X, d) is a quasi-isometry. In particular, if M is a
compact, connected Riemannian manifold with his universal covering M̃ then there
exist a quasi-isometry between π1(M) and M̃.
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Proof. Since Γ acts cocompactly on X there is some compact K ⊂ X such that
x0 ∈ K and X = Γ ∗K. Let κ be the diameter of K. For every x ∈ X there is γ ∈ Γ
such that dX(x, γx0) ≤ κ. Thus the map γ → γ ∗ x0 is quasi-surjective.

Let A = {γ ∈ Γ | d(x0, γ ∗ x0) ≤ 4κ}, we have that it is finite by properly disconti-
nuity using the compact set B(x0, 4κ).

To see that A generates Γ, suppose by contradiction that it generates H a proper
subgroup and construct the sets V = H ∗U and V ′ = (Γ/H) ∗U where U is an open
neighborhood of K of diameter 2κ. Clearly V ∪ V ′ = X and if V ∩ V ′ 6= ∅ then there
will be x ∈ X and γ ∈ H γ′ /∈ H such that dX(x0, γ ∗x0) ≤ 2κ and dX(γ′ ∗x0, x) ≤ 2κ
and that would say that dX(x0, γ

−1γ′ ∗ x0) ≤ 4κ which implies γ−1γ′ ∈ H so we have
a contradiction.

By one way using λ as the maximal distance of x0 to the elements of its orbit by
elements of A ∪ A−1 we can prove that by writing each element of γ ∈ Γ as a finite
product of elements of A ∪ A−1 the next result:

dX(γ ∗ x0, γ
′ ∗ x0) ≤ λdA(γ, γ′).

For the other inequality we consider γ ∗ x0, γ
′ ∗ x0 and a geodesic joining them, then

we make a partition of that geodesic in sizes of lenght less than κ.

Recall that the map is quasi-surjective, thus there is some γi ∈ Γ such that γi ∗ x0

is κ−near of the i−th point of the partition then,

dX(γi ∗ x0, γi+1 ∗ x0) ≤ 3κ.

Consequently γ−1
i γi+1 ∈ A and

γ−1γ′ = (γ−1
0 γ1)(γ−1

1 γ2)...(γ−1
N−1γN),

it follows that

dA(γ, γ′) ≤ 1

κ
dX(γ ∗ x0, γ

′ ∗ x0).

�

Corollary 9. If FG and F ′G are two finite generating sets of the group G, then the
metric spaces (G, dFG) and (G, dF ′G) are quasi-isometric.

Corollary 10. Suppose that X and X ′ are proper geodesic metric spaces, G, G′

acting properly discontinuously cocompactly on X and X ′ respectively and φ : G→ G′

be an isomorphism. Then there exists a φ-equivariant quasi-isometry f : X → X ′.

The negative curved spaces can be regarded as δ−hyperbolic spaces or Gromov
hyperbolic spaces. Roughly speaking, a geodesic space X is called ’hyperbolic’ if
all geodesic triangles in X are ’slim’. More precisely, a geodesic metric space X
is called δ−hyperbolic, if for every geodesic triangle each side is contained in the
δ−neighborhood of the union of the two sides. As an example, Hn is 2−hyperbolic.

Although we will not need this fact, it is interesting to note that two geodesic
metric spaces (X, dX) and (Y, dY ) are quasi-isometric, then X is δ−hyperbolic for
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some δ if and only if Y is δ′−hyperbolic for some δ′ (see Thm. III.H.1.9 [3]). This is
a further evidence that quasi-isometry is a right notion of equivalence in this context.

3.2. Quasi-geodesics and Morse Lemma. Quasi-geodesics play an important role
in δ−hyperbolic spaces because they are not far away from being geodesics. This
statement about stability of quasi-geodesics is made precise by the Morse Lemma.

Proposition 11 (Morse Lemma). If X is a δ−hyperbolic space then there is some
constant R = R(δ, λ, ε) such that for every (λ, ε)−quasi-geodesic β : [a, b]→ X.

dH(β([a, b]), [β(a), β(b)]) ≤ R

Proof. We are going to make the proof for X = Hn, the δ−hyperbolic space proof can
be found in (Thm. 6, Chap. 5, [5]). First we can substitute (λ, ε)−quasi-geodesic with
a continuous one whose distance from the original one is a constant r that depends
only of λ and ε. This is made by making partitions of the original quasi-geodesic and
joining the extremal point with geodesic segments.

Suppose that β([a, b]) 6⊂ Nr([β(a), β(b)]) and let [a′′, b′′] be maximal such that
β([a′′, b′′]) is contained in the complement of the open r neighborhood of [β(a), β(b)].
Let x = β(a′′) and y = β(b′′), γ = [β(a), β(b)], projγ(x) = x′ and projγ(y) = y′. Then
using triangle inequality we get d(x, y) ≤ d(x′, y′) + 2r.

length(β([a′′, b′′]) ≥ length(proj∂Nr(γ)(β([a′′, b′′]))) = cosh(r)d(x′, y′)

and

λd(x′, y′) + ε′ ≥ λd(x, y) + ε ≥ length(β([a′′, b′′]).

Then the distance r is bounded and so on the length of β|[a′′,b′′]. And β is contained
in a R−neighborhood of γ. �

It is a fact, that if β : [0,∞) → X a quasi-geodesic there is a unique geodesic ray
A(β) : [0,∞) → X starting in the same point and such that the Hausdorff distance
between the image of β and the image of A(β) is finite. Indeed, for p = β(0) we
construct a function Vp : X → UTpX that for every point x give the unitary vector
of the geodesic joining p to x. For every t ∈ [0,∞) let Bt

R denote the closed ball of
radius R given by the Morse Lemma and centered on β(t). Set

U = ∩Vp(Bt
R).

Notice that U is at most one point because two distinct ray geodesics not remain
within a bounded distance of each other. And is not empty cause of the election of R
and compactness. Thus U is a singleton and gives us the velocity of the ray geodesic
A(β).

3.3. Homeomorphic boundary map. In this section we will prove that every
quasi-isometry on Hn extends uniquely to a self homeomorphism to the boundary. It
is important to notice that this result is true for manifolds with negative sectional
curvature, moreover for δ−hyperbolic spaces. A proof of this generalization can be
found in (Thm. 2.2, Chap. 3, [4]).
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Now, given a quasi-isometry f̄ : Hn → Hn we can define ∂f̄ : ∂Hn → ∂Hn by

∂f̄([β]) = [f̄ ◦ β]

It is well defined because the images of any two rays in the same class are at finite
distance of each other. Actually, ∂f̄ is a homeomorphism thanks to the next result
that is related to the fact that ∂f̄ is quasi-conformal, and we will discus that in section
6.

Lemma 12. If β is a geodesic line in Hn, H is a hyperbolic hyperplane orthogonal
to β and f̄ : Hn → Hn is a (λ, ε)−quasi-isometry. Let πA(f̄◦β) denote the orthogonal

projection onto the geodesic line A(f̄ ◦β). Then there exist some constant c depending
only on λ and ε such that

diamπA(f̄◦β)f(H) ≤ c.

Proof. Let x be the point of intersection of H and β, the take y ∈ H/{x} . Let l
be the geodesic ray contained in H that joins x to y with endpoint θ, also let η1 and
η2 the other endpoints of β. Let li the geodesic joining θ and ηi,and let xi the closes
point in li to x, for i = 1, 2. Notice that cosh(d(x, xi)) =

√
2.

Let z be the point on A(f̄ ◦β) that is closest to f̄(x) and z0 the foot perpendicular
from ∂f̄(θ) to A(f̄ ◦ β). First note that z is a uniformly bounded distance from each
A(f̄ ◦ li) since

d(A(f̄ ◦ li), z) ≤ d(A(f̄ ◦ li), f̄(xi)) + d(f(xi), f̄(x)) + d(f̄(x), z) ≤ R + kλ+ ε+R.

Now let ai be the closest points on A(f̄ ◦ li) to z. One of the geodesic segments [z, ai]
intersects the geodesic ray emanating from z0 with end point ∂f̄(θ). Without loss of
generality assume it is [z, a2] and let the point of intersection be a. Then azz0 is a
right angled hyperbolic triangle so

d(z, z0) ≤ d(z, a) ≤ d(z, A(f̄ ◦ l2)) ≤ 2R + kλ+ ε.

Now suppose w ∈ A(f̄ ◦ l). Then the projection of w onto A(f̄ ◦β) lies on the geodesic
segment [z, z0]. So d(πA(f◦β)(w), z) ≤ 2R+λk+ ε. If w is the closest point on A(f̄ ◦ l)
to f̄(y) then because orthogonal projection reduces distances, we have

d(πA(f̄◦β)(f̄(y)), z) ≤ d(πA(f̄◦β)(f̄(y)), πA(f̄◦β)(w)) + d(πA(f̄◦β)(w), z)

≤ d(f̄(y), w) + d(πA(f̄◦β)(f̄(y)), z)

≤ R + 2R + kλ+ ε.

Finally, c = 2(3R + kλ+ ε) complete the proof. �

Lemma 13. If f̄ : Hn → Hn is a quasi-isometry then ∂f̄ : ∂Hn → ∂Hn is a homeo-
morphism.

Proof. It is easy to show that ∂f̄ is a bijection whose inverse is ∂ḡ where ḡ : Hn → Hn

is any quasi-inverse of f̄ . Hence we have only to show that ∂f̄ is continuous. Fix Q
a neighborhood of ∂f̄([β]) and let t0 ∈ [0,∞), such that for t > t0 the ball of radius
R (given by the Morse Lemma) around f̄(β(t)) is contained in Q.
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Let H be the hyperplane orthogonal to β passing through β(t0) and let Ht be
the hyperplane orthogonal to β passing through β(t). By the previous Lemma 12
f̄(Ht) ⊂ Q. The same if we take the closure of each hyperplane, which in union we
call Q′. It follows that f̄(Q′) ⊂ Q. �

We now proceed to prove the main Theorem of this section.

Proof of Theorem 7 . Since M1 = Hn/Γ1 and M2 = Hn/Γ2 are compact manifolds
then Γ1 and Γ2 are subgroups of SO0(n, 1) that act properly discontinuously and
co-compactly.

Fix a base point x0 ∈ Hn. By the Corollary 10 of Milnor-Svarc Theorem we have
a φ-equivariant quasi-isometry f̄ : Hn → Hn. And by the Proposition 13 there is a
homeomorphism ∂f̄ : ∂Hn → ∂Hn. It remains to show that ∂f̄ satisfies the equivari-
ance condition.

(∂f̄ ◦γ)([β]) = ∂f̄([γ◦β]) = [f̄ ◦γ◦β] = [φ(γ)◦f̄ ◦β] = φ(γ)([f̄ ◦β]) = (φ(γ)◦∂f̄)([β]).

�

4. The Gromov-Thurston proof

In this section we outline Gromov and Thurston’s proof of Mostow’s Theorem
that appeared in Thurston’s Princeton lecture notes (Chap.6, [12]), and in Gromov’s
survey [6].

Our aim is to prove that ∂f̄ is a trace of an isometry of the hyperbolic space. To
achieve this fact, we will proof that ∂f̄ send regular ideal simplices to themselves.
At the same time we will also prove that simplicial volume is proportional to the
geometric volume (Theorem 2).

4.1. Gromov Invariant and Measure homology. Let X be a topological space
and let S(X;R) be the singular chain complex of X. More concretely, Sk(X;R) is
the set of formal linear combination of k−simplices. We denote by ‖c‖ the l1−norm
of the k−chain c. If α is a homology class in Hsing

k (X;R), the Gromov norm of α is
defined

‖α‖ = inf
[c]=α
{‖c‖ =

∑
σ

|rσ| such that c =
∑
σ

rσσ}.

Let f : X → Y be a continuous function, α a homology class in Hsing
k (X;R) and

c =
∑

σ rσσ. be a k−cycle representing α. Then f(c) =
∑

σ rσf ◦ σ represents the
homology class of f∗(α). So,

‖f∗(c)‖ ≤
∑
σ

|rσ| = ‖c‖, so ‖f∗(α)‖ ≤ ‖α‖.

The simplicial volume of a closed, connected, orientable manifold M is the Gromov
norm of a fundamental class of M in Hsing

n (M ;R) and is denoted by ‖M‖. Note that is
not a norm but a pseudo-norm, because every closed, connected, orientable, spherical
or Euclidean n−manifold, with n ≥ 1, has null simplicial volume.



10

Recall that the fundamental class is characterize by the fact that if ΩM is the
volume form of a Reimannian metric in M , then V ol(M) =< ΩM , [M ] > where this
pairing is defined such that if c =

∑
σ rσσ ∈ Sn(X,R) then,

(4.1) < ΩM , c >=

∫
c

ΩM :=
∑
σ

rσ

∫
∆n

σ∗ΩM .

Note that is well defined because the pairing depends only on the homology class of
c by Stoke’s Theorem.

It turns out that defining the simplicial volume in terms of a generalization of
singular homology, called measure homology, makes it more user-friendly. As follows
we develop the theory of measure homology for the hyperbolic manifold M = Hn/Γ.

For each integer k ≥ 0, let C∞(∆k,M) be the space of C∞ singular k−simplexes
in M topologized with the C1 topology. Let Ck(M) be the real vector space of all
compactly supported, signed, Borel measures µ of bounded total variation ‖µ‖ on the
space C∞(∆k,M). Where

‖µ‖ = µ+(C∞(∆k,M)) + µ−(C∞(∆k,M)),

and µ+−µ− is the Jordan decomposition of µ into its positive and negative variation.

For each i = 0, ..., k let ηi : ∆k−1 → ∆k be the ith face map. The ηi induces a
continuous function

η∗i : C∞(∆k,M)→ C∞(∆k−1,M),

and the linear transformation

(η∗i )∗ : Ck(M)→ Ck−1(M).

We define a linear transformation (δk)∗ : Ck(M)→ Ck−1(M) by the formula

δk =
k∑
i=0

(−1)i(η∗i )∗.

Making the usual calculation δk−1 ◦ δk = 0, then the system {Ck(M), δk} is a chain
complex. Thus we can define Hmed

k (M) the measure homology of M. And we have the
analogue of the Gromov norm. Let α is a homology class in Hmed

k (M), then

‖α‖ = inf
[µ]=α
{‖µ‖},

where ‖µ‖ is the total variation of µ.

Let S∞(M) be the subchain complex of S(M ;R) of C∞ singular chains in M. It is
known that the inclusion chain map of S∞(M) into S(M ;R) induces en isomorphism
on homology.

Given a C∞ k−simplex σ, represent the Dirac measure on C∞(∆k,M) at σ as δσ.
And define a linear transformation,

mk : S∞k (M)→ Ck(M),
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by the formula,

mk

(∑
σ

rσσ

)
=
∑
σ

rσδσ.

The family {mk} of linear transformations is a chain map from S∞(M) to C(M).
For all oriented, closed, connected manifold M the inclusion of the singular chain

complex into the measure chain complex induces a natural isomorphism

Hsing
∗ (M) ' Hmed

∗ (M).

This isomorphism is isometric with respect the Gromov norm on singular homology
and the analogue norm on measure homology induced by the total variation. Indeed,
we can prove that the inclusion m induces a natural isomorphism. The idea is to use
a similar method as the Poncairé duality in defining for each ω a C∞ k−form on M
the function

Iω : C∞(∆k,M)→ R

by

Iω(σ) =

∫
∆k

σ∗ω,

and proof that it is continuous.

Then for each measure µ in Ck(M) with K the compact support of µ, we have that
the set Iω(K) is bounded for each ω in Ωk(M) and as µ has bounded total variation,
the integral

∫
K
Iωdµ is finite for each ω. And this induces a linear functional dµ element

of the de Rham chain complex such that

dµ(ω) =

∫
C∞(∆k,M)

(∫
∆n

σ∗ω

)
dµ(σ).

Also induces a linear map l between the measure chains and the de Rham chain
complex by l(µ) = dµ. Finally it is easy to verify that l∗m∗ = I∗, so we have an
isomorphism on homology.

And the part of the isometry is given by proving that the operator in homology
does not increase the respective norm. A reference for a clear and general study of
this result can be found in [10].

An analogous definition of the pairing, used to characterize the fundamental class,
is given as follows. If µ ∈ Cn(M) is a measure n−cycle then,

(4.2) < ΩM , µ >= dµ(ΩM) :=

∫
C∞(∆n,M)

(∫
∆n

σ∗ΩM

)
dµ(σ).

Notice that if we think of smooth singular n−chains as weighted combinations of
point masses then 4.2 reduces to 4.1 .
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4.2. Simplices in Hyperbolic space. Let Sn denote the set of all n−simplices in
H̄n having totally geodesic faces. An element σ ∈ Sn is called ideal if all the vertices
lie on ∂Hn and it is called regular if every permutation of its vertices can be obtained
as a restriction of an isometry in Hn.

A remarkable fact is that all elements in Sn have finite volume. To see that this is
the case note that there is an ideal simplex which contains the original one. It suffices
thus, to prove that ideal simplices have finite volume. Suppose that one of its vertices
is at ∞ and cut your ideal simplex with the plane R2×{t} and calculate the volume
using the volume formula: ∫

dxdydz

z3
,

which converges thanks to the fact that the variable z goes to inifity. By using an
isometry that sends one vertex to ∞ and repeat the calculation on each vertex of
the ideal simplex. Finally the piece of simplex that is left is compact, so it has finite
volume.

It is known that in H̄2 the area of all ideal triangles is π. Moreover the volume
function over Sn has a maximum vn that is achieved in all and only regular ideal
simplices (see [11]). Another important fact is that if σ is an ideal simplex in Hn

with vertices ∞, p1, p2, ..., pn then σ is regular if and only if τ the Euclidean (n −
1)−simplex having vertices p1, p2, ..., pn is regular. Indeed, let σ be regular. If we
make a permutation of their vertices such that it fixes∞ then there exist an isometrie
φ such that the restriction to Rn × {0} results a multiple of an Euclidean isometry
and its clear that the scale factor must be 1. Conversely, if τ is a regular Euclidean
(n − 1)−simplex then every permutation of their vertices keeping fix ∞ induces a
isometry on Hn. Just take the inversion given by sphere with center at any vertex pi
and radius the distance to the other vertices. This induces a transposition between
∞ and pi. Hence σ is regular too.

It is a fact that the isometry classes of ideal simplices in Hn is parametrized by the
similarity classes of triangles in Rn−1. For example, the volume of the ideal simplexes
in H3 is given by

V ol(σ) = Λ(α(σ)) + Λ(β(σ)) + Λ(γ(σ))

where α, β, γ are the dihedral angles and Λ is the Lobatchevski function (see Sect.
C.2, [1]).

4.3. Simplicial volume proportional to the volume. In order to prove Theorem
2 we are going to use the two definitions of homology.

Proof of Theorem 2 . First we are going to prove

‖M‖ ≥ V ol(M)

vn
.

One of the key ideas of the proof is the straightening and we explain this next. Take
a simplex k−simplex σ in M, lift it to σ̃ a singular k−simplex in Hn and construct
str(σ̃) the unique totally geodesic singular k−simplex with vertices σ̃(e0), ..., σ̃(ek)
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in Hn. Now let str(σ) = π(str(σ̃)) this definition doesn’t depends on the lift since
any two lift differ by an element of SO0(n, 1). Remarkably, if

∑
σ rσσ represents some

class, then
∑

σ rσstr(σ) also represents it because the inclusion of the chain subcom-
plex generated by all straight singular chains into S(M,R) induces isomorphism on
homology.

Let ΩM be the volume form for M and let c =
∑

σ rσσ be any straight singular
n−cycle representing the fundamental class of M. Then∫

c

ΩM =
∑
σ

rσ

∫
∆n

σ∗ΩM =
∑
σ

±rσV ol(σ(∆n)) ≤
∑
σ

|rσ|V ol(σ(∆n))

Now as V ol(σ(∆n)) ≤ vn. Therefore we have

V ol(M) =

∫
c

ΩM ≤
∑
σ

|rσ|vn,

then taking the infimum,

V ol(M) ≤ ‖[M ]‖vn.

Let us show the other inequality, or in other words prove that the fundamental
cycle of M can be represented efficiently by a cycle using simplices which have (on
the average) nearly maximal volume.

Given any positively oriented straight n−simplex σ in Hn, let σ− denote the image
of σ under some reflection. Let us construct a measure chain SMRM(σ) that is
essentially, a measure uniformly supported on all the projections of isometric copies
of σ in M. To do this, let π : Hn →M be the universal projection and by taking the
function

α(σ)(gΓ) = π ◦ g ◦ σ.

Define

SMRM(σ) := α(σ)∗[λ],

the push-forward of the Haar measure on SO0(n− 1)/Γ by α(σ), such that,

λ({γ | γ ∗ x0 ∈ U}) = V ol(U),

for every open set U.
The first assertion follow from the fact that SMRM(σ) is a positive measure and

satisfies,

SMRM(C∞(∆n,M)) = α(σ)∗[λ](Sn) = λ(α(σ)−1(Sn)) = λ(SO0(n−1)/Γ) = V ol(M).
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Also using the fact that π∗ΩM = Ω and g∗Ω = Ω for any g ∈ G,

< SMRM(σ),ΩM > =

∫
C∞(∆n,M)

(∫
∆n

τ ∗ΩM

)
d(SMRM(σ))(τ)

=

∫
SO0(n,1)/Γ

(∫
∆n

[α(σ)(gΓ)]∗ΩM

)
dλ(Γg)

=

∫
SO0(n,1)/Γ

(∫
∆n

σ∗g∗π∗ΩM

)
dλ(Γg)

=

∫
SO0(n,1)/Γ

(∫
∆n

σ∗Ω

)
dλ(Γg)

= V ol(σ)V ol(M).

Now to give the cycle, let

µ =
1

2
(SMRM(σ)− SMRM(σ−)) ∈ Cn(M).

Then since SMRM(σ) and SMRM(σ−) have disjoint support,

‖µ‖ =
1

2
‖SMRM(σ)‖+

1

2
‖SMRM(σ−)‖ = V ol(M).

Next we argue that µ is actually a cycle. En efect, for every face of every isometric
copy of π ◦σ, there is a face of an isometric copy of π ◦σ−, that matches the first face,
but with opposite orientation. Hence the faces cancel out in pairs and so ∂(µ) = 0.
Then [µ] = k[M ]. And also,

kV ol(M) =< µ,ΩM >

=
1

2
(< SMRM(σ),ΩM > − < SMRM(σ−),ΩM >)

=
1

2
(V ol(σ)V ol(M)− V ol(σ−)V ol(M))

= V ol(σ)V ol(M).

So for every straight simplex σ in Hn, [µ]/V ol(σ) represents [M ] and so

‖M‖ ≤ ‖µ‖
V ol(σ)

=
V ol(M)

V ol(σ)
.

Taking the infimum over straight simplices σ in Hn gives

‖M‖ ≤ V ol(M)

vn
.

�

Let us emphasize the fact that if M1 and M2 are two hyperbolic, closed, orientable
manifolds homotopy equivalent then there exist g a homotopy inverse. And if we take
k the fundamental class of M1 then f∗(k) is the fundamental class of M2.

‖k‖ = ‖g∗(f∗(k))‖ ≤ ‖f∗(k)‖ ≤ ‖k‖.



15

Therefore, we have the next result:

Corollary 14. If M1 and M2 are two hyperbolic compact orientable manifolds homo-
topy equivalent. Then,

if ‖M‖ = ‖N‖ then V ol(M1) = V ol(M2).

4.4. Ideal simplexes correspondence of the boundary map. The key argument
to the Mostow’s Theorem proof lays on the next result.

Proposition 15. If u0, ..., un are vertices of a maximal volume simplex then the same
holds for f̄(u0), ..., f̄(un).

Proof. By contradiction, suppose that u0, ..., un are vertices of an ideal simplex of
maximal volume but the ideal n−simplex spanned by f̄(u0), ..., f̄(un) is not. Then,
by continuity, simplexes that are sufficiently close to the given simplex have images
under f̄ which after straightening, have volumes that are bounded away from vn.

More precisely, there is a r > 0 such that if σ is a straight regular n−simplex, with
|ui − σ(ei)| < r for each i, then

V ol(str(f̄σ(∆n))) < vn − ε, for some ε > 0.

Let

Ui = {x ∈ Hn | |ui − x| < r} and Ki = {x ∈ Hn | |ui − x| < r/2}

so that

U = {g ∈ SO0(n− 1) | gKi ⊂ Ui}.

Then U is open in SO0(n−1), since SO0(n−1) has the compact-open topology. Also
the quotient map κ : SO0(n−1)→ SO0(n−1)/Γ1 is an open map, since it is a covering
projection. Hence κ(U) is an open subset of SO0(n− 1)/Γ1 and V ol(κ(U)) > 0.

Let σ be a straight singular n−simplex in M1 such that |ui− σ(ei)| < r/2 for each
i and

V ol(σ) > vn − δ where δ =
εV ol(κ(U))

2V ol(M1)
.

Now if g is in U , then

V ol(str(f̄ gσ)) < vn − ε < V ol(σ) + δ − ε,

whereas if g is not in U , then

V ol(str(f̄ gσ)) < vn < V ol(σ) + δ.

We now assume that M1 and M2 are oriented so that f̄ is orientation-preserving. By
switching the index of u0 and u1, if necessary, we may assume that σ is orientation
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preserving. Observe that

< ΩM2 , (str∗ ◦ f̄∗)(SMRM1(σ)) > =

∫
C∞(∆n,M2)

(∫
∆n

σ∗ΩM2

)
d((str ◦ f̄∗)(SMRM1(σ))(τ)

=

∫
SO0(n,1)/Γ

(

∫
∆n

(str(f̄πgσ))∗ΩM2)d(Γg))

=

∫
SO0(n,1)/Γ

V ol(str(f̄ ◦ gσ))d(Γg))

< (V ol(σ) + δ − ε)V ol(κ(U))

+ (V ol(σ) + δ)(V ol(M2)− V ol(κ(U))

= (V ol(σ)− δ)V ol(M2).

Analogus if we take σ− denote the image of τ under some reflection. Then we have

− < ΩM2 , (str∗ ◦ f̄∗)(SMRM1(σ)) >< (V ol(σ) + δ)V ol(M2).

Therefore, if µ = 1
2
(SMRM1(σ)− SMRM1(σ−)) ∈ Cn(M1) then,

< ΩM2 , (str∗ ◦ f̄∗)(µ) >< V ol(σ)V ol(M2),

but as str is homotope to the identity and f̄ is an homotopy equivalance, we have

< ΩM2 , (str∗ ◦ f̄∗)(µ) >=< ΩM2 , (f̄∗)(µ) >=< (f̄∗)(ΩM2), µ >= V ol(σ)V ol(M2),

which is a contradiction. �

4.5. End of the G-T proof. Knowing that ∂f̄ : ∂Hn → ∂Hn is a continuous one-
to-one mapping such that given an ideal geodesic simplex with vertices u0, ..., un has
volume vn then the ideal geodesic simplex with vertices ∂f̄(u0), ..., ∂f̄(un) has volume
vn too. Then ∂f is the trace of a γf ∈ SO0(n, 1). Indeed, as all ideal regular simplexes
are conjugate in SO0(n, 1) we can assume that ∂f̄ fixes a regular ideal simplex with
vertex u0 = ∞, so u1, ..., un is an equilateral triangle in Rn × {0}. Then we shall
prove that ∂f is the identity. This fact comes from using that the projection to the
boundary, of regular ideal simplexes are regular simplex in Rn, then we can prove
that the vertices of the tessellation of Rn × {0} by the regular simplex u1, ..., un are
fixed.

The next step is to use the inversion that preserves the triangle u1, ..., un and sends
the center to infinity to show that the barycentric points of the tessellation are also
fixed. We continue by fixing the middle points of the edges of u1, ..., un. Iterating the
process we obtain a dense subset which is fixed by ∂f̄ .

Proof of Theorem 1. According to the partial results we have obtained by now,
we can assume that there exist a lift f̄ : Hn → Hn such that:

1) f̄ extends in a continuous way to ∂Hn,
2) f̄ ◦ γ = f∗(γ) ◦ f̄ for every γ ∈ Γ1 holds in the whole of H̄n,
3) there exist γf ∈ SO0(n, 1) such that f̄ |∂Hn = γf |∂Hn .
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These facts imply that

γf ◦ γ = f∗(γ) ◦ γf on H̄n.

We set now for x ∈ Hn, F : M1 → M2 as, F (π1(x)) = π2(γf (x)). Thanks to the
equivariance and the fact that π1, π2 and γf are local isometries we have that F is
well define, is onto and is an isometry. To see that F is homotopic to f, take

H(t, π1(x)) = π2(tf̄(x) + (1− t)γf (x)),

then by (2) easily imply that H is a well define homotopy. �

5. The proof of Besson, Courtois, and Gallot

Besson, Courtois, and Gallot’s proof of Mostow Rigidity arises as corollary of a
much more general result. In this section, we outline this more general setting and
discuss the arguments to proof Mostow’s Theorem and its generalization.

Let X be a compact connected smooth n−manifold, and g a Riemannian metric
on X. Let X̃ be the universal covering of X and denote by V g

p (R) := V ol(Bg
p(R)) the

volume of the ball of radius R centered at the point p ∈ X̃, the volume entropy of g
is defined as

h(g) := lim
R→∞

1

R
log V g

p (R).

It turns out that this limit exists and is independent of the choice of p (See [8]).
Essentially it measures the growth rate of balls in the universal cover of X. For
example, ifX is a hyperbolic manifold and in this case we know V ol(Bg

p(R)) = e(n−1)R,
then h(g) = n− 1.

Clearly Theorem 1 is a consequence of Theorem 4 . Indeed, since the closed hyper-
bolic manifolds M1 and M2 are homotopic there exist f : M1 → M2 of degree 1, the
volume entropy is the same because both are hyperbolic and thanks to the degree 1
of f they have the same volume. Thus by condition ii) they are isometric.

To have a complete proof of Theorem 1, we will construct the isometry F of The-
orem 4 by extending ∂f̄ to a smooth map f∗−equivariant which is often called the
barycentric extension (Douady-Earle extension). Then, actually Theorem 4 is a con-
sequence of the next result.

Proposition 16. For dimX = dimY ≥ 3 the barycentric extension F is of class C1.
Furthermore, one has

i) |JacyF | ≤ ( h(g)
h(g0)

)n

ii) If for some y ∈ Y, |JacyF | =
(
h(g)
h(g0)

)n
then DyF is homothety of ratio h(g)

h(g0)
.

Proof of Theorem 4. Let us assume that F is a homotopy equivalence and hence
is a map of degree one. Let ω0 be the volume form of the oriented manifold (X, g0)
and ω the volume form of (Y, g), then∫

Y

F ∗(ω0) = degF

∫
X

ω0 = vol(X, g0),
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and the inequality of i) gives

vol(X, g0) ≤
∫
Y

|F ∗(ω0)| =
∫
Y

|(JacF )ω| ≤
(
h(g)

h(g0)

)n ∫
Y

ω =

(
h(g)

h(g0)

)n
V ol(Y, g),

which proves the first part. In the equality case then |JacyF | =
(
h(g)
h(g0)

)n
for all y

and hence DyF is a homothety of ratio ( h(g)
h(g0)

)n for all y. �

The principal tool to construct the barycentric extension are the Busemann fun-
ctions, which give a way to measure the distances between points in X and points in
∂X. This will allow to introduces the Petterson-Sullivan measures and the barycenter
of a measure, fundamental for the construction of F.

5.1. Busemann functions. Let X be a simply connected Riemannian manifold with
non-positive sectional curvature. It seems to make no sense in defining the distance
between a point in X and a point in ∂X. But we can define a sensible notion of relative
distance between those points that capture this notion nicely as follows, given a point
x0 ∈ X, the Buseman function normalized at x0 is the function Bx0 : X × ∂X → R
given by

Bx0(x, [β]) := lim
t→∞

d(β(t), x)− d(β(t), x0),

where the representative β is chosen to satisfy β(0) = x0.

In the sequel, we fix x0 ∈ X, and write either Bx0
x : ∂X → R or Bx0

θ : X → R
whenever we want to think of B as a function of one variable with the other left
fixed. Notice that, this functions are invariant under isometries. And due to the fact
that X is a CAT (0) space we have that the limit exist (see Lemma 8.18, [3]) and is
a convex C1 function with ‖DxBθ‖ = 1 (see Prop.8.22, [3]).

In the case of Hn we have a geometric interpretation of the level sets of the Buse-
mann function, if H denote the horosphere passing through θ ∈ ∂Hn and x0 ∈ Hn.
Then

Bx0(x, θ) = ±d(x,H)

where the sign is chosen according if x is inside (minus sign) or outside (plus sign)
the horoball whose boundary is H. And the Hessian of Bθ is given by:

Hessx(Bθ)(u, v) =< u, v > − < DxBθ, u >< DxBθ, v > .

5.2. Patterson-Sullivan measures and visual measures. Let (Y, g) be a con-
nected compact n−dimensional Riemannian manifold, where the metric g is assumed
to have negative curvature. Let (arbitrary) choice of an origin 0 in the universal
covering Ỹ of Y that allows to identify Ỹ with the unit ball in Rn, thus the geometric
boundary ∂Ỹ being identified with the unit sphere. To each y ∈ Ỹ we associate a
measure on Ỹ , denoted by νy. For y and y′ in Ỹ the measures νy′ and νy are in the

same class of density measures and, for θ ∈ ∂Ỹ
dνy
dνy′

(θ) = e−h(g)By′ (y,θ).
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Let 1
c(y)

=
∫
∂Ỹ
e−h(g)By′ (y,θ)dν0(θ), then µy = c(y)νy is a probability measure on ∂Ỹ .

Furthermore, the map

µ : y ∈ Y → µy ∈M1(∂Ỹ )

is equivariant which means that for any isometry γ of ∂Ỹ one has

µγ(y) = γ∗(µy).

The construction of this family of measures briefly it goes as follows: let gs(y, z) =∑
γ∈Γ e

−sd(y,γ(z)) be the Poincaré series of Γ. It converges for s > h(g) and diverges

for s ≤ h(g). Now for s > h(g) let us define

νy,z(s) =

∑
γ∈Γ e

−sd(y,γ(z))δγ(z)∑
γ∈Γ e

−sd(y,γ(y))

where d is the distance in Ỹ associated to g̃ the pullback metric form the metric g on
Y and δγ(z) is the Dirac measure. This defines a family of measures on Ỹ ∪ ∂Ỹ and
we obtain νy by taking a weak limit for the subsequence when s goes to h(g). The
fact that the denominator diverges when s = h(g), ensures that νy is concentrated

on the set of accumulation points of the orbit Γ(z), i.e. on the boundary ∂Ỹ . Let
us remark that as Γ is cocompact then the Patterson-Sullivan measure is unique and
has no atom.

In the case of Hn, we recall that we can think of ∂Hn as being identified with
UTy0Hn and define the visual map Vy : UTy0Hn → UTyHn as Vy(u) = −DyBu, so that
every ray geodesic form y0 has a corresponding geodesic ray form y such that they
converge to the same point at infinity. Then if λy is the canonical measure on the
unit sphere UTyHn. Then the visual measure at y ∈ Hn is

µy = (V −1
y )∗(λy),

the push-forward of λy to UTy0Hn by V −1
y , which satisfies the same properties of the

Patterson-Sullivan measures.

5.3. The barycenter. As before (X, g0) denotes a compact negatively curved mani-
fold, X̃ is identified with the unit ball in Rn and ∂X̃ with the unit sphere by choosing
an origin 0. Now if λ is a measure on ∂X̃, let us define the function

βλ(x) =

∫
∂X̃

B0
θ (x)dλ(θ).

Proposition 17. If λ has no atom, the function β is strictly convex on X̃. Further-
more β(x) goes to infinity when x goes to θ ∈ ∂X̃ along a geodesic. Hence β has a
unique critical point in X̃ which is a minimum which will be called the barycenter of
the measure λ and denoted by bar(λ).

Proof. Since the metric g̃ on X̃ is negatively curved for each θ then the function
x → B0

θ (x) is convex and therefore βλ which is an average of such functions is also



20

convex. It is in fact not difficult to show that β is strictly convex, indeed

Hessxβλ(−,−) =

∫
∂X̃

HessxB
0
θ (−,−)dλ(θ).

is positive definite at each x ∈ X̃ if λ is no atomic.

One shows furthermore that β(x)→ +∞ as x goes to infinity along a geodesic. �

The final property of the barycenter that we will need is that it is equivariant
with respect to isometries, i.e., if λ is an atomless probability measure on ∂X̃ and
γ ∈ SO0(n, 1) then

bar(γ∗(λ)) = γ(bar(λ)).

Indeed, let y = γ(bar(λ)) and let x = γ−1(y) = bar(λ). The the implicit equation for
the barycenter tells us that,

0 =

∫
∂X̃

DxB
0
θ (−)d(λ)(θ)

=

∫
∂X̃

DyB
0
γ(θ)(Dxγ(−))d(λ)(θ)

=

(∫
∂X̃

DyB
0
θ (−)dγ∗(λ(θ)

)
◦Dxγ.

Since Dxγ is invertible, ∫
∂X̃

DyB
0
θ (−)dγ∗(λ(θ)) = 0.

so by uniqueness of solutions to the implicit equation, y = bar(γ∗(λ)).

5.4. The barycentric extension. Let (Y, g) and (X, g0) be two n−dimensional
compact and negatively curved manifolds. We assume that they are homotopically
equivalent, i.e. that there exist two continuous maps

f : X → Y and h : Y → X,

such that f ◦h is homotopic to idX and h◦f is homotopic to idY . Since both Y and X
are negatively curved this hypothesis is equivalent to saying that their fundamental
groups are isomorphic as abstract groups.

We are going to construct a smooth map F̄ : Ỹ → X̃ which we will call the barycen-
tric extension, its definition is highly geometric and hence it becomes the most natural
candidate for being an isometry between (Y, g) and (X, g0).

It is know for the section 3 that if X and Y are homotopically equivalent one can
obtain a quasi-isometry f̄ between the respective universal covers X̃ and Ỹ which
give rise to an homeomorphism between the boundaries at infinity

∂f̄ : ∂Ỹ → ∂X̃
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satisfying both
∂f̄ ◦ γ = φ(γ) ◦ ∂f̄ .

The Patterson-Sullivan measure described previously gives an equivariant map from
Ỹ to the space M1(∂Ỹ ) of probability measures on ∂Ỹ . As mentioned before µy has no
atoms and can be push forward each measure by the continuous map f̄ and thereby
construct a map

y ∈ Ỹ → ∂f̄∗(µy) ∈M1(∂Ỹ ).

The φ−equivariance property of ∂f̄ shows that this map is φ−equivariant with
respect to the actions of π1(Y ) on Ỹ and onM1(∂Ỹ ). Finally, since ∂f̄ is an homeo-
morphism, the measures f̄∗(µy) are well defined and have not atom.

We can now define the map F̄ by

F̄ (y) = bar(f̄∗(µy)).

which satisfy the equivariant relation. And gives rice to F : Y → X and let us notice
that F induces also the isomorphism ρ between the two fundamental groups and
hence is homotpic to f.

5.5. Jacobian of the barycentric extention and the BCG proof. Let (Y, g)
and (X, g0) be two compact negatively curved Riemannian n−manifolds. We assume
that (X, g0) is hyperbolic and that Y and X are homotopically equivalent. Let us
proceed with the proof of the main result of this section.

Proof of Proposition 16 . For the sake of simplicity we shall use the same notation
for the natural map F and its pull-back to the universal cover. Let us call {µy}y∈Ỹ
the family of Patterson measures on ∂Ỹ . We have that the natural map is defined by
the implicit equation

0 =

∫
∂X̃

DF (y)B
0
θ (−)d(f̃∗(µy))(θ) =

∫
∂Ỹ

DF (y)B
0
f̄∗(α)(−)d(µy)(α) =

which is a vector valued equation. Equivalently one has,

0 =

∫
∂Ỹ

DF (y)B
0
f̄∗(α)(−)e−h(g)Bα(y)d(µo)(α).

Let us insist on the fact that B0 (B) is the Busemann function of (X̃, g0) ((Ỹ , g)).
we choose a frame {Ei(x)}i=1...n of TzX̃ depending smoothly on x. Let us define the
functions:

Gi(x, y) =

∫
∂Ỹ

DxB
0
f̄∗(α)(Ei(x))e−h(g)Bα(y)d(µo)(α)

G : X̃ × Ỹ → Rn and proji ◦G = Gi

Then
G(F (y), y) = 0.

Since the Busemann functions are smooth with respect the first variable and ∂Ỹ is
compact, we have that G is a smooth map. Then the proof of the fact that F is C1
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is a simple application of the implicit function theorem. In fact for some ε > 0 let
γ : (−ε, ε)→ Hn be a geodesic segment with γ(0) = x0 and γ′(0) = u. Then

∂tGi(γ(t), y)|t=0 =

∫
∂Ỹ

DEi(x0)Dx0B
0
f̄∗(α)(Ei(x))d(µy)(α) = Hessx0(βµy)(Ei(x0), u)

where the last equality holds because Ei(γ(t)) is parallel along γ. It follows that
Hessx0(βµy) is positive definitive. So for all non-zero u ∈ Tx0X̃,

∂tGi(γ(t), y)|t=0 > 0.

Hence the derivative of each Gi(y, x) with respect the first variable has trivial kernel,
so the same holds for the derivative of G with respect the first variable.

As usual the implicit function theorem gives the existence of the differential of the
implicitly defined function F and a formula for its differential.

D1
(F (y),y)G ◦DyF = D2

(F (y),y)G

and for u ∈ TF (y)X̃ and v ∈ TyỸ ,

HessF (y)(βf̄∗(µy))(DyF (v), u) =

∫
∂Ỹ

DDyF (v)DF (y)B
0
f̄∗(α)(u)d(µy)(α)

= h(g)

∫
∂Ỹ

DF (y)B
0
f̄∗(α)(u)DyBα(v)d(µy)(α).

This equality is to be understood as an equality between bilinear forms. Let us
introduce the following quadratic forms whose induced symetric endomorphism with
respect to the metric g0 :=<,>0 are K and H on TF (y)X̃.

< KF (y)u, u >0 := HessF (y)(βf̄∗(µy))(u, u) =

∫
∂X̃

DuDF (y)B
0
θ (u)d(f̄∗(µy)(θ),

< HF (y)u, u > :=

∫
∂X̃

[DF (y)B
0
θ (u)]2d(f̄∗(µy)(θ).

Remark that we have the following induce function:

u ∈ TF (y)X̃ −→ (θ → DF (y)B
0
θ (u)) ∈ L2(∂X̃, f̄∗(µy)).

For u ∈ TF (y)X̃ and v ∈ TyỸ , the Cauchy-Schwarz in L2(∂Ỹ , µy) inequality gives

< KF (y)DyF (v), u >0= h(g)

∫
∂Ỹ

DF (y)B
0
f̄∗(α)(u)DyBα(v)d(µy)(α)

≤ h(g)

(∫
∂Ỹ

[DF (y)B
0
f̄∗(α)(u)]2d(µy)(α)

) 1
2
(∫

∂Ỹ

[DyBα(v)]2d(µy)(α)

) 1
2

= h(g)
(
< HF (y)u, u >0

) 1
2

(∫
∂Ỹ

[DyBα(v)]2d(µy)(α)

) 1
2

.

We remark that K is invertible since the induced bilinear form is the Hessian of
the strictly convex function βf̄∗(µy)
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Lemma 18. With the above notation

|JacyF | ≤
h(g)n

nn/2
(detH)1/2

detK
.

Proof of Lemma 18. If DyF has not maximal rank, the the inequality is clear.

We can assume that DyF is invertible. Let us take {ui} orthonormal basis of TF (y)X̃
which diagonalizes the endomorphism H. And take and orthonormal basis {vi} of
TyỸ such that the matrix K ◦ DyF written in the basis {vi} for TyỸ and {ui} for

TF (y)X̃ is triangular. Then

det(K ◦DyF ) = (detK)(JacyF ) =
n∏
i=1

< KF (y)DyF (vi), ui >0 .

Here we identify endomorphisms with matrices using the basis involved.

(detK)(JacyF ) ≤ h(g)
n∏
i=1

(
< HF (y)ui, ui >0

) 1
2

n∏
i=1

(∫
∂Ỹ

[DyBα(vi)]
2d(µy)(α)

) 1
2

.

By the choice of the basis
n∏
i=1

(
< HF (y)ui, ui >0

) 1
2 = (detH)1/2,

n∏
i=1

(∫
∂Ỹ

[DyBα(vi)]
2d(µy)(α)

) 1
2

≤
(∫

∂Ỹ
[DyBα(vi)]

2d(µy)(α)

n

)n
2

≤ 1

nn/2
,

since
∑

[DyBα(vi)]
2 = ‖DyBα‖2 = 1 and µy is a probability measure, one gets the

desired inequality:

|JacyF | ≤
h(g)n

nn/2
(detH)1/2

detK
.

As we have showed in the section 5.1,

Hessx(Bθ)(u, v) =< u, v >0 −DxB
0
θ (u)DxB

0
θ (v).

which gives after integration

K = I −H.
Also notice that

trace(H) =
n∑
i=1

< HF (y)ui, ui >0=

∫
∂X̃

n∑
i=1

[DF (y)B
0
θ (ui)]

2d(f̃∗(µy)(θ) = 1.

The Proposition 16 follows from the next result:

If H is a positive symmetric matrix with trace(H) = 1 and n ≥ 3. Then

detH

(det(I −H))2
≤ (

n

(n− 1)2
)n and equality holds if and only if H =

1

n
I.
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If |JacyF | = ( h(g)
h(g0)

)n then

HF (y) =
1

n
I and KF (y) =

n− 1

n
I =

h(g0)

n
I.

It follows that

h(g0)

n
< DyF (v), u >0≤

h(g)

n1/2
‖u‖0

(∫
∂Ỹ

[DyBα(v)]2d(µy)(α)

) 1
2

for all u ∈ TF (y)X̃ and v ∈ TyỸ . By taking the supremum in u ∈ TF (y)X̃ such that
‖u‖0 = 1, one gets

‖DyF (v)‖0 ≤ n1/2 h(g)

h(g0)

(∫
∂Ỹ

[DyBα(v)]2d(µy)(α)

) 1
2

for all v ∈ TyỸ . Let L be the endomorphism of TyỸ defined by

L = (DyF )∗ ◦ (DyF )

and {vi} a g−orthonormal basis of TpX. Then we have

trace(L) =
n∑
i=1

< Lvi, vi >g=
n∑
i=1

< DyF (vi), DyF (vi) >0≤ n

(
h(g)

h(g0)

)2

,

where we have again used the fact that ‖DyBα‖g = 1. We have know(
h(g)

h(g0)

)2n

= |JacyF |20 = detL ≤
(
trace(L)

n

)n
≤
(
h(g)

h(g0)

)2n

Therefore the determinant of L is
(
trace(L)

n

)n
and L =

(
h(g)
h(g0)

)2

I. This precisely means

that DyF is an isometry composed with a homothety of ratio h(g)
h(g0)

.

�

6. Quasi-conformal proof

Let X and Y be metric spaces with f : X → Y an homeomorphism. The mapping
f is called quasi-conformal if the function

Hf (x) := lim sup
r→0

sup{‖f(x)− f(y)‖ | ‖x− y‖ = r}
inf{‖f(x)− f(y)‖ | ‖x− y‖ = r}

,

is bounded from above in X. A quasi-conformal mapping is called K−quasi-conformal
if the function Hf is bounded from above by K in X. In this section we are going to
work the case when X = Y = Sn−1 = ∂Hn.

Proposition 19. If f̄ : Hn → Hn is a (λ, ε)−quasi-isometry then ∂f̄ : ∂Hn → ∂Hn

defined in section 3.3 is a quasi-conformal homeomorphism.
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Proof. By Lemma 13 we have that f̄ is an homeomorphism. According to the defi-
nition, it is enough to verify quasi-conformity at each particular point x with uniform
estimates on the function Hf (x). Thus, after composing ∂f̄ with a Möbius transfor-
mation, we can take x = 0 = ∂f̄(x) and ∂f̄(∞) =∞.

Take a euclidean sphere Sr(0) in Rn−1 with the center at the origin. This sphere
is the ideal boundary of a hyperplane Pr ⊂ Hn which is orthogonal to the vertical
segment L connecting 0 to ∞. By Lemma 12,

diamπLf̄(Pr) ≤ c,

where πL denote the orthogonal projection onto the geodesic line L and c some con-
stant depending only on λ and ε. The projection πL extends naturally to ∂Hn. We
conclude

diamπL∂f̄(Sr(0)) ≤ c.

Thus ∂f̄(Sr(0)) is contained in a spherical shell

{x ∈ Rn−1 | k1 ≤ ‖x‖ ≤ k2},
where log(k1/k2) ≤ c. This implies that the function H∂f̄ (0) is bounded from above

by K := ec. We conclude that the mapping ∂f̄ is K−quasi-conformal. �

The following theorem is due to Radmacher-Stepanov (see [14]). It is a deep result
in geometric measure theory, it establishes strong regularity properties for quasi-
conformal homeomorphism.

Theorem 20. Any K−quasi-conformal homeomorphism of Sn−1 is absolutely con-
tinuous with respect to Lebesgue measure and is differentiable a.e. with K−quasi-
conformal differential.

6.1. Mostow rigidity proof. Now we can prove Mostow’s Rigidity Theorem. First
we start by proving the main thoerem of this section.

Proof of Theorem 3. We will give the proof reported in (Thm. 8.34, [7]). The
limit point ξ is a conical point if it has the following property. Let γ be a geodesic
ray ending at ξ. Given a point y0 ∈ Hn there exist r > 0 such that there is an infinite
subsequence of the orbit Γ1(y0) that lies in a r−tubular neighborhood about γ and
hence converges to ξ. A loxodromic fixed point is always a conical limit point but a
parabolic fixed point is not.

We may assume that ξ = 0 = h(ξ) and that y0 lies on the vertical axis rising
from x = 0 in Hn. Let γ be a vertical segment descending from y0 to z = 0. There
is an infinite sequence gn ∈ Γ1 such that for r > 0 and each large index n, the
hyperbolic distance d(gn(y0), γ) < r. Find the point yn ∈ γ that is closest to gn(y0),
it is with in distance r. Then find an > 0 such that the hyperbolic transformation
An(x̄) = anx̄ with in γ that takes y0 to yn, further limn→0 an = 0. Passing to a
subsequence if necessary we may also assume that the limn→0 g

−1
n An = B exist as a

Möbius transformation (because the distance of g−1
n An(y0) to y0 is uniformly bounded

by r).
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Set

hn(x) := a−1
n h(an(x)) = A−1

n ◦ h ◦ An(x) and x ∈ Rn.

As h is differentiable at x = 0 with nonzero derivative means that there is a linear
transformation L ∈ GL(n− 1,R), such that:

h(x) = L(x) + ε(x)x and lim
x→0

ε(x)

x
= 0.

Using the commutativity of the diagonal matrix An with L, we have:

lim
n→∞

hn(x) = lim
n→∞

A−1
n ◦ h ◦ An(x) = L(x) uniformly on compact subsets.

It now follows that

lim
n→∞

A−1
n Γ1An = lim

n→∞
A−1
n gnΓ1g

−1
n An = B−1Γ1B.

This implies that the sequence groups {A−1
n Γ1An} converges geometrically, i.e. every

B−1gB is the limit of elements of the approximations {A−1
n Γ1An}, namely B−1gB =

limn→∞(A−1
n gn)g(g−1

n An) Conversely, the limit of any convergent sequence of elements
of {A−1

n Γ1An} lies in B−1Γ1B, namely

h := lim
n→∞

A−1
n hnAn = lim

n→∞
A−1
n gn(g−1

n hngn)g−1
n An = B−1( lim

n→∞
g−1
n hngn)B.

Recall that hΓ1h
−1 ⊂ SO0(n, 1). Given g ∈ Γ1,

L ◦B−1gB ◦ L−1 = lim
n→∞

A−1
n hgngg

−1
n ◦ h−1An

The element on the left is therefore a Möbius transformation. We have established
that LkL−1 is a Möbius transformation for any k ∈ B−1Γ1B. Since not all elements
of Γ1 fix B(∞), there exist k ∈ B−1Γ1B with k(∞) /∈ {∞, 0}.

Lemma 21. Suppose that k ∈ SO0(n, 1) is such that k(∞) /∈ {∞, 0}, L ∈ GL(n −
1,R) is an element which conjugates k to LkL−1 ∈ SO0(n, 1). Then L is a Euclidean
similarity.

Proof. Suppose that L is not a similarity. According to our assumption , Lk−1(∞) 6=
0. Let P be a hyperplane in Rn−1 which contains the origin but does not contain
Lk−1(∞). Then kL−1(P ) is a round sphere Σ in Rn−1. Since L is not a similarity, the
image L(Σ) is an ellipsoid which is not round sphere. Hence the composition LkL−1

does not send planes to round spheres and therefore it is not Möbius. �

Thus we have to prove that h is conformal at the point 0. To conclude that h is
Möbius we need to use the fact that hΓ1h

−1 ⊂ SO0(n, 1) once again.

Pick three distinct points p1, p2, p3 ∈ Sn−1. For any homeomorphism F : Sn−1 →
Sn−1 set a normalization N(F ) = F̄ ◦ F where the Möbius transformation F̄ is
the uniquely chosen so that N(F ) fixes each pi. The normalization is uniquely de-
termined by F up to post-composition with an element of the compact subgroup
Kpi ⊂ SO0(n, 1) which fixes the round circle in Sn−1 containing {p1, p2, p3}. We
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let Ñ(F ) denote the projection of N(F ) to the quotient Kpi/Homeo(S
n−1). Thus,

Ñ(F ) = Ñ(g ◦F ) for all g ∈ SO0(n, 1). Upon setting un = g−1
n An so that limun = B.

Ñ(hn) = Ñ(A−1
n hAn) = Ñ(hAn) = Ñ(hgnun) = Ñ(g′nhun) = Ñ(hun).

Going to the limit,
Ñ(L) = lim

n→∞
Ñ(hn) = Ñ(hB).

Since L and B are Möbius transformation, h must be one as well. �

To prove Mostow’s Rigidity Theorem by using the Theorem 3, take Γ1 = π1(M1).
By Proposition 13, Proposition 19 and Theorem 20 there exist a φ−equivariant quasi-
conformal homeomorphism ∂f̄ : Sn−1 → Sn−1 a.e. differentiable on Sn−1, which has
a.e. non-zero Jacobian determinants because n ≥ 3. Moreover, as π1(M1) is cocom-
pact, every point in ∂Hn is a conical limit point. And the φ−equivariant condition
implies that (∂f̄)π1(M1)(∂f̄)−1 ⊂ SO0(n, 1). So ∂f̄ is a Möbius transformation. Fi-
nally, the Mostow’s Theorem proof ends as in Gromov-Thurston’s proof (see section
4.5).

References

[1] R. Benedetti and C. Petronio, Lectures on Hyperbolic Geometry, Springer-Verlag, Berlin, 1991.
[2] G. Besson, G. Courtois, and S. Gallot, A simple proof of the rigidity and minimal entropy

theorems, Geom. Funct. Anal. 5 (1995), no. 5.
[3] M.R. Bridson and A. Haefliger, Metric spaces of non-positive curvature, Grundlehren der Math-

ematischen Wissenschaften, vol. 319, Springer-Verlag, Berlin, 1999.
[4] M. Coornaert, T. Delzant, and A. Papadopoulos. Géométrie et théorie des groupes, volume
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