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ABSTRACT. We characterise the situation when two links in
the 3-sphere admit homeomorphic surface systems, where a sur-
face system is a collection of embedded surfaces with boundary
the link. The answer is in terms of a refined value group for
the collection of triple linking numbers of links in the 3-sphere.
Given two links with the same pairwise linking numbers, we
show they have the same refined triple linking number collec-
tion if and only if the links admit homeomorphic surface sys-
tems. Moreover, these two conditions hold if and only if the link
exteriors are bordant over BZn, and if and only if the third lower
central series quotients π/π3 of the link groups are isomorphic-
preserving meridians and longitudes.

1. INTRODUCTION

In this article, all links L ⊂ S3 are n-component, ordered, and oriented. Define
a surface system for the link L = K1 ∪ · · · ∪ Kn as a collection Σ of embedded,
oriented (possibly disconnected) surfaces Σi = ΣKi in S3 with ∂Σi = Ki, intersect-
ing transversally and in at most triple points. We classify precisely when two links
admit homeomorphic surface systems, in terms of easily computable invariants.

Introduced by Milnor [Mil57], the triple linking numbers µ̄L(ijk) measure
higher linking in L. A given triple linking number µ̄L(ijk) is an integer, well-
defined only up to the greatest common divisor ∆L(ijk) of the linking numbers
involving the components labelled i, j, and k. Mellor and Melvin [MM03] de-
rived a geometric method for computing the triple linking numbers as a difference
of auxiliary quantities mijk(Σ), tijk(Σ) ∈ Z.

For 1 ≤ i < j < k ≤ n we collect the differences mijk(Σ) − tijk(Σ) into an(
n
3

)
-tuple µ(L). We construct a certain quotientM of Z(

n
3), called the total Milnor
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quotient (Definition 5.7), only depending on the pairwise linking numbers. In
this quotient the invariant µ(L) is defined independently of Σ (Theorem 5.14).
The main result of this paper is the following series of characterisations.

Theorem 1.1. Suppose that L and L′ have the same pairwise linking numbers.
Then, the following are equivalent:

(a) The links L and L′ admit homeomorphic surface systems.
(b) The collections of triple linking numbers µ(L) and µ(L′) are equal in the

total Milnor quotientM.
(c) The link exteriors XL and XL′ , together with their canonical homotopy classes

of maps to BZn, are bordant (relative to the boundary) over BZn.
(d) There exist basings for L and L′ and an isomorphism

π1(XL)/π1(XL)3
≃
→ π1(XL′)/π1(XL′)3

of the lower central series quotients that sends the ordered, oriented meridians
of L to those of L′, and the ordered, oriented zero-framed longitudes of L to
those of L′.

(The precise notion of bordism relative to the boundary, which we will abbre-
viate as “bordism rel. boundary,” will be introduced in Section 1.2.)

It is a direct consequence of the geometric calculation method of [MM03]
that links admitting homeomorphic surface systems have the same pairwise link-
ing and triple linking numbers. The equivalence of (a) and (b) can be thought
of as confirming the converse, and thus completing a geometric characterisation
of equality of triple linking numbers, when the Milnor invariants are taken in
the refined value group M. We comment that taking µ(L) in the more subtle
value groupM, rather than the classical indeterminacy group

∏
i<j<k Z/∆L(ijk),

generally refines the Milnor invariants strictly, as we show in Example 5.9. The
existence of such refinements is not an original observation: larger value groups
were derived in [Lev88] and also [HL90, HL98], as we discuss below.

As a result of Theorem 1.1 (d), we also obtain a statement about the fourth
lower central series quotients, as follows.

Theorem 1.2. Suppose that L and L′ satisfy the conditions in Theorem 1.1.
Then, there is an isomorphism π1(XL)/π1(XL)4 ≅ π1(XL′)/π1(XL′)4 between the
lower central series quotients that preserves the free homotopy classes of the oriented,
ordered meridians.

This theorem is directly analogous to the result, which follows from a well-
known argument of Milnor [Mil57, Proof of Theorem 4], that equality of pair-
wise linking numbers implies an isomorphism between the lower central series
quotients π1(XL)/π1(XL)3 ≅ π1(XL′)/π1(XL′)3 that preserves the free homo-
topy classes of the oriented, ordered meridians. Details of all these arguments are
given in Section 6.

1.1. A refinement for the collection of triple linking numbers. Let Σ be
a surface system for a link L = K1 ∪ · · · ∪ Kn. The two integers mijk(Σ) and
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tijk(Σ) defined by Mellor and Melvin depend both on a choice of surface system
for the link and a choice of base point for each link component.

The integers tijk(Σ) are the signed count of triple intersection points in the
surfaces for the link components Ki, Kj and Kk. The integers mijk(Σ) are deter-
mined by the clasp-words. These are words, one for each component Km of L, in
the labels of the link components, that record the order in which the component
Km intersects surfaces in a surface system for the link L, starting from some chosen
base point of Km. Precise details, including how to produce the integers mijk(Σ)
from the clasp-words, are given in Section 5.

Indeterminacy in the differences mijk(Σ) − tijk(Σ) arises from two sources:
first, from the choice of surface system for the link L, which we deal with in Section
5.2; and second, from the choice of base points used to read off the clasp-words
in the computation of the mijk(Σ), examined in Section 5.1. A change in choice
of surfaces, or a change in the choice of base points, produces a change on several

of the integers mijk(Σ) − tijk(Σ) simultaneously. This led us to look at the
(
n
3

)
-

tuple of integers {mijk(Σ) − tijk(Σ)}i<j<k. We take its image in the quotient M

of Z(
n
3) by linear combinations of the indeterminacy elements, defined in Lemma

5.6, which are geometrically motivated and depend on the linking numbers.
In Example 5.9 we show the following.

Proposition 1.3. For 4-component links with all linking numbers equal to 1,
there is an isomorphismM≅ Z, and every integer in this quotient is realised by a link.

In contrast to this, when all linking numbers are 1, the classical indetermina-
cies ∆L(ijk) equal 1 for all triple indices ijk, so the classical value group is trivial.
Thus, Proposition 1.3 shows the total Milnor invariant is in general a refinement
for the classical indeterminacy.

In the case of 4-component links and non-repeating Milnor invariants of
length up to and including 4, the type of refined indeterminacy captured by ourM
was previously considered by Levine [Lev88]. In this special case of 4-component
links, our indeterminacy elements recover the indeterminacy given by Levine’s au-
tomorphismsϕr ,s [Lev88, p. 373] (cf. the first three columns of [Lev88, Table 1]).
It also seems likely that our refinement could also be extracted from the universal
Milnor invariant of Habegger and Lin [HL90, HL98]. However, in their own
words, the “complicated nature” of certain features of their algebraic approach
conspires “to make it difficult, if not impossible, to find a complete set of invari-
ants” for their value group [HL90, p. 414].

We suggest the reader attempt a calculation of triple linking numbers using
the Mellor-Melvin formulation, as in Example 5.3, in order to appreciate the ease
with which the triple linking numbers can be computed by constructing a surface
system with double intersections only, and reading off clasp-words. Such a surface
system always exists; see Section 1.4. Trying to apply the Mellor-Melvin formu-
lation to a generic surface system that includes triple intersection points can be
a task for the more intrepid geometric topologist. But, while harder to actually



2508 C.W. DAVIS, M. NAGEL, P. ORSON & M. POWELL

calculate, the triple intersection numbers are more obviously related to part (c) of
Theorem 1.1, the bordism side of the problem.

1.2. Bordism rel. boundary over BZn. Consider two 3-manifolds X1, X2

with homeomorphisms gi :
∐
n S

1×S1 ≅
→ ∂Xi, for i = 1,2, and homotopy classes

of maps fi ∈ [Xi, B], for some space B and for i = 1,2. For the exterior Xi of
an oriented, ordered n-component link and B = BZn, the oriented meridians and
the zero-framed longitudes determine gi up to isotopy and fi up to homotopy.
The pairs (X1, f1) and (X2, f2) are said to be bordant rel. boundary over B if there
exists a 4-manifold W with boundary M := −X1 ∪g2◦g

−1
1
X2 and a map F : W → B

such that F|Xi ∼ fi for i = 1,2.
To describe when two knot exterior pairs (X1, f1) and (X2, f2) are bordant

rel. boundary over BZn, we first use the gi to create the closed 3-manifold M =
−X1 ∪ X2, as above, and then attempt to glue the maps f1 and f2 accordingly, in
order to analyse the pair (M, f1 ∪ f2) in the bordism group Ω3(BZn). However,
while some choice of map-gluing can always be made, the homotopy classes of f1

and f2 do not determine a unique homotopy class of a map f1∪f2 ∈ [M,B]. This
subtlety is closely related to the indeterminacies in the triple linking numbers, so
next we indicate the extra structure required to glue the maps in a well-defined
way.

Let X be a 3-manifold with boundary Σ. Fix some space B and a continuous
map ϕ : Σ → B, and suppose that X comes equipped with a parametrisation of
its boundary, namely, a homeomorphism g : Σ → ∂X. A bordered B-structure on
(X,Σ, g,ϕ) is a map f : X → B together with a homotopy H : f |∂X ◦ g ∼ ϕ,
recording the fact that the diagram below commutes up to homotopy:

∂X X

Σ B

f

ϕ

g ≅

It is the choice of H in the bordered B-structure that enables us to glue homo-
topy classes of maps together in a well-defined fashion. More precisely, we have
the following. We say that two bordered B-structures (f ,H) and (f ′,H′) are ho-
motopic if there exists a homotopy F : f ∼ f ′ and there also exists a homotopy
Φ : F|∂X×I ◦ (g × Id) ∼ ϕ ◦ prΣ between the two maps Σ × I → B such that
Φ|(Σ×{0})×I = H and Φ|(Σ×{1})×I = H′. Given two 3-manifolds X1, X2 with bor-
dered B-structures (f1,H1), (f2,H2), we can constructM = −X1∪g1◦g

−1
2
X2 and a

map f = f1∪ f2. We now have enough structure so that the homotopy class of f
only depends on the homotopy classes of bordered B-structures (f1,H1), (f2,H2).
Furthermore, if we restrict the new map f , we recover f |Xi ∼ fi the former maps
fi, for i = 1,2.

We have already noted that a link exterior XL comes equipped with canonical
data (XL,Σ, g) and f ∈ [XL, BZn], and in fact the mapϕ : Σ→ BZn = Tn is also
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canonically determined, by the linking numbers of L. Thus, we see that to equip
a link exterior XL with a bordered BZn-structure, we need only choose the homo-
topy H : f |∂XL ◦ g ∼ ϕ. However, there is no preferred choice. Understanding
the relationship between this choice and the triple linking numbers was a key step
in proving Theorem 1.1.

We contrast this with the case of 3-manifolds with empty boundary. Here,
the gluing indeterminacy is not a feature, and a result similar to Theorem 1.1 was
already obtained by Cochran, Gerges, and Orr [CGO01, Theorem 3.1]. One
might be tempted to try and directly relate our result to theirs by closing up the
link exteriors with solid tori. However, for a link L with non-vanishing linking
numbers, the canonical map XL → BZn does not extend over any filling of the
boundary tori with solid tori, so the results are not related in this way.

1.3. Lower central series quotients. Recall that the lower central series of a
group G is a descending sequence of subgroups defined iteratively by G1 := G and
Gn := [G,Gn−1]. In Section 6, we consider the lower central series of the link
group π1(XL). We will recall two well-known results about lower central series
quotients and pairwise linking numbers, and show how to prove the analogous
results one level further down the series using triple linking numbers.

The first well-known result is that the pairwise linking numbers of two links
L and L′ are the same if and only if the lower central series quotients π(L)/π(L)2

and π(L′)/π(L′)2 are isomorphic via an isomorphism that sends meridians to
meridians and longitudes to longitudes. When there is equality of pairwise linking
numbers, the characterisation Theorem 1.1 (d) says that the precisely analogous
isomorphism of the third lower central series quotients holds if and only if the
refined triple linking numbers agree.

The second well-known result (which follows from an argument recalled in
Theorem 6.1) is that, given equality of pairwise linking numbers and a choice
of oriented, ordered meridians for L and L′, the lower central series quotients
π(L)/π(L)3 and π(L′)/π(L′)3 are isomorphic, via an isomorphism that pre-
serves the meridians. Theorem 1.2 is a consequence of the appearance of (d) in
Theorem 1.1, and proves the analogue for the refined triple linking numbers.

1.4. C-complexes. An important concept motivating this article, which does
not appear in the statement of Theorem 1.1, is that of a C-complex. A C-complex
is a surface system that consists of Seifert surfaces and only has clasp intersections
[Coo82, Cim04, CF08]. A clasp is a double point arc that has end points on
distinct link components, shown in Figure 2.1. More details are given in Section
2. As mentioned above, C-complexes always exist and are often a very useful
computational tool (see, e.g., [CF08, MM03]).

In the special cases that the linking numbers of a link L are zero, or that n = 2,
the triple linking numbers µ̄L(ijk) are well defined as integers. In these cases, it
was proven by Davis and Roth [DR17] that two links admit homeomorphic C-
complexes if and only if their linking and triple linking numbers agree. They then
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asked [DR17, Question 1] about the generalisation to links with nonzero linking
numbers, which the following corollary to Theorem 1.1 answers.

Corollary 1.4. Suppose L and L′ have the same pairwise linking numbers. Then,
the links L and L′ admit homeomorphic C-complexes if and only if the collections of
triple linking numbers µ(L) and µ(L′) are equal in the total Milnor quotientM.

Proof. If two links have homeomorphic C-complexes, then they trivially have
homeomorphic surface systems. If two links admit homeomorphic surfaces sys-
tems, then their pairwise linking numbers coincide, and by Theorem 1.1 they
are bordant over BZn. The proof of Theorem 4.4, that one can isotope a sur-
face system through that bordism from one exterior to the other, also works for
C-complexes (see Remark 4.5). ❐

1.5. Outline of the proof of Theorem 1.1. We give a summary of our
strategy in the proof of Theorem 1.1. The equivalences are proved as (a) =⇒
(b) =⇒ (c) =⇒ (a) =⇒ (d) =⇒ (b). We will also explain how to directly obtain
(a) =⇒ (c), as this explanation helps in understanding the other stages.

First, we consider the implication (a) =⇒ (b). Suppose that L and L′ bound
homeomorphic surface systems Σ and Σ′. The linking numbers, the clasp-words,
and the count of triple intersection points, are all preserved by the homeomor-
phism between the surface systems. Thus, the total Milnor invariant µ(L) of L
agrees with the total Milnor invariant µ(L′) of L′, and we see that (a) =⇒ (b)
follows fairly easily from the definitions.

Next, we explain why (a) =⇒ (c). Elements (M, f ) of the bordism group
Ω3(BZn) are detected by taking preimages under f of codimension-3 sub-tori in
the model (S1)n ≃ BZn. The preimages are points, and the algebraic count of

these points gives rise to
(
n
3

)
integers that determine whether two 3-manifolds are

BZn-bordant, as proven in Theorem 3.7. Let XL := S3 \ νL be the exterior of L,
that is, the complement of a regular neighbourhood νL of L. A surface system
gives rise to a map XL → BZn, produced in Construction 3.1, which follows the
Pontryagin-Thom collapse construction. If two links L and L′ have homeomor-
phic surface systems, then after an isotopy of the surface systems, the resulting
maps XL → BZn and XL′ → BZn agree on the boundaries. Thus, the link exteriors
can be glued together over BZn. This glues the surface systems together too. The
preimages detecting Ω3(BZn) are the triple intersection points of the surface sys-
tem. The triple intersection points cancel algebraically, because the gluing reverses
orientations on one of these systems, so the link exteriors of L and L′ are bordant
rel. boundary.

Now we consider the converse, namely, (c) =⇒ (a). This is proved in Theorem
4.4. We recall in Lemma 4.2 how to modify a bordism rel. boundary from XL to
XL′ over BZn to a different bordism by replacing 1-handles with 2-handles as in
[CGO01, Proof of 4.2]. For a bordism arising from 2-handle attachments only,
there exists a stabilised surface system for L that isotopes through the bordism
unchanged to give rise to a surface system for L′.
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Next, we discuss the implication (b) =⇒ (c). As noted in the discussion of
(a) =⇒ (c) above, in order to show that two 3-manifolds are bordant over BZn,
we have to arrange that the maps agree on the boundary, and that the triple in-
tersection numbers of the surface systems Σ and Σ′ arising as the preimages of the
maps to BZn agree (Theorem 3.7). In order to achieve this, the key geometric
move (Lemma 5.13) switches two clasps, modifying mijk(Σ) and tijk(Σ) in the
same way, thus preserving their difference. Repeated application of this move,
together with a tubing operation (Figure 5.5) that removes adjacent algebraically
cancelling intersection points, arranges that the clasp-words of both links agree,
and therefore the terms mijk agree. Moreover, as above the surface systems can
be isotoped so that the maps to BZn determined by the resulting systems agree
on the boundaries of XL and XL′ . After this, we alter the surface systems using
the torus sum operation, given in Construction 5.11, to arrange that the tuples

{mijk(Σ)− tijk(Σ)}i<j<k and {mijk(Σ′)− tijk(Σ′)}i<j<k agree in Z(
n
3), and not

just in the total Milnor quotient. The torus sum operation fixes mijk(Σ). It will
follow that the terms tijk agree for both link exteriors. Since these integers detect
whether the link exteriors are bordant rel. boundary over BZn, for the maps to BZn

determined by the surface systems, this will complete the proof that (b) =⇒ (c).
Finally, we consider the implications involving (d). To show that (a) =⇒ (d),

we show that the longitudes of the link components, as elements of the lower
central series quotient π1(XL)/π1(XL)3, can be read off from the combinatorial
data of the position of the clasps in a C-complex. Note that the longitudes contain
more information than the clasp-words: different occurrences of the same index
in a clasp-word might appear in the longitude word with different conjugations.
To show (d) =⇒ (b), we prove that the longitudes, considered as elements of the
quotient π1(XL)/π1(XL)3, determine the total Milnor invariant of L.

Conventions. All links are oriented, ordered, and have n ≥ 3 components.
Mathematical objects indexed by a knot component Ki may equivalently be ad-
dressed simply by the natural number i, for brevity.

2. SURFACE SYSTEMS

Definition 2.1. A surface system for the link L = K1∪· · ·∪Kn is a collection
of embedded, oriented (possibly disconnected) surfaces Σi = ΣKi in S3 with ∂Σi =
Ki, which intersect one another transversally and in at most triple points.

A pair of two surfaces in a surface system potentially intersect each other in
circles, ribbons, and clasps (see, e.g., [Cim04]).

We slightly modify the definition of clasp-words given in [DR17]. Given a
surface system Σ, we equip each component K of L with the following data: write
IK,i ⊂ K for the set of intersection points of K with Σi and write IK =

⋃
i IK,i for

their union.
Given a point x ∈ IK,i, we consider the sign εx of the intersection point x

between the two oriented submanifolds K and Σi, and assign to x the pair (i, εx).
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νK

νK′

FIGURE 2.1. The exterior of a link near a clasp intersection of
the components K and K′

This gives a map wK : IK → {1, . . . , n} × {±1}. Often, we abbreviate the tuple
(i, ε) to iε.

Definition 2.2. Let E be a set. A cyclic word w in the letters E is a map
w : I → E for I ⊂ S1 a finite subset. Two cyclic words w and v are considered to
be equivalent if there exists an orientation-preserving diffeomorphism f : S1 → S1

such that v = w ◦ f . Such a map f is called an alignment between v and w.

Remark 2.3. Given a cyclic word and a starting point in S1 \ I, we can read
off the letters in positive direction and obtain a (linear) word w̃. Two cyclic words
w0 and w1 are equivalent if w̃0 can be obtained from w̃1 by a cyclic permutation
of the letters. Note that there is no cancellation of letters at this point.

Definition 2.4. Let L be a link with a surface system. For each component K
of L, the mapwK defines a cyclic word in the letters {1, . . . , n}× {±1}, called the
clasp-word.

We say that a boundary collar ν ∂XL = (−ε,0]×L×S1 is adapted to a surface
system Σ, if we have the following two conditions:

(1) Σi ∩ (−ε,0]×Ki × S1 = (−ε,0]×Ki × {1};
(2) For i ≠ j we have Σj ∩ (−ε,0]×Ki × S1 = (−ε,0]× IKi,j × S

1.

We use these collars to glue two link exteriors with their surface systems together.

Construction 2.5 (Double exterior). Let L, L′ be two links with surface
systems ΣL and ΣL′ whose clasp-words agree. Let fi : Ki → K′i be an align-
ment between the clasp-words wi and w′i . Pick two adapted collars ν(∂XL) =
(−ε,0]× L× S1 and ν(∂XL′) = (−ε,0]× L′ × S1. Remove the boundaries of the
exteriors XL and XL′ and glue them together via the following map:

f : (−ε,0)× L× S1 → (−ε,0)× L′ × S1

(t, x, z)֏ (−ε − t, fi(x), z)

for x ∈ Ki.
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This defines a closed 3-manifold M = −XL ∪f XL′ , the double exterior. Inside
M , for each i = 1, . . . , n, build closed embedded oriented surfaces

Fi = −(ΣL,i ∩ XL)∪ (ΣL′,i ∩XL′).

These surfaces intersect each other in circles and triple intersection points.

Remark 2.6. The diffeomorphism type of M does not depend on the choice
of alignment. The isotopy type of the surfaces Fi does not depend on the choice
of adapted collar. On the other hand, different choices of alignments can result in
different surfaces Fi.

Recall that a surface system Σ = Σ1∪· · ·∪Σn is called a C-complex if each Σi
is a Seifert surface, the only pairwise intersections are clasps (Figure 2.1), and there
are no triple intersection points [Coo82]. The terminology clasp-word is entirely
appropriate for C-complexes. For general surface systems, intersection points that
belong to ribbon intersection arcs also contribute to clasp-words.

Consider a surface system Σ = Σ1∪· · ·∪Σn. For every i < j, the pairwise in-
tersection submanifold Σi∩Σj is an oriented one-dimensional submanifold of both
Σi and Σj , with possibly nonempty boundary. Similarly, for i < j < k, the triple
intersection submanifold Σi ∩ Σj ∩ Σk is an oriented 0-dimensional submanifold.

Definition 2.7. Call two surface systems

Σ = Σ1 ∪ · · · ∪ Σn and Σ′ = Σ′1 ∪ · · · ∪ Σ′n

homeomorphic if there exists a homeomorphism F : Σ → Σ′, such that F preserves
the orientations of each pairwise intersection submanifold and each triple inter-
section submanifold, and such that the restrictions F|Σi : Σi → Σ′i are orientation-
preserving homeomorphisms.

Remark 2.8. For a surface system Σ = Σ1 ∪ · · · ∪ Σn, if there is a clasp
intersection between Σi and Σj , the sign of the clasp is defined to be the sign of
the intersection points Ki ∩ Σj and Kj ∩ Σi. This sign is also determined by the
orientation on the intersection arc, as follows. The clasp is positive if, for i < j,
the arc in Σi ∩ Σj points from Ki to Kj , whereas the clasp is negative if the arc
points from Kj to Ki.

3. FILLINGS OF LINK EXTERIORS

Let L = K1∪· · ·∪Kn be an n-component oriented, ordered link in S3. Consider
its exterior XL := S3 \ νL and recall that the first homology group H1(XL;Z) is
freely generated by the oriented meridians µi of Ki, and so inherits a preferred
isomorphism H1(XL;Z) = Zn. By the identifications

Hom(H1(XL;Z),Zn)
≅
→ H1(XL;Zn)

≅
→ [XL;BZ

n]

(µi ֏ ei)֏ αL ֏ fL,
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we obtain a homotopy class of maps fL : XL → BZn. The class αL is the unique
cohomology class that evaluates to α(µi) = ei ∈ Zn on each meridian µi. Given
a surface system Σ for L, the preimage of αL in Hom(H1(XL;Z),Zn) is given
geometrically by

αL(γ) =
n∑

i=1

(γ · Σi)ei with γ ∈ H1(XL;Z).

Following Cochran [Coc90, p. 54], given a collection of closed, oriented sur-
faces F = {Fi} in a closed, oriented 3-manifold M , we shall construct a map
pF : M → BZn.

Construction 3.1. Let {Fi} be a collection of closed oriented surfaces in the
closed oriented 3-manifold M . Consider also νFi = Fi × [−π,π], a tubular
neighbourhood of Fi. Define the map pi : M → S1 to be the composition

Fi × [−π,π] [−π,π] S1
pr exp

in the neighbourhood νFi, and pi(x) = 1 for all x ∉ νF . Here, pr denotes the
projection and exp denotes θ ֏ exp(iθ). Recall that BZm is represented by an
n-torus Tn = S1 × · · · × S1. Define the map pF as the product

pF : M → Tn

x ֏ (p1(x), . . . , pn(x)).

Equip Tn with the product CW-structure, where S1 has the standard CW-
decomposition with a single 0- and 1-cell. We see that Tn has n 1-cells S1〈i〉, each
of which gives rise to a generator of π1(Tn) ≅ Zn. For each pair 1 ≤ i < j ≤ n,
there is a two cell Dij , whose attaching map is the commutator [i, j] = iji−1j−1

on S1〈i〉 ∨ S1〈j〉 ⊂ (Tn)(1). For each triple 1 ≤ i < j < k ≤ n, there is a single
3-cell Dijk filling the cube with sides Dij,Djk,Dik, as illustrated in Figure 3.1.
Observe that in a cross section of a neighbourhood of Fi ∩ Fj , and away from the
triple intersection points, the map pF is described in Figure 3.2.

The next lemma relates the cell structure on Tn to the map pF . Let {Fi}
be a collection of closed oriented surfaces in the closed oriented 3-manifold M .
Suppose the surfaces Fi intersect transversally in at most triple points (e.g., the
Fi are a double surface system in a double exterior). Consequently, each triple
intersection point p ∈ Fi ∩ Fj ∩ Fk is contained in a chart Up mapping the three
surfaces to the three coordinate hyperplanes. Denote by P the set of triple points.

Lemma 3.2. Pick such a chart Up around each triple intersection point p. Then,
for small enough tubular neighbourhoods νFi, the following statements hold:

(1) pF : M → Tn maps into the 3-skeleton.
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Djk

S1〈i〉

Dij Dik

S1〈j〉 S1〈k〉

FIGURE 3.1. The boundary of Dijk in the construction of the
CW complex S. Opposite faces of the cube are attached to the
same 2-cell via a degree-one map.

∗∗

∗∗

S1〈i〉 S1〈i〉

S1〈j〉

S1〈j〉

Fi

Fj

FIGURE 3.2. A cross section of a neighbourhood of Fi∩Fj. The
element ∗ ∈ Tn indicates the unique point in (Tn)(0), i.e., the
base point. Labelling around the exterior of the neighbourhood
indicates the subset of Tn to which that arc of the boundary is
mapped.

(2) The complement M \
⋃
p∈P Up is mapped to the 2-skeleton of Tn.

(3) The restriction pF : (Up, ∂Up) → (Dijk, ∂Dijk) has degree the sign of the
intersection point p ∈ Fi ∩ Fj ∩ Fk.

Proof. Since there are at most triple intersection points, for small enough νFi
every point is contained in at most three tubular neighbourhoods. Furthermore,
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by making the neighbourhoods even smaller, we can achieve that the points that
are contained in three of the tubular neighbourhoods are also contained in the
interior of

⋃
p∈P Up. This shows (1) and (2).

Statement (3) can be verified in the local model of three coordinate hyper-
planes intersecting in the origin p = 0 ∈ R3. Note that the restriction of the map
pF to a cube around the origin is illustrated in Figure 3.1, and it agrees with the
attaching map of the 3-cell Dijk. ❐

Let L and L′ be two links. Consider their double exteriorM = −XL∪XL′ and
the set

Ξ :=
{
f ∈ [M,BZn] : f

∣∣
XL
= fL and f

∣∣
XL′
= fL′

}
.

Remark 3.3. Before computing the set Ξ, we comment that, without mak-
ing a choice, one cannot simply glue the canonical homotopy classes fL and fL′
together to form f = fL ∪ fL′ . The result of gluing, even as a homotopy class,
depends on the choice of representatives of fL and fL′ .

Lemma 3.4. The set Ξ is a nonempty affine space over the abelian group
H̃0(L× S1;Zn).

Proof. Using the correspondence [M,BZn] = H1(M ;Zn), we place [M,BZn]
in the Mayer-Vietoris exact sequence with Zn coefficients

0 H̃0(L× S1) H1(M) H1(XL)⊕H1(XL′) H1(L× S1).
res

Note that the set Ξ is the preimage of fL⊕fL′ under the restriction map res. Since
the linking numbers of L, L′ agree, we have that fL − fL′ vanishes in H1(L× S1).

Thus, the set Ξ is nonempty. By exactness, Ξ is then affine over H̃0(L×S1;Zn). ❐
Remark 3.5. The affine action of H̃0(L × S1;Zn) has a concrete description

in terms of intersection theory.
It is derived from an unfaithful action of H0(L × S1;Z), which has the fol-

lowing description: consider α ∈ Ξ as an element in the module H1(M ;Zn) =
HomZ(H1(M ;Z),Zn), and let F ∈ [L × S1,Zn] ≅ H0(L × S1;Zn) be a map
L× S1 → Zn. This associates an element F(Ki × S1) ∈ Zn with each component
Ki × S1. Then, we define

(F ·α)(γ) = α(γ)+
∑

i

〈Ki × S
1, γ〉F(Ki × S

1) ∈ Zn

for each γ ∈ H1(M ;Z), where 〈Ki × S1, γ〉 ∈ Z denotes the algebraic intersection
number. As

∑
i〈Ki × S

1, γ〉 = 0, we have F · α = α for a (globally) constant
F : L×S1 → Zn. As a consequence, the action descends to the reduced cohomology

H̃0(L× S1;Z).



Surface Systems and Triple Linking Numbers 2517

We can pinpoint concrete representatives of fL and fL′ using surfaces systems,
which allows us to construct elements of Ξ.

Proposition 3.6. Let L and L′ be two links, and let Σ and Σ′ be surface systems
with aligned clasp-words. Let M be the double exterior and let F = −Σ ∪ Σ′ be the
double surface system. Then, the map pF : M → BZn from Construction 3.1 is an
element of Ξ.

Proof. We have to check that H1(pF) sends a meridian µi to the i-th standard
generator in H1(BZn;Z) ≅ Zn. We verify that H1(pF) sends a meridian µi to
the i-th standard generator in H1(BZn;Z) ≅ Zn away from the double and triple
points of F . This follows from the fact that µi · Σj = δij . ❐

Given a surface system Σ for L, we count the signed triple intersection points
between Σi, Σj and Σk, and denote the outcome by tijk(Σ) = [Σi] · [Σj] · [Σk].
Also recall that Ωn(B) denotes the oriented bordism group of closed, oriented
n-manifolds with a map to some space B.

Theorem 3.7. Let L and L′ be two links with surface systems Σ and Σ′. Suppose
Σ and Σ′ have aligned clasp-words. Let M be the double exterior with double surface
system F . Then, the following two conditions are equivalent:

(i) tijk(F) = tijk(Σ′)− tijk(Σ) = 0 for all 1 ≤ i < j < k ≤ n.
(ii) The element (M,pF) ∈ Ω3(BZn) vanishes.

Proof. From the Atiyah-Hirzebruch spectral sequence with second page E2
p,q =

Hp(BZn;Ωq(pt)) and converging to Ωp+q(BZn), we obtain

Ω3(BZ
n) ≅ Ω3(pt)⊕H3(BZ

n;Z)

(M, f )֏ M ⊕ f ([M]),

where [M] denotes the orientation class of M . The bordism group Ω3(pt) is zero.
As a result, condition (ii) is equivalent to pF([M]) = 0.

Next, we compute pF([M]) in terms of triple intersection points. First, con-
sider the Künneth isomorphism

H3(Tn;Z)
⊕

i<j<k

H3(T
3
ijk;Z),

⊕ prijk

where prijk is the map on homology induced by the projection onto the subtorus

S1〈i〉 × S1〈j〉 × S1〈k〉.
Now pick tubular neighbourhoods νFi of the surfaces Fi, and tubular neigh-

bourhoods Up ∋ p for each triple intersection point p as in Lemma 3.2. In
particular, recall that by (1) of that lemma, pF factors through the 3-skeleton as
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M → (Tn)(3) ⊆ Tn. Consider the commutative diagram of pairs

(M,∅) ((Tn)(3),∅)

(M,M \
⋃

p∈P

IntUp) ((Tn)(3), (Tn)(2))

⋃

p∈P

(Up , ∂Up) ((Tn)(3), (Tn)(2))

pF

⋃
pF |Up

=

where P is the set of triple intersection points, the vertical maps are inclusions of
pairs, and the horizontal maps are induced by pF . ApplyH3(−;Z) to this diagram.
By excision, the bottom left vertical map induces an isomorphism in homology.
This gives rise to the lefthand square of the commuting diagram below, in which
all coefficients are the integers.

H3(Tn)

H3(M) H3((Tn)(3))
⊕

i<j<k

H3(T
3
ijk)

⊕

p∈P

H3(Up , ∂Up) H3((Tn)(3), (Tn)(2))
⊕

i<j<k

H3(Dijk, ∂Dijk)

≅pF

pF

≅

exc
≅

From the diagram, deduce that pF([M]) can be computed from the map
⋃
pF |Up

as follows:

H3(M ;Z)→ H3(T
n;Z) ≅

⊕

i<j<k

H3(Dijk, ∂Dijk;Z)

[M]֏
⊕

i<j<k

∑

p∈Pijk

pF
∣∣
Up
([Up]),

where Pijk ⊂ P is the set of triple intersection points between Fi, Fj, and Fk. By
Lemma 3.2 (3), pF |Up ([Up]) = signp · [Dijk], where signp is the sign of the
intersection point. Now, this implies that

pF([M]) =
⊕

i<j<k

tijk(F)([Dijk]) ∈
⊕

i<j<k

H3(Dijk, ∂Dijk;Z)

≅ H3(T
n;Z). ❐
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4. SWEEPING

The goal of this section is to prove the implication (c) =⇒ (a) from Theorem 1.1.
First, we show how to replace an arbitrary (relative) bordism over BZn between
two link exteriors with one that is constructed exclusively from 2-handles. This
construction was used in [CGO01, Proof of Theorem 4.2], and we include a
detailed argument for the convenience of the reader.

For an integer 0 ≤ k ≤ 4, a four-dimensional elementary k-bordism is a 4-
manifold

Y ≅ (X × [0,1])∪Sk−1×D4−k Dk ×D4−k,

where X is a 3-manifold and Sk−1 ×D4−k ⊂ X \ ∂X × {1} is an attaching region
for a k-handle. By convention, S−1 := ∅.

Lemma 4.1. First, let Y be an elementary 1-bordism equipped with a map
F : Y → BZn. Write ∂(Y , F) = −(X0, f0) ⊔ (X1, f1) for the boundary over BZn.
Suppose H1(f0) : H1(X0;Z) → H1(BZn;Z) is an epimorphism. Then, there ex-
ists an elementary 2-bordism (Z,h) over BZn with the same boundary ∂(Z,h) =
−(X0, f0)⊔ (X1, f1).

Proof. We will find a curve in X1 so that attaching a 2-handle to X1 along this
curve cancels the 1-handle attachment in the elementary 1-bordism Y . But care
must be taken that the map to BZn extends over this 2-handle attachment.

Using that X1 ≅ X0#(S1 × S2), consider the image of S1 × pt in H1(BZn;Z)
under H1(f1). By assumption,

H1(f0) : H1(X0;Z)→ H1(BZ
n;Z) is surjective,

and so we take a curve γ′ ⊂ X0 such that

H1(f0)([γ
′]) = H1(f1)([S

1 × pt]) ∈ H1(BZ
n;Z) ≅ Zn.

Use the curve γ′ to modify S1 × pt ⊂ X1, and define a curve γ ⊂ X1 such that
H1(f1)([γ]) = 0.

Attach a 2-handle along γ, with any framing. This cancels the 1-handle. The
associated elementary 2-bordism Z̄ goes from X1 back to X0. AsH1(f1)([γ]) = 0,
we can extend the map f1 over Z̄. We write h : Z̄ → BZn for some choice of an
extension, and write f ′i for its restriction to X0.

We claim that f ′0 is homotopic to f0. This can be seen by stacking the bor-
disms Y and Z′ together along X1, and observing that

Y ∪ Z̄ ≅ X0 × I,

which gives an homotopy from f0 to f ′0. Modify the map on Z̄ in a collar of X0,
to arrange that f ′0 = f0. Turn the bordism Z̄ upside-down to yield the required
bordism Z. ❐
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Let W be a bordism rel. boundary over BZn from XL to XL′ , so that

∂W = −XL ∪
((∐

n

S1 × S1
)
× [0,1]

)
∪ XL′ .

We refer to the collection of thickened tori (
∐
n S

1 × S1) × [0,1] as the vertical
boundary. Note that ∂W decomposed in this way is homeomorphic to the usual
boundary of the double link exterior −XL∪XL′ . We will now use standard Morse
theory arguments to present W as a series of stacked elementary bordisms, after
which we shall proceed to simplify that presentation to comprise a concatenation
of elementary 2-bordisms.

By throwing away closed components, we can and will assume that W is
connected. Pick a Morse function g : W → [0,1] such that g−1(0) = XL,
g−1(1) = XL′ and g is the projection onto [0,1] on the vertical boundary. This
implies that all critical points are in the interior of W .

By cancelling the critical points of index 0 and 4, we may assume that g has
critical points of index 1, 2, and 3 only [Mil65, Theorem 8.1]. Write m for
the total number of critical points of g, and rearrange them into increasing order
[Mil65, Theorem 4.8]. Set y0 := 0 and ym := 1. There now exist regular values
y1, . . . , ym−1 ∈ [0,1] of g such that each interval [yi, yi+1], for i = 0, . . . ,m−1,
contains exactly one critical point, with index ki, say, where

ki =




1 i = 0, . . . , a,

2 i = a+ 1, . . . , b,

3 i = b + 1, . . . ,m− 1,

for some integers a and b with −1 ≤ a ≤ b ≤m− 1.
Define a collection of submanifolds Wi = g−1([yi, yi+1]) ⊂ W , for i = 0,

. . . , m − 1, and write Xi = g−1(yi). Then, ∂Wi = −Xi ⊔ Xi+1, the index of the
critical point inWi is ki, and we have X0 = XL and Xm = XL′ . We have presented
W as a series of stacked elementary ki-bordisms. We will now use the map from
W to BZn to simplify the presentation using Lemma 4.1.

Lemma 4.2. LetW be a bordism rel. boundary from XL to XL′ over BZn. There
exists another bordism Ŵ over BZn between these link exteriors obtained by stacking
elementary 2-bordisms.

Proof. As described above, use a Morse function to decompose W into ele-
mentary ki-bordismsWi, so that

W = W0 ∪X1 W2 ∪X2 · · · ∪Xm−1 Wm−1.

Note that the preferred map f0 = fL : XL → BZn induces a surjection on first
integral homology. From this, we see that all H1(fi;Z) are surjections for 0 ≤ i ≤
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a. Construct a new bordismW ′ by using Lemma 4.1 to replaceWi, for 0 ≤ i ≤ a,
by an elementary 2-bordism Zi. We therefore have

W ′ = Z0 ∪X1 Z2 ∪X2 · · · ∪Xa Za ∪Xa+1 Wa+1 ∪ · · · ∪Xm−1 Wm−1.

Now we perform the same procedure from the other side. For b < i ≤m−1,
consider the elementary 3-bordisms Wi as reversed elementary 1-bordisms W̄i. As
above, substitute these with elementary 2-bordisms Zi using Lemma 4.1. This

results in the bordism Ŵ from XL to XL′ , constructed by stacking m elementary
2-bordisms

Ŵ ≅ Z0 ∪X1 · · · ∪Xa Za ∪Xa+1 Wa+1 ∪ · · · ∪Xb Wb ∪Xb+1 Z̄b+1 ∪ · · · ∪ Z̄m−1,

as desired. ❐

By Lemma 4.2, we may now assumeW has only 2-handles. Note that none of
the attaching circles for these 2-handles links a component of L, for if an attaching
circle were to link nontrivially with any component, the resulting handle addition
would kill an element of H1(XL;Z), and, since H1(fL) : H1(XL;Z)→ H1(BZn;Z)
is an isomorphism, fL would not extend over W . Thus, we see the following
corollary.

Corollary 4.3. Let L, L′ be two links with the same linking numbers. Denote the
double exterior byM and suppose there is an f ∈ Ξ such that (M, f ) = 0 ∈ Ω3(BZn).
Then, L can obtained from L′ by surgery on S3 along curves γi that do not link L,
that is, lk(γi, Kj) = 0 for all i and j.

Next, we sweep a surface system through such a bordismW , in order to relate
surface systems via surgery, as in [DR17, Section 3.2]. The next theorem proves
the implication (c) =⇒ (a) of Theorem 1.1.

Theorem 4.4. Let L, L′ be two links with the same linking numbers. Denote
the double exterior by M , and suppose there is an f ∈ Ξ ⊆ [M,BZn] such that
(M, f ) = 0 ∈ Ω3(BZn). Then, L and L′ admit homeomorphic surface systems.

Proof. By Corollary 4.3, we have that L′ may be obtained from L by surgery
along curves that have trivial linking number with L. By the proof of (3)=⇒(2) in
[DR17, Theorem 2], we can and will pick a surface system for L that is disjoint
from the collection of surgery curves. After the surgery this becomes a surface
system for L′ that is homeomorphic to the former surface system for L, since we
have only changed the ambient space. ❐

Remark 4.5. Instead of a surface system, one can also arrange for a C-complex
to be disjoint from the surgery curves. The C-complex can then be swept through
the BZn-bordism to produce a C-complex for L′. As a consequence, under the
hypothesis of Theorem 4.4, the links L and L′ also admit homeomorphic C-
complexes.
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5. MILNOR NUMBERS

For a link L with non-vanishing linking numbers, Milnor’s triple linking numbers
[Mil57] are not well-defined integers. Mellor and Melvin gave a geometric inter-
pretation of the triple Milnor numbers [MM03, Theorem p. 561] that we will use
to overcome the ambiguity. In this section, we refine the triple Milnor numbers
in the case where the link components have non-vanishing linking numbers.

Let us now recall the Mellor-Melvin [MM03] method to compute the triple
Milnor numbers from a surface system. Let L be a link, and fix a surface system Σ
for the link L. Recall that the triple intersection number tijk(Σ) ∈ Z is the number
of intersection points counted with sign between the components Σi,Σj , and Σk.
It is skew-symmetric (alternating) under permutations of the indices.

Denote the clasp-word of the component K by wK . Additionally, fix a point
bK ∈ K \ IK away from the intersections for each component K. Reading off

the cyclic words wK , starting from bK and in the positive direction, we obtain a
(linear) word w̃K.

Definition 5.1. Let S be a finite set. Let w = sε1
1 . . . s

εm
m be a word in the

letters sεii ∈ S×{±1}, and let r , s ∈ S. An rs-decomposition (i, j) ofw is a pair of
indices with i < j such that si = r±1 and sj = s±1. The sign of a decomposition is
signw(i, j) = εi · εj ∈ {±1}. Denote the set of rs-decompositions by Drs(w) =
{(i, j) is an rs-decomposition}. The signed occurrence ers of the pair r , s is the
integer

ers(w) =
∑

(i,j)∈Drs

signw(i, j).

Let er count the signed occurrences of the letter r in a word. The following
relations are helpful for computations [MM03, p. 559]:

(5.1)




er (u · v) = er (u)+ er (v),

ers(u · v) = ers(u)+ ers(v)+ er (u)es(v),

ers(u)+ esr (u) = er (u)es(u),

where u,v are words, and r , s ∈ S.

Remark 5.2. A word w in the letters S × {±1} can be considered as an
element gw in the free group F over the set S. The Magnus expansion of gw (see
Section 5.5 of [MKS76]) is an element in the non-commutative power series ring
Z[[S]] obtained by mapping

s+1
֏ 1+Xs

s−1
֏ 1−Xs +X

2
s −X

3
s + · · · .

It is a short computation to see that the coefficient of XiXj in the expansion of
gw is exactly eij(w). Also, if gw ∈ F3 is in the third lower central series quotient
of F , then eij(w) = 0, which follows from the relations (5.1).



Surface Systems and Triple Linking Numbers 2523

Given a surface system and a choice of base point bK ∈ K for each component
K, define the integer mijk ∈ Z to be

mijk = eij(w̃k)+ ejk(w̃i)+ eki(w̃j),

with 1 ≤ i, j, k ≤ n distinct integers.

Example 5.3. We provide a sample computation of the integers mijk. Let
L = K1 ∪ · · · ∪ K4 be the link depicted in Figure 5.1. The figure also shows base
points and orientations. We use a fairly obvious C-complex as the surface system
for computing the clasp-words, and obtain

w̃1 := 2342−12,

w̃2 := 3411−1313−1,

w̃3 := 4122−12,

w̃4 := 123.

1

2

3
4

FIGURE 5.1. A 4-component link L with base points and an
orientation. Start with the simple 4-component link on the right,
with linking numbers all equal to 1, and band 3 of the compo-
nents into a copy of the Borromean rings. The leftmost compo-
nent of the Borromean rings is drawn so as to aid with visualisa-
tion of a C-complex.

From these clasp-words we can compute the integers mijk:

m123 = e12(w̃3)+ e23(w̃1)+ e31(w̃2) = 1+ 1+ 2 = 4,

m124 = e12(w̃4)+ e24(w̃1)+ e41(w̃2) = 1+ 1+ 1 = 3,

m134 = e13(w̃4)+ e34(w̃1)+ e41(w̃3) = 1+ 1+ 1 = 3,

m234 = e23(w̃4)+ e34(w̃2)+ e42(w̃3) = 1+ 1+ 1 = 3.
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This completes the sample computation. We will use these values of the mijk in
Example 5.9 below.

5.1. Indeterminacy from choice of base points. The integer mijk depends
on the choice of linearisation of the clasp-word. The exact dependency is described
in the following lemmata. Note that moving the base point bk of the component
Kk over an intersection point j±1 ∈ IK,j changes w̃k = j±1v to vj±1.

Lemma 5.4. Suppose i, j, k are distinct. The difference of the two decomposition
sums is

eij(vj
±1)− eij(j

±1v) = ± lk(Ki, Kk),

where all three signs are the same.

Proof. A consequence [MM03, p. 561] of the second relation in (5.1) above
is

eij(vj
±1)− eij(j

±1v) = ei(v)ej(j
±1)+ ei(j

±1)ej(v) = ±ei(v),

since ei(j±1) = ±δij.
The statement then follows from the fact that ei(v) = ei(vj±1) counts the

intersection arcs between Ki and Kk, and so is lk(Ki, Kk). ❐

Remark 5.5. We note that the mijk are not in general skew-symmetric with
respect to switching two of the indices. That is, it need not be true that the integers
mijk and −mikj are equal. Post hoc we will know that this skew-symmetry holds
modulo the indeterminacy. But at this stage we do not have any skew-symmetry for
the mijk.

We will collect the integers mijk into a single vector m. Note that mijk

is invariant under cyclic permutations of the indices. Consider the alternating

module W =
∧3
Z〈Xk | 1 ≤ k ≤ n〉 on the free Z-module generated by the Xk.

We abbreviate Xi ∧Xj ∧Xk to X[ijk]. Consider the elements

m =
∑

i<j<k

mijkX
[ijk] ∈ W.

Analogously, define the total triple intersection number by

t =
∑

i<j<k

tijkX
[ijk] ∈ W.

Lemma 5.6. Let L be a link with surface system Σ. Let bK and b′K be two
collections of base points for every component of the link. Denote the associated elements
in W by m and m′. Then,

m′ −m ∈ span{vs,r | s ≠ r}, where vs,r =
n∑

i=1

lk(Ki, Kr )X
[isr].
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Proof. We may assume that for all but one componentK = Kr , the base points
agree. Furthermore, we can assume that w̃r = s±1v and w̃′r = vs

±1 for a suitable
s; that is, the chosen base points are separated only by a single intersection point
of K with Σs . We claim that m′ −m is a multiple of vs,r , whose verification is
the remainder of the proof. Recall that mijk is invariant under cyclic permutation
of the indices. In the upcoming calculation, r and s are fixed distinct integers
1 ≤ r , s ≤ n. Write

Zs,r := {i ∈ {1, . . . , n} | (isr) can be ordered by an even permutation}.

We then have

m′ −m =
∑

i<j<k

(m′
ijk −mijk)X

[ijk]

=
∑

i∈Zs,r

(m′
isr −misr)X

[isr] +
∑

i∈Zr ,s

(m′
sir −msir)X

[sir]

=
∑

i∈Zs,r

(eis(w̃
′
r )− eis(w̃r ))X

[isr] +
∑

i∈Zr ,s

(esi(w̃
′
r )− esi(w̃r ))X

[sir]

=
∑

i∈Zs,r

(eis(w̃
′
r )− eis(w̃r ))X

[isr] −
∑

i∈Zr ,s

(eis(w̃
′
r )− eis(w̃r ))X

[sir]

=

n∑

i=1

(eis(w̃
′
r )− eis(w̃r ))X

[isr].

The penultimate equality follows from the third relation of (5.1), since

esi(w̃
′
r )− esi(w̃r ) = −eis(w̃

′
r )+ ei(w̃

′
r )es(w̃

′
r )+ eis(w̃r )− ei(w̃r )es(w̃r )

= −(eis(w̃
′
r )− eis(w̃r )),

since eℓ(w̃r ) = eℓ(w̃
′
r ) for all ℓ. To see the final equality, note that X[isr] =

−X[sir] and X[isr] = 0 if i = r or i = s. Now, apply Lemma 5.4 to obtain

m′ −m =

n∑

i=1

(± lk(Ki, Kr ))X
[isr] = ±vs,r

as desired. ❐

Definition 5.7. The total Milnor quotient M is the Z-module obtained as the
quotient

M := W/ span{vs,r},

where the elements vs,r are defined in Lemma 5.6. For a link L with surface
system Σ, we call the element

µ(L) :=m(Σ)− t(Σ) ∈M
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constructed above the total Milnor invariant of L.

Remark 5.8. By Lemma 5.6, the total Milnor invariant of (L,Σ) is indepen-
dent of the choice of base points bK for each component K. We show in Theorem
5.14 below that it is also independent of the choice of surface system Σ. This
justifies the absence of the surface system Σ from the notation µ(L) and from the
nomenclature.

Denote the greatest common divisor of the linking numbers involving com-
ponents i, j, and k by

∆ijk := gcd(lk(Ki, Kj), lk(Kj , Kk), lk(Kk, Ki)).

The triple Milnor invariants µ̄L(ijk) ∈ Z/∆ijk are recovered as the coefficient
of X[ijk], as was shown in [MM03, p. 561]. By considering all the Milnor in-
variants simultaneously, the total Milnor invariant µ(L) refines the collection of
Milnor invariants µ̄L(ijk), considered with their individual indeterminacy. This
refinement is non-trivial, as can be seen from the following example, which proves
Proposition 1.3 from the Introduction.

Example 5.9. Consider 4-component links

L = K1 ∪ · · · ∪K4 with lk(Ki, Kj) = 1 for all 1 ≤ i, j ≤ 4, i ≠ j.

Then, ∆L(ijk) = 1 for all multi-indices ijk, so all the Milnor invariants µ̄L(ijk)
lie in the trivial group, with their classical indeterminacy. By computing the vs,r
we see thatM is the cokernel of the linear map Z6 → Z4 represented by the matrix

A =




1 −1 0 1 0 0
0 1 −1 0 0 1
1 0 −1 0 1 0
0 0 0 1 −1 1


 .

Simplifying this matrix with row operations, we compute thatM≅ Z4/AZ6 ≅ Z,
and indeed writing

x1 :=m123 − t123,

x2 :=m124 − t124,

x3 :=m134 − t134,

x4 :=m234 − t234,

the map

Z
4/AZ6 → Z

(x1, x2, x3, x4) ֏ x1 − x2 + x3 − x4
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is an isomorphism.
Consider the link L from Example 5.3. This link was constructed by taking a

simple 4-component link with all linking numbers equal to 1, and banding three
of the components into a Borromean rings. We computed the mijk for this link
in that example. We used a C-complex for the computation, so all tijk = 0.
Therefore, we obtain

x1 =m123 = 4, x2 =m124 = 3, x3 =m134 = 3, and x4 =m234 = 3.

It follows that
x1 − x2 + x3 − x4 = 4− 3+ 3− 3 = 1,

so this link has nontrivial total Milnor invariant inM.
Consider the link L′ obtained by replacing the Borromean rings on the left of

Figure 5.1 with an unlink before banding, that is, not banding at all. Then, for
the link L′ we have

w̃1 = 234, w̃2 = 341, w̃3 = 412, and w̃4 = 123,

from which it is straightforward to compute that x1 = x2 = x3 = x4 = 3. Thus,
x1 − x2 + x3 − x4 = 0, and so the links L and L′ determine distinct elements
in M. Taking Theorem 1.1 as given for a moment, we see that L and L′ do not
admit homeomorphic surface systems.

We can also construct a link Lm by taking the Borromean rings, replacing the
component labelled 1 with its (m,1) cable, and then performing the banding as in
the construction of L. We assert that this results in a link for which x1−x2+x3−

x4 =m, so that all ofM can be realised. To see this, note that the only changes in
the clasp-words from Example 5.3 are that w̃2 becomes 3411−m31m3−1 and w̃1

becomes 2342−m2m. The change in w̃1 has no effect. We still have e41(w̃2) = 1
and e34(w̃2) = 1, but now e31(w̃2) = 1+m, so m123 = 3+m and we still have
m124 =m134 =m234 = 3. Then, x1 − x2 + x3 − x4 =m as claimed.

Remark 5.10. The number of relations in M is n(n− 1), while the rank of
Zn ∧ Zn ∧ Zn is n(n − 1)(n − 2)/6. Thus, for n ≥ 9, we have a presentation
of M having more generators than relations, so M has nonzero rank. In the case
that every triple of indices contains a pair whose associated components have non-
vanishing linking number, the rank of the classical Milnor quotient is zero, since
it is a product of finite cyclic groups. Moreover, by banding into copies of the
Borromean rings, using the surface system for the Borromean rings with empty
clasp-words and one triple point depicted in Figure 5.2, we can replace the reali-
sation construction in the example above and realise any element ofM. We prefer
to use the construction above in order to provide a nontrivial example of clasp-
word computation. It follows that M is always a nontrivial refinement whenever
n ≥ 9 and every triple of indices contains a pair whose associated components
have non-vanishing linking number.
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FIGURE 5.2. The Borromean rings together with a surface sys-
tem consisting of three genus-one surfaces in the exterior of the
link, which have no clasps and exactly one triple point.

5.2. Indeterminacy from choice of surface system. Before answering the
question on the dependency of the total Milnor invariant on the choice of surface
system, we consider a construction to modify a given surface system. This gives
further motivation for the quotientM.

Construction 5.11 (Torus sum). Let Σ be a surface system for a link L. Let
TK ⊂ XL be a push-off of the boundary torus K × S1 ⊂ ∂XL, with the same
orientation as K × S1. Let J ≠ K be another component of L. As a first step
of the construction, we make TK disjoint from ΣJ . Note that TK ∩ ΣJ consists
of push-offs of meridional circles of K. These intersections can be resolved by
cut-and-pasting annuli, as illustrated in Figure 5.3.

We write Σ′J = ΣJ#TK for the result of this operation. Note that if K∩ΣJ = ∅,
then this is just the disjoint union ΣJ ⊔ TK . We call the new surface system where
ΣJ is substituted by Σ′J a torus sum Σ#JTK. Note the construction also works
with −TK, which carries the opposite of the boundary orientation. Changing the
orientation of TK changes the direction of the smoothings in Figure 5.3.

Note that a torus sum does not change the clasp-words, because the added sur-
face TK is disjoint from all boundary components. The triple intersection numbers
change in the following determined way.

Lemma 5.12. Let L be a link with surface system Σ. Let Σ#sTr be a torus sum.
Then,

m(Σ#sTr) =m(Σ),
t(Σ#sTr )− t(Σ) = −vs,r ,
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K × S1 K × S1

Tk

Σj Σj#Tk

×S1 ×S1

FIGURE 5.3. Resolving an intersection of TK and ΣJ to create a
connected surface

where the vectors vs,r are defined in Lemma 5.6.

Proof. The additional triple intersection points come from intersections with
Tr . Consequently, the difference trsi(Σ#sTr ) − trsi(Σ) is given by Σr · Tr · Σi.
Each such point is contained in exactly one intersection arc from Σr to Σi. From
this, we obtain

trsi(Σ#rTs)− trsi(Σ) = lk(Kr , Ki).

By the skew-symmetry of triple intersection numbers, we deduce that also

tisr(Σ#rTs)− tisr(Σ) = − lk(Kr , Ki) = − lk(Ki, Kr ).

In formal sum form, this is t(Σ#sTr )− t(Σ) = −vs,r . ❐

Lemma 5.13 (Ordered form). Let L be link and a surface system Σ. By modify-
ing the surface systems in an arbitrarily small neighbourhood of each component, and
without changing m(Σ)− t(Σ), we can arrange each clasp-word to be

w̃k = 1lk(K1,Kk) . . . nlk(Kn,Kk).

Proof. Note that near Kk, we can pick a tubular neighbourhood Kk × D2

of Kk and assume that the other surfaces intersect the neighbourhood in discs
{x} × D2 with x ∈ IKk . In such a neighbourhood we can use the finger move
[MM03, Figure 6] also depicted in our Figure 5.4, to change the order of two
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adjacent intersection points. This creates another triple intersection point that
exactly equals the change in the mijk, and so m− t is unaltered (cf. Lemma 2 of
[MM03]).

Σi Σj

Σk

Kk

FIGURE 5.4. The finger move switches the position of two in-
tersection points in the clasp-word and introduces a new triple
point.

It remains to show that adjacent letters of opposite sign can be cancelled.
Suppose x,y ∈ IKk are the corresponding intersection points of Σj with Kk. We
can remove the intersection points by tubing: replace the two discs {x} ×D2 and
{y} ×D2 in Σj with a tube around Kk, as shown in Figure 5.5.

The operation of tubing does not change mijk, and we see in the local model
that no additional triple intersection points are created. Note that tubing converts
two clasps into a ribbon intersection, but the contribution of the endpoints of this
ribbon to the clasp-word of Lj is the same as the contributions of the endpoints of
the original clasps. If one of the intersection points was already the end point of a
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ΣiΣi

Σj

Kj

FIGURE 5.5. Tubing together adjacent intersections of Kj with
the same surface Σi, but with opposite signs. The corresponding
letters in the clasp-words are cancelled.

ribbon intersection, the outcome is again a single ribbon. If the two intersection
points are the end points of a single ribbon intersection, then the outcome of
tubing is a circle intersection. In either case, the contribution to other clasp-words
is unaltered. ❐

The following theorem subsumes the corresponding theorem [MM03, p. 561]
for µijk. We give a new proof using bordisms instead of disentangled surfaces.

Theorem 5.14. Let L be a link with two surface systems Σ and Σ′. Then, the
total Milnor invariants

m(Σ)− t(Σ) =m(Σ′)− t(Σ′)

coincide as elements ofM.
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Proof. By Lemma 5.13 above, we may assume that the clasp-words are in
ordered form. Therefore, the clasp-words agree and the base points give a preferred
alignment between the clasp-words. Consequently, m(Σ) =m(Σ′).

We consider the double surface system F = −Σ ∪ Σ′ in the double exterior
M = −XL ∪ XL. Although (M,pF) ∈ Ω3(Zn) might not be zero on the nose,
there is a g ∈ Ξ ⊆ [M,BZn] such that (M,g) vanishes, because we take two
copies of the exterior of the same link L. By Lemma 3.4, there exists an element

η ∈ H̃0(L× S1;Zn) such that g = η · pF .
By Remark 3.5, we can translate this into a torus sum. That is, identifying

[M,BZn] ≅ H1(M ;Zn) ≅ Zn ⊗Z H1(M ;Z) ≅ Zn ⊗Z H2(M ;Z),

we can consider pF as an element of this latter group.
Then, we can take a sequence {Tk}

m
k=1, for 1 ≤ k ≤ m, where Tk is the

boundary of a closed regular neighbourhood of some component Kjk , with either
orientation permitted, such that

g =
∑

k

eik ⊗ [Tk]+ pF ,

where eik denotes the ik-th standard basis element of Zn. Since the sum of all
boundary tori of XL is zero in H2(XL;Z), we may choose ik ≠ jk for all k. That
is, replace eik ⊗ [Tk] with

eik ⊗ [Tk]−
n∑

ℓ=1

eik ⊗ [Tℓ] =
∑

ℓ≠k

eik ⊗ [−Tℓ]

if necessary. We consider the associated torus sum

ΣT = Σ#i1T1# · · · #imTm.

By construction fΣT = g, so (M,g) = 0 ∈ Ω3(BZn). By Theorem 3.7, we
have t(ΣT ) − t(Σ′) = 0. By Lemma 5.12, a torus sum does not change the total
Milnor invariant. We therefore deduce that

0 = t(ΣT )− t(Σ′) = t(Σ)− t(Σ′) ∈M. ❐

We can now prove our second implication of Theorem 1.1.

Proof of (a) =⇒ (b). Suppose that L and L′ admit homeomorphic surface sys-
tems Σ and Σ′. The linking number lk(Ki, Kj) can be computed by counting
intersections between Ki and Σj , which are preserved by the homeomorphism
Σ ≅ Σ′. Thus, lk(Ki, Kj) = lk(K′i , K

′
j). Furthermore, given a choice of base point

for Ki, a homeomorphism between Σ and Σ′ produces a choice of base point
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for K′i with the property that the clasp-words ω̃i and ω̃′i are identical. Since
m(Σ) depends only on the words ω̃i, we see that m(Σ) = m(Σ′). Moreover, a
homeomorphism of surface systems preserves the triple points and their signs, so
t(Σ) = t(Σ′). Thus,m(Σ)−t(Σ) agrees withm(Σ′)−t(Σ′). In light of Theorem
5.14, the total Milnor invariants do not depend on the choices of surface systems,
so the total Milnor invariants µ(L) and µ(L′) may be computed using Σ and Σ′,
respectively, and therefore coincide. ❐

The next theorem completes the proof of the final implication of Theorem
1.1, namely, (b) =⇒ (c), thereby completing the proof of the main theorem.

Theorem 5.15. Let L and L′ be two links with the same linking numbers and
agreeing total Milnor invariants. Then, there exists an element f ∈ Ξ ⊆ [M,BZn]
such that the double exterior (M, f ) ∈ Ω3(BZn) bounds.

Proof. Let Σ and Σ′ be two surface systems for L and L′, respectively. We are
free to pick Σ and Σ′ to have the same clasp-words, as in Lemma 5.13. We have

m(Σ) =m(Σ′),
m(Σ)− t(Σ) =m(Σ′)− t(Σ′).

Consequently, t(Σ) = t(Σ′) ∈ M. By Lemma 5.12, we can take a suitable torus
sum ΣT of Σ such that tijk(ΣT ) = tijk(Σ′) ∈ Z agree for all i, j, k. Recall from
Theorem 3.7 that the associated double surface system F = −ΣT ∪ Σ′ gives rise,
via Construction 3.1, to a map pF : M → BZn ∈ Ξ such that the double exterior
(M,pF) is fillable. ❐

6. LOWER CENTRAL SERIES QUOTIENTS

Let L = K1∪· · ·∪Kn be an n-component oriented, ordered link, with n ≥ 3, and
with a base point pt in the exterior XL. In this section we writeπ(L) := π1(XL,pt)
for the link group. When the link is obvious from the context, we will sometimes
just write π for the link group. Recall once again that the lower central subgroups
of a group G are defined iteratively by G1 := G and Gk := [G,Gk−1] for k ≥ 2.

The abelianisation π(L)/π(L)2 is isomorphic to Zn, and the image of the
zero-framed longitudes of L determine the linking numbers. Thus, the linking
numbers of two links L and L′ are the same if and only if the lower central series
quotients π(L)/π(L)2 and π(L′)/π(L′)2 are isomorphic via an isomorphism
that sends meridians to meridians and longitudes to longitudes. It follows from
the latter statement, via a well-known argument using Theorem 6.1 below, that
the lower central series quotients π(L)/π(L)3 and π(L′)/π(L′)3 are isomorphic,
via an isomorphism that preserves a choice of oriented ordered meridians. Milnor’s
triple linking numbers µ̄L(ijk) can be computed from the image of the longitudes
in π(L)/π(L)3. The next natural step should be to note the following:

(i) that the triple linking numbers of two links L and L′ with the same
linking numbers coincide if and only if the quotients π(L)/π(L)3 and
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π(L′)/π(L′)3 are isomorphic via an isomorphism that sends meridians
to meridians and longitudes to longitudes;

(ii) that this implies the quotients π(L)/π(L)4 and π(L′)/π(L′)4 are iso-
morphic via an isomorphism that sends meridians to meridians.

In this section we prove that these indeed hold if one uses the refined triple linking
numbers. More precisely, we will prove the implications (a) =⇒ (d) =⇒ (b) of
Theorem 1.1, and Theorem 1.2.

We begin by recalling Milnor’s presentation for lower central series quotients
of a link group. Pick a basing of the link L, that is, pick a choice of base point
bi ∈ Ti = ∂νKi and a choice of path βi in XL = S3 \

⋃
i νKi from pt to bi.

This defines meridians µi ∈ π and zero-framed longitudes λi ∈ π , based at
pt. We write F = F〈µ1, . . . , µn〉 for the free group on the generators µ1, . . . , µn,
which is equipped with a map F → π . Since F/[F, F] → π/[π,π] is surjective,
one can verify algebraically that the composition F → π → π/πk is an epimor-
phism (see, e.g., [Coc90, Rewriting Proposition 4.1]). As a consequence, write
λi = ℓi(µ1, . . . , µn) as a product of the chosen meridians µi in the group π/πk.
Independently of the choice of the words ℓi made, Milnor showed that the k-th
lower central series quotient admits the following presentation [Mil57, Proof of
Theorem 4].

Theorem 6.1 (Milnor). Let L be a link with a basing. Denote the associated
meridians by µi, and the zero-framed longitudes by λi. Let ℓi ∈ F be any word that
is sent to the class of λi in π/πk. Then, the lower central series quotient π/πk admits
the presentation

π/πk
〈
µ1, . . . , µn

∣∣∣ [µi, ℓi], Fk
〉
,

≅

where the group Fk is the k-th lower central series subgroup of the free group F on
µ1, . . . , µn.

The statement above is slightly stronger than [Mil57, Theorem 4], and can
be extracted from Milnor’s original proof, but is not readily obtained from the
statement of Milnor’s original theorem. For the convenience of the reader, we
sketch a different proof that is well known to experts.

Proof. Isotope the paths βi from the basing to be disjoint and embedded.
Pick a 2-disc D that contains the paths βi and intersects each link component in a
single intersection point pi with positive orientation. The complementD\

⋃
{pi}

has fundamental group the free group

π1

(
D \

⋃
i{pi},pt

)
F〈µ1, . . . , µn〉≅

on the given meridians µi. Now, remove an open tubular neighbourhood ν ∂D
of the boundary ∂D from S3, with ν ∂D chosen small enough that it remains
disjoint from L. The result is a framed solid torus V containing the link. Cut
along D′ := D ∩ V : that is, delete D′ and compactify the two ends, each with a
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copy of D′. We obtain a solid cylinder D2× I containing a collection of n strands
{γi}, such that the two endpoints of γi are at pi × {0} and pi × {1}. This is
a string link associated with L (see, e.g., [LD88], [HL90, Section 2]). Both the
top disc and the bottom disc come with an identification D2 × {i} ≅ D′. The
solid cylinder D2 × I comes with a map to S3 given by identifying D2 × {0} with
D2 × {1} to recover V , and then including V ⊂ S3.

The exterior R = D2 \
⋃
νγi of these n strands in the cylinder is a relative

bordism from D′ \
⋃
i νpi to itself. A Mayer-Vietoris sequence argument shows

this relative bordism is a homology bordism. Note that R is equipped with two
base points pt± from the two inclusions D′ ⊂ D2 × {i}. Now deduce from the
Stallings theorem [Sta65] that the inclusion-induced map

F/Fk π1(R,pt+)/π1(R,pt+)k
≅

is an isomorphism.
Pick a path τ on the boundary ∂(D2 × I), connecting pt+ with pt−, which

maps to a meridian of ∂D in S3 \ν ∂D under the map D2× I → S3. Note that the
longitudes λi lift to paths in R from pt− to pt+. We turn these paths into loops
based at pt+ by defining τi := τ ∗ λi. Next, we glue to recover the link exterior.
The link exterior in the solid torus V has fundamental group

π1(V \ νL,pt) = 〈π1(R,pt+), t | tµit−1 = τiµiτ
−1
i 〉.

Once we fill ν ∂D back in, we get

π1(XL,pt) = 〈π1(R,pt+) | µi = τiµiτ
−1
i 〉.

Now, calculate the lower central series quotients:

π1(XL,pt)/π1(XL,pt)k
≅
← 〈π1(R,pt+) | µi = τiµiτ−1

i , i = 1, . . . , n,π1(R,pt+)k〉

= 〈π1(R,pt+) | µi = τiµiτ−1
i , τi = ℓi(µ1, . . . , µn), i = 1, . . . , n,π1(R,pt+)k〉

= 〈π1(R,pt+) | [µi, ℓi(µ1, . . . , µn)], i = 1, . . . , n,π1(R,pt+)k〉
≅
← 〈µ1, . . . , µn | [µi, ℓi], i = 1, . . . , n, Fk〉.

The composition of these maps sends both µi to the i-th meridian, and ℓi to the
i-th longitude. ❐

When do two presentations of the above form give rise to the same group?
We see that the group only depends on the words ℓi ∈ F . In fact, something
stronger is true: already the cosets ℓi ∈ F/F3 in the lower central series quotient
determine the group. This follows from Lemma 6.2 (2) below, with k = 3, a = µi,
and b = ℓi. These elements ℓi ∈ F/F3 can be manipulated using commutator
calculus, which offers the following relations, recorded here for later use.
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Lemma 6.2. For arbitrary elements a,b ∈ F , the following relations hold:

(1) ag := g−1ag = a[a−1, g] = a ∈ F/Fk+1 for all g ∈ Fk.
(2) [a, gb] = [a, g][a, b]g = [a, b] ∈ F/Fk+1 for all g ∈ Fk.

Proof. By definition, we have [a, g] ∈ Fk+1 for all g ∈ Fk. Equality (1) is
obtained by expansion of the commutators, and equality (2) follows by expanding
commutators once again, and then applying (1). ❐

Our next main goal is to compute the words ℓi ∈ F/F3 solely from the com-
binatorics of a C-complex, so let us bring a C-complex into the picture; in this
section, we will not consider arbitrary surface systems, only C-complexes. Let L
be an oriented ordered link together with a C-complex {Σi}. The orientation on
each Ki and the orientation of S3 induce orientations of the double point arcs
of the C-complex. Denote the surfaces Σi ∩ XL by Ci. Each Ci has exactly one
boundary component λCi in Ti = ∂νKi ⊂ XL, which is a zero-framed push-off

of Ki. The boundary component λCi is called the longitudinal boundary, and the
other boundary components are called meridional.

Now, we temporarily fix a link component K of L. Pick a base point bK on λCi
that is disjoint from the set Σj for all j ≠ i. Connect bK to the base point pt ∈ XL
of the exterior via a path βK that is disjoint from each surface Ci, and approaches
bK from the negative side. This defines classes for the meridian µi ∈ π and a
longitude λi = (βi)#λCi ∈ π , where the (βi)# is the change of base point map on
based loops that conjugates with the path βi to change the base point from βi(1)
to βi(0). The classes µi and λi are, respectively, the meridians and the longitudes
associated with the basing {βi}.

Definition 6.3. Let L be a link with a C-complex {Σi}. A basing {βi} of the
link L as described above is said to be subordinate to the C-complex.

We proceed by introducing further notation, which will help us with the cal-
culation of ℓi ∈ F , a word in the µi such that ℓi(µ1, . . . , µn) = λi modulo length
three commutators. Order the intersection points

IK = {aK,1, . . . , aK,mK} = {x ∈ λCK | x ∈ Σj for some Kj ≠ K},

starting from base point bK and traversing λCK in the positive direction. Also, let
r ∈ {1, . . . ,mK}, and denote the path from bK to aK,r following λCi in the
positive direction by αK,r .

Consider an intersection arc in CK corresponding to a clasp. This arc connects
the longitudinal boundary with a meridional boundary component. Follow the
intersection arc that emanates from a point aK,r ∈ IK and terminates at a point
aJr ,s ∈ IJ(r) of another link component Jr = Kj , to define a path ιK,r from aK,r
to aJr ,s , where this equation defines s. Let σK : {1, . . . ,mK} → {1, . . . , n} be the
map that takes r ֏ s for each r ∈ {1, . . . ,mK}.

We will introduce another path γK,r ∈ π1(CK , bK). First, note that traversing
the meridional boundary starting at aJr ,s defines a loop µK,r ∈ π1(CK , aJr ,s),
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Observe that µK,r is freely homotopic to a meridian of the knot component Jr .
We base µK,r at bK by defining

γK,r = (αK,r ∗ ιK,r)#µK,r ∈ π1(CK , bK).

We direct the reader to Figure 6.1 for illustrations of the defined paths.

aK,1aK,1

aK,2aK,2

αK,2

aK,mk

ιK,2

µK,2

γK,2

bKbK

δk

FIGURE 6.1. Paths in CK ⊂ ΣK

Pick a collar of the longitudinal boundary of the surface ΣK that contains all
intersection arcs and all loops µK,r . Note that the inside boundary of that collar
is a separating curve that cuts ΣK into two components: one containing all the
genus, and an annulus containing the intersection arcs and loops µK,r . Connect
the inside boundary to bK by a path in the complement of the intersection arcs.
This defines a loop δK ∈ π1(CK , bK). This is also illustrated on the right of Figure
6.1. From now on we consider all loops as living in the fundamental group of the
link exterior via the appropriate inclusion induced maps, changing the notation
neither for the loop nor its base point.

Lemma 6.4. The loop δK ∈ π1(XL, bK) is a length-3 commutator.

Proof. The loop δK bounds the surface S in CK given by the complement of
a collar of the longitudinal boundary. Since that collar contains all of the inter-
section arcs, we see that S ∩ Cj = ∅ for all j. This implies that all loops in S are
length-2 commutators, since they are zero in H1(XL;Z) ≅ Zn.

Therefore, the loop δK, as the boundary of S, is a length-3 commutator. ❐

Consider an intersection arc ιK,r in CK connecting aK,r with aJr ,s . Write
gK,r for the loop βK ∗αK,r ∗ ιK,r ∗α−1

Jr ,s ∗ β
−1
Jr ∈ π = π1(XL,pt).

Lemma 6.5. For each r ∈ {1, . . . ,mK}, the loop (βK)#γK,r ∈ π is a conjugate
of the meridian µJr ∈ π , namely, (βK)#γK,r = (µσK(r))

gK,r = (µJr )
gK,r ∈ π .

Proof. Note that a meridian of Jr at aJr ,s , which is based to pt via the whisker
βJr ∗ αJr ,s , is homotopic to µJr . This is via a homotopy sliding the meridian
(βK)#γK,r along Jr to the chosen meridian of Jr . Recording the new basing path
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created during the slide tells us what we need to conjugate by. It might help to
inspect Figure 6.2. More precisely, we have

(µJr )
gK,r

= βK ∗αK,r ∗ ιK,r ∗α
−1
Jr ,s ∗ β

−1
Jr ∗ µJr ∗ βJr ∗αJr ,s ∗ ι

−1
K,r ∗α

−1
K,r ∗ β

−1
K

= βK ∗αK,r ∗ ιK,r ∗ µK,r ∗ ι
−1
K,r ∗α

−1
K,r ∗ β

−1
K

= βK ∗ γK,r ∗ β
−1
K . ❐

β−1
Jr ∗ µJr ∗ βJr

K

aJr ,s bJr

γK,r

Jr

FIGURE 6.2. γK,r as a meridian µJr

λCKλCKλCK

bKbKbK

FIGURE 6.3. Homotopy from the path λCK to γK,mi ∗ · · · ∗

γK,1 ∗ δK

Lemma 6.6. The longitude λK ∈ π agrees with

λK = (βK)#γK,mK ∗ · · · ∗ (βK)#γK,1 ∗ (βK)#δK .
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Proof. The longitude λCK ∈ π1(CK , bK) is homotopic to

λCK = γK,mK ∗ · · · ∗ γK,1 ∗ δK ∈ π1(CK , bK)

as depicted in Figure 6.3. Whisker both sides with (βK)# to obtain the statement.

❐

Write εK,r ∈ {±1} for the sign of the intersection at aK,r between K and ΣJr .
Note that the map σK, and each of the εK,r , can be read off from the abstract
C-complex. We now proceed to show that gK,r ∈ π/π2 is also determined by the
abstract C-complex.

Lemma 6.7. The loop gK,r = βK ∗αK,r ∗ ιK,r ∗α−1
J,s ∗β

−1
J has abelianisation

[gK,r ] =
r−1∑

q=1

εK,q[µσK(q)]−
s−1∑

q=1

εJ,q[µσJ(q)]

+

{
0 r -th clasp is positive,

µK − µJ r -th clasp is negative,

in π/π2.

Proof. Note that π/π2 is the free abelian group Z〈µ1, . . . , µn〉 generated by
the meridians, and that the coefficient of µq is the intersection number [gK,r ]·Σq.
To compute this number, we make gK,r transverse to each Σq: push off αK,r and
α−1
J,s slightly to the negative side of CK and CJ , and let ιK,r deform accordingly.

As βK was chosen to be disjoint from the C-complex and approaching CK from
the negative side, all intersections lie on the path αK,r ∗ ιK,r ∗ α

−1
J,s . There are

two kinds of contributions. First, there are the intersection points on the α paths,
which correspond to intersections of the components Kr and Ks with surfaces
of the C-complex; these give rise to the first two summands. Second, there are
intersections points on the (deformed) ιK,r ; these depend on the sign of the clasp,
and can be computed from the explicit local models, as shown in Figure 6.4. ❐

We have now collected enough information on the longitude words to prove
the first main technical theorem of this section.

Theorem 6.8. Let L and L′ be two oriented, ordered links with homeomorphic
C-complexes and fundamental groups π(L) and π(L′), respectively. Then, for every
k = 1, . . . , n, there exist words ℓk, ℓ′k ∈ F such that the following hold:

(1) ℓk(µ1, . . . , µn) = λk mod π(L)4 and ℓ′k(µ
′
1, . . . , µ

′
n) = λ

′
k mod π(L′)4,

(2) ℓk = ℓ′k mod F3.

Proof. As described above, the strategy is to show that the longitude words,
modulo the required subgroups, can be read off from the C-complex in a way that
only depends on the homeomorphism type of the C-complex together with the
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−−

− +

FIGURE 6.4. Contribution of the intersection points of ιK,r in
a positive clasp (left) and a negative clasp (right)

signs of the clasps. But the signs of the clasps are determined by the orientations
of intersection arcs, as explained in Remark 2.8.

Pick basings {βi} for L that are subordinate to the C-complex. For each link
component K, define σK, and εK,i as above. Substitute using Lemma 6.5 in the
expression of Lemma 6.6 to write the longitude as

(µ
εK,mK
σK(mK)

)gK,mK ∗ · · · ∗ (µ
εK,1
σK(1)

)gK,1 ∗ δK ∈ π(L).

Pick a triple commutator dK ∈ F3, and words hK,r ∈ F such that

dK(µ1, . . . , µn) = δK mod π4, hK,r (µ1, . . . , µn) = gK,r mod π4.

for all 1 ≤ r ≤mK. Now define

ℓK = (µ
εK,mK
σK(mK)

)hK,mK ∗ · · · ∗ (µ
εK,1
σK(1)

)hK,1 ∗ dK ∈ F,

which is a word such that ℓK(µ1, . . . , µn) = λK mod π4. Do this for each compo-
nent K of L.

Repeat all of the above with the link L′ to obtain words ℓ′K ∈ F ; note that the
orderings determine a bijection between the set of components of L and the set
of components of L′, and we use this identification implicitly from now on. We
claim that ℓK = ℓ

′
K ∈ F/F3. Note that both dK and d′K are triple commutators,

so they can be safely ignored. Since the C-complexes are homeomorphic, the
only difference that can occur is in the conjugating words hK,r and h′K,r . By
Lemma 6.2 (1), with k = 2, we just have to show that hK,r = h

′
K,r mod F2.

Observe that under the isomorphism F/F2
≅
→ π/π2, the abelianisation [hK,r ]

of hK,r is sent to [gK,r ], which we computed in Lemma 6.7 to be

[gK,r ] =
r−1∑

q=1

εK,q[µσK(q)]−
s−1∑

q=1

εJ,q[µσJ(q)]

+

{
0 r -th clasp is positive,

µK − µJ r -th clasp is negative.
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Consequently, the elements [gK,r ] = [g
′
K,r ] agree, and so do [hK,r ] = [h

′
K,r ].

This shows ℓK = ℓ′K ∈ F/F3. ❐

This enables us to prove Theorem 1.1 (a) =⇒ (d). First, as discussed in Sec-
tion 1.4, two links admit homeomorphic surface systems if and only if they admit
homeomorphic C-complexes. Then, we apply the next corollary.

Corollary 6.9. Let L and L′ be two oriented, ordered links with homeomor-
phic C-complexes and fundamental groups π(L) and π(L′), respectively. There exist
choices of basings for L and L′ and an isomorphism between the lower central series
quotients π(L)/π(L)3 and π(L′)/π(L′)3 that preserves the oriented, ordered merid-
ians and the oriented, ordered longitudes determined by the respective basings.

Proof. For every i = 1, . . . , n, let ℓi and ℓ′i ∈ F be as in Theorem 6.8. By
Theorem 6.1, the quotient π(L)/π(L)3 admits a presentation

π(L)/π(L)3
≅
← 〈µ1, . . . , µn | [µi, ℓi], F3〉.

An analogous presentation holds for L′, simply replacing ℓi with ℓ′i for each i and
changing each µi as µ′i. The homomorphism defined by sending µi ֏ µ′i is an
isomorphism since the relation [µi, ℓi] is sent to [µ′i, ℓi], which equals [µi, ℓ

′
i]

modulo F3 by Lemma 6.2 (2) with k = 2. The fact that ℓi and ℓ′i coincide in
π/π4 implies they coincide in π/π3. ❐

Similarly, the next corollary implies Theorem 1.2, because the condition that
two links admit homeomorphic C-complexes is equivalent to any of the conditions
in Theorem 1.1, as discussed in Section 1.4.

Corollary 6.10. Let L and L′ be two oriented, ordered links with homeomor-
phic C-complexes and fundamental groups π(L) and π(L′), respectively. There
exists an isomorphism between the lower central series quotients π(L)/π(L)4 and
π(L′)/π(L′)4 that preserves oriented, ordered meridians.

Proof. For every i = 1, . . . , n, let ℓi and ℓ′i ∈ F be as in Theorem 6.8. Apply
Theorem 6.1 to deduce that π(L)/π(L)4 admits the presentation

π(L)/π(L)4
≅
← 〈µ1, . . . , µn | [µi, ℓi], F4〉.

The analogous presentation holds for L′, simply replacing µi with µ′i and ℓi with
ℓ′i for each i. By Lemma 6.2 (2) with k = 3, the associated presentations are equal,
and so we obtain

π(L)/π(L)4
≅
← 〈µ1, . . . , µn | [µi, ℓi], F4〉

= 〈µ1, . . . , µn | [µi, ℓ
′
i(µ1, . . . , µn)], F4〉

= 〈µ′1, . . . , µ
′
n | [µ

′
i, ℓ

′
i], F4〉

≅
← π(L′)/π(L′)4. ❐
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In the rest of the section, in order to show Theorem 1.1 (d) =⇒ (b), we will
show that the two weaker conditions below are already enough to show that two
links admit homeomorphic C-complexes:

ℓk(µ1, . . . µn) = λk mod π(L)3 ℓ′k(µ
′
1, . . . , µ

′
n) = λ

′
k mod π(L′)3,

ℓk = ℓ
′
k mod F3,

The second main technical result of this section is the next proposition.

Proposition 6.11. Let L be a link with basing β that is subordinate to a C-
complex Σ. For any word ℓk ∈ F in the meridians that is sent to the longitude λk =
ℓk(µ1, . . . , µn) ∈ π1(L)/π1(L)3, the XiXj-coefficient in the Magnus expansion of
ℓk is

eij(ℓk) =mijk(Σ)− lk(Lk, Lj) lk(Li, Lj),

where mijk is the quantity defined in Section 5.

Proof. In order to match the notation used previously in this section, let
K be the k-th component of the link L. Recall from Lemma 6.6 that λK =
(βK)#γK,mp ∗ · · · ∗ (βK)#γK,1 ∗ (βK)#δK, where p = mK is the number of
clasps in Σk. Appeal to Lemma 6.4 and Lemma 6.5 to obtain

λK = (µJp)
gK,p ∗ · · · ∗ (µJ1)

gK,1 mod π3.

Pick hK,i ∈ F such that hK,i(µ1, . . . , µn) = gK,i. Now, define

ℓK := (µJp)
hK,p ∗ · · · ∗ (µJ1)

hK,1 ∈ F.

By Remark 5.2, we can compute the Magnus expansion of ℓK from eij(ℓK), and
it depends only on the coset ℓK ∈ F/F3.

Multiple applications of the occurrence calculus from equation (5.1), in par-
ticular the relation ers(u · v) = ers(u)+ ers(v)+ er (u)es(v), reveal that

eij(ℓK) = eij((µJp)
hK,p ∗ · · · ∗ (µJ1)

hK,1)(6.1)

=

p∑

r=1

eij((µJr )
hK,r )+

p∑

r=1

ei((µJr )
hK,r )ej(ℓK,r−1)

=

p∑

r=1

eij((µJr )
hK,r )+

p∑

r=1

ei(µJr )ej(ℓK,r−1),

where ℓK,r := (µJr )
hK,r ∗· · ·∗(µJ1)

hK,1 . By inspection, ej(ℓK,r−1) is precisely the
number of clasps between Σk and Σj that appear before the r -th clasp, counted
with sign, while

ei(µJr ) =




0 Jr ≠ Ki,

1 Jr = Ki and the r -th clasp is positive,

−1 Jr = Ki and the r -th clasp is negative.
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Thus,
∑p
r=1 ei(µJr )ej(ℓK,r−1) counts how many times a (ΣK ,Σj) clasp appears

before a (ΣK ,Σi) clasp (counting with signs). That is,

(6.2)
p∑

r=1

ei(µJr )ej(ℓr−1) = eji(wk),

where wk is the clasp-word of the component Σk of the C-complex Σ.
It remains to analyse

∑p
r=1 eij((µJr )

hK,r ). Note that

ej(h
−1
K,r ) = −ej(hK,r ).

Expand the trivial word hK,rh−1
K,r using equation (5.1) to see that

eij(h
−1
K,r ) = −eij(hK,r )+ ei(hK,r )ej(hK,r ).

Together with eij(µJr ) = 0, it follows that

eij((µJr )
hK,r ) = eij(hK,r ∗ µJr ∗ h

−1
K,r )

= ei(hK,r )ej(µJr )− ei(µJr )ej(hK,r ),

so that

(6.3)
p∑

r=1

eij((µJr )
hK,r ) =

p∑

r=1

ei(hK,r )ej(µJr )−

p∑

r=1

ei(µJr )ej(hK,r ).

Notice that since ej(µJr ) = 0 unless Jr = Kj , and since ei(µJr ) = 0 unless
Jr = Ki, we may throw out most of the terms in the sums above. When Jr = Kj ,
we read ei(hK,r ) from the abelianisation of hK,r found in Lemma 6.7:

ei(hK,r ) =
r−1∑

q=1

εK,qei(µσK(q))−
s(r)−1∑

q=1

εJ,qei(µσJ(q)).

The notation s(r) has not appeared for some time: the definition can be found
after Definition 6.3. Now,

∑r−1
q=1 εK,qei(µσK(q)) returns the number of (Σk,Σi)

clasps on Σk (counted with sign) prior to the r -th clasp of Σk. On the other hand,∑s−1
q=1 εJ,qei(µσJ(q)) gives the number of (Σj ,Σi) clasps on Σj (counted with sign)

prior to the same clasp (now we order the clasps by following ∂Σj). Let e<ri (wk)
be the number of signed occurrences of the letter i before the r -th letter in the
wordwk. In this notation,

r−1∑

q=1

εK,qei(µσK(q)) = e
<r
i (wk).
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Now, compute

p∑

r=1

ei(hK,r )ej(µJr )(6.4)

=

p∑

r=1

( r−1∑

q=1

εK,qei(µσK(q))−
s(r)−1∑

q=1

εJ,qei(µσJ(q))
)
ej(µJr )

=

p∑

r=1

(e<ri (wk)− e
<s(r)
i (wj))ej(µJr )

=

p∑

r=1

e<ri (wk)ej(µJr )−

p∑

r=1

e<s(r)i (wj)ej(µJr )

= eij(wk)− eik(wj).

Rename the indices to get

p∑

r=1

ej(hK,r )ei(µJr ) = eji(wk)− ejk(wi),(6.5)

from which we deduce, by substituting (6.4) and (6.5) into (6.3),

p∑

r=1

eij((µJr )
hK,r ) = eij(wk)− eik(wj)− eji(wk)+ ejk(wi).(6.6)

Take the righthand side of (6.1), apply (6.6) to the first term and (6.2) to the
second term, to yield

eij(ℓk) = eji(wk)+ eij(wk)− eik(wj)− eji(wk)+ ejk(wi)

= eij(wk)− eik(wj)+ ejk(wi)

= eij(wk)+ eki(wj)− ek(wj)ei(wj)+ ejk(wi).

This shows the claim, since ek(wj)ei(wj) = lk(Lk, Lj) lk(Li, Lj) and mijk =

eij(wk)+ eki(wj)+ ejk(wi) by definition. ❐

The proof of Theorem 6.13 below will require choosing a C-complex subor-
dinate to an arbitrary basing, and we demonstrate this is always possible in the
following lemma.

Lemma 6.12. If β is any basing of the link L, then there exists a C-complex Σ for
L that is subordinate to β.

Proof. Let pt be a choice of base point in XL, and let β be any basing for L.
For each link component Ki, recall that bi denotes the end point of βi that lies on



Surface Systems and Triple Linking Numbers 2545

Ki. Let Σ be a C-complex for L disjoint from pt. Make a local change to each Σi
close to bi ∈ Ki to arrange that βi approaches the point bi from the negative side
of Σi, and otherwise has no points in common with Σi, at least close to bi.

The local move in Figure 6.5 allows us to eliminate a point of intersection
between Σi and the corresponding basing arc βi at a cost of adding intersections
with every other base arc βj (j ≠ i). This move will also force us out of the
category of C-complexes as it may introduce many new intersections between Σi
and the other components of Σ.

Σi

Σi

bi

β1

pt

FIGURE 6.5. Left: A point of intersection between Σi a compo-
nent of a C-complex and βi the corresponding basing arc. Right:
A finger move replaces this point of intersection with a point of
intersection between Σi and βj for every j ≠ i.

Thus, we need consider only intersection points in Σi ∩ βj with j ≠ i. The
finger move in Figure 6.6 replaces this point of intersection with a ribbon inter-
section between Σi and Σj .

We have thus produced a surface system for L that is subordinate to the basing
β. In [Cim04, Lemma 1], a general procedure is given for transforming a surface
system into a C-complex. It amounts to a series of finger moves, each of which
involves pushing Σi along an arc in Σj for some j ≠ i. By ensuring that the arc
avoids the point bj, we arrange that these finger moves do not introduce new
intersections between Σ and β. ❐

Our final theorem uses Proposition 6.11 to prove the remaining implication:
Theorem 1.1 (d)=⇒(b).

Theorem 6.13. Let L and L′ be n-component ordered, oriented links with bas-
ings β and β′, respectively. Suppose that for each k = 1, . . . , n there exists a word
ℓk ∈ F such that

ℓk(µ1, . . . , µn) = λk mod π(L)3,

ℓk(µ
′
1, . . . , µ

′
n) = λ

′
k mod π(L′)3.
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Σi
Σi

bi

β1

pt

FIGURE 6.6. Left: A point of intersection between Σj a com-
ponent of a C-complex and as basing arc βi with i ≠ j. Right:
A finger move replaces this point of intersection with a ribbon
intersection between Σi and Σj .

Then, the total Milnor invariants µ(L) and µ(L′) agree.

Proof. In order to emphasise the dependence of mijk on the C-complex we
will writemijk(Σ) andmijk(Σ′). For each k = 1, . . . , n, pick a word ℓk ∈ F with
ℓk(µ1, . . . , µn) = λk and ℓk(µ′1, . . . , µ

′
n) = λ

′
k as in the statement of the theorem.

Since the linking numbers can be computed in terms of ℓk ∈ F/F2, we conclude
that the links L and L′ have identical pairwise linking numbers.

Pick C-complexes Σ and Σ′ such that β and β′ are subordinate to them. The
existence of such C-complexes is guaranteed by Lemma 6.12. Since the links L
and L′ have identical pairwise linking numbers, Proposition 6.11 implies, for any
i, j, k, that

mijk(Σ) = eij(ℓk)+ lk(Lk, Lj) lk(Li, Lj) =mijk(Σ′).

Since these are C-complexes, they have no triple intersections. Thus, even as
elements of W =

∧3
Zn, the total Milnor invariants µ(L) and µ(L′) agree. Thus,

they also agree in the quotientM. ❐
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