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MICROBUNDLES
PART I

J . MiLNOR

(Received 10 April 1963)

§1. INTRODUCTION

THls paper will define the concept of (topological) microbundles, and prove a number of
fundamental properties. e

The following paragraph is intended to motivate this concept. (For further motivation,
sec the author’s preliminary report [15].) Suppose that one tries to construct something
like a ‘tangent bundle’ for a manifold Af which has no differentiable structure. Each point
x € M has neighborhoods which are homeomorphic to Euclidean space. It would be
plausible to choose one such neighborhood U, for each x, and to call (x) x U, the ‘fibre’
over x. Unfortunately however, it seems difficult to choose such a neighborhood U,
simultaneously for each x € M, in such a way that U, varies continuously with x. Further-
more even if such a choice were possible, it is not clear that the resulting object would be a
topological invariant of M. To get around these difficulties we consider a new type of
bundle, in which the fibre is only a ‘germ’ of a topological space. Thus for the tangent
microbundle of M, the fibre over x is a completely arbitrary neighborhood of v (subject
only to the uniformity condition that the set of all (x, y) with y € U, should form a neigh-
borhood of the diagonal in M x M). At any stage of the argument we will be allowed to
pass to smaller neighborhoods; hence any particular choice of the U, becomes irrelevant.

The paper is organized as follows. In §§2-7 it is shown that microbundles behave
very much like vector bundles. The concepts of tangent microbundle, induced microbundle,
Whitney sum, and normal microbundle are studied; and a version of the covering homotopy
theorem is proved. (Sections 2, 3, 4, 5, 6 respectively). On the other hand in §8 and §9
the differences between microbundles and vector bundles are emphasized. Thus it is shown
that a non-trivial vector bundle may give rise to a trivial microbundle (§9.1). As an appli-
cation it is shown that the tangent vector bundle of a smootht manifold is not, in general, a
topological invariant.

I'hope to develop these ideas further in one or more later papers: in particular to study
the analogous concept of piecewise-lincar microbundle, to construct universal micro-
bundlcs, and to study characteristic classes.

T The word ‘smooth’ will always mean differentiable of class €.
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« " At this point I wish to express my indebtedness to ARNOLD SHAPIRO Many extremely

. usefu! discussions with Shapiro served to crystallize the concept of microbundle. In par-

ticular the word ‘microbundle’ itself is Shapiro’s invention.

§2. DEFINITIONS AND EXAMPLES
The notation R" will be used for n dimensional Euclidean space.

DEFINITION. A miicrobundle x is a diagram

L
o B—E—B
consisting of the following ¥ ’
(1) a topological space B called the base space;
() a topological space E or E(x) called the total space,
and ‘

(3) continuous maps i and j called the injection and projection mapS respectively. The

composition ji is required to be the identity map of B. Furthermore we require:

Local triviality condition. For each be B there should exist an open neighborhood
U of b and an open neighborhood ¥ of i(b), with

eV, Ve, .

so that ¥ is homeomorphic t& U x R" under a homeomorphfsm which makes the following
diagram commutative:

“ ’ V
‘ 2
' U U
N\
N4
14}
UxR"

Here x 0 denotes the injection u — (u, 0), and p; denotes the projection p,(u, X) = .
The integer n >0 is called the fibre dimension of x.

Remark. Note that £ can be more or less arbitrary except in the neighborhood of
i(B). Only the neighborhoods of i(B) in E will play an essential role in the theory. For
example if £ is an arbitrary neighborhood of i(B) in F7, then we will see that the microbundle

i JIE
B—— E — B
can be identified with x for all practical purposcs. (Compare the definition of *isomorphisny’
below.)

+ German letters such as x, 4, ¢ will be used for microbundles; while Greek leters such as &, 7, & will be
used for vector bundles.
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: i Here are three examples.
Example (1). For any B and any n > 0 the diagram

x0 -1
B—— B xR'—>

cohstitutes a microbundle over B. This will be called the standard trivial microbundle. It
will be denoted by ¢” or ej.

‘Example (2). Let & be an n-dimensional vector bundle over B (i.e., a fibre bundle with
R" as fibre and the general linear group GL(n, R) as structural group). Let E be the total

space, j the projection map, and
' i:B—E

the zero cross-section [which maps each b € B to the zero vector in the vector space j “1(®)).
Then the diagram
{ i
B—E—B

constitutes a microbundle. This will be called the underlying microbundle of &, and will be
denoted by [£].

Example (3). Let M be any topological manifold, and let A: M — M x M denote the
diagonal map.

A r
LemMA (2.1). The diagram M — M x M ——; M constitutes a microbundle.
This will be called the tangent microbundle of M, and will be denoted by t or ty.

Fic. 1. THE TANGENT MICROBUNDLE OF THE CIRCLE. THE IMAGE /(S') AND THE FIBRES j~1(b) ARE
EMPHASIZED.

FIG. 2. A NON-TRIVIAL MICROBUNDLE OVER THE CIRCLE

Proof. Clearly p; o A is the identity map of M. Given p € M let U be a neighborhood
which is homeomorphic to R, and let £ : U — R" be a specific homeomorphism. Define

- h:UxU—-UxR"



N by Iz(a, b) =(a, f(b) — f(a)). It is clear that & is a homeomorphism, and that the diagram
’ o UxU ‘ S R

AU et

: _ ' | B U
U QLR"

is commutative. This proves that t,, is a microbundle.

If M happens to be a smooth (= C ®) manifold, note that one hastwo radically different
concepts of tangent bundle. These will be compared in Theorem (2.2) below.
The concept of isomorphism between two microbundles %, and x, over the same base
!B jU
space is defined as follows. Let x, have diagram B—— E,——> Bforoa =1, 2.
DEFINITION. ¥, is isomorphic to x, if there exist neighborhoods Vy of iyB in E, and
V, of i,B in E,, and a homeomorphism Vy — V), so that the following diagram is commutative.

\ :
»
i / 1
J \\B

\

L3

The notation ¥, = x, will be used for this relation of isomorphism.

A microbundle over B will be called trivial if it is isomorphic to the standard trivial
microbundle ¢j. A manifold M will be called topologically parallelizable if the tangent
microbundle t,, is trivial.

The following theorem will provide a basic transition between the theory of micro-
bundles and the theory of vector bundles.

TuroreM (2.2). Let M be a smooth paracompact manifold with tangent vector bundle 1.
Then the underlying microbundle |t| is isomorphic to the tangent microbundle of M.

Proof. Since M is paracompact, it possesses a2 Riemannian metric. Let E(r) be the
total space, consisting of all pairs (p, v) with pe M and v in the tangent vector space to
M at p; and let i 1 M — E(7) be the zero cross-section: i(p) = (p, 0). As usual let exp(p, v)
€ M denote the endpoint g(1) of the unique geodesic

g:[0,1]-M
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saiisfying the initial conditions
, ' dg
0) = —=Z(0) = 0.
| O=p G O=v
(Here %‘—z denote the velocity vector of g.)

If M happens to be geodesically complete then exp(p, v) is defined for all (p, v) € E(z).
-In general, however, exp(p, v) can only be defined for (p, v) belonging to some neighborhood
E’ of the subset i(M) < E(r). Define the smooth map h:E'— M x M by k(p, v) =
(p,exp(p,v)). Using the inverse function theorem one sees, for each (p, 0)€i(M), that A carries
some neighborhood of (p, 0) in E’ diffeomorphically onto a neighborhood of (p, p) e M x M.
{Compare [16, §10.3].) Now it follows by an argument in point-set topology that & maps
gome neighborhood E” of i(M) < E’ diffeomorphically onto a neighborhood ¥ of the
diagonal in M x M. (Compare J. H. C. Whitehead [26, §4].) Since the diagram

EII

-M h M
A pn/
/

; |4
is commutative, this proves that |z] is isomorphic to t,,.

\

To conclude this section we provide a sharper description of trivial microbundles.

LeMMA (2.3). Let x be a trivial microbundle over a paracompact base space B. Then
Some open subset of E(x) is homeomorphic to all of B x R" (rather than to an open subset of
B x R"); the homeomorphism being compatible with injection and projection maps.

Proof. Without loss of generality we may assurne that E(x) is an open subset of B x R".
Using a partition of unity, construct a map A: B— (0, 1] so that every point (b, x) € B x R”
with |x] < A(b) belongs to E(x). (Here |x| stands for (x} + ... + x2)!/%.) Now the homeo-
morphism

(b, x) — (b, x/(4(b) — |x1))
maps the open set {(b, x):|x| < A(b)} homeomorphically onto B x R". This completes the
proof.

§3. INDUCED MICROBUNDLES

Many of the standard constructions for vector bundles carry over immediately to
microbundles. Thus if x denotes the microbundle
i i
B—-E—B
and if 4 is a subset of B then one can define the restricted microbundle x| 4 to be the diagram

i

A—sj 44— 4

-
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‘where i’ = z[A' j =jlj"'4. [With this terminology the ‘local triviality’ condition can be
: restated as follows: Every point of B has a neighborhood U so that x|U is trivial.]

 More generally let 4 be an arbitrary topological space, and let f: 4 - B be'a mapping:
Then the induced microbundle f*x is defined to be the diagram

i

, A— E' ——p:-+ A ‘
where E’ = A x E is the set of all pairs (a, €) with f(a) = j(e); and where
i(a) = (a,if@), pila, @) =a.
Local triviality is easily verified.
If f happens to be an inclusion map, note that f*x = xlA

The following basic theorem will be proved in §6. Let x be a microbundle over B,
and let fand g be maps from 4 to B.

HomoTopy THEOREM (3.1). If A is paracompact and if f is homotopic to g, then
Sfrexg*s
As an immediate consequence one has:

COROLLARY (3.2). If B is paracompact and contractible, then any microbundle over B
is trivial.

Another useful consequence is the following. Given f: 4 — B let B U CA denote the

space obtained from B by attaclﬁncy the cone
CA = A x [0, 1]/4 x [0]
to B;\ identifying each (a, 1) in 4 x [1] with f(a) € B. Assume that 4 is paracompact. »
fEMMA (3.3). A microbundle x over B can be extended to a microbundle over B |} CA
if and only if f*x is trivial. !
Proof. The composition 4 —f» Bc B Lf) CA is null-homotopic. Hence if x extends it

follows that f*x is trivial.

To prove that converse, consider the mapping cylinder M =B U (4 x [0,1]) of f.

(Each pair (¢, 1) € 4 x [1] is to be identified with f(a) € B.) Since B is a retract of M it
follows that x can be extended to a microbundle x, over M. Now suppose that f*x is trivial.
Then x4 x [0} is also trivial. Clearly 'thxs implies that x,|4 x [0, }] is trivial.

According to §2.3 this means that some open subset of E(x,|4 % [0, 1]) is homco-
morphic to A x [0, }] x R". After removing a closed subsct of £E(x,), if necessary, we may
assume that E(x,|4 x [0, 1]) itsclf is homeomorphic to A x [0, 3] x R"; the homcomor-
phism / being compatible with injections and projections.

The space B |J CA can be obtained from M by collapsing A4 x [0] to a point. Let

J
F(x,) be obtained from L(x,) by collapsing h™Y(A x [0] x {x}) to a point for cach x e R".

Then evidently E(x,) is the total space of the required microbundle over B {J CA.

S
¢

e
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MICROBUNDLES

§4. THE GROUP kr,,B

Let x and x’ be two microbundles over the same base space. The Whitney sum x @ ¥’
is defined just as for vector bundles. Thus the total space E(x@x’) is the subset of
E(x) x E(x') consisting of all pairs (e, e) with j(¢) = j’(¢). The injection and projection maps

B—Ex® %) — B

are defined by b— (i(d), i'(b)) and (e, €’) — j(e) respectively. Local triviality is easily
verified. This sum operation is associative and commutative up to isomorphism.

Altematively one can first define the Cartesian product operation. Given microbundles
x, and x, over distinct base spaces let ¥, x x, be the microbundle with diagram
) fxiz ) J1%Jjz
- B(xy) x B(x;) — E(x,) x E(x;) — B(xy) x B(x,).
Now 2@ z’ can be defined as A*(x x ), where A: B— B x B denotes the diagonal map.
This x @ x'is isomorphic to the previously defined x @ x'.

The following theorem will be of fundamental importance.

By a ‘simplicial complex’ we will mean a possibly infinite simplicial complex with the
direct limit topology (=fine topology).

THEOREM (4.1). Let x be a microbundle over a finite dimensional simplicial complex B.
Then there exists a microbundle vy over B so that the Whitney sum x @y is trivial.

The proof will be based on the following lemma, whose proof will be deferred until §7.7.

LemMa (4.2). Suppose that the CW-complex B is a ‘bouquet’ of finitely or infinitely many
spheres, meeting at a single point. Let r:B— B map each sphere into itself with degree —1.
Then for any x over B the sum x @ r*x is trivial.

Assuming this result, the proof of (4.1) proceeds by induction on the dimension d of B,
as follows. -

Start of Induction. 1f d = 0 then x itself is trivial and there is nothing to prove. If d = 1
then each component of B has the homotopy type of a bouquet of circles, so the assertion
follows from (4.2).

Inductive step. Let B’ denote the (d — 1)-skeleton of B. Assume by induction that
there exists a microbundle v over B’ so that (x]B)Y @y’ is trivial.

Let ¢" be the trivial microbundle over B’, where n is the fibre dimension of x. We will
first see that y’ @ ¢” extends to some microbundle 3 over B. Clearly a microbundle over B’
can be extended over a given d-simplex o if and only if its restriction to the boundary ¢ is
trivial. (Compare §3.3.) Thus x{é is trivial. Hence (1 @ ¢")|¢ is isomorphic to (v’ @ x)|é
which is known to be trivial. Therefore the microbundle 1y’ @ ¢” can be extended over each
d-simplex o,

In order to extend y’ @ ¢" simultaneously over all the d-simplexes of B, a little more
carcis needed. Let B” be obtained from B by removing a small open d-cell in cach d-simplex.
Since B’ is a retract of B, it is clear that 1’ @ ¢" extends over B”. Now the ‘holes’ in B”

.
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“are well separated from each other so that there is no further difficulty in constructing the
required extension 3 over B itself. . '

" Consider the complex Bu CB’ obtained from B by adjoining a cone over the (d ~ 1)-
skeleton B'. Since (x @ 3)|B’ is trivial, it follows by (3.3) that x® 3 extends to some micro-
bundle w over Bu CB. But BU CF’ has the homotopy type of a bouquet of d-spheres.
Hence there exists a microbundle r*w over B U CB so that w® r*w is trivial. Now
1@ 30 (r*w|B) is trivial, which completes the induction.

Remark. A short computation shows that the microbundle y = 3 ® (r*w|B) constructed
in this way has fibre dimension n(24*1 — 3). This number seems extravagantly large, but at '
least one has a specific estimate. : ‘

DeriNiTioN. Two miicrobundles = and x° over B belong to the same s-class ifx@ejis

isomorphic to ¥ ®cj for some integers q, r. We will also say that x is s-isomorphic to ¥
The s-class of x will be denoted by (x). '

As an immediate consequéence of Theorem (4.1) we have:
COROLLARY (4.3). The s-classes of microbundles over a finite dimensional complex B
form an abelian group under the composition operation )+ (y) =)

The proof is straightforward.

DErINITION. This group will be denoted by KopB-

Note that ky,, is @ contravarf?mt functor. That is any map f:4 — B gives rise to a

homomorphism
f* : kTopB - kTopAa

which depends only on the homotopy class of £. In particular if /14 — B is a homotopy
equivalence, it follows that f*: KqopB — Kropd is an isomorphism.

-

Thus k,, behaves somewhat like a cohomology theory. This analogy is brought out
by the following. Let SB denote the suspension of B, and let B|) CA denote the space

obtained from B by attaching the cone over A, using the attaching map f

LeMMA (4.4). The half-infinite sequence

Sr* c* i* S
s o> Koy SB —— kyopSA —— kop(B Lf) CA) —— KyopB — Kropd

is exact; where i: B— B ) CA is the inclusion map; and where ¢: B{) CA — SA collapses B
f ! .

to a point.

Proof. 1t follows from §3.3 that this sequence is exact at kg, B. Combining this fact
with Puppe [17; Theorem 5, p. 310] onc sees immediately that the entire sequence is exact.

In the theory of vector bundles, onc constructs an analogous group consisting of
s-classes of vector bundles over B. We will denote this group by koB (where O stands for
the orthogonal group). The analogucs of asscrtions 4.1), 4.2), (4.3) and (4.4) for vector
bundles are all true, and can be proved by similar or easier arguments.




: ~The groups koB have been much studied by Atiyah, Hirzebruch, Bott, Adams and
others. (See references [1], [3], [5]. The first three use the notation RO(B) for this group;
while Adams uscs the notation Kg(B). Our k is to be thought of as an abbreviation for K.

There is a natural transformation koB — ky,,B which carries each s- -class (&) to the
s-class (J&]) of its underlying microbundle. This will play an important role in what follows.

The word ‘natural’ means that for each f: A — B the following diagram commutes:
- koB —————— k¢, B

kod ———— ky 4

5. NORMAL MICROBUNDLES AND THE SMOOTHING PROBLEM

Consider a submanifold M < N; where M and N are topological manifolds of dimen-
sions m and n respectively. We will always assume there is a countable basis for the
topology of M and of N.

DEFINITION. M has a microbundle neighborhood in N if there exists a neighborhood
Uof M in N and a retraction j : U— M so that the diagram

inclusion

J
> U » M

constitutes a microbundle. This microbundle will be denoted by the letter n, and will be
called a normal microbundle of M in N.

If ‘M has a microbundle neighborhood in N, then it clearly follows that M is ‘locally
flat’ in N. (Compare Brown [7]. Asanexample, it follows that a wild knot in 3-space cannot
have a microbundle neighborhood.)

Remark (1). In general it is not known that M has a microbundle neighborhood in ¥
even if M happens to be locally flat in N. However, in any case, we will see that M has a
microbundle neighborhood in N x R? for sufficiently large g (Theorem (5.8)). The proof
will rely on ideas which are due to Curtis and Lashof [8].

Remark (2). Even if M does have a microbundle neighborhood, it is not known that
the resulting normal microbundle n is unique up to isomorphism. However, we will prove
that the Whitney sum t,, @n is isomorphic to ty|M. This clearly implies that n is well
defined up to s-isomorphism. (§5.10.)

One case of particular interest occurs if the neighborhood U and the retraction j can
be chosen so that the microbundle n is trivial. In this case we will say that M has a product
neighborhood in N. This phrase is justified as follows:

LemMA (5.1). A submanifold M < N has a microbundle neighborhood with w trivial if
and only if, for some neighborhood U of M, the pair (U, M) is homeomorphic to M x (R'f, 0).

Proof. This follows from §2.3.

\
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up into many small steps. First consider three manifolds M « N < P,

LeMMA (5.2). If M has a microbundle neighborhood in N, and N- has a microbiindle

neighborhood in P, then M has a microbundle neighborhood in P.
The proof is straightforward. (Compare the proof of (5.9).)

We will make frequent use of the theorem that every manifold is an absolute neighbor-
hood retract. See (Hanmner [9], Theorem (3.3).) Thus, replacing N by some small neigh-
borhood of M if necessary, we can always assume that there exists a retraction r: N — M.

leti:M—N be the inclusion map. Then the tangent microbundle ty restricts to a
microbundle i*ty over M; and conversely, using r, the tangent microbundle t, can be
lifted to N.

LeMMA (5.3). The total space of the microbundle i*ty is homeomorphic to the total space

of r*ty.

Remark. This is one of the few occasions when it is important that a microbundle
has a specific total space, rather than a vague equivalence class of total spaces.

Proof. By definition E(i*ty) is the set of pairs (x, (y, ¥)) in M x (N x N)with i(x)=y.
Thus it is homeomorphic to M x N. On the other hand E(r*t,,) is the set of pairs (y, (x, X))
in N x (M x M) with r(y) = x. Thus it is homeomorphic to N x M; which completes the
proof. »

Note that the injection map M — E(i*ty) corresponds under this homeomorphism to
the injection map M < N — E(r*t),). Therefore Lemma (5.3) can be restated as follows:
Lg:M'MA (5.4). The submanifold M = N < E(r*t,) has a microbundle neighborhood; with
n o ity ~

As a special case suppose that ty is trivial. Then r*t,, is also trivial; hence the total
space E(r*ty) can be replaced by the total space N x R™ of the canonical trivial micro-
bundle. This proves:

TaeoreM (5.5). If M is topologically parallelizable, then M x 0 has a microbundle
neighborhood in N x R™; with normal microbundle w = i*ty.

If ty is also trivial, it follows that n is trivial. Thus:

COROLLARY (5.6). (Curtis and Lashof) If M and N are both topologically parallelizable,
then M x O has a product neighborhood in N x R™.

COROLLARY (5.7). If M is a topologically parallelizable manifold, then the product
M x R2"* can be imbedded as an open subset of R¥™* 1.

Proof. Choose an imbedding of M in R+ (see [12, p. 60]) and apply (5.6).

We now return to the general case. Let M < N be arbitrary manifolds with countable
basis.

TrroreMm (5.8). If the integer q is sufficiently large then M x 0 has a microbundle
~ neighborhood in N x R

Now we will try to construct microbundle neighborhoods. The proof will be broken
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" Proof. Choose a microbundle Y over M so that the Whitney sum ty @y is trivial; say
ty @y =efy. This is possible (for large q) since we can imbed M in R*"*! 45 4 retract of
some open neighborhood ¥, then extend tar over ¥, and apply Theorem “.Dn.

. According to Lemma (5.4), the submanifold M < N E(r*ty) has a microbundle neigh-

~ borhood. Furthermore it is clear that the submanifold

E(r*ty) < E(r*ty, @ r*y)

has a microbundle neighborhood. Therefore, by Lemma (5.2), the submanifold M <
E(r*ty @ r*y) has a microbundle neighborhood. But r*ty @ r*y is trivial. Therefore
we can replace E(r*t,, @ r*y) by N x R? without changing this conclusion. This completes
the proof that M = M x 0 has a microbundle neighborhood in N x R4,

Remark. To be more specific this argument works providing that g > m(22"+2 — 2),
where m is the dimension of M. In special cases it is possible to reduce this estimate sub-

stantially. (Compare (5.5).) Thus if t,, ~ [£] for some vector bundle ¢, then one can show
that M x 0 has a microbundle neighborhood in N x R2",

Now let us study the extent to which a normal microbundle is unique. Consider a
submanifold M < N with normal microbundle n.

THEOREM (5.9). The Whitney sum t,, @ n is isomorphic to ty|M.

The proof will depend on the following construction. Let x and y be two microbundles,
with diagrams

%1 B—>E—B and E—~E —E

respectively, such that the total space of z is equal to the base space of y. Then the com-
position ¥ o v is defined to be the microbundle

B—-E B
having the composition of injection maps as injection, and the composition of projection
maps as projection.

Example (1). Consider the two microbundles tyy and pin; where p,: M x M — M
denotes the projection to the second factor. Then it is not difficult to see that the com-
position ty o p3n is defined; and is isomorphic to ty|M.

Example (2). Similarly we can compose ty with pTn. In this case, since Py is the
projection map of t,, it is easily seen that ty; o p*n th @1t '

Let D be a neighborhood of the diagonal in A x M which is so small that the mapping
P11 D is homotopic to p,| D. [Such a neighborhood can be constructed as follows: Imbed M
as a retract of a neighborhood ¥ in some Euclidean space; and let D be the sct of pairs
(x, x') in M x M such that the line scgment from x to x’ lies completely within V.]

It follows that the restricted microbundle pin|D is isomorphic to p>niD Let ty, denote
A pulD
the microbundle M —» p ——, pf (which is of course isomorphic to t,,). Then

beoPTN = tho (pinD) = o (PIND) =ty pan.
Therefore t,, ®n = ty|M; which completes the proof,

¥
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“Passing to the group ky,, M of s-classes, it follows that

(ta) + () = i*(tw),

or in other words that () = i*(ty) — (ts). Thus:

COROLLARY (5.10) If the normal microbundle n exists, then it is uniquely determined
up to s-isomorphism. .

_ COROLLARY (5.11). The submanifold M x 0 <= N x R? has a product neighborhood, for
sufficiently large values of q’, if and only if (t) = i*(ta)-

Proof. 1f M x 0 c N x R? has normal microbundle n with (n) - 0, then there exists ~
an integer r so that n@ ¢ is trivial. It follows that M x 0 = N x R?*" has a product
neighborhood.

Now let us consider the problem of imposing a smoothness structure on a given
manifold M. If we are willing to replace M by some product M x RY, then a solution can
be given as follows:

TrroreM (5.12). Let M be a topological manifold. The product M x R? can be given a
smoothness structure, for sufficiently large values of q, if and only if ty is. s-isoniorphic to |¢]
for some vector bundle & over M.

Proof. 1f M x R?can be given a smoothness structure with tangent bundle 7, then
. tyrema =ty X tpa = (1l

hence ty @ ef, is isomorphic to I7] restricted to M.

Conversely suppose that t is s-isomorphic to [£]. Imbed M as a retract of some
neighborhood ¥ in the Euclidean space R2™*1, Then & extends to a vector bundle £’ over V.
We may give & the structure of a smooth vector bundle. To do this it is only necessary to
observe that there exists a bundle map from & to the universal bundle over some Grassmann
manifold G,¢(RY). Now approximating the resulting function ¥ — G,/(R") by a smooth
map, we obtain a smooth induced bundle which is isomorphic to &".

Thus the total space E = E(£')is a smooth manifold. Now consider the injection map
M < V— E. Evidentlyt, ® & = t,/V. Restricting to M, this means that 2™ @ & = 1| M.
Therefore the tangent microbundle of E, restricted to M, is isomorphic to et (g,
which is s-isomorphic to 1,. By Corollary (5.11) this implies that M x 0 has a product
neighborhood in E x R’ for large s. Therefore M x R? can be imbedded as an open subsct
of the smooth manifold E x R*; where ¢ = dim E + s —m. Evidently A x R? inherits a
smoothness structure; which completes the proof.

It is casily verificd that the tangent bundle t of this smooth manifold M x R7is iso-
morphic to & x e2"*1*5. Thus our theorem can be sharpencd as follows.

3
k4
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SMOOTHING THEOREM (5.13). Let & be a vector bundle over the topological manifold M.
Then some product M x R? can be smoothed so as to have tangent bundle isomorphic to
& x &% if and only if the homomorphism koM — ko M carries (£) to (ty).

Top

§6. BUNDLE MAP-GERMS AND THE HOMOTOPY THEOREM

" Before starting the proof of the (covering) homotopy theorem (§3.1) it is necessary to
introduce several new concepts, and to prove several lemmas. Let X > 4 and ¥ o B be
> topological spaces.

. DeriNtTioN (6.1). A map-germ from (X, A) to (Y, B) is an equivalence clas_s of mappings
. [, each defined on some neighborhood U, of A in X, and mapping the pair (Uy, A) into (Y, B).
Two such maps f, f* are equivalent (i.e. give rise to the same map-germ) if and only if f|V = f'|V
Jor some sufficiently small neighborhood V of A. The notation
F:(X, A= (Y, B)
will be used for such a map-germ.

The composition GF of two map-germs

F G
X, 4= (Y,B)=(Z,0)

is readily defined. F will be called a homeomorphism-germ if it possesses a two-sided inverse
G :(Y, B) => (X, A). Clearly F is a homeomorphism-germ if and only if a representative
map f carries some neighborhood of 4 homeomorphically onto a neighborhood of B.

Now consider a microbundle x over B. The projection map j: E— B determines a
map-germ (E, iB) = (B, B) which will be denoted by J, and called the projection-germ of x.
It will be convenient to simplify the notation in two ways:

(1) The pair (B, B) will be denoted briefly by B.
(2) The space B will be identified with its image iB < E.
With these conventions we may write simply
J:(E,B)=B
for the projection-germ. '

Let &' be a second microbundle over B with projection-germ J': (E’, B) = B.
DERNITION (6.2). An isomorphism-germ from x to x' is a homeomorphism-germ
F:(E, B)=(E, B)
which is fibre-preserving, in the sense that J'F = J.

Clearly there exists such an isomorphism-germ if and only if % is isomorphic to x’ (in
the sense of §2).

More generally consider a microbundle x” over a different base space B’. The fibre
dimensions of ¥ and ¥’ should be the same. Let F: (£, B) = (E’, B') be a map-germ, with
representative map f: Uy — E'.
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 DerNITION (6.3). F will be called a bundle map-germ from ¥ to ¥ if there exists a
neighborhood V of B in Uy so that f maps each fibre j~X(b) 0 V in one-one fashion into some
Sfibre j (") of ¥’ '

The notation F: x = x’ will also be used I am mdebted to R. Williamson for this
concept of bundle map.

Tt follows that the following diagram commutes:
: F
(E, B) ===—=—== (E', B)
i I
FIB
B————— B
We will say that the mapping F|B is covered by the bundle map-germ F.
The .following lemma helps to justify this definition:

Lemma (6.4). (Williamson) Suppose that B = B', and let F be a bundle map-germ from
x to ¥’ which covers the identity map of B. Then F is an isomorphism-germ.

Proof. First consider the following very special case. Consider a map
g:BxR">BXR" .

which is one-one and fibre preserving. In other words assume that g can be expressed in
the form

g(b, x) = (ba gb(x))
where each g,:R" — R" is one-one. It follows from the theorem of invariance of domain
that each g, is an open mapping. (See [12, p. 95].) We will show that g itself is an open

mappmg This will imply that ¢ maps B x R" homeomorphically onto an open subset of
itself.

Let N,(x) denote the closed ball of radius ¢ centered at the point x e R". For any
(be» Xo) € B x R” and any & > 0 note that 95, Ne(x0) is a neighborhood of the image point
X1 = Gy (x0). Choose § > 0 so that

N(x1) € gyoNo(X0)-
Let ¥ be a neighborhood of by which is so small that

1g5(x) = go()] <O
for all x € N,(x,) and all b e V. Such a neighborhood exists since N,(x,) is compact. Now
for cach be V it can be scen that the image g,N,(x,) contains the smaller ball N(x)).
Therefore
g(V x Ny(xp)) 2 V' x Ny(x);
which proves that g is an open mapping.

Now let x and ¥’ be microbundles over B and let F: x = x’ cover the identity map of B.
Let f: U— E’be a representative map for F. By choosing U sufficiently small we may
_assume that fis one-onc and fibre preserving.

4
d
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Since microbundles are locally trivial, the argument given above can be applied locally.
For each b € B it follows that there is a neighborhood W), of i(b) in U such that f maps W,
homeomorphically onto an open set f(W,) < E’. Taking W = U W, it follows immediately
that f maps W homeomorphically onto the open set f(W). Therefore F is a homeo-
morphism-germ. This completes the proof of Lemma (6.4). -

COROLLARY (6.5). If a map g: B— B’ is covered by a bundle map-germ x = x' then x
is isomorphic to the induced bundle g*x’.

The proof is easily supplied. v
The next lemma asserts that bundle maps can be ‘pieced together’.

 LEMMA (6.6). Let x be a microbundle over B and let {B,} be a locally finite collection of
closed sets covering B. Suppose that one is given bundle map-germs
F,:x|B,=y
such that F, coincides with Fy on x|B, n By for each o, B. Then there exists a bundle map-
germ F: x = v which extends the F,.

Proof. Let f,: Ua — E’ be a representative map for F,. Suppose that f, coincides with
Jp on a set U,; which is an open neighborhood of B, n By in U, n Uy. Let U be the set
consisting of all e € E such that, for each o, §:

(1) if j(e) € B, then e € U,, and

(2) if j(e) € B, n By then e € Uy,

Since {B,} is a locally finite closed covering, the set U is open. Clearly the f, piece to-
gether to yield a map

N frU—>FE

which represents the required bundle map-germ.

We are now ready to begin the proof of the homotopy theorem.

LemMMA (6.7). Let x be a microbundle over the product B x [0, 1] such that both
x|B x [0, 1] and x|B x [, 1] are trivial. Then x itself is trivial.

Proof. Since x|B x [4, 1] is trivial it follows that the identity bundle map-germ of
x[B x [4] can be extended to a map-germ

¥|B x [4, 1] =x|B x [{].

' Piecing this together with the identity map-germ of x|B x [0, 1], by Lemma (6.6), this
yields a map-germ
x = x|B x [0, {].

But the latter bundle is trivial, hence x itself is trivial.

LemMa (6.8). Let x be any microbundle over B x [0, 1]. Then each b e B has a neigh-
borhood V so that x|V x [0, 1] is trivial.

Proof. For each ¢ € [0, 1] choose a neighborhood V, x (¢t — ¢, t + &) of (b, 1) so that x
restricted to this neighborhood is trivial. The compact set b x [0, 1] is covered by finitely
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many such néighborhoods ‘Let V be the intersection of the corresponding neighborhoods
V. ~Then there exists a subdivision O=t;<t <t <..<t=1 so that each
2|V x [ti-y, ;] is trivial. Applymg Lemma (6.7) inductively, it follows that le x [0, 1] is
trivial.

LEMMA (6.9). Let x be a microbundle over B x [0, 1], where B is paracompact. Then

thevstandard retraction
' r:Bx[0,1]— B x[1]

is covered by a bundle map-germ x = x|B X 11

‘ Proof. Let {V,} be a locally finite covering of B by open sets V, such that z|V, X [0 1]
is trivial. Choose continuous real valued functions

4, :B—10,1]
so that the support of each 4, is contained in V5, and so that
Max 1(b) =1
for each b e B. Now define a retraction r, of B x {0, 1] into itself by
r(b, 1) = (b, Max (2, A,(0)))-

Vgx [0,1 .
A
N\
¢ o 090 o e @
© , 0 ® o, P
-~ 1\ el * 4 ”
. 4 . ? o

Fic. 3.

(This is represented schematically in Fig. 3, where the curved line represents the graph of
2,) Note that the ‘composition’ of the infinitely many retractions r, is just

r(b, t) = (b, 1).

Each r, is covered by a bundle map-germ R.:x = % as follows. Express B x [0, 1] as
the union of the two closed sets :

A, = (Support 4,) x [0, 1],
AL ={(b, 1)1 t = A,(b)}.
Since x|, is trivial, the identity map-germ of ¥]d, n A, extends to a bundle map-germ
xld, = x4, 0 A,

which covers r,d4,. Piccing this together with the identity map-germ of x|4; (using
Lemma (6.6)), we obtain the required map-germ R,.

Choose some fixed ordering of the index set {«}. The required bundle map-germ

R:x=zxB x[1]
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will now be defined as the ‘composition’ of all of the R,, in the prescribed order. This will
- make sense since, locally, all but a finite number of the R, are the identity.

To be more precise let {B,} be a locally finite covering of B b); closed sets, such that
each B, intersects only finitely many V. Suppose that B, intersects only V,,...,V,,
where a; < ¢; < ... <. Then the composition R, R,, ... R, restricts to a map-germ
R(B):x|B; x [0, 1] = x| By x [1]. Piecing together the R(B) by (6.6) we obtain the required

bundle map-germ R.

The homotopy theorem (§3.1) now follows easily. Let fo, f;: B— B’ be two maps
which are homotopic under a homotopy f: B x [0, 1] — B’; and let 1 be a microbundle
over B’. By (6.9) there exists a map-germ R:f*n = f*y|B x [1] which covers the standard
retraction B x [0, 1]— B x [1].

Forming the composition

R
. fov = f*y = f*y|B x [1] =1y ;
we obtain an isomorphism-germ fJ'y = f{y. This completes the proof.

\‘ §7. MICROBUNDLES OVER A SUSPENSION

Let B be a space with a distinguished base point by,

DEFRINITION. A4 rooted microbundle over B will mean a microbundle % together with a

specific isomorphism-germ
R:xlby = ¢},

where n is the fibre dimension of x, and e} denotes the standard trivial microbundle over by.

Two rooted microbundles x' and x over B are isomorphic if there exists an isomorphism-gernt

%’ => x which extends the given isomorphism-germ

R™IR' : ¥'|by = x|by.

It will be convenient to have a slightly sharper form of the homotopy thcorem. If
f:B-+ B’ is a map preserving base points, note that any rooted microbundle 1y over B’
gives rise to a rooted microbundle f*1 over B.

LemMma (7.1). (Rooted homotopy theorem). Let fo, f: B— B’ be two maps which are
homotopic under a homotopy f which leaves the base point fixed. Then f4y is isomorphic, as
rooted microbundle, to f1y.

The proof is essentially the same as that given in §6. It is only necessary to prove (6.8)
in a slightly sharper form. Note that the rooting of 1 gives rise to an isomorphism-germ

R: f*ylby x [0, 1] => ¢}, x(0,13-
We must show that R extends to an isomorphism-germ
f*t)lV X [Os 1] = c’;‘/x[o,g]
for some neighborhood V of &;.

According to (6.8) there exists some isomorphism-germ Q:f*y|V x [0, 1] = ¢} (0,1,
providing that ¥ is small enotigh. Now consider the composition

[
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B ‘ o OR™': ¢5yxp0,11 = Shoxro.11

ince by x [0, 1] is a retract of ¥V x [0,1], it follows easily that OR™! extends to some
omorphism-germ P: ¢} x0,13 = ¥ x[0,1 NOW P71Q:f*y|V x [0, 1] = ¢} x(0,17 Is the
quired extension of R. ‘ :

" The remainder of the proof of (7.1) follows that in §6. Details will be left to the reader.
" Consider two rooted microbundles  and v, with the same fibre dimension, over base
vaces 4 and B respectively. Let A4 v B denote the union of the two base spaces with a
ngle point, namely the preferred base point, in common. Then a new microbundle x v 1
ver A v B is obtained by pasting the fibre ¥|a, onto the fibre y|b,, using the given iso-

jorphism-germs
xlag = ¢}, = ¢, <= ylb,.

can be seen that x v y is well defined up to isomorphism.
Suppose in particular that B is the reduced suspension
SX = (X x [0, 1D/(X x {0, 1} U x4 x [0, 1])
f a topological space X. There is a standard map
¢:B—BvB
hich is obtained by collapsing X x [}] = B to a point, and then identifyian the result
ith B v B. Now given two rooted microbundles x and y over B, with the same fibre
imension n, one can form the induced microbundle ¢*(x v ) over B; also with fibre
imension .
ExampLE(7.2). Let ¢" denote the trivial microbundle over B = SX. Then
P*E v e = PF(e" v )=
Proof. Letc,:Bv B— B be the identity on the first ‘summand’ of B v B and collapse
he second summand to by. Then ¢*x = x v ¢". But the composition ¢;¢: B— B is homo-
opic to the identity. Therefore
P*(E v e = pFcTr =
Fogether with a similar argument using ¢, in place of ¢, this completes the proof.
ExAMPLE (7.3). Let r:B— B denote the ‘reflection’ of B = SX, corresponding to the
wtomorphism (x, ) — (x,1 =0 of X x [0, 1]. Then ¢*(x v r*x) is trivial.
Proof. Letf:Bv B— B coincide with the identity on the first summand and with r
50 the sccond. Then f¢p: B— Bis homotopic to the constant map. Hence
S*(x v r¥r) = ¢FfFr = o
Next consider two rooted microbundles x and x’ with fibre dimensions » and »n’ over
the same base space. The Whitney sum x @ x'is defined to be the rooted microbundle whose
distinguished isomorphism is the direct sum
R® R : (x @by = ¢h @ ehy X ep ™.
LEMMA (7.4). Given rooted microbundles x and x' over A and vy and vy’ over B,, the sum
(x vy) @ v y)over AV B is isomorphic to (x@x") v () @ v').




MICROBUNDLES , . 71

PlOOf ThlS is obvxous . o ’ . ,
" Now a word of caution. It is not clear that the Whltney sum ¥ @ ¥’ is isomorphic (as
- rooted microbundle) to ¥’ @ x. However this can be proved in one special case, which will
suffice for our purposes. Suppose that B is a completely regular (=Tychonoff) space.

Let n be the fibre dimension of .
LeMMA (7.5). The sum x @® <% is isomorphic (as rooted microbundle!) to ¢ @ .

Proof 1t will be convenient to drop the subscript and superscrlpt on c. Consider the
preferred isomorphism-germs
ROI I®R

(@ )by =—=> ¢}, @ ¢}, === (¢ ® 3)|b,,
where I denotes the identity map-germ of ¢|bg. Composing these we obtain an isomorphism-
germ '
ROR™ 1 :(x@ )by = (¢ ® )b,
We must show that R@® R™* extends to an isomorphism-germ x @ ¢ = e @ x.

N If we ignore the roeting, then the map f: E(x) x R* — R” x E(x) which is defined by
f(e, x) = (—x, e) gives rise to an isomorphism-germ F i@e= e@ x. We will modify F
near by.

Choose a small closed neighborhood U of b, and an isomorphism-germ Q:x|U = ¢|U
which extends R. Let 1: B — [0, n/2] satisfy
\

(Support 1) < U, A(by) = n/2.
Now define the homeomorphism

g:UxR"'xR"-UXxR"xR"

by
g(b, x, y) = (b, x sin A(b) — y cos A(b), x cos A(b) + y sin A(b)).
Thus ‘
_[ &%) if b=b
A R R R A N )

Hence the composite isomorphism-germ

(x@c)lU »(c@c)lU——»(e@g)]U:i?—_; (c®@ U

coincides with R @ R™! over by; and coincides with F over the closed set Un 17'(0) < B.
Piccing this composite together with F|A™ 1(0) by means of Lemma (6.6), we obtain the
required isomorphism-germ.

THEOREM (7.6). Let B be a completely regular space which is a reduced suspension, and
let x and vy be rooted microbundles over B with the same fibre dimension. Then

P*EVvYDeExDY.
Proof. Since y @ ¢ is rooted-isomorphic to ¢ @ y we have

POV D)= PNED O v (D)),

4
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But the left side is isomorphic to ‘
v PevnetvoEavnes
while the right side is isomorphic to - ‘ '
| DIV ELL-T
This completes the proof.
As a special case, since ¢*(x v r*z) is trivial, this gives:
COROLLARY (7.7). The sum x @ r*x is trivial.
Cleaﬂy this proves the Lemma (4.2) which was assumed earlier.
, Another useful consequence is the following. Let f;: S*¥—-S* be a mapping from the
sphere to itself of degree d.
COROLLARY (7.8). The induced homomorphism
f: : kTop(Sk) - kTop(Sk)
is just multiplication by d.
Proof. For d=0 or d=1 this assertion is clear. The proof for other values of 4 will
be by ascending or descending induction on d.

Let g:5 v §F— S* be the identity map on the first summand, and have degree d
on the second summand. Then the composition g¢: S* — S* has degree '+ 1. Hence for
any x over S*: N
frare ¢*gte= o7 v I
Adding a trivial microbundle to both sides, this gives

’ (fiD) @exxffx

After a straightforward induction argument, this completes the proof.

§8. THE HOMOMORPHISM Ko($17) - Krop(S*7)

According to Bott ({41, [S]) the group ko(S*" is infinite cyclic. Let (y) denote a
generator. Let B, denote the nth Bernoulli number and let num(B,/n) denote the numcrator
of the rational number B,/n when expressed as a fraction in lowest terms. The object of
this section will be to prove the following:

Tueorem (8.1). The image in kTop(S""') of the generator (y) is divisible by the integer
(22! — Dnum(B,/n).

For n=1, 2, 3, 4 this integer is respectively 1, 7, 31, 127. (Remark. The factor
nuri(B,/n) cquals 1 for n=1,2,3,4,5,7 only. It grows more than exponentially for larger
values of n.)

It follows that this homomorphism ko(S‘”')-»kTop(S““) is not an isomorphism for
n> 1. 1tis diflicult to say anything much more precise about this homomorphism; since it
is not even known whether the groups ko (ST are finite, countably infinite, or uncountably
infinite.
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In order to prove (8.1) we must have a procedure for constructing exotic microbundies
‘over $**. This will be done as follows. We may assume that n > 1, since there is nothing
to prove in the case n = 1.

According to Kervaire and Milnor [13, Part II] there exists a manifold-with-boundary
W of dimension 4n, n > 1, with the following description. W is smooth, parallclizable, and
has the homotopy type of the 8-fold bouquet S** v §?" v ... v §?", The boundary W is
topologically a (4n — 1)-sphere. In fact, choosing a C!-triangulation [24], dW is even a
piecewise-linear sphere. Finally the intersection-number pairing

Han ® HZnW_’ z
is positive definite; so that the signature of W is +8.
Let M = W u C(0W) be the topological manifold which is obtained by adjoining a

cone over the boundary of W. (Actually M can be given the structure of a piecewise-linear
manifold.) Let f : M — S have degree 1.

LEMMA (8.2). There exists a microbundle x over S*" so that f*x is isomorphic to the
tangent microbundle ty,.

Proof. Since a neighborhood of W in M can be given the structure of a parallelizable
smooth manifold, it follows from §2.2 that t,|W is trivial. Therefore, according to §3.3, it
follows that t,; can be extended to a microbundle over M U C(W). Since M U C(W) has
the homotopy type of S% this completes the proof.

Thus we have constructed an unusual microbundle x over S*". We will prove that the
corresponding s-class (x) € k,,S*" is related to the generator (y) of koS*” as follows. Let Jn
denote the order of the image

It 1(SO) & g 44(SY)

of the stable J-homomorphism (/ > 4n); and let a, equal 1 or 2 according as n is even or
odd. It will be convenient to introduce the abbreviation

b, = 2*""42*""! — 1)B,j.a,/n.
This number b, is an integer. (Compare [17].) We may assume that orientations are chosen
so that p,()[S*"] > 0.

THEOREM (8.3). The sum x@ ... @ x of b, copies of x is s-isomorphic to the sum
@ ... @yl of J copies of yl.

In other words, the identity b,(x) = j,(|y]) is valid in kTopS“".

Remark (1). In the terminology 6f Kervaire and Milnor [13, §7.6], the integer b, is
equal to the order of the cyclic group bP,, < @,,_,, consisting of #-cobordism classes of
homotopy spheres which bound parallelizable manifolds.

Remark (2). The reader who wishes to skip the number theory need only think of one
special case; namely: n =2, j, = 240, a, = 1, B, = 1/30, b, = 28. This case will suffice for
all practical purposes. - -



The proof of (8.3) will occupy the rest of §8: Let M’ denote the connected sum
M # ... # M of b, copies of M. Here M is to be thought of as a piecewise-linear manifold;
* 5o that this sum will be well defined up to piecewise-linear isomorphism (Compare [14,

p- 1) A
LemMA (8.4). This b,-fold sum M’ admits a smoothness structure.

Proof. Clearly M’ admits a smoothness structure except on the b, points which corres-
pond to the vertex of the cone C(W*"). Choose a piecewise-linear imbedding of a 4n-
simplex in M’ so that all b, exceptional points lie in the interior U of this simplex. Thus
M’ — U admits a parallelizable smoothness structure. It follows from Hirsch [10, Theorem
(7.5)] that we can modify this structure so that (M’ — U) is a smooth submanifold. The
signature of (M’ — U) is precisely 8b,. But according to [13, §7.5] together with Smale
[20, Theorem 1.1] this implies that ¢(M" — U) is diffeomorphic to the standard (4n — 1)-
sphere; hence the given smoothness structure can be entended throughout U.

We must find the relationship between the tangent microbundle t' of the sum M’ and
the tangent microbundle t of M. The following Lemma is valid for any compact piecewise-
linear manifold M. ‘

LeMMA (8.5). If M’ is the connected sum of b copies of M, then there exists a map
g: M’ — M of degree b so that g*t is s-isomorphic to t'.

Proof. Let D" denote a piecewise-linear 4n-cell. Choosea piecewise-ﬁnear imbedding F
of the ‘handle’ [0, 1] x D*" in M, x [0, o) so that [0] x D*" and [1] x D*" go into M x [0].
(Compare Fig. 4.) Then the b-fold sum M’ can be obtained from b disjoint copies of M as
follows. For eachi=1, ...,k — 1, remove the disk F([0] x D*") from the ith copy of M;
remove F([1] x D*") from the (i + 1)st copy; and join the resulting boundaries by a copy
of the tube F([0, 1] x 0D*").

F([O,11xD*")

FiG. 4.

If onc forms M’ in this way then there is clearly a canonical map M’ — M x [0, «)
which carrics cach copy of M (with one or two disks removed) into M x [0}, and carries
cach copy of F([0, 1] x aD*") into F([0, 1] x 0D*"). Now ‘thickening’ slightly, we obtain a
piccewise-lincar immersion of M’ x (—¢, ¢) into M x R. This induces a bundlec map-germ

’ 1 W
VX el =t X e
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Re;tricting the first microbundle to M’ x [O]; and projecting the second to M; this yields
a bundie map-germ
| ) t’@eh/$t®c;’,

; covéring a map M’ — M which clearly has degree b. This completes the proof of (8.5).

Now let f": M’ — §*" have degree 1, and let go: 5% — $* have degree b,. Thus we
obtain a homotopy commutative diagram

M

do
S

n S4n

The microbundle x over $** lifts under S* to t, and then under g* to a microbundle s-150-
morphic to t'. Hence (g3x) lifts under f'* to (t).

But M’ admits a smoothness structuré'; hence t’ is isomorphic to ['l, where 7" is the
tangent vector bundle. Furthermore ©'|(M’-point) is trivial; so that an argument similar
to the proof of (8.2) shows that )

1/ gf/:lté'
for some vector bundle ¢ over S*".

Thus we have two different elements (|£]) and (g%%) in K1,,(S*") which both have the
same image (t") under f*. We will prove:

LEMMA (8.6). The homomorphism I Kpop(S*) — koM’ has kernel zero

This will imply that (|¢]) = g&(x).

Assuming (8.6) for the moment, the proof of (8.3) follows.

According to §7.8 the induced bundle gox is s-isomorphic to the sum x @D..0zxofp,
copies of x. We will show that ¢ is s-isomorphic to the sum of Jwcopies of y. This will
prove (8.3).

Since ko(S*") is infinite cyclic, in order to prove that (&) = J«(7) it is sufficient to check
that the Pontrjagin class p,(¢) is equal to j, times p,(7).

For the generator y, Bott has shown that pa(y) is equal to a,(21 — 1)! times a generator
of H*($*". (Compare [6].)

To compute p,(¢) it is clearly sufficient to compute the Pontrjagin number palM'].

According to the Hirzebruch signature Theorem [11, §8] we have
o(M') = 22"(2*" "' — )B,p,[M'1/(2n)!.
(The terms in py, ..., p,_, vanish since M’-(point) is parallelizable.) But the signature
o(M’) is equal to 8b,. Substituting in the definition: b, = 221~ %(22n~1 _ DB, j.a,/n, this
yields
pn[Ml] =jnan(2” - 1)'-

Thus p,() is equal to j, times p,(y). This proves (8.3) (except for the proof of (8.6)).

4
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« Proof of (8.6). We must study f ’*:kropS"”—> kTo;M *. Following Wall [22] note that
M’ has the homotopy type of some complex of the form 8% v ... v 8 v e*", formed
from a bouquet of 8b, copies of S2" by attaching a 4n-cell, using an attaching map

hiSt i STy L vSt

According to §4.4 there is a half-infinite exact sequence
hﬁ 3

. vae ¥ kTop(S2n+1 V..V Szn+1) —— kTopS4n —— kTopM' —P e
Thus in order to prove that f* has kernel zero, it is sufficient to prove that the suspension
Sh is homotopic to a constant. (In the terminology of Puppe [18, Part II] this means that
M’ is ‘sphere-like’.) ‘ v
To prove that Sh is null-homotopic, note that the homotopy class of 4 belongs to
Tan-1(STV ..V 8P T4n1(SM D ... D 14y (SNBZD ... D Z.
(There are 8b, copies of Tt4p-1(S?") corresponding to the 8b, summands S*"; and
8b,(8b, — 1)/2 copies of Z, arising from Whitehead product terms.) The suspension
homomorphism carries all of the Whitehead product terms to zero; so that
R (ST L v S 2 (ST @ . @ (ST,
Thus to prove that Sk ~ 0 it is sufficient to check that each of the 8b, elements of 74, ,(S*")
determined by /4 suspends into zerc;;

According to Wall [22], each such element in Ti4,—1(S?") can be expressed in the form
Ju, where « € 75,-1(S0,,) is the homotopy class which describes the normal bundle of a
suitably imbedded 2n-sphere in M’, and where J is the Hopf~Whitehead homomorphism.
But (M’-point) is parallelizable, hence each such o maps into zero in the stable group
Tan—1(S0). Now, from the anti-commutative diagram

Tign—1(50,) ———— 73, 1(S02,41) = 7a,- 1(S0)

S
T4n - l(sln) —> n4n(52n+ 1)

we see that SJx = 0. (Compare [23], [25].) This completes the proof of (8.6) and (8.3).
Proof of Theorem (8.1). We are given the identity

1) b,(x) = j.(I7D),

and must prove that ({y]) is divisible by (22! — Dnum(B,/n). We will nced the following:

THEOREM OF ADAMS [2]. The integer j, is equal to cither 4 or 8 times the denominator
of B,/n.
By definition, b, = 22=42n~1 _ )R ja/n. Hence by Adams’ thcorem, b, is equal

to 2°(2*" ! — Dnum(B,/n), for some integer x.
A

R
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LEMMA (8. 7) The integer j, is relatively prime to (2**~* — 1)num(B,/n).

Proof Since j, = 2'denom(B,/n) it is clear that num(B,/n) (Wthh is always odd) is prime
to j,. But for any odd prime p, if p divides j, then it follows from von Staudt’s theorems that
2n = 0(mod p — 1). (See [17, p. 457].) Hence 22" = 1 mod p, so that 22>~ — 1) = —
mod p. This shows that p does not divide 2**~! — 1; and proves (8.7).

Thus we can find integers r and s so that
2) rj, + sQ¥* ! — Dnum(B,/n) =
Now (1) implies that

) =(1- rJn)(IvI) + rb,(3).
But (2) implies that the coefficient 1 — rj, is divisible by (2>*~! — Dnum(B,/n). Similarly
the equality b, = 2%(2?"~! — )num(B,/n) shows that the coefficient rb, is divisible by
(2%~ — Dnum(B,/n). Therefore the s-class (Jy|) is divisible by (22"~ — 1)num(B,/n). This
completes the proof. '

§9. APPLICA’;"IONS: PONTRJAGIN CLASSES ARE NOT TOPOLOGICAL INVARIANTS

Let n>1 be an integer and let ¢ be a prime dividing (2**~* — 1)num(B,/n). (For
examplen =2,q=7) Let X = §*! U e** denote the complex formed from the (4n — 1)-

sphere by attaching a 4n-cell, using an attaching map of degree q.

LEMMA (9.1). The canonical homomorphism koX — Kky,,X is zero; although the group
koX is cyclic of order q.

Proof. By §4.4 there is an exact sequence

Sr* c* .
kTopS ——) kTopS4 ————p kTOpX —_— kTopS4" t —_ kTopS4" !

where f: S* ! — §*~1 denotes a map of degree g. According to §7.8 the homomorphlsms
f* and Sf* are just multiplication by g. There is a similar exact sequence for kq; and again
Sf* is multiplication by q.

In the case of the functor kg it is known that the group koS** = m,,_, O is infinite
cyclic; and that kgS*"~! = n,,_, O is zero (Bott [4].) Therefore the exact sequence reduces to

c*

Z——Z—7Z,—0—0.

Now consider the diagram
C.

koS ———— koX

.

kTOpS4" —> l\ ropS4" R kTOpX"'

u

According to §8.1, if (y) gencrates koS*" then its image u'(y) in k,,,S* is divisible by q.
Therefore c*u'(y) = uc*(y) is zero. But c*(y) generates the finite cyclic group koX. This
completes the proof of (9.1).

%
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Nb»\_f’ choose an imbedding of X in some Euclidean space R™ of sufficiently high
dimension; and let U be any neighborhood having X as retract. Clearly, if U is given its
“usual smoothness structure, it will be a parallelizable manifold.

THEOREM (9.2). The open set U X R* = R™* can be given a new smoothness structure
so that it is no longer a parallelizable manifold; providing that k is large enough.

Proof. (Compare [15], where a somewhat easier argument is used.) It follows from
(9.1) that the homomorphism koU — kp,,U has a non-zero element c¢*(y) in its kernel.
Hence according to Theorem (5.13), U x R* can be smoothed so that its tangent bundle ©
satisfies (z]U x 0) = ¢*(y) # 0. This completes the proof.

If the prime g is greater than 2n (for example g = 7,' n = 2) then this theorem can be
sharpened as follows.

COROLLARY (9.3). If q > 2n then the exotic differentiable structure on U x R¥ is such
that the Pontrjagin class p,(t) is a non-zero torsion element.

Proof. According to Bott [6] the class p.(y) is a,(2n — 1)! times a generator of HA"S%",
Therefore p,c*(y) = ¢*p,(y) is a,(2n — 1)! times a generator of the cyclic group H*"'X = Z,.
If ¢ > 2n then q is relatively prime to a,(2n — 1! so that p,c*(y) # 0. This completes the
proof.

Thus the Pontrjagin classes of an open manifold are not topological i;ivariants. T hope
to sharpen this statement in a latter paper by putting two different smoothness structures
on a certain closed, triangulated 9-manifold, both being compatible with the triangulation,
so that p,(t) is zero in one case, and a non-zero element of order 7 in the second case. [In
contrast Thom [21] and Rohlin and Svarg [19] have shown that the rational Pontrjagin
classes-of a triangulated manifold are combinatorial invariants. The topological invariance
of rational Pontrjagin classes remains unknown.]

Another application of (8.1) can be given as follows:

LEMMA (9.4). There exists a finite complex X' so that the homomorphism ko X' — Kpgp X
is not onto.

The proof will give two possibilitics for X".

Case (1). If the group kropS8 is infinite, then the sphere S® itself can be taken as the
complex X’. For suppose on the contrary that the homomorphism koS® — k-r(,pS8 were
onto. It would follow that k»ropS8 was infinite cyclic, gencrated by (ly[). But this would

contradict the theorem that (|y]) is divisible by 7.

Case (2). Suppose that kropS8 is finite. Then the prime 5 certainly divides the order
of k,ropSs-. For, using the methods of Thom and Wu {27], it is possible to define a charac-
teristic class

c(x) € H*(B(x); Zs)
for microbundles: which gencralizes the characteristic class pr — 2p,, reduced modulo 5.
Thus onc can define a homomorphism from k'r‘,pS8 onto Z,. This implies that the finite

. group kl-opS8 must contain a non-trivial element of order 5.
1
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L LetX'= S8 U €° be obtained by attaching a 9-cell to an 8-sphere by a map of degree 5.
g it

From the exact sequence

5
kTopX’ - kTopS8 I k’l‘ops8

one sees that ky,, X'# 0. On the other hand it is not difficult to show that koX” = 0; so
that the canonical homomorphism is not onto. This completes the proof.

A geometrical application of (9.4) can be given as follows:

THEOREM (9.5). There exists a topological manifold M so that no cartesian product.

- M x M' can be smoothed.

Proof. (Compare {15].) Imbed X’ as a retract of an open set U in some Euclidean
space R™. Then there exists a microbundle %, with diagram

i i
U—E—VU,

whose s-class (x) does not lie in the image of the homomorphism koU — ky,,U. Let M be
a neighborhood of i(U) in E which is small enough so as to be a manifold.

According to §5.9, the tangent microbundle t,,|i(U) is isomorphic to t, @ x = ¢ D x.
Since this is not isomorphic to |£] for any vector bundle &, it follows from §2.2 that M
cannot be smoothed.

For an arbitrary manifold M’ with base point b we have

‘ byagiU) x bty @ x @ el
Therefore the same argument shows that M x M’ cannot be smoothed.
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