The Engulfing Theorem for Topological Manifolds

Author(s): M. H. A. Newman
Source: Annals of Mathematics, Nov., 1966, Second Series, Vol. 84, No. 3 (Nov., 1966), pp. 555-571
Published by: Mathematics Department, Princeton University
Stable URL: https://www.jstor.org/stable/1970460

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Your use of the JSTOR archive indicates your acceptance of the Terms \& Conditions of Use, available at https://about.jstor.org/terms

The engulfing theorem for topological manifolds

By M. H. A. Newman

A version of the Stallings engulfing theorem is proved by methods that do not depend on the theory of combinatorial manifolds and regular neighbourhoods, but are developed in detail within the paper.

Theorem. Every locally tame closed set X, of dimension $p \leqq n-3$ in a p-connected topological n-manifold-without-boundary M, can be engulfed by any ($p-1$-connected open set V, such that $X \backslash V$ is compact. ${ }^{1}$

This means that there is a self-homeomorphism h, of M such that $X \subseteq h V$. There is an isotopy of h to the identity composed of a finite number of small pushes, each of which moves the points of a subset of a euclidean neighbourhood along parallel lines and leaves all else fixed.

The theorem is in fact proved for a somewhat larger class of sets X, the p-dominated sets $(p \leqq n-3)$ defined in $\mathbb{I} 9$.

By an argument due to E. H. Connell, based on Stallings' stretching process between dual skeletons, the Poincaré hypothesis for topological n-manifolds ($n \geqq 5$) is derived from this form of the engulfing theorem.

1. Stretching theorems

1. In $\S 1$ space means metric space, and function real function. ${ }^{2}$

If f is a bounded function on the space $X, f .(X)$, and $f^{\bullet}(x)$ denote lim $\inf f$ and $\lim \sup f$ at x, respectively. If $A \subseteq X, \Pi(f, g \mid A)$ is the set of points

$$
\left\{(x, t) \mid x \in A, f \cdot(x) \leqq t \leqq g^{\cdot}(x)\right\} \quad \text { of } X \times R
$$

and $\Pi(f \mid A)=\Pi(f, f \mid A)$. $\Pi(f, g \mid A)$ is the (f, g)-prism on A, and if $f \leqq g$, $\Pi(f \mid A)$ and $\Pi(g \mid A)$ are the base and top of the prism.
2. Lemma 1. Let f be bounded and u.s.c. (upper semi-continuous) in X, and U be open in $X \times R$. If $\Pi(f \mid X) \subseteq U$, there is a continuous function φ on X such that $f<\varphi$ and $\Pi(f, \varphi \mid X) \cong U$.

[^0]We may suppose that $U \subseteq[t<1+\sup f]$. Then the set E in $X \times R$ defined by

$$
E=[f .(x) \leqq t] \backslash U
$$

is closed and meets each line $x \times R(x \in X)$. Therefore μ is well defined by

$$
\mu(x)=\inf \{t \mid(x, t) \in E\}
$$

and is l.s.c.. Since

$$
[f .(x) \leqq t \leqq f \cdot(x)]=\Pi(f \mid X) \leqq U
$$

E may also be defined as $[f(x) \leqq t] \backslash U$. Therefore for each $x, \mu(x) \geqq f(x)$. Since $(x, f(x)) \in U$, an open set, $\mu(x) \neq f(x)$, i.e., $\mu>f$.

By Baire's insertion theorem, ${ }^{3}$ there is a continuous function φ, on X such that $f<\varphi<\mu$, and by the definition of $\mu, \Pi(f, \varphi \mid X) \subseteq U$. Lemma 1 is proved.

If $\alpha<\beta<\gamma$ and $\alpha<\beta^{\prime}<\gamma$,

$$
\theta\left(\alpha ; \beta, \beta^{\prime} ; \gamma\right)
$$

denotes the homeomorphism $\theta: R \doteq R$ which maps $[\alpha, \beta]$ and $[\beta, \gamma]$ linearly on to $\left[\alpha, \beta^{\prime}\right]$ and $\left[\beta^{\prime}, \gamma\right]$ respectively, leaving other points fixed. If $\alpha, \beta, \beta^{\prime}$ and γ are continuous real functions on X, the same notation

$$
\theta_{x}=\theta\left(\alpha ; \beta, \beta^{\prime} ; \gamma\right)
$$

may be used on the understanding that all the functions are to be evaluated at x. If then $h(x, t)=\left(x, \theta_{x}(t)\right), h$ is a homeomorphism of $X \times R$.

If $\alpha \leqq \beta \leqq \gamma, \alpha \leqq \beta^{\prime} \leqq \gamma, h$ is still a homeomorphism provided that, for each x, the consistency conditions

$$
\alpha(x)=\beta(x) \Leftrightarrow \alpha(x)=\beta^{\prime}(x)
$$

and

$$
\beta(x)=\gamma(x) \Leftrightarrow \beta^{\prime}(x)=\gamma(x)
$$

hold. Any such equality makes $\theta_{x}=1$ on the line $x \times R$.
3. It is convenient to use the word engulfing in the following sense. Let X be a space and A, U, a closed and an open set in X, respectively. Then A is engulfed by $h U$ if h is a homeomorphism, $h: X \doteq X$ such that
(1) $A \subseteq h U$, and
(2) h is isotopic to 1 (the identity) through h_{τ}. We say that h is active only in W if $h_{\tau}=1$ outside W.

Lemma 2. Let $f_{0} f_{1}$ be bounded continuous functions on the closed set F in X, and U, W, open sets of $X \times R$. Let $f_{0} \leqq f_{1}$; let $f_{0}=f_{1}$ on $\mathrm{fr}_{x} F$. Sup-

[^1]pose that
$$
\Pi\left(f_{0}, f_{1} \mid F\right) \subseteq W, \quad \Pi\left(f_{0} \mid F\right) \subseteq U
$$

Then $\Pi\left(f_{0}, f_{1} \mid F\right)$ can be engulfed by $h U$, where h is active only in W.
Put $\Pi(f, g \mid F)=\Pi(f, g)$ for any functions f, g. We make two applications of Lemma 1.
(1) There is a continuous function χ such that $f_{1}<\chi$ and $\Pi\left(f_{1}, \chi\right) \subseteq W$. Let $f_{1+}=\min \left(\chi, f_{1}+\left(f_{1}-f_{0}\right)\right)$. Thus $\Pi\left(f_{0}, f_{1+}\right) \subseteq W$.
(2) There is a continuous φ such that $f_{0}<\varphi$ and $\Pi\left(f_{0}, \varphi\right) \cong U$. Let

Figure 1.

$$
\begin{array}{r}
\varphi^{\prime}=\min \left(\varphi, f_{1}\right) . \text { Then } f_{0} \leqq \varphi^{\prime} \leqq f_{1} \leqq f_{1+} . \text { Let } \\
\theta_{x}=\theta\left(f_{0} ; \varphi^{\prime}, f_{1} ; f_{1+}\right),
\end{array}
$$

The consistency conditions are satisfied, for since $f_{0}<\varphi$,

$$
f_{0}(x)=\varphi^{\prime}(x) \Rightarrow \varphi^{\prime}(x)=f_{1}(x)
$$

hence $f_{0}(x)=f_{1}(x)$. Similarly

$$
f_{1}(x)=f_{1+}(x) \Rightarrow f_{1+}(x)=\left(f_{1}+\left(f_{1}-f_{0}\right)\right)(x)
$$

Hence $f_{1}(x)=f_{0}(x)$, and therefore $\varphi^{\prime}(x)=f_{1}(x)$. Thus $h(x, t)=\left(x, \theta_{x}(t)\right)$ defines a homeomorphism of $X \times R$ which is the identity at (x, t) unless $x \in \operatorname{int}_{x} F$ and $f_{0}(x)<t<f_{1+}(x)$, and therefore $(x, t) \in W$. Since $\Pi\left(f_{0}, \varphi^{\prime}\right) \subseteq U$, $\Pi\left(f_{0}, f_{1}\right) \subseteq h U$, by the definition of θ_{x}.

An isotopy of h to the identity, active only in W, is defined by replacing f_{1} by $(1-\tau) \varphi^{\prime}+\tau f_{1}$ in the definition of θ_{x}.
4. The following Theorem 1 shows that the stretching transformation of $X \times R$ in Lemma 2 can be extended into a product space $X^{\prime} \times X \times R$, pulling the adjacent parts of the space with it. This is the theorem that replaces

Whitehead's theorem on the engulfing of a k-simplex ($k<n$) in a (combinatorial) n-manifold by its regular neighbourhood.

If $A \subseteq X$ let

$$
\begin{aligned}
\Pi_{0}(f, g \mid A) & =\Pi(f, g \mid A) \backslash \Pi(f \mid A) \\
& =\left[x \in A, f^{\bullet}(x)<t \leqq g^{\bullet}(x)\right]
\end{aligned}
$$

Thus $\Pi_{0}(f, g) \cap \Pi(f)=\varnothing$.
Let Y, Z be spaces, and let a point o be chosen in Y as origin.
THEOREM 1. Let g_{0}, g_{1} be bounded functions on the closed set F in Z; let U, W, be open sets of $Y \times Z \times R$, and suppose that
(4.1) g_{0} is u.s.c., g_{1} continuous, $g_{0} \leqq g_{1}$, and $g_{0}=g_{1}$ on $\mathrm{fr}_{z} F$;
(4.2) $o \times \Pi\left(g_{0} \mid F\right) \cong U$;
(4.3) $o \times \Pi_{0}\left(g_{0}, g_{1} \mid F\right) \subseteq W$.

Then $o \times \Pi\left(g_{0}, g_{1} \mid F\right)$ can be engulfed by $h U$, where h is active only in W.
Case 1. g_{0} is continuous, and the stronger form
(4.3') $o \times \Pi\left(g_{0}, g_{1} \mid F\right) \subseteq W$ of (4.3) holds.

The plan of the proof of Case 1 is first to costruct a floor V, an open set in $Y \times Z$ containing $o \times$ int $_{z} F$, but narrow in the Y-dimension; then a continuous function φ on \bar{V}, equal to g_{1} on $o \times F$ and to $g_{0}(z)$ at points (y, z) of $\mathrm{fr}_{Y \times Z} V$; and finally to use φ to taper off the h of Lemma 2, transferred to $o \times Z \times R$, to the identity on $(\operatorname{fr} V) \times R$.

Put $g_{i}^{*}(y, z)=g_{i}(z)$, for $i=0,1$ and $y \in Y, z \in F$. There is an open set V in $Y \times Z$ such that
(4.4.1) $o \times \operatorname{int}_{z} F \cong V \subseteq Y \times \operatorname{int}_{z} F$;
(4.4.2) $\Pi\left(g_{0}^{*}, g_{1}^{*} \mid \bar{V}\right) \cong W, \Pi\left(g_{0}^{*} \mid \bar{V}\right) \subseteq U$.

In the normal space $Y \times Z \times R$, there exist open sets U_{1}, W_{1} satisfying (4.2) and (4.3'), and $\bar{U}_{1} \subseteq U, \bar{W}_{1} \subseteq W$. Let $z \in \operatorname{int}_{z} F$. Then there exist real numbers $\lambda<g_{0}(z), \mu>g_{1}(z)$ such that $o \times z \times[\lambda, \mu] \subseteq W_{1}$. By the compactness of [λ, μ], there are open neighbourhoods $N_{0}(o)$ in Y and $N_{1}(z)$ in Z (both depending on z) such that $N_{0} \times N_{1} \times[\lambda, \mu] \subseteq W_{1}$; and N_{0} may be so chosen that, further,

$$
z^{\prime} \in N_{0} \Rightarrow g_{0}\left(z^{\prime}\right)>\lambda \& g_{1}\left(z^{\prime}\right)<\mu
$$

Then

$$
\Pi\left(g_{0}^{*}, g_{1}^{*} \mid N_{0} \times N_{1}\right) \cong N_{0} \times N_{1} \times[\lambda, \mu] \subseteq W_{1} .
$$

Similarly it can be arranged that

$$
\Pi\left(g_{0}^{*} \mid N_{0} \times N_{1}\right) \subseteq U_{1}
$$

Then

$$
V=\bigcup\left(N_{0} \times N_{1} ; z \in \operatorname{int}_{z} F\right)
$$

satisfies (4.4.1) and (4.2.2). (Recall that g_{0}^{*} is continuous in Case 1.)
Now let functions α and β be defined on \bar{V} :

$$
\left.\begin{aligned}
\alpha \mid o \times F & =g_{1}^{*},
\end{aligned} \quad \alpha \right\rvert\, \bar{V} \backslash(o \times F)=g_{0}^{*},
$$

Then α is u.s.c., β is l.s.c., and $\alpha \leqq \beta$ on \bar{V} since $g_{0}=g_{1}$ on $\mathrm{fr}_{z} F$. Let φ be a continuous function on \bar{V} such that $\alpha \leqq \varphi \leqq \beta$, with strict inequalities where $\alpha<\beta$. It follows that
(4.5) $g_{0}^{*} \leqq \varphi \leqq g_{1}^{*}$ in $\bar{V}, g_{0}^{*}=\varphi$ on $\operatorname{fr} V, \varphi=g_{1}$ in $o \times F$.

By the last clause of (4.5),

$$
\begin{aligned}
o \times \Pi\left(g_{0}, g_{1} \mid F\right) & \subseteq \Pi\left(g_{0}^{*}, \varphi \mid \bar{V}\right) \\
& \cong \Pi\left(g_{0}^{*}, g_{1}^{*} \mid \bar{V}\right) \subseteq W
\end{aligned}
$$

Therefore, $o \times \Pi\left(g_{0}, g_{1} \mid F\right)$ can be engulfed by $h U, h$ being active only in W (put $f_{0}=g_{0}^{*}, f_{1}=\varphi, F=\bar{V}$ in Lemma 2).

General case of Theorem 1. By (4.2) and Lemma 1, there is a continuous function ψ_{0} on F such that $g_{0}<\psi_{0}$ and $o \times \Pi\left(g_{0}, \psi_{0} \mid F\right) \cong U$. Let $\psi_{1}=$ $\min \left(\psi_{0}, g_{1}\right)$, and let H be the subset $\left[\psi_{1}(z)<g_{1}(z)\right]$ of F. In H,

Figure 2
and therefore in $\bar{H}, \psi_{1}=\psi_{0}$ and hence $\psi_{1}>g_{0}$. The conditions of Case 1 are satisfied if ψ_{1} and \bar{H} replace g_{0} and F, other sets and functions being unchanged: (4.2) because

$$
\Pi\left(\psi_{1} \mid \bar{H}\right) \subseteq \Pi\left(g_{0}, \psi_{0} \mid F\right)
$$

and (4.3') because $\psi_{1}>g_{0}$ on \bar{H} and so

$$
o \times \Pi\left(\psi_{1}, g_{1} \mid \bar{H}\right) \cong o \times \Pi_{0}\left(g_{0}, g_{1} \mid F\right) \cong W
$$

Therefore $h U$ engulfs $\Pi\left(\psi_{1}, g_{1} \mid \bar{H}\right)$, with h active only in W. Now

$$
\Pi\left(\psi_{1}, g_{1} \mid F \backslash \bar{H}\right)=\Pi\left(\psi_{1} \mid F \backslash \bar{H}\right)
$$

by the definition of H, $\subseteq \Pi\left(g_{0}, \psi_{1} \mid F\right)$. Since ψ_{1} replaced g_{0} in the application of Case 1, and $g_{0}<\psi_{1}$ in $\bar{H}, h=1$ in $o \times \Pi\left(g_{0}, \psi_{1} \mid F\right)$, and we infer that $o \times \Pi\left(\psi_{1}, g_{1} \mid F\right) \subseteq h U$. Hence finally the engulfing by h follows from

$$
\Pi\left(g_{0}, g_{1} \mid F\right)=\Pi\left(g_{0}, \psi_{1} \mid F\right) \cup \Pi\left(\psi_{1}, g_{1} \mid F\right) .
$$

5. Theorem 2. With the notations of Theorem 1, let A be a closed set in $Y \times Z \times R$, and suppose in addition to the conditions of Theorem 1, that
(5.1) $A \subseteq U$
(5.2) $A \cap\left(o \times \Pi\left(g_{0}, g_{1} \mid F\right)\right) \subseteq o \times \Pi\left(g_{0} \mid F\right)$.

Then the conclusion of Theorem 1 can be strengthened to " $A \cup\left(o \times \Pi\left(g_{0}, g_{1} \mid F\right)\right)$ can be engulfed by $h U^{\prime \prime}, h$ being, as before, active only in W.

Condition (5.2) implies that A does not meet $o \times \Pi_{0}\left(g_{0}, g_{1} \mid F\right)$. Therefore if W is replaced by $W \backslash A$, the conditions of Theorem 1 are still satisfied. It follows that there is an engulfing map h such that $h=1$ outside $W \backslash A$, and therefore $h=1$ in A. Since $A \subseteq U$ it follows that $A \subseteq h U$.

2. Optimal maps

6. Polyhedral sets in the euclidean space R^{n}, i.e., loci of (rectilinear, locally finite, simplicial) complexes, are denoted by H, K, L, etc., and complexes with the locus H by H_{0}, H_{1}, etc. ${ }^{4}$ If $L_{0} \leqq K_{0}$ (i.e., if L_{0} is a subcomplex of K_{0}) and K_{1} is a further subdivision of K_{0}, L_{1} is the induced subdivision of L_{0}.

All maps of polyhedral sets are understood to be locally finite (i.e., the set of image-simplexes is locally finite for some subdivision, and therefore for all).

A p.l. (piecewise linear) map $f: K \rightarrow R^{n}$ is optimal if there is a subdivision K_{0} such that
(1) f is a non-degenerate ${ }^{5}$ map of K_{0}, and
(2) for each pair of principal simplexes σ_{1}, σ_{2} of K_{0},
(6.1) either $f \sigma_{1} \cap f \sigma_{z}=f\left(\sigma_{1} \cap \sigma_{2}\right)$ or $\operatorname{dim}\left(f \sigma_{1} \cap f \sigma_{2}\right) \leqq \operatorname{dim} \sigma_{1}+$ $\operatorname{dim} \sigma_{2}-n$.
This is a geometrical property, i.e., it is preserved if K_{0} is further subdivided. A non-degenerate linear map of K_{0} may be called optimal in all dimensions if (6.1) holds for all $\sigma_{1}, \sigma_{2} \in K_{0}$. This is not a geometrical property and will not be used in this paper.

Lemma 3. $I f^{6} K_{0} \cup[\sigma]$ is a complex and $\sigma \notin K_{0}$, and if $f: K \cup \sigma \rightarrow R^{n}$ is optimal, then

[^2](6.2) $f \sigma \cap f K=f(\sigma \cap K) \cup A$, where $A=\varnothing$ or $\operatorname{dim} A \leqq \operatorname{dim} \sigma+\operatorname{dim} K-n$.

This follows easily from (6.1) since σ is a principal simplex of $K_{0} \cup[\sigma]$, and every simplex of $K_{0} \cup[\sigma]$ is contained in a principal simplex.

It is an elementary result that the optimal p.l. maps of K lie dense in the space of continuous maps of K; but difficulties may arise if a subset $L \leqq K$, mapped optimally, but perhaps not in general position, is to be held fixed.
7. If K_{0} is a complex, and $E \subseteq K, E_{0}$ is the smallest subcomplex of K_{0} containing E.

Two maps $f, g: K \rightarrow R^{n}$ agree in $X \subseteq R^{n}$ if, for some subdivision K_{0},

$$
\left(f^{-1} X\right)_{0}=\left(g^{-1} X\right)_{0}=H_{0}
$$

say, and $f\left|H_{0}=g\right| H_{0}$.
Let C^{n} be the cube $\left[\left|x_{i}\right| \leqq 1, i=1, \cdots, n\right]$ in R^{n}. If $\alpha>0, C_{\alpha}^{n}$ is the concentric cube $\left[\left|x_{i}\right| \leqq \alpha\right]$. It is sometimes convenient to use also $C^{n}(c)$, the cube $\left[\left|x_{i}-c_{i}\right| \leqq 1\right]$, where $c=\left(c_{i}\right)$.

Theorem 3. Let K be a polyhedral set and $L \leqq K$. Let $f: K \rightarrow R^{n}$ be such that $f \mid L$ is a p.l. embedding. Then if $\varepsilon>0$ and $0<\alpha<1$, there is a $\operatorname{map} f^{\prime}: K \rightarrow R^{n}$ such that
(7.1) f^{\prime} agrees with f in $R^{n} \backslash C^{n}$ and with a p.l. optimal map in C_{α}^{n};
(7.2) $f^{\prime}|L=f| L$;
(7.3) $\left|f-f^{\prime}\right|<\varepsilon$.

Let $\beta=(\alpha+1) / 2$. There are subdivisions C_{1}^{β} of C_{β}^{n} and L_{1} of L (which can be extended to K_{1} of K) such that $f L \cap C_{\beta}^{n}$ is the locus of a common subcomplex of $f L_{1}$ and C_{1}^{β}.

For any set E of R^{n} let \hat{E} be the convex cover. Let ${ }^{7}$

$$
P_{1}=\left(f^{-1}\left(R^{n} \backslash \dot{C}^{n}\right)\right)_{1}, \quad Q_{1}=\left[\sigma \mid \sigma \in K_{1} \& \widehat{f \sigma} \cap C_{\beta}^{n} \neq \varnothing\right]
$$

Suppose the division K_{1} so fine that $P \cap Q=\varnothing$. A map f_{1} agreeing with f in $R^{n} \backslash C^{n}$ and with a p.l. map in C_{β}^{n} is obtained by putting $f_{1}=f$ at all points of P and at all vertices of K_{1}, making f_{1} linear in each simplex of Q_{1}, and extending it to the transition zone $K \backslash(P \cup Q)$ by a coning process: if σ is a transitional simplex with centre c, and c^{\prime} is the barycentre of the f_{1}-images of vertices of σ, let $f_{1}(c)=c^{\prime}$; and supposing $f_{1} \mid \dot{\sigma}$ defined extend f_{1} linearly along radii. Then $f_{1}|L=f| L$ and $f_{1} \sigma \cong \widehat{f \sigma}$ for all $\sigma \in K$. From this the stated properties of f_{1} follow.

Now let $P_{1}^{\prime}, Q_{1}^{\prime}$ be defined as P_{1}, Q_{1} were, but with $C_{\beta}^{i n}, C_{\beta}^{n}$ in place of C°,

[^3]C_{β}^{n} respectively, and make the further assumption that $P^{\prime} \cap Q^{\prime}=\varnothing$. Let f_{2} be obtained from f_{1} by a δ-displacement of the images of vertices of Q_{1}^{\prime} (including those in L_{1}) into general position in C°, other vertices remaining fixed, and $f_{2}\left|P=f_{1}\right| P$; and let f_{2} then be extended linearly in Q_{1}^{\prime} and by coning in $K \backslash\left(P^{\prime} \cup Q^{\prime}\right)$, as before. If δ is small enough, f_{2} agrees with f in $R^{n} \backslash C^{n}$ and with a p.l. optimal map in C_{α}^{n} (indeed with a linear map optimal in all dimensions).

If $x=f(y)$, where y is a vertex of L_{1}, this vertex is unique, since $f \mid L$ is an embedding, and we put $\varphi(x)=f_{2}(y)$; if x is any other vertex of C_{1}^{β} put $\varphi(x)=x$. If δ is small enough, φ, extended linearly into the simplexes of C_{1}^{β}, is a p.l. homeomorphism of C_{β} onto itself, and $\varphi \mid \dot{C}_{\beta}^{n}=1$. Therefore φ may be extended to the rest of R^{n} by the identity.

Let $f^{\prime}(x)=\varphi^{-1} f_{2}(x)$ for all $x \in K$. Then f^{\prime} is p.l. in C_{α}^{n}, and since φ is a p.l. homeomorphism f^{\prime} is optimal. (This uses the geometrical character of optimal, cf. I 6.) If $y \in L$,

$$
f^{\prime}(y)=\varphi^{-1} f_{2}(y)=\varphi^{-1} \varphi f(y)=f(y)
$$

That $\left|f-f^{\prime}\right|$ can be made arbitrarily small is clear.
Remark 1. Since $\varphi(x)=x$ at a vertex $x \notin f L$, such vertices are in general position.

Remark 2. The following corollary, not used in this paper, but in fact proved above, may be found useful if the property optimal in all dimensions has to be used.

Corollary 3A. Under the conditions of Theorem 3 there is a map $f_{2}: K \rightarrow R^{n}$, a subdivision K_{1}, and a homeomorphism $\varphi: R^{n} \doteq R^{n}$ such that
(7.3) f_{2} agrees with f in $R^{n} \backslash \stackrel{\circ}{C}$ and with a linear map of K_{1}, optimal in all dimensions in C_{α}^{n}; and if $\beta=(\alpha+1) / 2$,
(7.4) $\varphi \mid C_{\beta}^{n}$ is p.l., $\varphi\left|R^{n} \backslash C_{\beta}^{n}=1,|\varphi-1|<\varepsilon, \quad\right| f-f_{2} \mid<\varepsilon$;
(7.5) $\varphi^{-1} f_{2}|L=f| L$.
8. A manifold is in this paper a topological manifold without boundary. A euclidean nbd in a manifold M^{n} is a pair (U, ψ) where U is an open set in M and $\psi: C^{n} \rightarrow \bar{U}$ a homeomorphism. ${ }^{8}$ The symbol $|\psi|$ denotes the set $\psi\left(C^{n}\right)$ but also implies that ψ is the homeomorphism; $|\dot{\psi}|,|\psi|_{\alpha}$, etc., will denote $\psi\left(\dot{C}^{n}\right), \psi\left(C_{\alpha}^{n}\right)$, etc.

A map $f: K \rightarrow M$ is locally p.l. if $f(K)$ has a covering by a set of euclidean nbds $\left|\stackrel{\circ}{\psi}_{i}\right|$, called a smoothing system, and for each i there is a subdivision ${ }^{9}$

[^4]K_{0} such that
(8.1) $f^{-1}\left(\left|\psi_{i}\right|\right)$ is a subcomplex, H_{0}, of K_{0} and $\psi^{-1}\left(f \mid H_{0}\right)$ is linear. By a slight abuse of language (8.1) is sometimes abbreviated to f is linear in $\left|\psi_{i}\right|$, and the words "polyhedral", "subdivision", etc. are applied in a similar way to sets in $|\psi|$, (usually with quotation marks).

The following is a direct consequence of Theorem 3.
Theorem 4. Let $f: K \rightarrow M$ and $L \leqq K$. Let $f \mid L$ be a locally p.l. embedding and $|\psi|$ be one of the smoothing nbds for $f \mid L$. Let $0<\alpha<1$ and $\varepsilon>0$. Then there is a map $f^{\prime}: K \rightarrow M$ such that (supposing d a metric on M),
(8.2) f^{\prime} agrees with f in $M \backslash \stackrel{\circ}{\psi} \mid$ and with an optimal p.l. map in $|\psi|_{\alpha}$; and $d\left(f, f^{\prime}\right)<\varepsilon$;
(8.3) $f^{\prime}|L=f| L$.

Proof. Let $0<\gamma<1$ and let K_{0} be a subdivision of K such that if

$$
H_{0}=\left(f^{-1}(|\psi| \gamma)\right)_{0},
$$

$f(H) \subseteq|\stackrel{i}{\Downarrow}|$. Apply Theorem 3 with H for $K, L \cap H$ for L and g for f, where

$$
g=\varphi \psi^{-1}(f \mid H): H \rightarrow R^{n}
$$

and φ is the radial θ-map of R^{n} onto itself:

$$
\theta(\alpha ; \gamma, 1 ; 2)
$$

If g^{\prime} is the map provided by Theorem 3, then $f^{\prime}=\psi \varphi^{-1} g^{\prime}$, extended by the identity to $\left.M^{n} \backslash \psi\right|_{\gamma}$, is the required map.

There is a Corollary 4A corresponding to 3A.

3. The engulfing theorem

9. A set of points X in M^{n} is p-dominated if there is a covering of X by open nbds $|\stackrel{i}{\psi}|$ of M^{n} (the smoothing nbds) such that $X \cap|\psi|$ is contained in a "polyhedral set" in $|\psi|$ of dimension $\leqq p .{ }^{10}$ Clearly every subset of a p dominated set is p-dominated. If for each smoothing nbd $X \cap|\psi|$ itself is polyhedral, X is locally tame. Thus a p-dimensional locally tame set is p dominated.

The main theorem of the paper is
Theorem 5. Let X be closed and V open in M^{n}. Suppose that M is p connected, V is $(p-1)$-connected, and that X is p-dominated, where $p \leqq$

[^5]$n-3$. Let $X \backslash V$ be compact.
Then X can be engulfed by $h V$, where h is active only in some compact set. ${ }^{11}$

The proof shows that the isotopy is made up of small pushes along parallel lines in a euclidean nbd.

The main step in the argument, the use of induction to engulf the intersection of a simplex with the set already engulfed, is taken directly from Stallings' proof; but the logical structure of the argument is a good deal more complicated. To carry through the inductive arguments the following more general theorem will be proved.

Theorem 6. Let X be closed and V open in M^{n}. Let Γ be a polyhedral set in $R^{N}, f: \Gamma \rightarrow M a \operatorname{map}$. Let $L \leqq \Gamma, H \leqq \Gamma, \varepsilon>0$. Suppose that
(9.1) M is p-connected, V is $(p-1)$-connected, $\operatorname{dim} \Gamma \leqq p, p \leqq n-3$;
(9.2) $(X \cup f H) \backslash V$ is compact;
(9.3) $f \backslash L$ is a locally p.l. embedding, X is p-dominated, and there is a smoothing system Σ for $f \mid L$, every member of which is a smoothing nbd for X.
Then there is a map $g: \Gamma \rightarrow M$ such that
(9.4) $X \cup g h$ can be engulfed by $h V, h$ being active only in a compact subset of M;
(9.5) $g|L=f| L$.
(9.6) $d(f, g)<\varepsilon$ and $f=g$ outside a compact set.

The inert complex Γ, which is not engulfed, is brought in to provide a common domain for the various maps g, g_{i}, etc., a technical convenience.

It will, we believe, be clear from the proof that the nearness conditions, (9.6) and the compact action of h_{τ} are satisfied. They will usually be referred to in such general terms as $d(f, g)$ can be made sufficiently small.
10. The first step is to show that it is sufficient to deal with the case where $X \subseteq V$ and $H \backslash f^{-1} V \subseteq \circ^{q}$, where $\sigma^{q} \in H_{0}$, a subdivision of H.

Lemma 5. It is sufficient to prove Theorem 6 assuming that $X \subseteq V$.
(This does not mean that X disappears from the theorem. It must still be proved that $X \subseteq h V$.)

For each point x of M choose
(i) if $x \in f L$, a member of the smoothing system Σ containing x;
(ii) if $x \in X \backslash f L$, a smoothing nbd of x for X, not meeting $f L$;
(iii) if $x \in M \backslash(X \cup f L)$ a euclidean nbd not meeting $X \cup f L$.

[^6]We call the members of this covering the $\left|\stackrel{\circ}{\psi}_{i}\right|$ nbds.
Let $A(m)$ stand for the assertion of Theorem 6 , with the added condition (10.1) $X \backslash V$ is contained in the union of $m\left|\dot{\psi}_{i}\right|$-nbds.

The fact that $X \backslash\left|\stackrel{\circ}{\psi}_{1}\right|$ is closed and p-dominated shows, by a simple induction on m, that $A(1)$ implies $A(m)$ for all $m \geqq 1$. Lemma 5 will therefore follow from: $A(0)$ implies $A(1)$. Suppose $X \backslash V \cong\left|\dot{\psi}_{1}\right|$.

It is given that $X \cap\left|\psi_{1}\right| \subseteq \psi_{1} P$, where P_{0} is a p-complex in \dot{C}°; and we may suppose that $\Gamma \cap P=\varnothing$. Define $f^{\prime}: \Gamma \cup P \rightarrow M$ by

$$
f^{\prime}\left|\Gamma=f, \quad f^{\prime}\right| P=\psi_{1}
$$

Let Γ^{*} be formed from $\Gamma \cup P$ by identifying points of $L \cup P$ that have the same f^{\prime}-image. If p is the projection $p: \Gamma \cup P \rightarrow \Gamma^{*}, f^{\prime}$ can be factored through $p, f^{\prime}=f^{*} p$, and, if $L^{*}=p(L \cup P)$,

$f^{*} \mid L^{*}$ is an embedding. If Γ_{0} and P_{0} are suitable subdivisions, the identifying relation $f^{\prime}(x)=f^{\prime}(y)$ is a simplicial isomorphism between the parts identified, and therefore Γ_{0}^{*} can be regarded as a complex, p is simplicial, and $f^{*} \mid L^{*}$ a locally p.l. map with ψ_{1} as one of its smoothing nbds. Let $X^{*}=X \backslash\left|\dot{\psi}_{1}\right|$, $H^{*}=p(H \cup P)$.

The conditions of Theorem 6 are satisfied by $\Gamma^{*}, H^{*}, X^{*}, f^{*}$, and V; and we have $X^{*} \sqsubseteq V$. Therefore, assuming $A(0)$ true, it follows that h and g^{*} exist satisfying the smallness conditions, and such that

$$
g^{*}\left|L^{*}=f^{*}\right| L^{*}, \quad X^{*} \cup g^{*} H^{*} \cong h V^{*} .
$$

Let $g=g^{*} p$. Then if $x \in L$,

$$
g(x)=g^{*} p(x)=f^{*} p(x)=f^{\prime}(x)=f(x)
$$

i.e., $g|L=f| L$. Similarly $g\left|P=\psi_{1}\right| P$, and therefore

$$
\begin{aligned}
h V & \supseteqq X^{*} \cup g^{*} H^{*}=X^{*} \cup g H \cup \psi_{1} P \\
& \supseteqq\left(X \backslash \psi_{1}^{0}\right) \cup g H \cup\left(X \cap\left|\psi_{1}\right|\right)=X \cup g H
\end{aligned}
$$

The smallness condition for g follows easily, and Lemma 5 is proved.
11. Let $B(q)$ stand for $A(0)$ with the added condition:

$$
\operatorname{dim}\left(H \backslash f^{-1} V\right) \leqq q
$$

Let $C(q, m)$ stand for $B(q)$ with the added conditions that, for some subdivision Γ_{0},
$f\left(H_{0}^{q-1}\right) \subseteq V$; there are at most $m q$-simplexes σ^{q} of H_{0} such that $f \sigma^{q}$ meets $M \backslash V$; and none such that $f \sigma^{q}$ meets both X and $M \backslash V$.

Lemma 6. It is sufficient to prove that, for all $q \leqq p, B(q-1)$ implies $C(q, 1)$.

By Lemma 5, it is sufficient to prove $B(q)$ for all q, and since $B(-1)$ is true we may assume $B(q-1)$ in doing so.

Since $f H \backslash V$ is compact, a simple induction argument shows that $C(q, 1)$ implies $C(q, m)$ for all positive m.

Therefore Lemma 6 will follow from

$$
(B(q-1) \& \forall m C(q, m)) \Rightarrow B(q)
$$

Suppose that the conditions of $B(q)$ are satisfied. Let Γ_{0} be so fine a division of Γ that if P_{0} is the set of simplexes of H_{0} mapped into V by f, $f(\overline{H \backslash P}) \cap X=\varnothing$. By $B(q-1)$ there exist h and g such that

$$
X \cup g\left(P \cup\left[H_{0} \backslash P_{0}\right]^{q-1}\right) \cong h V, \quad g|L=f| L,
$$

and $d(f, g)$ is so small that $g(\overline{H \backslash P}) \cap X=\varnothing$. If there are $m_{0}(\geqq 1) q$-simplexes ${ }^{12}$ of $\left[H_{0} \backslash P_{0}\right.$] the conditions of $C\left(q, m_{0}\right)$ (which we may assume true) are satisfied, with g and $h V$ in place of f and V. We may infer that $X \cup g^{\prime} H$ can be engulfed, for some g^{\prime} near g, with $g^{\prime}|L=g| L$. Lemma 6 is proved.

It has now been shown that it is sufficient to prove Theorem 6 with the extra assumptions:
(11.1) $X \cong V$
(11.2) $H \backslash f^{-1} V \subseteq \dot{\sigma}^{q}$
(11.3) $f \sigma^{q} \cap X=\varnothing$,
where $\sigma^{q} \in H_{0}$, a subdivision of H; and that in doing so we may assume the truth of $B(q-1)$.
12. Let a be a point of the euclidean space containing Γ, such that $a \sigma^{q} \cap \mathrm{\Gamma}=\sigma^{q}$. Then $a \sigma^{q} \cup \Gamma$ is a polyhedral set, which we denote by G. By condition (9.1) of Theorem $6, f \mid \dot{\sigma}^{q}$ can be extended to a map, which may also be called f, of $a \dot{\sigma}^{q}$ into V, and $f \mid\left(a \sigma^{q}\right)^{\cdot}$, so defined, can be extended to a map $f: a \sigma^{q} \rightarrow M$. It is convenient to add $a \dot{\sigma}^{q}$ to H. Condition (11.2) is then still satisfied, but now $H \cap a \sigma^{q}=\left(a \sigma^{q}\right)^{\text {. }}$.

In the rest of the proof the membrane $f\left(a \sigma^{q}\right)$ is used as a guide in engulfing σ^{q}.

It follows from (11.2) that σ^{q} is a principal simplex of H, which may therefore be called $K \cup \sigma^{q}$, where $\sigma^{q} \notin K, a \dot{\sigma}^{q} \subseteq K$. Since the new simplex $a \sigma^{q}$ meets L at most in σ^{q} it follows from (11.3) that $f\left(L \cap a \sigma^{q}\right) \cap X=\varnothing$. It is
${ }^{12}$ If $m_{0}=0$ there is nothing to prove.
convenient to generalize this situation slightly by taking the new ($q+1$)simplex of G to be any join, $\sigma^{q+1}=\sigma_{1} \sigma_{2}$, with $\sigma_{1} \dot{\sigma}_{2} \cong K$, and $\dot{\sigma}_{1} \sigma_{2}$ the part of H still to be engulfed. The whole proof is thus finally reduced to that of the following Lemma, and we may assume $B(q-1)$ in proving it.

Lemma 7. Let M^{n}, X be as in Theorem 6, and let M, V satisfy (9.1). Let G be a polyhedral set (in R^{N}), $f: G \rightarrow M a \operatorname{map}, L \leqq G, K \cup \sigma^{q+1} \leqq G, \varepsilon>0$. Suppose that
(12.1) $\sigma^{q+1}=\sigma_{1} \sigma_{2}, K \cap \sigma^{q+1}=\sigma_{1} \dot{\sigma}_{2}, \operatorname{dim} K \leqq p ;$
(12.2) $X \cup f K \cong V$;
(12.3) $X \cap f\left(L \cap \sigma^{q+1}\right)=\varnothing$;
(12.4) is (9.3) of Theorem 6.

Then the conclusions of Theorem 6 hold if $H=K \cup \dot{\sigma}_{1} \sigma_{2}$.

Case 1. Let a covering by $\left|\dot{\psi}_{i}\right|$-nbds be chosen as in the proof of Lemma 5, and suppose that
(12.5) $f \sigma^{q+1} \subseteq|\dot{\psi}|_{\alpha}$ where $|\dot{\psi}|$ is some ψ_{i}-nbd and $0<\alpha<1$.

For any set $E \subseteq G$ let $E^{\alpha}=f^{-1}\left(|\psi|_{\alpha} \cap E\right)$.
By Theorem 4, there is a map $f^{\prime}: G \rightarrow M$ agreeing with f outside $|\stackrel{\circ}{\psi}|$, and with a p.l. and optimal map in $|\psi|_{\alpha}$; and $f^{\prime}|L=f| L$. The ε of Theorem 4 is to be so chosen that $f^{\prime}(K) \cong V$. Let G_{0} be a subdivision of G such that $f^{\prime} \mid G_{0}^{\alpha}$ is linear ${ }^{13}$ and let $Q_{0}=\left(\sigma^{q+1}\right)_{0}$, a $(q+1)$-complex.

From condition (12.3) of Lemma 7 it follows that if x is a vertex of a principal simplex, τ, of Q_{0} such that f_{τ} meets $X, f^{\prime}(x)$ may be moved into "general position" in $|\dot{\psi}|$ relative to X, without infringing the condition $f^{\prime}|L=f| L$; indeed we may suppose that f^{\prime} itself already has the property (cf. Remark 1 of $\mathbb{I} 7$). If τ is a principal simplex of Q_{0}, then by Lemma 3, (12.6) $f^{\prime}(\tau) \cap\left(X \cup f^{\prime}\left(K \cup\left|Q_{o}^{q}\right|\right)\right)=f^{\prime}\left(\tau \cap\left(K \cup\left|Q_{o}^{q}\right|\right)\right) \cup T$, where Q_{o}^{q} is

[^7]the q-skeleton of Q_{0}, T is a polyhedral subset of $f^{\prime}(\tau)$, and
\[

$$
\begin{aligned}
\operatorname{dim} T & \leqq \operatorname{dim} \tau+\operatorname{dim}\left(X \cup\left(K \cup\left|Q_{0}^{q}\right|\right)\right)-n \\
& \leqq q+1+p-n \leqq q-2
\end{aligned}
$$
\]

since $p-n \leqq-3$.
13. A further subdivision, G_{1}, can be made so that K_{1} expands to $K_{1} \cup Q_{1}$ through $(q+1)$-simplexes*. This means that there exists a series of $(q+1)$-complexes ${ }_{i} Q_{1}(i=0, \cdots, s)$ such that

$$
\begin{align*}
& { }_{0} Q_{1}=\varnothing, \quad{ }_{s} Q_{1}=Q_{1}=\left(\sigma^{q+1}\right)_{1} \\
& { }_{i+1} Q_{1}={ }_{i} Q_{1} \cup\left[{ }_{i} \tau^{q+1}\right], \text { where }{ }_{i} \tau^{q+1}=\tau_{1} \tau_{2} \tag{13.1}\\
& \quad\left(K \cup{ }_{i} Q\right) \cap\left({ }_{i} \tau^{q+1}\right)=\tau_{1} \dot{\tau}_{2}
\end{align*}
$$

We make the inductive hypothesis that there is a map $g_{i}: G \rightarrow M$ such that
(13.2) $X \cup g_{i}\left(K \cup\left|{ }_{i} Q_{1}^{q}\right|\right) \subseteq h_{i} V$, for some engulfing h_{i}; and that
(13.3) $g_{i}\left|L \cup G^{\alpha}=f^{\prime}\right| L \cup G^{\alpha}$
(13.4) $d\left(g_{i}, f^{\prime}\right)$ is sufficiently small.

The induction starts with $g_{0}=f^{\prime}, h_{0}=1$.
Let C^{n-p-1}, C^{q}, C^{1} be the unit cubes in the (x_{1}, \cdots, x_{n-q-1})-subspace, the $\left(x_{n-q}, \cdots, x_{n-1}\right)$-subspace, and the x_{n}-axis of R^{n}. Then $|\stackrel{\circ}{\psi}|$ may be regarded as $Y \times Z \times R$, where $Y=\psi\left(\dot{C}^{n-q-1}\right), Z=\psi\left(\stackrel{\circ}{C}^{q}\right)$ and $R=\psi\left(\dot{C}^{1}\right)$. By a linear change of the coordinate system ψ (without change of name) it can be arranged that the simplex $g_{i}\left(\tau_{i} \tau^{q+1}\right)=f^{\prime}\left({ }_{i} \tau^{q+1}\right)$ is a prism in $Z \times I$:

$$
g_{i}\left({ }_{i} \tau^{q+1}\right)=\Pi\left(\gamma_{0}, \gamma_{1} \mid F\right)
$$

$$
F \cong Z
$$

with base $g_{i}\left(\tau_{1} \dot{\tau}_{2}\right)=\Pi\left(\gamma_{0} \mid F\right)$ and top $g_{i}\left(\dot{\tau}_{1} \tau_{2}\right)=\Pi\left(\gamma_{1} \mid F\right)$. The functions γ_{0}, γ_{1} are continuous, $\gamma_{0} \leqq \gamma_{1}$ and $\gamma_{0}=\gamma_{1}$ on $\mathrm{fr}_{z} F$.

Let J be the projection of the set T (above) into Z, so that $J \subseteq F$. Let $\Pi J=\Pi\left(\gamma_{0}, \gamma_{1} \mid J\right), \quad P=g_{i}^{-1}(\Pi J)$,

$$
D=K \cup\left|{ }_{i} Q_{1}^{q}\right| \cup P
$$

a polyhedal subset of G.
The inductive hypothesis $B(q-1)$ will now be used to engulf $X \cup g_{i+1} D$, where g_{i+1} is to be specified. First G is replaced by G^{*}, formed by identifying points of $D \cap G^{\alpha}$ with the same g_{i}-image. As in Lemma $5, G^{*}$ is a polyhedral set since $g_{i}\left|G^{\alpha}=f^{\prime}\right| G^{\alpha}$ is p.l.. If p is the projection $p: G \rightarrow G^{*}$, and f^{*} is defined by $g_{i}=f^{*} p, L^{*}$ as $p\left(L \cup\left(D \cap G^{\alpha}\right)\right)$, then $f^{*} \mid L^{*}$ is a locally p.l. embed-

[^8]ding. If the $\mathrm{T}, H, L, f, V, X$ of $B(q-1)$ are taken to be $G^{*}, D^{*}(=p(D))$, $L^{*}, f^{*}, h_{i} V, X$, the conditions of $B(q-1)$ are satisfied, since $X \subseteq h_{i} V$, and " $H \backslash f^{-1} V$ " is of dimension $\leqq q-1$ since
$$
" H \backslash f^{-1} V^{"}=D^{*} \backslash f^{*-1}\left(h_{i} V\right)=p\left(D \backslash g_{i}^{-1}\left(h_{i} V\right)\right) \cong p(P)
$$
by (13.2).
It follows that there is a map $g^{*}: G^{*} \rightarrow M$ such that $X \cup g^{*} D^{*}$ can be engulfed by $h^{\prime}\left(h_{i} V\right)$, and $g^{*}\left|L^{*}=f^{*}\right| L^{*}, d\left(g^{*}, f^{*}\right)$ is sufficiently small. On putting $g_{i+1}=g^{*} p$, it follows, as in Lemma 5, that $g_{i+1}=f^{\prime}$ in $L \cup\left(D \cap G^{\alpha}\right)$, that $X \cup g_{i+1} D \subseteq h^{\prime} h_{i} V$ and that the smallness conditions are satisfied.
14. What has so far been done is to engulf the subset ΠJ of $\Pi F=$ $g_{i}\left(i_{i} \tau^{q+1}\right)=g_{i+1}\left({ }_{i} \tau^{q+1}\right)$. Theorem 2 is now used to engulf the rest of ΠF. The function " g_{1} " of Theorem 2 (which we hope will not be confused with the g_{i} of the preceding paragraphs) is to be γ_{1}; " g_{0} " is γ_{0} in $F \backslash J$ and γ_{1} in J, and so is u.s.c.; $U=V^{\prime} \cap|\dot{\psi}|$, where $V^{\prime}=h^{\prime} h_{i} V ; W$ is any open set containing ΠF and contained in $|\dot{\psi}|$; and
$$
A=\left(\left(X \cup g_{i+1} D\right) \cap|\psi|_{\alpha}\right) \cup \Pi J .
$$

The conditions of Theorem 2 are satisfied since ΠJ contains all the common points of A and ΠF except those in the base of ΠF.

It follows that $A \cup \Pi F$ can be engulfed by $h^{\prime \prime} U$, where $h^{\prime \prime}=1$ in

$$
\left.|\stackrel{\circ}{\psi}| \backslash W \supseteqq|\dot{\psi}| \backslash \psi\right|_{\alpha},
$$

and can therefore be extended to $\left.M \backslash \psi\right|_{\alpha}$ by the identity. Since the part of $X \cup g_{i+1}\left(\left.K \cup\right|_{i+1} Q_{1}^{q} \mid\right)$ in $|\psi|_{\alpha}$ is $A \cup \Pi F \cong h^{\prime \prime} V^{\prime}$, and the part in $\left.M \backslash \psi\right|_{\alpha}$ is in $X \cup g_{i+1} K \cong V^{\prime}$, it follows that $X \cup g_{i+1}\left(\left.K \cup\right|_{i+1} Q_{i}^{q} \mid\right) \subseteq h^{\prime \prime} V^{\prime}$.

On putting $h_{i+1}=h^{\prime \prime} h^{\prime} h_{i}$ the inductive step is completed and Case 1 proved.
15. General Case. Let a covering of M^{n} by a system of $\left|\dot{\psi}_{j}\right|$-nbds be chosen, as in Case 1, and let Γ be so finely subdivided into Γ_{0} that each simplex τ of $\left(\sigma^{q+1}\right)_{0}$ is mapped by f into a set $\left|\stackrel{\circ}{\psi}_{j}\right|_{\alpha}$. Let Γ_{0} be then further subdivided into Γ_{1} so that K_{1} expands through $(q+1)$-simplexes to $K_{1} \cup\left(\sigma^{q+1}\right)_{1}$. If now ${ }_{i} Q_{1}$ and ${ }_{i} \tau^{q+1}$ are defined as in Case 1, and the inductive assumption again made of maps $g_{i}: \Gamma \rightarrow M$ and $h_{i}: M \doteq M$ such that

$$
X \cup g_{i}\left(K \cup\left|{ }_{i} Q_{i}^{q}\right|\right) \subseteq h_{i} V
$$

$$
g_{i}|L=f| L, \quad d\left(g_{i}, f\right) \text { is small, }
$$

the conditions of Lemma 7 are satisfied if $G, K \cup\left|{ }_{i} Q_{1}^{q}\right|,{ }_{i} \tau^{q+1}, h_{i} V, g_{i}, L$ replace $G, K, \sigma^{q+1}, V, f, L$; in particular

$$
X \cap g_{i}\left(L \cap\left({ }_{i} \tau^{q+1}\right)\right)=X \cap f\left(L \cap{ }_{i} \tau^{q+1}\right) \cong X \cap f\left(L \cap \sigma^{q+1}\right)=\varnothing
$$

but more: ${ }_{i} \tau^{q+1}$ (the new σ^{q+1}) is contained in a $\left|\dot{\psi}_{i}\right|$ nbd. Therefore by Case 1 ,
$X \cup g_{i+1}\left(\left.K \cup\right|_{i+1} Q_{1}^{q} \mid\right)$ can be engulfed for a suitable g_{i+1}.
The inductive step is complete and the proof of Theorem 6 is finished.
16. The following method of deducing the topological Poincaré hypothesis ($n \geqq 5$) from Theorem 5 is due to E. Connell.

THEOREM 7. If $n \geqq 5$ every [n/2]-connected closed topological n-manifold M is a topological n-sphere.

By a well-known argument, M is $(n-1)$-connected.
Suppose that M has a covering by k open topological n-cells, $\left|\dot{\psi}_{i}\right|$, $i=1, \cdots k$. It is known ${ }^{14}$ that $k=2$ implies that $M \doteq S^{n}$. It is therefore sufficient to show how to reduce k by 1 if $k \geqq 3$.

There is an $\alpha<1$ such that $M \subseteq \bigcup_{1}^{k}\left|\stackrel{\circ}{\psi}_{i}\right|_{\alpha}$. Let $\beta=(\alpha+1) / 2$, and let P_{0} be a subdivision of $\left|\psi_{3}\right|_{\beta}$ into an " n-complex" ${ }^{15}$ such that $\left|\psi_{3}\right|_{\alpha}$ is a subcomplex, and no simplex of P_{0} meets both $\left|\dot{\psi}_{1}\right|_{\alpha}$ and $\left|\dot{\psi}_{1}\right|_{\beta}$.

If $p \leqq n-3, M_{1}=M \backslash\left|\psi_{1}\right|_{\beta}$ is a p-connected open manifold, $V_{1}=\left.\left|\dot{\gamma}_{1}\right| \backslash \psi_{1}\right|_{\beta}$ a $(p-1)$-connected open set in M_{1}, and $X_{1}=\left|P_{0}^{2}\right| \\left|\psi_{1}\right|_{\beta}$ a closed locally tame set in M_{1} of dimension $2 \leqq n-3$; and $X_{1}\left|V_{1}=\left|P_{0}^{2}\right| \backslash\right| \dot{\psi}_{1} \mid$ is compact. By Theorem $5, X_{1} \subseteq h_{1} V_{1}$ for some $h_{1}: M_{1} \doteq M_{1}$ which is the identity outside a compact subset of M_{1}, and therefore near $\left|\psi_{1}\right|_{\beta}$. Hence h_{1} can be extended to $\left|\psi_{1}\right|_{\beta}$ by the identity, giving

$$
U_{1}=h_{1}\left(\left|\psi_{1}\right|\right)=h_{1} V_{1} \cup\left|\stackrel{\circ}{\psi}_{1}\right|_{\beta} \supseteqq X_{1} \cup\left|\psi_{1}\right|_{\beta}=\left|P_{0}^{2}\right| \cup\left|\psi_{1}\right|_{\beta}
$$

Similarly there is an open n-cell U_{2} in M containing $\left|Q_{0}^{n-3}\right| \cup\left|\psi_{2}\right|_{\beta}$, where Q_{0}^{n-3} is the dual ($n-3$)-complex. ${ }^{16}$

Now ${ }^{17}$ every point of $\left|P_{0}^{n}\right| \backslash\left(\left|P_{0}^{2}\right| \cup Q^{n-3}\right)$ is on a unique segment joining a point of $\left|P_{0}^{2}\right|$ to a point of Q^{n-3}; and θ-homeomorphisms

$$
\theta(0 ; \varepsilon, 1-\varepsilon ; 1)
$$

on these segments define a self-homeomorphism h_{θ} of $\left|\psi_{0}\right|_{\beta}$. The ε may vary continuously from segment to segment. We suppose that it is constant over the set of segments in $\left|\psi_{3}\right|_{\alpha}$, and tends to $1 / 2$ as the segment tends to a position on $\left|\dot{\psi}_{3}\right|_{\beta}$. Then $h_{\theta}=1$ on $\left|\dot{\psi}_{3}\right|_{\beta}$, and so can be extended to $\left.M \backslash \psi_{3}\right|_{\beta}$ by the identity. If the constant value of ε in $\left|\psi_{3}\right|_{\alpha}$ is small enough, $h_{\theta} U_{1} \cup U_{2} \supseteqq$ $\left|\psi_{3}\right|_{\alpha}$. Therefore

[^9]$$
h_{\theta} U_{1} \cup U_{2} \supseteqq h_{\theta}\left(\left|\psi_{1}\right|_{\beta}\right) \cup\left|\psi_{2}\right|_{\beta} \cup\left|\psi_{3}\right|_{\alpha} .
$$

Now h_{θ} leaves x fixed if $x \notin\left|\psi_{3}\right|_{\beta}$ and moves it within a simplex of P_{0} if $x \in\left|\psi_{3}\right|_{\beta}$. Since no simplex meets both $\left|\dot{\psi}_{1}\right|_{\alpha}$ and $\left|\dot{\psi}_{1}\right|_{\beta}$,

$$
\left|\psi_{1}\right|_{\alpha} \subseteq h_{\theta}\left(\left|\psi_{1}\right|_{\beta}\right) .
$$

Therefore $\left|\stackrel{\circ}{\psi}_{1}\right|_{\alpha} \cup\left|\stackrel{\circ}{\gamma_{2}}\right|_{\alpha} \cup\left|\stackrel{\circ}{\psi}_{3}\right|_{\alpha}$ is contained in two open n-cells.
University of Wisconsin and
Rice University
(Received April 26, 1966)

[^0]: ${ }^{1}$ The theorem remains true if the conditions " $M p$-connected, $V(p-1)$-connected" are replaced by "the pair (M, V) is p-connected."
 ${ }^{2}$ All the results of $\S 1$ hold for sets in paracompact spaces, in view of Dowker's extension of the Baire insertion theorem to these spaces (see Dugundji, Topology, p. 170) and the proofs need only minor changes.

[^1]: ${ }^{3}$ For the theorem in metric spaces see, e. g., Aumann: Reelle Funktionen, p. 150.

[^2]: ${ }^{4}$ The notation $\left|H_{0}\right|$ for the locus is still required, e. g., for $\left|H_{0}^{q}\right|$, where H_{0}^{q} is the q-skeleton of H_{0}.
 ${ }^{5} f \mid \sigma$ is injective if $\sigma \in K_{0}$.
 ${ }^{6}$ The complex $[\sigma]$ is σ and all its faces.

[^3]: ${ }^{7}$ The square brackets in $Q_{1}=[\cdot \cdot]$ denote the simplicial closure.

[^4]: ${ }^{8}$ Or occasionally $\psi: C^{n}(c) \rightarrow \bar{U}$: see above.
 ${ }^{9}$ It follows that there is a single subdivision with this property.

[^5]: ${ }^{10}$ I. e., $\psi^{-1}(X \cap|\psi|)$ is contained in a p-dimensional polyhedral set in C^{n}. Note that $|\psi|$ is the closed set $\psi\left(C^{n}\right)$.

[^6]: ${ }^{11}$ See II 3; and compare the footnote in II.

[^7]: ${ }^{13}$ For the notation G_{0}^{α} see II 10 .

[^8]: *For example by using the theorem that every subdivision of a complex K_{0} has a further subdivision which is a stellar subdivision of K_{0}.

[^9]: ${ }^{14}$ By the Mazur-Morton Brown collar theorem.
 ${ }^{15} \mathrm{Cf}$. If 8. The quotation marks are omitted after this specimen.
 ${ }_{16} Q_{0}^{n-3}$ is the set of all simplexes of the derived complex $\left(P_{0}^{n}\right)^{\prime}$ that do not meet $\left|P_{0}^{2}\right|$.
 ${ }^{17}$ Cf. Stallings' proof of the Poincaré hypothesis, Bull. Amer. Math. Soc., 66 (1960), 485.

