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 The engulfing theorem for
 topological manifolds

 By M.H.A. NEWMAN

 A version of the Stallings engulfing theorem is proved by methods that

 do not depend on the theory of combinatorial manifolds and regular neigh-

 bourhoods, but are developed in detail within the paper.

 THEOREM. Every locally tame closed set X, of dimension p ? n - 3 in a
 p-connected topological n-manifold-without-boundary M, can be engulfed by

 any (p - 1)-connected open set V, such that X\ V is compact.'

 This means that there is a self-homeomorphism h, of M such that X ' h V.

 There is an isotopy of h to the identity composed of a finite number of small

 pushes, each of which moves the points of a subset of a euclidean neighbour-

 hood along parallel lines and leaves all else fixed.

 The theorem is in fact proved for a somewhat larger class of sets X, the

 p-dominated sets (p < n - 3) defined in ? 9.

 By an argument due to E. H. Connell, based on Stallings' stretching pro-

 cess between dual skeletons, the Poincare hypothesis for topological n-mani-

 folds (n ? 5) is derived from this form of the engulfing theorem.

 1. Stretching theorems

 1. In ? 1 space means metric space, and function real function.2

 If f is a bounded function on the space X, f. (X), and f (x) denote lim

 inff and lim supf at x, respectively. If A c X, H(f, g I A) is the set of

 points

 {(x, t) I x C A, f.(x) < t ? g,(x)} of Xx R.

 and H1(f I A) = H1(f, f I A). H(f, g I A) is the (f, g)-prism on A, and if f _ g
 FJ(f I A) and H(g I A) are the base and top of the prism.

 2. LEMMA 1. Let f be bounded and u.s.c. (upper semi-continuous) in

 X, and U be open in Xx R. If H(f I X) c U, there is a continuous function
 qp onXsuchthatf < qp andfH(f, IX) c U.

 1 The theorem remains true if the conditions "M p-connected, V (p - l)-connected"
 are replaced by "the pair (M, V) is p-connected."

 2 All the results of ? 1 hold for sets in paracompact spaces, in view of Dowker's exten-

 sion of the Baire insertion theorem to these spaces (see Dugundji, Topology, p. 170) and

 the proofs need only minor changes.
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 556 M. H. A. NEWMAN

 We may suppose that U c [t < 1 + supf]. Then the set E in X x R

 defined by

 E = [f.(x) ? t]\U

 is closed and meets each line x x R (x C X). Therefore s is well defined by

 6(x) = inf It I (x, t) E}
 and is l.s.c.. Since

 [f.(x) ? t ? f(x)] = H(f X) ' U,

 Emay also be defined as [f(x) ? t]\U. Therefore for each x, pe(x) _f(x). Since
 (x, f (x)) C U, an open set, pe(x) # f (x), i.e., a > f.

 By Baire's insertion theorem,3 there is a continuous function p, on X such
 that f <p< ae, and by the definition of A, H(f, q l X)' U. Lemma 1 is proved.

 If a < ,8 < a and a < ,C' < a,

 0 (a; 8, Y '; Y)

 denotes the homeomorphism 0: R R which maps [a, ,9] and [,p, a] linearly
 on to [a, p9'] and [a3', a] respectively, leaving other points fixed. If a, 8, ,3'

 and y are continuous real functions on X, the same notation

 x- O (a; /9, p9'; )

 may be used on the understanding that all the functions are to be evaluated

 at x. If then h(x, t) (x, 0x(t)), h is a homeomorphism of X x R.
 If a ? 8 ? a ? <9' < a, h is still a homeomorphism provided that, for

 each x, the consistency conditions

 a(x) A9(x) a(x) = '(x)

 and

 Ax (x) = 7x'(x) y (x)

 hold. Any such equality makes Ox = 1 on the line x x R.

 3. It is convenient to use the word engulfing in the following sense. Let

 X be a space and A, U, a closed and an open set in X, respectively. Then A

 is engulfed by h U if h is a homeomorphism, h: X X such that

 (1) AchU, and
 (2 ) h is isotopic to 1 (the identity) through hr. We say that h is active

 only in W if h, = 1 outside W.

 LEMMA 2. Let fo fi be bounded continuous functions on the closed set F

 in X, and U, W, open sets of X x R. Let f0 f<; let f- ft on frxF. Sup-

 3 For the theorem in metric spaces see, e. g., Aumann: Reelle Funktionen, p. 150.
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 ENGULFING THEOREM 557

 pose that

 H(fo, f1IF F) l W. (foIF) c U.

 Then I1(fo, fi I F) can be engulfed by h U, where h is active only in W.

 Put H(f, g I F) H 1l(f, g) for any functions f, g. We make two applica-
 tions of Lemma 1.

 ( 1) There is a continuous function X such that fi < X and TI(fi, X) - W.

 Let A1+ min (X, ft + (f' - fo)). Thus Hl(fo, ft+) c W.
 (2) There is a continuous p such that fo < qp and H(fo, Ip) _ U. Let

 &~~~~~~~~~

 ___ ___ - ~ ~ F

 FIGURE 1.

 min(p, f1). Then fo ? cp' < f, < fi. Let

 ox = O(fo; PA', fi; 1+), for x C F.

 The consistency conditions are satisfied, for since fo < cp,

 AfW() = 9'(x) 9'(X) - AW;

 hence fo(x) -f1(x). Similarly

 fi(x)- f+(x) =f+(x) (f + (I-fo))(z ) -
 Hence f1(x) = fo(x), and therefore cp'(x) = f1(x). Thus h(x, t) -(x, Ox (t))

 defines a homeomorphism of X x R which is the identity at (x, t) unless

 x C intx F and fo(x) < t < f1+(x), and therefore (x, t) C W. Since Hl(fo, qp') c U,
 H(fo, I"f) ' h U, by the definition of Ox.

 An isotopy of h to the identity, active only in W, is defined by replacing

 f1 by (1 - T)' + Tf1 in the definition of Ox.
 4. The following Theorem 1 shows that the stretching transformation of

 X x R in Lemma 2 can be extended into a product space X' x X x R, pulling

 the adjacent parts of the space with it. This is the theorem that replaces
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 558 M. H. A. NEWMAN

 Whitehead's theorem on the engulfing of a k-simplex (k <n) in a (combina-

 torial) n-manifold by its regular neighbourhood.

 If A ' X let

 H1o(f, g IA) - H(f, g I A)\1T(f I A)

 - [xc A, f (x) < t ? g'(x)]

 Thus o1(f, g) n H(f) 0.

 Let Y, Z be spaces, and let a point o be chosen in Y as origin.

 THEOREM 1. Let go, g1 be bounded functions on the closed set F in Z; let

 U, W, be open sets of Y x Z x R, and suppose that

 (4.1) go is u.s.c., g, continuous, go < gj, and go = g, on frzF;
 (4.2) o x H(go I F) c U;
 (4.3) o x E10(go,g1 I F) c W.

 Then o x Hl(go, g, I F) can be engulfed by h U, where h is active only in W.
 Case 1. go is continuous, and the stronger form

 (4.3') o x H(go, g1 I F) c W of (4.3) holds.
 The plan of the proof of Case 1 is first to costruct a floor V, an open set

 in Y x Z containing o x int zF, but narrow in the Y-dimension; then a con-

 tinuous function p on V, equal to g1 on o x F and to go(z) at points (y, z) of

 frxz V; and finally to use p to taper off the h of Lemma 2, transferred to
 o x Z x R, to the identity on (frV) x R.

 Put g*(y, z) = gi(z), for i = 0, 1 and y C Y, z C F. There is an open set
 V in Y x Z such that

 (4.4.1) o x intzFc V_ Y x intzF;

 (4.4.2) HI(g ,g* V) W, H(gO IV) - U.
 In the normal space Y x Z x R, there exist open sets U1, W1 satisfying (4.2)

 and (4.3'), and U, ( U, W,4( - W. Let z c int zF. Then there exist real
 numbers X < go(z), se > gj(z) such that o x z x [x, pi] ( W1. By the compactness
 of [X, se], there are open neighbourhoods No(o) in Y and N1(z) in Z (both depend-

 ing on z) such that No x N, x [x, 4te] W1; and No may be so chosen that,
 further,

 zf C No go(z') > X & gl(z') <M

 Then

 ll(ggl No x N1) ' No x N1 [ [a, e] C W,.

 Similarly it can be arranged that

 e(gn* I No x N) c U,

 Then
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 ENGULFING THEOREM 559

 V= U(No x N1; zGintzF)

 satisfies (4.4.1) and (4.2.2). (Recall that g* is continuous in Case 1.)

 Now let functions a and 8 be defined on V:

 a I o x F - g*, a I V\(o x F) =g*,

 ,891 V = g*, ,891 fr xzV= g*
 Then a is u.s.c., a is l.s.c., and a ? ,8 on V since go - g1 on frzF. Let p be
 a continuous function on V such that a ? p < ,, with strict inequalities
 where a < ,3. It follows that

 (4.5) g* < 9 < g* in V, g* = p on frV, p g1 in o x F.
 By the last clause of (4.5),

 oxfl(go, g1 I F) c IyH(g*,I V)

 c rIgO g* Iv) cW.

 Therefore, o x TI(go, g1 I F) can be engulfed by h U, h being active only in W
 (put fo = g*, f1 = a, F = V in Lemma 2).

 General case of Theorem 1. By (4.2) and Lemma 1, there is a continuous

 function *, on F such that gO < *, and o x TI(go, *o F) c U. Let =
 min(*0, g1), and let H be the subset [+1(z) < g1(z)] of F. In H,

 W W

 _ 1- H - i F

 FIGURE 2

 and therefore in H, >1 - o and hence *1 > go. The conditions of Case 1 are
 satisfied if *1 and H replace go and F, other sets and functions being un-
 changed: (4.2) because

 I(*, I lH) ' H(go, 'o F);

 and (4.3') because g1 > g0 on H and so

 o x J1(*1, g, H) - o x HO(g, gulF) F W.

 Therefore h U engulfs II(*,, g1 H), with h active only in W. Now

 Hl(*1, g1 F\H) - II(*, I F\H)
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 560 M. H. A. NEWMAN

 by the definition of H, c- H(gg, 'r1 I F). Since AI replaced go in the application

 of Case 1, and go < *1 in H, h = 1 in o x 11(go, *, I F), and we infer that
 o x Hl(,1, g1 I F) c h U. Hence finally the engulfing by h follows from

 rl(go, g, I F) T I.(go, '1 I F) U fH(,1, g, I F) .

 5. THEOREM 2. With the notations of Theorem 1, let A be a closed set

 in Y x Z x R, and suppose in addition to the conditions of Theorem 1, that

 (5.1) A ' U
 (5.2) A n (o x f(go, g I F)) C o x 1(g, I F).

 Then the conclusion of Theorem 1 can be strengthened to "A U (o x H(go, g, I F))
 can be engulfed by hU", h being, as before, active only in W.

 Condition (5.2) implies that A does not meet o x 1o(go, g1 I F). Therefore
 if W is replaced by W\A, the conditions of Theorem 1 are still satisfied. It

 follows that there is an engulfing map h such that h = 1 outside W\A, and

 therefore h = 1 in A. Since A ' U it follows that A ' h U.

 2. Optimal maps

 6. Polyhedral sets in the euclidean space Rn, i.e., loci of (rectilinear,

 locally finite, simplicial) complexes, are denoted by H, K, L, etc., and com-

 plexes with the locus H by Ho, H1, etc.4 If Lo - Ko (i.e., if Lo is a subcomplex

 of KO) and K1 is a further subdivision of Ko, L1 is the induced subdivision of Lo.
 All maps of polyhedral sets are understood to be locally finite (i.e., the set

 of image-simplexes is locally finite for some subdivision, and therefore for all).

 A p.l. (piecewise linear) mapf: K-n Ro is optimal if there is a subdivision

 Ko such that

 (1) f is a non-degenerate' map of Ko, and

 (2) for each pair of principal simplexes a, a2 of Ko,

 (6.1) either fa1 n fad = f(u n a2) or dim (fa1 nfU2) ? dim l +
 dim a2 -n.

 This is a geometrical property, i.e., it is preserved if Ko is further subdivided.

 A non-degenerate linear map of Ko may be called optimal in all dimensions

 if (6.1) holds for all ol, a2 C Ke. This is not a geometrical property and will
 not be used in this paper.

 LEMMA 3. If 6 Ko u [a] is a complex and a:Ko, and iff : KJU a Rn is
 optimal, then

 4The notation I HoI for the locus is still required, e. g., for I Hq I, where H" is the
 q-skeleton of Ho.

 5 f la is injective if agKo.
 6 The complex [a] is a and all its faces.
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 ENGULFING THEOREM 561

 (6.2) fa nfK-f(a nK)U A,

 where A = 0 or dim A En dim a + dim K-n.

 This follows easily from (6.1) since a is a principal simplex of K0 U [a],

 and every simplex of K. U [a] is contained in a principal simplex.
 It is an elementary result that the optimal p.l. maps of K lie dense in the

 space of continuous maps of K; but difficulties may arise if a subset L < Kg
 mapped optimally, but perhaps not in general position, is to be held fixed.

 7. If K. is a complex, and E c Kg E. is the smallest subcomplex of K,
 containing E.

 Two maps f, g: K-y Rn agree in X c Rn if for some subdivision Kn,

 (f-'X)o - (g-X)o = Ho

 say, andfIHo=g Ho.
 Let C4 be the cube [xi < 1, i 1, ... ,n] in Rn. If a > O. Cn is the

 concentric cube [\ xi I _ a]. It is sometimes convenient to use also Cn(c), the
 cube [I xi - ci < 1], where c = (ci).

 THEOREM 3. Let K be a polyhedral set and L ? K. Let f: K - Rn be such

 that f I L is a p.l. embedding. Then if s > 0 and 0 < a < 1, there is a
 map f ': K R n such that

 (7.1) f' agrees with f in Rn\Cn and with a p.l. optimal map in Co;

 (7.2) f'l L = f I L;
 (7.3) f - f 'I< s.
 Let , = (a + 1)/2. There are subdivisions Cal of Cn and L1 of L(which

 can be extended to K1 of K) such that fL nf C is the locus of a common sub-
 complex of fL1 and C3 .

 For any set E of Rn let E be the convex cover. Let7

 P1 = (f-(Rn\C))-,[a I a C K1,& funC, 0] .
 Suppose the division K1 so fine that P n Q= 0. A map f, agreeing with f in
 Rn\Cn and with a p.l. map in Cn is obtained by putting fi = f at all points of
 P and at all vertices of K1, making f1 linear in each simplex of Q1, and extend-

 ing it to the transition zone K\(P U Q) by a coning process: if a is a transi-

 tional simplex with centre c, and c' is the barycentre of thef1-images of vertices

 of a, let f1(c) = c'; and supposing f1 I j defined extend f1 linearly along radii.

 Then f, I L f ! L and flu c fa for all a E K. From this the stated properties
 of J1 follow.

 Now let P., Q' be defined as P1, Q1 were, but with C, Cn in place of Cn,

 The square brackets in Qi [ 1]denote the simplicial closure.

This content downloaded from 
������������195.37.209.180 on Mon, 25 Jan 2021 10:37:50 UTC������������� 

All use subject to https://about.jstor.org/terms



 562 M. H. A. NEWMAN

 C, respectively, and make the further assumption that P' n Q' 0. Let f2

 be obtained from f, by a a-displacement of the images of vertices of Q' (includ-

 ing those in L1) into general position in Cn, other vertices remaining fixed,

 and f2 I P = f1 I P; and let f2 then be extended linearly in Q' and by coning in
 K\(P' U Q'), as before. If a is small enough, f2 agrees with f in Rn\Cn and
 with a p.l. optimal map in Cn (indeed with a linear map optimal in all dimen-

 sions).

 If x = f(y), where y is a vertex of L1, this vertex is unique, since f I L is
 an embedding, and we put q(x) = f2(y); if x is any other vertex of Ca put
 9(x) = x. If a is small enough, p, extended linearly into the simplexes of Cal,

 is a p.l. homeomorphism of C, onto itself, and T I Cow - 1. Therefore p may
 be extended to the rest of Rn by the identity.

 Let f '(x) = '-1f2(x) for all x E K. Then f ' is p.1. in Cn, and since T is a
 p.l. homeomorphism f ' is optimal. (This uses the geometrical character of

 optimal, cf. ? 6.) If y e L,

 f'(Y) = qP-1f2(y) q pf(Y) f(Y)

 That f - f ' I can be made arbitrarily small is clear.

 REMARK 1. Since 9(x) = x at a vertex x X fL, such vertices are in general

 position.

 REMARK 2. The following corollary, not used in this paper, but in fact

 proved above, may be found useful if the property optimal in all dimen-

 sions has to be used.

 COROLLARY 3A. Under the conditions of Theorem 3 there is a map

 f2: K-n RI, a subdivision K1, and a homeomorphism qp: R" Rn such that
 (7.3) f2 agrees with f in Rn\C and with a linear map of K1, optimal in

 all dimensions in C"; and if , = (a + 1)/2,

 (7.4) choI Ce is p~l cpI Rn\Cln- I<X -1j<'S if-f2j < S;;

 (7.5) qp-lf2 I L = f I L.

 8. A manifold is in this paper a topological manifold without boundary.

 A euclidean nbd in a manifold M4 is a pair (U, p) where U is an open set in

 M and *: Cn -? U a homeomorphism.8 The symbol I * I denotes the set *(Cn)
 but also implies that * is the homeomorphism; I , 1 A 1, etc., will denote
 I(C ), *(C-), etc.

 A map f: K-n M is locally p.1. if f(K) has a covering by a set of euclidean

 nbds I *j 1, called a smoothing system, and for each i there is a subdivision9

 8 Or occasionally 'V: Cn(c) -, U: see above.
 9 It follows that there is a single subdivision with this property.
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 ENGULFING THEOREM 563

 K0 such that

 (8.1) f-1(1 *i 1) is a subcomplex, H0, of K0 and *-1(f I Ho) is linear.
 By a slight abuse of language (8.1) is sometimes abbreviated to f is linear in

 I *j 1, and the words "polyhedral", "subdivision", etc. are applied in a similar
 way to sets in I * 1, (usually with quotation marks).

 The following is a direct consequence of Theorem 3.

 THEOREM 4. Let f: K-n M and L ? K. Let f I L be a locally p.l. embed-
 ding and I * I be one of the smoothing nbds for f I L. Let 0 < a < 1 and
 s > 0. Then there is a map f': K M such that (supposing d a metric on

 M),
 (8.2) f' agrees with f in M\I V I and with an optimal p.l. map in 1 e;

 and d(f, f ') < s;

 (8.3) f 'l L = f I L.

 PROOF. Let 0 < y < 1 and let K, be a subdivision of K such that if

 Ho = (f -1(1 * 17v))o

 f(H) - 1'r1. Apply Theorem 3 with H for K, LnH for L and g forf,
 where

 g ,Wp-1(fIH):HR-Y

 and (p is the radial 0-map of Rn onto itself:

 0(a; y, 1; 2) .

 If g' is the map provided by Theorem 3, then f' '-r p1g', extended by the
 identity to Mn\l * 1, is the required map.

 There is a Corollary 4A corresponding to 3A.

 3. The engulfing theorem

 9. A set of points X in Mn is p-dominated if there is a covering of X by

 open nbds I * I of Ma (the smoothing nbds) such that X n 1 is contained in
 a "polyhedral set" in g of dimension ? p.10 Clearly every subset of a p-

 dominated set is p-dominated. If for each smoothing nbd X n I +g1 itself is

 polyhedral, X is locally tame. Thus a p-dimensional locally tame set is p-

 dominated.

 The main theorem of the paper is

 THEOREM 5. Let X be closed and V open in MB. Suppose that M is p-

 connected, V is (p - 1)-connected, and that X is p-dominated, where p ?

 10 I. e., f-1 (Xn I * 1) is contained in a p-dimensional polyhedral set in Cn. Note that
 *I is the closed set I(Cn).
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 564 M. H. A. NEWMAN

 n - 3. Let X\V be compact.

 Then X can be engulfed by h V, where h is active only in some compact

 set.11

 The proof shows that the isotopy is made up of small pushes along parallel

 lines in a euclidean nbd.

 The main step in the argument, the use of induction to engulf the inter-

 section of a simplex with the set already engulfed, is taken directly from

 Stallings' proof; but the logical structure of the argument is a good deal more

 complicated. To carry through the inductive arguments the following more

 general theorem will be proved.

 THEOREM 6. Let X be closed and V open in M". Let P be a polyhedral

 set in RN, f: Pr> M a map. Let L < I, H < P, s > 0. Suppose that
 (9.1) M is p-connected, V is (p - l)-connected, dim P < p, p n - 3;

 (9.2) (X U fH)\ V is compact;

 (9.3) f IL is a locally p.l. embedding, X is p-dominated, and there is a
 smoothing system X for f I L, every member of which is a smoothing nbd
 for X.

 Then there is a map g : P M such that

 (9.4) X U gh can be engulfed by h V, h being active only in a compact
 subset of M;

 (9.5) g I L = f I L.
 (9.6) d(f, g) < a and f = g outside a compact set.

 The inert complex F, which is not engulfed, is brought in to provide a common

 domain for the various maps g, gi, etc., a technical convenience.
 It will, we believe, be clear from the proof that the nearness conditions,

 (9.6) and the compact action of hr are satisfied. They will usually be referred

 to in such general terms as d(f, g) can be made sufficiently small.

 10. The first step is to show that it is sufficient to deal with the case

 where X C V and H\f l V _ aq, where s e H,, a subdivision of H.

 LEMMA 5. It is sufficient to prove Theorem 6 assuming that X _ V.

 (This does not mean that X disappears from the theorem. It must still

 be proved that X 5 h V.)

 For each point x of M choose

 ( i ) if x e fL, a member of the smoothing system E containing x;

 (ii) if x e X\f L, a smoothing nbd of x for X, not meeting fL;

 (iii) if x e M\(X U fL) a euclidean nbd not meeting X U fL.

 See 1 3; and compare the footnote in 1 1.
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 ENGULFING THEOREM 565

 We call the members of this covering the I *i I nbds.
 Let A(m) stand for the assertion of Theorem 6, with the added condition

 (10.1) X\V is contained in the union of m |/ri -nbds.

 The fact that X\ I r1 I is closed and p-dominated shows, by a simple induc-
 tion on m, that A(1) implies A(m) for all m > 1. Lemma 5 will therefore fol-

 low from: A(O) implies A(1). Suppose X\V l +Ir1 1.

 It is given that X n I *1 *1P, where P0 is a p-complex in C"; and we
 may suppose that lPn = 0. Definef':FU P *Mby

 P111,=f, f'IP=*, .

 Let P* be formed from F U P by identifying points of L U P that have the

 same f'-image. If p is the projection p: P U Pe P f' can be factored

 through p, f' = f*p, and, if L* = p(L U P),

 PU*

 / Pl \
 ruP - -- ) M

 f * I L* is an embedding. If P0 and P0 are suitable subdivisions, the identifying
 relation f'(x) = f'(y) is a simplicial isomorphism between the parts identified,

 and therefore 1* can be regarded as a complex, p is simplicial, and f* I L* a
 locally p.I. map with *, as one of its smoothing nbds. Let X* - X\I *1 l,
 H*= p(HUP).

 The conditions of Theorem 6 are satisfied by FP, H*, X*, ,f*, and V; and
 we have X* c V. Therefore, assuming A(O) true, it follows that h and g*
 exist satisfying the smallness conditions, and such that

 g* I L* = f * i L* , X* U g*H* (- hV*.

 Let g = g*p. Then if x e L,

 g(x) = g*p(x) f*p(x) - f'(x) f(X)

 i.e., g i L = f i L. Similarly g I P = *1 I P, and therefore

 hV X* U g*H* = X* U gH U I1P

 _ (X\*?) U gH U (x nf I1 1) = X U gH .

 The smallness condition for g follows easily, and Lemma 5 is proved.

 11. Let B(q) stand for A(O) with the added condition:

 dim (H\f-1 V) q .

 Let C(q, m) stand for B(q) with the added conditions that, for some sub-

 division PF,
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 566 M. H. A. NEWMAN

 f(H'-') E V; there are at most m q-simplexes aq of H. such that faq meets
 M\ V; and none such that faq meets both X and M\ V.

 LEMMA 6. It is sufficient to prove that, for all q ! p, B(q - 1) implies
 C(q, 1).

 By Lemma 5, it is sufficient to prove B(q) for all q, and since B(- 1) is
 true we may assume B(q - 1) in doing so.

 Since fH\V is compact, a simple induction argument shows that C(q, 1)
 implies C(q, m) for all positive m.

 Therefore Lemma 6 will follow from

 (B(q - 1) & Vm C(q, m)) v B(q) .
 Suppose that the conditions of B(q) are satisfied. Let P0 be so fine a divi-

 sion of P that if P0 is the set of simplexes of Ho mapped into V by f,
 f(H\P) n x_ 0. By B(q -1) there exist h and g such that

 XUg(P U[HO\PO]q-1) j hV, g I L=f I L,

 and d(f, g) is so small that g(H\P) n x _ 0. If there are mo(> 1) q-simplexes'2
 of [HO\PO] the conditions of C(q, mo) (which we may assume true) are satisfied,
 with g and h V in place of f and V. We may infer that X U g'H can be

 engulfed, for some g' near g, with g' I L = g I L. Lemma 6 is proved.
 It has now been shown that it is sufficient to prove Theorem 6 with the

 extra assumptions:

 (11.1) X_ V

 (11.2) H\f l1 V C= cxq

 (11.3) faq n x=- o,
 where aq e Ho, a subdivision of H; and that in doing so we may assume the
 truth of B(q - 1).

 12. Let a be a point of the euclidean space containing P, such that

 aaq n P = aq. Then aaq U P is a polyhedral set, which we denote by G. By

 condition (9.1) of Theorem 6, f jjq can be extended to a map, which may also
 be called f, of ajq into V, and f I (aaq)., so defined, can be extended to a map
 f: achy M. It is convenient to add ajq to H. Condition (11.2) is then still

 satisfied, but now H naaq = (aaq) .

 In the rest of the proof the membrane f(aaq) is used as a guide in engulf-

 ing aq.

 It follows from (11.2) that aq is a principal simplex of H, which may
 therefore be called K U aq, where aq X K, ajq G K. Since the new simplex aaq

 meets L at most in aq it follows from (11.3) that f(L n aaq) n x = 0. It is

 12 If mo = 0 there is nothing to prove.
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 ENGULFING THEOREM 567

 convenient to generalize this situation slightly by taking the new (q + 1)-

 simplex of G to be any join, jq?1 =1j2 with uZj,2 C K, and 41a2 the part of
 H still to be engulfed. The whole proof is thus finally reduced to that of the

 following Lemma, and we may assume B(q -1) in proving it.

 LEMMA 7. Let MB, Xbe as in Theorem 6, and let M, V satisfy (9.1). Let

 G be a polyhedral set (in RN), f: G M a map, L < G, K U jq+1 <G. s>O.
 Suppose that

 (12.1) aq+1 = aa2, Kfn q+1 = -1j2, dim K < p;

 (12.2) X U fK ' V;

 (12.3) X nf(L n Uq+l) = 0;
 (12.4) is (9.3) of Theorem 6.

 Then the conclusions of Theorem 6 hold if H = K U (i f2

 /~ ~ g1 V//
 K K /

 FIGURE 3

 Case 1. Let a covering by I At I-nbds be chosen as in the proof of
 Lemma 5, and suppose that

 0 0

 (12.5) ffq+l C 1 I where I * I is some *i-nbd and 0 < a < 1.
 For any set E c G let Ea =f-1(T * l nE).
 By Theorem 4, there is a map f ': G M agreeing with f outside I V I,
 and with a p.1. and optimal map in * I 1a; and f' I L = f I L. The s of
 Theorem 4 is to be so chosen that f'(K) ( V. Let Go be a subdivision of G

 such that f 'I Go is linear13 and let Q0 = (Uq+l)0, a (q + 1)-complex.
 From condition (12.3) of Lemma 7 it follows that if x is a vertex of a

 principal simplex, z-, of Q0 such that f, meets X, f'(x) may be moved into
 "general position" in I * I relative to X, without infringing the condition
 f' I L = f I L; indeed we may suppose that f' itself already has the property
 (cf. Remark 1 of ? 7). If z is a principal simplex of Q0, then by Lemma 3,

 (12.6) f'(z-) n (X U f'(K UI Qq )) f'(z n (K U IQq )) U T, where Qq is

 13 For the notation Go see ? 10.
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 568 M. H. A. NEWMAN

 the q-skeleton of Q0, T is a polyhedral subset of f'(z-), and

 dim T ? dim : + dim (X U (K U IQq))- n
 <q+1+ p- n q -2,

 since p - n _ - 3.

 13. A further subdivision, G1, can be made so that K1 expands to

 K1 U Q1 through (q + 1)-simplexes*. This means that there exists a series of

 (q + 1)-complexes iQ(i = O. * * , s) such that

 - 0, 8Q1 Q= (q+

 (13.1) =Q1 U [zt+1] where it?l - 71 2

 (K U iQ) n (iq+l) =

 We make the inductive hypothesis that there is a map gi: G M such
 that

 (13.2) X U gi(K U iQq ) c hi V, for some engulfing hi; and that

 (13.3) gi Lu G =fPIL u Ga

 (13.4) d(gi, f') is sufficiently small.

 The induction starts with go = f', ho = 1.

 Let C1-P-1 Ca, Cl be the unit cubes in the (x1, ..,xn-qi)-subspace, the

 (Xnq,... ,x._1)-subspace, and the xP-axis of Rn. Then may be regarded as
 Yx Z x R, where Y= *(Cn-q-l) Z - f(Cq) and R= (C1). By a linear change
 of the coordinate system * (without change of name) it can be arranged that
 the simplex gi(iZq+l) = f P(iq+l) is a prism in Z x I:

 gi(iZq+l) = I(,yO,,y I F) , F c Z,

 with base gi(z-,2) = l(o I F) and top gi(t1T2) = (y1 I F). The functions y0, yl
 are continuous, y0 ? 'y, and y0 = 'y1 on frF.

 Let J be the projection of the set T (above) into Z, so that J c F. Let

 flJ = fl(YO, Y1 I J), P - g-'(1J),

 D = K U f iQq Q U P

 a polyhedal subset of G.

 The inductive hypothesis B(q - 1) will now be used to engulf X U gi+,D,
 where gi+1 is to be specified. First G is replaced by G *, formed by identifying

 points of D n Ga with the same gi-image. As in Lemma 5, G* is a polyhedral
 set since gi I Ga = f ' I G" is p.. . If p is the projection p G G*, and f * is
 defined by gi = f *p, L* as p(L U (D n Ga)), then f * I L* is a locally p.1. embed-

 *For example by using the theorem that every subdivision of a complex Ko has a
 further subdivision which is a stellar subdivision of Ko.
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 ENGULFING THEOREM 569

 ding. If the P, H, L, f, V, X of B(q - 1) are taken to be G*, D* (= p(D)),

 L*, f*, hiV, X, the conditions of B(q - 1) are satisfied, since X C hiV, and
 "H\f-1 V" is of dimension ? q - 1 since

 4'H\ f -1 V9" = D*\ f `-(hi V) = p(D\g, l(hi V)) p(P)

 by (13.2).

 It follows that there is a map g*: G* M such that X U g*D* can be
 engulfed by h'(hi V), and g L*L = f * L*, d(g*, f *) is sufficiently small. On

 putting gi1 = g*p, it follows, as in Lemma 5, that gi1 = f ' in L U (D n Ga),
 that X U gi+1D c h'h. V and that the smallness conditions are satisfied.

 14. What has so far been done is to engulf the subset HJ of 11F

 gi(iZq+l) - gi+,(iZq+l) Theorem 2 is now used to engulf the rest of HF. The
 function "g1" of Theorem 2 (which we hope will not be confused with the gi
 of the preceding paragraphs) is to be y1; "g." is y0 in F\J and y1 in J, and so
 is u.s.c.; u v' n i+1, where V' = h'hiV; W is any open set containing
 HF and contained in j j; and

 A = ((X U gi+,D) n I * 1a) U HiJ.

 The conditions of Theorem 2 are satisfied since 1IJ contains all the common

 points of A and HF except those in the base of HF.

 It follows that A U HF can be engulfed by hf U, where h" 1 in

 0 A\W: I 1\1 * a Y

 and can therefore be extended to M\j a 1a by the identity. Since the part of

 X U g?,1(K U I i+QK 1) in I la is A U HF C h" V', and the part in M\j * 1a is
 in X U gi+1K C V', it follows that X U gi+1(K U I +lQq 1) C h" V'.

 On putting hi, = h"h'h, the inductive step is completed and Case 1 proved.

 15. General Case. Let a covering of M" by a system of I *j -nbds be
 chosen, as in Case 1, and let F be so finely subdivided into P0 that each simplex

 v of (lq+l) is mapped by f into a set I qj 1, Let F0 be then further subdivided
 into P1 so that K1 expands through (q + 1)-simplexes to K1 U (q+1)1. If now iQ,
 and iZq+l are defined as in Case 1, and the inductive assumption again made of

 maps gi: F M and hi: M -M such that

 XU g(Ku I iQq 1) c hiV

 gi I L = f I L , d(gi, f) is small,

 the conditions of Lemma 7 are satisfied if G, K U I iQq I Y lq+l hi V, gi, L replace
 G, K, oq+?l V, f, L; in particular

 Xn gi(L n ( xn?1)) Xnf(Ln flx~) Xlnf(Ln fl = 0

 but more: iq+l (the new oq+l) is contained in a I *i 1-nbd. Therefore by Case 1,
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 570 M. H. A. NEWMAN

 X U gi -l(K U I iPlQq 1) can be engulfed for a suitable gi1.
 The inductive step is complete and the proof of Theorem 6 is finished.

 16. The following method of deducing the topological Poincare hypothesis
 (n ? 5) from Theorem 5 is due to E. Connell.

 THEOREM 7. If n ? 5 every [n/2]-connected closed topological n-manifold
 M is a topological n-sphere.

 By a well-known argument, M is (n - l)-connected.

 Suppose that M has a covering by k open topological n-cells, 1
 i 1, ... k. It is known"4 that k = 2 implies that M Sn. It is therefore suf-
 ficient to show how to reduce k by 1 if k > 3.

 There is an a < 1 such that Mc- Uk I J a. Let f =(a + 1)/2, and let
 PO be a subdivision of 1 3 into an "n-complex"15 such that I 3 K is a subcom-
 plex, and no simplex of P0 meets both I A. and I A, 1+.

 If p < n -3, M, -M\I , is a p-connected open manifold, V, = 1N11J9
 a (p - l)-connected open set in M, and X, PI I\I A , a closed locally tame
 set in M, of dimension 2 < n - 3; and XO\VO = Po \I Al is compact. By
 Theorem 5, Xc h, V, for some h, M-, M, which is the identity outside a com-
 pact subset of M,, and therefore near ? A 1+. Hence h, can be extended to - p1 ,

 by the identity, giving

 U1= hl~l~ll)= hl *1 I+1'S X1 U I 1++ I'oS = 1 P 1UI 1 I'S

 Similarly there is an open n-cell U2 in M containing i Qn-3 I U I *2 1p, where
 Qn-3 is the dual (n - 3)-complex.16

 Now"7 every point of j P 1j\(j Po U Qn-3) is on a unique segment joining a

 point of I PI I to a point of Qn-3; and 0-homeomorphisms

 0(0; X, 1 - 6; 1)

 on these segments define a self-homeomorphism ho of I 'ol The s may vary
 continuously from segment to segment. We suppose that it is constant over
 the set of segments in 1 3t, a, and tends to 1/2 as the segment tends to a posi-

 tion on 1 J3 1 . Then ho = 1 on 1 *3 lp, and so can be extended to M\I *3 1 by
 the identity. If the constant value of s in 1 23 Ja is small enough, he U, U U2 ,

 1 I3 lx. Therefore

 14 By the Mazur-Morton Brown collar theorem.
 15 Cf. 1 8. The quotation marks are omitted after this specimen.
 16 Q0-3 is the set of all simplexes of the derived complex (Pt)' that do not meet

 I Po 1
 17 Cf. Stallings' proof of the Poincare hypothesis, Bull. Amer. Math. Soc., 66 (1960),

 485.
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 ENGULFING THEOREM 571

 hoUi U U2 Dho( i1 |Jp) U 1 *2 1,8 U 1 a3 1a

 Now ho leaves x fixed if x X 1 *3 j and moves it within a simplex of P0 if
 X G 1 /3 IJB. Since no simplex meets both I +1 la and I A,

 I 1 1. '- ho(I * jt).

 Therefore Iv'1 K U I2 K U I3 K is contained in two open n-cells.

 UNIVERSITY OF WISCONSIN AND

 RICE UNIVERSITY

 (Received April 26, 1966)
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