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Setting the Scene

There is a surjection:

C := Concordance of K : S1 ⊂ S3
։

Concordance of K : S4k+1 ⊂ S4k+3, (k ≥ 1) ∼= Lk

High dimensional knots are determined by algebra,
L = Lk

∼= Lk+4.

In low dimensions this is not the case: the map C → L has
an interesting kernel.

High dimensional obstructions are then just the 1st order
obstructions, out of an infinite sequence.

This talk is about 2nd order obstructions, which I try to
understand using chain complexes and algebraic surgery
theory.
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Slice Knots

Definition
An oriented knot K : S1 ⊂ S3 is a slice knot if there is an
embedded disk D2 ⊂ D4, ∂D4 = S3, with ∂D2 = K
(Fox-Milnor 1959). This is called a slice disc.

S1 � � //

��

S3

��
D2 � � // D4

All embeddings must be locally flat.



A Second Order
Algebraic Knot
Concordance

Group

Mark Powell,
Indiana University

Knot Concordance

The 1st Order
Algebraic
Concordance
Group L

Cochran-Orr-
Teichner
Obstructions

A 2nd Order
Algebraic
Concordance
Group

An Extension

Slice Knots

S1 � � //

��

S3

��
D2

.

�

A

==||||||||
�

� B //
� p

C

!!B
BB

BB
BB

B D4

��
S4

A exists only for the unknot. C exists for every knot.
Out of 2977 knots with 12 crossings or fewer, there are 158
slice knots.

Source: http://www.indiana.edu/∼knotinfo/
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Example - Twist Knot 61

Proving that a knot is slice: a Slice Movie:

Here is a schematic of the resulting disc in D4:

saddle point

minima
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Knot Concordance Group

Definition
The knot −K is given by the mirror image knot.

Two knots K1 and K2 are concordant if K1 ♯ − K2 is slice.
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Knot Concordance Group

Definition
The knot −K is given by the mirror image knot.

Two knots K1 and K2 are concordant if K1 ♯ − K2 is slice.

Forming the quotient of the monoid of knots by factoring
out by slice knots,

C :=
(Knots, ♯)

Slice Knots
,

makes knots into a group under connected sum
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Seifert Form

Definition
The Seifert form with respect to a Seifert Surface F is a
pairing on H1(F ;Z) ∼= Z2g :

V : H1(F ;Z)× H1(F ;Z) → Z

which is defined by:

(x , y) 7→ lk(x+, y)

where lk is the linking number in S3 and x+ is the push off
of x along a positive normal direction to F .
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Seifert Form - Example
With respect to the basis of curves shown the Seifert Form is
given by:

V =

(
n 1
0 −1

)

a
b

n-1

Figure: The nth twist knot
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1st Order Algebraic Concordance

A knot is said to be Algebraically Slice if there is a basis for
the 1st homology of a Seifert Surface such that the Seifert
Form is: (

0 A
B C

)

with block matrices A,B ,C such that C = CT and A− BT

is invertible.
We can add Seifert Forms over Z by ⊕.
Setting Seifert forms as above to be zero gives us a group L,
since there is a change of basis so that A⊕−A has the form
above.

L := the Witt group of Seifert forms.
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Proposition

A slice knot K is algebraically slice.

Proof: Push a Seifert surface F into D4, and let D be a slice
disk for K . F ∪K D = ∂M3 for some M3 ⊂ D4 \ (F ∪K D).
Then

ker(H1(F ∪K D) → H1(M))

gives a zero-linking half rank summand so the matrix looks
like: (

0 A
B C

)

as required.

Corollary

There is a surjective homomorphism:

Seifert : C ։ L.
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High Dimensional Knots

A high odd dimensional knot

K : S4n+1 ⊂ S4n+3,

for n > 1, is slice if and only if it is algebraically slice: the
Whitney trick works.

C4n+1
≃
−→ L,

n > 1.
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Zero Surgery

We denote the zero-framed surgery on S3 using a knot K as
surgery data by

MK = (S3 \ νK ) ∪S1×S1 D2 × S1.

If K is a slice knot with slice disc D, and

W := D4 \ νD,

then
∂W = MK .
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Characterisation of Slice Knots

A knot K is topologically slice if and only if MK is the
boundary of a 4-manifold W which satisfies:

(i) H1(MK ;Z)
≃
−→ H1(W ;Z) ∼= Z;

(ii) H2(W ;Z) = 0;

(iii) π1(W ) = 〈〈µ〉〉.
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Derived Series

Definition
For a group G , the derived series is defined inductively as
iterated commutators:

G (0) := G ; G (i+1) := [G (i),G (i)].
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Homology Surgery

Strategy (Cappell-Shaneson): Take a 4 manifold W with the
right H1(W ;Z) but H2(W ;Z) 6= 0 and look for obstructions
to being able to extirpate this H2.
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Homology Surgery

Strategy (Cappell-Shaneson): Take a 4 manifold W with the
right H1(W ;Z) but H2(W ;Z) 6= 0 and look for obstructions
to being able to extirpate this H2.

Problem 1: in dimension 4, classes in H2(W ;Z) are typically
embedded surfaces N2, but not embedded spheres. To
detect these we must use twisted coefficients for the
algebraic obstruction, the intersection form:

λ : H2(W ;Z[π1(W )])× H2(W ;Z[π1(W )]) → Z[π1(W )].
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Homology Surgery

Strategy (Cappell-Shaneson): Take a 4 manifold W with the
right H1(W ;Z) but H2(W ;Z) 6= 0 and look for obstructions
to being able to extirpate this H2.

Problem 1: in dimension 4, classes in H2(W ;Z) are typically
embedded surfaces N2, but not embedded spheres. To
detect these we must use twisted coefficients for the
algebraic obstruction, the intersection form:

λ : H2(W ;Z[π1(W )])× H2(W ;Z[π1(W )]) → Z[π1(W )].

Problem 2: We don’t know very much about π1(W ); but we
do know a lot about representations of π1(W )/π1(W )(2).
Idea: If π1(N) ≤ π1(W )(2), then the surface looks like a
sphere to the 2nd level algebra.
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Cochran-Orr-Teichner filtration of C

Cochran-Orr-Teichner defined a filtration:

· · · ⊂ F(n.5) ⊂ F(n) ⊂ · · · ⊂ F(1) ⊂ F(0.5) ⊂ F(0) ⊂ C
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Cochran-Orr-Teichner filtration of C

Cochran-Orr-Teichner defined a filtration:

· · · ⊂ F(n.5) ⊂ F(n) ⊂ · · · ⊂ F(1) ⊂ F(0.5) ⊂ F(0) ⊂ C

Arf : C/F(0)
≃
−→ Z2.

Seifert : C/F(0.5)
≃
−→ L ∼=

⊕

∞

Z⊕
⊕

∞

Z2 ⊕
⊕

∞

Z4.
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Cochran-Orr-Teichner filtration of C

Cochran-Orr-Teichner defined a filtration:

· · · ⊂ F(n.5) ⊂ F(n) ⊂ · · · ⊂ F(1) ⊂ F(0.5) ⊂ F(0) ⊂ C

Arf : C/F(0)
≃
−→ Z2.

Seifert : C/F(0.5)
≃
−→ L ∼=

⊕

∞

Z⊕
⊕

∞

Z2 ⊕
⊕

∞

Z4.

K ∈ F(1.5) implies that the Casson-Gordon obstructions
vanish. Livingston, Jiang, Cochran-Orr-Teichner, T. Kim,
Cochran-Harvey-Leidy:

⊕

∞

Z⊕
⊕

∞

Z2 →֒ F(1)/F(1.5)
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Cochran-Orr-Teichner filtration of C

Definition
We say that knot K is (1.5)-solvable if the zero surgery MK

is the boundary of a spin 4-manifold W such that:

(i) H1(MK ;Z)
≃
−→ H1(W ;Z) ∼= Z;

(ii) H2(W ;Z) is generated by surfaces
L1, ..., Ln,D1, ...,Dn with geometric
intersection numbers

Li · Lj = 0, Li · Dj = δij ,

which satisfy:

π1(Li ) ≤ π1(W )(2), π1(Dj) ≤ π1(W )(1),

for all i , j .
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Cochran-Orr-Teichner obstructions

Theorem (Cochran-Orr-Teichner)

Let K be a (1.5)-solvable knot. Then there exists a half-rank
zero-self-linking summand P of H1(F ) such that for all
p ∈ P, there are defined representations

φp : π1(MK ) → π1(MK )/π1(MK )
(2) → Γ = Q(t)/Q[t, t−1]⋊Z,

which depend on p, such that the corresponding
Cheeger-Gromov Von Neumann ρ-invariant (an
L(2)-signature defect) satisfies.

ρ(MK , φp) = 0 ∈ R.
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Second Order Algebraic Concordance

Theorem (P.)

There exists an algebraically define group, AC2, which fits
into the following diagram of groups:

C //

��

AC2

f

��
�

�

�

�

�

�
// // L

C/F(1.5)
g

//______

::vvvvvvvvvvvvvvvvvvv
COT (1.5)

where COT (1.5) is a pointed set where the
Cochran-Orr-Teichner obstructions live. f and g are only
morphisms of pointed sets.
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The Fundamental Cobordism

X := S3 \ νK

S1 x D1
S1 x D1

S1 x S0 x I
 

X
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The Fundamental Cobordism
We consider the knot exterior as a Z-homology cobordism
from S1 × D1 to itself, so we split the boundary torus
∂X = S1 × S1, so the longitude is cut into two.
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Adding Fundamental Cobordisms

This is very useful for adding knots together.

S1 x D1
S1 x D1

S1 x S0 x I
 

X S1 x D1
X’
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An Algebraically Defined Group

Pretend to forget about topology: we define a group of
purely algebraic objects.

First, we define a monoid of chain complexes, and then take
a quotient by an algebraic concordance relation.
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A Monoid of Chain Complexes

Elements are chain equivalence classes of triples (H,C , ξ),
where H is a Z[Z]-module, C is a 3-dimensional symmetric
Poincaré triad:

C∗(S
1 × S0;Z[Z ⋉ H])

i−
//

i+
��

C∗(S
1 ×D1

−;Z[Z ⋉ H])

f−

��
C∗(S

1 × D1
+;Z[Z ⋉ H])

f+ // Y .

such that

Id⊗f± : C∗(S
1 × D1;Z) → Z⊗Z[Z⋉H] Y

are isomorphisms of Z-homology,
and

ξ : H ∼= H1(Z[Z]⊗Z[Z⋉H] Y )

is an isomorphism.
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A Monoid of Chain Complexes

Given a knot K , with

X := S3 \ νK ,

define an element of our monoid by taking:

H :=
π1(X )(1)

π1(X )(2)

and
Y := C∗(X ;π1(X )/π1(X )(2)),

noting that:

π1(X )/π1(X )(2) ∼=
π1(X )

π1(X )(1)
⋉
π1(X )(1)

π1(X )(2)
∼= Z⋉H1(X ;Z[Z]).
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Symmetric Structure

The Symmetric Structure is the chain level version of
Poincaré duality; each chain complex C carries the extra
structure of a chain map from C ∗ → C∗:

C 0 δ1 //

ϕ0

��

C 1 δ2 //

ϕ0

��

C 2

ϕ0

��

δ3 // C 3

ϕ0

��
C3

∂3
// C2

∂2
// C1

∂1
// C0

Chain level maps which induce the Poincaré duality
isomorphisms.
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The Symmetric Structure

Definition of cap product: the symmetric structure arises as
the image of a fundamental class [X , ∂X ] under a chain level
diagonal approximation map:

∆0 : C∗(X ) → C∗(X̃ )⊗Z[π1(X )] C∗(X̃ )

∼= HomZ[π1(X )](C
3−∗(X̃ ),C∗(X̃ )).
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Adding Knots Algebraically

Tensor both triads with Z[Z ⋉ (H ⊕ H†)] = Z[Z ⋉ H‡] so all
chain complexes are over the same ring.

C (S1 × D1
−)

f−

��

C (S0 × S1)
i−

oo

i+
��

i
†
+ // C (S1 × D1

+)
†

f
†
+

��

Y C (S1 × D1
+)

f+oo
f
†
−

// Y †

Glue by forming the mapping cone C (−f+, f
†
−).
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Algebraic Concordance

An object is 2nd order algebraically null-concordant if there
exists a Z[Z]-module H ′ with a homomorphism H → H ′ and
a 4-dimensional chain complex V over Z[Z ⋉ H ′] which fits
into a 4-dimensional symmetric Poincaré triad:

C (S1 × S1;Z[Z ⋉ H ′])
f U //

f

��

Z[Z ⋉ H ′]⊗ Y U

jU

��
Z[Z⋉ H ′]⊗ Y

j
// V



A Second Order
Algebraic Knot
Concordance

Group

Mark Powell,
Indiana University

Knot Concordance

The 1st Order
Algebraic
Concordance
Group L

Cochran-Orr-
Teichner
Obstructions

A 2nd Order
Algebraic
Concordance
Group

An Extension

Algebraic Concordance

An object is 2nd order algebraically null-concordant if there
exists a Z[Z]-module H ′ with a homomorphism H → H ′ and
a 4-dimensional chain complex V over Z[Z ⋉ H ′] which fits
into a 4-dimensional symmetric Poincaré triad:

C (S1 × S1;Z[Z ⋉ H ′])
f U //

f

��

Z[Z ⋉ H ′]⊗ Y U

jU

��
Z[Z⋉ H ′]⊗ Y

j
// V

where Y U corresponds to the unknot, satisfying:

1. H∗(V ;Z) ∼= H∗(S
1;Z); and

2. There exists an isomorphism ξ′ : H ′ ∼= H1(V ;Z[Z]).
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Algebraic Concordance

with a commutative diagram:

H //

ξ∼=
��

H ′

ξ′∼=
��

H1(Z[Z]⊗ Y )
j∗ // H1(Z[Z]⊗ V ).

The duality information of the symmetric structure then
limits the possible H ′ which can occur.
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Algebraic Concordance
Think of V as S3 × I minus a concordance S1 × I .

YS1 x D1 S1 x D1

S1 x D1S1 x D1

V

YU

S1 x D1 x I S1 x D1 x I
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The Group AC2

Our 2nd order algebraic concordance group AC2 is symmetric
Poincaré triads modulo 2nd order algebraic concordance.

Concordance of knots modulo F(1.5) is measured by
Z-homology cobordism of chain complexes.
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Diagram of Obstructions

Recall our diagram:

C //

��

AC2

��
�

�

�

�

�

�
// // L

C/F(1.5)
//______

::vvvvvvvvvvvvvvvvvvv
COT (1.5)
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Relation to Cochran-Orr-Teichner

Proposition

A (1.5)-solvable knot is 2nd order algebraically concordant
to the unknot.
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Relation to Cochran-Orr-Teichner

Proposition

A (1.5)-solvable knot is 2nd order algebraically concordant
to the unknot.

Idea of proof:
The algebraic conditions on the intersection form of a
(1.5)-solution 4-manifold W , with Z[π1(W )/π1(W )(2)]
coefficients, are that we have a basis of H2(W ;Z) which lifts
to a Lagrangian over

Z[π1(W )/π1(W )(2)] ∼= Z[Z ⋉ H ′]

with a dual Lagrangian over

Z[π1(W )/π1(W )(1)] ∼= Z[Z].
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Relation to Cochran-Orr-Teichner

Proposition

A (1.5)-solvable knot is 2nd order algebraically concordant
to the unknot.

Idea of proof:
The algebraic conditions on the intersection form of a
(1.5)-solution 4-manifold W , with Z[π1(W )/π1(W )(2)]
coefficients, are that we have a basis of H2(W ;Z) which lifts
to a Lagrangian over

Z[π1(W )/π1(W )(2)] ∼= Z[Z ⋉ H ′]

with a dual Lagrangian over

Z[π1(W )/π1(W )(1)] ∼= Z[Z].

H2(W ;Z) looks spherical algebraically, so make V using
algebraic surgery on the chain complex of W .



A Second Order
Algebraic Knot
Concordance

Group

Mark Powell,
Indiana University

Knot Concordance

The 1st Order
Algebraic
Concordance
Group L

Cochran-Orr-
Teichner
Obstructions

A 2nd Order
Algebraic
Concordance
Group

An Extension

Relation to Levine

Proposition

There is a surjective homomorphism AC2 ։ L.

Idea of Proof:
Use representation Z⋉ H → Z: Chain complex over Z[Z]
with symmetric structure contains sufficient data to extract
the Seifert Form.
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Relation to Cochran-Orr-Teichner

Proposition

Let Y = 0 ∈ AC2, and let Γ = Z ⋉Q(t)/Q[t, t−1] be the
Cochran-Orr-Teichner (1)-solvable group.
Then there exists a set of zero linking curves P ⊂ H1(F ;Z)
such that whenever we define a representation
φp : Z ⋉ H → Γ using p ∈ P, the ρ-invariant (which can be
defined algebraically)

ρ(Y, φp) = 0.
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Relation to Cochran-Orr-Teichner

Proposition

Let Y = 0 ∈ AC2, and let Γ = Z ⋉Q(t)/Q[t, t−1] be the
Cochran-Orr-Teichner (1)-solvable group.
Then there exists a set of zero linking curves P ⊂ H1(F ;Z)
such that whenever we define a representation
φp : Z ⋉ H → Γ using p ∈ P, the ρ-invariant (which can be
defined algebraically)

ρ(Y, φp) = 0.

Idea of Proof:
Representation defined using p ∈ P implies it extends over
Z ⋉ H ′, so over the 4-dimensional complex V .

H2(V ;Z) ∼= 0,

so there is no intersection form, therefore L(2) and ordinary
signatures vanish.
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Example
Original Casson-Gordon example, can follow
Cochran-Orr-Teichner proof of non-sliceness in the chain
complex setting:
For example, Y = the symmetric Poincaré triad associated
to the k-twist knot, k 6= 0, 2,

k

Then Y 6= 0 ∈ AC2.
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Example
Original Casson-Gordon example, can follow
Cochran-Orr-Teichner proof of non-sliceness in the chain
complex setting:
For example, Y = the symmetric Poincaré triad associated
to the k-twist knot, k 6= 0, 2,

k

Then Y 6= 0 ∈ AC2. Let p be zero linking curve on Seifert
surface: a knot J.

ρ(Y, φp) = ρ(MJ , ψ : π1(MK ) → Z).

For twist knots, J is a torus knot, and these have non-zero
L(2)-signatures:

ρ(MJ , ψ) =

∫

ω∈S1

σω.
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Outline

Knot Concordance

The 1st Order Algebraic Concordance Group L

Cochran-Orr-Teichner Obstructions

A 2nd Order Algebraic Concordance Group

An Extension
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Extension: work in progress with Kent Orr

Objects as symmetric Poincaré chain complexes C∗ over
Z[π], π finitely presented group.

Extra structure: isomorphisms

ξH : Hab
≃
−→ H1(C∗ ⊗Z[π] Z[π/H])

for all H ≤ π. A chain complex need not admit such
isomorphisms in general.
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Extension

(π,C∗, ξ) is null cobordant if there exists (Γ,D∗, ζ), Γ a
finitely presented group, D∗ a chain complex over Z[Γ],

ζK : Kab
≃
−→ H1(D∗ ⊗Z[Γ] Z[Γ/K ])

for all K ≤ Γ, with a homomorphism

ω : π → Γ

a symmetric Poincaré pair

j∗ : C∗ ⊗Z[π] Z[Γ] → D∗
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Extension

and a commutative square:

⊕
imω\Γ/H(ker(ω) ∩ φ

−1(H))ab //

��

Hab

��⊕
imω\Γ/H H1(C∗ ⊗ Z[ π

ker(ω)∩φ−1(H)
]) // H1(D∗ ⊗ Z[Γ/H])

for all subgroups H ≤ Γ.
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Extension

and a commutative square:

⊕
imω\Γ/H(ker(ω) ∩ φ

−1(H))ab //

��

Hab

��⊕
imω\Γ/H H1(C∗ ⊗ Z[ π

ker(ω)∩φ−1(H)
]) // H1(D∗ ⊗ Z[Γ/H])

for all subgroups H ≤ Γ.

We call ξ, ζ Hurewicz structures. They combine with duality
structures to severely limit the possible Γ which can occur.

We can define corresponding surgery groups LnH(G ), which
coincide with the usual L-groups in high dimensions but
which have much more information in low dimensions.
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