A Second Order Algebraic Knot Concordance Group

Mark Powell, Indiana University

6th December 2011

Setting the Scene

There is a surjection:

$$
\mathcal{C}:=\text { Concordance of } K: S^{1} \subset S^{3} \rightarrow
$$

Concordance of $K: S^{4 k+1} \subset S^{4 k+3},(k \geq 1) \cong \mathcal{L}_{k}$
High dimensional knots are determined by algebra,
$\mathcal{L}=\mathcal{L}_{k} \cong \mathcal{L}_{k+4}$.
In low dimensions this is not the case: the $\operatorname{map} \mathcal{C} \rightarrow \mathcal{L}$ has an interesting kernel.

High dimensional obstructions are then just the 1st order obstructions, out of an infinite sequence.

This talk is about 2nd order obstructions, which I try to understand using chain complexes and algebraic surgery theory.

Outline

Knot Concordance

The 1st Order Algebraic Concordance Group \mathcal{L}

Cochran-Orr-Teichner Obstructions

A 2nd Order Algebraic Concordance Group

An Extension

Outline

A Second Order Algebraic Knot Concordance Group

Mark Powell,
Indiana University

Knot Concordance
The 1st Order
Algebraic
Concordance
Group L
Cochran-Orr-
Teichner
Obstructions
A 2nd Order Algebraic
Concordance Group
A 2nd Order Algebraic Concordance Group

An Extension

Slice Knots

Definition

An oriented knot $K: S^{1} \subset S^{3}$ is a slice knot if there is an embedded disk $D^{2} \subset D^{4}, \partial D^{4}=S^{3}$, with $\partial D^{2}=K$ (Fox-Milnor 1959). This is called a slice disc.

All embeddings must be locally flat.

Slice Knots

A Second Order
A exists only for the unknot. C exists for every knot. Out of 2977 knots with 12 crossings or fewer, there are 158 slice knots.

Source: http://www.indiana.edu/~knotinfo/

Example - Twist Knot 6_{1}

Proving that a knot is slice: a Slice Movie:

Here is a schematic of the resulting disc in D^{4} :

A Second Order
Algebraic Knot Concordance Group

Mark Powell, Indiana University

Knot Concordance

The 1st Order

Algebraic
Concordance
Group \mathcal{L}
Cochran-Orr-
Teichner
Obstructions

Knot Concordance Group

Definition
The knot $-K$ is given by the mirror image knot.
Two knots K_{1} and K_{2} are concordant if $K_{1} \sharp-K_{2}$ is slice.

A Second Order
Algebraic Knot
Concordance
Group
Mark Powell, Indiana University

```
Knot Concordance
```


The 1st Order

Algebraic
Concordance

Knot Concordance Group

Definition

The knot $-K$ is given by the mirror image knot.
Two knots K_{1} and K_{2} are concordant if $K_{1} \sharp-K_{2}$ is slice.
Forming the quotient of the monoid of knots by factoring out by slice knots,

$$
\mathcal{C}:=\frac{(\text { Knots, } \sharp)}{\text { Slice Knots }},
$$

Outline

A Second Order

Algebraic Knot Concordance Group

Mark Powell,
Indiana University

Knot Concordance

The 1st Order Algebraic Concordance Group \mathcal{L}

Cochran-Orr-Teichner Obstructions

A 2nd Order Algebraic Concordance Group

Knot Concordance

The 1st Order
Algebraic
Concordance
Group \mathcal{L}
Cochran-Orr-
Teichner
Obstructions
A 2nd Order Algebraic
Concordance

An Extension

Seifert Form

Definition

The Seifert form with respect to a Seifert Surface F is a pairing on $H_{1}(F ; \mathbb{Z}) \cong \mathbb{Z}^{2 g}$:

$$
V: H_{1}(F ; \mathbb{Z}) \times H_{1}(F ; \mathbb{Z}) \rightarrow \mathbb{Z}
$$

which is defined by:

$$
(x, y) \mapsto \operatorname{lk}\left(x^{+}, y\right)
$$

The 1st Order
where Ik is the linking number in S^{3} and x^{+}is the push off of x along a positive normal direction to F.

Seifert Form - Example

With respect to the basis of curves shown the Seifert Form is given by:

$$
V=\left(\begin{array}{cc}
n & 1 \\
0 & -1
\end{array}\right)
$$

A Second Order
Algebraic Knot Concordance Group

Mark Powell, Indiana University

The 1st Order Algebraic
Concordance Group \mathcal{L}

Cochran-Orr-

Figure: The nth twist knot

1st Order Algebraic Concordance

A knot is said to be Algebraically Slice if there is a basis for the 1st homology of a Seifert Surface such that the Seifert Form is:

$$
\left(\begin{array}{ll}
0 & A \\
B & C
\end{array}\right)
$$

with block matrices A, B, C such that $C=C^{T}$ and $A-B^{T}$ is invertible.
We can add Seifert Forms over \mathbb{Z} by \oplus.
Setting Seifert forms as above to be zero gives us a group \mathcal{L}, since there is a change of basis so that $A \oplus-A$ has the form above.
$\mathcal{L}:=$ the Witt group of Seifert forms.

Proposition

A slice knot K is algebraically slice.
Proof: Push a Seifert surface F into D^{4}, and let D be a slice disk for $K . F \cup_{K} D=\partial M^{3}$ for some $M^{3} \subset D^{4} \backslash\left(F \cup_{K} D\right)$. Then

$$
\operatorname{ker}\left(H_{1}\left(F \cup_{K} D\right) \rightarrow H_{1}(M)\right)
$$

gives a zero-linking half rank summand so the matrix looks like:

$$
\left(\begin{array}{ll}
0 & A \\
B & C
\end{array}\right)
$$

as required.

Corollary

There is a surjective homomorphism:
Seifert: $\mathcal{C} \rightarrow \mathcal{L}$.

A Second Order
Algebraic Knot
Concordance Group

Mark Powell, Indiana University

The 1st Order Algebraic

High Dimensional Knots

A high odd dimensional knot

$$
K: S^{4 n+1} \subset S^{4 n+3}
$$

for $n>1$, is slice if and only if it is algebraically slice: the Whitney trick works.

$$
\mathcal{C}_{4 n+1} \xrightarrow{\simeq} \mathcal{L},
$$

A Second Order
Algebraic Knot Concordance Group

Mark Powell, Indiana University

Knot Concordance

The 1st Order Algebraic
Concordance Group \mathcal{L}

Cochran-Orr-

$$
n>1
$$

Outline

A Second Order

Algebraic Knot Concordance Group

Mark Powell,
Indiana University

Knot Concordance

Knot Concordance

The 1st Order
Algebraic
Concordance

The 1st Order Algebraic Concordance Group \mathcal{L}

Cochran-Orr-Teichner Obstructions

A 2nd Order Algebraic Concordance Group

```
Group L
```

Cochran-Orr-
Teichner
Obstructions
A 2nd Order Algebraic
Concordance Group

An Extension

Zero Surgery

We denote the zero-framed surgery on S^{3} using a knot K as surgery data by

$$
M_{K}=\left(S^{3} \backslash \nu K\right) \cup_{S^{1} \times S^{1}} D^{2} \times S^{1}
$$

If K is a slice knot with slice disc D, and

$$
W:=D^{4} \backslash \nu D
$$

then

$$
\partial W=M_{K}
$$

Characterisation of Slice Knots

A knot K is topologically slice if and only if M_{K} is the boundary of a 4-manifold W which satisfies:
(i) $H_{1}\left(M_{K} ; \mathbb{Z}\right) \xrightarrow{\simeq} H_{1}(W ; \mathbb{Z}) \cong \mathbb{Z}$;
(ii) $H_{2}(W ; \mathbb{Z})=0$;
(iii) $\pi_{1}(W)=\langle\langle\mu\rangle\rangle$.

Derived Series

A Second Order

Definition

For a group G, the derived series is defined inductively as iterated commutators:

$$
G^{(0)}:=G ; \quad G^{(i+1)}:=\left[G^{(i)}, G^{(i)}\right]
$$

Homology Surgery

Strategy (Cappell-Shaneson): Take a 4 manifold W with the right $H_{1}(W ; \mathbb{Z})$ but $H_{2}(W ; \mathbb{Z}) \neq 0$ and look for obstructions to being able to extirpate this H_{2}.

Homology Surgery

Strategy (Cappell-Shaneson): Take a 4 manifold W with the right $H_{1}(W ; \mathbb{Z})$ but $H_{2}(W ; \mathbb{Z}) \neq 0$ and look for obstructions to being able to extirpate this H_{2}.

Problem 1: in dimension 4, classes in $\mathrm{H}_{2}(W ; \mathbb{Z})$ are typically embedded surfaces N^{2}, but not embedded spheres. To detect these we must use twisted coefficients for the algebraic obstruction, the intersection form:

$$
\lambda: H_{2}\left(W ; \mathbb{Z}\left[\pi_{1}(W)\right]\right) \times H_{2}\left(W ; \mathbb{Z}\left[\pi_{1}(W)\right]\right) \rightarrow \mathbb{Z}\left[\pi_{1}(W)\right]
$$

Homology Surgery

Strategy (Cappell-Shaneson): Take a 4 manifold W with the right $H_{1}(W ; \mathbb{Z})$ but $H_{2}(W ; \mathbb{Z}) \neq 0$ and look for obstructions to being able to extirpate this H_{2}.

Problem 1: in dimension 4, classes in $H_{2}(W ; \mathbb{Z})$ are typically embedded surfaces N^{2}, but not embedded spheres. To detect these we must use twisted coefficients for the algebraic obstruction, the intersection form:

$$
\lambda: H_{2}\left(W ; \mathbb{Z}\left[\pi_{1}(W)\right]\right) \times H_{2}\left(W ; \mathbb{Z}\left[\pi_{1}(W)\right]\right) \rightarrow \mathbb{Z}\left[\pi_{1}(W)\right] .
$$

Problem 2: We don't know very much about $\pi_{1}(W)$; but we do know a lot about representations of $\pi_{1}(W) / \pi_{1}(W)^{(2)}$. Idea: If $\pi_{1}(N) \leq \pi_{1}(W)^{(2)}$, then the surface looks like a sphere to the 2nd level algebra.

Mark Powell, Indiana University

Cochran-Orr-Teichner filtration of \mathcal{C}

Cochran-Orr-Teichner defined a filtration:
$\cdots \subset \mathcal{F}_{(n .5)} \subset \mathcal{F}_{(n)} \subset \cdots \subset \mathcal{F}_{(1)} \subset \mathcal{F}_{(0.5)} \subset \mathcal{F}_{(0)} \subset \mathcal{C}$

A Second Order Algebraic Knot Concordance Group

Cochran-Orr-Teichner filtration of \mathcal{C}

Cochran-Orr-Teichner defined a filtration:

$$
\cdots \subset \mathcal{F}_{(n .5)} \subset \mathcal{F}_{(n)} \subset \cdots \subset \mathcal{F}_{(1)} \subset \mathcal{F}_{(0.5)} \subset \mathcal{F}_{(0)} \subset \mathcal{C}
$$

$$
\text { Arf: } \mathcal{C} / \mathcal{F}_{(0)} \xlongequal{\simeq} \mathbb{Z}_{2} \text {. }
$$

Seifert: $\mathcal{C} / \mathcal{F}_{(0.5)} \xrightarrow{\simeq} \mathcal{L} \cong \bigoplus_{\infty} \mathbb{Z} \oplus \bigoplus_{\infty} \mathbb{Z}_{2} \oplus \bigoplus_{\infty} \mathbb{Z}_{4}$.

Algebraic Knot Concordance Group

Mark Powell, Indiana University

Cochran-Orr-Teichner filtration of \mathcal{C}

Cochran-Orr-Teichner defined a filtration:

$$
\cdots \subset \mathcal{F}_{(n .5)} \subset \mathcal{F}_{(n)} \subset \cdots \subset \mathcal{F}_{(1)} \subset \mathcal{F}_{(0.5)} \subset \mathcal{F}_{(0)} \subset \mathcal{C}
$$

$$
\text { Arf: } \mathcal{C} / \mathcal{F}_{(0)} \xlongequal{\simeq} \mathbb{Z}_{2} \text {. }
$$

Seifert: $\mathcal{C} / \mathcal{F}_{(0.5)} \xrightarrow{\simeq} \mathcal{L} \cong \bigoplus_{\infty} \mathbb{Z} \oplus \bigoplus_{\infty} \mathbb{Z}_{2} \oplus \bigoplus_{\infty} \mathbb{Z}_{4}$.
$K \in \mathcal{F}_{(1.5)}$ implies that the Casson-Gordon obstructions vanish. Livingston, Jiang, Cochran-Orr-Teichner, T. Kim, Cochran-Harvey-Leidy:

$$
\bigoplus_{\infty} \mathbb{Z} \oplus \bigoplus_{\infty} \mathbb{Z}_{2} \hookrightarrow \mathcal{F}_{(1)} / \mathcal{F}_{(1.5)}
$$

Cochran-Orr-Teichner filtration of \mathcal{C}

Definition

We say that knot K is (1.5)-solvable if the zero surgery M_{K} is the boundary of a spin 4-manifold W such that:
(i) $H_{1}\left(M_{K} ; \mathbb{Z}\right) \xrightarrow{\simeq} H_{1}(W ; \mathbb{Z}) \cong \mathbb{Z}$;
(ii) $H_{2}(W ; \mathbb{Z})$ is generated by surfaces $L_{1}, \ldots, L_{n}, D_{1}, \ldots, D_{n}$ with geometric intersection numbers

$$
L_{i} \cdot L_{j}=0, L_{i} \cdot D_{j}=\delta_{i j}
$$

which satisfy:

$$
\pi_{1}\left(L_{i}\right) \leq \pi_{1}(W)^{(2)}, \pi_{1}\left(D_{j}\right) \leq \pi_{1}(W)^{(1)}
$$

for all i, j.

A Second Order
Algebraic Knot Concordance Group

Mark Powell, Indiana University not Concordance The Ist Orde

Group \mathcal{L}
Cochran-Orr-
Teichner
Obstructions

Cochran-Orr-Teichner obstructions

Theorem (Cochran-Orr-Teichner)
Let K be a (1.5)-solvable knot. Then there exists a half-rank zero-self-linking summand P of $H_{1}(F)$ such that for all $p \in P$, there are defined representations
$\phi_{p}: \pi_{1}\left(M_{K}\right) \rightarrow \pi_{1}\left(M_{K}\right) / \pi_{1}\left(M_{K}\right)^{(2)} \rightarrow \Gamma=\mathbb{Q}(t) / \mathbb{Q}\left[t, t^{-1}\right] \rtimes \mathbb{Z}$,
which depend on p, such that the corresponding Cheeger-Gromov Von Neumann ρ-invariant (an $L^{(2)}$-signature defect) satisfies.

$$
\rho\left(M_{K}, \phi_{p}\right)=0 \in \mathbb{R}
$$

Outline

A Second Order Algebraic Knot Concordance Group

Mark Powell,
Indiana University

Knot Concordance

The 1st Order
Algebraic
Concordance
Group \mathcal{L}
Cochran-Orr-
Teichner
Obstructions
A 2nd Order Algebraic
Concordance
Group
An Extension

An Extension

Second Order Algebraic Concordance

Theorem (P.)

There exists an algebraically define group, $\mathcal{A C}_{2}$, which fits into the following diagram of groups:

where $\mathcal{C O} \mathcal{T}_{(1.5)}$ is a pointed set where the Cochran-Orr-Teichner obstructions live. f and g are only morphisms of pointed sets.

A Second Order
Algebraic Knot
Concordance Group

The Fundamental Cobordism

$$
x:=S^{3} \backslash \nu K
$$

A Second Order
Algebraic Knot Concordance Group

Mark Powell, Indiana University

Knot Concordance
The 1st Order
Algebraic
Concordance
Group \mathcal{L}
Cochran-Orr-
Teichner
Obstructions
A 2nd Order Algebraic
Concordance Group

An Extension

The Fundamental Cobordism

We consider the knot exterior as a \mathbb{Z}-homology cobordism from $S^{1} \times D^{1}$ to itself, so we split the boundary torus $\partial X=S^{1} \times S^{1}$, so the longitude is cut into two.

A Second Order

Mark Powell, Indiana University

Adding Fundamental Cobordisms

This is very useful for adding knots together.

A Second Order
Algebraic Knot Concordance Group

Mark Powell, Indiana University

Knot Concordance
The Ist Order
Algebraic
Concordance
Group \mathcal{L}
Cochran-Orr-
Teichner
Obstructions
A 2nd Order Algebraic
Concordance Group

An Extension

An Algebraically Defined Group

Pretend to forget about topology: we define a group of purely algebraic objects.

First, we define a monoid of chain complexes, and then take a quotient by an algebraic concordance relation.

A Second Order
Algebraic Knot Concordance Group

Mark Powell, Indiana University

A Monoid of Chain Complexes

Elements are chain equivalence classes of triples (H, C, ξ), where H is a $\mathbb{Z}[\mathbb{Z}]$-module, C is a 3-dimensional symmetric Poincaré triad:

$$
\begin{gathered}
C_{*}\left(S^{1} \times S^{0} ; \mathbb{Z}[\mathbb{Z} \ltimes H]\right) \xrightarrow{i_{-}} C_{*}\left(S^{1} \times D_{-}^{1} ; \mathbb{Z}[\mathbb{Z} \ltimes H]\right) \\
\\
{ }_{i_{+}} \| \\
C_{*}\left(S^{1} \times D_{+}^{1} ; \mathbb{Z}[\mathbb{Z} \ltimes H]\right) \xrightarrow{f_{+}}
\end{gathered}
$$

such that

$$
\text { Id } \otimes f_{ \pm}: C_{*}\left(S^{1} \times D^{1} ; \mathbb{Z}\right) \rightarrow \mathbb{Z} \otimes_{\mathbb{Z}[\mathbb{Z} \times H]} Y
$$

are isomorphisms of \mathbb{Z}-homology, and

$$
\xi: H \cong H_{1}\left(\mathbb{Z}[\mathbb{Z}] \otimes_{\mathbb{Z}[\mathbb{Z} \propto H]} Y\right)
$$

is an isomorphism.

A Monoid of Chain Complexes

Given a knot K, with

$$
X:=S^{3} \backslash \nu K
$$

define an element of our monoid by taking:

$$
H:=\frac{\pi_{1}(X)^{(1)}}{\pi_{1}(X)^{(2)}}
$$

and

$$
Y:=C_{*}\left(X ; \pi_{1}(X) / \pi_{1}(X)^{(2)}\right),
$$

noting that:

$$
\pi_{1}(X) / \pi_{1}(X)^{(2)} \cong \frac{\pi_{1}(X)}{\pi_{1}(X)^{(1)}} \ltimes \frac{\pi_{1}(X)^{(1)}}{\pi_{1}(X)^{(2)}} \cong \mathbb{Z} \ltimes H_{1}(X ; \mathbb{Z}[\mathbb{Z}])
$$

Symmetric Structure

The Symmetric Structure is the chain level version of Poincaré duality; each chain complex C carries the extra structure of a chain map from $C^{*} \rightarrow C_{*}$:

Chain level maps which induce the Poincaré duality isomorphisms.

The Symmetric Structure

Definition of cap product: the symmetric structure arises as the image of a fundamental class $[X, \partial X]$ under a chain level diagonal approximation map:

$$
\begin{aligned}
\Delta_{0} & : C_{*}(X) \rightarrow C_{*}(\widetilde{X}) \otimes_{\mathbb{Z}\left[\pi_{1}(X)\right]} C_{*}(\widetilde{X}) \\
& \cong \operatorname{Hom}_{\mathbb{Z}\left[\pi_{1}(X)\right]}\left(C^{3-*}(\widetilde{X}), C_{*}(\widetilde{X})\right)
\end{aligned}
$$

Knot Concordance

Adding Knots Algebraically

A Second Order
Algebraic Knot Concordance Group

Mark Powell, Indiana University

Tensor both triads with $\mathbb{Z}\left[\mathbb{Z} \ltimes\left(H \oplus H^{\dagger}\right)\right]=\mathbb{Z}\left[\mathbb{Z} \ltimes H^{\ddagger}\right]$ so all chain complexes are over the same ring.

$$
\begin{gathered}
C\left(S^{1} \times D_{-}^{1}\right) \stackrel{i_{-}}{\longleftrightarrow} C\left(S^{0} \times S^{1}\right) \xrightarrow{i_{+}^{\dagger}} C\left(S^{1} \times D_{+}^{1}\right)^{\dagger} \\
\downarrow_{f_{-}}^{f_{-}} \\
Y \stackrel{f_{+}}{\longleftrightarrow} C\left(S^{1} \times D_{+}^{1}\right) \xrightarrow{f_{-}^{\dagger}} \begin{array}{|l}
f_{+}^{\dagger} \\
Y
\end{array}
\end{gathered}
$$

Glue by forming the mapping cone $\mathscr{C}\left(-f_{+}, f_{-}^{\dagger}\right)$.

Algebraic Concordance

An object is 2nd order algebraically null-concordant if there exists a $\mathbb{Z}[\mathbb{Z}]$-module H^{\prime} with a homomorphism $H \rightarrow H^{\prime}$ and a 4-dimensional chain complex V over $\mathbb{Z}\left[\mathbb{Z} \ltimes H^{\prime}\right]$ which fits into a 4-dimensional symmetric Poincaré triad:

$$
\begin{aligned}
& C\left(S^{1} \times S^{1} ; \mathbb{Z}\left[\mathbb{Z} \ltimes H^{\prime}\right]\right) \xrightarrow{f^{U}} \mathbb{Z}\left[\mathbb{Z} \ltimes H^{\prime}\right] \otimes Y^{U}
\end{aligned}
$$

Algebraic Concordance

An object is 2nd order algebraically null-concordant if there exists a $\mathbb{Z}[\mathbb{Z}]$-module H^{\prime} with a homomorphism $H \rightarrow H^{\prime}$ and a 4-dimensional chain complex V over $\mathbb{Z}\left[\mathbb{Z} \ltimes H^{\prime}\right]$ which fits into a 4-dimensional symmetric Poincaré triad:

$$
\begin{gathered}
C\left(S^{1} \times S^{1} ; \mathbb{Z}\left[\mathbb{Z} \ltimes H^{\prime}\right]\right) \xrightarrow{f^{U}} \mathbb{Z}\left[\mathbb{Z} \ltimes H^{\prime}\right] \otimes Y^{U} \\
\left.\downarrow_{f}\right|^{j^{U}} \\
\mathbb{Z}\left[\mathbb{Z} \ltimes H^{\prime}\right] \otimes Y \xrightarrow{j} \quad V
\end{gathered}
$$

where Y^{U} corresponds to the unknot, satisfying:

$$
\text { 1. } H_{*}(V ; \mathbb{Z}) \cong H_{*}\left(S^{1} ; \mathbb{Z}\right) \text {; and }
$$

2. There exists an isomorphism $\xi^{\prime}: H^{\prime} \cong H_{1}(V ; \mathbb{Z}[\mathbb{Z}])$.

Algebraic Concordance

with a commutative diagram:

\[

\]

The duality information of the symmetric structure then limits the possible H^{\prime} which can occur.

Algebraic Concordance

Think of V as $S^{3} \times I$ minus a concordance $S^{1} \times I$.

A Second Order
Algebraic Knot Concordance Group

Mark Powell, Indiana University

Knot Concordance

The 1st Order
Algebraic
Concordance
Group \mathcal{L}
Cochran-Orr-
Teichner
Obstructions
A 2nd Order Algebraic
Concordance Group

The Group $\mathcal{A C}_{2}$

Our 2nd order algebraic concordance group $\mathcal{A C}_{2}$ is symmetric Poincaré triads modulo 2 nd order algebraic concordance.

Concordance of knots modulo $\mathcal{F}_{(1.5)}$ is measured by \mathbb{Z}-homology cobordism of chain complexes.

A Second Order
Algebraic Knot Concordance Group

Mark Powell, Indiana University

Diagram of Obstructions

Recall our diagram:

C

Knot Concordance

The 1st Order
Algebraic
Concordance
Group \mathcal{L}
Cochran-Orr-
Teichner
Obstructions
A 2nd Order Algebraic
Concordance
Group
An Extension

Relation to Cochran-Orr-Teichner

Proposition

A (1.5)-solvable knot is 2nd order algebraically concordant to the unknot.

A Second Order Algebraic Knot Concordance Group

Cochran-Orr-

Teichner
Obstructions
A 2nd Order Algebraic
Concordance
Group
An Extension

Relation to Cochran-Orr-Teichner

Proposition

A (1.5)-solvable knot is 2nd order algebraically concordant to the unknot.
Idea of proof:
The algebraic conditions on the intersection form of a (1.5)-solution 4-manifold W, with $\mathbb{Z}\left[\pi_{1}(W) / \pi_{1}(W){ }^{(2)}\right]$ coefficients, are that we have a basis of $H_{2}(W ; \mathbb{Z})$ which lifts to a Lagrangian over

$$
\mathbb{Z}\left[\pi_{1}(W) / \pi_{1}(W)^{(2)}\right] \cong \mathbb{Z}\left[\mathbb{Z} \ltimes H^{\prime}\right]
$$

with a dual Lagrangian over

$$
\mathbb{Z}\left[\pi_{1}(W) / \pi_{1}(W)^{(1)}\right] \cong \mathbb{Z}[\mathbb{Z}]
$$

Relation to Cochran-Orr-Teichner

Proposition

A (1.5)-solvable knot is 2nd order algebraically concordant to the unknot.
Idea of proof:
The algebraic conditions on the intersection form of a (1.5)-solution 4-manifold W, with $\mathbb{Z}\left[\pi_{1}(W) / \pi_{1}(W)^{(2)}\right]$ coefficients, are that we have a basis of $H_{2}(W ; \mathbb{Z})$ which lifts to a Lagrangian over

$$
\mathbb{Z}\left[\pi_{1}(W) / \pi_{1}(W)^{(2)}\right] \cong \mathbb{Z}\left[\mathbb{Z} \ltimes H^{\prime}\right]
$$

with a dual Lagrangian over

$$
\mathbb{Z}\left[\pi_{1}(W) / \pi_{1}(W)^{(1)}\right] \cong \mathbb{Z}[\mathbb{Z}]
$$

$H_{2}(W ; \mathbb{Z})$ looks spherical algebraically, so make V using algebraic surgery on the chain complex of W.

Relation to Levine

Proposition

There is a surjective homomorphism $\mathcal{A C}_{2} \rightarrow \mathcal{L}$.
Idea of Proof:
Use representation $\mathbb{Z} \ltimes H \rightarrow \mathbb{Z}$: Chain complex over $\mathbb{Z}[\mathbb{Z}]$
with symmetric structure contains sufficient data to extract the Seifert Form.

A Second Order
Algebraic Knot Concordance Group

Mark Powell, Indiana University

Knot Concordance

Algebraic
Concordance

Relation to Cochran-Orr-Teichner

Proposition
Let $\mathcal{Y}=0 \in \mathcal{A C}_{2}$, and let $\Gamma=\mathbb{Z} \ltimes \mathbb{Q}(t) / \mathbb{Q}\left[t, t^{-1}\right]$ be the Cochran-Orr-Teichner (1)-solvable group.
Then there exists a set of zero linking curves $P \subset H_{1}(F ; \mathbb{Z})$ such that whenever we define a representation $\phi_{p}: \mathbb{Z} \ltimes H \rightarrow \Gamma$ using $p \in P$, the ρ-invariant (which can be defined algebraically)

$$
\rho\left(\mathcal{Y}, \phi_{p}\right)=0 .
$$

A Second Order
Algebraic Knot

Relation to Cochran-Orr-Teichner

Proposition

Let $\mathcal{Y}=0 \in \mathcal{A C}_{2}$, and let $\Gamma=\mathbb{Z} \ltimes \mathbb{Q}(t) / \mathbb{Q}\left[t, t^{-1}\right]$ be the Cochran-Orr-Teichner (1)-solvable group.
Then there exists a set of zero linking curves $P \subset H_{1}(F ; \mathbb{Z})$ such that whenever we define a representation $\phi_{p}: \mathbb{Z} \ltimes H \rightarrow \Gamma$ using $p \in P$, the ρ-invariant (which can be defined algebraically)

$$
\rho\left(\mathcal{Y}, \phi_{p}\right)=0 .
$$

Idea of Proof:
Representation defined using $p \in P$ implies it extends over $\mathbb{Z} \ltimes H^{\prime}$, so over the 4-dimensional complex V.

$$
H_{2}(V ; \mathbb{Z}) \cong 0,
$$

so there is no intersection form, therefore $L^{(2)}$ and ordinary signatures vanish.

Example

Original Casson-Gordon example, can follow
Cochran-Orr-Teichner proof of non-sliceness in the chain complex setting:
For example, $\mathcal{Y}=$ the symmetric Poincaré triad associated to the k-twist knot, $k \neq 0,2$,

Then $\mathcal{Y} \neq 0 \in \mathcal{A C}_{2}$.

A Second Order
Algebraic Knot Concordance Group

Mark Powell, Indiana University

Example

Original Casson-Gordon example, can follow
Cochran-Orr-Teichner proof of non-sliceness in the chain complex setting:
For example, $\mathcal{Y}=$ the symmetric Poincaré triad associated to the k-twist knot, $k \neq 0,2$,

Then $\mathcal{Y} \neq 0 \in \mathcal{A C}_{2}$. Let p be zero linking curve on Seifert surface: a knot J.

$$
\rho\left(\mathcal{Y}, \phi_{p}\right)=\rho\left(M_{J}, \psi: \pi_{1}\left(M_{K}\right) \rightarrow \mathbb{Z}\right)
$$

For twist knots, J is a torus knot, and these have non-zero $L^{(2)}$-signatures:

$$
\rho\left(M_{J}, \psi\right)=\int_{\omega \in S^{\prime}} \sigma_{\omega} .
$$

Outline

A Second Order

 Algebraic Knot Concordance GroupMark Powell,
Indiana University

Knot Concordance

Knot Concordance

The 1st Order
Algebraic
Concordance
Group \mathcal{L}
Cochran-Orr-
Teichner
Obstructions
A 2nd Order Algebraic
Concordance Group

An Extension

An Extension

Extension: work in progress with Kent Orr

Objects as symmetric Poincaré chain complexes C_{*} over $\mathbb{Z}[\pi], \pi$ finitely presented group.

Extra structure: isomorphisms

$$
\xi_{H}: H_{a b} \xrightarrow{\simeq} H_{1}\left(C_{*} \otimes_{\mathbb{Z}[\pi]} \mathbb{Z}[\pi / H]\right)
$$

for all $H \leq \pi$. A chain complex need not admit such isomorphisms in general.

A Second Order

Extension

$\left(\pi, C_{*}, \xi\right)$ is null cobordant if there exists $\left(\Gamma, D_{*}, \zeta\right), \Gamma$ a finitely presented group, D_{*} a chain complex over $\mathbb{Z}[\Gamma]$,

$$
\zeta_{K}: K_{a b} \xrightarrow{\simeq} H_{1}\left(D_{*} \otimes_{\mathbb{Z}[\Gamma]} \mathbb{Z}[\Gamma / K]\right)
$$

for all $K \leq \Gamma$, with a homomorphism

$$
\omega: \pi \rightarrow \Gamma
$$

a symmetric Poincaré pair

$$
j_{*}: C_{*} \otimes_{\mathbb{Z}[\pi]} \mathbb{Z}[\Gamma] \rightarrow D_{*}
$$

Extension

and a commutative square:
$\bigoplus_{\mathrm{im} \omega \backslash \Gamma / H}\left(\operatorname{ker}(\omega) \cap \phi^{-1}(H)\right)_{a b} \longrightarrow H_{a b}$
$\bigoplus_{\operatorname{im} \omega \backslash \Gamma / H} H_{1}\left(C_{*} \otimes \mathbb{Z}\left[\frac{\pi}{\operatorname{ker}(\omega) \cap \phi^{-1}(H)}\right]\right) \longrightarrow H_{1}\left(D_{*} \otimes \mathbb{Z}[\Gamma / H]\right)$
for all subgroups $H \leq \Gamma$.

A Second Order
Algebraic Knot Concordance Group

Mark Powell, Indiana University

Knot Concordance
The 1st Outer
Algebraic
Concordance Group \mathcal{L}

Cochran-Orr-

Teichner
Obstructions
A 2nd Order
Algebraic
Concordance
Group
An Extension

Extension

and a commutative square:

$$
\begin{gathered}
\bigoplus_{\mathrm{im} \omega \backslash \Gamma / H}\left(\operatorname{ker}(\omega) \cap \phi^{-1}(H)\right)_{a b} \longrightarrow H_{a b} \\
\bigoplus_{\text {im } \omega \backslash \Gamma / H} H_{1}\left(C_{*} \otimes \mathbb{Z}\left[\frac{\pi}{\operatorname{ker}(\omega) \cap \phi^{-1}(H)}\right]\right) \longrightarrow H_{1}\left(D_{*} \otimes \mathbb{Z}[\Gamma / H]\right)
\end{gathered}
$$

for all subgroups $H \leq \Gamma$.
We call ξ, ζ Hurewicz structures. They combine with duality structures to severely limit the possible Γ which can occur.

We can define corresponding surgery groups $L_{H}^{n}(G)$, which coincide with the usual L-groups in high dimensions but which have much more information in low dimensions.

