A Second Order Algebraic Knot Concordance Group

Mark Powell, Indiana University

6th December 2011

A Second Order Algebraic Knot Concordance Group

Mark Powell, Indiana University

Knot Concordance

The 1st Order Algebraic Concordance Group *L*

Cochran-Orr-Teichner Obstructions

A 2nd Order Algebraic Concordance Group

An Extension

・ロト ・ 画 ・ ・ 画 ・ ・ 画 ・ ・ 日 ・

Setting the Scene

There is a surjection:

 $\mathcal{C} :=$ Concordance of $K \colon S^1 \subset S^3 \twoheadrightarrow$

Concordance of $K : S^{4k+1} \subset S^{4k+3}, (k \ge 1) \cong \mathcal{L}_k$

High dimensional knots are determined by algebra, $\mathcal{L} = \mathcal{L}_k \cong \mathcal{L}_{k+4}.$

In low dimensions this is not the case: the map $\mathcal{C}\to\mathcal{L}$ has an interesting kernel.

High dimensional obstructions are then just the 1st order obstructions, out of an infinite sequence.

This talk is about 2nd order obstructions, which I try to understand using chain complexes and algebraic surgery theory. A Second Order Algebraic Knot Concordance Group

Mark Powell, Indiana University

Knot Concordance

The 1st Order Algebraic Concordance Group *L*

Cochran-Orr-Teichner Obstructions

A 2nd Order Algebraic Concordance Group

Outline

Knot Concordance

The 1st Order Algebraic Concordance Group $\mathcal L$

Cochran-Orr-Teichner Obstructions

A 2nd Order Algebraic Concordance Group

An Extension

A Second Order Algebraic Knot Concordance Group

Mark Powell, Indiana University

Knot Concordance

The 1st Order Algebraic Concordance Group \mathcal{L}

Cochran-Orr-Teichner Obstructions

A 2nd Order Algebraic Concordance Group

An Extension

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへ⊙

Outline

Knot Concordance

The 1st Order Algebraic Concordance Group \mathcal{L}

Cochran-Orr-Teichner Obstructions

A 2nd Order Algebraic Concordance Group

An Extension

A Second Order Algebraic Knot Concordance Group

Mark Powell, Indiana University

Knot Concordance

The 1st Order Algebraic Concordance Group *L*

Cochran-Orr-Teichner Obstructions

A 2nd Order Algebraic Concordance Group

An Extension

Slice Knots

Definition

An oriented knot $K: S^1 \subset S^3$ is a *slice knot* if there is an embedded disk $D^2 \subset D^4$, $\partial D^4 = S^3$, with $\partial D^2 = K$ (Fox-Milnor 1959). This is called a slice disc.

$$\begin{array}{c} S^{1} & \longrightarrow S^{3} \\ \downarrow & & \downarrow \\ D^{2} & \longrightarrow D^{4} \end{array}$$

All embeddings must be locally flat.

A Second Order Algebraic Knot Concordance Group

Mark Powell, Indiana University

Knot Concordance

The 1st Order Algebraic Concordance Group *L*

Cochran-Orr-Teichner Obstructions

A 2nd Order Algebraic Concordance Group

An Extension

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨー のへで

Slice Knots

В

A exists only for the unknot. C exists for every knot. Out of 2977 knots with 12 crossings or fewer, there are 158 slice knots.

Source: http://www.indiana.edu/~knotinfo/

A Second Order Algebraic Knot Concordance Group

Mark Powell. Indiana University

Knot Concordance

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨー のへで

Example - Twist Knot 61

Proving that a knot is slice: a Slice Movie:

Here is a schematic of the resulting disc in D^4 :

A Second Order Algebraic Knot Concordance Group

Mark Powell, Indiana University

Knot Concordance

The 1st Order Algebraic Concordance Group $\mathcal L$

Cochran-Orr-Teichner Obstructions

A 2nd Order Algebraic Concordance Group

An Extension

Knot Concordance Group

Definition

The knot -K is given by the mirror image knot.

Two knots K_1 and K_2 are *concordant* if $K_1 \ddagger - K_2$ is slice.

A Second Order Algebraic Knot Concordance Group

Mark Powell, Indiana University

Knot Concordance

The 1st Order Algebraic Concordance Group *L*

Cochran-Orr-Teichner Obstructions

A 2nd Order Algebraic Concordance Group

An Extension

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Knot Concordance Group

Definition

The knot -K is given by the mirror image knot.

Two knots K_1 and K_2 are *concordant* if $K_1 \ddagger - K_2$ is slice.

Forming the quotient of the monoid of knots by factoring out by slice knots,

$$\mathcal{C} := rac{(\mathsf{Knots}, \sharp)}{\mathsf{Slice Knots}},$$

makes knots into a group under connected sum

A Second Order Algebraic Knot Concordance Group

Mark Powell, Indiana University

Knot Concordance

The 1st Order Algebraic Concordance Group *L*

Cochran-Orr-Teichner Obstructions

A 2nd Order Algebraic Concordance Group

Outline

Knot Concordance

The 1st Order Algebraic Concordance Group $\mathcal L$

Cochran-Orr-Teichner Obstructions

A 2nd Order Algebraic Concordance Group

An Extension

A Second Order Algebraic Knot Concordance Group

Mark Powell, Indiana University

Knot Concordance

The 1st Order Algebraic Concordance Group \mathcal{L}

Cochran-Orr-Teichner Obstructions

A 2nd Order Algebraic Concordance Group

An Extension

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Seifert Form

Definition

The Seifert form with respect to a Seifert Surface F is a pairing on $H_1(F; \mathbb{Z}) \cong \mathbb{Z}^{2g}$:

$$V \colon H_1(F;\mathbb{Z}) \times H_1(F;\mathbb{Z}) \to \mathbb{Z}$$

which is defined by:

$$(x,y)\mapsto {\sf lk}(x^+,y)$$

where lk is the linking number in S^3 and x^+ is the push off of x along a positive normal direction to F.

A Second Order Algebraic Knot Concordance Group

Mark Powell, Indiana University

Knot Concordance

The 1st Order Algebraic Concordance Group \mathcal{L}

Cochran-Orr-Teichner Obstructions

A 2nd Order Algebraic Concordance Group

Seifert Form - Example

With respect to the basis of curves shown the Seifert Form is given by:

$$V = \left(\begin{array}{rr} n & 1 \\ 0 & -1 \end{array}\right)$$

A Second Order Algebraic Knot Concordance Group

Mark Powell, Indiana University

Knot Concordance

The 1st Order Algebraic Concordance Group \mathcal{L}

Cochran-Orr-Teichner Obstructions

A 2nd Order Algebraic Concordance Group

An Extension

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

1st Order Algebraic Concordance

A knot is said to be *Algebraically Slice* if there is a basis for the 1st homology of a Seifert Surface such that the Seifert Form is:

 $\left(\begin{array}{cc} 0 & A \\ B & C \end{array}\right)$

with block matrices A, B, C such that $C = C^T$ and $A - B^T$ is invertible.

We can add Seifert Forms over \mathbb{Z} by \oplus .

Setting Seifert forms as above to be zero gives us a group \mathcal{L} , since there is a change of basis so that $A \oplus -A$ has the form above.

 $\mathcal{L} :=$ the Witt group of Seifert forms.

A Second Order Algebraic Knot Concordance Group

Mark Powell, Indiana University

Knot Concordance

The 1st Order Algebraic Concordance Group \mathcal{L}

Cochran-Orr-Teichner Obstructions

A 2nd Order Algebraic Concordance Group

Proposition

A slice knot K is algebraically slice.

Proof: Push a Seifert surface F into D^4 , and let D be a slice disk for K. $F \cup_K D = \partial M^3$ for some $M^3 \subset D^4 \setminus (F \cup_K D)$. Then

 $\ker(H_1(F\cup_K D)\to H_1(M))$

gives a zero-linking half rank summand so the matrix looks like:

$$\left(\begin{array}{cc} 0 & A \\ B & C \end{array}\right)$$

as required.

Corollary

There is a surjective homomorphism:

Seifert:
$$\mathcal{C} \twoheadrightarrow \mathcal{L}$$
.

A Second Order Algebraic Knot Concordance Group

Mark Powell, Indiana University

Knot Concordance

The 1st Order Algebraic Concordance Group \mathcal{L}

Cochran-Orr-Teichner Obstructions

A 2nd Order Algebraic Concordance Group

An Extension

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへ⊙

High Dimensional Knots

A high odd dimensional knot

$$K\colon S^{4n+1}\subset S^{4n+3}$$

for n > 1, is slice if and only if it is algebraically slice: the Whitney trick works.

$$\mathcal{C}_{4n+1} \xrightarrow{\simeq} \mathcal{L},$$

n > 1.

A Second Order Algebraic Knot Concordance Group

Mark Powell, Indiana University

Knot Concordance

The 1st Order Algebraic Concordance Group \mathcal{L}

Cochran-Orr-Teichner Obstructions

A 2nd Order Algebraic Concordance Group

Outline

Knot Concordance

The 1st Order Algebraic Concordance Group $\mathcal L$

Cochran-Orr-Teichner Obstructions

A 2nd Order Algebraic Concordance Group

An Extension

A Second Order Algebraic Knot Concordance Group

Mark Powell, Indiana University

Knot Concordance

The 1st Order Algebraic Concordance Group \mathcal{L}

Cochran-Orr-Teichner Obstructions

A 2nd Order Algebraic Concordance Group

An Extension

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへ⊙

Zero Surgery

We denote the zero-framed surgery on S^3 using a knot K as surgery data by

$$M_{\mathcal{K}} = (S^3 \setminus \nu \mathcal{K}) \cup_{S^1 \times S^1} D^2 \times S^1.$$

If K is a slice knot with slice disc D, and

$$W:=D^4\setminus\nu D,$$

then

$$\partial W = M_{\mathcal{K}}.$$

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨー のへで

A Second Order Algebraic Knot Concordance Group

Mark Powell, Indiana University

Knot Concordance

The 1st Order Algebraic Concordance Group *L*

Cochran-Orr-Teichner Obstructions

A 2nd Order Algebraic Concordance Group

Characterisation of Slice Knots

A knot K is topologically slice if and only if M_K is the boundary of a 4-manifold W which satisfies:

(i)
$$H_1(M_K; \mathbb{Z}) \xrightarrow{\simeq} H_1(W; \mathbb{Z}) \cong \mathbb{Z};$$

(ii) $H_2(W; \mathbb{Z}) = 0;$
(iii) $\pi_1(W) = \langle \langle \mu \rangle \rangle.$

A Second Order Algebraic Knot Concordance Group

Mark Powell, Indiana University

Knot Concordance

The 1st Order Algebraic Concordance Group \mathcal{L}

Cochran-Orr-Teichner Obstructions

A 2nd Order Algebraic Concordance Group

An Extension

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨー のへで

Derived Series

Definition

For a group G, the derived series is defined inductively as iterated commutators:

$$G^{(0)} := G; \ G^{(i+1)} := [G^{(i)}, G^{(i)}].$$

A Second Order Algebraic Knot Concordance Group

Mark Powell, Indiana University

Knot Concordance

The 1st Order Algebraic Concordance Group \mathcal{L}

Cochran-Orr-Teichner Obstructions

A 2nd Order Algebraic Concordance Group

An Extension

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨー のへで

Homology Surgery

Strategy (Cappell-Shaneson): Take a 4 manifold W with the right $H_1(W; \mathbb{Z})$ but $H_2(W; \mathbb{Z}) \neq 0$ and look for obstructions to being able to extirpate this H_2 .

A Second Order Algebraic Knot Concordance Group

Mark Powell, Indiana University

Knot Concordance

The 1st Order Algebraic Concordance Group *L*

Cochran-Orr-Teichner Obstructions

A 2nd Order Algebraic Concordance Group

An Extension

Homology Surgery

Strategy (Cappell-Shaneson): Take a 4 manifold W with the right $H_1(W; \mathbb{Z})$ but $H_2(W; \mathbb{Z}) \neq 0$ and look for obstructions to being able to extirpate this H_2 .

Problem 1: in dimension 4, classes in $H_2(W; \mathbb{Z})$ are typically embedded surfaces N^2 , but not embedded spheres. To detect these we must use twisted coefficients for the algebraic obstruction, the intersection form:

 $\lambda \colon H_2(W; \mathbb{Z}[\pi_1(W)]) \times H_2(W; \mathbb{Z}[\pi_1(W)]) \to \mathbb{Z}[\pi_1(W)].$

A Second Order Algebraic Knot Concordance Group

Mark Powell, Indiana University

Knot Concordance

The 1st Order Algebraic Concordance Group *L*

Cochran-Orr-Teichner Obstructions

A 2nd Order Algebraic Concordance Group

Homology Surgery

Strategy (Cappell-Shaneson): Take a 4 manifold W with the right $H_1(W; \mathbb{Z})$ but $H_2(W; \mathbb{Z}) \neq 0$ and look for obstructions to being able to extirpate this H_2 .

Problem 1: in dimension 4, classes in $H_2(W; \mathbb{Z})$ are typically embedded surfaces N^2 , but not embedded spheres. To detect these we must use twisted coefficients for the algebraic obstruction, the intersection form:

$$\lambda \colon H_2(W; \mathbb{Z}[\pi_1(W)]) \times H_2(W; \mathbb{Z}[\pi_1(W)]) \to \mathbb{Z}[\pi_1(W)].$$

Problem 2: We don't know very much about $\pi_1(W)$; but we do know a lot about representations of $\pi_1(W)/\pi_1(W)^{(2)}$. Idea: If $\pi_1(N) \leq \pi_1(W)^{(2)}$, then the surface *looks like a sphere* to the 2nd level algebra. A Second Order Algebraic Knot Concordance Group

Mark Powell, Indiana University

Knot Concordance

The 1st Order Algebraic Concordance Group *L*

Cochran-Orr-Teichner Obstructions

A 2nd Order Algebraic Concordance Group

Cochran-Orr-Teichner filtration of ${\mathcal C}$

Cochran-Orr-Teichner defined a filtration:

$$\cdots \subset \mathcal{F}_{(n.5)} \subset \mathcal{F}_{(n)} \subset \cdots \subset \mathcal{F}_{(1)} \subset \mathcal{F}_{(0.5)} \subset \mathcal{F}_{(0)} \subset \mathcal{C}$$

A Second Order Algebraic Knot Concordance Group

Mark Powell, Indiana University

Knot Concordance

The 1st Order Algebraic Concordance Group *L*

Cochran-Orr-Teichner Obstructions

A 2nd Order Algebraic Concordance Group

An Extension

Cochran-Orr-Teichner filtration of ${\mathcal C}$

Cochran-Orr-Teichner defined a filtration:

$$\cdots \subset \mathcal{F}_{(n.5)} \subset \mathcal{F}_{(n)} \subset \cdots \subset \mathcal{F}_{(1)} \subset \mathcal{F}_{(0.5)} \subset \mathcal{F}_{(0)} \subset \mathcal{C}$$

Arf:
$$\mathcal{C}/\mathcal{F}_{(0)} \xrightarrow{\simeq} \mathbb{Z}_2$$
.

$$\mathsf{Seifert} \colon \mathcal{C}/\mathcal{F}_{(0.5)} \xrightarrow{\simeq} \mathcal{L} \cong \bigoplus_{\infty} \mathbb{Z} \oplus \bigoplus_{\infty} \mathbb{Z}_2 \oplus \bigoplus_{\infty} \mathbb{Z}_4.$$

A Second Order Algebraic Knot Concordance Group

Mark Powell, Indiana University

Knot Concordance

The 1st Order Algebraic Concordance Group *L*

Cochran-Orr-Teichner Obstructions

A 2nd Order Algebraic Concordance Group

An Extension

Cochran-Orr-Teichner filtration of C

Cochran-Orr-Teichner defined a filtration:

$$\cdots \subset \mathcal{F}_{(n.5)} \subset \mathcal{F}_{(n)} \subset \cdots \subset \mathcal{F}_{(1)} \subset \mathcal{F}_{(0.5)} \subset \mathcal{F}_{(0)} \subset \mathcal{C}$$

Arf:
$$\mathcal{C}/\mathcal{F}_{(0)} \xrightarrow{\simeq} \mathbb{Z}_2$$
.

$$\mathsf{Seifert} \colon \mathcal{C}/\mathcal{F}_{(0.5)} \xrightarrow{\simeq} \mathcal{L} \cong \bigoplus_{\infty} \mathbb{Z} \oplus \bigoplus_{\infty} \mathbb{Z}_2 \oplus \bigoplus_{\infty} \mathbb{Z}_4.$$

 $K \in \mathcal{F}_{(1.5)}$ implies that the Casson-Gordon obstructions vanish. Livingston, Jiang, Cochran-Orr-Teichner, T. Kim, Cochran-Harvey-Leidy:

$$\bigoplus_{\infty} \mathbb{Z} \oplus \bigoplus_{\infty} \mathbb{Z}_2 \hookrightarrow \mathcal{F}_{(1)}/\mathcal{F}_{(1.5)}$$

A Second Order Algebraic Knot Concordance Group

Mark Powell, Indiana University

Knot Concordance

The 1st Order Algebraic Concordance Group *L*

Cochran-Orr-Teichner Obstructions

A 2nd Order Algebraic Concordance Group

An Extension

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

Cochran-Orr-Teichner filtration of $\ensuremath{\mathcal{C}}$

Definition

We say that knot K is (1.5)-solvable if the zero surgery M_K is the boundary of a spin 4-manifold W such that:

$$L_i \cdot L_j = 0, L_i \cdot D_j = \delta_{ij},$$

which satisfy:

$$\pi_1(L_i) \leq \pi_1(W)^{(2)}, \pi_1(D_j) \leq \pi_1(W)^{(1)},$$

for all *i*, *j*.

A Second Order Algebraic Knot Concordance Group

Mark Powell, Indiana University

Knot Concordance

The 1st Order Algebraic Concordance Group *L*

Cochran-Orr-Teichner Obstructions

A 2nd Order Algebraic Concordance Group

An Extension

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへ⊙

Cochran-Orr-Teichner obstructions

Theorem (Cochran-Orr-Teichner)

Let K be a (1.5)-solvable knot. Then there exists a half-rank zero-self-linking summand P of $H_1(F)$ such that for all $p \in P$, there are defined representations

$$\phi_{\mathcal{P}} \colon \pi_1(M_{\mathcal{K}}) o \pi_1(M_{\mathcal{K}})/\pi_1(M_{\mathcal{K}})^{(2)} o \Gamma = \mathbb{Q}(t)/\mathbb{Q}[t,t^{-1}] \rtimes \mathbb{Z}$$

which depend on p, such that the corresponding Cheeger-Gromov Von Neumann ρ -invariant (an $L^{(2)}$ -signature defect) satisfies.

$$\rho(M_{\mathcal{K}},\phi_{\mathcal{P}})=\mathsf{0}\in\mathbb{R}.$$

A Second Order Algebraic Knot Concordance Group

Mark Powell, Indiana University

Knot Concordance

The 1st Order Algebraic Concordance Group *L*

Cochran-Orr-Teichner Obstructions

•

A 2nd Order Algebraic Concordance Group

Outline

Knot Concordance

The 1st Order Algebraic Concordance Group $\mathcal L$

Cochran-Orr-Teichner Obstructions

A 2nd Order Algebraic Concordance Group

An Extension

A Second Order Algebraic Knot Concordance Group

Mark Powell, Indiana University

Knot Concordance

The 1st Order Algebraic Concordance Group *L*

Cochran-Orr-Teichner Obstructions

A 2nd Order Algebraic Concordance Group

An Extension

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Second Order Algebraic Concordance

Theorem (P.)

There exists an algebraically define group, \mathcal{AC}_2 , which fits into the following diagram of groups:

where $COT_{(1.5)}$ is a pointed set where the Cochran-Orr-Teichner obstructions live. f and g are only morphisms of pointed sets.

A Second Order Algebraic Knot Concordance Group

Mark Powell, Indiana University

Knot Concordance

The 1st Order Algebraic Concordance Group *L*

Cochran-Orr-Teichner Obstructions

A 2nd Order Algebraic Concordance Group

An Extension

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

The Fundamental Cobordism

A Second Order Algebraic Knot Concordance Group

Mark Powell, Indiana University

Knot Concordance

The 1st Order Algebraic Concordance Group *L*

Cochran-Orr-Teichner Obstructions

A 2nd Order Algebraic Concordance Group

An Extension

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q ()

The Fundamental Cobordism

We consider the knot exterior as a \mathbb{Z} -homology cobordism from $S^1 \times D^1$ to itself, so we split the boundary torus $\partial X = S^1 \times S^1$, so the longitude is cut into two.

A Second Order Algebraic Knot Concordance Group

Mark Powell, Indiana University

Knot Concordance

The 1st Orde Algebraic Concordance Group *L*

Cochran-Orr-Teichner Obstructions

A 2nd Order Algebraic Concordance Group

An Extension

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Adding Fundamental Cobordisms

This is very useful for adding knots together.

A Second Order Algebraic Knot Concordance Group

Mark Powell, Indiana University

Knot Concordance

The 1st Orde Algebraic Concordance Group *L*

Cochran-Orr-Teichner Obstructions

A 2nd Order Algebraic Concordance Group

An Algebraically Defined Group

Pretend to forget about topology: we define a group of purely algebraic objects.

First, we define a monoid of chain complexes, and then take a quotient by an algebraic concordance relation.

A Second Order Algebraic Knot Concordance Group

Mark Powell, Indiana University

Knot Concordance

The 1st Order Algebraic Concordance Group \mathcal{L}

Cochran-Orr-Teichner Obstructions

A 2nd Order Algebraic Concordance Group

An Extension

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

A Monoid of Chain Complexes

Elements are chain equivalence classes of triples (H, C, ξ) , where H is a $\mathbb{Z}[\mathbb{Z}]$ -module, C is a 3-dimensional symmetric Poincaré triad:

$$C_*(S^1 \times S^0; \mathbb{Z}[\mathbb{Z} \ltimes H]) \xrightarrow{i_-} C_*(S^1 \times D^1_-; \mathbb{Z}[\mathbb{Z} \ltimes H])$$
$$\downarrow^{f_-}$$
$$C_*(S^1 \times D^1_+; \mathbb{Z}[\mathbb{Z} \ltimes H]) \xrightarrow{f_+} Y.$$

such that

$$\mathsf{Id} \otimes f_{\pm} \colon C_*(S^1 \times D^1; \mathbb{Z}) \to \mathbb{Z} \otimes_{\mathbb{Z}[\mathbb{Z} \ltimes H]} Y$$

are isomorphisms of $\ensuremath{\mathbb{Z}}\xspace$ -homology, and

$$\xi\colon H\cong H_1(\mathbb{Z}[\mathbb{Z}]\otimes_{\mathbb{Z}[\mathbb{Z}\ltimes H]}Y)$$

is an isomorphism.

A Second Order Algebraic Knot Concordance Group

Mark Powell, Indiana University

Knot Concordance

The 1st Order Algebraic Concordance Group *L*

Cochran-Orr-Teichner Obstructions

A 2nd Order Algebraic Concordance Group

A Monoid of Chain Complexes

Given a knot K, with

$$X:=S^3\setminus\nu K,$$

define an element of our monoid by taking:

$$H := \frac{\pi_1(X)^{(1)}}{\pi_1(X)^{(2)}}$$

and

$$Y := C_*(X; \pi_1(X)/\pi_1(X)^{(2)}),$$

noting that:

$$\pi_1(X)/\pi_1(X)^{(2)} \cong \frac{\pi_1(X)}{\pi_1(X)^{(1)}} \ltimes \frac{\pi_1(X)^{(1)}}{\pi_1(X)^{(2)}} \cong \mathbb{Z} \ltimes H_1(X; \mathbb{Z}[\mathbb{Z}]).$$

A Second Order Algebraic Knot Concordance Group

Mark Powell, Indiana University

Knot Concordance

The 1st Order Algebraic Concordance Group \mathcal{L}

Cochran-Orr-Teichner Obstructions

A 2nd Order Algebraic Concordance Group

An Extension

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Symmetric Structure

The Symmetric Structure is the chain level version of Poincaré duality; each chain complex C carries the extra structure of a chain map from $C^* \rightarrow C_*$:

Chain level maps which induce the Poincaré duality isomorphisms.

A Second Order Algebraic Knot Concordance Group

Mark Powell, Indiana University

Knot Concordance

The 1st Order Algebraic Concordance Group *L*

Cochran-Orr-Teichner Obstructions

A 2nd Order Algebraic Concordance Group

An Extension

The Symmetric Structure

Definition of cap product: the symmetric structure arises as the image of a fundamental class $[X, \partial X]$ under a chain level diagonal approximation map:

$$\Delta_0 \colon C_*(X) \to C_*(\widetilde{X}) \otimes_{\mathbb{Z}[\pi_1(X)]} C_*(\widetilde{X})$$

 $\cong \operatorname{Hom}_{\mathbb{Z}[\pi_1(X)]}(C^{3-*}(\widetilde{X}), C_*(\widetilde{X})).$

A Second Order Algebraic Knot Concordance Group

Mark Powell, Indiana University

Knot Concordance

The 1st Order Algebraic Concordance Group *L*

Cochran-Orr-Teichner Obstructions

A 2nd Order Algebraic Concordance Group

An Extension

◆□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

Adding Knots Algebraically

Tensor both triads with $\mathbb{Z}[\mathbb{Z} \ltimes (H \oplus H^{\dagger})] = \mathbb{Z}[\mathbb{Z} \ltimes H^{\ddagger}]$ so all chain complexes are over the same ring.

$$C(S^{1} \times D^{1}_{-}) \xleftarrow{i_{-}} C(S^{0} \times S^{1}) \xrightarrow{i^{\dagger}_{+}} C(S^{1} \times D^{1}_{+})^{\dagger}$$

$$\downarrow^{f_{-}} \qquad \qquad \downarrow^{i_{+}} \qquad \qquad \downarrow^{i_{+}} \qquad \qquad \downarrow^{f^{\dagger}_{+}} \qquad \qquad \downarrow^{f^{\dagger}_{+}}$$

$$Y \xleftarrow{f_{+}} C(S^{1} \times D^{1}_{+}) \xrightarrow{f^{\dagger}_{-}} Y^{\dagger}$$

Glue by forming the mapping cone $\mathscr{C}(-f_+, f_-^{\dagger})$.

A Second Order Algebraic Knot Concordance Group

Mark Powell, Indiana University

Knot Concordance

The 1st Order Algebraic Concordance Group *L*

Cochran-Orr-Teichner Obstructions

A 2nd Order Algebraic Concordance Group

An Extension

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨー のへで

An object is 2nd order algebraically null-concordant if there exists a $\mathbb{Z}[\mathbb{Z}]$ -module H' with a homomorphism $H \to H'$ and a 4-dimensional chain complex V over $\mathbb{Z}[\mathbb{Z} \ltimes H']$ which fits into a 4-dimensional symmetric Poincaré triad:

A Second Order Algebraic Knot Concordance Group

Mark Powell, Indiana University

Knot Concordance

The 1st Order Algebraic Concordance Group *L*

Cochran-Orr-Teichner Obstructions

A 2nd Order Algebraic Concordance Group

An Extension

An object is 2nd order algebraically null-concordant if there exists a $\mathbb{Z}[\mathbb{Z}]$ -module H' with a homomorphism $H \to H'$ and a 4-dimensional chain complex V over $\mathbb{Z}[\mathbb{Z} \ltimes H']$ which fits into a 4-dimensional symmetric Poincaré triad:

A Second Order Algebraic Knot Concordance Group

Mark Powell, Indiana University

Knot Concordance

The 1st Order Algebraic Concordance Group *L*

Cochran-Orr-Teichner Obstructions

A 2nd Order Algebraic Concordance Group

An Extension

where Y^U corresponds to the unknot, satisfying:

- 1. $H_*(V; \mathbb{Z}) \cong H_*(S^1; \mathbb{Z})$; and
- 2. There exists an isomorphism $\xi' \colon H' \cong H_1(V; \mathbb{Z}[\mathbb{Z}]).$

with a commutative diagram:

$$\begin{array}{c} H \xrightarrow{\qquad} H' \\ \cong & \downarrow_{\xi} \\ H_1(\mathbb{Z}[\mathbb{Z}] \otimes Y) \xrightarrow{j_*} H_1(\mathbb{Z}[\mathbb{Z}] \otimes V). \end{array}$$

The duality information of the symmetric structure then limits the possible H' which can occur.

A Second Order Algebraic Knot Concordance Group

Mark Powell, Indiana University

Knot Concordance

The 1st Order Algebraic Concordance Group *L*

Cochran-Orr-Teichner Obstructions

A 2nd Order Algebraic Concordance Group

An Extension

Think of V as $S^3 imes I$ minus a concordance $S^1 imes I$.

A Second Order Algebraic Knot Concordance Group Our 2nd order algebraic concordance group \mathcal{AC}_2 is symmetric Poincaré triads modulo 2nd order algebraic concordance.

Concordance of knots modulo $\mathcal{F}_{(1.5)}$ is measured by \mathbb{Z} -homology cobordism of chain complexes.

A Second Order Algebraic Knot Concordance Group

Mark Powell, Indiana University

Knot Concordance

The 1st Order Algebraic Concordance Group *L*

Cochran-Orr-Teichner Obstructions

A 2nd Order Algebraic Concordance Group

An Extension

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへ⊙

Diagram of Obstructions

Recall our diagram:

・ロト ・ 一下・ ・ コト ・ コー

A Second Order Algebraic Knot Concordance Group

Mark Powell, Indiana University

Knot Concordance

The 1st Order Algebraic Concordance Group *L*

Cochran-Orr-Teichner Obstructions

A 2nd Order Algebraic Concordance Group

Proposition

A (1.5)-solvable knot is 2nd order algebraically concordant to the unknot.

A Second Order Algebraic Knot Concordance Group

Mark Powell, Indiana University

Knot Concordance

The 1st Order Algebraic Concordance Group \mathcal{L}

Cochran-Orr-Teichner Obstructions

A 2nd Order Algebraic Concordance Group

An Extension

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q ()

Proposition

A (1.5)-solvable knot is 2nd order algebraically concordant to the unknot.

Idea of proof:

The algebraic conditions on the intersection form of a (1.5)-solution 4-manifold W, with $\mathbb{Z}[\pi_1(W)/\pi_1(W)^{(2)}]$ coefficients, are that we have a basis of $H_2(W;\mathbb{Z})$ which lifts to a Lagrangian over

 $\mathbb{Z}[\pi_1(W)/\pi_1(W)^{(2)}] \cong \mathbb{Z}[\mathbb{Z} \ltimes H']$

with a dual Lagrangian over

 $\mathbb{Z}[\pi_1(W)/\pi_1(W)^{(1)}] \cong \mathbb{Z}[\mathbb{Z}].$

A Second Order Algebraic Knot Concordance Group

Mark Powell, Indiana University

Knot Concordance

The 1st Order Algebraic Concordance Group *L*

Cochran-Orr-Teichner Obstructions

A 2nd Order Algebraic Concordance Group

An Extension

◆□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

Proposition

A (1.5)-solvable knot is 2nd order algebraically concordant to the unknot.

Idea of proof:

The algebraic conditions on the intersection form of a (1.5)-solution 4-manifold W, with $\mathbb{Z}[\pi_1(W)/\pi_1(W)^{(2)}]$ coefficients, are that we have a basis of $H_2(W;\mathbb{Z})$ which lifts to a Lagrangian over

 $\mathbb{Z}[\pi_1(W)/\pi_1(W)^{(2)}] \cong \mathbb{Z}[\mathbb{Z} \ltimes H']$

with a dual Lagrangian over

 $\mathbb{Z}[\pi_1(W)/\pi_1(W)^{(1)}] \cong \mathbb{Z}[\mathbb{Z}].$

 $H_2(W; \mathbb{Z})$ looks spherical *algebraically*, so make V using algebraic surgery on the chain complex of W.

・ロト ・ 聞 ・ ・ 聞 ・ ・ 目 ・ うらぐ

A Second Order Algebraic Knot Concordance Group

Mark Powell, Indiana University

Knot Concordance

The 1st Order Algebraic Concordance Group *L*

Cochran-Orr-Teichner Obstructions

A 2nd Order Algebraic Concordance Group

Relation to Levine

Proposition

There is a surjective homomorphism $\mathcal{AC}_2 \twoheadrightarrow \mathcal{L}$.

Idea of Proof:

Use representation $\mathbb{Z} \ltimes H \to \mathbb{Z}$: Chain complex over $\mathbb{Z}[\mathbb{Z}]$ with symmetric structure contains sufficient data to extract the Seifert Form.

A Second Order Algebraic Knot Concordance Group

Mark Powell, Indiana University

Knot Concordance

The 1st Order Algebraic Concordance Group \mathcal{L}

Cochran-Orr-Teichner Obstructions

A 2nd Order Algebraic Concordance Group

An Extension

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

Proposition

Let $\mathcal{Y} = 0 \in \mathcal{AC}_2$, and let $\Gamma = \mathbb{Z} \ltimes \mathbb{Q}(t)/\mathbb{Q}[t, t^{-1}]$ be the Cochran-Orr-Teichner (1)-solvable group. Then there exists a set of zero linking curves $P \subset H_1(F;\mathbb{Z})$ such that whenever we define a representation $\phi_p \colon \mathbb{Z} \ltimes H \to \Gamma$ using $p \in P$, the ρ -invariant (which can be defined algebraically)

$$\rho(\mathcal{Y},\phi_{p})=0.$$

A Second Order Algebraic Knot Concordance Group

Mark Powell, Indiana University

Knot Concordance

The 1st Order Algebraic Concordance Group *L*

Cochran-Orr-Teichner Obstructions

A 2nd Order Algebraic Concordance Group

An Extension

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨー のへで

Proposition

Let $\mathcal{Y} = 0 \in \mathcal{AC}_2$, and let $\Gamma = \mathbb{Z} \ltimes \mathbb{Q}(t)/\mathbb{Q}[t, t^{-1}]$ be the Cochran-Orr-Teichner (1)-solvable group. Then there exists a set of zero linking curves $P \subset H_1(F;\mathbb{Z})$ such that whenever we define a representation $\phi_p \colon \mathbb{Z} \ltimes H \to \Gamma$ using $p \in P$, the ρ -invariant (which can be defined algebraically)

$$\rho(\mathcal{Y},\phi_p)=0.$$

Idea of Proof: Representation defined using $p \in P$ implies it extends over $\mathbb{Z} \ltimes H'$, so over the 4-dimensional complex V.

$$H_2(V;\mathbb{Z})\cong 0,$$

so there is no intersection form, therefore $L^{(2)}$ and ordinary signatures vanish.

A Second Order Algebraic Knot Concordance Group

Mark Powell, Indiana University

Knot Concordance

The 1st Order Algebraic Concordance Group *L*

Cochran-Orr-Teichner Obstructions

A 2nd Order Algebraic Concordance Group

Example

Original Casson-Gordon example, can follow Cochran-Orr-Teichner proof of non-sliceness in the chain complex setting:

For example, $\mathcal{Y} =$ the symmetric Poincaré triad associated to the *k*-twist knot, $k \neq 0, 2$,

Then $\mathcal{Y} \neq 0 \in \mathcal{AC}_2$.

A Second Order Algebraic Knot Concordance Group

Mark Powell, Indiana University

Knot Concordance

The 1st Order Algebraic Concordance Group *L*

Cochran-Orr-Teichner Obstructions

A 2nd Order Algebraic Concordance Group

An Extension

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨー のへで

Example

Original Casson-Gordon example, can follow Cochran-Orr-Teichner proof of non-sliceness in the chain complex setting:

For example, $\mathcal{Y} =$ the symmetric Poincaré triad associated to the *k*-twist knot, $k \neq 0, 2$,

Then $\mathcal{Y} \neq 0 \in \mathcal{AC}_2$. Let *p* be zero linking curve on Seifert surface: a knot *J*.

$$\rho(\mathcal{Y}, \phi_p) = \rho(M_J, \psi \colon \pi_1(M_K) \to \mathbb{Z}).$$

For twist knots, J is a torus knot, and these have non-zero $L^{(2)}$ -signatures:

$$\rho(M_J,\psi) = \int_{\omega \in S^1 \to \mathbb{R}} \sigma_{\omega}.$$

A Second Order Algebraic Knot Concordance Group

Mark Powell, Indiana University

Knot Concordance

The 1st Order Algebraic Concordance Group *L*

Cochran-Orr-Teichner Obstructions

A 2nd Order Algebraic Concordance Group

Outline

Knot Concordance

The 1st Order Algebraic Concordance Group $\mathcal L$

Cochran-Orr-Teichner Obstructions

A 2nd Order Algebraic Concordance Group

An Extension

A Second Order Algebraic Knot Concordance Group

Mark Powell, Indiana University

Knot Concordance

The 1st Order Algebraic Concordance Group *L*

Cochran-Orr-Teichner Obstructions

A 2nd Order Algebraic Concordance Group

An Extension

◆□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

Extension: work in progress with Kent Orr

Objects as symmetric Poincaré chain complexes C_* over $\mathbb{Z}[\pi]$, π finitely presented group.

Extra structure: isomorphisms

$$\xi_H \colon H_{ab} \xrightarrow{\simeq} H_1(C_* \otimes_{\mathbb{Z}[\pi]} \mathbb{Z}[\pi/H])$$

for all $H \leq \pi$. A chain complex need not admit such isomorphisms in general.

A Second Order Algebraic Knot Concordance Group

Mark Powell, Indiana University

Knot Concordance

The 1st Order Algebraic Concordance Group *L*

Cochran-Orr-Teichner Obstructions

A 2nd Order Algebraic Concordance Group

An Extension

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Extension

 (π, C_*, ξ) is null cobordant if there exists (Γ, D_*, ζ) , Γ a finitely presented group, D_* a chain complex over $\mathbb{Z}[\Gamma]$,

$$\zeta_{\mathcal{K}} \colon \mathcal{K}_{ab} \xrightarrow{\simeq} \mathcal{H}_1(D_* \otimes_{\mathbb{Z}[\Gamma]} \mathbb{Z}[\Gamma/\mathcal{K}])$$

for all $K \leq \Gamma$, with a homomorphism

$$\omega \colon \pi \to \Gamma$$

a symmetric Poincaré pair

 $j_*\colon C_*\otimes_{\mathbb{Z}[\pi]}\mathbb{Z}[\Gamma]\to D_*$

A Second Order Algebraic Knot Concordance Group

Mark Powell, Indiana University

Knot Concordance

The 1st Order Algebraic Concordance Group *L*

Cochran-Orr-Teichner Obstructions

A 2nd Order Algebraic Concordance Group

An Extension

◆□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

Extension

and a commutative square:

for all subgroups $H \leq \Gamma$.

A Second Order Algebraic Knot Concordance Group

Mark Powell, Indiana University

Knot Concordance

The 1st Order Algebraic Concordance Group *L*

Cochran-Orr-Teichner Obstructions

A 2nd Order Algebraic Concordance Group

An Extension

Extension

and a commutative square:

for all subgroups $H \leq \Gamma$.

We call ξ, ζ *Hurewicz structures*. They combine with duality structures to severely limit the possible Γ which can occur.

We can define corresponding surgery groups $L_{H}^{n}(G)$, which coincide with the usual *L*-groups in high dimensions but which have much more information in low dimensions.

A Second Order Algebraic Knot Concordance Group

Mark Powell, Indiana University

Knot Concordance

The 1st Order Algebraic Concordance Group *L*

Cochran-Orr-Teichner Obstructions

A 2nd Order Algebraic Concordance Group