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1. Introduction

In this paper we compute the homeotopy groups of certain closed, orientable,
irreducible 3-manifolds M which are non-Haken, i.e. do not contain any 2-sided
incompressible surfaces. The homeotopy group J^(M) is the quotient group of the
group of all homeomorphisms from M to M modulo the normal subgroup of those
homeomorphisms which are isotopic to the identity mapping of M.

The manifolds studied here all share a crucial property: each M contains a closed
non-orientable and embedded surface K of non-orientable genus 3 which is unique up
to isotopy, representing a fixed element of H2{M,Z2). Also M admits a 1-sided
Heegaard splitting M = N(K) u Y, where N{K) is an orientable line bundle over K
and Y is a handlebody of genus 2. The uniqueness of the surface K places a struc-
ture on M which is quite restrictive and it is this which allows the computation of
Jf(M). Similar techniques have been used elsewhere [1,17] in the case when K
has non-orientable genus 2. However, we are only able to treat some cases when
K has non-orientable genus 3, because we do not know whether the isotopy class
of K is always unique (see [18]). The hypothesis 'K has genus 3' is essential to our
techniques; it is quite unlikely that our methods generalize to genus greater than 3,
although they probably can be applied to many other cases of genus 3.

The manifolds which we investigate include two classes.

(1) The Seifert manifolds {b; (o^O); (2,1), (4k,2k-l), (m,n)} where 1 ^ k,
0 < n < m or (m, n) = (1,0). These manifolds are irreducible and non-Haken so long
as the cases where (m, n) = (4k, 1) and b = — 1 are excluded. Our notation follows that
on page 90 of [13]; however, we allow the case where (m, n) = (1,0), understanding
this to mean that M has two exceptional fibres. In that case M is a lens space L(2,1) or
L(&pq + 2e, 4pq±2p + s) where p,q> 1 and e = ± 1 [13, pp.99-100]. These are
precisely the lens spaces which admit embeddings of K (see [6]). In terms of the Seifert
invariants, p = k,q = \b + l\, and e = — sgn(b+ 1). If b = — 1 then M = L(2,1). Note
that there is a sign error in [13] on line 11 of page 100, i.e. q =

REMARK. The Seifert manifolds {b; (o1} 0); (2,1), (4,1), (3, n)}, where n = 1 or 2, all
have nx(M) equal to a finite group 0(48) x Zr, where 0(48) is the binary octahedral
group. These 3-manifolds are often called the binary octahedral spaces.

(2) The 3-manifolds obtained by type-(2,2N+1) surgery on the complement of the
figure-S knot in S3. This knot complements fibres over Sl with fibre a punctured
torus. It is not difficult to see that type-(2,2N+ 1) surgery on any orientable once-
punctured torus bundle over Sl yields a 3-manifold M which admits a 1-sided
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5 1 8 J. H. RUBINSTEIN AND J. S. BIRMAN

Heegaard splitting of genus 3 (see [18]). Our method applies to all such 3-manifolds,
and most of them are irreducible and non-Haken [17,9]. In [21] it is proved that for
N^O, (2,2iV+l)-surgery on the figure-8 knot yields an irreducible, non-Haken
and hyperbolic 3-manifold, whereas for N = 0 the surgery gives a Seifert manifold
in Class (1) above.

The results of our work are summarized in:

MAIN THEOREM. I. Let M be the lens space USpq + 2e, 4pq±2q + e), where e = ± 1
andp,q^\. Then ^{M) is

2-2 ifp¥:qorp = q=\ and e = — 1,

Z2xZ2 ifp = q^\ and e = — 1,

Z4 if p = q and e = 1.

II. Let M be a Seifert manifold of type

{b;(ou0);(2,l), (4k,2k-l), (m,n)}

where 1 ̂  k, 1 ̂ n <m,b E Z, excluding the cases where (m, n, b) = (4k, 1, — 1). Then
tf(M) is

Z2 x Z2 if(m, n) = (4k, 2k- 1), or (m, n) = (2,1) and (k, b) # (1, - 1 ) ,

Z2 if(m,n,k,b) = (2,1,1, - 1 ) , or

(m, n) * (2,1), {4k, 2k- 1) and (m, n, k, b) * (3,1,1, - 1),

{1} if(m,n,k,b) = (3 ,1 ,1 , -1 ) .

III. Let M be the manifold obtained by type-(2,2N + 1) surgery on thefigure-% knot,
where N ^ 0. Then J^f(M) is

Z2xZ2.

We now summarize our results as they relate to the connection between Jf (M) and
O u t ^ M ) . There is a natural homomorphism 6 from J^(M) to Outrc^M), given by
assigning to a homeomorphism h: M -*• M the induced automorphism h+ of n^M),
and noting that if h is isotopic to the identity then h^ is an inner automorphism. For
all our examples, we will find that 6 is one-to-one, that is, if h: M -* M is a
homeomorphism such that h is homotopic to the identity, then h is isotopic to the
identity. This result has been established by Waldhausen [22] whenever M is Haken.

Also we obtain that G is surjective for those examples with nx(M) infinite.
Equivalently, since then M is a K(n, 1) space, if / : M -> M is any homotopy
equivalence then / is homotopic to a homeomorphism. Again Waldhausen has
obtained this result when M is Haken [22]. Note that for a hyperbolic 3-manifold M,
by Mostow's rigidity theorem [12] any homotopy equivalence is homotopic to an
isometry. Also it is proved elsewhere (see [14,15], and, especially, § 8 of [8]) that for a
Seifert fibre space M, any homotopy equivalence / : M -* M is homotopic to a fibre-
preserving homeomorphism.

Our examples with nt(M) finite are all Seifert manifolds. For M Seifert fibred, both
OutTr^M) and the quotient group of fibre-preserving homeomorphisms of M,
modulo the normal subgroup of those which are fibre-preserving isotopic to the
identity, are computed in [8]. The latter quotient group is isomorphic to
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ONE-SIDED HEEGAARD SPLITTINGS 5 1 9

We now summarize the method. Let G be the subgroup of J^(M) containing
isotopy classes of orientation-preserving homeomorphisms h: M -> M such that the
induced map h$: HX{M, Z2) -> H^M, Z2) is the identity in JF(M). By §7 of [18], if M
is in Classes (1) or (2), then any isotopy class in G contains homeomorphisms h for
which h(K) = K, where K is the embedded non-orientable surface of genus 3.
Conversely, since the rank of Hl(M,Z2) ^ 2 for M in Classes (1) or (2), it can be
checked that any homeomorphism h: M -> M which takes K to K is such that h$ is
the identity. Let J^(K) be the homeotopy group of K and let Gx be the subgroup of
Jf(K) consisting of homeomorphisms f:K-+K which extend to orientation-
preserving homeomorphisms h: M -> M. Then the map sending the isotopy class of
/ to that of h gives an epimorphism *¥: Gt -> G. The kernel G2 of 4* is the set of
isotopy classes of homeomorphisms f:K-+K which extend to homeomorphisms
h: M -> M such that h is isotopic to the identity M -*• M.

Our main task is to compute Gx and G2, since it is easy to find Jf(M) knowing G,
and G = Gl/G2. By [3] (see Lemma 3 and Corollary 4 of [18]), there is a unique
simple closed curve C in K up to isotopy with K — C orientable, and J4?(K) is
isomorphic to GL(2, Z), by the map which takes the isotopy class of / to /$. These
two facts, namely that C is unique up to isotopy, and that Jf (K) is isomorphic to
GL(2, Z), are the essential results that make our calculation of Jf(M) possible.

We now give an outline of the paper. In § 2 we give an explicit picture of the Seifert
manifolds M in Class (1), in terms of 1-sided decompositions M = N(K) u Y. The idea
of a 1-sided Heegaard diagram for a 3-manifold is introduced, which is the analogue
of a Heegaard diagram, and explicit 1-sided Heegaard diagrams are determined for M
in(l) .

In § 3 Class (1) is subdivided into subclasses (la) and (lb). The manifold M is in (la)
if M — C is not fibred over S1 with fibre the open punctured torus K — C, and in (lb) if
M — C is a fibre bundle with base S1 and fibre K — C.

In §4, 3^(M) is computed for M in (la). The crucial step is to find a 'special'
disk D properly embedded in the handlebody Y in the 1-sided Heegaard splitting
M = N(K)u Y, and having the property that if h: M -»• M is a homeomorphism
which respects the splitting, that is, takes N(K) to N(K) and Y to Y, then h(D) and D
are always isotopic in Y. Consequently, G1 can be found by identifying the isotopy
classes of homeomorphisms f\K->K which extend to homeomorphisms
/ : N(K) -> N(K) such that f(dD) and dD are homotopic loops on the surface
dN(K) = dY. It turns out that G2 = {1} or Z2 and so G is isomorphic to either Gx or
GJZ2 for M in (la).

In § 5 J f (M) is calculated for M in Classes (lb) and (2). The method is applicable to
any (2,2N + l)-surgery on a punctured torus bundle over S1. By [3] (see Lemma 3 of
[18]), a homeomorphism h: M -*• M with h(K) = K can be isotoped until in addition
h(C) = C. Since M — C is fibred over S1, the restriction of h to M — C is a self-
homeomorphism of a fibre bundle and by [22], J f (M — C) can be easily computed.
Let G' denote the subgroup of Jf(M — C) consisting of isotopy classes of homeo-
morphisms which extend to homeomorphisms of M. Let ¥ ' : G' -> Jf(M) be the map
induced by extension of homeomorphisms. Then Im*?' = G and ker VP' can be readily
calculated. So G and 3^(M) can be found. Note that G2 is infinite in this case, contrary
to the situation when M is in (la).

The Appendix concerns the relationship between branched covering spaces and 1-
sided Heegaard splittings of genus 3, and gives general ways to find all 3-manifolds
which admit such splittings.
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520 J. H. RUBINSTEIN AND J. S. BIRMAN

Recently, there have been two other independent calculations of the homeotopy
groups Jf(M) for all the 3-dimensional lens spaces M (see [5,11]). The methods
involve two different usages of height functions on M, and are special to lens spaces.
Another related paper which treats certain lens spaces is [2].

In [10], the problem of computing J^{M) for 3-manifolds M with nxM finite has
been related to the existence of \ spin solutions for a quantum theory for gravity. We
would like to thank J. Friedman and D. Witt for a helpful communication regarding
53/O(48). We would also like to thank the referee for extremely thorough and helpful
suggestions.

2. One-sided Heegaard diagrams

Let M be a closed orientable 3-manifold with a 1-sided Heegaard splitting of genus
g, M = N{K)KJ Y. Let L be a closed orientable surface, and let j : L -*• L be an
orientation-reversing involution such that the orbit space Lj j = K. Then N(K) can be
identified with the mapping cylinder of a free orientation-reversing involution j on L
via the projection n: L x / -* N(K). Let {D,-: 1 ^ i; ^ g) be a complete system of
meridian disks for the handlebody Y. Let / be the involution on L x / given by
j'(x,t) = (jx,t). By an abuse of notation, we will denote dN(K) by L and the
involution n- j'-n'1 \L by j .

DEFINITION. A 1-sided Heegaard diagram for M (associated with the 1-sided splitting
M = N{K)VJY) is given by the {g + 2)-tuple (L,j,dDl...dDg). Note that given a
(# + 2)-tuple consisting of a closed, orientable surface L, a free orientation-reversing
involution j of L, and g disjoint simple closed curves C l 5 . . . ,C s in L such that
L — (J;C; is planar, a 3-manifold M with a 1-sided Heegaard decomposition
M = N{K)KJ Y, which has (L, 7, C,, . . . , Cg) as a 1-sided Heegaard diagram, can be
uniquely constructed by gluing Y to N(K) via a homeomorphism q>: dY -* L so that
(p(dDi) = C,- for all i.

The purpose of this section is to describe convenient 1-sided Heegaard diagrams for
the manifolds in Class (1).

If C is a loop in L, then its homology class in H^L-,2) will be denoted by [C]. Let
A, B, jA, jB be the curves illustrated in Fig. 1.

PROPOSITION 1. Each Seifert manifold with invariants

where b is an arbitrary integer, k ^ 1, 0 < n < m, or b ^ — 1, / c ^ l and (m, n) = (1,0),
may also be described by invariants { — 1 ;(ol s0), (2,1), (4/c,2k— 1), (m, n)} where
k ^ 1, m ^ 1 and n is a non-zero integer. With the latter description, M has a Usided
Heegaard diagram (L, j , dDi,dD2) with

[dD2] = n

The types of diagrams we will be using are illustrated in Fig. 2. Note that some of
the later arguments will need diagrams as in Fig. 2, not just the homological data of
Proposition 1.
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ONE-SIDED HEEGAARD SPLITTINGS 521

FIG. 1

k= 1 n = 1, m = 1

n = 2, m = 1

n = — 1 , m = 2

FIG. 2
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5 2 2 J. H. RUBINSTEIN AND J. S. BIRMAN

Proof. Let JVX and N2 be small fibred neighbourhoods of the exceptional fibres of
multiplicity 2 and 4/c respectively. It can readily be seen that an ordinary fibre in 3N{

bounds a Mobius band J in N{.
If a solid torus N is glued to N2 so that a meridian curve for N is matched up with

an ordinary fibre in 6N2, then the result is the lens space L(4fe, 2/c—1). In [17] it is
shown that L(4/c, 2k-1) has a 1-sided splitting of genus 2, L(4/c, 2k-1) = N{Kj) u Ylt

and the Klein bottle Kx can be chosen to meet N in a single meridian disk.
Consequently, KlnN2 is a. punctured Klein bottle Ko.

An annulus A of ordinary fibres in M — intiN^— intN2 can be found so that
dA = dJ u d/C0. Then the non-orientable surface of genus 3 embedded in M is

We may identify N(KX) with the mapping cylinder of a free orientation-reversing
involution jx on the torus T = dN(Kx). Let C, C be simple closed curves on T which
intersect transversely at a single point such that ix$\C] = — [C] and jx$[_C] = [ C ] .
If Dx is a meridian disk for Yx, then [5DJ = m[C] + n[C'~] for relatively prime
integers m,n. Also ^(.K^) = <x,y: y~xxy = x " 1 ) , where C,C have homotopy class
x, y2 respectively. Consequently,

if and only if m = 1 and n = /c, for suitable orientation of C, C.
In [17] it is proved that the solid torus N can be chosen to miss Dx. Consequently,

Dx lies in N2 and can be selected as the first of a system of meridian disks {DX,D2} for
the handlebody Y in the splitting M = N(K) u Y.

The three curves C,, with 1 ^ i ^ 3, drawn in Fig. 1 are all j-invariant, and so if
n: L -> K is the covering projection with covering transformation j then the three
curves C,- = 7t(C,) are the centres of three Mobius bands in K. We will assume that the
punctured Klein bottle Ko is K — int N(C2), where J = N(C3) is a small Mobius band
with centre C3. Let JV(C3) be the preimage of N(C3) in L. Then T can be regarded as
L —intN(C3) with two disks attached along the boundary curves. The curves C, C in
T can be chosen to be B and Cx without loss of generality, so that

L-intN(C3) .

Note that 5DX intersects Cx and also C2 transversely in a single point. (See Fig. 2.)
If D2 is the second meridian disk for Y, then dD2 ndDt = 0, but dD2 n Cl is in

general non-empty. However, by connecting D2 with copies of Dx by strips along arcs
of Cx we can obtain a different choice of meridian disk D2 with dD2r\Ci = 0 .
Consequently, <9D2 can be taken to be a curve in L as in the examples of Fig. 2, since
8D2 ndDx= 0 and dD2 nCx = 0.

As C3 is the centre of the Mobius band J in the complement of Ko in K, C3 can be
regarded as the exceptional fibre of multiplicity 2 in M. Therefore C3 is an ordinary
fibre of M, without loss of generality. Let N(K0) be a regular neighbourhood of Ko

in M which is chosen so that dN(K0) r\L = L —int N(C3). It is not difficult to check
that if N(Dl) is a small regular neighbourhood of Dt in Y, then NiD^ u N(/Co) is a
solid torus. Consequently, we may as well assume that N2 = N(Dx)u N(K0). In
addition, because C3 is the exceptional fibre of multiplicity 2, the solid torus
JV3 = M-intiNiDJ u N(K)) = diY-NiDJ) is a regular neighbourhood of the other
exceptional fibre of multiplicity m.

The disk D2 is a meridian disk for JV3, as well as for Y. We will not be adopting the
usual normalization of Seifert invariants (i.e. 0 < n < m, as in [13]). First, the curve
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ONE-SIDED HEEGAARD SPLITTINGS 523

jA in Fig. 1 can be chosen as a cross-section to the ordinary fibre C3 in dN3. With this
choice, the 'invariants' of the exceptional fibre at the core of N3 are given by integers
(m, n), where [3D2] = m[jA] + n[C3] = n[fl] +m[;,4] + «[;£] . Note that fc, m can be
assumed to be positive integers, but n is an arbitrary (non-zero) integer.

Finally, we compute the value of the b invariant of the Seifert fibring, given the
above choices of dDx,dD2 and k,m,n. A 3-manifold M" = N(K)*u Y can be
constructed so that Y has a set of meridian disks D\, D'2 with boundary curves on L
given by dD\ = dDi (as for M) and dD'2 = jA. From the previous discussion, it
follows immediately that M" has Seifert invariants {&;(olf0);(2,1), (4k,2k-1)}
where the value of b is the same for M" as for M.

It is easy to check directly that M" = RP3. Alternatively, since j(dD'2) = A and dD\
cross transversely at a single point, it follows that the 2-fold cover M" has a genus-2
Heegaard splitting with two pairs of cancelling meridian disks and so is S3. A simple
calculation shows that b — — 1 is the only value for which HX(M") = Z2. Conse-
quently, M has Seifert invariants { — 1 ;(o!,0);(2,1), (4k,2k— 1), (m,n)}, where k ^ 1,
m ^ 1, and n e Z . This completes the proof of Proposition 1.

REMARK. If M has Seifert invariants {b;(o1,0);(2,l), (4k,2k-\), (m,n)} where
k~^\, 0 < n < m, or (m,n) = (1,0), then M has 'unnormalized' Seifert invariants
{— 1; (oj, 0); (2,1), (4/c, 2/c — 1), (m, m(b + 1) + ri)}. This can be easily checked by com-
puting | Ht(M, Z) | (see [13, p. 101]).

3. Fibred knots in Seifert manifolds

In this section, we determine which of the Seifert manifolds M in Class (1) have the
property that C is a fibred knot in M.

LEMMA 2. Let M be a Seifert manifold { —1 ; (o l f 0);(2,1), (4k,2k-l),(m,n)}. The
following are equivalent:

(a) M-C is fibred over S1 with fibre K-C;
(b) the meridian disks D^,D2 can be chosen so that dDY and dD2 both cross C in two

points;
(c) k= 1 andn= ±1.

Proof. It is clear that (c) implies (b). To see that (b) implies (a), suppose that 3D,-
intersects C in two points, for i = 1,2. If Ll, L2 are the closures of the components of
L — C, then 3D, n L, is a single arc for i, j = 1,2. Hence Ll and L2 are parallel surfaces
in Y, since 3D, gives an isotopy between an arc of Lt and an arc of L2, for i = 1,2.
Since intLj and intL2 both project homeomorphically onto K — C, it follows that
M — C is a punctured torus bundle over S1 with fibre K — C.

Finally, we show that (a) implies (c). If C is a fibred knot in M, then there is a system
of meridian disks {DX,D2} for Y with dDr and dD2 both crossing C in two points. Let
[_dDC\ = a[A] + b[B]+xtiA~\+y[jB'] and [3D2] = c[/l]+rf[B]+u[7/I] + i;DJB].
Assume that /4, B are included in L t . Since Ll — dD1 — dD2 is simply connected and
LindDx is a single arc, for i = 1,2, it follows that {a[/l] + fc[£], c[A] + d[B]} and
{[/I], [#]} generate the same subgroup of /^(L, Z). Therefore the subgroup G
generated by {[dD^, [dD^] contains elements of the form
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524 J. H. RUBINSTEIN AND J. S. BIRMAN

where (a, /?) takes on all possible values in Z x Z.
On the other hand, {[dDJ, [5D2]} a ' s o ls a basis f°r G, and

+ IB] + k[jAl = «[B] + mtJA] + n[jB}.

So we must have

to obtain all possible integral values for the coefficients of [A] and [£] . Consequently,
k = 1 and n = + 1 .

4. Computation of J^(M), when M — C is not fibred

Throughout this section, M will denote a Seifert manifold in Class (la), that is, C is
not a fibred knot in M. Therefore, by Lemma 2, M has Seifert invariants

where 1 ^ k, 1 ^ m, n # 0 with (/c, n) # (1, ± 1). Let / be a homeomorphism of K.
After an isotopy, it can be supposed that f{C) = C. Any extension of / to a
homeomorphism / : N(K) -* N(K) can be chosen so that J(C) = C (there are two
such extensions up to isotopy). If /extends to a homeomorphism h: M -> M, then h
maps 7 to 7 and C to C.

In Fig. 3, a separating simple closed curve Co in L is drawn which misses the loops
dDx and dD2 (see Fig. 2) but meets C in exactly four points, for every choice of M in
Class (1). It is easy to show (e.g. by Dehn's Lemma) that Co = dD0 where Do is a
separating meridian disk for Y, disjoint from Dx and D2. Note that h{D0) will be
another separating meridian disk for Y with boundary curve meeting C in four points.

Let H(M) = {h: M -> M such that h is a homeomorphism, h(y) = Y, h{C) = C}. As
noted in § 1, the results in [18] show that for the manifolds studied in this paper H(M)
contains a representative from each isotopy class in G.

= dD0

FIG. 3

LEMMA 3. / / M is in Class (la), then one of the following mutually exclusive conditions
holds:

(a) h(D0) ~ D0for all h e H(M);
(b) one of the meridian disks Dtfor Y meets C in two points and satisfies h{D?) m Dt

for all h € H(M).
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ONE-SIDED HEEGAARD SPLITTINGS 525

Proof. We assume that (a) does not hold, i.e. there exists some h e H(M) such that
h(D0) £ Do. We first claim that in this situation there is a properly embedded disk in
Y with its boundary not homotopically trivial, which is disjoint from Do and meets C
twice.

Let D' denote any disk which is isotopic to h(D0). We can assume that D' is chosen
so that it intersects Do at most in arcs, and also that the number of such arcs is
minimal for all D' cz h(D0). If D' n Do = 0 then clearly D' and h{D0) are isotopic to
Do, because Do is separating and the genus of Y is 2. This contradicts the hypothesis
h(D0) jk Do. Also the four points of CnD0 can be selected to be /i-invariant, since
h(C) = C. Hence h(D0) nC = DonC. The isotopy which takes h(D0) to D', decreasing
the number of arcs of intersection with Do, can then be chosen so that
D' nC = DonC. Let X be the interior of an arc of D' n Do which is outermost with
respect to /)', that is, there is a subdisk D of D' with 3D = J u ]x, where \i c dD' and
findD0 = 0. (Notice that our arcs are all open; a bar denotes closure.)

Let AT be a regular neighbourhood of Do u D in Y. Then 8N has three components,
one of which is parallel to Do. Let Da, Dp be the other two. Note that Da and Dp are
both disjoint from Do by construction. Suppose that 8Da (or 8Dp) is isotopic to a curve
which does not meet C. Then dDa projects one-to-one to a simple closed curve on K,
and since K is incompressible this curve bounds a disk in L. The latter disk may be
used to define an isotopy of 3D' in L, and hence an isotopy of D' in Y to remove the
component k of D' n Do. However, by our hypothesis \D' r\D0\ is minimal, so this
cannot occur. So both dDa and 3Dp intersect C non-trivially. Since C is separating,
each intersects C in an even number of points, and since 18D0 n C \ = 4 "and
finC = 0, each intersects C twice. So either Da or Dp, say Da, can be chosen to be
the disk we need.

We now claim that Da is isotopic to Dl or D2 in Y. To see this, note that Y split
along Do is a union of two solid tori, and Da is in one of them. Since dDa is not
homotopically trivial, Da must be a meridian disk for the solid torus. So Da is non-
separating in 7. Since a solid torus has unique meridian disks, and Dy and D2 are
meridian disks for Y which are disjoint from Do, it follows that Da is isotopic to Dl or
D2. Thus we have shown that if (a) does not hold, then either dDY or 8D2 can be
assumed to meet C in two points. Let £>, = Dt or D2, where dD{ n C is two points.

It remains to prove that in this situation h(D^) is isotopic to D, for every h e H(M).
Suppose that this is not so. Then there exists some h e H(M) with h(D() not isotopic to
Dt. We may assume that D' meets D, transversely in arcs only, with | D' n D, | minimal,
for all disks D' isotopic to /i(£>,). By an outermost disk argument, it follows that D' is
disjoint from £>,- and hence that D' and /i(D,) are isotopic to Dh contrary to our
hypothesis. This completes the proof of Lemma 3.

We are now ready to compute Gl5 for M in Class (la). Let / : K -> K be a
homeomorphism, and let / , fjt denote lifts to homeomorphisms of L. A basis 08 of the
free abelian group HX(Z) is given by {[A], [fi], [jA], [jB]}, where A, B are the curves

in L as shown in Fig. 1. In terms of this basis, ; c has matrix I I, where / is a 2 x 2

identity matrix. We assume, without loss of generality, that the matrix of f$ relative to

^ *s ( A r )' w n e r e F e GL(2, Z), because / preserves C.\ ° FJ
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5 2 6 J. H. RUBINSTEIN AND J. S. BIRMAN

REMARK. The basis $ is not a symplectic basis for HX(L,Z).

Case (A). Suppose that (a) but not (b) in Lemma 3 holds. So neither dDx nor dD2

meets C in two points. Clearly then k ^ 1 and n # ± 1. There are two ways for a
homeomorphism f:K-*Kto extend to a homeomorphism h: M -> M, where /
denotes / restricted to L = 8N(K). (Note that / is an extension of / to N(K).)

(i) Assume that fc(D,) is isotopic to D, for j = 1,2, that is, h preserves the handles of
Y on either side of Do. If JiCdDJ = i C d D J , then

Q ° V 1 * 0)'=±(/c 1 kO)',

where (a b c d)' denotes the transpose of (a b c d). This gives F = ±1, since k # 0.
/

1 /c 0)' = ±(fc 1 fc 0)'.

This implies that k = ± 1, contrary to our assumption, and there are no solutions of
this type. Hence /« = ± / are the only solutions.

(ii) Suppose that ^(DJ is isotopic to D2 and h(D2) is isotopic to Dl s that is, h
interchanges the handles of Y on either side of Do. If J$[dDx~\ = ±[3D2] then

1 k 0)' = ±(0 n m n)'.

Again it follows that /c = ± 1 as m, n are relatively prime, which is a contradiction. So
there are no solutions for / . If j^ldD^ = ±[5D2] then

°F
 F\k 1 k 0)' = ±(0 n m n)'.

Let F = I I. Then a = rf = 0, m = 1, /c= ±n and there are two solutions with
\c d)

b= + 1 , c = ± 1 .
We conclude that Gj has af most two elements unless m = 1 and n = ±fe, in which

case Gx has at most four elements if n — +k and Gj has at most two elements if
n = —k (Gl has only orientation-preserving homeomorphisms).

We must realize the above as homeomorphisms. In Case (A(i)), the homeo-
morphism h which induces — / o n H^L) is the covering transformation for the
projection of M to S3, which is a 2-fold covering branched over a link (see Theorem 4).
Note that the involution gives a visible symmetry in the pictures of dDx and dD2 in
Fig. 2. If m T* 2, then nx(M) has a cyclic centre with more than two elements and h
sends a generator of the centre to its inverse. (See [13, Chapter 5].) Note that C3 is an
ordinary fibre of M and so gives an element of the centre. Hence h cannot be
homotopic to the identity. If m = 2 then H^M, Z) contains a cyclic subgroup with
order greater than 2 and the same argument applies to show there is a no homotopy
between h and the identity. In Case (A(ii)) M is a lens space with Seifert invariants
{ - l ; (o l s 0 ) , (2,1), (4/c,2/c-l), (1, ±k)}. Then M = L(8/c2 + 2e, 4/c2 + 2/c + e), where
e = +1 = sgn( — n) (see [13, pp. 99-100] with the correct sign on p. 100). These are
precisely the lens spaces L(p, q) in Class (la) for which q2 = ± 1 mod p. As above, Gx

has at most four elements if £ = — 1 and at most two elements i f e = + l . I f e = — 1
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ONE-SIDED HEEGAARD SPLITTINGS 527

then q2 = +1 mod p and there are standard fibre-preserving homeomorphisms of
such lens spaces giving Gx = Z2xZ2. On the other hand, if e = + 1 then
q2 = — 1 mod p and there is a standard orientation-reversing homeomorphism
whose square represents the non-zero element of Gx = Z2. Since q ^ 1 (L(6,1) is
excluded) all these homeomorphisms give outer automorphisms of nx{M).

Note. For all our examples so far G2 = {1}.

Case (B). Assume that (b) in Lemma 3 holds. There are two possibilities to consider,
(a) Suppose that Di meets C in two points and is /i-invariant up to isotopy. Then

ak = 1. If /„[££,] = +13DJ then /„ = +7. If uf%{dD{\ = +[dD^ and F = .

then b = 0 and a = c = —d= ± 1 . Therefore Gj has at most four elements if k = 1.
(b) Assume that D2 intersects C in two points and h(D2) is isotopic to 7>2. Then

n = ± 1 . If /8[5D2] = ±[5D2] then /* = ±7. Finally, if ;*/s[d7)2] = ±[d/>2] and

T7 = I I, then c = 0, d = — a = ± 1 , and b = ±mn. Consequently, Gt has at
\c d)

most four elements if n = ± 1 .
We show that all these elements occur as homeomorphisms, but in all cases two of

them lie in G2. So G is isomorphic to Z2 . The covering transformation for the
standard 2-fold covering projection of M to S2, branched over a link, gives a
homeomorphism h such that h$ restricted to L is —7 (see the Appendix). The previous
arguments show that h cannot be homotopic to the identity.

(a) Suppose that k = 1. We investigate the solution

Then hfAB'] + U*]) = [B] + ljB\ that is, 7S/fi[C3] = J C 3 ] . So h preserves the
homology class of an ordinary fibre of M (see Fig. 1 for C3). Since k = 1, M has an
exceptional fibre which has a regular neighbourhood N2 which intersects K in a
punctured Klein bottle Ko (see the discussion at the beginning of §2). In Fig. 4 the
embedding of Ko in N2 is drawn explicitly; Ko is a meridian disk for N2 with two
properly embedded strips attached, going from one side to the other of the meridian
disk. Note that dK0 is homotopic to 4 times a generator of n^NJ as desired, and is an
ordinary fibre of the Seifert fibring of M. As usual we take Cx and C2 to be the centres
of the cross caps of Ko, where C, lifts to Ct in L (Fig. 3) for i = 1,2. It follows
immediately that jMC^ = [C2] and A/«[C2] = - [ C J .

Let N2 = B2 x Sl, where B2 (respectively S1) is the unit disk (respectively circle) in
C. The homeomorphism h': N2 -» N2 given by h'(x, t) = ( — x, t) can be assumed to
map 7<0 to Ko and to interchange the two cross caps of Ko. Clearly h! extends to a
homeomorphism h of M which takes K to K, preserves C3 but switches Cx and C2.
Also h is obviously isotopic to the identity, but h$ restricted to L induces the desired
homomorphism )%f$ of H^L, Z). So we have shown that Gx = Z2xZ2,G2 = Z2 , and
G^Z2.

(b) Suppose that n = ± 1 . Consider the case when F = I I. Then j^f9

preserves [ C J = D4] + (j,4]. As in (a), let N2 be a regular neighbourhood of the
(4k, 2k— 1) exceptional fibre, so that N2 n K is a punctured Klein bottle /Co. Clearly
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528 J. H. RUBINSTEIN AND J. S. BIRMAN

FIG. 4

the annulus in N(K) which joins A to jA intersects the genus-2 handlebody
N(K0) = A/(K) - int JV(C3) in a meridian disk D. Also the meridian disk D^ for Y
which lies inside N2 has the property that dDy and 3D cross transversely in one point
(see Fig. 2). Hence adding NiDJ to N{K0) cancels one of the handles of N(K0) and
yields the solid torus N2. It is now easy to see that Cv is a core circle of the remaining
handle of N(K0), and hence of N2. So we can isotopically shrink N2 to a small regular
neighbourhood N of Cl 5 which meets K in a Mobius-band neighbourhood A^CJ of
Cx. Also the homeomorphism h that we are seeking can be chosen as the identity map
on N.

Note that M —intN is a Seifert manifold with two exceptional fibres with
multiplicity (2,1) and (m, ±1). We can attach a solid torus N' to M — intN by an
identification of dN' and dN so that a meridian disk D' for N' satisfies 3D' = K n dN.
Then D' KJ{K — int N) is an embedded Klein bottle K' in M' = AT u (M - int N). So M'
is a prism manifold with Seifert invariants (fc^o^O), (2,1), (2,1), (m, ± 1)} [3,17].
But then by [3] we see that M' has another Seifert fibring as an Sl bundle over RP2.
The Klein bottle K' can be viewed as the set of fibres over a non-contractible simple
closed curve C in the base RP2. Also a core circle of the solid torus N' can be chosen to
project one-to-one to a simple curve C in RP2 which meets C transversely in one
point (so that AT and K' meet in the disk D').

We construct the desired homeomorphism h which is isotopic to the identity by
'inverting' the Klein bottle K. Precisely, there is an isotopy of RP2 which reverses the
orientation of C and can be chosen so that C is invariant as a set throughout the
isotopy. Lifting the isotopy to M', we obtain an isotopy inverting K' and leaving N'
invariant. The homeomorphism h is given by the time-one mapping of the isotopy on
M — int N' and by the identity map over N. Clearly h takes K to K and is isotopic to
the identity.
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ONE-SIDED HEEGAARD SPLITTINGS 529

Finally, /i# restricted to H^L) takes [A] + [jA] to [A] + [jA], since

matrix F = I as desired. So we have proved that Gl^Z2*Z2, G2 = Z2,

is the homology class of a curve in dN. In addition, h9 maps [fl] to [5] + [dZ)2] (cf. the
proof of Theorem 5 in [17]). Since [d/)2] = n[E] + m[jA] + n[;#] and n = ±1 , we
can choose the direction of the isotopy so that h$ takes [fl] to - m n [ ; / 4 ] - [ ; £ ] .
Consequently, h restricted to L must be of the form ; / where f% corresponds to the

,0 - 1
and G ^ Z2 as in (a).

We are now ready to prove the Main Theorem of § 1, for the manifolds in Class (la).
By Lemma 2, these are precisely the manifolds covered in Parts I and II of the Main
Theorem, if we exclude the cases where (k,n,b) = (1, ± 1 , - 1 ) (cf. the Remark at the
end of §2). If m is odd then Hl(M,Z2) = Z2 and so ^f(M) = G. So Part I follows
immediately, since for M a lens space, m = 1 (see § 2 of [18]). Also Part II holds for all
examples with m odd. If m is even then H1(M,Z2) = Z2 x Z2. Suppose that there is a
homeomorphism h: M -» M with h$: Hl(M,Z2) -> HX(M,Z2) not equal to the
identity. By [8], there must be a fibre-preserving homeomorphism h0 of M with this
property. This can only occur if (m,n) — (4k,2k— 1) or (2,1). Also there is just one
automorphism of H1(M,Z2) realizable by a homeomorphism and different from the
identity in this case. Hence hho~

l or h belongs to G for all possible homeomorphisms
h. We conclude that 3tf{M) = Z2 or Z2 x Z2.

5. Calculation ofj^{M)for M-C fibred over S1

We begin with Min Class(lb) or (2). Then M - C is fibred over S1 with fibre K-C.
Let cp: K — C -> K — C be the monodromy for a choice of orientation of the base S1.
Also let <p»: H^K-C,Z) -> HX(K-C, Z) be denoted by O e SL(2, Z). Then M-C is
determined up to bundle equivalence by the conjugacy class of O in SL(2, Z) (with a
fixed orientation of the base S1). Our first task is to find this conjugacy class.

As is well known (see, for example, [16]) the monodromy for the figure-8 knot
/3 - 1 \

complement corresponds to the conjugacy class of <I> = I I. Note that we will

always use the basis {[a], [/?]} for H^K — C, Z), where a (respectively /?) is the curve
which is the projection of A (respectively B) to K. We now investigate the monodromy
where M is in Class (lb).

The meridian disks, D1,D2 for Y (see Proposition 1 and Fig. 2), determine the
fibring of M — C since dDiC\C has two points, for i= 1,2. Let LlfL2 be the
components of L — C. We identify Lx with K — C by projection. The monodromy q> is
then the composition of the map from Lx to L2 which takes the arc Lx n dDt to
L2 n dD{, for i = 1,2, and the covering transformation j restricted to L2. Note that
under the identification of Lt and K — C, the curves A,B correspond to a, /?. So

Cfl] - -CM] - - M ,
• -mn[jA]-[jB] -> - m n [ / l ] - [ B ] , where n = ± 1 ,

because, by Proposition 1,

[dD{] = \_A] + [£] + [7A] and
5388.3.49 HH
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5 3 0 J. H. RUBINSTEIN AND J. S. BIRMAN

This implies that q)$ has matrix X = I I relative to the basis {[a], [/?]}

for H^K — C, Z). Replacing X by its conjugate U~1XU, where U = ( I, we see

( o i \
j in SL(2, Z). This

gives a different conjugacy class for each example in Class (lb). Note that the
conjugacy class is completely determined by tr O = mn — 2, and all values of tr <b occur
except ±2.

EXAMPLES. (1) If (m, n) = (1,1), then

M = L(6,1) and t r O > = - l .

If (m, n) = (1, - 1 ) , then M = L(10,3) and tr^> = - 3 . These are the only lens spaces in
Class (lb).

(2) If m = 2 and n = + 1 then M is a prism manifold and tr<I> = 0 or —4. For these
examples Jf (M) has been computed in [1] and [17].

(3) If (m, n) = (3, +1) then M is a binary octahedral space and trO = 1 or - 5 .
(4) The case where (m, n) - (4,1) is excluded (M is Haken). If (m, n) = (5,1) then

trO> = 3. This Seifert manifold { - l ; ( o l s 0 ) , (2,1), (4,1), (5,1)} is obtained by (2,1)-
surgery on the figure-8 knot (see [21]).

To find Jff(M), we start by calculating G', which is the subgroup of G consisting of
isotopy classes of orientation-preserving homeomorphisms h which preserve the
orientation of the base S1 of the bundle M — C. Let G\ denote the isotopy classes of
homeomorphisms f:K^K which extend to orientation-preserving homeomorph-
isms h: M -*• M with isotopy class in G'. Let G'2 be the kernel of the homomorphism
from G\ -* G', which sends the isotopy class of / to that of h. If / determines a class
in G\ then the restriction of / to K — C induces a homomorphism of H^K — C, Z) with
matrix F and F<$ = <S>F. Conversely, given F e GL(2, Z) such that F commutes with
O, a homeomorphism h: M — C -> M — C, which preserves the orientation of the
base of M — C, can be constructed so that h induces a homomorphism of HX(K — C, Z)
with matrix F. We will say that h corresponds to F.

To find the centralizer of O in GL(2, Z), we replace O by the matrix

mn — 2 — 1

by a change of basis and note that an abelian subgroup of PSL(2, Z) ^ Z2* Z3 is
cyclic. So if ±<I> has no roots in GL(2, Z), then the centralizer of ^ is {±OP: p e Z}.
On the other hand, if W = ± 6 , then since T9 = r^ + sl, for integers r, s, and

(x - 1 \
(f> = I I where x = tr O, we find that r and the off-diagonal terms of *P are all

(2 — 1 \
± 1 and the only solutions are q = 2 and either x = 3 and ¥ = +1 I or

x = - 3 a n d T = +(
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ONE-SIDED HEEGAARD SPLITTINGS 531

CONCLUSION. (1) If x # ± 3 , homeomorphisms h: M-C -»• M-C correspond to
matrices ±<t>p.

(2 - 1 \
(2) If x = ± 3 , the class of matrices is {± ¥ p } , where ¥ = I 1 if x = 3 and

Next we seek the matrices corresponding to homeomorphisms h of M — C which
extend over M. Obviously all the matrices ± 6 P are of this type, since the
homeomorphisms h can be chosen to be the identity map near C and so extend over

(2 - 1 \
M. Consider the matrix ¥ = ( ), in the case where x = 3. Then ¥ 2 = <D and so

M — C is a double cover of a K — C bundle over S1 with monodromy matrix ¥ . Let W
be the covering transformation for this covering. Then h' is isotopic to a homeo-
morphism h: M — C -> M — C which leaves K — C invariant. Clearly the restriction of
h to K — C can be assumed to correspond to the matrix ¥ . Let N(C) be a small regular
neighbourhood of C which is invariant under h and let / be the restriction of h to
dN(C). Since d e t ¥ = - l , if y is the homology class of d(K - int N(Q) in
Hx(dN{C), Z), then /s(y) = —y. Also another member 5 of Hx(dN(C), Z) can be chosen
so that {<5, y) is a basis and f$(3) = 5, because h is isotopic to ft'. But then if D is a
meridian disk for W(C), we have [dD] = ±2<5 + (2N+l)y in Hx{dN(C),Z) and so
/s[d/)] # + [$/)]. Hence /i does not extend over M. We conclude that only the
matrices ±OP correspond to homeomorphisms of M, if x = 3.

Finally, if x = —3, then M = L(10,3). Now nx(M — C) has a presentation

{x, y, t: t~1xt = x~*yx, t~1yt = x"1},

where {x, y] generates nx(K — C). Note that adding the relation t2[x, y] = 1 gives Z1 0.
Define an automorphism 9 of nx{M — C) by 6(x) = y~1xy~1xy, 9(y) = y~lx, and
9{t) = t[x, y~\. Then 9 induces the matrix ¥ on HX(K — C). Let h be a homeomorphism
of M — C which induces 0 on nx(M — C). Then /i restricted to dN(C) gives a
homomorphismof//1(<3Af(C),Z) which takes 2S + yto2d + y, where <5 is the homology
class oft and y is the homology class of d(K — intiV(C)). Since 23+ y is the class of a
meridian disk for N(C), we see that h extends over M. Hence all the matrices ± ¥ p

come from homeomorphisms of M in the case that x = — 3.
Our calculation of G\ is now complete; G'x = Z x Z2 in all cases. The next step is to

compute G'2. If h is a homeomorphism such that its restriction to K — C has a
homology action with matrix <I>P, then clearly h is isotopic to the identity, because O is
the monodromy matrix for the bundle M — C. Hence the isotopy class of the
restriction of h to K is in G'2.

On the other hand, let h be the homeomorphism such that h restricted to K — C
induces the homomorphism —/ on HX(K — C,Z). If M is in Class (lb) and nx(M) is
infinite, then a generator of the centre of nx(M) is mapped to its inverse by h^. So h
cannot be homotopic to the identity. The same argument works for the binary
octahedral example M where (m,n) = (3 , -1) and nx{M) = 0(48) xZ 7 , as nx(M)
has cyclic centre with order 14, and also for the two lens-space examples L(6,1)
and L(10,3) (see [13, p. 101]). Finally, the prism manifold example M, where
(m, n) = (2,1), has | HX(M, Z) \ = 12. Since h*: HX{M, Z) -> HX(M, Z) is equal to - / , it
follows that h cannot be homotopic to the identity. Note also that if M = L(10, 3), the

 1460244x, 1984, 3, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/plm
s/s3-49.3.517 by <

Shibboleth>
-m

em
ber@

gla.ac.uk, W
iley O

nline L
ibrary on [01/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



5 3 2 J. H. RUBINSTEIN AND J. S. BIRMAN

homeomorphism h corresponding to the matrix ¥ is not homotopic to the identity. In
fact ht{£) = £3, where £ generates n^M). So we conclude that for all M in Class (lb),
except for the cases where (m, ri) = (2,1) or (3,1), G'2 corresponds to the set of matrices
{Op: p G Z}. So G' = G\/G'2 s Z2 .

For the prism manifold M = {-1 ;(ol50), (2,1), (2,1), (4,1)}, by the proof of
Theorem 5 in [17] it follows that the homeomorphism h of M corresponding to the
matrix — / i s isotopic to the identity. Let M be the binary octahedral space
{— 1; (o2,0), (2,1), (3,1), (4,1)}. If a small regular neighbourhood of the (4,1)
exceptional fibre is removed from M, the result is the trefoil knot complement. So a
non-orientable surface K can be formed by gluing a Seifert surface of genus 1 for the
trefoil knot to a Mobius band which is properly embedded in the neighbourhood of
the (4,1) fibre. Note that M is obtained by (2,1) surgery on the trefoil, so the boundary
curves of these surfaces can be matched for appropriate choices of the Mobius band.
This shows that the curve C in K is isotopic to the (4,1) exceptional fibre (any two
embeddings of K in M are isotopic [18] and there is a unique curve C in K such that
K-C is orientable, up to isotopy).

The homeomorphism h of M which corresponds to — / can be viewed as the
covering transformation for the double covering projection of M to S3, branched over
a link. The fixed set of h has two components, one of which is C and the other is
isotopic to the (2,1) exceptional fibre since M — C has a Seifert fibration and is a fibred
knot. The homeomorphism h on M — C can be viewed as an involution with three
fixed points on each punctured torus fibre. But h can also be constructed by a rotation
through n along each of the ordinary fibres and on the (3,1) exceptional fibre for the
Seifert fibring of M — C and by fixing each point of C and the (2,1) exceptional fibre.
Consequently, h is isotopic to the identity, and in the cases where (m, ri) = (2,1) or
(3,1), G\ = G'2 and G '= {1}.

Suppose now that M is in Class (2) and again let h correspond to the matrix — /.
Then h is an isometry of the complete hyperbolic structure on M, so h cannot be
homotopic to the identity by Mostow's theorem [12]. Alternatively, this can be
checked by showing that h^: n^M) -*• n^M) is not an inner automorphism. As M is
hyperbolic, n^M) has no centre, so this is easily proved by considering h2.

The second step is to find Gl5 G2, and G. Let Y be the matrix I I. Then

<f>~x y = Y<b holds for all monodromy matrices $>. Hence it easily follows that there is
a homeomorphism h'\ M —int N(C) -*• M —intiV(C) such that h' corresponds to Y,
and ti reverses the orientation of the base S1 of the bundle M-in tN(C) . Let {d,y} be
a basis for H^dNiC), Z), where y is the.homology class of d(K — int N(C)), and let / '
denote the restriction of h! to dN(C). Since det Y - - 1 , it follows that f'%{y) = -y.
Because h' is orientation-reversing on the base S1, f'$(5) = —3 for any choice of S. So
h' extends to a homeomorphism of M, which we will again denote by h', in all cases.
Hence G\ is of index 2 in Gx.

To find G2 suppose first that M is in Class (lb). If we change back to the basis

{[a], [j5]} for H^K-CZ), then Y is converted to the matrix Z = ( j . Since

det Y = — 1 but h' is orientation-preserving, clearly h' restricted to L has the matrix

0 Z
1 with respect to the basis {[>4], [B], [jA], [)B]}. But in Case (B) of §4, thisZ 0

matrix is shown to correspond to a homeomorphism which is isotopic to the identity.
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ONE-SIDED HEEGAARD SPLITTINGS 533

(The desired isotopy is a rotation in a regular neighbourhood of the (4,1) exceptional
fibre.) Hence G'2 is of index 2 in G2 and G ^ GJG2 £ G\/G'2 £ G' for M in Class (lb).

Finally, assume that M is in Class (2) and is hyperbolic. Then the homeomorphism
h! can be chosen to be an isometry of the complete hyperbolic structure of M
(see [21]) and so neither h! nor hW is isotopic to the identity, where h corresponds to
the matrix —/. This can also be checked by showing directly that h'+ and hji'^ are
both outer automorphisms of KX(M). SO G2 = G'2.

The proof of the theorem is nearly complete. We need only check when there
are homeomorphisms h: M -> M such that hf Hl(M,Z2) -+ HX(M,Z2) is not
the identity. This can only occur if \HX(M,Z2)\ > 2, which completes the proof of
Part III. For M in Class (lb), h can be assumed to be fibre-preserving by [8]. Hence
(m, n) = (2, ± 1) are the only two cases. This finishes Parts I and II of the main
theorem.

REMARK. It is interesting that (2, l)-surgery on the figure-8 knot gives a Seifert
manifold with a different homeotopy group from all the hyperbolic 3-manifolds
obtained by (2,2N + l)-surgery, for N ^ 0.

Appendix. Branched coverings and l-sided splittings of genus 3

The manifolds considered in this paper all admit 1-sided Heegaard splittings of
non-orientable genus 3; however, we only consider a subset of that class. Since 4he
techniques used here undoubtedly apply to other manifolds in the class, we give in this
section ways to construct all 3-manifolds which have 1-sided Heegaard splittings of
non-orientable genus 3.

THEOREM 4. Let M be a closed orientable 3-manifold.
(1) M has a l-sided Heegaard splitting of genus 3 if and only if M is a 2-fold branched

cover ofS3 branched over a link a u S£±, where <£x is a 6-plat and a is an unknotted circle
which bounds a disk meeting 5£x in exactly three points, as in Fig. 5 (a).

(2) / / M has such a splitting, then there is a commutative diagram of 2-fold covering
spaces as in Fig. 5(b), all of which are branched except for p. The branch sets of
P1.P2.P3.P4.Ps are Selt J^2 = auJ5f1, j£?3 = a, J*?4 = p^\^x), &5 = pr»- In
particular, the link Jz?4 has a symmetric 6-plat representation as in Fig. 5 (a), where r is a
rotation 0/I8O0 about an axis through the point 0 and perpendicular to the plane of the
paper.

(3) Each 3-manifold M which admits a l-sided Heegaard splitting of (non-orientable)
genus 3 also admits a Heegaard splitting of (orientable) genus 3. Also the 3-manifold M'
in Fig. 5(b) admits a Heegaard splitting of (orientable) genus 2.

Proof. (1) Assume first that M has a genus-3 l-sided splitting M = N(K)\J Y.
Define L, j,n: Lxl -*• K as in §2. In Fig. 1, an embedding of L in R3 is drawn which
is symmetric relative to the coordinate axes. Then j is reflection in the origin, that is,
j(x) = —x for x e L. Also the rotation through 180° about the x2-axis gives an
involution k on L which has six fixed points {Qh jQ{: 1 ^ i < 3} and commutes
with j . Hence the involution on L x / defined by (x, t) -*• (kx, t) induces an involution
k' on N(K), via the projection n, and Fix(/c') consists of three properly embedded arcs
{Qt x / : 1 < i < 3} in N(K) together with C = n(C). Regard Y as the handlebody of
genus 2 given by the compact region bounded by L in R3 in Fig. 1. Let k" be the
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534 J. H. RUBINSTEIN AND J. S. BIRMAN

involution on Y which is rotation through 180° about the x2-axis. Exactly as in
Theorem 5 in [4], the isotopy class of k is central in Jf(L). Consequently, the
involutions k' on N(K) and k" on Y can be matched up (after isotopic adjustment) to
produce an involution I on M. Since M/l = {N(K)/k') u (Y/k") « B 3 u B 3 « S3, we
have proved that there is a 2-fold branched covering p2: M -+ S3 with k as covering
translation.

The branch set of p2 is a link S£2 = a u Z£x, where a = p2(C) and i f 1 is the
projection of the arcs of Fix(/c') and Fix(/c"). It is easy to check that K/k' is a disk, and
so a bounds a disk p2(/C) which meets 5£x in three points. Since M — K is an open
handlebody of genus 2, it follows that £f2np2(M — K) consists of three unknotted
open arcs properly embedded in the open ball S3 — p2(K) (cf. [4]). Hence S£x is a
3-bridge link determined by a 6-braid /? as in Fig. 5.

Conversely, suppose that there is a 2-fold covering p2: M -* S3 with branch set a
link S£2 = CCKJ 5£x as in Fig. 5. Let D be the disk bounded by a which meets S£x in
three points. Then it can easily be shown that K = p2~

i(D) is a closed non-orientable
surface of genus 3. Moreover, if B3 is a small 3-ball neighbourhood of D in S3, then
P J " 1 ^ 3 ) is homeomorphic to N(K). Finally, p2~1(S3 —intfl3) is homeomorphic to a
handlebody of genus 2 and so M = N(K) u Y.

(2) Assume that M = N(K) u 7 is a genus-3 1-sided Heegaard splitting and let
p: M -> M be the associated double covering. Also let p2: M -» S3 be the 2-fold

(b)

FIG. 5
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ONE-SIDED HEEGAARD SPLITTINGS 535

branched covering as in (1). Finally, let pt: M' -• S3 and p3: S3 -> S3 be the 2-fold
coverings of S3 branched over S£x and a = S£3 respectively, where j£?2 = a u Jzfj is the
branch set for p2.

Now q = p2-p is a. 4-fold covering from M to S3 with 2-fold branching over 5£2. To
construct this covering, Hl(S

3-J?2) can be split into a direct sum Z 2 © Z", where the
first summand is generated by a meridian of a and the second factor has meridians
of the n components of S£x as generating set. Let r\: H1(S

3 — SC2) —*• Z2®Z2 be
the direct sum of the epimorphisms Z -* Z2 and Z" -> Z2. Then the composition of rj
with the epimorphism from TT^S3 — 5£2) to H^S3 — S£2) gives an epimorphism from
%X{S3 — S£2) to Z2®Z2. The kernel of this latter map induces a regular 4-fold
covering of S3 — S£2 which extends to give q: M -> S3. However, the 4-fold covering
of S3 — i<?2 can be factorized into a composition of two 2-fold coverings in three
distinct ways. This gives the diagram of coverings in Fig. 5(b), with
q = p2-p = p 3 p 4 = p l P s .

Finally, the branch set jSf4 for p4: M -+ S3 clearly satisfies i? 4 = p - j " 1 ^ ) . So i? 4

has a symmetric 6-plat representation as in Fig. 5 because p3 is just the 2-fold covering
ofS3.

(3) Since the branch set <£2 (respectively S£x) is represented in Fig. 5 (a) as an 8-plat
(respectively 6-plat) it follows from Theorem 5 of [4] that M (respectively M') admits a
Heegaard splitting of genus 3 (respectively 2).

A partial converse to Theorem 4 will now be given.
Let M' be a closed orientable 3-manifold which admits a genus-2 Heegaard

decomposition M' = Y' u Y". Let / : Toxl -> Y' be any homeomorphism, where To

is a once-punctured torus, and let C = f(dT0 x {j}). An epimorphism

n^M'-C) - Z2

can be constructed by taking intersection numbers modulo 2 of loops in M' — C with
f(T0 x {^}). Let p5: M -> M' be the associated 2-fold covering of M', branched over
C.

THEOREM 5. Let M', M, and p5: M -* M' be as above. Then there is a double
covering p: M -> M, vv/iere M ts a 3-manifold which has a 1-sided Heegaard splitting of
genus 3. Also the projections p5 and p can be included in a commutative diagram of
coverings as in Fig. 5(b).

Proof. By Theorem 5 of [4], there is a 2-fold covering projection px: M' -* S3 with
branch set a 3-bridge link S£^. Let h: M' -* M' be the covering translation for pk.
Then h can be chosen so that each surface f(T0 x {t}), for 0 ^ t ^ 1, is invariant
under h. Consequently, h restricted to f(Tox {t}) is an involution with three fixed
points and Pif(T0 x {t}) is a disk. So the simple closed curve a = Pi(C') bounds a disk
PifiTox {i}) in S3 which intersects S£x in three points. Therefore the link
5£2 = a u oSfi is exactly as in Fig. 5 (a).

As M is the 2-fold covering of M' branched over C = p1~
1(a), it follows that the

map Px'Ps'. M -*• S3 is a 4-fold covering with 2-fold branching at the link
S£2 — a u S£x. The 3 factorizations p^p*, = p2p = pyp^. are obtained exactly as in
Theorem 4. Also by Theorem 4, M, which is the 2-fold covering of S3 branched over
jSf2, must have a 1-sided Heegaard splitting of genus 3.
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