ONE-SIDED HEEGAARD SPLITTINGS AND HOMEOTOPY GROUPS OF SOME 3-MANIFOLDS

J. H. RUBINSTEIN and J. S. BIRMAN

[Received 21 September 1982—Revised 22 December 1983]

1. Introduction

In this paper we compute the homeotopy groups of certain closed, orientable, irreducible 3 -manifolds M which are non-Haken, i.e. do not contain any 2 -sided incompressible surfaces. The homeotopy group $\mathscr{H}(M)$ is the quotient group of the group of all homeomorphisms from M to M modulo the normal subgroup of those homeomorphisms which are isotopic to the identity mapping of M.

The manifolds studied here all share a crucial property: each M contains a closed non-orientable and embedded surface K of non-orientable genus 3 which is unique up to isotopy, representing a fixed element of $H_{2}\left(M, Z_{2}\right)$. Also M admits a 1 -sided Heegaard splitting $M=N(K) \cup Y$, where $N(K)$ is an orientable line bundle over K and Y is a handlebody of genus 2 . The uniqueness of the surface K places a structure on M which is quite restrictive and it is this which allows the computation of $\mathscr{H}(M)$. Similar techniques have been used elsewhere [1,17] in the case when K has non-orientable genus 2 . However, we are only able to treat some cases when K has non-orientable genus 3, because we do not know whether the isotopy class of K is always unique (see [18]). The hypothesis ' K has genus 3 ' is essential to our techniques; it is quite unlikely that our methods generalize to genus greater than 3 , although they probably can be applied to many other cases of genus 3 .

The manifolds which we investigate include two classes.
(1) The Seifert manifolds $\left\{b ;\left(o_{1}, 0\right) ;(2,1),(4 k, 2 k-1),(m, n)\right\}$ where $1 \leqslant k$, $0<n<m$ or $(m, n)=(1,0)$. These manifolds are irreducible and non-Haken so long as the cases where $(m, n)=(4 k, 1)$ and $b=-1$ are excluded. Our notation follows that on page 90 of [13]; however, we allow the case where $(m, n)=(1,0)$, understanding this to mean that M has two exceptional fibres. In that case M is a lens space $L(2,1)$ or $L(8 p q+2 \varepsilon, 4 p q \pm 2 p+\varepsilon)$ where $p, q \geqslant 1$ and $\varepsilon= \pm 1$ [13, pp. 99-100]. These are precisely the lens spaces which admit embeddings of K (see [6]). In terms of the Seifert invariants, $p=k, q=|b+1|$, and $\varepsilon=-\operatorname{sgn}(b+1)$. If $b=-1$ then $M=L(2,1)$. Note that there is a sign error in [13] on line 11 of page 100, i.e. $q=m \alpha_{2}+n \beta_{2}$.

Remark. The Seifert manifolds $\left\{b ;\left(o_{1}, 0\right) ;(2,1),(4,1),(3, n)\right\}$, where $n=1$ or 2 , all have $\pi_{1}(M)$ equal to a finite group $O(48) \times Z_{r}$, where $O(48)$ is the binary octahedral group. These 3-manifolds are often called the binary octahedral spaces.
(2) The 3-manifolds obtained by type- $(2,2 N+1)$ surgery on the complement of the figure-8 knot in S^{3}. This knot complements fibres over S^{1} with fibre a punctured torus. It is not difficult to see that type- $(2,2 N+1)$ surgery on any orientable oncepunctured torus bundle over S^{1} yields a 3 -manifold M which admits a 1 -sided

The work of the second author was partially supported by the National Science Foundation under grant No. MCS-82-01045.
Proc. London Math. Soc. (3), 49 (1984), 517-536.

Heegaard splitting of genus 3 (see [18]). Our method applies to all such 3-manifolds, and most of them are irreducible and non-Haken [17,9]. In [21] it is proved that for $N \neq 0,(2,2 N+1)$-surgery on the figure- 8 knot yields an irreducible, non-Haken and hyperbolic 3 -manifold, whereas for $N=0$ the surgery gives a Seifert manifold in Class (1) above.

The results of our work are summarized in:
Main theorem. I. Let M be the lens space $L(8 p q+2 \varepsilon, 4 p q \pm 2 q+\varepsilon)$, where $\varepsilon= \pm 1$ and $p, q \geqslant 1$. Then $\mathscr{H}(M)$ is

$$
\begin{array}{ll}
Z_{2} & \text { if } p \neq q \text { or } p=q=1 \text { and } \varepsilon=-1, \\
Z_{2} \times Z_{2} & \text { if } p=q \neq 1 \text { and } \varepsilon=-1, \\
Z_{4} & \text { if } p=q \text { and } \varepsilon=1 .
\end{array}
$$

II. Let M be a Seifert manifold of type

$$
\left\{b ;\left(o_{1}, 0\right) ;(2,1),(4 k, 2 k-1),(m, n)\right\}
$$

where $1 \leqslant k, 1 \leqslant n<m, b \in Z$, excluding the cases where $(m, n, b)=(4 k, 1,-1)$. Then $\mathscr{H}(M)$ is

$$
\begin{array}{ll}
Z_{2} \times Z_{2} & \text { if }(m, n)=(4 k, 2 k-1), \text { or }(m, n)=(2,1) \text { and }(k, b) \neq(1,-1), \\
Z_{2} & \text { if }(m, n, k, b)=(2,1,1,-1), \text { or } \\
& (m, n) \neq(2,1),(4 k, 2 k-1) \text { and }(m, n, k, b) \neq(3,1,1,-1), \\
\{1\} & \text { if }(m, n, k, b)=(3,1,1,-1) .
\end{array}
$$

III. Let M be the manifold obtained by type- $(2,2 N+1)$ surgery on the figure-8 knot, where $N \neq 0$. Then $\mathscr{H}(M)$ is

$$
Z_{2} \times Z_{2}
$$

We now summarize our results as they relate to the connection between $\mathscr{H}(M)$ and Out $\pi_{1}(M)$. There is a natural homomorphism θ from $\mathscr{H}(M)$ to Out $\pi_{1}(M)$, given by assigning to a homeomorphism $h: M \rightarrow M$ the induced automorphism h_{*} of $\pi_{1}(M)$, and noting that if h is isotopic to the identity then h_{*} is an inner automorphism. For all our examples, we will find that θ is one-to-one, that is, if $h: M \rightarrow M$ is a homeomorphism such that h is homotopic to the identity, then h is isotopic to the identity. This result has been established by Waldhausen [22] whenever M is Haken.

Also we obtain that θ is surjective for those examples with $\pi_{1}(M)$ infinite. Equivalently, since then M is a $K(\pi, 1)$ space, if $f: M \rightarrow M$ is any homotopy equivalence then f is homotopic to a homeomorphism. Again Waldhausen has obtained this result when M is Haken [22]. Note that for a hyperbolic 3-manifold M, by Mostow's rigidity theorem [12] any homotopy equivalence is homotopic to an isometry. Also it is proved elsewhere (see [14, 15], and, especially, §8 of [8]) that for a Seifert fibre space M, any homotopy equivalence $f: M \rightarrow M$ is homotopic to a fibrepreserving homeomorphism.

Our examples with $\pi_{1}(M)$ finite are all Seifert manifolds. For M Seifert fibred, both Out $\pi_{1}(M)$ and the quotient group of fibre-preserving homeomorphisms of M, modulo the normal subgroup of those which are fibre-preserving isotopic to the identity, are computed in [8]. The latter quotient group is isomorphic to $\theta(\mathscr{H}(M))$.

We now summarize the method. Let G be the subgroup of $\mathscr{H}(M)$ containing isotopy classes of orientation-preserving homeomorphisms $h: M \rightarrow M$ such that the induced map $h_{\sharp}: H_{1}\left(M, Z_{2}\right) \rightarrow H_{1}\left(M, Z_{2}\right)$ is the identity in $\mathscr{H}(M)$. By $\S 7$ of [18], if M is in Classes (1) or (2), then any isotopy class in G contains homeomorphisms h for which $h(K)=K$, where K is the embedded non-orientable surface of genus 3 . Conversely, since the rank of $H_{1}\left(M, Z_{2}\right) \leqslant 2$ for M in Classes (1) or (2), it can be checked that any homeomorphism $h: M \rightarrow M$ which takes K to K is such that h_{\sharp} is the identity. Let $\mathscr{H}(K)$ be the homeotopy group of K and let G_{1} be the subgroup of $\mathscr{H}(K)$ consisting of homeomorphisms $f: K \rightarrow K$ which extend to orientationpreserving homeomorphisms $h: M \rightarrow M$. Then the map sending the isotopy class of f to that of h gives an epimorphism $\Psi: G_{1} \rightarrow G$. The kernel G_{2} of Ψ is the set of isotopy classes of homeomorphisms $f: K \rightarrow K$ which extend to homeomorphisms $h: M \rightarrow M$ such that h is isotopic to the identity $M \rightarrow M$.

Our main task is to compute G_{1} and G_{2}, since it is easy to find $\mathscr{H}(M)$ knowing G, and $G \cong G_{1} / G_{2}$. By [3] (see Lemma 3 and Corollary 4 of [18]), there is a unique simple closed curve C in K up to isotopy with $K-C$ orientable, and $\mathscr{H}(K)$ is isomorphic to $\mathrm{GL}(2, Z)$, by the map which takes the isotopy class of f to f_{\sharp}. These two facts, namely that C is unique up to isotopy, and that $\mathscr{H}(K)$ is isomorphic to $\mathrm{GL}(2, Z)$, are the essential results that make our calculation of $\mathscr{H}(M)$ possible.
We now give an outline of the paper. In $\S 2$ we give an explicit picture of the Seifert manifolds M in Class (1), in terms of 1 -sided decompositions $M=N(K) \cup Y$. The idea of a 1 -sided Heegaard diagram for a 3 -manifold is introduced, which is the analogue of a Heegaard diagram, and explicit 1 -sided Heegaard diagrams are determined for M in (1).
In §3 Class (1) is subdivided into subclasses (1a) and (1b). The manifold M is in (1a) if $M-C$ is not fibred over S^{1} with fibre the open punctured torus $K-C$, and in (1b) if $M-C$ is a fibre bundle with base S^{1} and fibre $K-C$.
In $\S 4, \mathscr{H}(M)$ is computed for M in (1a). The crucial step is to find a 'special' disk D properly embedded in the handlebody Y in the 1 -sided Heegaard splitting $M=N(K) \cup Y$, and having the property that if $h: M \rightarrow M$ is a homeomorphism which respects the splitting, that is, takes $N(K)$ to $N(K)$ and Y to Y, then $h(D)$ and D are always isotopic in Y. Consequently, G_{1} can be found by identifying the isotopy classes of homeomorphisms $f: K \rightarrow K$ which extend to homeomorphisms $f: N(K) \rightarrow N(K)$ such that $\bar{f}(\partial D)$ and ∂D are homotopic loops on the surface $\partial N(K)=\partial Y$. It turns out that $G_{2}=\{1\}$ or Z_{2} and so G is isomorphic to either G_{1} or G_{1} / Z_{2} for M in (1a).
In § $5 \mathscr{H}(M)$ is calculated for M in Classes (1b) and (2). The method is applicable to any ($2,2 N+1$)-surgery on a punctured torus bundle over S^{1}. By [3] (see Lemma 3 of [18]), a homeomorphism $h: M \rightarrow M$ with $h(K)=K$ can be isotoped until in addition $h(C)=C$. Since $M-C$ is fibred over S^{1}, the restriction of h to $M-C$ is a selfhomeomorphism of a fibre bundle and by [22], $\mathscr{H}(M-C)$ can be easily computed. Let G^{\prime} denote the subgroup of $\mathscr{H}(M-C)$ consisting of isotopy classes of homeomorphisms which extend to homeomorphisms of M. Let $\Psi^{\prime}: G^{\prime} \rightarrow \mathscr{H}(M)$ be the map induced by extension of homeomorphisms. Then $\operatorname{Im} \Psi^{\prime}=G$ and $\operatorname{ker} \Psi^{\prime}$ can be readily calculated. So G and $\mathscr{H}(M)$ can be found. Note that G_{2} is infinite in this case, contrary to the situation when M is in (1a).
The Appendix concerns the relationship between branched covering spaces and 1 sided Heegaard splittings of genus 3 , and gives general ways to find all 3 -manifolds which admit such splittings.

Recently, there have been two other independent calculations of the homeotopy groups $\mathscr{H}(M)$ for all the 3 -dimensional lens spaces M (see [5,11]). The methods involve two different usages of height functions on M, and are special to lens spaces. Another related paper which treats certain lens spaces is [2].

In [10], the problem of computing $\mathscr{H}(M)$ for 3 -manifolds M with $\pi_{1} M$ finite has been related to the existence of $\frac{1}{2}$ spin solutions for a quantum theory for gravity. We would like to thank J. Friedman and D. Witt for a helpful communication regarding $S^{3} / O(48)$. We would also like to thank the referee for extremely thorough and helpful suggestions.

2. One-sided Heegaard diagrams

Let M be a closed orientable 3-manifold with a 1 -sided Heegaard splitting of genus $g, M=N(K) \cup Y$. Let L be a closed orientable surface, and let $j: L \rightarrow L$ be an orientation-reversing involution such that the orbit space $L / j \cong K$. Then $N(K)$ can be identified with the mapping cylinder of a free orientation-reversing involution j on L via the projection $\pi: L \times I \rightarrow N(K)$. Let $\left\{D_{i}: 1 \leqslant i \leqslant g\right\}$ be a complete system of meridian disks for the handlebody Y. Let j^{\prime} be the involution on $L \times I$ given by $j^{\prime}(x, t)=(j x, t)$. By an abuse of notation, we will denote $\partial N(K)$ by L and the involution $\left.\pi \cdot j^{\prime} \cdot \pi^{-1}\right|_{L}$ by j.

Definition. A 1 -sided Heegaard diagram for M (associated with the 1 -sided splitting $M=N(K) \cup Y)$ is given by the $(g+2)$-tuple ($L, j, \partial D_{1} \ldots \partial D_{g}$). Note that given a ($g+2$)-tuple consisting of a closed, orientable surface L, a free orientation-reversing involution j of L, and g disjoint simple closed curves C_{1}, \ldots, C_{g} in L such that $L-\bigcup_{i} C_{i}$ is planar, a 3-manifold M with a 1 -sided Heegaard decomposition $M=N(K) \cup Y$, which has $\left(L, j, C_{1}, \ldots, C_{g}\right)$ as a 1 -sided Heegaard diagram, can be uniquely constructed by gluing Y to $N(K)$ via a homeomorphism $\varphi: \partial Y \rightarrow L$ so that $\varphi\left(\partial D_{i}\right)=C_{i}$ for all i.

The purpose of this section is to describe convenient 1 -sided Heegaard diagrams for the manifolds in Class (1).

If C is a loop in L, then its homology class in $H_{1}(L ; Z)$ will be denoted by [C]. Let $A, B, j A, j B$ be the curves illustrated in Fig. 1.

Proposition 1. Each Seifert manifold with invariants

$$
\left\{b ;\left(o_{1}, 0\right),(2,1),(4,2 k-1),(m, n)\right\}
$$

where b is an arbitrary integer, $k \geqslant 1,0<n<m$, or $b \neq-1, k \geqslant 1$ and $(m, n)=(1,0)$, may also be described by invariants $\left\{-1 ;\left(o_{1}, 0\right),(2,1),(4 k, 2 k-1),(m, n)\right\}$ where $k \geqslant 1, m \geqslant 1$ and n is a non-zero integer. With the latter description, M has a 1 -sided Heegaard diagram ($L, j, \partial D_{1}, \partial D_{2}$) with

$$
\begin{aligned}
& {\left[\partial D_{1}\right]=k[A]+[B]+k[j A],} \\
& {\left[\partial D_{2}\right]=n[B]+m[j A]+n[j B] .}
\end{aligned}
$$

The types of diagrams we will be using are illustrated in Fig. 2. Note that some of the later arguments will need diagrams as in Fig. 2, not just the homological data of Proposition 1.

Fig. 1

$\left[\partial D_{2}\right]=n[B]+n[j B]+\dot{m}[j A]$

Fig. 2

Proof. Let N_{1} and N_{2} be small fibred neighbourhoods of the exceptional fibres of multiplicity 2 and $4 k$ respectively. It can readily be seen that an ordinary fibre in ∂N_{1} bounds a Mobius band J in N_{1}.

If a solid torus N is glued to N_{2} so that a meridian curve for N is matched up with an ordinary fibre in ∂N_{2}, then the result is the lens space $L(4 k, 2 k-1)$. In [17] it is shown that $L(4 k, 2 k-1)$ has a 1 -sided splitting of genus $2, L(4 k, 2 k-1)=N\left(K_{1}\right) \cup Y_{1}$, and the Klein bottle K_{1} can be chosen to meet N in a single meridian disk. Consequently, $K_{1} \cap N_{2}$ is a punctured Klein bottle K_{0}.

An annulus A of ordinary fibres in $M-\operatorname{int} N_{1}-\operatorname{int} N_{2}$ can be found so that $\partial A=\partial J \cup \partial K_{0}$. Then the non-orientable surface of genus 3 embedded in M is $K=J \cup A \cup K_{0}$.

We may identify $N\left(K_{1}\right)$ with the mapping cylinder of a free orientation-reversing involution j_{1} on the torus $T=\partial N\left(K_{1}\right)$. Let C, C^{\prime} be simple closed curves on T which intersect transversely at a single point such that $j_{1 \sharp}[C]=-[C]$ and $j_{1 \sharp}\left[C^{\prime}\right]=\left[C^{\prime}\right]$. If D_{1} is a meridian disk for Y_{1}, then $\left[\partial D_{1}\right]=m[C]+n\left[C^{\prime}\right]$ for relatively prime integers m, n. Also $\pi_{1}\left(K_{1}\right)=\left\langle x, y: y^{-1} x y=x^{-1}\right\rangle$, where C, C^{\prime} have homotopy class x, y^{2} respectively. Consequently,

$$
\pi_{1}\left(N\left(K_{1}\right) \cup Y_{1}\right)=\left\langle x, y: y^{-1} x y=x^{-1}, y^{2 n} x^{m}=1\right\rangle \cong Z_{4 k}
$$

if and only if $m=1$ and $n=k$, for suitable orientation of C, C^{\prime}.
In [17] it is proved that the solid torus N can be chosen to miss D_{1}. Consequently, D_{1} lies in N_{2} and can be selected as the first of a system of meridian disks $\left\{D_{1}, D_{2}\right\}$ for the handlebody Y in the splitting $M=N(K) \cup Y$.

The three curves \tilde{C}_{i}, with $1 \leqslant i \leqslant 3$, drawn in Fig. 1 are all j-invariant, and so if $\pi: L \rightarrow K$ is the covering projection with covering transformation j then the three curves $C_{i}=\pi\left(\tilde{C}_{i}\right)$ are the centres of three Mobius bands in K. We will assume that the punctured Klein bottle K_{0} is $K-\operatorname{int} N\left(C_{3}\right)$, where $J=N\left(C_{3}\right)$ is a small Mobius band with centre C_{3}. Let $N\left(\tilde{C}_{3}\right)$ be the preimage of $N\left(C_{3}\right)$ in L. Then T can be regarded as L-int $N\left(\widetilde{C}_{3}\right)$ with two disks attached along the boundary curves. The curves C, C^{\prime} in T can be chosen to be B and \tilde{C}_{1} without loss of generality, so that

$$
\left[\partial D_{1}\right]=[C]+k\left[C^{\prime}\right]=[B]+k\left[\tilde{C}_{1}\right]=[B]+k[A]+k[j A] \subset L-\operatorname{int} N\left(\tilde{C}_{3}\right)
$$

Note that ∂D_{1} intersects \tilde{C}_{1} and also \tilde{C}_{2} transversely in a single point. (See Fig. 2.)
If D_{2} is the second meridian disk for Y, then $\partial D_{2} \cap \partial D_{1}=\varnothing$, but $\partial D_{2} \cap \widetilde{C}_{1}$ is in general non-empty. However, by connecting D_{2} with copies of D_{1} by strips along arcs of \widetilde{C}_{1} we can obtain a different choice of meridian disk D_{2} with $\partial D_{2} \cap \widetilde{C}_{1}=\varnothing$. Consequently, ∂D_{2} can be taken to be a curve in L as in the examples of Fig. 2, since $\partial D_{2} \cap \partial D_{1}=\varnothing$ and $\partial D_{2} \cap \tilde{C}_{1}=\varnothing$.

As C_{3} is the centre of the Mobius band J in the complement of K_{0} in K, C_{3} can be regarded as the exceptional fibre of multiplicity 2 in M. Therefore \tilde{C}_{3} is an ordinary fibre of M, without loss of generality. Let $N\left(K_{0}\right)$ be a regular neighbourhood of K_{0} in M which is chosen so that $\partial N\left(K_{0}\right) \cap L=L-\operatorname{int} N\left(\tilde{C}_{3}\right)$. It is not difficult to check that if $N\left(D_{1}\right)$ is a small regular neighbourhood of D_{1} in Y, then $N\left(D_{1}\right) \cup N\left(K_{0}\right)$ is a solid torus. Consequently, we may as well assume that $N_{2}=N\left(D_{1}\right) \cup N\left(K_{0}\right)$. In addition, because C_{3} is the exceptional fibre of multiplicity 2 , the solid torus $N_{3}=M-\operatorname{int}\left(N\left(D_{1}\right) \cup N(K)\right)=\operatorname{cl}\left(Y-N\left(D_{1}\right)\right)$ is a regular neighbourhood of the other exceptional fibre of multiplicity m.

The disk D_{2} is a meridian disk for N_{3}, as well as for Y. We will not be adopting the usual normalization of Seifert invariants (i.e. $0<n<m$, as in [13]). First, the curve
$j A$ in Fig. 1 can be chosen as a cross-section to the ordinary fibre \tilde{C}_{3} in ∂N_{3}. With this choice, the 'invariants' of the exceptional fibre at the core of N_{3} are given by integers (m, n), where $\left[\partial D_{2}\right]=m[j A]+n\left[\widetilde{C}_{3}\right]=n[B]+m[j A]+n[j B]$. Note that k, m can be assumed to be positive integers, but n is an arbitrary (non-zero) integer.

Finally, we compute the value of the b invariant of the Seifert fibring, given the above choices of $\partial D_{1}, \partial D_{2}$ and k, m, n. A 3-manifold $M^{\prime \prime}=N(K) \cup Y$ can be constructed so that Y has a set of meridian disks $D_{1}^{\prime}, D_{2}^{\prime}$ with boundary curves on L given by $\partial D_{1}^{\prime}=\partial D_{1}$ (as for M) and $\partial D_{2}^{\prime}=j A$. From the previous discussion, it follows immediately that $M^{\prime \prime}$ has Seifert invariants $\left\{b ;\left(o_{1}, 0\right) ;(2,1),(4 k, 2 k-1)\right\}$ where the value of b is the same for $M^{\prime \prime}$ as for M.

It is easy to check directly that $M^{\prime \prime}=R P^{3}$. Alternatively, since $j\left(\partial D_{2}^{\prime}\right)=A$ and ∂D_{1}^{\prime} cross transversely at a single point, it follows that the 2 -fold cover $\tilde{M}^{\prime \prime}$ has a genus- 2 Heegaard splitting with two pairs of cancelling meridian disks and so is S^{3}. A simple calculation shows that $b=-1$ is the only value for which $H_{1}\left(M^{\prime \prime}\right)=Z_{2}$. Consequently, M has Seifert invariants $\left\{-1 ;\left(o_{1}, 0\right) ;(2,1),(4 k, 2 k-1),(m, n)\right\}$, where $k \geqslant 1$, $m \geqslant 1$, and $n \in Z$. This completes the proof of Proposition 1 .

Remark. If M has Seifert invariants $\left\{b ;\left(o_{1}, 0\right) ;(2,1),(4 k, 2 k-1),(m, n)\right\}$ where $k \geqslant 1,0<n<m$, or $(m, n)=(1,0)$, then M has 'unnormalized' Seifert invariants $\left\{-1 ;\left(o_{1}, 0\right) ;(2,1),(4 k, 2 k-1),(m, m(b+1)+n)\right\}$. This can be easily checked by computing $\left|H_{1}(M, Z)\right|$ (see [13, p. 101]).

3. Fibred knots in Seifert manifolds

In this section, we determine which of the Seifert manifolds M in Class (1) have the property that C is a fibred knot in M.

Lemma 2. Let M be a Seifert manifold $\left\{-1 ;\left(o_{1}, 0\right) ;(2,1),(4 k, 2 k-1),(m, n)\right\}$. The following are equivalent:
(a) $M-C$ is fibred over S^{1} with fibre $K-C$;
(b) the meridian disks D_{1}, D_{2} can be chosen so that ∂D_{1} and ∂D_{2} both cross \tilde{C} in two points;
(c) $k=1$ and $n= \pm 1$.

Proof. It is clear that (c) implies (b). To see that (b) implies (a), suppose that ∂D_{i} intersects \tilde{C} in two points, for $i=1,2$. If L_{1}, L_{2} are the closures of the components of $L-\tilde{C}$, then $\partial D_{i} \cap L_{j}$ is a single arc for $i, j=1,2$. Hence L_{1} and L_{2} are parallel surfaces in Y, since ∂D_{i} gives an isotopy between an arc of L_{1} and an arc of L_{2}, for $i=1,2$. Since int L_{1} and int L_{2} both project homeomorphically onto $K-C$, it follows that $M-C$ is a punctured torus bundle over S^{1} with fibre $K-C$.

Finally, we show that (a) implies (c). If C is a fibred knot in M, then there is a system of meridian disks $\left\{\bar{D}_{1}, \bar{D}_{2}\right\}$ for Y with $\partial \bar{D}_{1}$ and $\partial \bar{D}_{2}$ both crossing \tilde{C} in two points. Let $\left[\partial \bar{D}_{1}\right]=a[A]+b[B]+x[j A]+y[j B]$ and $\left[\partial \bar{D}_{2}\right]=c[A]+d[B]+u[j A]+v[j B]$. Assume that A, B are included in L_{1}. Since $L_{1}-\partial \bar{D}_{1}-\partial \bar{D}_{2}$ is simply connected and $L_{1} \cap \partial \bar{D}_{1}$ is a single arc, for $i=1,2$, it follows that $\{a[A]+b[B], c[A]+d[B]\}$ and $\{[A],[B]\}$ generate the same subgroup of $H_{1}(L, Z)$. Therefore the subgroup G generated by $\left\{\left[\partial \bar{D}_{1}\right],\left[\partial \bar{D}_{2}\right]\right\}$ contains elements of the form

$$
\alpha[A]+\beta[B]+\gamma[j A]+\delta[j B],
$$

where (α, β) takes on all possible values in $Z \times Z$.
On the other hand, $\left\{\left[\partial D_{1}\right],\left[\partial D_{2}\right]\right\}$ also is a basis for G, and

$$
\left[\partial D_{1}\right]=k[A]+[B]+k[j A], \quad\left[\partial D_{2}\right]=n[B]+m[j A]+n[j B] .
$$

So we must have

$$
\operatorname{det}\left(\begin{array}{cc}
k & 0 \\
1 & n
\end{array}\right)= \pm 1
$$

to obtain all possible integral values for the coefficients of $[A]$ and $[B]$. Consequently, $k=1$ and $n= \pm 1$.

4. Computation of $\mathscr{H}(M)$, when $M-C$ is not fibred

Throughout this section, M will denote a Seifert manifold in Class (1a), that is, C is not a fibred knot in M. Therefore, by Lemma 2, M has Seifert invariants

$$
\left\{-1 ;\left(o_{1}, 0\right) ;(2,1),(4 k, 2 k-1),(m, n)\right\}
$$

where $1 \leqslant k, 1 \leqslant m, n \neq 0$ with $(k, n) \neq(1, \pm 1)$. Let f be a homeomorphism of K. After an isotopy, it can be supposed that $f(C)=C$. Any extension of f to a homeomorphism $\tilde{f}: N(K) \rightarrow N(K)$ can be chosen so that $\tilde{f}(\widetilde{C})=\widetilde{C}$ (there are two such extensions up to isotopy). If \bar{f} extends to a homeomorphism $h: M \rightarrow M$, then h maps Y to Y and \tilde{C} to \tilde{C}.

In Fig. 3, a separating simple closed curve C_{0} in L is drawn which misses the loops ∂D_{1} and ∂D_{2} (see Fig. 2) but meets \tilde{C} in exactly four points, for every choice of M in Class (1). It is easy to show (e.g. by Dehn's Lemma) that $C_{0}=\partial D_{0}$ where D_{0} is a separating meridian disk for Y, disjoint from D_{1} and D_{2}. Note that $h\left(D_{0}\right)$ will be another separating meridian disk for Y with boundary curve meeting \tilde{C} in four points.

Let $H(M)=\{h: M \rightarrow M$ such that h is a homeomorphism, $h(Y)=Y, h(\tilde{C})=\tilde{C}\}$. As noted in §1, the results in [18] show that for the manifolds studied in this paper $H(M)$ contains a representative from each isotopy class in G.

Fig. 3
Lemma 3. If M is in Class (1a), then one of the following mutually exclusive conditions holds:
(a) $h\left(D_{0}\right) \simeq D_{0}$ for all $h \in H(M)$;
(b) one of the meridian disks D_{i} for Y meets \tilde{C} in two points and satisfies $h\left(D_{i}\right) \simeq D_{i}$ for all $h \in H(M)$.

Proof. We assume that (a) does not hold, i.e. there exists some $h \in H(M)$ such that $h\left(D_{0}\right) \not \neq D_{0}$. We first claim that in this situation there is a properly embedded disk in Y with its boundary not homotopically trivial, which is disjoint from D_{0} and meets \tilde{C} twice.

Let D^{\prime} denote any disk which is isotopic to $h\left(D_{0}\right)$. We can assume that D^{\prime} is chosen so that it intersects D_{0} at most in arcs, and also that the number of such arcs is minimal for all $D^{\prime} \simeq h\left(D_{0}\right)$. If $D^{\prime} \cap D_{0}=\varnothing$ then clearly D^{\prime} and $h\left(D_{0}\right)$ are isotopic to D_{0}, because D_{0} is separating and the genus of Y is 2 . This contradicts the hypothesis $h\left(D_{0}\right) \not \not \not D_{0}$. Also the four points of $\tilde{C} \cap D_{0}$ can be selected to be h-invariant, since $h(\tilde{C})=\tilde{C}$. Hence $h\left(D_{0}\right) \cap \tilde{C}=D_{0} \cap \tilde{C}$. The isotopy which takes $h\left(D_{0}\right)$ to D^{\prime}, decreasing the number of arcs of intersection with D_{0}, can then be chosen so that $D^{\prime} \cap \widetilde{C}=D_{0} \cap \widetilde{C}$. Let λ be the interior of an arc of $D^{\prime} \cap D_{0}$ which is outermost with respect to D^{\prime}, that is, there is a subdisk D of D^{\prime} with $\partial D=\lambda \cup \bar{\mu}$, where $\mu \subset \partial D^{\prime}$ and $\mu \cap \partial D_{0}=\varnothing$. (Notice that our arcs are all open; a bar denotes closure.)

Let N be a regular neighbourhood of $D_{0} \cup D$ in Y. Then ∂N has three components, one of which is parallel to D_{0}. Let D_{α}, D_{β} be the other two. Note that D_{α} and D_{β} are both disjoint from D_{0} by construction. Suppose that ∂D_{α} (or ∂D_{β}) is isotopic to a curve which does not meet \tilde{C}. Then ∂D_{α} projects one-to-one to a simple closed curve on K, and since K is incompressible this curve bounds a disk in L. The latter disk may be used to define an isotopy of ∂D^{\prime} in L, and hence an isotopy of D^{\prime} in Y to remove the component λ of $D^{\prime} \cap D_{0}$. However, by our hypothesis $\left|D^{\prime} \cap D_{0}\right|$ is minimal, so this cannot occur. So both ∂D_{α} and ∂D_{β} intersect \widetilde{C} non-trivially. Since \tilde{C} is separating, each intersects \tilde{C} in an even number of points, and since $\left|\partial D_{0} \cap \widetilde{C}\right|=4$ and $\mu \cap \tilde{C}=\varnothing$, each intersects \tilde{C} twice. So either D_{α} or D_{β}, say D_{α}, can be chosen to be the disk we need.

We now claim that D_{α} is isotopic to D_{1} or D_{2} in Y. To see this, note that Y split along D_{0} is a union of two solid tori, and D_{α} is in one of them. Since ∂D_{α} is not homotopically trivial, D_{α} must be a meridian disk for the solid torus. So D_{α} is nonseparating in Y. Since a solid torus has unique meridian disks, and D_{1} and D_{2} are meridian disks for Y which are disjoint from D_{0}, it follows that D_{α} is isotopic to D_{1} or D_{2}. Thus we have shown that if (a) does not hold, then either ∂D_{1} or ∂D_{2} can be assumed to meet \tilde{C} in two points. Let $D_{i}=D_{1}$ or D_{2}, where $\partial D_{i} \cap \tilde{C}$ is two points.

It remains to prove that in this situation $h\left(D_{i}\right)$ is isotopic to D_{i} for every $h \in H(M)$. Suppose that this is not so. Then there exists some $h \in H(M)$ with $h\left(D_{i}\right)$ not isotopic to D_{i}. We may assume that D^{\prime} meets D_{i} transversely in arcs only, with $\left|D^{\prime} \cap D_{i}\right|$ minimal, for all disks D^{\prime} isotopic to $h\left(D_{i}\right)$. By an outermost disk argument, it follows that D^{\prime} is disjoint from D_{i} and hence that D^{\prime} and $h\left(D_{i}\right)$ are isotopic to D_{i}, contrary to our hypothesis. This completes the proof of Lemma 3.

We are now ready to compute G_{1}, for M in Class (1a). Let $f: K \rightarrow K$ be a homeomorphism, and let $\tilde{f}, \tilde{j f}$ denote lifts to homeomorphisms of L. A basis \mathscr{B} of the free abelian group $H_{1}(Z)$ is given by $\{[A],[B],[j A],[j B]\}$, where A, B are the curves in L as shown in Fig. 1. In terms of this basis, $j_{\#}$ has matrix $\left(\begin{array}{ll}0 & I \\ I & 0\end{array}\right)$, where I is a 2×2 identity matrix. We assume, without loss of generality, that the matrix of \tilde{f}_{\ddagger} relative to \mathscr{B} is $\left(\begin{array}{ll}F & 0 \\ 0 & F\end{array}\right)$, where $F \in \mathrm{GL}(2, Z)$, because \tilde{f} preserves \tilde{C}.

Remark. The basis \mathscr{B} is not a symplectic basis for $H_{1}(L, Z)$.
Case (A). Suppose that (a) but not (b) in Lemma 3 holds. So neither ∂D_{1} nor ∂D_{2} meets \tilde{C} in two points. Clearly then $k \neq 1$ and $n \neq \pm 1$. There are two ways for a homeomorphism $f: K \rightarrow K$ to extend to a homeomorphism $h: M \rightarrow M$, where \tilde{f} denotes \bar{f} restricted to $L=\partial N(K)$. (Note that \bar{f} is an extension of f to $N(K)$.)
(i) Assume that $h\left(D_{i}\right)$ is isotopic to D_{i} for $i=1,2$, that is, h preserves the handles of Y on either side of D_{0}. If $\tilde{f}_{\xi}\left[\partial D_{1}\right]= \pm\left[\partial D_{1}\right]$, then

$$
\left(\begin{array}{ll}
F & 0 \\
0 & F
\end{array}\right)\left(\begin{array}{llll}
k & 1 & k & 0)^{\prime}= \pm\left(\begin{array}{llll}
k & 1 & k & 0
\end{array}\right)^{\prime},
\end{array}\right.
$$

where ($\left.\begin{array}{llll}a & b & c & d\end{array}\right)^{\prime}$ denotes the transpose of $\left(\begin{array}{llll}a & b & c & d\end{array}\right)$. This gives $F= \pm I$, since $k \neq 0$. If $j_{\#} \tilde{f}_{\#}\left[\partial D_{1}\right]= \pm\left[\partial D_{1}\right]$ then

$$
\left(\begin{array}{cc}
0 & F \\
F & 0
\end{array}\right)\left(\begin{array}{lllll}
k & 1 & k & 0
\end{array}\right)^{\prime}= \pm\left(\begin{array}{lllll}
k & 1 & k & 0
\end{array}\right)^{\prime} .
$$

This implies that $k= \pm 1$, contrary to our assumption, and there are no solutions of this type. Hence $f_{\sharp}= \pm I$ are the only solutions.
(ii) Suppose that $h\left(D_{1}\right)$ is isotopic to D_{2} and $h\left(D_{2}\right)$ is isotopic to D_{1}, that is, h interchanges the handles of Y on either side of D_{0}. If $\tilde{f_{4}}\left[\partial D_{1}\right]= \pm\left[\partial D_{2}\right]$ then

$$
\left(\begin{array}{ll}
F & 0 \\
0 & F
\end{array}\right)\left(\begin{array}{lllll}
k & 1 & k & 0
\end{array}\right)^{\prime}= \pm\left(\begin{array}{llll}
0 & n & m & n
\end{array}\right)^{\prime}
$$

Again it follows that $k= \pm 1$ as m, n are relatively prime, which is a contradiction. So there are no solutions for f. If $j_{\sharp} \tilde{f}_{\sharp}\left[\partial D_{1}\right]= \pm\left[\partial D_{2}\right]$ then

$$
\left(\begin{array}{ll}
0 & F \\
F & 0
\end{array}\right)\left(\begin{array}{lllll}
k & 1 & k & 0
\end{array}\right)^{\prime}= \pm\left(\begin{array}{llll}
0 & n & m & n
\end{array}\right)^{\prime} .
$$

Let $F=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$. Then $a=d=0, m=1, k= \pm n$ and there are two solutions with $b= \pm 1, c= \pm 1$.

We conclude that G_{1} has at most two elements unless $m=1$ and $n= \pm k$, in which case G_{1} has at most four elements if $n=+k$ and G_{1} has at most two elements if $n=-k$ (G_{1} has only orientation-preserving homeomorphisms).

We must realize the above as homeomorphisms. In Case ($\mathrm{A}(\mathrm{i})$), the homeomorphism h which induces $-I$ on $H_{1}(L)$ is the covering transformation for the projection of M to S^{3}, which is a 2 -fold covering branched over a link (see Theorem 4). Note that the involution gives a visible symmetry in the pictures of ∂D_{1} and ∂D_{2} in Fig. 2. If $m \neq 2$, then $\pi_{1}(M)$ has a cyclic centre with more than two elements and h sends a generator of the centre to its inverse. (See [13, Chapter 5].) Note that \widetilde{C}_{3} is an ordinary fibre of M and so gives an element of the centre. Hence h cannot be homotopic to the identity. If $m=2$ then $H_{1}(M, Z)$ contains a cyclic subgroup with order greater than 2 and the same argument applies to show there is a no homotopy between h and the identity. In Case (A (ii)) M is a lens space with Seifert invariants $\left\{-1 ;\left(o_{1}, 0\right),(2,1),(4 k, 2 k-1),(1, \pm k)\right\}$. Then $M=L\left(8 k^{2}+2 \varepsilon, 4 k^{2}+2 k+\varepsilon\right)$, where $\varepsilon= \pm 1=\operatorname{sgn}(-n)$ (see [13, pp. 99-100] with the correct sign on p. 100). These are precisely the lens spaces $L(p, q)$ in Class (1a) for which $q^{2} \equiv \pm 1 \bmod p$. As above, G_{1} has at most four elements if $\varepsilon=-1$ and at most two elements if $\varepsilon=+1$. If $\varepsilon=-1$
then $q^{2} \equiv+1 \bmod p$ and there are standard fibre-preserving homeomorphisms of such lens spaces giving $G_{1} \cong Z_{2} \times Z_{2}$. On the other hand, if $\varepsilon=+1$ then $q^{2} \equiv-1 \bmod p$ and there is a standard orientation-reversing homeomorphism whose square represents the non-zero element of $G_{1} \cong Z_{2}$. Since $q \neq 1(L(6,1)$ is excluded) all these homeomorphisms give outer automorphisms of $\pi_{1}(M)$.

Note. For all our examples so far $G_{2}=\{1\}$.
Case (B). Assume that (b) in Lemma 3 holds. There are two possibilities to consider.
(a) Suppose that D_{1} meets \tilde{C} in two points and is h-invariant up to isotopy. Then $k=1$. If $f_{\sharp}\left[\partial D_{1}\right]= \pm\left[\partial D_{1}\right]$ then $f_{\sharp}= \pm I$. If $j_{\sharp} f_{\sharp}\left[\partial D_{1}\right]= \pm\left[\partial D_{1}\right]$ and $F=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, then $b=0$ and $a=c=-d= \pm 1$. Therefore G_{1} has at most four elements if $k=1$.
(b) Assume that D_{2} intersects \tilde{C} in two points and $h\left(D_{2}\right)$ is isotopic to D_{2}. Then $n= \pm 1$. If $f_{\sharp}\left[\partial D_{2}\right]= \pm\left[\partial D_{2}\right]$ then $f_{\sharp}= \pm I$. Finally, if $j_{\sharp} f_{\sharp}\left[\partial D_{2}\right]= \pm\left[\partial D_{2}\right]$ and $F=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, then $c=0, d=-a= \pm 1$, and $b= \pm m n$. Consequently, G_{1} has at most four elements if $n= \pm 1$.

We show that all these elements occur as homeomorphisms, but in all cases two of them lie in G_{2}. So G is isomorphic to Z_{2}. The covering transformation for the standard 2 -fold covering projection of M to S^{3}, branched over a link, gives a homeomorphism h such that h_{\sharp} restricted to L is $-I$ (see the Appendix). The previous arguments show that h cannot be homotopic to the identity.
(a) Suppose that $k=1$. We investigate the solution

$$
F=\left(\begin{array}{ll}
-1 & 0 \\
-1 & 1
\end{array}\right)
$$

Then $j_{\sharp} f_{\sharp}([B]+[j B])=[B]+[j B]$, that is, $j_{\sharp} f_{\sharp}\left[\tilde{C}_{3}\right]=\left[\tilde{C}_{3}\right]$. So h preserves the homology class of an ordinary fibre of M (see Fig. 1 for \tilde{C}_{3}). Since $k=1, M$ has an exceptional fibre which has a regular neighbourhood N_{2} which intersects K in a punctured Klein bottle K_{0} (see the discussion at the beginning of §2). In Fig. 4 the embedding of K_{0} in N_{2} is drawn explicitly; K_{0} is a meridian disk for N_{2} with two properly embedded strips attached, going from one side to the other of the meridian disk. Note that ∂K_{0} is homotopic to 4 times a generator of $\pi_{1}\left(N_{2}\right)$ as desired, and is an ordinary fibre of the Seifert fibring of M. As usual we take C_{1} and C_{2} to be the centres of the cross caps of K_{0}, where C_{i} lifts to \widetilde{C}_{i} in L (Fig. 3) for $i=1,2$. It follows immediately that $j_{\sharp} f_{\sharp}\left[\widetilde{C}_{1}\right]=\left[\widetilde{C}_{2}\right]$ and $j_{\sharp} f_{\sharp}\left[\tilde{C}_{2}\right]=-\left[\widetilde{C}_{1}\right]$.

Let $N_{2}=B^{2} \times S^{1}$, where B^{2} (respectively S^{1}) is the unit disk (respectively circle) in C. The homeomorphism $h^{\prime}: N_{2} \rightarrow N_{2}$ given by $h^{\prime}(x, t)=(-x, t)$ can be assumed to map K_{0} to K_{0} and to interchange the two cross caps of K_{0}. Clearly h^{\prime} extends to a homeomorphism h of M which takes K to K, preserves C_{3} but switches C_{1} and C_{2}. Also h is obviously isotopic to the identity, but h_{\sharp} restricted to L induces the desired homomorphism $j_{\sharp} f_{\sharp}$ of $H_{1}(L, Z)$. So we have shown that $G_{1} \cong Z_{2} \times Z_{2}, G_{2} \cong Z_{2}$, and $G \cong Z_{2}$.
(b) Suppose that $n= \pm 1$. Consider the case when $F=\left(\begin{array}{cc}1 & -m n \\ 0 & -1\end{array}\right)$. Then $j_{\sharp} f_{\#}$ preserves $\left[\tilde{C}_{1}\right]=[A]+[j A]$. As in (a), let N_{2} be a regular neighbourhood of the $(4 k, 2 k-1)$ exceptional fibre, so that $N_{2} \cap K$ is a punctured Klein bottle K_{0}. Clearly

Fig. 4
the annulus in $N(K)$ which joins A to $j A$ intersects the genus-2 handlebody $N\left(K_{0}\right)=N(K)$-int $N\left(C_{3}\right)$ in a meridian disk D. Also the meridian disk D_{1} for Y which lies inside N_{2} has the property that ∂D_{1} and ∂D cross transversely in one point (see Fig. 2). Hence adding $N\left(D_{1}\right)$ to $N\left(K_{0}\right)$ cancels one of the handles of $N\left(K_{0}\right)$ and yields the solid torus N_{2}. It is now easy to see that C_{1} is a core circle of the remaining handle of $N\left(K_{0}\right)$, and hence of N_{2}. So we can isotopically shrink N_{2} to a small regular neighbourhood N of C_{1}, which meets K in a Mobius-band neighbourhood $N\left(C_{1}\right)$ of C_{1}. Also the homeomorphism h that we are seeking can be chosen as the identity map on N.

Note that M-int N is a Seifert manifold with two exceptional fibres with multiplicity $(2,1)$ and $(m, \pm 1)$. We can attach a solid torus N^{\prime} to $M-$ int N by an identification of ∂N^{\prime} and ∂N so that a meridian disk D^{\prime} for N^{\prime} satisfies $\partial D^{\prime}=K \cap \partial N$. Then $D^{\prime} \cup(K-\operatorname{int} N)$ is an embedded Klein bottle K^{\prime} in $M^{\prime}=N^{\prime} \cup(M-$ int $N)$. So M^{\prime} is a prism manifold with Seifert invariants $\left\{b ;\left(o_{1}, 0\right),(2,1),(2,1),(m, \pm 1)\right\}[3,17]$. But then by [3] we see that M^{\prime} has another Seifert fibring as an S^{1} bundle over $R P^{2}$. The Klein bottle K^{\prime} can be viewed as the set of fibres over a non-contractible simple closed curve C in the base $R P^{2}$. Also a core circle of the solid torus N^{\prime} can be chosen to project one-to-one to a simple curve C^{\prime} in $R P^{2}$ which meets C transversely in one point (so that N^{\prime} and K^{\prime} meet in the disk D^{\prime}).

We construct the desired homeomorphism h which is isotopic to the identity by 'inverting' the Klein bottle K. Precisely, there is an isotopy of $R P^{2}$ which reverses the orientation of C and can be chosen so that C^{\prime} is invariant as a set throughout the isotopy. Lifting the isotopy to M^{\prime}, we obtain an isotopy inverting K^{\prime} and leaving N^{\prime} invariant. The homeomorphism h is given by the time-one mapping of the isotopy on $M-\operatorname{int} N^{\prime}$ and by the identity map over N. Clearly h takes K to K and is isotopic to the identity.

Finally, h_{\sharp} restricted to $H_{1}(L)$ takes $[A]+[j A]$ to $[A]+[j A]$, since

$$
\left[\tilde{C}_{1}\right]=[A]+[j A]
$$

is the homology class of a curve in ∂N. In addition, h_{\sharp} maps $[B]$ to $[B] \pm\left[\partial D_{2}\right]$ (cf. the proof of Theorem 5 in [17]). Since $\left[\partial D_{2}\right]=n[B]+m[j A]+n[j B]$ and $n= \pm 1$, we can choose the direction of the isotopy so that h_{\sharp} takes $[B]$ to $-m n[j A]-[j B]$. Consequently, h restricted to L must be of the form $j f$ where f_{\ddagger} corresponds to the matrix $F=\left(\begin{array}{ll}1 & -m n \\ 0 & -1\end{array}\right)$ as desired. So we have proved that $G_{1} \cong Z_{2} \times Z_{2}, G_{2} \cong Z_{2}$, and $G \cong Z_{2}$ as in (a).
We are now ready to prove the Main Theorem of $\S 1$, for the manifolds in Class (1a). By Lemma 2, these are precisely the manifolds covered in Parts I and II of the Main Theorem, if we exclude the cases where $(k, n, b)=(1, \pm 1,-1)$ (cf. the Remark at the end of $\S 2$). If m is odd then $H_{1}\left(M, Z_{2}\right)=Z_{2}$ and so $\mathscr{H}(M)=G$. So Part I follows immediately, since for M a lens space, $m=1$ (see § 2 of [18]). Also Part II holds for all examples with m odd. If m is even then $H_{1}\left(M, Z_{2}\right)=Z_{2} \times Z_{2}$. Suppose that there is a homeomorphism $h: M \rightarrow M$ with $h_{\sharp}: H_{1}\left(M, Z_{2}\right) \rightarrow H_{1}\left(M, Z_{2}\right)$ not equal to the identity. By [8], there must be a fibre-preserving homeomorphism h_{0} of M with this property. This can only occur if $(m, n)=(4 k, 2 k-1)$ or $(2,1)$. Also there is just one automorphism of $H_{1}\left(M, Z_{2}\right)$ realizable by a homeomorphism and different from the identity in this case. Hence $h h_{0}{ }^{-1}$ or h belongs to G for all possible homeomorphisms h. We conclude that $\mathscr{H}(M)=Z_{2}$ or $Z_{2} \times Z_{2}$.

5. Calculation of $\mathscr{H}(M)$ for $M-C$ fibred over S^{1}

We begin with M in Class (1b) or (2). Then $M-C$ is fibred over S^{1} with fibre $K-C$. Let $\varphi: K-C \rightarrow K-C$ be the monodromy for a choice of orientation of the base S^{1}. Also let $\varphi_{\sharp}: H_{1}(K-C, Z) \rightarrow H_{1}(K-C, Z)$ be denoted by $\Phi \in \operatorname{SL}(2, Z)$. Then $M-C$ is determined up to bundle equivalence by the conjugacy class of Φ in $\operatorname{SL}(2, Z)$ (with a fixed orientation of the base S^{1}). Our first task is to find this conjugacy class.

As is well known (see, for example, [16]) the monodromy for the figure-8 knot complement corresponds to the conjugacy class of $\Phi=\left(\begin{array}{rr}3 & -1 \\ 1 & 0\end{array}\right)$. Note that we will always use the basis $\{[\alpha],[\beta]\}$ for $H_{1}(K-C, Z)$, where α (respectively β) is the curve which is the projection of A (respectively B) to K. We now investigate the monodromy where M is in Class (1b).
The meridian disks, D_{1}, D_{2} for Y (see Proposition 1 and Fig. 2), determine the fibring of $M-C$ since $\partial D_{i} \cap \tilde{C}$ has two points, for $i=1,2$. Let L_{1}, L_{2} be the components of $L-\tilde{C}$. We identify L_{1} with $K-C$ by projection. The monodromy φ is then the composition of the map from L_{1} to L_{2} which takes the arc $L_{1} \cap \partial D_{i}$ to $L_{2} \cap \partial D_{i}$, for $i=1,2$, and the covering transformation j restricted to L_{2}. Note that under the identification of L_{1} and $K-C$, the curves A, B correspond to α, β. So

$$
\begin{aligned}
& \varphi_{\sharp}:[A]+[B] \rightarrow-[j A] \rightarrow-[A], \\
& \varphi_{\sharp}:[B] \rightarrow-m n[j A]-[j B] \rightarrow-m n[A]-[B], \quad \text { where } n= \pm 1,
\end{aligned}
$$

because, by Proposition 1,

$$
\left[\partial D_{1}\right]=[A]+[B]+[j A] \text { and }\left[\partial D_{2}\right]=n[B]+m[j A]+n[j B] .
$$

This implies that φ_{\sharp} has matrix $X=\left(\begin{array}{cl}m n-1 & -m n \\ 1 & -1\end{array}\right)$ relative to the basis $\{[\alpha],[\beta]\}$ for $H_{1}(K-C, Z)$. Replacing X by its conjugate $U^{-1} X U$, where $U=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$, we see that the conjugacy class of Φ is that of the matrix $\left(\begin{array}{cr}m n-2 & -1 \\ 1 & 0\end{array}\right)$ in $\operatorname{SL}(2, Z)$. This gives a different conjugacy class for each example in Class (1b). Note that the conjugacy class is completely determined by $\operatorname{tr} \Phi=m n-2$, and all values of $\operatorname{tr} \Phi$ occur except ± 2.

Examples. (1) If $(m, n)=(1,1)$, then

$$
M=L(6,1) \quad \text { and } \quad \operatorname{tr} \Phi=-1
$$

If $(m, n)=(1,-1)$, then $M=L(10,3)$ and $\operatorname{tr} \Phi=-3$. These are the only lens spaces in Class (1b).
(2) If $m=2$ and $n= \pm 1$ then M is a prism manifold and $\operatorname{tr} \Phi=0$ or -4 . For these examples $\mathscr{H}(M)$ has been computed in [1] and [17].
(3) If $(m, n)=(3, \pm 1)$ then M is a binary octahedral space and $\operatorname{tr} \Phi=1$ or -5 .
(4) The case where $(m, n)=(4,1)$ is excluded (M is Haken). If $(m, n)=(5,1)$ then $\operatorname{tr} \Phi=3$. This Seifert manifold $\left\{-1 ;\left(o_{1}, 0\right),(2,1),(4,1),(5,1)\right\}$ is obtained by $(2,1)$ surgery on the figure- 8 knot (see [21]).

To find $\mathscr{H}(M)$, we start by calculating G^{\prime}, which is the subgroup of G consisting of isotopy classes of orientation-preserving homeomorphisms h which preserve the orientation of the base S^{1} of the bundle $M-C$. Let G_{1}^{\prime} denote the isotopy classes of homeomorphisms $f: K \rightarrow K$ which extend to orientation-preserving homeomorphisms $h: M \rightarrow M$ with isotopy class in G^{\prime}. Let G_{2}^{\prime} be the kernel of the homomorphism from $G_{1}^{\prime} \rightarrow G^{\prime}$, which sends the isotopy class of f to that of h. If f determines a class in G_{1}^{\prime} then the restriction of f to $K-C$ induces a homomorphism of $H_{1}(K-C, Z)$ with matrix F and $F \Phi=\Phi F$. Conversely, given $F \in \mathrm{GL}(2, Z)$ such that F commutes with Φ, a homeomorphism $h: M-C \rightarrow M-C$, which preserves the orientation of the base of $M-C$, can be constructed so that h induces a homomorphism of $H_{1}(K-C, Z)$ with matrix F. We will say that h corresponds to F.

To find the centralizer of Φ in $\operatorname{GL}(2, Z)$, we replace Φ by the matrix

$$
\hat{\Phi}=\left(\begin{array}{cr}
m n-2 & -1 \\
1 & 0
\end{array}\right)
$$

by a change of basis and note that an abelian subgroup of $\operatorname{PSL}(2, Z) \simeq Z_{2} * Z_{3}$ is cyclic. So if $\pm \hat{\Phi}$ has no roots in $\mathrm{GL}(2, Z)$, then the centralizer of $\hat{\Phi}$ is $\left\{ \pm \hat{\Phi}^{p}: p \in Z\right\}$. On the other hand, if $\Psi^{q}= \pm \hat{\Phi}$, then since $\Psi^{q}=r \Psi+s I$, for integers r, s, and $\hat{\Phi}=\left(\begin{array}{rr}x & -1 \\ 1 & 0\end{array}\right)$ where $x=\operatorname{tr} \Phi$, we find that r and the off-diagonal terms of Ψ are all ± 1 and the only solutions are $q=2$ and either $x=3$ and $\Psi= \pm\left(\begin{array}{ll}2 & -1 \\ 1 & -1\end{array}\right)$ or $x=-3$ and $\Psi= \pm\left(\begin{array}{rr}2 & 1 \\ -1 & -1\end{array}\right)$.

Conclusion. (1) If $x \neq \pm 3$, homeomorphisms $h: M-C \rightarrow M-C$ correspond to matrices $\pm \hat{\Phi}^{p}$.
(2) If $x= \pm 3$, the class of matrices is $\left\{ \pm \Psi^{p}\right\}$, where $\Psi=\left(\begin{array}{ll}2 & -1 \\ 1 & -1\end{array}\right)$ if $x=3$ and $\Psi=\left(\begin{array}{rr}2 & 1 \\ -1 & -1\end{array}\right)$ if $x=-3$.

Next we seek the matrices corresponding to homeomorphisms h of $M-C$ which extend over M. Obviously all the matrices $\pm \hat{\Phi}^{p}$ are of this type, since the homeomorphisms h can be chosen to be the identity map near C and so extend over M. Consider the matrix $\Psi=\left(\begin{array}{ll}2 & -1 \\ 1 & -1\end{array}\right)$, in the case where $x=3$. Then $\Psi^{2}=\hat{\Phi}$ and so $M-C$ is a double cover of a $K-C$ bundle over S^{1} with monodromy matrix Ψ. Let h^{\prime} be the covering transformation for this covering. Then h^{\prime} is isotopic to a homeomorphism $h: M-C \rightarrow M-C$ which leaves $K-C$ invariant. Clearly the restriction of h to $K-C$ can be assumed to correspond to the matrix Ψ. Let $N(C)$ be a small regular neighbourhood of C which is invariant under h and let f be the restriction of h to $\partial N(C)$. Since $\operatorname{det} \Psi=-1$, if γ is the homology class of $\partial(K-\operatorname{int} N(C))$ in $H_{1}(\partial N(C), Z)$, then $f_{\ddagger}(\gamma)=-\gamma$. Also another member δ of $H_{1}(\partial N(C), Z)$ can be chosen so that $\{\delta, \gamma\}$ is a basis and $f_{\sharp}(\delta)=\delta$, because h is isotopic to h^{\prime}. But then if D is a meridian disk for $N(C)$, we have $[\partial D]= \pm 2 \delta+(2 N+1) \gamma$ in $H_{1}(\partial N(C), Z)$ and so $f_{\sharp}[\partial D] \neq \pm[\partial D]$. Hence h does not extend over M. We conclude that only the matrices $\pm \hat{\Phi}^{p}$ correspond to homeomorphisms of M, if $x=3$.

Finally, if $x=-3$, then $M=L(10,3)$. Now $\pi_{1}(M-C)$ has a presentation

$$
\left\{x, y, t: t^{-1} x t=x^{-4} y x, t^{-1} y t=x^{-1}\right\}
$$

where $\{x, y\}$ generates $\pi_{1}(K-C)$. Note that adding the relation $t^{2}[x, y]=1$ gives Z_{10}. Define an automorphism θ of $\pi_{1}(M-C)$ by $\theta(x)=y^{-1} x y^{-1} x y, \theta(y)=y^{-1} x$, and $\theta(t)=t[x, y]$. Then θ induces the matrix Ψ on $H_{1}(K-C)$. Let h be a homeomorphism of $M-C$ which induces θ on $\pi_{1}(M-C)$. Then h restricted to $\partial N(C)$ gives a homomorphism of $H_{1}(\partial N(C), Z)$ which takes $2 \delta+\gamma$ to $2 \delta+\gamma$, where δ is the homology class of t and γ is the homology class of $\partial(K-\operatorname{int} N(C))$. Since $2 \delta+\gamma$ is the class of a meridian disk for $N(C)$, we see that h extends over M. Hence all the matrices $\pm \Psi^{p}$ come from homeomorphisms of M in the case that $x=-3$.

Our calculation of G_{1}^{\prime} is now complete; $G_{1}^{\prime} \cong Z \times Z_{2}$ in all cases. The next step is to compute G_{2}^{\prime}. If h is a homeomorphism such that its restriction to $K-C$ has a homology action with matrix $\hat{\Phi}^{p}$, then clearly h is isotopic to the identity, because $\hat{\Phi}$ is the monodromy matrix for the bundle $M-C$. Hence the isotopy class of the restriction of h to K is in G_{2}^{\prime}.

On the other hand, let h be the homeomorphism such that h restricted to $K-C$ induces the homomorphism $-I$ on $H_{1}(K-C, Z)$. If M is in Class (1 b) and $\pi_{1}(M)$ is infinite, then a generator of the centre of $\pi_{1}(M)$ is mapped to its inverse by h_{*}. So h cannot be homotopic to the identity. The same argument works for the binary octahedral example M where $(m, n)=(3,-1)$ and $\pi_{1}(M)=O(48) \times Z_{7}$, as $\pi_{1}(M)$ has cyclic centre with order 14 , and also for the two lens-space examples $L(6,1)$ and $L(10,3)$ (see [13, p.101]). Finally, the prism manifold example M, where $(m, n)=(2,1)$, has $\left|H_{1}(M, Z)\right|=12$. Since $h_{\sharp}: H_{1}(M, Z) \rightarrow H_{1}(M, Z)$ is equal to $-I$, it follows that h cannot be homotopic to the identity. Note also that if $M=L(10,3)$, the
homeomorphism h corresponding to the matrix Ψ is not homotopic to the identity. In fact $h_{*}(\xi)=\xi^{3}$, where ξ generates $\pi_{1}(M)$. So we conclude that for all M in Class (1b), except for the cases where $(m, n)=(2,1)$ or $(3,1), G_{2}^{\prime}$ corresponds to the set of matrices $\left\{\hat{\Phi}^{p}: p \in Z\right\}$. So $G^{\prime}=G_{1}^{\prime} / G_{2}^{\prime} \cong Z_{2}$.

For the prism manifold $M=\left\{-1 ;\left(o_{1}, 0\right),(2,1),(2,1),(4,1)\right\}$, by the proof of Theorem 5 in [17] it follows that the homeomorphism h of M corresponding to the matrix $-I$ is isotopic to the identity. Let M be the binary octahedral space $\left\{-1 ;\left(o_{1}, 0\right),(2,1),(3,1),(4,1)\right\}$. If a small regular neighbourhood of the $(4,1)$ exceptional fibre is removed from M, the result is the trefoil knot complement. So a non-orientable surface K can be formed by gluing a Seifert surface of genus 1 for the trefoil knot to a Mobius band which is properly embedded in the neighbourhood of the $(4,1)$ fibre. Note that M is obtained by $(2,1)$ surgery on the trefoil, so the boundary curves of these surfaces can be matched for appropriate choices of the Mobius band. This shows that the curve C in K is isotopic to the $(4,1)$ exceptional fibre (any two embeddings of K in M are isotopic [18] and there is a unique curve C in K such that $K-C$ is orientable, up to isotopy).

The homeomorphism h of M which corresponds to $-I$ can be viewed as the covering transformation for the double covering projection of M to S^{3}, branched over a link. The fixed set of h has two components, one of which is C and the other is isotopic to the $(2,1)$ exceptional fibre since $M-C$ has a Seifert fibration and is a fibred knot. The homeomorphism h on $M-C$ can be viewed as an involution with three fixed points on each punctured torus fibre. But h can also be constructed by a rotation through π along each of the ordinary fibres and on the $(3,1)$ exceptional fibre for the Seifert fibring of $M-C$ and by fixing each point of C and the $(2,1)$ exceptional fibre. Consequently, h is isotopic to the identity, and in the cases where $(m, n)=(2,1)$ or $(3,1), G_{1}^{\prime}=G_{2}^{\prime}$ and $G^{\prime}=\{1\}$.

Suppose now that M is in Class (2) and again let h correspond to the matrix $-I$. Then h is an isometry of the complete hyperbolic structure on M, so h cannot be homotopic to the identity by Mostow's theorem [12]. Alternatively, this can be checked by showing that $h_{*}: \pi_{1}(M) \rightarrow \pi_{1}(M)$ is not an inner automorphism. As M is hyperbolic, $\pi_{1}(M)$ has no centre, so this is easily proved by considering h^{2}.

The second step is to find G_{1}, G_{2}, and G. Let Y be the matrix $\left(\begin{array}{rr}0 & -1 \\ -1 & 0\end{array}\right)$. Then $\hat{\Phi}^{-1} Y=Y \hat{\Phi}$ holds for all monodromy matrices $\hat{\Phi}$. Hence it easily follows that there is a homeomorphism $h^{\prime}: M-\operatorname{int} N(C) \rightarrow M-\operatorname{int} N(C)$ such that h^{\prime} corresponds to Y, and h^{\prime} reverses the orientation of the base S^{1} of the bundle $M-\operatorname{int} N(C)$. Let $\{\delta, \gamma\}$ be a basis for $H_{1}(\partial N(C), Z)$, where γ is the homology class of $\partial(K-\operatorname{int} N(C))$, and let f^{\prime} denote the restriction of h^{\prime} to $\partial N(C)$. Since $\operatorname{det} Y=-1$, it follows that $f_{\sharp}^{\prime}(\gamma)=-\gamma$. Because h^{\prime} is orientation-reversing on the base $S^{1}, f_{\sharp}^{\prime}(\delta)=-\delta$ for any choice of δ. So h^{\prime} extends to a homeomorphism of M, which we will again denote by h^{\prime}, in all cases. Hence G_{1}^{\prime} is of index 2 in G_{1}.

To find G_{2} suppose first that M is in Class (1b). If we change back to the basis $\{[\alpha],[\beta]\}$ for $H_{1}(K-C, Z)$, then Y is converted to the matrix $Z=\left(\begin{array}{ll}-1 & 0 \\ -1 & 1\end{array}\right)$. Since $\operatorname{det} Y=-1$ but h^{\prime} is orientation-preserving, clearly h^{\prime} restricted to L has the matrix $\left(\begin{array}{ll}0 & Z \\ Z & 0\end{array}\right)$ with respect to the basis $\{[A],[B],[j A],[j B]\}$. But in Case (B) of $\S 4$, this matrix is shown to correspond to a homeomorphism which is isotopic to the identity.
(The desired isotopy is a rotation in a regular neighbourhood of the $(4,1)$ exceptional fibre.) Hence G_{2}^{\prime} is of index 2 in G_{2} and $G \cong G_{1} / G_{2} \cong G_{1}^{\prime} / G_{2}^{\prime} \cong G^{\prime}$ for M in Class (1b).

Finally, assume that M is in Class (2) and is hyperbolic. Then the homeomorphism h^{\prime} can be chosen to be an isometry of the complete hyperbolic structure of M (see [21]) and so neither h^{\prime} nor $h h^{\prime}$ is isotopic to the identity, where h corresponds to the matrix $-I$. This can also be checked by showing directly that h_{*}^{\prime} and $h_{*} h_{*}^{\prime}$ are both outer automorphisms of $\pi_{1}(M)$. So $G_{2}=G_{2}^{\prime}$.

The proof of the theorem is nearly complete. We need only check when there are homeomorphisms $h: M \rightarrow M$ such that $h_{\sharp}: H_{1}\left(M, Z_{2}\right) \rightarrow H_{1}\left(M, Z_{2}\right)$ is not the identity. This can only occur if $\left|H_{1}\left(M, Z_{2}\right)\right|>2$, which completes the proof of Part III. For M in Class (1b), h can be assumed to be fibre-preserving by [8]. Hence $(m, n)=(2, \pm 1)$ are the only two cases. This finishes Parts I and II of the main theorem.

Remark. It is interesting that (2,1)-surgery on the figure- 8 knot gives a Seifert manifold with a different homeotopy group from all the hyperbolic 3 -manifolds obtained by $(2,2 N+1)$-surgery, for $N \neq 0$.

Appendix. Branched coverings and 1-sided splittings of genus 3

The manifolds considered in this paper all admit 1 -sided Heegaard splittings of non-orientable genus 3 ; however, we only consider a subset of that class. Since the techniques used here undoubtedly apply to other manifolds in the class, we give in this section ways to construct all 3-manifolds which have 1 -sided Heegaard splittings of non-orientable genus 3 .

Theorem 4. Let M be a closed orientable 3-manifold.
(1) M has a 1 -sided Heegaard splitting of genus 3 if and only if M is a 2 -fold branched cover of S^{3} branched over a link $\alpha \cup \mathscr{L}_{1}$, where \mathscr{L}_{1} is a 6 -plat and α is an unknotted circle which bounds a disk meeting \mathscr{L}_{1} in exactly three points, as in Fig. 5(a).
(2) If M has such a splitting, then there is a commutative diagram of 2-fold covering spaces as in Fig. 5(b), all of which are branched except for p. The branch sets of $p_{1}, p_{2}, p_{3}, p_{4}, p_{5}$ are $\mathscr{L}_{1}, \mathscr{L}_{2}=\alpha \cup \mathscr{L}_{1}, \mathscr{L}_{3}=\alpha, \mathscr{L}_{4}={p_{3}}^{-1}\left(\mathscr{L}_{1}\right), \mathscr{L}_{5}=p_{1}^{-1}(\alpha)$. In particular, the link \mathscr{L}_{4} has a symmetric 6-plat representation as in Fig. 5(a), where r is a rotation of 180° about an axis through the point O and perpendicular to the plane of the paper.
(3) Each 3-manifold M which admits a 1-sided Heegaard splitting of (non-orientable) genus 3 also admits a Heegaard splitting of (orientable) genus 3. Also the 3-manifold M^{\prime} in Fig. 5(b) admits a Heegaard splitting of (orientable) genus 2.

Proof. (1) Assume first that M has a genus-3 1-sided splitting $M=N(K) \cup Y$. Define $L, j, \pi: L \times I \rightarrow K$ as in \S 2. In Fig. 1, an embedding of L in R^{3} is drawn which is symmetric relative to the coordinate axes. Then j is reflection in the origin, that is, $j(x)=-x$ for $x \in L$. Also the rotation through 180° about the x_{2}-axis gives an involution k on L which has six fixed points $\left\{\widetilde{Q}_{i}, j \widetilde{Q}_{i}: 1 \leqslant i \leqslant 3\right\}$ and commutes with j. Hence the involution on $L \times I$ defined by $(x, t) \rightarrow(k x, t)$ induces an involution k^{\prime} on $N(K)$, via the projection π, and Fix $\left(k^{\prime}\right)$ consists of three properly embedded arcs $\left\{Q_{i} \times I: 1 \leqslant i \leqslant 3\right\}$ in $N(K)$ together with $C=\pi(\widetilde{C})$. Regard Y as the handlebody of genus 2 given by the compact region bounded by L in R^{3} in Fig. 1. Let $k^{\prime \prime}$ be the
involution on Y which is rotation through 180° about the x_{2}-axis. Exactly as in Theorem 5 in [4], the isotopy class of k is central in $\mathscr{H}(\dot{L})$. Consequently, the involutions k^{\prime} on $N(K)$ and $k^{\prime \prime}$ on Y can be matched up (after isotopic adjustment) to produce an involution k on M. Since $M / k=\left(N(K) / k^{\prime}\right) \cup\left(Y / k^{\prime \prime}\right) \approx B^{3} \cup B^{3} \approx S^{3}$, we have proved that there is a 2-fold branched covering $p_{2}: M \rightarrow S^{3}$ with k as covering translation.

The branch set of p_{2} is a link $\mathscr{L}_{2}=\alpha \cup \mathscr{L}_{1}$, where $\alpha=p_{2}(C)$ and \mathscr{L}_{1} is the projection of the arcs of $\operatorname{Fix}\left(k^{\prime}\right)$ and $\operatorname{Fix}\left(k^{\prime \prime}\right)$. It is easy to check that K / k^{\prime} is a disk, and so α bounds a disk $p_{2}(K)$ which meets \mathscr{L}_{1} in three points. Since $M-K$ is an open handlebody of genus 2 , it follows that $\mathscr{L}_{2} \cap p_{2}(M-K)$ consists of three unknotted open arcs properly embedded in the open ball $S^{3}-p_{2}(K)$ (cf. [4]). Hence \mathscr{L}_{1} is a 3-bridge link determined by a 6-braid β as in Fig. 5.

Conversely, suppose that there is a 2 -fold covering $p_{2}: M \rightarrow S^{3}$ with branch set a link $\mathscr{L}_{2}=\alpha \cup \mathscr{L}_{1}$ as in Fig. 5 . Let D be the disk bounded by α which meets \mathscr{L}_{1} in three points. Then it can easily be shown that $K=p_{2}{ }^{-1}(D)$ is a closed non-orientable surface of genus 3. Moreover, if B^{3} is a small 3-ball neighbourhood of D in S^{3}, then $p_{2}{ }^{-1}\left(B^{3}\right)$ is homeomorphic to $N(K)$. Finally, $p_{2}^{-1}\left(S^{3}-\operatorname{int} B^{3}\right)$ is homeomorphic to a handlebody of genus 2 and so $M=N(K) \cup Y$.
(2) Assume that $M=N(K) \cup Y$ is a genus-3 1-sided Heegaard splitting and let $p: \tilde{M} \rightarrow M$ be the associated double covering. Also let $p_{2}: M \rightarrow S^{3}$ be the 2 -fold
(a)

$$
\mathscr{L}_{2}=\alpha \cup \mathscr{L}_{1}
$$

(b)

Fig. 5
branched covering as in (1). Finally, let $p_{1}: M^{\prime} \rightarrow S^{3}$ and $p_{3}: S^{3} \rightarrow S^{3}$ be the 2-fold coverings of S^{3} branched over \mathscr{L}_{1} and $\alpha=\mathscr{L}_{3}$ respectively, where $\mathscr{L}_{2}=\alpha \cup \mathscr{L}_{1}$ is the branch set for p_{2}.

Now $q=p_{2} \cdot p$ is a 4 -fold covering from \tilde{M} to S^{3} with 2 -fold branching over \mathscr{L}_{2}. To construct this covering, $H_{1}\left(S^{3}-\mathscr{L}_{2}\right)$ can be split into a direct sum $Z_{2} \oplus Z^{n}$, where the first summand is generated by a meridian of α and the second factor has meridians of the n components of \mathscr{L}_{1} as generating set. Let $\eta: H_{1}\left(S^{3}-\mathscr{L}_{2}\right) \rightarrow Z_{2} \oplus Z_{2}$ be the direct sum of the epimorphisms $Z \rightarrow Z_{2}$ and $Z^{n} \rightarrow Z_{2}$. Then the composition of η with the epimorphism from $\pi_{1}\left(S^{3}-\mathscr{L}_{2}\right)$ to $H_{1}\left(S^{3}-\mathscr{L}_{2}\right)$ gives an epimorphism from $\pi_{1}\left(S^{3}-\mathscr{L}_{2}\right)$ to $Z_{2} \oplus Z_{2}$. The kernel of this latter map induces a regular 4-fold covering of $S^{3}-\mathscr{L}_{2}$ which extends to give $q: \tilde{M} \rightarrow S^{3}$. However, the 4 -fold covering of $S^{3}-\mathscr{L}_{2}$ can be factorized into a composition of two 2 -fold coverings in three distinct ways. This gives the diagram of coverings in Fig. 5(b), with $q=p_{2} \cdot p=p_{3} \cdot p_{4}=p_{1} \cdot p_{5}$.

Finally, the branch set \mathscr{L}_{4} for $p_{4}: \tilde{M} \rightarrow S^{3}$ clearly satisfies $\mathscr{L}_{4}=p_{3}{ }^{-1}\left(\mathscr{L}_{1}\right)$. So \mathscr{L}_{4} has a symmetric 6-plat representation as in Fig. 5 because p_{3} is just the 2 -fold covering of S^{3}.
(3) Since the branch set \mathscr{L}_{2} (respectively \mathscr{L}_{1}) is represented in Fig. 5 (a) as an 8-plat (respectively 6-plat) it follows from Theorem 5 of [4] that M (respectively M^{\prime}) admits a Heegaard splitting of genus 3 (respectively 2).

A partial converse to Theorem 4 will now be given.
Let M^{\prime} be a closed orientable 3-manifold which admits a genus-2 Heegaard decomposition $M^{\prime}=Y^{\prime} \cup Y^{\prime \prime}$. Let $f: T_{0} \times I \rightarrow Y^{\prime}$ be any homeomorphism, where T_{0} is a once-punctured torus, and let $C^{\prime}=f\left(\partial T_{0} \times\left\{\frac{1}{2}\right\}\right)$. An epimorphism

$$
\pi_{1}\left(M^{\prime}-C^{\prime}\right) \rightarrow Z_{2}
$$

can be constructed by taking intersection numbers modulo 2 of loops in $M^{\prime}-C^{\prime}$ with $f\left(T_{0} \times\left\{\frac{1}{2}\right\}\right)$. Let $p_{5}: \tilde{M} \rightarrow M^{\prime}$ be the associated 2 -fold covering of M^{\prime}, branched over C^{\prime}.

Theorem 5. Let M^{\prime}, \tilde{M}, and $p_{5}: \tilde{M} \rightarrow M^{\prime}$ be as above. Then there is a double covering $p: \tilde{M} \rightarrow M$, where M is a 3-manifold which has a 1 -sided Heegaard splitting of genus 3. Also the projections p_{5} and p can be included in a commutative diagram of coverings as in Fig. 5(b).

Proof. By Theorem 5 of [4], there is a 2-fold covering projection $p_{1}: M^{\prime} \rightarrow S^{3}$ with branch set a 3-bridge link \mathscr{L}_{1}. Let $h: M^{\prime} \rightarrow M^{\prime}$ be the covering translation for p_{1}. Then h can be chosen so that each surface $f\left(T_{0} \times\{t\}\right)$, for $0 \leqslant t \leqslant 1$, is invariant under h. Consequently, h restricted to $f\left(T_{0} \times\{t\}\right)$ is an involution with three fixed points and $p_{1} f\left(T_{0} \times\{t\}\right)$ is a disk. So the simple closed curve $\alpha=p_{1}\left(C^{\prime}\right)$ bounds a disk $p_{1} f\left(T_{0} \times\left\{\frac{1}{2}\right\}\right)$ in S^{3} which intersects \mathscr{L}_{1} in three points. Therefore the link $\mathscr{L}_{2}=\alpha \cup \mathscr{L}_{1}$ is exactly as in Fig. 5(a).

As \tilde{M} is the 2 -fold covering of M^{\prime} branched over $C^{\prime}=p_{1}{ }^{-1}(\alpha)$, it follows that the map $p_{1} \cdot p_{5}: \tilde{M} \rightarrow S^{3}$ is a 4 -fold covering with 2 -fold branching at the link $\mathscr{L}_{2}=\alpha \cup \mathscr{L}_{1}$. The 3 factorizations $p_{1} \cdot p_{5}=p_{2} \cdot p=p_{3} \cdot p_{4}$ are obtained exactly as in Theorem 4. Also by Theorem 4, M, which is the 2-fold covering of S^{3} branched over \mathscr{L}_{2}, must have a 1 -sided Heegaard splitting of genus 3 .

References

1. K. Asano, 'Homeomorphisms of prism manifolds', Yokohama Math J., 26 (1978), 19-25.
2. K. AsAno, 'On 1-sided Heegaard splittings and involutions on a class of lens spaces', preprint, Kwansei Gakuin University, Nishinomiya, Japan, 1980.
3. J. S. Birman and D. Chillingworth, 'On the homeotopy group of a nonorientable surface', Proc. Cambridge Philos. Soc., 71 (1972), 437-448.
4. J. S. Birman and H. M. Hilden, 'Heegaard splittings of branched coverings of S^{3} ', Trans. Amer. Math. Soc., 213 (1975), 315-352.
5. F. Bonahon, 'Diffeotopies des espaces lenticulaires', preprint, Université de Paris Sud, Centre d'Orsay, 1981.
6. G. Bredon and J. Wood, 'Nonorientable surfaces in orientable 3-manifolds', Invent. Math., 7 (1969), 83-110.
7. M. Culler, W. Jaco, and H. Rubinstein, 'Incompressible surfaces in once-punctured torus bundles', Proc. London Math. Soc. (3), 45 (1982), 385-419.
8. P. E. Conner and F. Raymond, 'Deforming homotopy equivalences to homeomorphisms in aspherical manifolds', Bull. Amer. Math. Soc., 83 (1977), 36-85.
9. W. Floyd and A. Hatcher, 'Incompressible surfaces in punctured torus bundles', Topology and its applications, 13 (1982), 263-282.
10. J. L. Friedman and R. Sorkin, 'Spin $\frac{1}{2}$ from gravity', Phys. Rev. Lett., 44 (1980), 1100-1103.
11. C. Hodgson, 'Involutions and isotopies of lens spaces', MS Thesis, University of Melbourne, 1981.
12. G. D. Mostow, Quasi-conformal mappings in n-space and the rigidity of hyperbolic space forms, Publications Mathématiques 34 (Institut des Hautes Études Scientifiques, Paris, 1968), pp. 53-104.
13. P. Orlik, Seifert manifolds, Lecture Notes in Mathematics 291 (Springer, Berlin, 1972).
14. P. Orlik and F. Raymond, 'Actions of SO(2) on 3-manifolds', Proceedings of conference on transformation groups (Springer, Berlin, 1968), pp. 297-318.
15. P. Orlik, E. Vogt, and H. Zieschang, 'Zur Topologie gefaserter dreidimensimaler Mannigfaltigkeiten', Topology, 6 (1967), 49-64.
16. D. Rolfsen, Knots and links (Publish or Perish, San Francisco, 1976).
17. J. H. Rubinstein, 'On 3-manifolds which have finite fundamental group and contain Klein bottles', Trans. Amer. Math. Soc., 251 (1979), 129-137.
18. J. H. Rubinstein, 'Non-orientable surfaces in some non-Haken 3-manifolds', Trans. Amer. Math. Soc., 270 (1982), 503-524.
19. J. H. Rubinstein, 'One-sided Heegaard splitting of 3-manifolds', Pacific J. Math., 76 (1978), 185-200.
20. J. Singer, 'Three-dimensional manifolds and their Heegaard diagrams', Trans. Amer. Math. Soc., 35 (1933), 88-111.
21. W. Thurston, The geometry and topology of 3-manifolds, Annals of Mathematics Studies (Princeton University Press, to appear).
22. F. Waldhausen, 'On irreducible 3-manifolds which are sufficiently large', Ann. of Math., 87 (1968), 56-88.

Department of Mathematics
University of Melbourne
Parkville, Victoria 3052
Australia
Department of Mathematics
Columbia University
New York
New York 10027 U.S.A.

