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Round handle problem
Min Hoon Kim, Mark Powell, and Peter Teichner

Abstract: We present the Round Handle Problem (RHP), pro-
posed by Freedman and Krushkal. It asks whether a collection of
links, which contains the Generalised Borromean Rings (GBRs),
are slice in a 4-manifold R constructed from adding round handles
to the four ball. A negative answer would contradict the union
of the surgery conjecture and the s-cobordism conjecture for 4-
manifolds with free fundamental group.
Keywords: Round handle problem, topological surgery, s-cobord-
ism.

1. Statement of the RHP

We give an alternative proof of the connection of the Round Handle Problem
to the topological surgery and s-cobordism conjectures (these will all be re-
called below). The Round Handle Problem (RHP) was formulated in [FK16,
Section 5.1]. We give a shorter and easier argument that the above mentioned
conjectures imply a positive answer to the RHP.

Let L = L1 � · · · � Lm be an oriented ordered link in S3 with vanishing
pairwise linking numbers. We will be particularly concerned with the Gener-
alised Borromean Rings (GBRs). By definition these are the collection of links
arising from iterated Bing doubling starting with a Hopf link. An example is
shown in Figure 1.

Write XL := S3
�N(L) for the exterior of L. Let μi ⊂ XL be an oriented

meridian of the ith component of L, and let λi ⊂ XL be a zero-framed oriented
longitude. Both are smoothly embedded curves. Make μi small enough that
lk(μi, λi) = 0 (of course lk(μi, Li) = 1 and lk(λi, Li) = 0). Let N(μi), N(λi) ⊂
XL be closed tubular neighbourhoods, each homeomorphic to S1 ×D2.

A Round handle H is a copy of S1 × D2 × D1. The attaching region is
S1 ×D2 × S0 ⊂ ∂(S1 ×D2 ×D1) ∼= S1 × S2. The notion of round handles is
due to Asimov [Asi75].
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Figure 1: An example of a GBR: the two-fold Bing double of the Hopf link.

Definition 1.1. Given an m-component link L, construct a manifold R(L) by
attaching m round handles {Hi}mi=1 to D4 as follows. For the ith round handle,
glue S1 ×D2 ×{−1} to N(μi) ⊂ XL ⊂ S3 = ∂D4, and glue S1 ×D2 ×{1} to
N(λi). In both cases use the zero-framing for the identification of N(μi) and
N(λi) with S1 ×D2. Note that the link L lies in ∂R(L).

The key question will be whether L is slice in R(L).

Definition 1.2 (Round Handle Slice). A link L is Round Handle Slice (RHS)
if L ⊂ ∂R(L) is slice in R(L), that is if L is the boundary of a disjoint union
of locally flat embedded discs in R(L).

Theorem 1.3. Suppose that the topological surgery and s-cobordism conjec-
tures hold for free fundamental groups. Then for any link L with pairwise
linking numbers all zero, L is round handle slice.

Problem 1.4. The Round Handle Problem is to determine whether all pair-
wise linking number zero links are round handle slice.

By Theorem 1.3, a negative answer for one such link would contradict
the logical union of the topological surgery conjecture and the s-cobordism
conjecture for free fundamental groups. It is suggested by Freedman and
Krushkal, but by no means compulsory, to focus on the links arising as GBRs.
It is also suggested that one might try to adapt Milnor’s invariants to provide
obstructions. The primary purpose of this problem, like the AB slice problem,
is to provide a way to get obstructions to surgery and s-cobordism. Key work
on the AB slice problem includes [Fre86, FL89, Kru08, FK16].

We briefly recall the statements of these conjectures and their relation to
the disc embedding problem.

Conjecture 1.5 (Topological surgery conjecture). Every degree one normal
map (M,∂M) → (X, ∂X) from a compact 4-manifold M to a 4-dimensional
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Poincaré pair (X, ∂X), that is a Z[π1(X)]-homology equivalence on the bound-
ary, is topologically normally bordant rel. boundary to a homotopy equivalence
if and only if the surgery obstruction in L4(Z[π1(X)]) vanishes.

Conjecture 1.6 (s-cobordism conjecture). Every 5-dimensional compact to-
pological s-cobordism (W ;M0,M1), that is a product on the boundary, is
homeomorphic to a product W ∼= M0 × I ∼= M1 × I, extending the given
product structure on the boundary.

In Section 3 we will explain why the union of these two conjectures is
equivalent to the disc embedding conjecture, stated below. In the statement
of this conjecture we use the equivariant intersection form

λ : H2(M,∂M ;Z[π1(M)]) ×H2(M ;Z[π1(M)]) → Z[π1(M)]

and the group-valued self-intersection number

μ : H2(M ;Z[π1(M)]) → Z[π1(M)]
g ∼ w(g)g−1, 1 ∼ 0 ,

where w : π1(M) → C2 = {±1} is the orientation character. Also note that
the transverse spheres are required to be framed, which means that they have
trivialised normal bundles.

Conjecture 1.7 (Disc embedding conjecture). Let fi : (D2, S1) � (M,∂M)
be a collection of generically immersed discs in a compact 4-manifold M with
disjointly embedded boundaries. Suppose that there are framed generically im-
mersed spheres gi : S2 � M such that for every i, j we have λ(gi, gj) = 0,
μ(gi) = 0, and the gi are transverse spheres, so λ(fi, gj) = δij. Then the circles
fi(S1) bound disjointly embedded, locally flat discs in M with geometrically
transverse spheres, inducing the same framing on fi(S1) as the fi.

Conjectures 1.5, 1.6, and 1.7 are already theorems for good groups, a class
of groups containing groups of subexponential growth [FT95, KQ00], and
closed under taking subgroups, extensions, quotients, and direct limits.

Remark 1.8. The obstruction theory presented in the proof of Lemma 5.4
of [FK16], which forms part of the proof given there of Theorem 1.3, is in-
complete. First, H3(R, ∂R;π2(R′)) ∼= H1(R;π2(R′)) = 0 since π2(R′) is a free
Z[π1(R′)] ∼= Z[π1(R)]-module, so the obstruction here certainly vanishes, as
asserted in [FK16]. However a potentially non-trivial obstruction, not con-
sidered in [FK16], lies in H4(R, ∂R;π3(R′)). Analysing this depends on the
relationship between the intersection forms of R and R′. Our proof of Theo-
rem 1.3 avoids obstruction theory altogether.
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Remark 1.9. Our proof implies that every knot is round handle slice, since
in that case the proof applies Conjectures 1.5 and 1.6 with fundamental group
Z. But for fundamental group Z these conjectures are theorems, since they
are both implied by the disc embedding theorem [FQ90, Section 2.9, Theo-
rem 5.1A].

2. Proof of Theorem 1.3

The proof of Theorem 1.3 involves the construction of an s-cobordism rel.
boundary from the manifold R(L), henceforth abbreviated to R, to another
4-manifold R′, in which L is slice. We begin with a Kirby diagram for R,
shown in Figure 2.

d

0

Li

Figure 2: A handle diagram for R in N(Li). Replicate this for each i =
1, . . . ,m.

First we will explain the figure, then we will explain why this is a diagram
for R. The diagram does not show the literal Kirby diagram for R. Rather, the
curve labelled d specifies a solid torus, as the complement of a regular neigh-
bourhood of this curve. Inside the solid torus a dotted circle, corresponding
to a 1-handle, and a zero-framed circle, corresponding to a 2-handle, can be
seen. Embed a copy of this solid torus into a closed tubular neighbourhood
N(Li) for each i = 1, . . . ,m, using the zero framing. One therefore has m 1-
handles and m 2-handles, one pair in each solid torus neighbourhood N(Li),
arranged as shown in Figure 2. The diagram also shows the link component
Li parallel to the core of the solid torus.

Now we explain why Figure 2 is a diagram for the 4-manifold R. A round
handle can be constructed from a 1-handle and a 2-handle whose boundary
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goes around one attaching circle of the round handle (a meridian of L), tra-
verses the 1-handle, goes around the other attaching circle (a zero-framed
longitude of the same component of L), and then traverses the 1-handle in
the other direction. Ignoring the link L, we see that R is diffeomorphic to the
zero-trace of L with m 1-handles added.

d

0
0

Li

Figure 3: The handle diagram from Figure 2 with a cancelling pair introduced.

Figure 3 shows another diagram for R with a cancelling 1-handle and
2-handle pair introduced in each N(Li).

Next, Figure 4 shows a Kirby diagram, with the same convention as above,
for a 4-manifold that we call RM . Here M stands for “middle,” since this
manifold will lie in the middle of the s-cobordism we are about to construct.

The diagram for RM is very similar to the diagram for R from Figure 3;
in order to get from the diagram for RM to that for R, inside each solid
torus neighbourhood N(Li), change the zero-framed 2-handle whose attaching
curve is labelled αi in Figure 4 to a 1-handle. That is, for each i, perform
surgery on the 2-sphere obtained from the core of the 2-handle union a disc
bounded by the attaching circle in D4. The fundamental group of RM is
π1(RM ) ∼= Fm, the free group on m letters, generated by meridians of the
dotted circles.

Note that, by virtue of the cores of the βi 2-handles, L is slice in RM . To
see this, observe that Li can be passed through the attaching region of the
αi 2-handle in Figure 4.

Remark 2.1. This remark explains why the remainder of the proof is nec-
essary: it is far from obvious that L is slice in R. In Figure 3, Li cannot be
passed through a dotted circle corresponding to a 1-handle, so the argument
just given cannot be used to show that Li is slice in R via Figure 3. On the
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d

0
0

αi 0

βiγi

Li

Figure 4: A handle diagram for RM in N(Li). The 2-handles in the picture
are labelled αi, βi and γi.

other hand if one isotopes the link through the attaching region of a 2-handle,
one cannot later use the core of that 2-handle to construct an embedded slice
disc, so one cannot use Figure 2 to see that L is slice in R.

Next, there are also generically immersed 2-spheres in RM obtained from
the union of the cores of the βi 2-handles with immersed discs Di in D4

bounded by the βi attaching curves. By choosing the immersed discs Di so
that their normal bundles induce the 0-framing on the curves βi ⊂ S3, we
have framed immersed spheres. We call these the βi-spheres. The linking
number zero hypothesis implies that the algebraic intersection numbers in
Z[π1(RM )] ∼= Z[Fm] between these 2-spheres vanish.

Consider similar framed spheres arising from the round handle 2-handles,
namely the 2-handles whose attaching curves are labelled γi in Figure 4. For
each i, isotope the curve γi through βi and out from the 1-handle; that is,
pull the oxbow part straight until γi is a round circle, parallel to βi. Embed
the isotopies in a collar S3 × [1 − ε, 1]. Use parallel push offs of the discs Di,
minus their intersection with S3 × [1 − ε, 1], to cap the resulting curves. We
have just constructed discs Ei with boundary γi, that intersect the discs Dj

algebraically in δij . Cap off the discs Ei with the cores of the γi 2-handles to
obtain framed immersed 2-spheres in RM , that we call the γi-spheres. The
βi- and γj-spheres are algebraically dual over Z[Fm].

Lemma 2.2. There exist framed, locally flat, embedded spheres Bi ⊂ RM in
the complement of the slice discs for L, with Bi regularly homotopic to the
βi-sphere for i = 1, . . . ,m.
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Proof. To prove Lemma 2.2, we will apply the disc embedding conjecture to
immersed Whitney discs fk pairing up double points of the βi-spheres, in
the complement of the slice discs for L in RM , and in the complement of
the βi-spheres themselves. We will then perform the Whitney move using the
resulting embedded Whitney discs to obtain the spheres Bi.

We argue that the immersed Whitney discs fk can be found. First, ap-
ply the geometric Casson lemma [Fre82, Lemma 3.1], [FQ90, Section 1.5] to
convert the βi-spheres and the γj-spheres from algebraic duals into geometric
duals, intersecting in precisely one point if i = j and with empty intersection
otherwise.

Preliminary immersed Whitney discs f ′
k can be found in the complement

of slice discs for L because the slice discs for L in RM use push offs of the
core of the βi 2-handles, whereas the double points of the βi-spheres lie in
the interior of D4. So one can find immersed Whitney discs in D4 pairing up
all double points among the βi-spheres. However, these initial Whitney discs
f ′
k, which we can assume to be framed Whitney discs by boundary twisting,

might intersect the βi-spheres. Tube each intersection of a Whitney disc with
a βi-sphere into a parallel copy of the dual sphere γi. This produces Whitney
discs fk in RM that are framed and disjoint from both the slice discs for L
and the βi-spheres.

Construct framed transverse spheres for the fk from Clifford tori for the
double points, with caps given by normal discs to the βi-spheres tubed into the
dual γi-spheres. Use the caps to symmetrically contract [FQ90, Section 2.3]
the tori to immersed spheres. See [FQ90, Corollary 5.2B] for more details.
Call the resulting spheres gk. All intersections among the transverse spheres
gk arose from contraction, so they cancel algebraically over Z[Fm], and we
therefore have λ(gk, g�) = 0 = μ(gk) for every k, 
. Similarly, all of the in-
tersection points between the fk and the g� cancel, except those arising from
the original intersection points between Clifford tori and the Whitney discs
fk. It follows that the fk and the g� are algebraically dual over Z[Fm]. We
may therefore apply the disc embedding Conjecture 1.7 to find embedded
Whitney discs, in the complement of the slice discs for L and in the comple-
ment of the βi-spheres. The disc embedding conjecture has no hypothesis on
the fundamental group, so we do not need to control the fundamental group
here. Whitney moves across the embedded discs resulting from Conjecture 1.7
give a regular homotopy to the desired framed embedded spheres Bi. This
completes the proof of Lemma 2.2.

Perform surgery on RM using these framed embedded spheres Bi, and
define R′ to be the 4-manifold obtained as result of these surgeries. Note that
L is still slice in R′, since the spheres Bi lie in the complement of the slice discs.
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Lemma 2.3. The 4-manifolds R and R′ are s-cobordant rel. boundary.

Proof. To prove Lemma 2.3, start with RM . The trace of surgeries on the αi-
spheres gives a cobordism to R. The trace of surgeries on the βi-spheres gives a
cobordism to R′. The union of the two cobordisms along RM is an s-cobordism
from R to R′, since algebraically the intersection numbers αi · βj = δij . This
completes the proof of Lemma 2.3.

Note that we used duals to the βi-spheres twice, once to apply surgery
and once to prove that we have an s-cobordism. However we use different
duals. For the surgery we used the γi-spheres arising from the round handle
2-handles. For the s-cobordism, we used the αi-spheres.

Then since R and R′ are s-cobordant, the s-cobordism Conjecture 1.6
implies that they are homeomorphic rel. boundary. Since the homeomorphism
is an identity on the boundary, the link L is preserved. Thus the image of the
slice discs for L in R′ under the homeomorphism f : R′ → R are slice discs
for L in R. It follows that L is Round Handle Slice as desired. This completes
the proof of Theorem 1.3.

3. Disc embedding is equivalent to surgery and s-cobordism

In this section we briefly argue that the disc embedding Conjecture 1.7 is
equivalent to the combination of the surgery and s-cobordism Conjectures,
numbered 1.5 and 1.6 respectively. There are no new equivalences described
in this section. Indeed, references are given throughout, mostly to the relevant
subsections of [FQ90]. We include this section for readers wanting a succinct
guide to establishing these equivalences.

We will argue that the following are equivalent: (i) surgery and s cobor-
dism; (ii) disc embedding; (iii) height 1.5 capped gropes contain embedded
discs with the same boundary; (iv) certain links L∪m, to be described below,
are slice with standard slice discs for L. We will show:

(i) =⇒
(4)

(iv) ⇐⇒
(3)

(iii) ⇐⇒
(2)

(ii) =⇒
(1)

(i).

(1) The disc embedding conjecture (ii) implies (i) surgery and s-cobordism.
This follows from inspection of the high dimensional proof: the proof of
topological surgery in dimension four and the five dimensional topolog-
ical s-cobordism theorem can be reduced to precisely the need to find
embedded discs with geometrically transverse spheres in the presence of
algebraically transverse spheres. See for example [Lüc02] for an exposi-
tion of the high dimensional theory. The s-cobordism theorem requires
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an extra argument to find the transverse spheres, which can be found
in [FQ90, Chapter 7].

(2) The disc embedding conjecture (ii) is equivalent to the statement (iii)
that every height 1.5 capped grope contains an embedded disc with the
same framed boundary. For one direction, if disc embedding holds, then
we can use it to find a disc in a height 1.5 capped grope, as follows.
The caps on the height 1 side are immersed discs, and parallel copies of
the symmetric contraction of the height 1.5 side, together with annuli
in neighbourhoods of the boundary circles, give transverse spheres that
have the right algebraic intersection data. See [FQ90, Section 2.6] for
the construction of transverse gropes within a grope neighbourhood,
which are then symmetrically contracted [FQ90, Section 2.3] to yield
transverse spheres. Apply disc embedding to find embedded discs with
framed boundary the same as the height 1 caps’ framed boundary. These
correctly framed embedded discs can be used to asymmetrically contract
the first stage of the height 1.5 grope to an embedded disc. On the other
hand, a collection of discs with transverse spheres as in Conjecture 1.7
gives rise to a height 1.5 capped grope with the same boundary and
with geometrically transverse spheres for the bottom stage, as shown in
[FQ90, Section 5.1]. Thus if every height 1.5 capped grope contains an
embedded disc, then disc embedding holds.

(3) Height 1.5 capped gropes contain embedded discs with the same boundary
(iii) if and only if (iv) certain links L ∪m are slice with standard slice
discs for L. A Kirby diagram for a capped grope consists of an unlink
L, in the form of a link obtained from the unknot by iterated ramified
Bing doubling, followed by a single operation of ramified Whitehead
doubling. Place a dot on every component to denote that they corre-
spond to 1-handles; a neighbourhood of a capped grope is diffeomorphic
to a boundary connected sum of copies of S1×D3. The boundary circle
of the grope is represented by a meridian m to the original unknot. One
can think of performing the ramified Bing and Whitehead doubling on
one component of the Hopf link. A grope contains an embedded disc
with the same framed boundary if and only if this link L∪m is slice with
standard smooth slice discs for all the dotted components. The desired
embedded disc is the slice disc for m. See [FQ90, Proposition 12.3A] for
further details.

(4) Surgery and s-cobordism (i) together imply (iv) that the links L∪m are
slice with standard slice discs for L. Let L ∪ m be any link from the
family constructed in the previous item, using iterated ramified Bing
and Whitehead doubling on one component of the Hopf link. The zero
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surgery on L∪m bounds a spin 4-manifold over a wedge of circles since
the Arf invariants of the components vanish. By the topological surgery
conjecture, this can be improved, via a normal bordism rel. boundary,
to be homotopy equivalent to the wedge of circles. Attach a 2-handle
to fill in the surgery torus D2 × S1 of m. The remaining 4-manifold is
homeomorphic to a boundary connected sum of copies of S1×D3, by the
s-cobordism conjecture. Therefore it is homeomorphic to the exterior of
standard smooth slice discs for L in D4. (We have no control over the
remaining slice disc, whose boundary is the link component m.) Thus
surgery and s-cobordism imply that the link L∪m is slice with standard
slice discs for L. More details are given in [FQ90, Section 11.7C] and
the preceding sections of Chapter 11.
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