TOPOLOGICAL MANIFOLDS || PROBLEM SHEET 8

Problem 1. Prove that every homeomorphism $h: T^n \to T^n$ is stable, where T^n denotes the *n*-torus $S^1 \times \cdots \times S^1$.

Hints:

- Easy mode: Apply SH_n .
- Expert mode: The result can be proved independently of SH_n , and was the key step in Kirby's proof of SH_n . (We sidestepped it by using a slightly stronger result about PL homotopy tori.) First prove the case where the induced map on fundamental groups is the identity. Then show that for any $n \times n$ matrix A with integer entries and determinant one, there exists a diffeomorphism $h: T^n \to T^n$ such that $h_* = A$ where $h_*: \pi_1(T^n, x) \to \pi_1(T^n, x)$. Prove that diffeomorphisms of T^n are stable.

Problem 2. Use the torus trick to show that a homeomorphism of \mathbb{R}^n is stable if and only if it is isotopic to the identity.

Hints:

- (1) It suffices to show that the space of stable homeomorphisms of \mathbb{R}^n , denoted SHomeo(\mathbb{R}^n), is both open and closed in Homeo(\mathbb{R}^n).
- (2) Use the torus trick from our proof of local contractibility of $\operatorname{Homeo}(\mathbb{R}^n)$ to show that an open neighbourhood of the identity in $\operatorname{Homeo}(\mathbb{R}^n)$ consists of stable homeomorphisms. Conclude that every stable homeomorphism of \mathbb{R}^n has an open neighbourhood consisting of stable homeomorphisms.
- (3) Every coset of $\text{SHomeo}(\mathbb{R}^n)$ in $\text{Homeo}(\mathbb{R}^n)$ is open since $\text{Homeo}(\mathbb{R}^n)$ is a topological group. Conclude that $\text{SHomeo}(\mathbb{R}^n)$ is closed in $\text{Homeo}(\mathbb{R}^n)$.