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quatre dans la catégorie topologique’ by B. Perron, published in Topology, Volume 25, No. 4,

pp. 381–397, 1986. Translation by Mark Powell.

0. Introduction

Let M4 be a compact topological manifold (not necessarily smoothable), of dimension four. The
aim of this article is the study of the following conjecture. Let I = [0, 1].

Conjecture 0.1 (Pseudo-Isotopy Conjecture). Every homeomorphism F of M × I, equal to the
identity on M ×{0}∪∂M × I (a pseudo-isotopy of M) is isotopic, fixing M ×{0}∪∂M × I, to the
identity. In particular the restriction of F to M × {1} is isotopic, fixing ∂M × I, to the identity.

This conjecture can evidently be posed in all dimensions and in each of the three manifold cat-
egories TOP, PL, and DIFF. In [CeCe], J. Cerf proved that the conjecture holds in the C∞ category
for manifolds of dimension at least 5 and simply connected. The PL case is due to C. Morlet [MorMor]
(see also [RR]). The topological case follows from the work of Kirby-Siebenmann [KSKS].

The main results of this article are given by the following theorem and its corollaries.

Theorem 0.2. The Pseudo-Isotopy Conjecture is true for compact 4-manifolds M4 obtained from
the ball B4 by attaching (topological) handles of index ≥ 2.

Such manifolds are simply connected and smoothable (this last property follows from the theo-
rem of Moise on the uniqueness of smooth structures on manifolds of dimension three [MoiMoi].

The Milnor fibres of germs of holomorphic functions with an isolated singularity from (C3, 0)
to (C, 0) and the smooth algebraic surfaces in CP 3 admit such a decomposition (see [LPLP], [HH]
respectively; see also [AKAK]). On the other hand, Casson (unpublished; see [ManMan, Chapter 3]) gave
an example of a smooth 4-manifold with nonempty boundary, that is 1-connected and such that
every handle decomposition of it possesses handles of index one.

I owe the proof of the following results to L.C. Siebenmann.

Corollary 0.3. The Pseudo-Isotopy Conjecture holds for closed, simply connected, topological
4-manifolds (not necessarily smoothable).

Corollary 0.4. Let M4 be a manifold given by Theorem 0.20.2 or Corollary 0.30.3 and let h1, h2 : M →
M be two homeomorphisms that are homotopic rel. ∂M . Then they are isotopic rel. ∂M .

Proof. It suffices to show that the homeomorphism h1 ◦ h−1
2 is the extremity of a pseudo-isotopy.

For that it suffices to show that the set of topological manifold structures up to homotopy on M×I
is a single point. The proof is then identical to that of Theorem 6.1 of [ShSh], using the fact that
π2i+1(G/TOP) = 0 for i = 0, 1, 2, according to [KSKS] and [SuSu]. □

Remark 0.5. We do not know how to prove Theorem 0.20.2 in the piecewise linear category (and even
less in the smooth category) due to the use of a theorem of Casson-Freedman [FF] which only gives
topological isotopies.

The idea of the proof of Theorem 0.20.2 is to improve the pseudo-isotopy handle by handle, starting
from the boundary [RR]. We can assume that F |p0×I = Id, where p0 is an interior point of M . We
start by putting ourselves in a C∞ framework, by showing that F |(M\{p0})×I is isotopic relative
to [∂M × I ∪ (M \ {p0}) × {0}] to a pseudo-isotopy G : (M \ {p0}) × I → (M \ {p0}) × I such
that the smooth structure Θ on the target, given by transporting by G a given smooth structure
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on the source, is “slice”, which means that the projection p : [(M \ {p0}) × I]Θ → I is a smooth
submersion.

We suppose to begin with that M is obtained from the ball B4 by attaching handles of index
two only, and we set

V :=
⋃
i

D2
i

to be the union of the cocores of the 2-handles. We can assume, up to smooth isotopy, that

p ◦G| : V × I → [(M \ {p0})× I]Θ
p−→ I

is a smooth Morse function.
With the help of the topological isotopy extension theorem [EKEK], for every critical point of p◦G,

we can define a topological membrane [PP]. Using the methods of [PP], we show that G|V×I is C∞

isotopic to an embedding, L : V × I → [(M \ {p0}) × I]Θ, such that p ◦ L only has critical points
of index 1 and 2.

In a middle level, using the results of Casson[CaCa], Quinn [Q1Q1], and Freedman [FF], we can
topologically separate the interiors of the membranes, and therefore topologically straighten the
embedding L| : V × I → M × I. Then we show that we can straighten a tubular neighbourhood
of V × I (avoiding using the theorem of uniqueness of topological tubular neighbourhoods, which
is unknown in this dimension.11) An application of the Alexander trick allows us to conclude.
Analogous methods, but easier (because they do not use the results of Freedman) allow us to
straighten the handles of index 3 and 4.

I thank L. Guillou and L. C. Siebenmann for the help they gave me to complete this work.
L. C. Siebenmann helped me to greatly simplify some of the proofs, and moreover I owe him the
proof of Corollary 0.30.3.

The organisation of the paper is as follows. (§11) sliced structures; (§22) membranes; (§33) removal
of critical points of index 0 and 3; (§44) making membranes disjoint; (§55) the end of the proof of
Theorem 0.20.2 in the case where M only has handles of index 2; (§66) proof of Theorem 0.20.2 in the
presence of handles of index 3 and 4; (§77) proof of Corollary 0.30.3.

1. Sliced structures

Definition 1.1. Let Qq be a topological manifold. A smooth structure Θ on Q× I is said to be
sliced if the projection p : [Q× I]Θ → I is a C∞ submersion.

One of the essential tools for the proof of Theorem 0.20.2 is given by the following lemma.

Lemma 1.2. Let M be a compact, connected, simply connected manifold of dimension four, let p0
be an interior point of M , and let Σ be a C∞ structure on (M \ {p0})× I, which is a product on a
neighbourhood of ∂M × I. Then Σ is isotopic rel. ∂[(M \{p0})× I] to a smooth structure Θ that is
sliced, that is to say there is an isotopy Kt : (M \ {p0})× I → (M \ {p0})× I, t ∈ [0, 1], such that:

(1) K0 = Id; and Kt|∂[(M\{p0})×I] = Id for all t ∈ [0, 1].
(2) K1 is C∞ for the structure Σ on the source and the structure Θ on the target.

Proof. Let τ = s ◦ τM : (M \ {p0}) × I → BTOP4 → BTOP5 be the map classifyinf topological
tangent microbundle of (M \{p0})×I and let τΣ be the lift of τ to BO5 determined by the structure
Σ [KSKS].

The hypothesis of simple connectivity implies that (M \{p0})×I is, up to homotopy equivalence,
obtained from ∂[(M \ {p0}) × I] cells of dimension 3. According to Quinn [Q1Q1, Corollary 2.2.3],
the stabilisation map TOP4 /O4 → TOP5 /O5 is 3-connected. It follows that τΣ factorises up to
homotopy rel. ∂ through a map φ : (M \ {p0})× I → BO4 (the arrows in the diagram below being

1MP: This is now known, and appeared in the book of Freedman and Quinn in 1990.
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fibrations up to homotopy):

TOP4 /O4 TOP5 /O5

BO4 BO5

(M \ {p0})× I BTOP4 BTOP5

s

τM

φ τΣ

s

According to the theorem of Lees [LeLe], φ defines a sliced structure on (M \ {p0})× I, isotopic rel.
∂[(M \ {p0})× I] to the structure Σ. □

Corollary 1.3. Let F : M × I → M × I be a pseudo-isotopy such that F |{p0}×I = Id. Then
F |(M\{p0})×I is isotopic rel. [∂M × I ∪ (M \ {p0})×{0}] to a pseudo-isotopy H : (M \ {p0})× I →
(M \ {p0})× I that transports the C∞ structure given on the domain to a slice structure θ on the
codomain.

Proof. Let Σ be the C∞ structure on (M \{p0})×I transported by F from the given C∞ structure.
It suffices to set H = K1 ◦ F , where K1 is given by Lemma 1.21.2. □

2. Membranes

In this section, and in sections 33 and 44, we consider the case where M is obtained from the
4-ball B4 by attaching 2-handles only.

We set

V :=
⋃
i

nD2
i

to be the union of the cocores of the 2-handles of M , and we take p0 ∈ M \ V .

Lemma 2.1. We may assume that the function p◦H| : V ×I → [(M \{p0})×I]Θ → I is a smooth
Morse function. For each critical point c of p ◦H|V×I , there exists a C∞ chart around c in V × I,
and a chart in [(M \ {p0})× I]Θ around H(c), with respect to which p : [(M \ {p0})× I]Θ → I and
H have the form:

• p(x, y, z, s, t) = t;
• H(x, y, z) = (x, y, z, 0, ε1x

2 + ε2y
2 + ε3z

2).

Proof. This is immediate because p is C∞. 22 □

We denote

Dk+1 = {x ∈ Rk+1 | ∥x∥ ≤ 1}; Dk+1
+ = {x ∈ Dk+1 | xk+1 ≥ 0}; ∂+D

k+1 = ∂Dk+1 ∩Dk+1
+ .

Definition 2.2. [See [PP]] Let H be as in Lemma 2.12.1 and let c be a critical point of p◦H : V ×I → I
of index k. A descending membrane of c until a level M × {t0} is the image of a TOP embedding

η : (Dk+1
+ , ∂+D

k+1, Dk) → (M × [t0, p ◦H(c)], H(V × I),M × {t0})

such that

(1) Im(η) and H(V × I) intersect transversely along η(∂+D);
(2) η(0, . . . , 0, 1) = H(c);
(3) ρ|η(D̊k+1

+ ) and p|η(∂+Dk+1)\H(c) are TOP submersions;

(4) η(Dk) ⊆ M × {t0}.

The disc η(Dk) is called the projection of the membrane to the level M × {t0}. The disc
η(∂+D

k+1) is a descending submanifold of the critical point c [CeCe]. We have a corresponding
notion of ascending membrane.

2MP: there is a proof in Borodzik-Powell, J. Geom. Anal, 2016.
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H(V* ) 

Mx! 

Membrane descendante 

Figure 1.

Lemma 2.3 (Existence of Membranes). Suppose that c is the unique critical point of p◦H between
the levels M × {t0} and M × {t1} (t0 < t1). Then there exists a descending membrane (resp.
ascending) for c until the level M × {t0} (resp. M × {t1}) that is differentiable for the sliced
structure θ in a neighbourhood of H(V × I).

Proof. In a C∞ chart given by Lemma 2.12.1, we have a C∞ ascending membrane (resp. descending)
by considering the trajectories of the field

ξ = (ε1x, ε2y, ε3z, s, 2(x
2 + y2 + z2 + s2) + (t− ε1x

2 − ε2y
2 − ε3z

2)2)

which leave (resp. converge to) c (Figure 1).
We remark that this field has c as a singular point, that it is tangent to the hypersurface s = 0,

t = ε1x
2 + ε2y

2 + ε3z
2, and is transverse to {t = Constant}.

Thus we obtain a descending C∞ membrane (resp. ascending) for θ, until the level M × (tc − ε)
(resp. M × (tc + ε) (ε small), where tc := p ◦H(c). The image of the embedding

H−1(M × [t0, tc − ε])
H−→ [(M \ {p0})× [t0, tc − ε]]θ → M × [t0, tc − ε]

is, by hypothesis, transverse to the horizontal foliation. The topological isotopy extension theo-
rem [EKEK] implies we can smoothly extend the descending membrane until the level M ×{t0} along
H(V × I). The same reasoning applies for the ascending membrane. □

Lemma 2.4. We can assume that the descending (resp. ascending) membranes of the critical
points of index 0 and 1 (resp. 2,3) are C∞ with respect to the smooth structure θ.

Proof. Let c be a critical point of index 0 or 1 of p ◦ H, let M × {t0} be a level below H(c)
such that p ◦ H has no critical point in H−1(M × [t0, p ◦ H(c)]). Let D be a C∞ descending
membrane of H(c) up until a level t′0 = p ◦ H(c) − ε > t0 (it exists by Lemma 2.32.3. Denote
Wt0,t′0

= H(V × I) ∩M × [t0, t
′
0], Vt′0

= H(V × I) ∩M × {t′0} and let θ′0 be the smooth structure
on (M \ {p0})× {t′0} induced by θ.

Then ((M \{p0})× [t0, t
′
0],Wt0,t′0

)θ is a smooth relative (δ, h)-cobordism that is (δ, 1)-connected

in the sense of [Q1Q1, §2], for all map M \ {p0}
δ−→ (0,∞). By the relative h-cobordism theorem

[Q1Q1, Theorem 2.1.1 and its addendum], there exists a topological product structure

h : ([(M \ {p0})× {t′0}]θ′
0
, Vt′0

)× [0, 1] → ((M \ {p0})× [t0, t
′
0],Wt0,t′0

). (1)

such that:

(a) h is the identity on [(M \ {p0})× {t′0}]× {0}
(b) h is smooth (for the structures indicated in (11)) outside a set U × I, where U is a “standard

ε-singular” subset of (M \ {p0})×{t′0}. This subset U is a smooth regular ε-neighbourhood of
a locally finite smooth complex, of dimension 2, denoted K∪T (see the addendum of Theorem

2.1.1 of [Q1Q1]). By smooth transversality, D̃ = D ∩ (M × {t′0}) (of dimension 0 or 1) is disjoint
from U . We can therefore extend the membrane D smoothly with the help of the smooth

embedding h(D̃ × I) up until the level M × {t0}. □

We recall some facts concerning membranes [PP, Chap. 2, §3].
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(1) One can lift up (respectively push down) a critical point along a membrane (since one can
do it in the model), smoothly if the membrane is smooth.

(2) One can raise a critical point d above a critical point c if the projection onto an interme-
diate level of a descending membrane of c is disjoint from the projection of an ascending
membrane of d.

(3) With the help of an embedding η : (Dk, ∂) → (M × {t}, H(V × I) ∪ M × {t}) such that
η−1(H(V × I)∩M ×{t}) = ∂ we can introduce a critical point of index k (Lemma 2.10 of
[PP]).

(4) Let c and d be two consecutive Morse critical points of p ◦ H of indices k and k + 1
respectively, and let M ×{t0} be an intermediate level. Then c and d cancel one another if
and only if there exists an ascending membrane (respectively descending) of c (respectively
d) until the level M ×{t0} such that the interiors of these two membranes are disjoint, and
the boundaries of the projections intersect transversely in one point inH(V ×I)∩(M×{t0})
(Lemma 2.9 of [PP]) (Figure 2).

d 

- Mx (io) 

Figure 2.

(5) By the relative topological isotopy extension theorem [EKEK], every smooth descending sub-
manifold (respectively ascending) of p ◦H corresponds to a descending membrane (respec-
tively ascending) satisfying the properties of Lemma 2.32.3.

(6) One can define the dome associated to a membrane ([PP] Chapter 3, §1): in a chart with co-
ordinates (x1, . . . , xn, xn+1, xn+2) whereH has the formH(x1, . . . , xn) = (x1, . . . , xn, 0,−(x2

1+
· · ·x2

p) + x2
p+1 + · · ·x2

n), the dome is defined in the hyperplane xp+1 = · · · = xn = 0 by
Figure 3 (dome is coupole en français).

Coupole 
Membrane 

HVx) n...,*0 

Figure 3.

(7) (a) One can take the connected sum of a membrane of a critical point d with the membrane
of a critical point of the same index at a lower level ([PP] Chapter 3, §2); see Figure 4.

(b) One can take the connected sum of a membrane of a critical point with the dome of
a critical point of the same index situated at a lower level ([PP] Chapter 3, §2); see
Figure 5.
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(8) Let (V n, V0, V1) → Mn+2 × ([0, 1], 0, 1) be an embedding with trivial normal bundle such
that the projection p| : V → I has only one Morse critical point of index i, with descending
membrane D .

Then the complement M×I\(V ×D̊2) is obtained from M×{0}\(V0×D̊2) by attaching
a handle of index i+ 1 whose core is the dome associated to D .

Figure 4.

7 

Figure 5.

Corollary 2.5. The C∞ embedding H| : V ×I → [(M \{p0})×I]θ from Lemma 2.1 is C∞ isotopic
to an embedding K : V ×I → [(M \{p0})×I]θ such that p◦K is a excellent ordered Morse function
(the critical values are simple).

Proof. Let a and b be two critical points of p ◦H such that p ◦H(a) < p ◦H(b) and i = index(a) ≥
index(b) = j. According to Lemma 2.4, one of the descending membrane of b and the ascending
membrane of a is C∞. We perform a C∞ slide (property (1) of membranes) of the corresponding
point until a level where the other is C∞. In this level, by C∞ transversality, the membranes are
disjoint (the dimension of the projection of the descending membrane of b (respectively ascending
membrane of a) is j (respectively 3− i). One then applies property (2) of membranes to rearrange
the order of the critical points. □

3. Cancellation of critical points of index 0 and 3 (for the map p ◦K from
Corollary 2.5)

Let O be the space of differentiable functions f : V n × (I, 0, 1) → (I, 0, 1) such that f−1(i) =
V n×{i} for i = 0, 1. Let O0 be the subset of O consisting of the ordered, excellent Morse functions.
O1

α denotes the subspace of ordered excellent functions except that they have a single critical point
c of birth type (−x2

1−· · ·−x2
i +x2

i+1+ · · ·+x2
n+x3

n+1) and the level set of c separates the critical

points of index i and i + 1. Finally, O1
β denotes the ordered excellent functions except that they

have two critical points of the same index that are at the same level. We set O1 := O1
α ∪ O1

β (see

[CeCe]).
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Lemma 3.1. Two functions f0, f1 ∈ O0 can be joined by a path ft ∈ O0 ∪ O1 whose graphic (in
the sense of [CeCe]) is of type (Fig. 6): that is the events in the graphic occur in the following order:
birth of pairs of critical points, rearrangements of points of the same index, and finally death of
pairs of critical points.

Proof. This is done using the beak lemma ([CeCe, chap. IV, §3]), the independent singularities
lemma [CeCe], and the bigon move shown in Figure 7. □

Figure 6.

Figure 7.

Corollary 3.2. Let K : V 2 × I → [(M \ {p0})× I]θ be the pseudo-isotopy given by Corollary 2.5
and let ft : V

2× I → I be a path of functions in O1 joining p◦K = f0 to the projection p, given by
Lemma 3.1, with graphic shown in Figure 8 (where t1 denotes a value of the parameter such that
on [t1, 1] the graphic only has deaths).

Then there exists a C∞ isotopy of embeddings, Kt : V
2 × I → [(M \ {p0})× I]θ, t ∈ [0, t1], such

that K0 = K and p ◦Kt has, for t ∈ [0, t1], the same graphic as ft.

r 
I 

f 
l 
I 

0 

r t !I' 

i ~ 1 l 
. \ 

' 

Figure 8.

Proof. It suffices to see that the events in the graphic can be realised by C∞ ambient isotopies.
This is clear for the births and for the rearrangements (by property (1) of membranes and Lemma
2.4). □

Let K̃ = Kt1 : V × I → [(M \ {p0})× I]θ be the C∞ pseudo-isotopy given by Corollary 3.2. It

satisfies that p ◦ K̃ is an ordered, excellent Morse function whose critical points are grouped into
pairs that mutually cancel.

Let Mi+1 = M ×{ti+1} (resp. Vi+1 = K̃(V × I)∩Mi+1) be an intermediate level lying between
the critical points of index i and those of index i+ 1.

According to Corollary 3.2 and Smale’s condition ([CeCe, Prop. 3, §2 Chap. III]) one can find, for
the critical points of index i (i = 0, 1, 2, 3), a system of ascending membranes A i

j (resp. descending

membranes D i
j) until the level Mi+1 (resp. Mi) satisfying the properties of Lemmas 2.3 and 2.4,
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as well as the following property.

Property (∗). In the level Vi+1, the intersections Ai
j (:= A i

j ∩ K̃(V × I)) are disjoint from the

intersections Djk
i+1 (:= D i+1

k ∩ K̃(V × I)) except for those which lead to the mutual cancellation
of pairs of the critical points. These pairs intersect transversely in a single point that lies in Vi+1.

Lemma 3.3. The pseudo-isotopy K̃ : V × I → [(M \ {p0})× I]θ is C∞-isotopic to an embedding
L such that p ◦L only has critical points of index 1 and 2, grouped into pairs that mutually cancel.
More precisely, one can assume that Property (∗) above is conserved.

Proof. Using the ideas of Smale from the proof of the h-cobordism theorem, we will show that one
can replace pairs of critical points with indices 0− 1 by pairs of indices 1− 2. By duality we will
then also delete all pairs of indices 2− 3.

One can assume that the level M1 and M2 are such that the membranes of critical points of
index 0 and 1 until these levels are C∞. To achieve this, let M ′

1 be a level below all the critical
points of index 0. We push these critical points down along their membranes (which are C∞ by
Lemma 2.4) until they are a bit below M ′

1. According to Lemma 2.3 the ascending membranes
until M1 are C∞. One proceeds in the same fashion for the critical points of index 1.

Let (c1, d1), . . . , (cℓ, dℓ) denote the pairs of critical points of index 0, 1 respectively, which cancel
in these pairs. Let {A 0

i } (resp. {D1
i } be the ascending membranes (resp. descending membranes)

of the points ci (resp. di) until the level M1, let {Ã 0
i } (resp. {D̃1

i } denote their projections onto
M1. We also denote by D1

k the descending membranes of the critical points of index 1 other than
the {di}, that is those that are killed by the critical points of index 2.

Recall that Vi = L(V × I) ∩ Mi. Then V1 ⊆ M1 comprises a manifold V ′
1 isotopic to V0 =

L(V × I) ∩ (M × {0}) and some 2-spheres that are the boundaries ∂Ã 0
i .

The submanifold V2 ⊆ M2 is obtained from V1 by surgeries of index 1 corresponding to the

handles of index 1 defined by the projections of the membranes D̃1
i , D̃

1
k . By Property (∗) above,

each projection ∂Ã 0
i intersects V ′

1 in exactly one projection ∂D̃1
i (Figure 9). Let ai (resp. bi) be

the endpoint of D̃1
i in ∂Ã 0

i (resp. V ′
1). Let αi be a path in

M1 \ V ′
1 \

⋃
i

Ã 0
i \

⋃
i

D̃1
i \

⋃
k

D̃1
k

joining ai to bi.
33

By properties (3) and (4) of membranes, the path αi allows us to introduce a critical point of

index 1 cancelling with ci. The path αi being disjoint from the projections D̃1
i , D̃1

k , it survives to

the level M2. Let βi be the loop (D̃1
i )

′ ∪ αi in M2, where (D̃1
i )

′ is a path parallel to D̃1
i (Fig. 9).

Pushing βi into M2 \ V2 along a section of the normal bundle of V2, βi represents an element of
π1(M2 \ V2).

bj 

bi 

Figure 9.

3MP: Here and throughout, each \ corresponds to removing an extra subset. So X \ A \ B = (X \ A) \ B =

X \ (A ∪B), and so on.
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Using property (8) of membranes and remarking that π1(M \ V0) ∼= π1(B
4) = 0, we see easily

that π1(M2 \ V2) = 0. One can therefore find C∞-immersions φi : D
2 → M4

2 such that:

(1) φi|∂D is an embedding and φi(∂D) = βi;
(2) φi meets V2 transversely and exactly along φi(∂D);
(3) φi has only double points {mi

ℓ} where two branches intersect transversely;
(4) φi and φj intersect transversely.

Denote:

(piℓ, q
i
ℓ) := φ−1

i (mi
ℓ);

{rih} := φ−1
i (φi(D

2)) ∩
(⋃

i̸=j

φj(D
2)
)
;

α′
i := φ−1

i (αi) ⊂ ∂D2;

γi := φ−1
i ((D̃1

i )
′) ⊂ ∂D2.

Consider disjoint paths v, joining the points piℓ, q
i
ℓ, r

i
h, to the points of α′

i such that φi(v) are
disjoint from the ascending membranes of the critical points of index 1, which means that the
images of these paths appear at the level M1. Consider the new path α′′

i obtained from α′
i by

pushing one’s finger along the paths v (Fig. 10) and let (D2
i )

′ be the disc D2 after pushing by the
finger moves. We set α̃i = φ(α′′

i ) and ∆i = φ((D2
i )

′). We have the following properties.

Yi 
/ 

D; 

ai 

Figure 10.

(a) The curve α̃i, considered in M1, is a path in M1 \ V1 joining V ′
1 to ∂Ã 0

i , isotopic in M1 \ V ′
1 \

Ã 0
i \

⋃
i D̃

1
i \

⋃
k D̃1

k to the path αi, the trace of the isotopy being given by the image of the
fingers. The critical point of index 1 determined by α̃i (property 3 of membranes) cancels with

the critical point of index 0 corresponding to Ã 0
i (property 4 of membranes).

(b) The embedded 2-disc ∆i bounded by β̃i = α̃i ∪ φi(γi) determines a critical point of index 2
cancelling with the critical point of index 1 determined by α̃i. The boundary ∂∆i intersects,
transversely in exactly one point, the descending submanifold of the critical point of index 1

corresponding to the membrane D̃1
i (by construction) and does not intersect the descending

submanifolds corresponding to the other critical points of index 1.

The lemma follows. □

4. Separating membranes

Let L : V × I → [(M \ {p0}) × I]θ be the C∞ embedding given by Lemma 3.3 and let (ai)
(respectively (bi) be the critical points of index 1 (respectively 2) of p ◦ L. Proceeding as at the
start of the proof of Lemma 3.3, we can suppose that the levels of (ai) are close and just beneath a
level M×{t2}, and that there exists a system of ascending membranes Ai (respectively descending
Dj) until the level M × {t2} for {ai} (respectively {bi} such that:
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(1) the membranes Ai are C∞;
(2) the membranes Dj are C∞ in a neighbourhood of L(V × I) and the boundaries of the

projections ∂Ãi, ∂D̃j , which satisfy Property (∗).
The aim of this section is to prove the following lemma.

Lemma 4.1. There exists a system of membranes satisfying properties (1) and (2) above such that
the interiors of the projections are disjoint.

Let N2 denote a (small) C∞ tubular neighbourhood (in Θ) of

Vt2 = (M \ {p0} × {t2}) ∩ L(V × I),

let

M̃ := (M × {t2} \N2) \ {p0},
and write

Ã ′
i = Ãi \N2, D̃ ′

j = D̃j \N2.

To prove Lemma 4.1, we will apply the disjunction theorem of Casson-Freedman ([CaCa], [FF, Theo-

rem 10.1], [Se2Se2, Theorem 3]) to the ambient manifold M̃ and to the submanifolds Ã ′
i and D̃ ′

j . This
theorem requires a C∞ structure in order to apply it: we will therefore prove (Lemma 4.2) that

there exists a smooth structure on M \ {p0} rendering the submanifolds Ã ′
i and D̃ ′

j smooth. It
will then remain to check the other hypotheses of the disjunction theorem, namely π1-negligibility

of the families Ã ′
i and D̃ ′

j , and the existence of particular immersed dual 2-spheres.

4.1. Smooth structure on M \{p0}. The aim of this subsection is to prove the following lemma.

Lemma 4.2. There exists a smooth structure Γ on M \{p0} that agrees with θ in a neighbourhood

of Vt2 , such that Vt2 , Ã ′
i , and D̃ ′

j, are all C∞ submanifolds.

Proof. Using the models for the membranes, for all j there exists a (topological) embedding
φj : (D

2, ∂) × R2 → (M \ {p0}, Vt2), smooth (with respect to θ) on φ−1
j (N2), such that φj(D2 ×

{0}) = D̃j (to see this it suffices to N2 to be small and to use Lemma 2.3). We need the following
lemma.

Lemma 4.3. After a smooth isotopy of Ãi, fixed on Ãi ∩ N2, and a (topological) isotopy of D̃j

with support in M \ {p0} \N2, we can assume that the intersection points of D̃j and Ãi lie in N2

(Figure 11) where everything is smooth (with respect to θ).

ww-t 

NË 

Figure 11.

Proof. We prove Lemma 4.3. By [Q1Q1, Theorem 2.2.2], φj is C
∞ (with respect to θ) on a neighbour-

hood of D̂, where D̂ ⊆ D2 ×R2 is obtained from D2 ×{0} by introducing pairs of self-intersection
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(EN),' 

Figure 12.

points using finger moves (Casson’s deformations: see [CaCa] and Figure 12). These pairs of points
appear with smooth44 Whitney discs, denoted {W k

j }, contained in (D2 × R2) \ φ−1
i (N2).

We will denote ∆̂j := φj(D̂); we can assume that ∆̂j∩N2 = D̃j∩N2. By [Q1Q1, Proposition 2.2.4]

(see also the proof of [Q1Q1, Theorem 2.4.1]), in a small neighbourhood of φj(W
j
k ) (homeomorphic

to φj(W
j
k )× R2), we can put a Whitney tower55 of five stages C k

j , smooth with respect to Θ, and

with this we can put a smooth Casson handle CHk
j (see [FF, §2] for the definition), homeomorphic

to D2 × R2 ([FF, Theorem 1.1]), and weakly unknotted in the neighbourhood φj(W
j
k ) × R2 ([Q1Q1,

Proposition 2.2.4] and the proof of [Q1Q1, Theorem 2.4.1]). This means that the core D2 × {0} of
CHk

j is (topologically) isotopic rel. boundary to φj(W
k
j )× {0}.

We can smoothly make Ãi disjoint from the towers C k
j (proof of [Q1Q1, Theorem 2.4.1]) at the

cost of introducing additional points of intersection with ∆̂j . By a C∞ isotopy of Ãi, disjoint from

{C k
j }, one can push the intersection points of Ãi and ∆̂j into N2: to do this it suffices to choose

disjoint C∞ paths in ∆̂j , disjoint from the towers {C k
j }, joining the points ∆̂j ∩ Ãi to the points

of N2, and to then deform Ãi along these paths.

Next, we perform topological isotopies on ∆̂j (proof of [Q1Q1, Proposition 2.4.1]), within the

Casson handles CHk
j , to delete points of self-intersection of ∆̂j . The resulting family of discs {∆j}

is topologically isotopic in M \ N2 \ {p0} to the family {D̃j} (since CHk
j is weakly unknotted).

Thus {∆j} admits a topological normal bundle, C∞ on N2 (since there is a topological normal

bundle for {D̃j}. This completes the proof of Lemma 4.3. □

We continue with the proof of Lemma 4.2, as follows. Let N1 be a trivial C∞ tubular neighbour-

hood of
⋃

i Ãi, let N2 be a (topological) tubular neighbourhood of
⋃

i ∆j , that is C
∞ on N2 (this

exists by the previous proof). In a neighbourhood of a transverse point of intersection p between

two of the three manifolds Ã =
⋃

i Ãi, ∆ =
⋃

j ∆j , Vt2 , we can suppose that the model of the

intersection of the tubular neighbourhoods is B2 × B2 (where B2 is the disc of dimension two),
and the point p, the two submanifolds, and the fibres of the tubular neighbourhoods, correspond
respectively to {0} × {0}, B2 ∪ {0} ∪ {0} × B2, and to the horizontal and vertical factors. This
holds because in a neighbourhood of the points of intersection, everything is C∞.

Each of the tubular neighbourhoods being trivial, the subspace N2 ∪N1 ∪N2 has a natural C∞

structure Γ1 induced by the structure of Vt2 , Ã , and ∆. Let W = M \ {p0} \ int(N2 ∪ N1 ∪ N2)
(where int means interior). The boundary ∂W , which is 3-dimensional, has a unique C∞ structure

4MP: can they be smooth? If so, wouldn’t the original embedding have been smooth? This doesn’t seem to be
required.

5MP: I belive this means what we would now call a Casson tower.
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[MoiMoi]66, which extends by [Q1Q1, Corollary 2.2.3] to a smooth structure ΓW on W . Then Γ := Γ1∪ΓW

defines a smooth structure on (M \ {p0})× {t2} for which Vt2 , Ã , and ∆ are C∞ submanifolds.

In what follows we will continue to denote ∆j by D̃j . □

4.2. π1-negligibilty of the families {Ã ′
i }, {D̃ ′

j}. Recall that we set Ã ′
i = Ãi \N2, D̃ ′

j :=

D̃j \N2, and M̃ := M \N2 \ {p0}.

Lemma 4.4. The two families {Ã ′
i } and {D̃ ′

j} are π1-negligible in M̃ , that is π1(M̃ \
⋃

i Ã
′
i ) =

π1(M̃ \
⋃

j D̃ ′
j) = 0.

Proof. We construct a topological foliation F into lines (field of trajectories in the sense of [KSKS,
Essay III, §3]; see also [Se1Se1]) on M × [0, t2] whose only singularities are the critical points of p ◦L,
such that:

(a) F is transverse to the level M × {t}, for t ∈ [0, t2].
(b) F is tangent to L(V × I) and to the ascending and descending membranes of the critical

points.

We construct such a field in the following way. In a compact chartB4×[−ε, ε] around a critical point
given by Lemma 2.1 where p and L can be written: p(x, y, z, s, t) = t, L(x, y, z) = (x, y, z, 0, ε1x

2+
ε2y

2+ε3z
2), we can find a C∞ field, χ, tangent to the part of the boundary ∂B× [−ε, ε], satisfying

properties (a) and (b) above, and coinciding in a neighbourhood of 0 with the vector field ξ given
in the proof of Lemma 2.3. We extend the field χ (topologically) to M× [0, t2] using the topological
isotopy extension theorem [EKEK].

We can assume, in addition, that {p0} × I is a leaf of F .

This foliation F determines a homeomorphism from (M \ {p0} \ L(V × {0}) \ ∪d̃i) × {0} to

(M \ {p0} \ Vt2 \
⋃

i Ãi)× {t2}, where {d̃i} denotes the projections of the descending membranes

of the critical points of index 1 on M × {0}. Since dim(d̃i) = 1, we have isomorphisms

π1(M \ {p0} \ L(V × {0}) \ ∪d̃i) ∼= π1(M \ {p0} \ L(V × {0})) ∼= π1(B
4 \ {p0}) = 0.

On the other hand it is not difficult to see that

π1((M \ {p0} \ Vt2 \
⋃
i

Ãi)× {t2}) ∼= π1(M̃ \
⋃
i

Ã ′
i ).

The lemma follows (to obtain the result for D̃ ′
j , it suffices to reverse the cobordism M × [0, 1]. □

4.3. Existence of dual 2-spheres.

Lemma 4.5. There exist C∞ immersed 2-spheres77 in M̃ (with respect to the structure Γ of Lemma
4.2) C a

i , C d
j , such that

(1) Ã ′
i · C d

j = D̃ ′
j · C a

i = δij; and

(2) D̃ ′
j · C d

i = Ã ′
i · C a

j = 0

for all pairs (i, j), where (·) denotes the algebraic intersection number.

Proof. It suffices to take for C d
j (respectively C a

i ) the boundary of the dome associated to the

membrane D̃j (respectively Ãi).
The calculation of algebraic intersection numbers follows from the Property (*) that was given

after Corollary 3.2, and the fact that each point of intersection between Ãi and D̃i gives rise

to two points of intersection with opposite signs between Ãi and C d
j (respectively D̃j and C a

i )
(Figure 13). □

6MP: it seems to me that this statement also uses work of Munkres – Moise only considered PL structures.
7MP: To apply the disc embedding theorem, these spheres need to be framed, i.e. to have trivial normal bundle.

This is the case, so this does not create a problem with the proof. It was not discussed by Perron.
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Figure 13.

4.4. The disjunction theorem of Casson-Freedman.

Theorem 4.6 ([FF, Theorem 10.1], [Se2Se2]). Let X be a surface that is generically immersed in a

C∞ oriented 4-manifold M̃ such that

(a) π1(M̃ \X) = 0; and
(b) For each connected component Xi of X, there exists an immersed 2-sphere Ti, transverse to

X, such that |Ti ⋔ Xj | = δij and Ti · Ti ∈ 2Z.88

Let v be a Whitney circle pairing two double points (p, q) of X with opposite intersection numbers.
Then there exists a Whitney tower of 6 stages (T6, ∂

−T6) (see [FF, §2]) attached along v ⊂ ∂η(X),

with (T6, ∂
−T6) ⊂ (M̃\η(X), ∂η(X)), where η(X) is a tubular neighbourhood of X in M̃ . Moreover,

π1(M̃ \ η(X) \ T6) = 0.

4.5. Proof of Lemma 4.1. By Lemma 4.4, the 2-spheres C a
i , C

d
j given by Lemma 4.5 are regularly

homotopic in M̃ to 2-spheres that are geometrically dual to D̃ ′
j and Ã ′

i respectively (that is,

|Ã ′
i ⋔ C d

j | = |D̃ ′
j ⋔ C a

i | = δij for all i, j). By the Casson lemma ([FF, Lemma 10.1]), by introducing,

in a smooth manner, pairs of intersection points of Ã ′
i with the D̃ ′

j (Casson or finger moves), we can

obtain a new family {Ã ′′
i }∪ {D̃ ′

j} that is π1-negligible in M̃ (that is, π1(M̃ \
⋃

i Ã
′′
i \

⋃
j D̃ ′

j) = 0).

By Lemmas 4.2 and 4.5, the family {Ã ′′
i , D̃ ′

j} satisfies the hypothesis of the Disjunction Theorem
4.6. We can assume in addition that for each pair (i, j), the algebraic intersection numbers of the

interiors of Ã ′′
i and D̃ ′

j is 0. This holds for i = j by (possibly) spinning D̃j around the point

∂Ãi ∩ ∂D̃j . For i ̸= j, it is possibly necessary to add some domes (property 7 of §2), taking

account of Lemma 4.5. We can therefore group the intersections of Ã ′′
i and D̃ ′

j into pairs of points
with opposite intersection numbers. By Theorem 4.6 above, we can find disjoint Whitney towers
T k
6 , for each pair of intersection points {p, q}.
By [FF, Theorems 1.1 and 5.1], each tour T k

6 contains a topological Whitney model, which allows

us to delete the intersections of Ã ′′
i with D̃ ′

j by a topological isotopy.

Corollary 4.7. The embedding L : V × I → [(M \ {p0}) × I]θ of Lemma 3.3. is topologically
isotopic to the embedding L0 × IdI , where L0 = L| : V × {0} → (M \ {p0})× {0}.

Proof. By the Cancellation Lemma (property 4 of membranes) and Lemma 4.1, L is topologically
isotopic to an embedding L1 such that p◦L1 has no critical points. The topological isotopy extension
theorem then shows that L is isotopic to an embedding with vertical image. The corollary follows
easily. □

5. End of the proof of Theorem 0.20.2 in the case that M only has handles of
index 2

Recall that we began with a pseudo-isotopy F : M×I → M×I such that F |{p0}×I = Id, that we
isotoped F |(M\{p0})×I to a C

∞ diffeomorphismH : M\{p0})×I[(M\{p0})×I]θ (Corollary 1.3) and
that H| : V × I → [(M \ {p0})× I]θ is C∞ isotopic to an embedding L : V × I → [(M \ {p0})× I]θ

8MP: in the application of the theorem, the hypothesis that Ti · Ti ∈ 2Z is never checked, but follows from the

dual spheres in the previous subsection being framed.
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having only critical points of index 1 and 2 in cancellation position (Lemma 4.1). By the C∞

isotopy extension theorem, there exists a smooth isotopy, Gt : [(M \{p0})×I]θ → [(M \{p0})×I]θ
such that

(1) G0 = Id; Gt is the identity on ∂M × I ∪ (M \ {p0})× {0} and outside a compact set;
(2) G1 ◦H|V×I = L.

We let φ denote the C∞ diffeomorphism G1 ◦H : M \ {p0})× I → [(M \ {p0})× I]θ.
Let N ∼= V × D2 be a C∞ tubular neighbourhood of V in (M \ {p0}), N = N × I the C∞

neighbourhood corresponding to V × I in [(M \ {p0}) × I]Σ0×I , ∂+N = V × ∂D2, and ∂+N =
∂+N × I.

Lemma 5.1. φ : M \ {p0})× I → [(M \ {p0})× I]θ is topologically isotopic relative to (∂M × I ∪
(M \ {p0})× {0}) to a homeomorphism φ̃ such that φ̃|V×I∪∂+N is the inclusion.

Proof. The C∞ embedding φ| : V × I → [(M \ {p0}) × I]θ admits a C∞ tubular neighbourhood
E ∼= φ(V × I)×D2 such that

(1) E ∩ [(M \ {p0})× I]θ = N ; and
(2) the (Morse) critical points of p| : ∂+E ∼= (V × I)× ∂D2 → I are grouped into pairs (pi, qi),

of indices k, k + 1 respectively, each pair corresponding to a critical point of index k of
p ◦ φ|V×I . (Figure 14) (it suffices to do this in the model given by Lemma 2.1).

Figure 14.

By the uniqueness of C∞ tubular neighbourhoods, we can assume that φ(N ) = E. By Lemma
4.1, the critical points of φ| : V × I[(M \ {p0})× I]θ cancel in pairs. We can arrange this so that in
the isotopy the critical points of p|∂+E cancel (Figure 14) (again, it suffices to do this in the model).
By the topological isotopy extension theorem [EKEK], φ|V×I∪∂+N is isotopic to an embedding whose
image is vertical. The lemma now follows easily. □

Lemma 5.2. The pseudo-isotopy φ̃ of Lemma 5.1 is isotopic relative to ∂M × I ∪ (M \ {p0}) ×
{0} ∪ ∂+N ∪ V × I to a pseudo-isotopy φ̃ such that φ̃|N is the inclusion.

Proof. Recall that by the topological Alexander trick, TOP(Dn × Dp, Dn × {0} ∪ ∂(Dn+p)) is
contractible, where TOP(, ) denotes the space of homeomorphisms of Dn×Dp that are the identity
on Dn × {0} ∪ ∂(Dn+p).

The homeomorphism φ̃1 = φ̃| : (M \{p0})×{1} → (M \{p0})×{1} sends N ×{1} to itself, and
is the identity on ∂N ∪V ×{1}. Identifying the pair (N ×{1}, V ×{1} with (D2 ×D2, D2 ×{0}),
the Alexander trick shows that we can assume φ̃1|N×{1} = Id.

Identifying (N , V × I) with (D2 ×D2 × I,D2 × {0} × I), and remarking that φ̃ send N to N ,
the Alexander trick shows that we can assume φ̃|N = Id.

Remarking thatM\N̊ is homeomorphic to the ballB4, yet one more application of the Alexander
trick shows that the pseudo-isotopy F we started with is isotopic to the identity. □

6. Proof of Theorem 0.20.2 in the presence of handles of index 3 and 4

We assume the hypotheses of Section 0, and denote V (i), i = 3, 4, the union of the (4− i)-discs
transverse to the handles of index i in M . We can assume that the map p ◦H| : V (i) × I → I is a
C∞ Morse function (where H is the pseudo-isotopy of Corollary 1.3). As in §2, we can associated
an ascending and a descending membrane to each critical point of p ◦H|V (i)×I .
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6.1. Isotopy of H|V (4)×I to the inclusion. The map p ◦ H|V (4)×I has only critical points of
index 0 and 1; one can show as in Lemma 2.4 that all the membranes can be chosen to be C∞. In
an intermediate level between the critical points of index 0 and 1, for dimension reasons, we can
smoothly isotope the membranes to be disjoint from the critical points of index 0 and 1. We then
proceed as in Lemmas 5.1 and 5.2 to isotope the restriction of H to a tubular neighbourhood of
V (4)×I to the inclusion (here we can use the theorem of uniqueness of C∞ tubular neighbourhoods
in the proof of Lemma 5.1).

6.2. Isotopy of H|V (3)×I to the inclusion. One shows easily that on can kill (smoothly, with
respect to θ) the critical points of index 0 (see Lemma 3.3). We choose a level a little below the
critical points of index 2 such that the descending membranes (respectively, ascending membranes)
of the critical points of index 2 (respectively 1) are C∞ (the dimension of the projections of the
ascending membranes of the critical points of index 1 is one). We can therefore perform a C∞

isotopy in this level of the projections of the membranes, in order to make them disjoint. We then
conclude as above.

7. Proof of Corollary 0.30.3

Lemma 7.1. Let M4 be a 4-manifold satisfying the hypotheses of Corollary 1. Then M4 is
homeomorphic to W 4 ∪X4, where W 4 is obtained from the ball B4 by attaching handles of index
2, and X4 is a contractible manifold. In addition W ∩X = ∂X = ∂W is a homology 3-sphere.

Proof. It is easy to find a link L and a trivialisation τ of its normal bundle in S3 = ∂B4 such
that the manifold W 4 obtained by attaching handles of index 2 along (L , τ) has exactly the same
intersection form as M4. By [KaKa, Theorem 4.2], we can choose (L , τ) so that the Rochlin invariant
of ∂W 4 in Z/2Z (equal to σ(Y )/8 mod 2, where Y is a parallelisable 4-manifold bounded by ∂W )
is equal to the stabilised Kirby-Siebenmann obstruction to the existence of a PL triangulation of
M4.

The boundary ∂W 4 being a homology sphere (with coefficients in Z), it bounds a contractible
4-manifold X4 ([FF, Theorem 1.4’]). By the classification theorem for simply-connected closed 4-
manifolds ([FF, Theorem 1.5]) by the intersection form and the Kirby-Siebenmann invariant, M4

is homeomorphic to W 4 ∪∂ X4 (here we need the condition on the Rochlin invariant when the
intersection form of M4 is odd). □

Lemma 7.2. For the manifold M4 = W 4 ∪X4 described in Lemma 7.1, the contractible manifold
X4 is contained in the interior of a topological ball B4 ⊂ M4.

Proof. Let X1, X
′
1 be two copies of X; the manifold X1 ∪ (−X ′

1) being a homotopy 4-sphere it is
homeomorphic to S4 ([FF, Theorem 1.4’]). Let D4 ⊆ X ′

1 be a closed ball; the connected sum of X4

with X1 ∪ (−X ′
1)

∼= S4 defined using D4 is thus identified with X4. We therefore have inclusions

X ′
1 ⊂ X1 ∪ (−X ′

1) \ D̊ ⊂ X ⊂ M

where X1 ∪ (−X ′
1) \ D̊ is homeomorphic to a 4-ball. It is easy to see that there exists a homotopy

equivalence, restricting to a diffeomorphism of the boundaries, between W 4 = M4 \ X̊ and W ′4 =

M4 \ X̊ ′
1. The h-cobordism theorem of Freedman [FF, Theorem 1.3] shows that W 4 and W ′4 are

homeomorphic. □

End of the proof of Corollary 1. In §6, we saw that we can isotopy the entire pseudo-isotopy F : M×
I → M×I to a pseudo-isotopy that is the identity on B4×I, where B4 is the ball given by Lemma
7.2. The pseudo-isotopy F is thus the identity on X4 × I ⊂ B4 × I ⊂ M × I. We thus obtain
a pseudo-isotopy of W × I (W = M \X), that is fixed on ∂W × I ∪ W × {0}. Lemma 7.1 and
Theorem 0.20.2 combine to allow us to conclude the proof. □
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R. Acad. Sc. Paris 289 (1979), 115 – 118.

[Le] J. A. Lees, Immersions and surgeries of topological manifolds. Bull. Am. Math. Soc. 75 (1969), 529–534.

[Man] R. Mandlebaum, Four-dimensional topology: an introduction. Bull. Am. Math. Soc. 2 (1980), 1–159.

[Moi] E. Moise, Affine structures on 3-manifolds. Ann. Math. 56 (1952), 96–114.

[Mor] C. Morlet, Automorphisms et plongements de variétés. Cours Peccot, Collège de France, Paris 1969.
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to be mistaken here: in the analogous statement in Quinn’s article, M is indeed permitted to have nonempty

boundary, but in the conclusion W can also have 1-handles. Nevertheless, Siebenmann’s proof in §7 of this paper,

can now be augmented with Boyer’s 1993 homeomorphism classification to prove Corollary 0.3 for all compact,
simply-connected 4-manifolds. Details are given in Gabai-Gay-Hartman-Krushkal-Powell. In addition, Quinn’s

independent proof establishes the PI conjecture for all compact, simply-connected 4-manifolds, albeit that Quinn’s

proof had a gap, that was fixed in Gabai-Gay-Hartman-Krushkal-Powell.
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