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1. Definitions of mapping class groups

These are the notes for my lecture series from the Living in Topology conference on 22nd,
23rd, and 24th September 2025, in Pisa, Italy. I am grateful to the organisers of LiTIII
for the invitation to give these lectures, and the audience for the excellent atmosphere.

The aim of these lectures is to explain as much as possible within the time frame about
the state of our knowledge on mapping class groups of 4-dimensional manifolds.

For a topological space X, we consider C0(X), the space of continuous maps f : X → X,
with the compact-open topology. This topology is defined via a sub-basis, given by the
subsets VK,U , where K ⊆ X is compact and U ⊆ X is open. Let

VK,U := {f ∈ C0(X) | f(K) ⊆ U}.

See the appendix of [Hat02Hat02] for details on this topology.
Now let X be a compact, smooth d-manifold. We define the space Cr(X), the space of

Cr maps f : X → X with the Whitney topology, following Hirsch [Hir76Hir76]. This topology
is defined via a sub-basis, given by the subsets N r(f, (φ,U), (ψ, V ),K, ε). Let φ : U → Rd

and ψ : V → Rd be charts, let K ⊆ U be compact, let 0 < ε ≤ ∞, and let f : X → X be
a smooth map. Then N r(f, (φ,U), (ψ, V ),K, ε) is by definition

{g : X Cr

−−→ X | g(K) ⊆ V, ∥Dk(ψfφ−1)(x)−Dk(ψgφ−1)(x)∥ < ε, ∀ 0 ≤ k ≤ r, ∀x ∈ φ(K)}.
1
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This defines a topology on Cr(X), for each r. For each finite r, we have the subset
C∞(X) ⊆ Cr(X) of smooth maps. We can use the topologies on Cr(X) to define a
topology C∞(X), the space of C∞ maps f : X → X, by taking the union of the topologies
obtained from the inclusions C∞(X) → Cr(X), for all r ≥ 0.

If X is non-compact we need a more refined definition of the topology (the strong
version) which we will not go into here. See Hirsch [Hir76Hir76].

The forgetful map C∞(X) → C0(X) is continuous (take ε = ∞), but the topology on
C∞(X) is not the subspace topology.

Definition 1.1. Let X be a closed, topological 4-manifold. We write Homeo(X) for

the homeomorphism group of X, the topological group of homeomorphisms f : X
∼=−→

X and we write Homeo+(X) for the topological group of orientation preserving (o.p.)

homeomorphisms f : X
∼=−→ X. When X has (possibly) nonempty boundary, we write

Homeo∂(X) for the topological group of homeomorphisms of X that fix ∂X pointwise.
Multiplication is via composition, and the topology is the compact-open topology, i.e.

the subspace topology arising from Homeo(X) ⊆ C0(X). The connected components of
this group, π0(Homeo(X)) is the mapping class group of X. The o.p. mapping class group
ofX is π0(Homeo+(X)). The boundary-fixing mapping class group ofX is π0(Homeo∂(X)).

If the boundary is nonempty, and X is connected, then every boundary-fixing homeo-
morphism is orientation-preserving, so both decorations are rarely needed simultaneously.

Definition 1.2. Let X be a closed, smooth 4-manifold. We write Diff(X) for the dif-

feomorphism group of X, the topological group of diffeomorphisms f : X
∼=−→ X and we

write Diff+(X) for the topological group of orientation preserving (o.p.) diffeomorphisms

f : X
∼=−→ X. When X has (possibly) nonempty boundary, we write Diff∂(X) for the

topological group of diffeomorphisms of X that fix some neighbourhood of ∂X pointwise.
Multiplication is via composition, and the topology is the Whitney topology arising

from Diff(X) ⊆ C∞(X). The connected components of this group, π0(Diff(X)) is the
smooth mapping class group of X. The o.p. mapping class group of X is π0(Diff+(X)).
The boundary-fixing smooth mapping class group of X is π0(Diff∂(X)).

We have a continuous forgetful map

Diff(X) → Homeo(X)

and hence a map

π0Diff(X) → π0Homeo(X).

2. Pseudo-isotopy

A key concept will be pseudo-isotopy. This notion enables us to break down the problem
of understanding whether two homeomorphisms are isotopic into two distinct steps.

Definition 2.1 (Pseudo-Isotopy). A pseudo-isotopy (PI) ofX is a homeomorphism F : X×
I

∼=−→ X × I with F |⊏ = Id⊏, where ⊏:= (X × {0}) ∪ (∂X × I). We say that F |X×{1} is
pseudo-isotopic to IdX .
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Let P(X) be the space of all pseudo-isotopies, again with the compact-open topology.
We have a restriction map

r : P(X) → Homeo∂(X)

F 7→ F |X×{1}.

Write

Im r = HomeoPI
∂ (X).

We have a short exact sequence of groups

(2.2) 0 → π0HomeoPI
∂ (X) → π0Homeo∂(X) → π0Homeo∂(X)

π0HomeoPI
∂ (X)

→ 0.

Definition 2.3. We write

π̃0Homeo+(X) :=
π0Homeo∂(X)

π0HomeoPI
∂ (X)

= {f : X
∼=−→ X}/pseudo-isotopy.

This is called the pseudo mapping class group of X.

Here, we say that f, g : X
∼=−→ X with f |∂X = g|∂X = Id∂X are CAT pseudo-isotopic

if and only if g−1 ◦ f : X → X is pseudo-isotopic to IdX . Note that if f and g are
pseudo-isotopic then there is a homeomorphism F : X× I → X× I with F |X×{0} = f and
F |X×{1} = g.

Remark 2.4. For f : X
∼=−→ X a homeomorphism, we have that

isotopic to Id ⇒ pseudo-isotopic to Id ⇒ homotopic to Id ⇒ f∗ = IdH∗(X) .

We will see that for X closed and 1-connected, all of these implications can be reversed.
We briefly justify the first two implications. Let ft : X → X be an isotopy. Then

F : X × I → X × I sending (x, t) 7→ (ft(x), t) is a pseudo-isotopy. On the other hand,
given a pseudo-isotopy F : X×I → X×I from f = F |X×{1} to IdX , we obtain a homotopy
pr1 ◦F : X × I → X, which gives a homotopy from f to IdX .

3. Closed, simply-connected 4-manifolds

The first theorem I want to discuss is a computation of the mapping class groups of
closed, simply-connected 4-manifolds, in the sense of reducing it to algebra. For brevity
I will sometimes write 1-connected for simply-connected. Note that this implies path
connected as well. The right hand group of (2.22.2) can be computed as follows.

Theorem 3.1 (Freedman, Kreck, Quinn, Cochran-Habegger). Let X be a closed, 1-
connected topological 4-manifold. Then

π̃0(Homeo+(X)
∼=−→ Aut(H∗(X), λX)

f 7→ f∗

is an isomorphism of groups.



MAPPING CLASS GROUPS OF 4-MANIFOLDS ∥ PISA LECTURES 4

Here,

λX : H2(X)×H2(X)×H4(X) → H0(X) = Z
(x, y) 7→ (PD−1(x) ∪ PD−1(y)) ∩ z.

is the intersection pairing of X, and an automorphism in Aut(H2(X), λX) is an iso-
morphism φ : H2(X) → H2(X) and an isomorphism ψ : H4(X) → H4(X) such that
λX(φ(x), φ(y), ψ(z)) = λX(x, y, z) ∈ Z for all x, y ∈ H2(X) and all z ∈ H4(X).

The references for this theorem are [Fre82Fre82,Kre79Kre79,Qui86Qui86,CH90CH90]. Freedman proved sur-
jectivity, while Kreck and Quinn gave different proofs for injectivity. The homotopy theory
in both directions needed some corrections by Cochran-Habegger.

This means we understand the right hand group in (2.22.2) well. Now for the left hand
group.

Theorem 3.2 (Perron, Quinn, GGHKP). Let X be a compact, 1-connected topological
4-manifold. Then

π0P(X) = {[IdX×I ]},
and hence π0HomeoPI

∂ (X) = {[IdX ]}.

The references for this theorem are [Per86Per86,Qui86Qui86,GGH+23GGH+23].

Remark 3.3. This result was inspired by Cerf’s result that for d ≥ 5, π0PDiff(Xd) = 0
for π1(X

d) = {1}.

It follows by combining the previous two theorems that for X4 closed and 1-connected,
we have the following theorem.

Theorem 3.4. Let X be a closed, 1-connected topological 4-manifold. Then

π0(Homeo+(X)
∼=−→ Aut(H∗(X), λX)

f 7→ f∗

is an isomorphism of groups.

4. Examples

In the upcoming examples, we use Theorem 3.13.1 to compute π0(Homeo+(X)), and then
deduce π0(Homeo(X)) as a consequence. A unimodular, symmetric, bilinear form (Zn, L)
is called a lattice, and the groups of symmetries of a lattice is called its orthogonal group.

In general by considering the action of a homeomorphism on H4(X) ∼= Z to define a
homomorphism to Z/2, we have an exact sequence

0 → π0Homeo+(X) → π0Homeo(X) → Z/2.

If the signature of X is nonzero, there are no orientation-reversing homeomorphisms, and
hence the map to Z/2 is the zero map.

Example 4.1. Let X = S4. Then since H2(S
4) = 0, we have that Aut(H2(S

4), λX) =
{IdH2(S4)}, and so π0(Homeo+(S4)) = {[Id]} by Theorem 3.13.1. Since S4 admits an

orientation-reversing homeomorphism, we have that π0(Homeo(S4)) ∼= Z/2 = {[IdS4 ], [R]},
where R : S4 → S4 is a reflection.
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Example 4.2. Let X = CP 2. Define

f : CP 2 → CP 2

[z0 : z1 : z2] 7→ [z0 : z1 : z2].

When restricted to CP 1 ∼= C∪{∞} this gives complex conjugation, which has degree −1.
Hence the action on H2(CP 2) ∼= Z is multiplication by −1. Since CP 2 has signature 1,
every homeomorphism is o.p. So f generates the mapping class group

π0Homeo(CP 2) ∼= Z/2.

Example 4.3. Let X = S2 × S2. Then H2(X) ∼= Z2, and the intersection form is
hyperbolic, represented by ( 0 1

1 0 ). So π0Homeo+(X) ∼= Aut(Z2, H) ∼= Z/2 × Z/2. The

isometries here are straightforward to compute by hand. Generators are given by
(−1 0

0 −1

)
and ( 0 1

1 0 ). Let R : S2 → S2 be a reflection. Then R × IdS2 is an orientation reversing
homeomorphism of order two. It follows that we have a split short exact sequence

0 → π0Homeo+(X) → π0Homeo(X) → Z/2 → 0.

The sequence splits, so we have that π0Homeo(X) ∼= (Z/2 × Z/2) ⋊ Z/2. By computing
the orders of elements using the action on H2 and H4, I computed that the action in the
semi-direct product is such that this group is isomorphic to D8, the dihedral group of
order 8.

Example 4.4. Let X = #nCP 2 be a connected sum of canonically oriented complex
projective planes. This has H2(X) ∼= Zn and λX represented by the size n identity
matrix. The automorphism groups of this form, or in other words the orthogonal group
of this lattice, which is isomorphic to π0Homeo+(X), fits into a short exact sequence

{0} → (Z/2)n → Aut(Zn, Id) → Σn → {1}.

The sequence splits, so we have a semi-direct product, and the symmetric group Σn acts
on (Z/2)n by permuting the coordinates. It is known as the signed permutation group, or
the Coxeter group of type Bn. Its order is 2

n · n!. Since the signature is nonzero, there is
no orientation reversing homeomorphism, so π0Homeo(X) = π0Homeo+(X).

Example 4.5. Let X = E8 be the E8 manifold. It is built by plumbing D2-bundles over
S2 with Euler number 2 together according to the E8 Dynkin diagram, and then capping
off the boundary with a contractible 4-manifold, who existence was proven by Freedman.
The intersection form is the E8 lattice. Its automorphism group is the Weyl or Coxeter
group of type E8. This is a famous group, whose order is 4! · 6! · 8!.

In general, Wall gave explicit generators for automorphism groups of unimodular lattices
AutλX [Wal63Wal63].

5. Proof of Theorem 3.13.1

I will give an outline of the proof of the following result, which was Theorem 3.13.1.
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Theorem 5.1 (Freedman, Kreck, Quinn, Cochran-Habegger). Let X be a closed, 1-
connected topological 4-manifold. Then

π̃0(Homeo+(X)
∼=−→ Aut(H∗(X), λX)

f 7→ f∗

is an isomorphism of groups.

As mentioned above, surjectivity follows from Freedman’s famous classification. We
discuss injectivity here.

Let f : X
∼=−→ X be a homeomorphism with f∗ = IdH2(X). We consider the mapping

torus Tf := X × [0, 1]/(x, 0) ∼ (f(x), 1). We think of a homeomorphic space to this, as
follows. Let X1 and X2 be two copies of X, and consider f as a map f : X1 → X2. Let
Id: X1 → X2 be the identity map of X. Then

Tf ∼=
X1 × [0, 1] ⊔X2 × [0, 1]

(x1, 1) ∼ (f(x1), 1), (x, 0) ∼ (Id(x), 0)
.

The aim is to find an h-cobordism (V ;X1 × I,X2 × I), relative to the boundary X1 ×
{0, 1}, from X1×I to X2×I, with the gluing indicated. That is V must be a 6-dimensional
manifold with boundary ∂V = Tf , and being an h-cobordism means that the inclusion
maps X1 × I → V and X2 × I → V are both homotopy equivalences. The h-cobordism
theorem for 1-connected manifolds of dimension at least 5 is due to Smale and Kirby-
Siebenmann [Sma62Sma62,KS77KS77]; see also [Mil65Mil65]. It says that h-cobordism are homeomorphic
to products, and we may use a given identification of one end of the two cobordisms.

Theorem 5.2 (h-cobordism theorem). There is a homeomorphism

(G, Id, g) : (V ;X1 × I,X2 × I)
∼=−→ (X1 × I × I;X1 × I,X1 × I)

relative to the identity map on X1 × I and some homeomorphism g : X2 × I → X1 × I.
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Then g : X2 × I
∼=−→ X1 × I is a pseudo-isotopy. Because of our initial choice of gluing,

i.e. the fact that we took the mapping torus Tf , it is a pseudo-isotopy from f to IdX . So
if we can find the h-cobordism V , we will have proven that f is pseudo-isotopic to IdX , as
desired.

For the remainder of the sketch proof we assume that X is spin. The proof in the
non-spin case is similar, replacing BSpin with BSO. Note that

π2(X) ∼= H2(X) ∼= Zn

Set

K := K(π2(X), 2) =
n∏

CP∞.

Since f∗ = IdH2(X), and is orientation-preserving, and there is a unique spin structure on
X, we obtain a lift of the stable normal bundle as follows:

K × BSpin

Tf BSO
νTf

Hence we obtain an element of the bordism group ΩSpin
5 (K). An Atiyah-Hirzebruch spec-

tral sequence computation, using that we understand well the homology of K and the

bordism groups ΩSpin
q for low values of q, shows the following.

Proposition 5.3. ΩSpin
5 (K) = 0.

Hence there exists a null-bordism of Tf

K × BSpin

W 6 BSO .
νW

In this simply-connected setting, it is a result of Kreck that any such null-bordism W
is bordant rel. boundary to an h-cobordism V from X1 × I to X2 × I, as above. This
completes our outline of the proof of Theorem 3.13.1.

6. Open problems and the plan for the remainder of the lectures

Here are two salient open problems in the field.

Problem 6.1. Compute π0Diff∂ X for some compact X4.

Problem 6.2. Compute π0Homeo∂ X for some compact X4 with π1(X) ̸= {1}.

Here is the plan for the remainder of the lectures.

(1) Discuss the relationship between π0Diff(X) and π0Homeo(X) for π1(X) = {1},
giving examples.

(2) Describe the computation of π0Homeo∂(X) for π1(X) = {1} and ∂X ̸= ∅, giving
examples.

(3) Introduce barbell diffeomorphisms, which are particularly important examples,
and some of their applications.



MAPPING CLASS GROUPS OF 4-MANIFOLDS ∥ PISA LECTURES 8

(4) Discuss the Cerf theory approach to prove that π0HomeoPI(X) = {[IdX ]} for X
compact and π1(X) = {1}.

(5) Describe a potentially exotic element [f ] ∈ π0Diff+(S4), and other interesting
diffeomorphisms and open questions relating to the Cerf theory approach.

7. Relationship between smooth and topological mapping class groups

We restrict here to X simply-connected and closed. The following diagram may help us
to understand the differences between the smooth and topological mapping class groups.

π0DiffPI(X) π0Diff(X) π̃0Diff(X)

0 = π0HomeoPI(X) π0Homeo(X) π̃0Homeo(X)
∼=

The proof of injectivity in Theorem 3.13.1 works just as well in the smooth category, explain-
ing the right hand vertical injection. The left hand surjection and the isomorphism are
just because π0HomeoPI(X) = 0.

Theorem 7.1 (Ruberman). There exists a closed, simply-connected 4-manifold X and a
diffeomorphism f : X → X such that [f ] ̸= 0 ∈ π0DiffPI(X). Moreover, there exists such
an X with π0DiffPI(X) infinitely generated.

We describe Ruberman’s example [Rub98Rub98,Rub99Rub99] next. Recall the K3 surface, which
is a famous smooth, close, 1-connected 4-manifold. It generates the 4-dimensional smooth
spin cobordism group, for example. It is given by

{[x, y, z, w] ∈ CP 3 | x4 + y4 + z4 + w4 = 0}.

There are several other descriptions.

Example 7.2. Let

X0 := #3CP 2#20CP 2

and

W := CP 2#CP 2
#CP 2

.

Write ξ± = (1,±1, 1) ∈ Z3 ∼= H2(W ). Note that ξ± · ξ± = −1. Hence a tubular neigh-

bourhood is diffeomorphic to CP 2∖D̊4.

Consider complex conjugation as a map CP 2 → CP 2
. Isotope it to fix a 4-ball, and

remove that 4-ball, to obtain

g : CP 2∖D̊4 → CP 2∖D̊4.

Implanting this using ξ±, recalling that νξ± ∼= CP 2∖D̊4, we obtain

gξ± : W →W.

Next, for p ≥ 1, let

Xp := E(2, p+ 1),
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the result of a log transform on E(2) = K3. There exists a diffeomorphism

φp : Xp#W
∼=−→ X0#W.

We also define, for p ≥ 0,

ρp = (IdXp #gξ+) ◦ (Id#gξ−) : Xp#W → Xp#W.

Then we set

fp := φp ◦ ρp ◦ φ−1
p ◦ ρ−1

0 : X0#W
∼=−→ X0#W = #4CP 2#22CP 2

.

Ruberman showed that fp is not smoothly isotopic to the identity. He used Donaldson’s
invariants, but this can nowadays be done with family Seiberg-Witten invariants. Using
this approach many new examples have been constructed; see in particular [BK20BK20]. This
acts trivially on H2(X0#W ), and so is pseudo-isotopic and topologically isotopic to the
identity. In fact, by varying p we get that π0DiffPI(X0#W ) is infinitely generated.

One can compare with the following theorem.

Theorem 7.3 (Baraglia [Bar23Bar23], Konno [Kon24Kon24]). There exists a closed, simply-connected
4-manifold X with a summand

(Z/2)∞ ⊆ π0Diff(X)ab.

That is, the entire mapping class group, and not just the Torelli subgroup of diffeomor-
phisms acting trivially on homology, can be infinitely generated.

There is another more recent example of a nontrivial element of π0DiffPI(X), due to
Kronheimer-Mrowka, that was influential.

Example 7.4. We let X := K3#K3, and consider the connected sum sphere S3 ⊆ X.
Let U ∼= S3 × [0, 1] be a neighbourhood of this S3. Let ρθ : S

3 → S3 be rotation of S3

through an angle θ about a fixed axis. Define

Φ: S3 × [0, 1] → S3 × [0, 1]

(x, t) 7→ (R2πt(x), t).

Define

f : X → X

x 7→

{
Φ(x) x ∈ U

x x /∈ U.

This is called Dehn twist on S3 ⊆ X. Then f∗ = IdX : H2(X) → H2(X), so f is topologi-
cally isotopic to the identity. However Kronheimer and Mrowka [KM20KM20] proved that f is
not smoothly isotopic to the identity of X. Moreover, Jianfeng Lin [Lin20Lin20] showed that
f does not become smoothly isotopic to the identity even after connected summing with
one S2 × S2.

Several authors studied analogues of the Dehn twist for other Seifert fibred spaces and
for 4-manifolds with boundary, too.

Next we address the fact that the right hand vertical map π̃0Diff(X) → π̃0Homeo(X)
in the diagram above is not surjective in general.
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Theorem 7.5 (Friedman-Morgan [FM88FM88], Donaldson [Don90Don90]). There exist closed, simply-
connected X4, such that the map π0Diff(X) → π0Homeo(X) is not surjective.

Examples include K3, homotopy K3s, and the Dolgachev surface. One can realise every
self-isometry of the intersection pairing by a homeomorphism, by Freedman’s theorem.
The proof of the theorem above proceeds by showing that certain isometries cannot be
realised smoothly, because of the way a diffeomorphism must act on the Seiberg-Witten
basic classes, for example.

Here is a more recent result along the same lines, but for non-simply connected 4-
manifolds.

Theorem 7.6 (Galvin [Gal24Gal24]). Suppose X4 is closed and H1(X;Z/2) ̸= 0. Then
π0Diff(X#(S2 × S2)) → π0Homeo(X#(S2 × S2)) is not surjective, even after adding
arbitrarily many copies of S2 × S2.

The proof uses a version of the Kirby-Siebenmann invariant. In this context work of Cas-
son and Sullivan pre-dated Kirby-Siebenmann’s work, and so the invariant that obstructs
non-stable-smoothability of homeomorphisms of 4-manifolds is called the Casson-Sullivan
invariant.

8. Mapping class groups of 1-connected 4-manifolds with boundary

The pseudo-isotopy theorem of Perron and Quinn works just as well for 1-connected
compact 4-manifolds with boundary. However the pseudo-isotopy classification is more
subtle. In joint work with Orson, we figured out the details of this Our work builds on
important work of Saeki in this direction, who studied the analogous stable smooth map-
ping class group for smooth 1-connected 4-manifolds with connected nonempty boundary.
We also rely on Boyer’s work. The following description follows that in [OP22OP22].

When ∂X = ∅, we have seen that if two o.p. homeomorphisms of X induce the
same isometry of the intersection form then they are isotopic. When X has nonempty
boundary, we need to consider a refinement of Aut(H2(X), λX) to capture the algebraic
data of a homeomorphism. A map f ∈ Homeo+(X, ∂X) determines a homomorphism
∆f : H2(X, ∂X) → H2(X) called a variation, defined by [x] 7→ [x − f(x)]. Using that
X has Poincaré-Lefschetz duality, Saeki [Sae06Sae06] showed that ∆f satisfies an additional
condition, making it what we call a Poincaré variation. There is a binary operation on
the set of Poincaré variations, together with which they form a group V(H2(X), λX). The
map f 7→ f∗ factors through this group via homomorphisms:

π0Homeo+(X, ∂X)
f 7→∆f−−−−→ V(H2(X), λX)

∆ 7→Id−∆◦j−−−−−−−→ Aut(H2(X), λX),

where j : H2(X) → H2(X, ∂X) is the quotient map. In general ∆f contains more infor-
mation than f∗, although if ∂X is a QHS3 or a QH(S1 × S2) then the second map is an
isomorphism. Saeki [Sae06Sae06] used V(H2(X), λX) to describe the smooth stable mapping
class group for simply connected 4-manifolds with nonempty, connected boundary.

Example 8.1. Let X be a 1-connected 4-manifold with boundary T 3 = S1
1 × S1

2 × S1
3 ,

the 3-torus. For example, such a 4-manifold arises by adding 0-framed 2-handles to D4

along the Borromean rings. Rotating the S1
1 direction yields a loop of diffeomorphism in

π1Diff+(T 3). We can apply this in a collar neighbourhood of ∂X to obtain a generalised
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Dehn twist f : X
∼=−→ X. Since f is supported in ∂X × I, it acts trivially on H2(X).

However, the curve S1
2 bounds a nontrivial relative homology class x2 ∈ H2(X, ∂X). The

difference x2 − f(x2) is the image under the injection H2(T
3) ↣ H2(X) of the class

[S1
1 × S1

2 ] ∈ H2(T
3). Hence the variation ∆f is nontrivial, and thus f is not isotopic rel.

boundary to the identity. In contract, note that if the boundary is permitted to move in
an isotopy, then f is isotopic to the identity.

When ∂X has more than one connected component and X admits a spin structure,
there is a further invariant that does not appear in the closed case nor when the boundary
is connected. For f ∈ Homeo+(X, ∂X) we may compare a topological spin structure s on
X with the induced spin structure f∗s. The two agree on ∂X because f fixes the boundary
pointwise. There is a free, transitive action of H1(X, ∂X;Z/2) on the set of isomorphism
classes of spin structures onX that agree on ∂X, and we denote by Θ(f) ∈ H1(X, ∂X;Z/2)
the class representing the difference between s and f∗s.

Example 8.2. Let X := S3× I, and let f : X → X be the Dehn twist that we introduced
earlier in the context of the connected sum sphere in K3#K3. This diffeomorphism nec-
essarily acts trivially on H2(X) = 0, has trivial Poincaré variation for the same reason.
However, f is not (pseudo-) isotopic rel. boundary to IdX , because it acts nontrivially on
the relative spin structures of X (of which there are two).

In joint work with Orson, we showed that these invariants describe the entire topological
mapping class group.

Theorem 8.3. Let (X, ∂X) be a compact, simply connected, oriented, topological 4-
manifold.

(i) When X is spin, the map f 7→ (Θ(f),∆f ) induces a group isomorphism

π0Homeo+(X, ∂X)
∼=−→ H1(X, ∂X;Z/2)× V(H2(X), λX).

(ii) When X is not spin, the map f 7→ ∆f induces a group isomorphism

π0Homeo+(X, ∂X)
∼=−→ V(H2(X), λX).

If the boundary is nonempty, then the + is superfluous: every homeomorphism that
acts as the identity on the boundary is o.p. In order to state the result for the case of
empty and nonempty boundary simultaneously, we leave the + in the notation.

In Example 8.18.1 we gave an example of a nontrivial diffeomorphism that acts trivially
on H2(X), i.e. that lies in the Torelli subgroup of the mapping class group of X. The
question then arose whether all the elements of the Torelli group can be smoothly realised.

Theorem 8.4 (Galvin-Ladu [GL23GL23]). There exists a 1-connected, smooth, compact 4-

manifold X (which they construct explicitly) together with a homeomorphism f : X
∼=−→ X

in the Torelli subgroup of π0(Homeo+(X, ∂X)) that is not topologically isotopic to any
diffeomorphism of X.

This is in contrast to the closed case, when every element of the Torelli subgroup is
isotopic to the identity, hence is certainly isotopic to a diffeomorphism.
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Figure 1. Schematic drawings of the model barbell B, as D4∖(νγ1⊔νγ2)
and as (S2 ×D2)♮(S2 ×D2).

9. Barbell diffeomorphisms

Some very interesting examples of diffeomorphisms are given by barbell diffeomor-
phisms. The model barbell is

B := (S2 ×D2)♮(S2 ×D2) ∼= D4∖(D1 × D̊3 ⊔D1 × D̊3),

where the two removed 4-balls are neighbourhoods of properly embedded arcs, which we
denote νγ1 and νγ2. So

B ∼= D4∖(νγ1 ⊔ νγ2).
Note that

D4∖(νγ1 ⊔ νγ2) ⊆ D4∖νγ2.
We consider a loop of embeddings of a thickened arc in D4∖νγ2, starting and ending at
νγ1. That is, we consider an element of

π1
(
EmbS0×D3(D1 ×D3, D4∖νγ2); νγ1

)
.

The loop in question is illustrated in Figure 22. Isotopy extension gives give to a homo-
morphism

π1
(
EmbS0×D3(D1 ×D3, D4∖νγ2); νγ1

)
→ π0Diff∂(D

4∖(νγ1 ⊔ νγ2)) ∼= π0Diff∂(B).
The image of our loop of embeddings under this map is the barbell diffeomorphism,
introduced by Budney and Gabai,

ϕ : B
∼=−→ B.

The diffemorphism ϕ has nontrivial Poincaré variation

e1 ∧ e2 ∈ ∧2Z2 ∼= ∧2H1(∂X).

In fact by [OP22OP22], or the last section of [KMPW24KMPW24], this group is isomorphic to π0Homeo∂(B),
and so π0Homeo∂(B) ∼= ∧2Z2 ∼= Z.

Budney and Gabai [BG19BG19] used the barbell diffeomorphism to obtain nontrivial diffeo-
morphisms in π0Diff∂(S

1×D3), and they showed in [BG23BG23] that their diffeomorphisms are
nontrivial in π0Homeo∂(S

1 × D3). To construct their diffeomorphisms, they considered
an embedding

ψ : B → S1 ×D3 ∼= S1 ×D2 × I ∼= ((I ×D2)/ ∼)× I.
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Figure 2. A loop of embeddings of D1 ×D3 in D4∖νγ2. The arc D1 ×
{0} ⊆ νγ1 ⊆ D4∖νγ2 is pictured on the left. As time progressed, it swings
around the meridional 2-sphere of νγ2, and then returns to its starting
point.

Figure 3. An embedding ψ of the model barbell B into S1×D3, such that
the resulting diffeomorphism of S1 ×D3 is nontrivial in π0HomeoPL

∂ (S1 ×
D3).

In Figure 33, we draw the desired embedding as much as possible in ((I×D2)/ ∼)×{1/2}.
The 2-spheres intersect this 3-dimensional slice in circles that are capped with a disc in
((I ×D2)/ ∼)× [0, 1/2] and a disc in ((I ×D2)/ ∼)× [1/2, 1].

On the image of ψ, apply the barbell diffeomorphism ϕ. Extend it by the identity to
obtain a diffeomorphism

Φ: S1 ×D3 ∼=−→ S1 ×D3.
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Figure 4. An interesting barbell implantation in S4.

We have described Budney-Gabai’s construction, but the same result was proven at the
same time by Watanabe.

Theorem 9.1 (Budney-Gabai, Watanabe). [Φ] ̸= 0 ∈ π0HomeoPI
∂ (S1 ×D3).

Let U ⊆ S4 denote the trivial 2-knot. Note that S4∖νU ∼= S1 × D3, which contains
{1}×D3. Budney-Gabai observed that Φ({1}×D3) is a knotted 3-ball, that is isotopic to
a standard one, but is not isotopic to a standard 3-ball embedded in S4 rel. boundary.

Conjecture 9.2. The barbell implantation shown in Figure 44 gives a nontrivial element
of π0Diff+(S4).

10. Cerf theory

How can we hope to understand pseudo-isotopies? A key idea is to use Cerf theory,
which is essentially 1-parameter Morse theory. I will use this theory to explain the idea
of Quinn’s proof of Theorem 3.23.2. It is a useful theory for analysing pseudo-isotopies in
general, including in the smooth category. I will therefore close by explaining some appli-
cations to smooth mapping class groups, and describing some potential future applications.

I should mention that Perron’s proof of Theorem 3.23.2 is also very nice, but so far the
approach has found fewer uses in other work, so we focus on Quinn’s approach. Note that
I translated Perron’s article into English; the result is available on my website.

Let X be a smooth, closed, 1-connected 4-manifold, and let F : X × I → X × I be a
smooth pseudo-isotopy. We have two Morse functions on X × I without critical points.
First,

g0 := pr2 : X × I → I

given by projection to the second coordinate. Next,

g1 := pr2 ◦F : X × I → I

also has no critical points.
Recall that a Morse function g : X×I → R is a smooth function such that every critical

point p ∈ X × I, the Hessian matrix of second partial derivatives is nondegenerate (this
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condition is coordinate independent). Near a critical point we have coordinates (x1, . . . , x5)
and h ∈ {0, . . . , 5} such that

g(x) = g(p)− x21 − · · · − x2h + x2h+1 + · · ·+ x25.

Here h is the index of the critical point.
Next, any two Morse functions on a manifold, so in particular onX×I, can be connected

by a 1-parameter path of generalised Morse functions

gt : X × I → R.
This is a smooth path of functions, such that for each t ∈ I, either gt is a Morse function,
or gt is a Morse function everywhere except possibly at one critical point p, which is
a birth/death type singularity. At p we have coordinates (x1, . . . , x5) such that in the
coordinates

gt(x) = g(p) + x31 − x22 − · · · − x2h + x2h+1 + · · ·+ x25.

In a 1-parameter family near p, we can assume that gt+s has the form

gt+s(x) = g(p) + x31 ± sx1 − x22 − · · · − x2h + x2h+1 + · · ·+ x25.

Then ±s is negative we see two Morse critical points, and when ±s is positive there are
no critical points in the coordinate neighbourhood.

There is a corresponding 1-parameter family of gradient-like vector fields (glvf) ξt on
X×I, for t ∈ [0, 1], such that ξt is a glvf for gt. Using the glvf, we obtain, for each t where
gt is Morse, a handle decomposition of X × I, where each critical point of index h gives
rise to an h-handle. Trajectories of ξt between handles of index (h+ 1) and h correspond
to attaching data, namely intersections of the attaching sphere of the index (h+1)-handle
with the belt sphere of the index h handle. Trajectories of ξt between two index h handles
can occur at isolated t-values, and correspond to handle slides.

Some of the data of gt can be presented in a Cerf graphic, as shown in Figure 55.
Here we plot with two axes, t ∈ [0, 1], and the interval I in which our generalised Morse
functions gt take values. For each t ∈ [0, 1], we consider all the critical points of gt, namely
Pt := {pi | Dgt(pi) = 0}. Then we plot the critical values gt(Pt) at t. Doing this for every
t ∈ [0, 1] gives rise to the Cerf graphic. One cannot recover the Morse function from the
Cerf graphic, but it turns out to contain some useful information that makes it easier to
describe the qualitative features of our family gt, and to describe the key features of the
deformations that we wish gt to undergo.

We can assume, generically, that two critical points have the same critical value at
isolated value of t, and that in this case the critical lines in the Cerf graphic intersect
transversely. Important data that is not shown in the graphic is the trajectories between
critical points. We will not indicate this data in the Cerf graphic, although one is free to
invent schema to do so.

Whenever we change (gt, ξt), we speak of a deformation of the family. If we want to
show that the pseudo-isotopy is isotopic to the identity, our aim will be to deform (gt, ξt),
without changing (gi, ξi) for i = 0, 1, to a family with no critical points, i.e. one with
empty Cerf graphic. Why is this our aim?

Given a glvf without critical points, we can integrate it in order to start with X × {0},
and flow it along the integral curves to obtain a self-homeomorphism of X × I. There is
also a topological version of this, which we will not investigate.
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Figure 5. A generic Cerf graphic. I label the critical lines with the indices
of the corresponding critical points.

If we integrate ξ0, we obtain a homeomorphism ofX×I isotopic to IdX×I . If we integrate
ξ1, we obtain a homeomorphism of X × I isotopic to F : X × I → X × I. Moreover, if ξt
has no critical points, then for each t we obtain a homeomorphism Ft : X × I → X × I,
with F0 = IdX and F1 = F . Since ξt depends continuously on t, we obtain an isotopy
between IdX×I and F , as desired. It follows that it suffices to deform (gt, ξt) rel. t = 0, 1
to a family with no critical points, as asserted.

Proposition 10.1 (Cerf, Hatcher-Wagoner). For X with π1(X) = {1}, there exists a
deformation of (gt, ξt) to a family with a nested eye graphic.

Here, a nested eye graphic is one of the form shown in the next figure. All births come
first, one at a time, and they are all births of cancelling index 2 and 3 pairs of critical
points. There are no rearrangements of critical values, and no handle slides, i.e. there are
no 2/2 and no 3/3 trajectories. The births and deaths are independent, meaning that at
each birth time and each death time, there are no trajectories that go either from or to
the birth or death point, from or to another critical point. Each circle in the figure is
called an eye.

The procedure to arrange the nested eye graphic is somewhat complicated, involving
a careful use of codimension 2 singularities. These deformation are to generalised Morse
functions as generalised Morse functions are to ordinary Morse functions. The procedure
works in all dimensions at least 4. Here we are going to quote it and not attempt to justify
it.

Figure 66 shows a nested eye Cerf graphic, and it indicates the times at which births and
deaths appear. The additional labels will be explained carefully in the next section.
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tb tf tw td

middle middle level

Figure 6. A nested eye Cerf graphic. Each loop is called an eye. The
middle-middle level is also indicated, as well as the birth time tb, the death
time td, the finger move time tf and the Whitney move time tw. (Picture
from [GGH+23GGH+23].)

11. The middle-middle level

In the proof of the h-cobordism theorem, for 5-dimensional h-cobordisms, we put a
Morse function f : W → I on our h-cobordism W , and then perform handle trading to
arrange that there are only 2- and 3-handles. We then consider the middle level f−1(1/2),
in which we see two sets of mutually disjointly embedded 2-spheres. The first, A1, . . . , Ak,
are the ascending spheres of the index 2 critical points. In handle language, they are the
belt spheres of the 2-handles. The second set of mutually disjointly embedded 2-spheres,
B1, . . . , Bk, are the descending spheres of the index 3 critical points, or the attaching
spheres of the 3-handles. After some handle sliding we may assume that the intersection
numbers of these spheres are Ai · Bj = δij ∈ Z, since W is an h-cobordism. The goal
of the proof is to arrange by an isotopy that the geometric intersection numbers of these
spheres agrees with the algebraic intersection numbers. Then we can cancel the critical
points in 2-3 pairs, to obtain a cobordism with no critical points, which is hence a product.
The proof of the pseudo-isotopy theorem is analogous to this, but one level of complexity
higher.

We also consider the middle level, g−1
t (1/2), for each t. It turns out that the data of

the pseudo-isotopy can be captured in the middle-middle level, which is the inverse image

M := g−1
1/2(1/2).

This is the inverse image of the central point shown in Figure 66. This is a 4-manifold
diffeomorphic to X#k(S2 × S2), where k is the number of 2-3 pairs.

Right after the birth time tb, in the middle level g−1
tb+ε(1/2)

∼= X#k(S2 × S2), we see

the ascending 2-spheres A1, . . . , Ak of the index 2-critical points, of the form {pt} × S2

in each of the S2 × S2 summands. We also see the descending spheres B1, . . . , Bk of the
index 3 critical points, of the form S2×{pt} in each of the S2×S2 summands. Note that
Ai and Bj intersect in exactly δij points, so the critical points are in cancelling position.

The situation is the same just before the death time, in g−1
td−ε(1/2)

∼= X#k(S2 × S2).

In between, looking at the ascending and descending spheres in g−1
t (1/2), for t ∈ [tb +

ε, td−ε], we can assume that the {Ai} stay fixed, and the {Bj} move around by an isotopy,
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Figure 7. A finger move.

Figure 8. The Whitney move goes from left to right, and the finger move
reverses it, going from right to left.

while staying pairwise disjoint and embedded. During this motion extra intersections
between the {Ai} and the {Bj} can appear, and later disappear. At the start and end we
know that the spheres are in cancelling position.

We can also assume that all the extra intersections are created first, and at the same
time tf , by finger moves; see Figure 77.

Then the extra intersections are all removed simultaneously by Whitney moves, at the
time tw. A Whitney move is guided by a Whitney disc W ; see Figure 88.

Also, after a finger move there is a finger-move Whitney disc V , with the property that
performing a Whitney move on that finger-move disc V undoes the finger move. In the
middle-middle level, we see two collections of discs, the Whitney discs {Wℓ}, that guide
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Figure 9. A Cerf graphic with one eye, together with schematics of the
spheres in the middle levels at different time values. In the schematic,
spheres are represented by circles. The key data is contained in the middle-
middle level, where we see finger and Whitney discs that guide the pseudo-
isotopy in the past and future respectively. The Whitney discs and the
finger discs shown are distinct. First, W1 and V1 pair up the double points
in a different way. Secondly, the Whitney discs V2 and W2 are assumed to
have the same boundary (although this need not be the case, a priori), but
thei union represent a nontrivial element in π2(M). This is supposed to be
indicated by the small red sphere.

the Whitney moves that will happen at time t = tw. After the Whitney move the {Ai}
and the {Bj} are in cancelling position. We also see the finger-move discs {Vm}, which
have the property that reversing time leads to Whitney moves using them. These Whitney
moves also remove all excess intersections between the {Ai} and {Bj}.

All of the important data about the pseudo-isotopy can now be captured by the spheres
{Ai} and {Bj} in the middle-middle level, which intersect in δij times algebraically, to-
gether with the two collections of Whitney discs {Vm} and {Wℓ}. Each of these collections
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A M 

B ) 

Figure 10. Finger and Whitney discs in standard position, with bound-
aries forming an arc in both A and B.

have mutually pairwise disjoint interiors, and has the property that using them for Whit-
ney moves places the {Ai} and {Bj} in cancelling position.

In order to prove Theorem 3.23.2, Quinn showed the following (modulo a correction given
in [GGH+23GGH+23]).

Proposition 11.1. We can perform a deformation to remove/cancel the innermost eye
of the nested eye Cerf graphic.

In order to be able to remove the innermost eye, it suffices that there is a unique
trajectory between the index 3 and the index 2 critical point corresponding to that eye.
That is, the critical points must be in cancelling position the entire time interval for which
they exist. Then we can perform a 1-parameter families worth of cancellations, to entirely
remove the eye. Note that the proposition implies Theorem 3.23.2, because we inductively
close the eyes, always working on the innermost eye in the Cerf graphic.

To prove Proposition 11.111.1, Quinn arranged that the finger and Whitney discs can be
arranged, using his ‘sum square move’ and the disc embedding theorem, into the position
shown in Figure 1010. In [GGH+23GGH+23] we showed that one can only really do this modulo
homeomorphisms supported in D4, and so one also needs an application of the Alexander
trick to conclude that π0HomeoPI

∂ (X) = 0.

12. Smooth pseudo-isotopies

I will close by describing some past, and potential future, applications of Cerf theory
to the analysis of smooth pseudo-isotopies, in particular highlighting some interesting
examples.

Without the disc embedding theorem (which can only be applied in the topological
category), it is not possible to simplify the situation as much as in Proposition 11.111.1. A
key difficulty is that the V and W discs can intersect each other, and it is unclear how to
remove these intersections, particularly if they are algebraically nontrivial.
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Figure 11. A Whitney sphere. Such a sphere lives in a neighbourhood of
any Whitney disc. (Picture from [GGH+23GGH+23].)

Figure 12. A middle-middle level, with a portion of A and B shown,
together with one finger disc V (left) and one Whitney disc W ′ (right).
The red circle is the image in the present of the Whitney sphere SW of
W ′. Tube W ′ into SW to obtain a new Whitney disc W . Note that the
interior of V intersects the interior of W in a single point. (Picture from
[GGH+23GGH+23].)

However, by analysing the (A,B, V,W ) data in the case of a single eye, we were able to
prove the following.

Theorem 12.1 ([KMPW24KMPW24]). Let f : X → X be a diffeomorphism of a 1-connected,
compact smooth 4-manifold X, and suppose that f is 1-stably isotopic to IdX . Then there
exists a contracible submanifold U ⊆ X such that f is smoothly isotopic to f ′, where f ′ is
supported on U .

Using this theorem we constructed new nontrivial diffeomorphisms on contractible 4-
manifolds.

Next, we give two particularly interesting examples of pseudo-isotopies. First note that
given a Whitney disc pairing two double points of A∩B, there is a Whitney sphere, shown
in Figure 1111. This sphere is disjoint from A, B, and the Whitney disc.

Example 12.2. Let X = S4. Build a Cerf family with finger-Whitney data (A,B, V,W )
as described in Figure 1212. This is a family with a single eye, and hence a single A-B pair.
Integrating ξ1 yields a pseudo-isotopy F : S4 × I → S4 × I.

Question 12.3. Is f := F |S4×{1} smoothly isotopic to the identity?

This turns out to be the same, up to isotopy, as the barbell implantation from Figure 44.
This pseudo-isotopy formulation first appeared in [GGH+23GGH+23].

Gabai-Gay-Hartman claim they can prove Conjecture 9.29.2, that this is in fact nontrivial.
Their proposed proof, involves a combinatorial obstruction that counts intersections be-
tween V and W discs, and showing that this is a robust invariant of the diffeomorphism,
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and not just an invariant of the choice of pseudo-isotopy and the auxiliary Cerf data. At
the time of writing only half of their claimed proof is available.

Question 12.4. The diffeomorphism from the previous example can be arranged to be
supported on D4, and hence can be implanted in any 4-manifold X. For which X is it
nontrivial?

Example 12.5. In this example X = S1 × S2 × I. Again we can build a pseudo-isotopy,
by building a family of Cerf data, which in turn is (sufficiently) determined by finger and
Whitney data. It will be a family with a single eye. Take the A and B spheres in standard
position. Perform a single finger move on B, through A, in such a way that the double
point loop is homotopic to S1×{p}×{1/4}, for some p ∈ S2. We obtain a local finger disc
V . Tube V into the 2-sphere {q} × S2 × {3/4}, for some q ∈ S1. Call the resulting disc
W , and use this to perform a Whitney move. This describes a pseudo-isotopy, and hence
a diffeomorphism f : X → X. Singh [Sin21Sin21] showed, using the Hatcher-Wagoner [HW73HW73]
obstructions, that f is nontrivial in π0DiffPI

∂ (X).

I mentioned the Hatcher-Wagoner obstructions in the last example. I do not have time
to define them here, but let me mention the following question.

Question 12.6. What are the Hatcher-Wagoner invariants of some pseudo-isotopy from
the Budney-Gabai barbell implantations in S1 ×D3 to IdS1×D3?
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