The \mathbb{Z}-genus of boundary links

Peter Feller ${ }^{1}$ •JungHwan Park ${ }^{2}$ • Mark Powell ${ }^{3}$ (D)

Received: 17 June 2021 / Accepted: 1 March 2022
© The Author(s) 2022

Abstract

The \mathbb{Z}-genus of a link L in S^{3} is the minimal genus of a locally flat, embedded, connected surface in D^{4} whose boundary is L and with the fundamental group of the complement infinite cyclic. We characterise the \mathbb{Z}-genus of boundary links in terms of their single variable Blanchfield forms, and we present some applications. In particular, we show that a variant of the shake genus of a knot, the \mathbb{Z}-shake genus, equals the \mathbb{Z}-genus of the knot.

1 Introduction

A link in S^{3} is an oriented 1-dimensional locally flat submanifold of S^{3} homeomorphic to a nonempty disjoint union of circles. For a link L, let $X_{L}:=S^{3} \backslash \nu L$ be the link exterior and let M_{L} be the result of 0 -framed surgery on L. An r-component link $L=L_{1} \cup \cdots \cup L_{r}$ in S^{3} is a boundary link if the components bound a collection of r mutually disjoint Seifert surfaces in S^{3}, or equivalently if there is an epimorphism $\pi_{1}\left(X_{L}\right) \rightarrow F_{r}$ onto the free group on r generators, sending the oriented meridian of L_{i} to the i th generator of F_{r}.

Throughout the article we write $\Lambda:=\mathbb{Z}\left[t, t^{-1}\right]$ for the Laurent polynomial ring. Let $\phi: \mathbb{Z}^{r} \rightarrow \mathbb{Z}$ be the homomorphism that sends e_{i} to 1 for each standard basis vector e_{i} of \mathbb{Z}^{r}. Let L be an r-component link with vanishing pairwise linking numbers. Use the compositions $\pi_{1}\left(X_{L}\right) \rightarrow H_{1}\left(X_{L} ; \mathbb{Z}\right) \xrightarrow{\cong} \mathbb{Z}^{r} \xrightarrow{\phi} \mathbb{Z}$ and $\pi_{1}\left(M_{L}\right) \rightarrow H_{1}\left(M_{L} ; \mathbb{Z}\right) \xrightarrow{\cong}$

[^0]$\mathbb{Z}^{r} \xrightarrow{\phi} \mathbb{Z}$ to define the homology of X_{L} and M_{L} with Λ coefficients. Here the middle isomorphisms send each positive meridian to a different basis element e_{i}. The module $H_{1}\left(X_{L} ; \Lambda\right)$ is called the (single variable) Alexander module of L. For L a boundary link, as we show in Lemma 3.5, the Alexander module is canonically isomorphic to $H_{1}\left(M_{L} ; \Lambda\right)$. We will consider the Blanchfield pairing on $H_{1}\left(M_{L} ; \Lambda\right)$, which is technically simpler since M_{L} is a closed 3-manifold.

Definition 1.1 A \mathbb{Z}-surface for a link L is a locally flat, embedded, compact, oriented, connected surface in the 4 -ball D^{4} whose boundary coincides with L as oriented submanifolds of S^{3}. The \mathbb{Z}-genus of a link L is the minimal genus amongst all \mathbb{Z} surfaces for L and is denoted by $g_{\mathbb{Z}}(L)$. We say a link is \mathbb{Z}-weakly slice if its \mathbb{Z}-genus is zero.

We algebraically characterise the \mathbb{Z}-genus of boundary links, extending work of the first author with Lewark [9, Theorem1.1] on the knot case.

Theorem 1.2 Let L be an r-component boundary link and let M_{L} be the 0 -framed surgery on L. Then the following are equivalent.
(1) The link L bounds a \mathbb{Z}-surface of genus g.
(2) There is a size $2 g$ Hermitian square matrix $A(t)$ over Λ such that $A(1)$ has signature 0 and such that $A(t)$ presents the Blanchfield form of M_{L} on $T H_{1}\left(M_{L} ; \Lambda\right)$.
(3) There exists an embedding of the connected, oriented, genus g surface with $(r+1)$ boundary components into S^{3} such that r of the boundary components coincide with L, and the final boundary component is a knot with Alexander polynomial 1.

Theorem 1.2 shows that for boundary links, having a genus $g \mathbb{Z}$-surface implies the existence of a genus $g \mathbb{Z}$-surface given by a \mathbb{Z}-disc in D^{4} union a collection of 2-dimensional 1-handles attached along the boundary and embedded in S^{3}. It was conjectured in [8] that this is the case for all links, in other words that (1) \Leftrightarrow (3) for all links. Towards tackling this conjecture, we ask: what is the appropriate generalization of (2) that applies for all links? For example, in order to define the coefficient system on M_{L} we used that the pairwise linking numbers vanish, so the formulation of Theorem 1.2 does not apply to all links.

For the proof of Theorem $1.2,(3) \Rightarrow(1)$ is a consequence of the fact that Alexander polynomial 1 knots are \mathbb{Z}-slice [12, Theorem 11.7B]. For $(2) \Rightarrow(3)$, the proof consists of reducing the statement for links to the statement for knots by performing internal band sums. Finally, $(1) \Rightarrow(2)$ is an algebraic topology computation, involving the intersection pairing of a suitably constructed 4-manifold with boundary M_{L} and fundamental group \mathbb{Z}.

Noting that $H_{1}\left(M_{L} ; \Lambda\right) \cong H_{1}\left(X_{L} ; \Lambda\right)$ for L a boundary link, as we show in Lemma 3.5, we deduce the following corollary, which is a natural generalisation of the aforementioned result that a knot is \mathbb{Z}-slice if and only if its Alexander module is trivial.

Corollary 1.3 A boundarylink is \mathbb{Z}-weakly slice if and only if it has torsion-free Alexander module.

Fig. 1 The link L_{n}. The dashed boxes indicate $\pm n$ full twists between the bands, without introducing any internal twisting to any of the bands

1.1 Applications

We describe several applications, whose proofs will be given in Sect. 5. The first application exhibits a phenomenon for links with unknotted components. This uses the obstruction in Corollary 1.3: we compute that the Alexander modules of the links in question have nontrivial torsion submodules.

Corollary 1.4 The infinite family shown in Fig. 1 of 2-component links L_{n}, where $n \neq 0,1$, are slice links, hence weakly slice, with unknotted components, but the L_{n} are not \mathbb{Z}-weakly slice.

Proof Let $n \neq 0,1$ be an integer and let L_{n} be the link in Fig. 1. It is not too hard to check that L_{n} is a boundary link. Hence we get the following computation using the obvious Seifert surface:

$$
H_{1}\left(M_{L_{n}} ; \Lambda\right) \cong H_{1}\left(X_{L_{n}} ; \Lambda\right) \cong \Lambda \oplus \Lambda /\langle(n-1) t-n\rangle \oplus \Lambda /\langle n t-(n-1)\rangle
$$

By Corollary 1.3, it follows that L_{n} is not \mathbb{Z}-weakly slice. The fact that L_{n} is slice can be seen by performing a saddle move corresponding to a dual band to the middle band in Fig. 1.

Recall that a knot K is shake slice if the generator of second homology of the 4-manifold

$$
X_{0}(K):=D^{4} \cup_{K \times D^{2}} D^{2} \times D^{2}
$$

obtained by attaching a 2 -handle to the closed 4-ball D^{4} along K with framing zero, known as the 0 -trace of K, can be represented by a locally flat embedded 2-sphere $S \subseteq$ $X_{0}(K)$. Moreover we say that a knot is \mathbb{Z}-shake slice if in addition $\pi_{1}\left(X_{0}(K) \backslash S\right) \cong \mathbb{Z}$, generated by a meridian of S. This notion was introduced in [10].

Extending this, the \mathbb{Z}-shake genus of a knot K is the minimal genus of a surface Σ representing a generator of $H_{2}\left(X_{0}(K) ; \mathbb{Z}\right)$ with $\pi_{1}\left(X_{0}(K) \backslash \Sigma\right) \cong \mathbb{Z}$, again generated by a meridian of Σ. Theorem 1.2 enables us to characterise this quantity.

Theorem 1.5 For all knots, the \mathbb{Z}-genus equals the \mathbb{Z}-shake genus.
The case $r=1$ of Theorem 1.2, which is the main theorem of [9], describes the \mathbb{Z}-genus of a knot algebraically, so this yields an algebraic characterisation of the \mathbb{Z}-shake genus. Note that we can also define the shake genus and the slice genus of a
knot by dropping the condition on the fundamental groups. It is not known whether these two knot invariants differ in general. However, the shake genus and the slice genus do not coincide in the smooth category [21, Corollary1.2].

Given a knot K, let $K_{a, b}$ denote the (a, b)-cable of K, where a is the longitudinal winding, and let $P_{p, n}(K)$ denote the link obtained by taking $p+n$ parallel copies of K, with pairwise vanishing linking numbers, where p components have the same orientation as K and the remaining n-components have the opposite orientation. As we show in Lemma 5.2, the \mathbb{Z}-shake genus of K can be reinterpreted as the minimal genus of a connected surface in D^{4} with boundary $P_{\ell+1, \ell}(K)$, for some $\ell \geq 0$. From this point of view, the next corollary extends Theorem 1.5. We compute the \mathbb{Z}-genus for $P_{p, n}(K)$ for every pair of nonnegative integers p and n.

Corollary 1.6 Let p and n be nonnegative integers and let $w=p-n$. If $w=0$, then $P_{p, n}(K)$ is \mathbb{Z}-weakly slice, and otherwise

$$
g_{\mathbb{Z}}\left(P_{p, n}(K)\right)=g_{\mathbb{Z}}\left(K_{w, 1}\right)=g_{\mathbb{Z}}\left(K_{w,-1}\right) \leq g_{\mathbb{Z}}(K)
$$

Theorem 1.5 can be recovered from the case $w=1$ and Lemma 5.2. The fact that $g_{\mathbb{Z}}\left(K_{w, 1}\right) \leq g_{\mathbb{Z}}(K)$ follows from [11, Theorem 1.2] and [18, Theorem 4].

Recall that an r-component link is a good boundary link if there is a homomorphism $\theta: \pi_{1}\left(X_{L}\right) \rightarrow F_{r}$ sending the meridians to r generators of the free group F_{r}, such that $\operatorname{ker} \theta$ is perfect; see [13], [14], and [5] for more details. An important open question related to topological surgery for 4-manifolds is whether every good boundary link is freely slice, that is bounds a disjoint union discs in D^{4} such that the complement has free fundamental group [12, Corollary 12.3 C]. We show that at least every good boundary link bounds a planar \mathbb{Z}-surface.

Corollary 1.7 Every good boundary link is \mathbb{Z}-weakly slice.
For a given link L, we can construct a new link called the Whitehead double, denoted by $\mathrm{Wh}(L)$, by performing the untwisted Whitehead doubling operation on each component of L. Note that Whitehead doubling involves a choice of the sign for each clasp. Recall that every Whitehead double of a link with vanishing linking numbers is a good boundary link, and hence by the previous corollary is \mathbb{Z}-weakly slice.

Corollary 1.8 If $L=L_{1} \cup L_{2}$ is a 2-component link, then for any choice of Whitehead double we have

$$
g_{\mathbb{Z}}(\mathrm{Wh}(L))=\left\{\begin{array}{l}
0 \text { if } \operatorname{lk}\left(L_{1}, L_{2}\right)=0, \\
1 \text { otherwise }
\end{array}\right.
$$

Moreover, if $L=L_{1} \cup L_{2} \cup L_{3}$ is a 3-component link, then $\mathrm{Wh}(L)$ is \mathbb{Z}-weakly slice if and only if either (i) L has vanishing linking numbers, or (ii) for some i, j, k with $\{i, j, k\}=\{1,2,3\}$:
(a) the signs of the clasps of $\mathrm{Wh}\left(L_{i}\right)$ and $\mathrm{Wh}\left(L_{j}\right)$ disagree,
(b) $\operatorname{lk}\left(L_{i}, L_{j}\right)=0$, and
(c) $\left|\operatorname{lk}\left(L_{i}, L_{k}\right)\right|=\left|\operatorname{lk}\left(L_{j}, L_{k}\right)\right|$.

Let K and J be two oriented knots in S^{3} that can be separated by an embedded 2sphere. Set $I=[0,1]$. Consider an embedded band $b: I \times I \rightarrow S^{3}$ with $b(I \times I) \cap K=$ $b(I \times\{0\})$ and $b(I \times I) \cap J=b(I \times\{1\})$, where the orientations on these intervals coming from the orientations of the knots and from the intervals as a subset of the circle $\partial b(I \times I)$ agree. We obtain a new knot

$$
K \#_{b} J:=K \cup J \cup b(\{0,1\} \times I) \backslash b((0,1) \times\{0,1\})
$$

from band surgery along b, which is called the the band connected sum of K and J along b. If b is trivial, that is if there exists an embedded 2 -sphere separating K and J such that the intersection of the sphere and the image of the band is an arc, then the band connected sum yields the connected sum $K \# J$. It was proven by Miyazaki [19, Theorem1.1] that there is a ribbon concordance from $K \#_{b} J$ to $K \# J$ for any band b. In particular, $g_{\mathbb{Z}}(K \# J) \leq g_{\mathbb{Z}}\left(K \#_{b} J\right)$. This result can be thought of as follows. Given a two component split link, which is a particular kind of boundary link, the connected sum of the components minimises the \mathbb{Z}-genus among all possible internal band sums on the link. We extend this to all boundary links.

Corollary 1.9 Let L be an r-component boundary link and let K_{L}, K_{L}^{\prime} be knots, both of which are obtained by performing $r-1$ internal band sums on L. Furthermore, suppose that internal bands for K_{L} are performed disjointly from some collection of disjoint Seifert surfaces for L. Then

$$
g_{\mathbb{Z}}(L)=g_{\mathbb{Z}}\left(K_{L}\right) \leq g_{\mathbb{Z}}\left(K_{L}^{\prime}\right) .
$$

Organisation

Section 2 gives preliminaries on the Blanchfield form and Alexander duality in a disc, a useful generalisation of Alexander duality in a sphere. Section 3 proves the implications $(2) \Rightarrow(3) \Rightarrow(1)$ in Theorem 1.2. Section 4 proves that (1) implies (2). Section 5 proves the applications described in Sect. 1.1.

2 Blanchfield forms and Alexander duality

2.1 The Blanchfield form

Let M be a closed, oriented, connected 3-manifold equipped with a homomorphism $\pi_{1}(M) \rightarrow \mathbb{Z}$, giving rise to twisted homology and cohomology with coefficients in the Λ-modules $\Lambda, \mathbb{Q}(t)$, and $\mathbb{Q}(t) / \Lambda$. The Blanchfield form [4] Bl_{M} is the nonsingular, sesquilinear, Hermitian form [22] defined on the torsion submodule $T H_{1}(M ; \Lambda)$ of $H_{1}(M ; \Lambda)$.

$$
\mathrm{Bl}_{M}: T H_{1}(M ; \Lambda) \times T H_{1}(M ; \Lambda) \rightarrow \mathbb{Q}(t) / \Lambda,
$$

with adjoint $x \mapsto \mathrm{Bl}_{M}(-, x)$ given by the sequence of maps that we now describe; compare also [3]. First, we use the Poincaré duality map $\mathrm{PD}^{-1}: T H_{1}(M ; \Lambda) \xrightarrow{\cong}$ $T H^{2}(M ; \Lambda)$. The universal coefficient spectral sequence (see [15, Sects. 2.1 and 2.4]) gives rise to an exact sequence as follows, where $\overline{\text { Ext }}$ denotes that the involution on Λ determined by $t \mapsto t^{-1}$ has been used to alter the Λ-module structure:

$$
0 \rightarrow \overline{\operatorname{Ext}}_{\Lambda}^{1}\left(H_{1}(M, \Lambda), \Lambda\right) \rightarrow H^{2}(M ; \Lambda) \rightarrow \overline{\operatorname{Ext}}_{\Lambda}^{0}\left(H_{2}(M, \Lambda), \Lambda\right)
$$

Since $\overline{\operatorname{Ext}}_{\Lambda}^{0}\left(H_{2}(M, \Lambda), \Lambda\right)=\operatorname{Hom}_{\Lambda}\left(H_{2}(M, \Lambda), \Lambda\right)$ is torsion-free, we obtain a map $T H^{2}(M ; \Lambda) \rightarrow \overline{\operatorname{Exx}}_{\Lambda}^{1}\left(H_{1}(M, \Lambda), \Lambda\right)$, which we then compose with the map

$$
\overline{\operatorname{Ext}}_{\Lambda}^{1}\left(H_{1}(M, \Lambda), \Lambda\right) \rightarrow \overline{\operatorname{Ext}}_{\Lambda}^{1}\left(T H_{1}(M, \Lambda), \Lambda\right)
$$

induced by the inclusion from $T H_{1}(M ; \Lambda) \subseteq H_{1}(M ; \Lambda)$. Next, the Bockstein long exact sequence arising from the short exact sequence of coefficients $0 \rightarrow \Lambda \rightarrow$ $\mathbb{Q}(t) \rightarrow \mathbb{Q}(t) / \Lambda \rightarrow 0:$

$$
\begin{aligned}
& \longrightarrow \overline{\operatorname{Ext}}_{\Lambda}^{0}\left(T H_{1}(M ; \Lambda), \mathbb{Q}(t)\right) \longrightarrow \overline{\operatorname{Ext}}_{\Lambda}^{0}\left(T H_{1}(M ; \Lambda), \mathbb{Q}(t) / \Lambda\right) \longrightarrow \\
& \longrightarrow \overline{\operatorname{Ext}}_{\Lambda}^{1}\left(T H_{1}(M ; \Lambda), \Lambda\right) \longrightarrow \overline{\operatorname{Ext}}_{\Lambda}^{1}\left(T H_{1}(M ; \Lambda), \mathbb{Q}(t)\right) \longrightarrow
\end{aligned}
$$

has first and last terms vanishing, the first since $T H_{1}(M ; \Lambda)$ is Λ-torsion and the last since $\mathbb{Q}(t)$ is an injective Λ-module. Thus there is a map
$\overline{\operatorname{Ext}}_{\Lambda}^{1}\left(T H_{1}(M ; \Lambda), \Lambda\right) \rightarrow \overline{\operatorname{Ext}}_{\Lambda}^{0}\left(T H_{1}(M ; \Lambda), \mathbb{Q}(t) / \Lambda\right)=\operatorname{Hom}_{\Lambda}\left(T H_{1}(M ; \Lambda), \mathbb{Q}(t) / \Lambda\right)$.
The composition of these maps gives a homomorphism

$$
T H_{1}(M ; \Lambda) \rightarrow \operatorname{Hom}_{\Lambda}\left(T H_{1}(M ; \Lambda), \mathbb{Q}(t) / \Lambda\right)
$$

which as promised is the adjoint of the Blanchfield pairing.
Definition 2.1 We say that the Blanchfield pairing is presented by a Hermitian square matrix $A(t)$ over Λ of size n if it is isometric to the pairing

$$
\begin{aligned}
\ell_{A(t)}: \Lambda^{n} /\left(A(t) \Lambda^{n}\right) \times \Lambda^{n} /\left(A(t) \Lambda^{n}\right) & \rightarrow \mathbb{Q}(t) / \Lambda \\
(v, w) & \mapsto v^{T} A\left(t^{-1}\right)^{-1} \bar{w} .
\end{aligned}
$$

For an r-component link L, we write Bl_{L} for the Blanchfield form of the zero surgery 3-manifold M_{L}, defined using the homomorphism $\pi_{1}\left(M_{L}\right) \rightarrow \mathbb{Z}$ sending each oriented meridian to $1 \in \mathbb{Z}$.

2.2 Alexander duality in a disc

In this section we briefly recall a version of Alexander duality for the disc. Let X be a submanifold properly embedded in a disc D^{n}, i.e. with $\partial X \subseteq S^{n-1}$ and assume that X admits an open tubular neighbourhood νX with closure $\bar{\nu} X$.

Proposition 2.2 For every $k \in \mathbb{Z}$, we have:

$$
H_{k}\left(D^{n} \backslash \nu X\right) \cong \widetilde{H}^{n-k-1}\left(S^{n-1} \cup v X\right)
$$

Proof We have
$H_{k}\left(D^{n} \backslash \nu X\right) \cong H^{n-k}\left(D^{n} \backslash \nu X,\left(S^{n-1} \backslash \nu \partial X\right) \cup(\partial \bar{\nu} X \backslash \nu \partial X)\right) \cong H^{n-k}\left(D^{n}, S^{n-1} \cup \nu X\right)$
by the composition of Poincaré-Lefschetz duality, and excision. We consider the long exact sequence of the pair:

$$
H^{n-k-1}\left(D^{n}\right) \rightarrow H^{n-k-1}\left(S^{n-1} \cup \nu X\right) \rightarrow H^{n-k}\left(D^{n}, S^{n-1} \cup \nu X\right) \rightarrow H^{n-k}\left(D^{n}\right)
$$

Thus, $H^{n-k-1}\left(S^{n-1} \cup \nu X\right) \cong H^{n-k}\left(D^{n}, S^{n-1} \cup \nu X\right)$ unless $k=n-1, n$. For $k=n$ both the left and right hand sides in the statement of the proposition vanish: $H_{n}\left(D^{n} \backslash \nu X\right)=0=\widetilde{H}^{-1}\left(S^{n-1} \cup \nu X\right)$. In the case that $k=n-1$, we obtain a short exact sequence

$$
0 \rightarrow \mathbb{Z} \rightarrow H^{0}\left(S^{n-1} \cup v X\right) \rightarrow H^{1}\left(D^{n}, S^{n-1} \cup v X\right) \rightarrow 0
$$

so $\widetilde{H}^{0}\left(S^{n-1} \cup \vee X\right) \cong H^{1}\left(D^{n}, S^{n-1} \cup \nu X\right) \cong H_{n-1}\left(D^{n} \backslash \nu X\right)$. Therefore, we obtain our statement for Alexander duality in a disc as claimed:

$$
H_{k}\left(D^{n} \backslash \nu X\right) \cong \widetilde{H}^{n-k-1}\left(S^{n-1} \cup \nu X\right)
$$

3 (2) Implies (3) implies (1)

We prove two of the implications in Theorem 1.2 in this section. We need a purely algebraic lemma that shows up in this section and in Sect. 4.

Lemma 3.1 Let $g \geq 0$ and $r \geq 1$ be integers, and let Q be a Λ-module with a presentation

$$
\Lambda^{r-1+2 g} \xrightarrow{B(t)} \Lambda^{r-1+2 g} \rightarrow Q \rightarrow 0
$$

where $B(t)$ is a square matrix over Λ of the form

$$
B(t)=\left(\begin{array}{cc}
0_{(r-1) \times(r-1)} & 0_{(r-1) \times 2 g} \\
0_{2 g \times(r-1)} & A_{2 g \times 2 g}(t)
\end{array}\right)
$$

with $\operatorname{det}(A(t)) \neq 0$. Then the following holds.
(i) The torsion submodule of Q, denoted by $T Q$, is presented by $\Lambda^{2 g} \xrightarrow{A(t)} \Lambda^{2 g} \rightarrow$ $T Q \rightarrow 0$. In particular, ord $T Q=\operatorname{det} A(t)$.
(ii) The Λ-module Q decomposes as $T Q \oplus \Lambda^{r-1}$.

Proof Let $\left\{e_{1}, \ldots, e_{r-1+2 g}\right\}$ be the standard basis of $\Lambda^{r-1+2 g}$, and write $\left[e_{i}\right]$ for the image of e_{i} under the quotient $\Lambda^{r-1+2 g} \rightarrow Q$. Consider the subgroup

$$
T:=\left\langle\left[e_{r}\right], \ldots,\left[e_{2 g+1-1}\right]\right\rangle
$$

generated by the shown subset of the $\left[e_{i}\right]$. Each $\left[e_{i}\right]$ for $i=r, \ldots, r-1+2 g$ is $\operatorname{det}(A(t))$-torsion; in particular, T consists entirely of torsion, hence $T \subseteq T Q$. On the other hand, given the form of B, the remaining generators $\left\{\left[e_{i}\right]\right\}_{i=1}^{r-1}$ generate a free summand Λ^{r-1}, and it is straightforward to see that $Q=T Q \oplus \Lambda^{r-1}$.

We fix the following setup. Let L be an r-component boundary link and let $\left\{F_{i}\right\}_{i=1}^{r}$ be a collection of disjoint Seifert surfaces for L. Tube the surfaces $\left\{F_{i}\right\}_{i=1}^{r}$ together along $r-1$ tubes disjoint from the surfaces to obtain a connected Seifert surface F, of genus g say. Let N be a Seifert matrix for L of size $r-1+2 g$ obtained by picking a basis $\left\{\gamma_{1}, \ldots, \gamma_{r-1+2 g}\right\}$ of $H_{1}(F ; \mathbb{Z})$ of some Seifert surface for L as follows: the first $r-1$ elements are given by meridians for the tubes used in the construction of F, while the next $2 g$ elements are given by simple, oriented, closed curves disjoint from the meridians of the tubes that form a symplectic basis of the closed surface $F /\left\{L_{i}\right\}_{i=1}^{r}$ given by crushing each component of L to a distinct point. Let V denote the Seifert matrix representing the Seifert form restricted to span of the last $2 g$ basis elements. In particular, we have that $\operatorname{det}\left(V-V^{T}\right)=1$. We have that N has the form

$$
N=\left(\begin{array}{cc}
0_{(r-1) \times(r-1)} & 0_{(r-1) \times 2 g} \tag{3.2}\\
0_{2 g \times(r-1)} & V_{2 g \times 2 g}
\end{array}\right)
$$

since meridians to the tubes link themselves and all other curves trivially.
Definition 3.3 Choose a separating curve K_{L} on F, such that one of the components of $F \backslash K_{L}$ contains ∂F, while the other contains the simple closed curves representing γ_{i} for $r \leq i \leq r-1+2 g$.

We can take K_{L} to be a collection of push-offs of the components of L, banded together along the tubes used in the construction of F. Hence K_{L} is a knot obtained by performing $r-1$ internal band sums on L, where internal bands are disjoint from $\left\{F_{i}\right\}_{i=1}^{r}$. Note that by construction K_{L} has V as a Seifert matrix.

For $i=1, \ldots, r-1+2 g$, let $e_{i} \in H_{1}\left(S^{3} \backslash F ; \mathbb{Z}\right)$ be the element that is Alexander dual to $\gamma_{i} \in H_{1}(F ; \mathbb{Z})$. We also write e_{i} for $e_{i} \otimes 1 \in H_{1}\left(S^{3} \backslash F ; \mathbb{Z}\right) \otimes_{\mathbb{Z}} \Lambda \cong$ $\Lambda^{r-1+2 g}$. Recall that $\left\{e_{i}\right\}_{i=1}^{r-1+2 g}$ generates the Alexander module $H_{1}\left(X_{L} ; \Lambda\right)$; see e.g. [17, Theorem 6.5]. Also, recall that given a Λ-module T with an $n \times m$ presentation matrix $A(t)$, with $n \geq m$, the order ideal of T is defined to be the ideal of Λ generated by all $m \times m$ minors of $A(t)$. If $A(t)$ is a square matrix, then the order ideal is principal
and it is generated by $\operatorname{det}(A(t))$. In this case, $\operatorname{det}(A(t))$ is called the order of T and denoted by $\operatorname{ord}(T) \in \Lambda$. In more generality, the order of T is by definition a generator of the smallest principal ideal on Λ that contains the order ideal.

Lemma 3.4 Let L be an r-component link boundary link. Then the following holds.
(i) Let T be the Λ-torsion submodule of $H_{1}\left(X_{L} ; \Lambda\right)$. Then $H_{1}\left(X_{L} ; \Lambda\right) \cong \Lambda^{r-1} \oplus T$ and $\operatorname{ord}(T)(1)= \pm 1$.
(ii) For any choice of Seifert surface F and basis $\left\{\gamma_{i}\right\}_{i=1}^{r-1+2 g}$ as above, giving rise to an identification

$$
H_{1}\left(X_{L} ; \Lambda\right)=\Lambda^{r-1+2 g} /\left(\left(t N-N^{T}\right) \Lambda^{r-1+2 g}\right)
$$

generated by $\left\{\left[e_{i}\right]\right\}_{i=1}^{r-1+2 g}$, the torsion submodule T of $H_{1}\left(X_{L} ; \Lambda\right)$ is spanned by

$$
\left[e_{r}\right], \ldots,\left[e_{r-1+2 g}\right],
$$

and presented by $t V-V^{T}$.
Proof Identify $H_{1}\left(X_{L} ; \Lambda\right)=\Lambda^{r-1+2 g} /\left(\left(t N-N^{T}\right) \Lambda^{r-1+2 g}\right)$. Note that $t N-N^{T}$ has the form

$$
\left(\begin{array}{cc}
0_{(r-1) \times(r-1)} & 0_{(r-1) \times 2 g} \\
0_{2 g \times(r-1)} & A_{2 g \times 2 g}(t)
\end{array}\right),
$$

where $A(t)=t V-V^{T}$, by (3.2). Since $\operatorname{det}(A(1))=\operatorname{det}\left(V-V^{T}\right)=1$, Lemma 3.1 applies with $Q=H_{1}\left(X_{L} ; \Lambda\right)$. We deduce that $H_{1}\left(X_{L} ; \Lambda\right) \cong \Lambda^{r-1} \oplus T$, with $T=$ $T H_{1}\left(X_{L} ; \Lambda\right)$ spanned by $\left[e_{r}\right], \ldots,\left[e_{r-1+2 g}\right]$ and presented by $A(t)=t V-V^{T}$. Then the order of T at $t=1$ is $\operatorname{ord}(T)(1)=\operatorname{det}(A(t))(1)=\operatorname{det}(A(1))=\operatorname{det}\left(V-V^{T}\right)=$ ± 1.

Lemma 3.5 For an r-component boundary link $L, H_{1}\left(X_{L} ; \Lambda\right) \cong H_{1}\left(M_{L} ; \Lambda\right)$.
Proof The zero framed longitudes of the components of L determine elements $\left\{\ell_{1}, \ldots, \ell_{r}\right\}$ in $H_{1}\left(X_{L} ; \Lambda\right)$ since the linking numbers are zero. It follows from a straightforward Mayer-Vietoris computation that the homology of the zero surgery is the quotient $H_{1}\left(X_{L} ; \Lambda\right) /\left\langle\ell_{1}, \ldots, \ell_{r}\right\rangle$. Since the longitudes bound disjoint Seifert surfaces, they live in the second derived subgroup of $\pi_{1}\left(X_{L}\right)$, and are therefore trivial in $H_{1}\left(X_{L} ; \Lambda\right)$. It follows that $H_{1}\left(X_{L} ; \Lambda\right) \cong H_{1}\left(M_{L} ; \Lambda\right)$ as desired.

With Lemma 3.5 in mind, we will therefore be working with the Blanchfield form Bl_{L} on the closed 3-manifold M_{L}. Note that a knot K_{L} is also evidently a boundary link, so $H_{1}\left(X_{K_{L}} ; \Lambda\right) \cong H_{1}\left(M_{K_{L}} ; \Lambda\right)$ and we write $\mathrm{Bl}_{K_{L}}$ for the Blanchfield form on $M_{K_{L}}$.

Given two links L_{1} and L_{2}, we say they cobound a embedded cobordism Σ in S^{3} if there is an oriented embedded surface Σ in S^{3} with boundary a link that consist of the disjoint union of the two links L_{1} and $L_{2}^{\text {rev }}$, where $L_{2}^{\text {rev }}$ is the link obtained by reversing the orientation of each component of L_{2}.

Theorem 3.6 Let L be a boundary link.
(i) The Blanchfield form on the torsion $T H_{1}\left(M_{L} ; \Lambda\right)$ is isometric to the Blanchfield form on the Alexander module $H_{1}\left(M_{K_{L}} ; \Lambda\right)$ of K_{L} (Definition 3.3).
(ii) If there is a size $2 g$ Hermitian square matrix $A(t)$ over Λ such that $A(t)$ presents the Blanchfield form of M_{L} on $T H_{1}\left(M_{L} ; \Lambda\right)$ and $A(1)$ has signature 0 , then L cobounds an embedded cobordism in S^{3}, of genus g, with an Alexander polynomial 1 knot.

The second item proves the implication Theorem 1.2 (2) \Rightarrow (3).
Let $S \subseteq \Lambda$ denote the smallest multiplicative subset containing $t-1$. We write $\Lambda_{S}:=\mathbb{Z}\left[t, t^{-1},(t-1)^{-1}\right]$ for the ring obtained from Λ by inverting the elements in S. This is a commutative and therefore flat localisation.

Proof We prove (i) first. Define $H_{L}:=(1-t) N+\left(1-t^{-1}\right) N^{T}$ and $H_{K_{L}}:=(1-$ $t) V+\left(1-t^{-1}\right) V^{T}$. By [6, Theorem 1.1], we have an isomorphism

$$
\phi: H_{1}\left(M_{L} ; \Lambda\right) \otimes_{\Lambda} \Lambda_{S} \rightarrow \Lambda_{S}^{r-1+2 g} / H_{L}(t)^{T} \Lambda_{S}^{r-1+2 g}
$$

such that ϕ induces an isometry between $\mathrm{Bl}_{L} \otimes \Lambda_{S}$ and the linking form

$$
\lambda_{H_{L}}:=\operatorname{Tor}\left(\Lambda_{S}^{r-1+2 g} / H_{L}^{T} \Lambda_{S}^{r-1+2 g}\right) \times \operatorname{Tor}\left(\Lambda_{S}^{r-1+2 g} / H_{L}^{T} \Lambda_{S}^{r-1+2 g}\right) \rightarrow \mathbb{Q}(t) / \Lambda_{S},
$$

where

$$
\lambda_{H_{L}}([v],[w])=-\frac{1}{\Delta^{2}} v^{T} H_{L}(t) \bar{w}
$$

for $\Delta=t^{-g} \operatorname{det}\left(t V-V^{T}\right)=\Delta_{K_{L}} \in \Lambda$ the order of $T H_{1}\left(M_{L} ; \Lambda\right)$. However, by Lemma 3.4, there is an isometry between the abstract pairings $\lambda_{H_{L}}$ and $\lambda_{H_{K_{L}}}$, since both correspond to $t V-V^{T}$.

We know that $\lambda_{H_{L}}$ corresponds to the Blanchfield pairing on M_{L} over Λ_{S}. Since $\lambda_{H_{K_{L}}}$ is isometric to $\mathrm{Bl}\left(K_{L}\right) \otimes \Lambda_{S}$ (again by [6, Theorem 1.1]), we conclude that $\mathrm{Bl}_{L} \otimes \Lambda_{S}$ is isometric to $\mathrm{Bl}_{K_{L}} \otimes \Lambda_{S}$. However, by [16, Proposition 1.2] multiplication by $t-1$ induces an isomorphism on

$$
H_{1}\left(X_{K_{L}} ; \Lambda\right) \cong T H_{1}\left(M_{K_{L}} ; \Lambda\right) \cong T H_{1}\left(M_{L} ; \Lambda\right) .
$$

We therefore have that $\mathrm{Bl}_{L} \otimes \Lambda_{S}$ is isometric to $\mathrm{Bl}_{K_{L}} \otimes \Lambda_{S}$ if and only if Bl_{L} is isometric to $\mathrm{Bl}_{K_{L}}$; see e.g. [9, Proposition A.2]. So indeed Bl_{L} is isometric to $\mathrm{Bl}_{K_{L}}$, completing the proof of (i).

For (ii), we use that K_{L} is cobordant via a genus g cobordism Σ in S^{3} to an Alexander polynomial 1 knot if and only if there exists a Hermitian matrix $A(t)$ of size g, with signature of $A(1)$ zero, that presents the Blanchfield form of K_{L} [9, Theorem 1.1]. By hypothesis and (i) such a Hermitian matrix exists. Thus a genus g cobordism $\Sigma \subseteq S^{3}$ to an Alexander polynomial 1 knot. Moreover, by the classification
of compact surfaces, this cobordism may be assumed to be constructed from $K_{L} \times I$ union $2 g$ 2-dimensional 1-handle attachments to $K_{L} \times\{1\}$.

We may and shall choose Σ such that $K_{L} \times I$ induces the 0 -framing of $K_{L} \times\{0\}$, i.e. extends to a Seifert surface for K_{L}. Compare [8, Lemma 18].

Let C be the connected cobordism in S^{3} of genus 0 from L to K_{L} given by the component of $F \backslash K_{L}$ containing ∂F. By general position, we may and shall assume that the 1-handles of Σ are disjoint from C. Then, using that both $K_{L} \times I$ and C induce the 0 -framing on K_{L}, by further isotopy arrange that ($K_{L} \times I$) $\cap C=K_{L}$. Therefore, the union $C \cup_{K_{L}} \Sigma$ is the embedded cobordism we seek between L and the Alexander polynomial 1 knot.

The proof of Theorem $1.2(3) \Rightarrow(1)$ is by a standard argument; compare e.g. [7,9,24].

Proof of Theorem 1.2 (3) \Rightarrow (1) Glue together:

- The hypothesised connected cobordism C of genus g from L to an Alexander polynomial 1 knot J, pushed into $S^{3} \times I$ so that $L=C \cap\left(S^{3} \times\{0\}\right)$ and $J=$ $C \cap\left(S^{3} \times\{1\}\right)$;
- A \mathbb{Z}-disc D in D^{4} for the Alexander polynomial 1 knot J.

This yields a genus g surface $S:=C \cup_{J} D \subseteq D^{4}=\left(S^{3} \times I\right) \cup D^{4}$ with boundary L. Since C is obtained from pushing a surface in S^{3} into $S^{3} \times I$, we may assume that it is obtained from J by band moves. Hence the exterior of C can be built from $S^{3} \backslash \nu J$ by attaching 4-dimensional 2-handles to $\left(S^{3} \backslash \nu J\right) \times I$. Hence $\pi_{1}\left(S^{3} \backslash \nu J\right) \rightarrow$ $\pi_{1}\left(S^{3} \times I \backslash \nu C\right)$ is surjective. Since $\pi_{1}\left(D^{4} \backslash \nu D\right) \cong \mathbb{Z}$ and $\pi_{1}\left(S^{3} \backslash \nu J\right)$ are both normally generated by the meridian of J, it follows from the Seifert-Van Kampen theorem that $\pi_{1}\left(D^{4} \backslash \nu S\right) \cong \mathbb{Z}$, so that S is the desired \mathbb{Z}-surface of genus g for L.

4 (1) Implies (2)

Let L be an ordered, oriented, r-component link. Write $X_{L}:=S^{3} \backslash \nu L$ for the exterior of the link. As above, we use the representation $\pi_{1}\left(X_{L}\right) \rightarrow \mathbb{Z}$ defined by $\phi: \pi_{1}\left(X_{L}\right) \rightarrow H_{1}\left(X_{L} ; \mathbb{Z}\right) \cong \mathbb{Z}^{r} \rightarrow \mathbb{Z}$ given by concatenating the abelianisation homomorphism, the identification with \mathbb{Z}^{r} given by sending the i th ordered, oriented meridian to e_{i}, and the map $\sum_{i=1}^{r} a_{i} e_{i} \mapsto \sum_{i=1}^{r} a_{i}$. This is sometimes called the total linking number representation [15, Sect. 2.5]. Note that this representation is independent of the ordering of L, so it is well-defined for unordered links. In this section we show that (1) implies (2) in Theorem 1.2. As always, we identify Λ with $\mathbb{Z}[\mathbb{Z}]$.

We will prove this implication for a slight generalisation of boundary links, in order to make clear precisely which properties we are using in the proof. Note that all the links we consider will in particular have pairwise linking numbers vanishing, so that the coefficient system ϕ extends to the zero-surgery manifold M_{L}.

Definition 4.1 We say that an r-component $\operatorname{link} L$ in S^{3} with pairwise linking numbers zero has a \mathbb{Z}-trivial surface system if there is a collection of Seifert surfaces $\left\{F_{i}\right\}_{i=1}^{r-1}$
for all but one of the components of L, each of whose interiors is embedded in $S^{3} \backslash L$ (the surfaces may intersect one another), such that for every i, for every simple closed curve γ on F_{i}, and for every basing of γ, we have that $\phi(\gamma)=0 \in \mathbb{Z}$. We refer to a link that admits a \mathbb{Z}-trivial system of surfaces as a $\mathbb{Z} T S$ link.

Lemma 4.2 Every boundary link is a $\mathbb{Z} T S$ link.

Proof Curves in the interior of a boundary link Seifert surface are trivial in $H_{1}\left(S^{3} \backslash\right.$ $L ; \mathbb{Z})$.

We will prove the following result in this section, which combined with Lemma 4.2 implies that (1) implies (2) in Theorem 1.2.

Theorem 4.3 Let L be an r-component \mathbb{Z} TS link that bounds a connected \mathbb{Z}-surface of genus g in D^{4}. Let M_{L} be the 0 -framed surgery on L. Then

$$
H_{1}\left(M_{L} ; \Lambda\right) \cong \Lambda^{r-1} \oplus T H_{1}\left(M_{L} ; \Lambda\right)
$$

and $\operatorname{ord}\left(T H_{1}\left(M_{L} ; \Lambda\right)\right)(1) \doteq 1$. Moreover there is a size $2 g$ Hermitian square matrix $A(t)$ over Λ such that $A(t)$ presents the Blanchfield form of M_{L} on $T H_{1}\left(M_{L} ; \Lambda\right)$ and $A(1)$ has signature 0 .

Let $P \subseteq D^{4}$ be the hypothesised connected, compact, oriented surface, locally flat embedded into D^{4}. We note the following about the homology of $D^{4} \backslash \nu P$.

Lemma 4.4 The nonvanishing homology groups of $D^{4} \backslash \nu P$ are as follows.

$$
H_{i}\left(D^{4} \backslash \nu P ; \mathbb{Z}\right) \cong \begin{cases}\mathbb{Z} & i=0,1 \\ \mathbb{Z}^{2 g+r-1} & i=2\end{cases}
$$

Proof This follows from Alexander duality in a disc, Proposition 2.2, with $X=P$ and $n=4$.

Remark 4.5 We shall not assume that $\pi_{1}\left(D^{4} \backslash \nu P\right) \cong \mathbb{Z}$. Instead we will assume $H_{1}\left(D^{4} \backslash \nu P ; \Lambda\right)=0$, or equivalently that $\pi_{1}\left(D^{4} \backslash \nu P\right)$ has perfect commutator subgroup. Similar remarks apply to the manifold W_{P} constructed below. This generalisation will be useful later in the proof of Lemma 5.2, and helps to clarify the proof.

As in Remark 4.5, we assume that there is a short exact sequence $1 \rightarrow \Gamma \rightarrow$ $\pi_{1}\left(D^{4} \backslash \nu P\right) \rightarrow \mathbb{Z} \rightarrow 0$ with the surjection equal to the abelianisation, with the commutator subgroup Γ a perfect group. This implies that $\pi_{1}\left(D^{4} \backslash \nu P\right) \cong \mathbb{Z} \ltimes \Gamma$, with the \mathbb{Z} action determined by conjugation, and it implies that $H_{1}\left(D^{4} \backslash v P ; \Lambda\right)=0$. Here we use the abelianisation $\pi_{1}\left(D^{4} \backslash \nu P\right) \rightarrow \mathbb{Z}$ to extend the Λ coefficient system.

Towards understanding the twisted homology, we start with the following general computation.

Lemma 4.6 Let W be a compact, connected, oriented, topological 4-manifold with $\pi_{1}(W) \cong \mathbb{Z}$, and suppose that ∂W is nonempty, connected, oriented, and that $\pi_{1}(\partial W) \rightarrow \pi_{1}(W)$ is onto. Then

$$
H_{i}(W ; \Lambda) \cong \begin{cases}\mathbb{Z} & i=0 \\ \Lambda^{\beta_{2}(W)} & i=2 \\ 0 & \text { otherwise. }\end{cases}
$$

The same holds if instead of $\pi_{1}(W) \cong \mathbb{Z}$ we assume $H_{1}(W ; \Lambda)=0$.
Proof Note that $H_{i}(W ; \Lambda) \cong H_{i}(\widetilde{W} ; \mathbb{Z})$ for all i, where \widetilde{W} is the universal cover. Since W is connected we have that $H_{0}(\widetilde{W} ; \mathbb{Z}) \cong \mathbb{Z}$ and $H_{1}(\widetilde{W} ; \mathbb{Z})=0$. Next we show that $H_{2}(W ; \Lambda)$ is free. $H_{2}(W ; \Lambda) \cong H^{2}(W, \partial W ; \Lambda)$ by Poincaré-Lefschetz duality. The universal coefficient spectral sequence (UCSS) computing cohomology in terms of homology has E_{2}-page

$$
E_{2}^{p, q}=\operatorname{Ext}_{\Lambda}^{q}\left(H_{p}(W, \partial W ; \Lambda), \Lambda\right)
$$

and converges to the cohomology $H^{*}(W, \partial W ; \Lambda)$. Since ∂W is connected and $\pi_{1}(\partial W) \rightarrow \pi_{1}(W)$ is onto, it follows that $H_{0}(\partial W ; \Lambda) \cong \mathbb{Z}$. Therefore the long exact sequence of the pair

$$
\begin{aligned}
& 0=H_{1}(W ; \Lambda) \rightarrow H_{1}(W, \partial W ; \Lambda) \\
& \rightarrow H_{0}(\partial W ; \Lambda) \cong \mathbb{Z} \xlongequal{\cong} H_{0}(W ; \Lambda) \cong \mathbb{Z} \rightarrow H_{0}(W, \partial W ; \Lambda) \rightarrow 0
\end{aligned}
$$

implies that $H_{i}(W, \partial W ; \Lambda)=0$ for $i=0,1$. It follows that the $p=0$ and $p=1$ columns of the E_{2} page of the UCSS vanish, and thus the remaining nonzero term $\operatorname{Ext}_{\Lambda}^{0}\left(H_{2}(W, \partial W ; \Lambda), \Lambda\right)$ on the 2-line equals $H^{2}(W, \partial W ; \Lambda)$. Note that the vanishing of the $p=0,1$ columns also precludes the possibility of any differentials influencing this outcome. By [1, Lemma 2.1], $\operatorname{Ext}_{\Lambda}^{0}(H, \Lambda)$ is a free Λ-module for every Λ-module H. So $H_{2}(W ; \Lambda)$ is a free Λ-module as claimed. We will compute its rank later.

Now $H_{3}(W ; \Lambda) \cong H^{1}(W, \partial W ; \Lambda)$. Again $H_{i}(W, \partial W ; \Lambda)=0$ for $i=0$, 1 , fed into the UCSS, implies that $H^{1}(W, \partial W ; \Lambda)=0$.

To complete the computation of the homology it remains to compute the rank of $H_{2}(W ; \Lambda)$, in other words the dimension of $H_{2}(W ; \Lambda) \otimes_{\Lambda} \mathbb{Q}(t) \cong H_{2}(W ; \mathbb{Q}(t))$. First we show that this equals the Euler characteristic $\chi(W)$. We used above that $\mathbb{Q}(t)$ is flat as a Λ-module. This also implies that $H_{i}(W ; \mathbb{Q}(t)) \cong H_{i}(W ; \Lambda) \otimes_{\Lambda} \mathbb{Q}(t)=0$ for $i \neq 2$. Therefore $\chi(W)=\operatorname{dim} H_{2}(W ; \mathbb{Q}(t))$, and so the rank of $H_{2}(W ; \Lambda)$ equals $\chi(W)$ as asserted.

It remains to compute the Euler characteristic of W by computing its rational homology. First $H_{0}(W ; \mathbb{Q}) \cong \mathbb{Q} \cong H_{1}(W ; \mathbb{Q})$. We have $H_{3}(W ; \mathbb{Q}) \cong H^{1}(W, \partial W ; \mathbb{Q}) \cong$
$H_{1}(W, \partial W ; \mathbb{Q})$ by Poincaré-Lefschetz and universal coefficients. Then the long exact sequence:
$H_{1}(\partial W ; \mathbb{Q}) \rightarrow H_{1}(W ; \mathbb{Q}) \cong \mathbb{Q} \rightarrow H_{1}(W, \partial W ; \mathbb{Q}) \rightarrow H_{0}(\partial W ; \mathbb{Q}) \cong \mathbb{Q} \xlongequal{\cong} H_{0}(W ; \mathbb{Q}) \cong \mathbb{Q}$
implies that $H_{1}(W, \partial W ; \mathbb{Q})=0$. It follows that

$$
\chi(W)=\beta_{2}(W)-\beta_{1}(W)+\beta_{0}(W)=\beta_{2}(W)-1+1=\beta_{2}(W) .
$$

So in fact the rank of $H_{2}(W ; \Lambda)$ is $\beta_{2}(W)$. This completes the proof of the lemma.
Let $F:=P \cup_{\partial P} \bigcup_{i=1}^{r} D^{2}$, a closed surface of genus g. Let G be a handlebody with $\partial G=F$. Define

$$
W_{P}:=D^{4} \backslash \nu P \cup_{P \times S^{1}}\left(G \times S^{1}\right)
$$

For this gluing we must choose a suitable diffeomorphism of $P \times S^{1} \subseteq F \times S^{1}$ relative to the boundary of P. There are self-diffeomorphisms of $P \times S^{1}$ corresponding to changes in framing for the trivial bundle $\nu P \cong P \times D^{2}$. We choose the framing to satisfy that curves of the form $\gamma_{k} \times\{\mathrm{pt}\}$, where $\gamma_{k} \subseteq P$ is a simple closed curve, lie in the commutator subgroup of $\pi_{1}\left(D^{4} \backslash \nu P\right)$, and use this for our gluing. In the case that $\pi_{1}\left(D^{4} \backslash \nu P\right) \cong \mathbb{Z}$, this means that the curves $\gamma_{k} \times\{\mathrm{pt}\}$ are null-homotopic in $D^{4} \backslash \nu P$. Note that $\partial W_{P}=M_{L}$, the zero surgery on L. Note that there are further choices in the gluing, for example we can compose a given gluing map with $g \times \mathrm{Id}_{S^{1}}$, where g is a rel. boundary self-diffeomorphism of P. But all such gluing maps are suitable for our purposes: we make one such choice and so from now on fix the manifold W_{P}.
Construction 4.7 We construct a collection of surfaces in $D^{4} \backslash \nu P$. Let $\left\{\gamma_{k}\right\}_{k=1}^{r-1+2 g}$ be a basis for $H_{1}(P ; \mathbb{Z})$, consisting of $r-1$ curves parallel to $r-1$ of the components of L, and a symplectic collection of $2 g$ curves disjoint from those. Consider their pushoffs $\left\{\gamma_{k} \times\{\mathrm{pt}\}\right\}_{k=1}^{r-1+2 g}$ in $P \times S^{1}$. Each γ_{k} lies in the (perfect) commutator subgroup of $\pi_{1}\left(D^{4} \backslash \nu P\right)$ by our choice of framing of the normal bundle of P made above. For each k let $D_{k} \rightarrow D^{4} \backslash \nu P$ be an immersed \mathbb{Z}-trivial surface with boundary $\gamma_{k} \times\{\mathrm{pt}\}$. That is the induced map $\pi_{1}\left(D_{k}\right) \rightarrow \pi_{1}\left(D^{4} \backslash \nu P\right) \xrightarrow{\phi} \mathbb{Z}$ is the trivial homomorphism. Use D_{k} to surger the torus $\gamma_{k} \times S^{1}$ to an immersed surface, that we call \sum_{k}.

Recall that we write $\Lambda_{S}:=\mathbb{Z}\left[t, t^{-1},(t-1)^{-1}\right]$.
Lemma 4.8 The nonvanishing homology groups of $D^{4} \backslash \nu P$ are as follows.

$$
H_{i}\left(D^{4} \backslash \nu P ; \Lambda\right) \cong \begin{cases}\mathbb{Z} & i=0 \\ \Lambda^{2 g+r-1} & i=2\end{cases}
$$

A basis for $H_{2}\left(D^{4} \backslash \nu P ; \Lambda_{S}\right)$ is given by the collection of immersed surfaces $\left\{\sum_{k}\right\}_{k=1}^{r-1+2 g}$.

Proof By Lemma 4.4, $\beta_{2}\left(D^{4} \backslash \nu P\right)=r-1+2 g$. The computation of the homology groups with Λ coefficients then follows from Lemma 4.6, noting that $W=D^{4} \backslash v P$ indeed satisfies the hypotheses of that lemma.

We show that the $\left\{\sum_{k}\right\}$ are a basis over Λ_{S}. To do this we consider the exact sequence

$$
\begin{align*}
& H_{2}\left(P \times S^{1} ; \Lambda\right) \rightarrow H_{2}\left(D^{4} \backslash \nu P ; \Lambda\right) \\
& \rightarrow H_{2}\left(D^{4} \backslash \nu P, P \times S^{1} ; \Lambda\right) \rightarrow H_{1}\left(P \times S^{1} ; \Lambda\right) \rightarrow 0 \tag{4.9}
\end{align*}
$$

We know that

$$
H_{i}\left(P \times S^{1} ; \Lambda\right) \cong H_{i}(P \times \mathbb{R} ; \mathbb{Z}) \cong H_{i}(P ; \mathbb{Z})
$$

for $i=1$, 2. For $i=1$ we therefore have $H_{i}\left(P \times S^{1} ; \Lambda\right) \cong \mathbb{Z}^{r-1+2 g}$ generated by the $\left\{\gamma_{k} \times\{\mathrm{pt}\}\right\}_{k=1}^{r-1+2 g}$, while for $i=2$ we have $H_{2}\left(P \times S^{1} ; \Lambda\right) \cong H_{2}(P ; \mathbb{Z})=0$. Therefore $H_{i}\left(P \times S^{1} ; \Lambda_{S}\right)=0$ for $i=1,2$, so over Λ_{S}

$$
\begin{equation*}
H_{2}\left(D^{4} \backslash \nu P ; \Lambda_{S}\right) \stackrel{\cong}{\rightrightarrows} H_{2}\left(D^{4} \backslash \nu P, P \times S^{1} ; \Lambda_{S}\right) \tag{4.10}
\end{equation*}
$$

is an isomorphism.
Since $H_{2}\left(D^{4} \backslash \nu P ; \Lambda\right) \cong \Lambda^{r-1+2 g}$ it follows that $H_{2}\left(D^{4} \backslash \nu P, P \times S^{1} ; \Lambda_{S}\right) \cong$ $\Lambda_{S}^{r-1+2 g}$. We claim the following.

Claim We have that $H_{2}\left(D^{4} \backslash \nu P, P \times S^{1} ; \Lambda\right) \cong \Lambda^{r-1+2 g}$ is a free module of the same rank as $H_{2}\left(D^{4} \backslash \nu P ; \Lambda\right)$.

To see this note that $H_{2}\left(D^{4} \backslash \nu P, P \times S^{1} ; \Lambda\right) \cong H^{2}\left(D^{4} \backslash \nu P, S^{3} \backslash \nu L ; \Lambda\right)$. Now

$$
H_{0}\left(S^{3} \backslash \nu L ; \Lambda\right) \cong \mathbb{Z} \xrightarrow{\cong} H_{0}\left(D^{4} \backslash \nu L ; \Lambda\right) \cong \mathbb{Z}
$$

is an isomorphism. Combined with $H_{1}\left(D^{4} \backslash v P ; \Lambda\right)=0$ and the long exact sequence of the pair we deduce that $H_{i}\left(D^{4} \backslash v P, S^{3} \backslash v L ; \Lambda\right)=0$ for $i=0,1$. Then similarly to the proof of Lemma 4.6, the UCSS and [1, Lemma 2.1] imply that $H_{2}\left(D^{4} \backslash \nu P, P \times S^{1} ; \Lambda\right)$ is a free module. The rank must be $r-1+2 g$ since we know that this is the rank over Λ_{S}, so indeed $H_{2}\left(D^{4} \backslash \nu P, P \times S^{1} ; \Lambda\right) \cong \Lambda^{r-1+2 g}$ as claimed.

We have now seen that the exact sequence (4.9) is equivalent to

$$
0 \rightarrow \Lambda^{r-1+2 g} \rightarrow \Lambda^{r-1+2 g} \rightarrow \mathbb{Z}^{r-1+2 g} \rightarrow 0
$$

Here we consider \mathbb{Z} as a Λ-module where t acts as the identity. Representing generators of $\mathbb{Z}^{r-1+2 g}$ by curves $\gamma_{k} \times\{\mathrm{pt}\}$ in $P \times S^{1}$, we can lift them to a basis of $\Lambda^{2 g+1-r}$, by extending them to elements of $H_{2}\left(D^{4} \backslash \nu P, P \times S^{1} ; \Lambda\right)$. That is, choose a \mathbb{Z}-trivial surface $D_{k} \uparrow D^{4} \backslash \nu P$ with boundary $\gamma_{k} \times\{\mathrm{pt}\}$, for each $k=1, \ldots, 2 g+1-r$, as in Construction 4.7.

The surfaces \sum_{k} from Construction 4.7 satisfy $\left[\sum_{k}\right]=(t-1) \cdot\left[D_{k}\right] \in H_{2}\left(D^{4} \backslash\right.$ $\left.\nu P, P \times S^{1} ; \Lambda\right)$. Therefore the $\left\{\sum_{k}\right\}$ also represent a basis for $H_{2}\left(D^{4} \backslash \nu P, P \times S^{1} ; \Lambda\right)$
over Λ_{S}. Since the $\left\{\sum_{k}\right\}$ are closed surfaces they lift to $H_{2}\left(D^{4} \backslash v P ; \Lambda_{S}\right)$. Then by (4.10) it follows that the $\left\{\sum_{k}\right\}$ also represent a basis for $H_{2}\left(D^{4} \backslash v P ; \Lambda_{S}\right) \cong \Lambda_{S}^{r-1+2 g}$. Recall that $W_{P}:=D^{4} \backslash \nu P \cup_{P \times S^{1}}\left(G \times S^{1}\right)$.
Lemma 4.11 The inclusion induced map $H_{i}\left(D^{4} \backslash \nu P ; \Lambda_{S}\right) \rightarrow H_{i}\left(W_{P} ; \Lambda_{S}\right)$ is an isomorphism for every i. The nonvanishing homology groups of W_{P} are as follows.

$$
H_{i}\left(W_{P} ; \Lambda\right) \cong \begin{cases}\mathbb{Z} & i=0 \\ \Lambda^{2 g+r-1} & i=2\end{cases}
$$

Over Λ_{S}, a basis for $H_{2}\left(W_{P} ; \Lambda_{S}\right)$ is given by the collection of immersed surfaces $\left\{\sum_{k}\right\}_{k=1}^{r-1+2 g}$.

Proof Lemma 4.6 tells us the homology of W_{P} with Λ coefficients, except for the rank of $H_{2}\left(W_{P} ; \Lambda\right)$. For $Q \in\{P, G\}$ we have $H_{i}\left(Q \times S^{1} ; \Lambda\right) \cong H_{i}(Q \times \mathbb{R} ; \mathbb{Z}) \cong H_{i}(Q ; \mathbb{Z})$ for every i. Therefore $H_{i}\left(Q \times S^{1} ; \Lambda\right)$ is annihilated by $t-1$ and so

$$
H_{i}\left(Q \times S^{1} ; \Lambda_{S}\right) \cong H_{i}\left(Q \times S^{1} ; \Lambda\right) \otimes_{\Lambda} \Lambda_{S}=0
$$

It then follows from the Mayer-Vietoris sequence for homology with Λ_{S} coefficients, using the decomposition $W_{P}:=D^{4} \backslash \nu P \cup_{P \times S^{1}}\left(G \times S^{1}\right)$, that $H_{i}\left(D^{4} \backslash\right.$ $\left.\nu P ; \Lambda_{S}\right) \xrightarrow{\cong} H_{i}\left(W_{P} ; \Lambda_{S}\right)$ is an isomorphism for all i. In particular this implies that $H_{2}\left(W_{P} ; \Lambda_{S}\right) \cong H_{2}\left(D^{4} \backslash \nu P ; \Lambda_{S}\right) \cong \Lambda_{S}^{r-1+2 g}$, so indeed $H_{2}\left(W_{P} ; \Lambda\right) \cong \Lambda^{r-1+2 g}$ as claimed. The fact that the inclusion induced map is an isomorphism over Λ_{S} implies that the same immersed surfaces $\left\{\sum_{k}\right\}_{k=1}^{r-1+2 g}$ for $H_{2}\left(D^{4} \backslash \nu P ; \Lambda\right)$ in Construction 4.7 and Lemma 4.8 also represent a basis for $H_{2}\left(W_{P} ; \Lambda_{S}\right)=H_{2}\left(W_{P} ; \Lambda\right) \otimes_{\Lambda} \Lambda_{S}$.

Construction 4.12 We use a \mathbb{Z}-trivial surface system (Definition 4.1) to modify the \sum_{k} for $k=1, \ldots, r-1$. We may suppose that there is a collar $S^{3} \times I \subseteq D^{4}$ and that $P \cap\left(S^{3} \times I\right)=L \times I$. For $j=1, \ldots, r-1$, we consider $\gamma_{j}:=L \times\{j / r\} \subseteq L \times I \subseteq P$. Push the Seifert surface F_{j} for the j th component of L to the level $S^{3} \times\{j / r\}$. Now use F_{j} in place of the immersed surface D_{j} in Construction 4.7 to surger $\gamma_{j} \times S^{1}$ to another embedded surface $\sum_{F_{j}}$. Since F_{j} is part of a \mathbb{Z}-trivial surface system, the embedded surface $\sum_{F_{j}}$ has the property that every curve on it represents the trivial element of $\pi_{1}\left(W_{P}\right) \cong \mathbb{Z}$. Therefore $\sum_{F_{j}}$ represents a homology class in $H_{2}\left(W_{P} ; \Lambda\right)$. Note that this is a special case of the surfaces from Construction 4.7.

By using these surfaces that originate from surfaces in S^{3}, we obtain some crucial control on intersections. For $j \neq k$, we have $\sum_{F_{j}} \cap \sum_{F_{k}}=\emptyset$. Moreover, in the construction of the rest of the surfaces \sum_{k}, for $k=r, \ldots, r-1+2 g$, as in Construction 4.7, we may assume without loss of generality that the surfaces D_{k} are disjoint from the collar $S^{3} \times I$. It follows that $\sum_{F_{j}} \cap \sum_{k}=\emptyset$ for every $j \in\{1, \ldots, r-1\}$ and for every $k \in\{r, \ldots, r-1+2 g\}$.

Lemma $4.13 \lambda\left(\sum_{F_{i}}, \sum_{F_{i}}\right)=0$.

Proof The torus in the construction of $\sum_{F_{i}}$ can be pushed off itself. Since the F_{i} induce the zero framing, this can be extended to two disjoint parallel copies of F_{i} in $S^{3} \times\{i / r\}$.

Now we use these surfaces to compute the intersection form.
Lemma 4.14 The intersection form $\lambda: H_{2}\left(W_{P} ; \Lambda\right) \times H_{2}\left(W_{P} ; \Lambda\right) \rightarrow \Lambda$ can be represented by a matrix of the form

$$
\left(\begin{array}{cc}
0_{(r-1) \times(r-1)} & 0_{(r-1) \times 2 g} \\
0_{2 g \times(r-1)} & A_{2 g \times 2 g}(t)
\end{array}\right)
$$

for some matrix $A(t)$ over Λ such that $A(1)$ has signature 0 and $\operatorname{det}(A(1)) \neq 0$.

Proof Let

$$
\mathcal{S}:=\left\{\Sigma_{F_{i}}\right\}_{i=1}^{r-1} \cup\left\{\Sigma_{j}\right\}_{j=1}^{2 g} .
$$

Let $\left\{e_{i}\right\}_{i=1}^{r-1+2 g}$ be a basis for the homology $H_{2}\left(W_{P} ; \Lambda\right) \cong \Lambda^{r-1+2 g}$, and suppose that, for integers y_{i}, we have that $(t-1)^{y_{i}} e_{i}=\sum_{F_{i}}$ for $i=1, \ldots, r-1$, and that $(t-1)^{y_{i}} e_{i}=\sum_{i}$ for $i=r, \ldots, r-1+2 g$. We may make this supposition since we know that \mathcal{S} represents a basis for $H_{2}\left(W_{P} ; \Lambda_{S}\right) \cong H_{2}\left(W_{P} ; \Lambda\right) \otimes_{\Lambda} \Lambda_{S}$.

Since for every $i \in\{1, \ldots, r-1\}$, we have that $\sum_{F_{i}}$ is disjoint from all the other surfaces in \mathcal{S}, it follows that for $i=1, \ldots, r-1$ and for every $j \in\{1, \ldots, r-1+2 g\}$ we have

$$
\begin{aligned}
0 & =\lambda\left((t-1)^{y_{i}} e_{i},(t-1)^{y_{j}} e_{j}\right)=(t-1)^{y_{i}} \lambda\left(e_{i}, e_{j}\right)\left(t^{-1}-1\right)^{y_{j}} \\
& =(t-1)^{y_{i}} \lambda\left(e_{i}, e_{j}\right)(-t)^{-y_{j}}(t-1)^{y_{j}}=(-t)^{-y_{j}}(t-1)^{y_{i}+y_{j}} \lambda\left(e_{i}, e_{j}\right) .
\end{aligned}
$$

Since Λ is an integral domain, it follows that $\lambda\left(e_{i}, e_{j}\right)=0$. The matrix representing λ is therefore of the form claimed.

To see that the matrix $A(1)$ has nonzero determinant, we consider the long exact sequence

$$
H_{2}\left(W_{P} ; \mathbb{Q}\right) \rightarrow H_{2}\left(W_{P}, M_{L} ; \mathbb{Q}\right) \rightarrow H_{1}\left(M_{L} ; \mathbb{Q}\right) \rightarrow H_{1}\left(W_{P} ; \mathbb{Q}\right)
$$

which reduces to

$$
\mathbb{Q}^{r-1+2 g} \xrightarrow{\lambda_{\mathbb{Q}}} \mathbb{Q}^{r-1+2 g} \rightarrow \mathbb{Q}^{r} \rightarrow \mathbb{Q} \rightarrow 0 .
$$

The map $\lambda_{\mathbb{Q}}$ can be represented by a matrix for the ordinary \mathbb{Q}-valued intersection form of W_{P}, which can in turn be represented by

$$
\left(\begin{array}{cc}
0 & 0 \\
0 & A(1)
\end{array}\right),
$$

because the basis \mathcal{S} descends to a basis for $H_{2}\left(W_{P} ; \mathbb{Q}\right) \cong H_{2}\left(W_{P} ; \Lambda\right) \otimes_{\Lambda} \mathbb{Q}$, where this isomorphism follows from the UCSS for homology. Since $\operatorname{ker}\left(\mathbb{Q}^{r} \rightarrow \mathbb{Q}\right) \cong \mathbb{Q}^{r-1}$, it follows by exactness that $A(1)$ is nonsingular over \mathbb{Q} and so $\operatorname{det}(A(1)) \neq 0$.

Finally, it was shown in [20, Proof of Lemma 5.4] that the signature of the intersection form of W_{P} is zero for links whose pairwise linking numbers are all zero. The proof there was for a pushed in Seifert surface, but the part that computes the ordinary signature works for any \mathbb{Z}-surface.

Lemma 4.16 below completes the proof of Theorem $1.2(1) \Rightarrow(2)$, which was the last remaining implication we needed to prove. It uses the following result.

Theorem 4.15 Let L be a boundary link. The intersection form of a compact, connected, oriented 4-manifold W with $\partial W \cong M_{L}$, and the inclusion induced map $\phi: \pi_{1}(\partial W) \rightarrow \pi_{1}(W) \cong \mathbb{Z}$ onto, presents the Blanchfield form on the torsion part $T H_{1}\left(M_{L} ; \Lambda_{S}\right)$, where the Λ coefficients are determined by ϕ.

Proof Most proofs of variants of this, such as in [2], assume that $H_{1}(\partial W ; \Lambda)$ is Λ torsion. However Conway [6] works with link exteriors, and shows how to compute the Blanchfield pairing on $H_{1}\left(X_{L} ; \Lambda_{S}\right)$ in terms of a totally connected C-complex, by computing the intersection pairing of the complement W of the C-complex pushed in to D^{4}, and relating the homology of ∂W to the homology of X_{L}. But we have $H_{1}\left(X_{L} ; \Lambda_{S}\right) \cong H_{1}\left(M_{L} ; \Lambda_{S}\right)$ by Lemma 3.5 . In the proof, the only property that Conway uses of the complement W of the totally connected C-complex is that $H_{1}(W ; \Lambda)=0$, and $\pi_{1}(\partial W) \rightarrow \pi_{1}(W) \cong \mathbb{Z}$ is onto. So in fact his proof also proves the statement we want, for a more general 4-manifold with boundary M_{L}.

Lemma 4.16 The rank of $H_{1}\left(M_{L} ; \Lambda\right)$ is $r-1$, and the Blanchfield form on $T H_{1}\left(M_{L} ; \Lambda\right)$ is presented by the Hermitian matrix $A(t)$, which is of size $2 g$ and has $\sigma(A(1))=0$.

Proof By Lemmas 4.14 and 3.1, we deduce that $H_{1}\left(M_{L} ; \Lambda\right) \cong \Lambda^{r-1} \oplus T H_{1}\left(M_{L} ; \Lambda\right)$, where $T H_{1}\left(M_{L} ; \Lambda\right)$ satisfies ord $T H_{1}\left(M_{L} ; \Lambda\right)(1)= \pm 1$ and is presented by $A(t)$, where

$$
\left(\begin{array}{cc}
0_{(r-1) \times(r-1)} & 0_{(r-1) \times 2 g} \\
0_{2 g \times(r-1)} & A_{2 g \times 2 g}(t)
\end{array}\right)
$$

represents the intersection form over Λ of the compact, oriented 4-manifold W_{P}, whose boundary is M_{L} and with $\pi_{1}\left(W_{P}\right) \cong \mathbb{Z}$ and $\pi_{1}\left(M_{L}\right) \rightarrow \pi_{1}\left(W_{P}\right)$ onto. It therefore follows from Theorem 4.15 that $A(t)$, which is of size $2 g$, presents the Blanchfield form on $T H_{1}\left(M_{L} ; \Lambda_{S}\right)$. By Lemma 3.5, $T H_{1}\left(M_{L} ; \Lambda\right) \cong T H_{1}\left(X_{L} ; \Lambda\right)$, and by Lemma 3.4 we know that ord $T H_{1}\left(X_{L} ; \Lambda\right)(1)= \pm 1$. Therefore ord $T H_{1}\left(M_{L} ; \Lambda\right)(1)= \pm 1$. As in the proof of Theorem 3.6, this implies that multiplication by $t-1$ induces an isomorphism on $T H_{1}\left(M_{L} ; \Lambda\right)$, so in fact $A(t)$ computes the Blanchfield form over Λ as well.

5 Applications

In this section we prove the applications stated in the introduction. First we recall the notion of the algebraic genus of a knot, and present a corollary to Theorem 1.2 about it.

The algebraic genus of a knot K, denoted by $g_{\text {alg }}(K)$, is defined by

$$
g_{\text {alg }}(K):=\min \left\{\begin{array}{l|l}
m-n & \begin{array}{l}
\mathrm{K} \text { admits an } 2 m \times 2 m \text { Seifert matrix of the form }\binom{A *}{* *}, \\
\text { whereAis a } 2 n \times 2 n \text { submatrix with } \operatorname{det}\left(t A-A^{T}\right)=t^{n}
\end{array}
\end{array}\right\}
$$

It was proven in [9, Corollary 1.5] that $g_{\mathbb{Z}}(K)=g_{\text {alg }}(K)$, and moreover [9, Theorem 1.1] that $g_{\text {alg }}(K)$ is equal to the minimal g for which the Blanchfield pairing of K can be presented by a size $2 g$ Hermitian matrix $A(t)$ over Λ with the signature of $A(1)$ zero. Using the above terminology, we can prove Corollary 1.9. We restate the corollary.

Corollary 5.1 Let L be an r-component boundary link and let K_{L}, K_{L}^{\prime} be knots, both of which are obtained by performing $r-1$ internal band sums on L. Furthermore, suppose that internal bands for K_{L} are performed disjoint from some collection of disjoint Seifert surfaces for L. Then

$$
g_{\mathbb{Z}}(L)=g_{\mathbb{Z}}\left(K_{L}\right) \leq g_{\mathbb{Z}}\left(K_{L}^{\prime}\right)
$$

Proof As in the proof of Theorem $1.2(3) \Rightarrow(1)$, if K_{L}^{\prime} bounds a \mathbb{Z}-surface Σ of genus g, then L also bounds a \mathbb{Z}-surface of genus g obtained by gluing the genus 0 cobordism from L to K_{L}^{\prime} with Σ. Hence $g_{\mathbb{Z}}(L) \leq g_{\mathbb{Z}}\left(K_{L}^{\prime}\right)$ and similarly $g_{\mathbb{Z}}(L) \leq g_{\mathbb{Z}}\left(K_{L}\right)$.

By Theorem 1.2, if L bounds a \mathbb{Z}-surface of genus g, then the torsion part of the Blanchfield form of M_{L} is presented by a size $2 g$ Hermitian square matrix $A(t)$ over Λ with the signature of $A(1)$ zero. Moreover, by Theorem 3.6, $A(t)$ also presents the Alexander module of K_{L}. This implies that $g_{\mathbb{Z}}\left(K_{L}\right) \leq g_{\mathbb{Z}}(L)$ and concludes the proof.

5.1 Shake genus and generalised cabling

We start with a reformulation of the \mathbb{Z}-shake genus of a knot K, denoted by $g_{\mathbb{Z}}^{\mathrm{sh}}(K)$. Recall that the \mathbb{Z}-shake genus of a knot K is the minimal genus of a surface Σ representing a generator of $H_{2}\left(X_{0}(K) ; \mathbb{Z}\right)$ with $\pi_{1}\left(X_{0}(K) \backslash \Sigma\right) \cong \mathbb{Z}$, generated by a meridian of Σ. Also recall that $P_{p, n}(K)$ denotes the generalisation of a cable link obtained by $p+n$ parallel copies of K with pairwise vanishing linking numbers, where p-components have the same orientation as K and the remaining n-components have the opposite orientation.

Lemma 5.2 The \mathbb{Z}-shake genus of K satisfies

$$
g_{\mathbb{Z}}^{\mathrm{sh}}(K)=\min \left\{g_{\mathbb{Z}}\left(P_{\ell+1, \ell}(K)\right) \mid \ell \in \mathbb{N}_{0}\right\}
$$

Proof First we show that $g_{\mathbb{Z}}^{\text {sh }}(K) \geq \min \left\{g_{\mathbb{Z}}\left(P_{\ell+1, \ell}(K)\right) \mid \ell \in \mathbb{N}_{0}\right\}$. Let S be a locally flat surface of genus g in the 0 -trace, denoted by $X_{0}(K)$, representing a generator of $H_{2}\left(X_{0}(K) ; \mathbb{Z}\right) \cong \mathbb{Z}$, such that $\pi_{1}\left(X_{0}(K) \backslash \nu S\right) \cong \mathbb{Z}$. To prove this we construct a 4-manifold W with $\partial W=M_{P_{k+1, k}(K)}$ for some k, using the same construction as in Sect. 4. Moreover W will satisfy that $\pi_{1}(W) \cong \mathbb{Z}$ and $H_{2}(W ; \Lambda) \cong \Lambda^{2 g+2 k}$. The proof of Theorem 4.3 will imply that there is a size $2 g$ Hermitian square matrix $A(t)$ over Λ such that $A(1)$ has signature 0 and such that $A(t)$ presents the Blanchfield form of $M_{P_{k+1, k}(K)}$ on $T H_{1}\left(M_{P_{k+1, k}(K)} ; \Lambda\right)$. It will then follow that

$$
\min \left\{g_{\mathbb{Z}}\left(P_{\ell+1, \ell}(K)\right) \mid \ell \in \mathbb{Z}\right\} \leq g_{\mathbb{Z}}\left(P_{k+1, k}(K)\right) \leq g
$$

To achieve this, make S transverse to the cocore of the 2-handle, and remove a neighbourhood N of the cocore. This yields a 4-manifold homeomorphic to D^{4} with the link $P_{k+1, k}(K)=\partial N \cap S$ in $\partial D^{4}=S^{3}$, for some k, extending to a locally flat genus g surface in D^{4}. Since we removed a disjoint union of discs $N \cap S$, the result is a connected genus g surface P.

Apply the Seifert-Van Kampen theorem to the union

$$
X_{0}(K) \backslash v S=\left(D^{4} \backslash v P\right) \cup(N \backslash v S)
$$

where the union is over the complement in $S^{1} \times D^{2}$ of $2 k+1$ parallel copies of the core $S^{1} \times\{0\}$. This yields a push out

where $F_{2 k+1}$ is the free group on $2 k+1$ generators. The \mathbb{Z} in the top left corner is generated by a zero-framed longitude of K, while the \mathbb{Z} in the bottom right corner is generated by a meridian of P. Hence we have that $\pi_{1}\left(D^{4} \backslash \nu P\right) /\langle\langle\lambda\rangle\rangle \cong \mathbb{Z}$, where λ represents a longitude of K. Since λ lies in the second derived subgroup, it follows that the commutator subgroup, or first derived subgroup, equals the second derived subgroup, and is therefore perfect.

Let G be a handlebody with $\partial G=P \cup_{\partial P} \bigcup_{i=1}^{2 k+1} D^{2}$, a closed surface of genus g, and then define

$$
W=W_{P}:=D^{4} \backslash \nu P \cup_{P \times S^{1}}\left(G \times S^{1}\right),
$$

as in Sect. 4. As before, choose the framing of the normal bundle of P so that every simple closed curve on $P \times\{\mathrm{pt}\} \subset P \times S^{1}$ lies in the commutator subgroup of $\pi_{1}\left(D^{4} \backslash \nu P\right)$. Since gluing on $G \times S^{1}$ kills the longitude of each component of $P_{k+1, k}(K)$, it follows that

$$
\pi_{1}(W) \cong \pi_{1}\left(D^{4} \backslash \nu P\right) /\left\langle\left\langle\lambda, \gamma_{1}, \ldots, \gamma_{g}\right\rangle\right\rangle
$$

Fig. 2 Performing 3 internal band sums on $P_{3,1}(K)$ yields the cabled knot $K_{2,1}$. Solid boxes indicate that all the strands passing through the box are tied into 0 -framed parallels of the knot K

where λ represents the longitude of K as above, and $\gamma_{1}, \ldots, \gamma_{k} \subseteq P \times\{\mathrm{pt}\}$ are push offs to the normal circle bundle of curves on P that generate $\operatorname{ker}\left(H_{1}(\partial G ; \mathbb{Z}) \rightarrow H_{1}(G ; \mathbb{Z})\right)$. Since we know that $\pi_{1}\left(D^{4} \backslash \nu P\right) /\langle\langle\lambda\rangle\rangle \cong \mathbb{Z}$, and the γ_{i} lie in the commutator subgroup of $\pi_{1}\left(D^{4} \backslash \nu P\right)$, we deduce that $\pi_{1}(W) \cong \mathbb{Z}$.

In the proof of Theorem 4.3, as noted in Remark 4.5, it was sufficient to assume that $\pi_{1}\left(D^{4} \backslash \nu P\right)$ is of the form $\mathbb{Z} \ltimes \Gamma$, where the commutator subgroup Γ is perfect, and that $\pi_{1}\left(W_{P}\right) \cong \mathbb{Z}$. The proof of Theorem 4.3 then implies that there is a size $2 g$ Hermitian square matrix $A(t)$ over Λ of the required form as in Theorem 1.2 (2). Thence Theorem 1.2 implies that $g_{\mathbb{Z}}\left(P_{k+1, k}(K)\right) \leq g$, as required.

For the other inequality, cap off a \mathbb{Z}-surface for $P_{\ell+1, \ell}(K)$ with $2 \ell+1$ appropriately oriented parallel copies of the core of the 2-handle of $X_{0}(K)$, to construct a \mathbb{Z}-shake surface of genus g in $X_{0}(K)$.

As a tangent, and to point to a subtlety which necessitates the above proof, we ask the following questions. Does there exist a locally flat surface P in D^{4}, with boundary $P_{\ell+1, \ell}(K) \subseteq S^{3}$ for some K, ℓ, such that $\pi_{1}\left(D^{4} \backslash \nu P\right) /\langle\langle\lambda\rangle\rangle \cong \mathbb{Z}$, where λ represents a longitude of K, but for which $\pi_{1}\left(D^{4} \backslash \nu P\right)$ is not cyclic? A negative answer to this question would imply that every surface whose complement has cyclic fundamental group, representing a generator of $H_{2}\left(X_{0}(K) ; \mathbb{Z}\right)$, is isotopic to the union of parallel copies of the core of the 2 -handle and a \mathbb{Z}-surface in D^{4}.

Using Corollary 5.1, we prove Theorem 1.5 and Corollary 1.6. We prove them together, since the proofs are similar. We recall the statements.

Corollary 5.3

(i) For every knot K, the \mathbb{Z}-genus of K equals the \mathbb{Z}-shake genus of K.
(ii) Let p and n be integers and let $w=p-n$. If $w=0$, then $P_{p, n}(K)$ is \mathbb{Z}-weakly slice, and otherwise

$$
g_{\mathbb{Z}}\left(P_{p, n}(K)\right)=g_{\mathbb{Z}}\left(K_{w, 1}\right)=g_{\mathbb{Z}}\left(K_{w,-1}\right) \leq g_{\mathbb{Z}}(K)
$$

Proof We prove (ii) first. Note that $P_{p, n}(K)$ is a ($p+n$)-component boundary link, and ($p+n$) disjointly embedded Seifert surfaces are obtained by taking parallel copies of a Seifert surface for K with appropriate orientations. Let $w=p-n$. Perform $w-1=p+n-1$ internal band sums on L to obtain the unknot if $w=0$, and the knot $K_{w, 1}$ if $w \neq 0$ (see Fig. 2). Similarly, we can also construct $K_{w,-1}$ by performing $w=p+n-1$ internal band sums on L. It follows that $P_{p, n}(K)$ is \mathbb{Z}-weakly slice
if $w=0$. For $w \neq 0$, by Corollary 5.1, in particular the equality $g_{\mathbb{Z}}(L)=g_{\mathbb{Z}}(K)$, where the knot K is obtained from the r-component link K by $r-1$ internal band sums away from a collection of disjoint Seifert surfaces for L, we conclude that $g_{\mathbb{Z}}\left(P_{p, n}(K)\right)=g_{\mathbb{Z}}\left(K_{w, 1}\right)=g_{\mathbb{Z}}\left(K_{w,-1}\right)$. The fact that $g_{\mathbb{Z}}\left(K_{w, 1}\right) \leq g_{\mathbb{Z}}(K)$ follows from [11, Theorem1.2] and [18, Theorem4]. This completes the proof of Corollary 1.6.

Now we prove (i), which is Theorem 1.5. By Lemma 5.2 and (ii), we have

$$
g_{\mathbb{Z}}^{\operatorname{sh}}(K)=\min \left\{g_{\mathbb{Z}}\left(P_{\ell+1, \ell}(K)\right) \mid \ell \in \mathbb{Z}\right\}=g_{\mathbb{Z}}\left(P_{1,1}(K)\right)=g_{\mathbb{Z}}(K)
$$

This completes the proof of Theorem 1.5.

5.2 Good boundary links

Next we prove Corollary 1.7, whose statement we recall.
Corollary 5.4 Every good boundary link is \mathbb{Z}-weakly slice.
Proof By Corollary 1.3, every boundary link L with $T H_{1}\left(M_{L} ; \Lambda\right)=0$ is \mathbb{Z}-weakly slice. Let L be an r-component good boundary link and let F be the free group on r generators. Since L is a boundary link, there is a surjective homomorphism $\pi_{1}\left(X_{L}\right) \rightarrow F$ sending oriented meridians to generators and 0 -framed longitudes to the identity. This extends to a surjective homomorphism $\pi_{1}\left(M_{L}\right) \rightarrow F$, which then induces a left $\mathbb{Z}\left[\pi_{1}\left(M_{L}\right)\right]$-module structure on $\mathbb{Z} F$ that we use to define the twisted homology groups $H_{*}\left(M_{L} ; \mathbb{Z} F\right)$. By definition of a good boundary link, $\operatorname{ker}\left(\pi_{1}\left(M_{L}\right) \rightarrow F\right)$ is perfect, i.e. equals its own commutator subgroup. Then $H_{1}\left(M_{L} ; \mathbb{Z} F\right)$ is the abelianisation of $\operatorname{ker}\left(\pi_{1}\left(M_{L}\right) \rightarrow F\right)$, and so $H_{1}\left(M_{L} ; \mathbb{Z} F\right)=0$. We apply the universal coefficient spectral sequence [23, Theorem 10.90] with E_{2} page $\operatorname{Tor}_{p}^{\mathbb{Z} F}\left(H_{q}\left(M_{L} ; \mathbb{Z} F\right), \Lambda\right)$, computing $H_{p+q}\left(M_{L} ; \Lambda\right)$. Since

$$
H_{1}\left(M_{L} ; \mathbb{Z} F\right) \otimes_{\mathbb{Z} F} \Lambda \cong \operatorname{Tor}_{0}^{\mathbb{Z} F}\left(H_{1}\left(M_{L} ; \mathbb{Z} F\right), \Lambda\right)=0
$$

we have:

$$
H_{1}\left(M_{L} ; \Lambda\right) \cong \operatorname{Tor}_{1}^{\mathbb{Z} F}\left(H_{0}\left(M_{L} ; \mathbb{Z} F\right), \Lambda\right) \cong H_{1}\left(\vee^{r} S^{1} ; \Lambda\right) \cong \Lambda^{r-1}
$$

Since Λ^{r-1} is free, $T H_{1}\left(M_{L} ; \Lambda\right)=0$, so L is \mathbb{Z}-weakly slice by Corollary 1.3.

5.3 Whitehead doubles

Finally we prove Corollary 1.8. Here is the statement.
Corollary 5.5 If $L=L_{1} \cup L_{2}$ is a 2-component link, then

$$
g_{\mathbb{Z}}(\mathrm{Wh}(L))=\left\{\begin{array}{l}
0 \text { if } \operatorname{lk}\left(L_{1}, L_{2}\right)=0, \\
1 \text { otherwise. }
\end{array}\right.
$$

Moreover, if $L=L_{1} \cup L_{2} \cup L_{3}$ is a 3-component link, then $\mathrm{Wh}(L)$ is \mathbb{Z}-weakly slice if and only if either (i) L has vanishing linking numbers, or (ii) for some i, j, k with $\{i, j, k\}=\{1,2,3\}$:
(a) the signs of the clasps of $\mathrm{Wh}\left(L_{i}\right)$ and $\mathrm{Wh}\left(L_{j}\right)$ disagree,
(b) $\operatorname{lk}\left(L_{i}, L_{j}\right)=0$, and
(c) $\left|\operatorname{lk}\left(L_{i}, L_{k}\right)\right|=\left|\operatorname{lk}\left(L_{j}, L_{k}\right)\right|$.

Proof Suppose $L=L_{1} \cup L_{2}$ is a 2-component links with $\operatorname{lk}\left(L_{1}, L_{2}\right)=n$. Let F_{1}, F_{2} be the standard disjoint genus 1 Seifert surfaces for $\mathrm{Wh}(L)$. Then by performing an internal band sum, where the band does not intersect F_{1} and F_{2}, we get a knot K with a genus two Seifert surface and Seifert matrix

$$
M=\left(\begin{array}{cccc}
0 & a_{1} & n & n \\
0 & 0 & n & n \\
n & n & 0 & a_{2} \\
n & n & 0 & 0
\end{array}\right)
$$

where $a_{1}, a_{2} \in\{1,-1\}$. By Corollary 5.1 , we have $g_{\mathbb{Z}}(\mathrm{Wh}(L))=g_{\text {alg }}(K)$. The computation

$$
\operatorname{det}\left(t M-M^{T}\right)=\sum_{i=0}^{2} c_{i} t^{i}+\left(4 n^{2} a_{1} a_{2}\right) \cdot t^{3}+\left(-n^{2} a_{1} a_{2}\right) \cdot t^{4}
$$

where $c_{0}=-n^{2} a_{1} a_{2}, c_{1}=4 n^{2} a_{1} a_{2}$, and $c_{2}=a_{1}^{2} a_{2}^{2}-6 n^{2} a_{1} a_{2}$ implies that $g_{\mathbb{Z}}(\mathrm{Wh}(L))=0$ if and only if $n=0$. Moreover, note that there is a 2×2 submatrix

$$
A=\left(\begin{array}{cc}
0 & a_{1} \\
0 & 0
\end{array}\right) \text { so that } \operatorname{det}\left(t A-A^{T}\right)=t
$$

Hence, if $n \neq 0$, then $g_{\mathbb{Z}}(\mathrm{Wh}(L))=1$.
Now, suppose $L=L_{1} \cup L_{2} \cup L_{3}$ is a 3-component links with $\operatorname{lk}\left(L_{1}, L_{2}\right)=$ $n_{3}, \operatorname{lk}\left(L_{1}, L_{3}\right)=n_{2}$, and $\operatorname{lk}\left(L_{1}, L_{3}\right)=n_{1}$. Again, performing two internal band sums, where the bands do not intersect the standard disjoint Seifert surfaces, we obtain a knot K with a genus three Seifert surface and a Seifert matrix

$$
M=\left(\begin{array}{cccccc}
0 & a_{1} & n_{3} & n_{3} & n_{2} & n_{2} \\
0 & 0 & n_{3} & n_{3} & n_{2} & n_{2} \\
n_{3} & n_{3} & 0 & a_{2} & n_{1} & n_{1} \\
n_{3} & n_{3} & 0 & 0 & n_{1} & n_{1} \\
n_{2} & n_{2} & n_{1} & n_{1} & 0 & a_{3} \\
n_{2} & n_{2} & n_{1} & n_{1} & 0 & 0
\end{array}\right),
$$

where $a_{1}, a_{2}, a_{3} \in\{1,-1\}$. Again, we have $g_{\mathbb{Z}}(\mathrm{Wh}(L))=g_{\text {alg }}(K)$.

A straightforward computation yields that

$$
\begin{aligned}
\operatorname{det}\left(t M-M^{T}\right)= & \sum_{i=0}^{4} c_{i} t^{i}+\left(12 n_{1} n_{2} n_{3} a_{1} a_{2} a_{3}-n_{1}^{2} a_{2} a_{3}-n_{2}^{2} a_{1} a_{3}-n_{3}^{2} a_{1} a_{2}\right) \cdot t^{5} \\
& +\left(-2 n_{1} n_{2} n_{3} a_{1} a_{2} a_{3}\right) \cdot t^{6},
\end{aligned}
$$

where

$$
\begin{aligned}
& c_{0}=-2 n_{1} n_{2} n_{3} a_{1} a_{2} a_{3} \\
& c_{1}=12 n_{1} n_{2} n_{3} a_{1} a_{2} a_{3}-n_{1}^{2} a_{2} a_{3}-n_{2}^{2} a_{1} a_{3}-n_{3}^{2} a_{1} a_{2} \\
& c_{2}=4 n_{1}^{2} a_{1}^{2} a_{2} a_{3}+4 n_{2}^{2} a_{1} a_{2}^{2} a_{3}+4 n_{3}^{2} a_{1} a_{2} a_{3}^{2}-30 n_{1} n_{2} n_{3} a_{1} a_{2} a_{3} \\
& c_{3}=a_{1}^{2} a_{2}^{2} a_{3}^{2}-6 n_{1}^{2} a_{1}^{2} a_{2} a_{3}-6 n_{2}^{2} a_{1} a_{2}^{2} a_{3}-6 n_{3}^{2} a_{1} a_{2} a_{3}^{2}+40 n_{1} n_{2} n_{3} a_{1} a_{2} a_{3} \\
& c_{4}=4 n_{1}^{2} a_{1}^{2} a_{2} a_{3}+4 n_{2}^{2} a_{1} a_{2}^{2} a_{3}+4 n_{3}^{2} a_{1} a_{2} a_{3}^{2}-30 n_{1} n_{2} n_{3} a_{1} a_{2} a_{3} .
\end{aligned}
$$

Note that $g_{\mathbb{Z}}(\mathrm{Wh}(L))=g_{\text {alg }}(K)=0$ if and only if $\operatorname{det}\left(t M-M^{T}\right)=t^{3}$, and that this implies either $n_{1}=n_{2}=n_{3}=0$ or

$$
a_{i}=-a_{j}, \quad n_{k}=0, \quad \text { and } \quad\left|n_{i}\right|=\left|n_{j}\right| \text { for }\{i, j, k\}=\{1,2,3\} .
$$

Furthermore, it can be easily verified that the above assumptions imply that $\operatorname{det}(t M-$ $\left.M^{T}\right)=t^{3}$. This completes the proof of Corollary 1.8.

Acknowledgements We thank Christopher Davis, Lukas Lewark, Duncan McCoy, Matthias Nagel, and Arunima Ray for helpful conversations and a couple of timely suggestions. MP thanks the MPIM in Bonn, where he was a visitor during the period in which this paper was written. PF gratefully acknowledges support by the SNSF Grant 181199. MP was partially supported by EPSRC New Investigator grant EP/T028335/1 and EPSRC New Horizons grant EP/V04821X/1.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Borodzik, Maciej, Friedl, Stefan: On the algebraic unknotting number. Trans. Lond. Math. Soc. 1(1), 57-84 (2014)
2. Borodzik, Maciej, Friedl, S.: The unknotting number and classical invariants. I. Algebr. Geom. Topol. 15(1), 85-135 (2015)
3. Borodzik, Maciej, Friedl, S., Powell, M.: Blanchfield forms and Gordian distance. J. Math. Soc. Jpn. 68(3), 1047-1080 (2016)
4. Blanchfield, Richard C..: Intersection theory of manifolds with operators with applications to knot theory. Ann. Math. 2(65), 340-356 (1957)
5. Cha, Jae Choon, Hoon Kim, M., Powell, Mark: A family of freely slice good boundary links. Mathematische Annalen 376(3), 1009-1030 (2020)
6. Conway, Anthony: An explicit computation of the Blanchfield pairing for arbitrary links. Canad. J. Math. 70, 983-1007 (2018)
7. Feller, Peter: The degree of the Alexander polynomial is an upper bound for the topological slice genus. Geom. Topol. 20(3), 1763-1771 (2016)
8. Feller, P., Lewark, L.: On classical upper bounds for slice genera. Selecta Math. (N.S.) 24(5), 48854916 (2018)
9. Feller, P., Lewark, L.: Balanced algebraic unknotting, linking forms, and surfaces in three- and fourspace arXiv:1905.08305, (2019)
10. Peter Feller, Allison N. Miller, Matthias Nagel, Patrick Orson, Mark Powell, and Arunima: Embedding spheres in knot traces. Compos. Math. 157(10), 2242-2279 (2021)
11. Peter Feller, Allison N. Miller, and Juanita Pinzon-Caicedo: A note on the topological slice genus of satellite knots arXiv:2004.04204, to appear: Algebr. Geom. Topol. (2019)
12. Michael H. Freedman and Frank Quinn: Topology of 4-manifolds. Princeton Mathematical Series, vol 39. Princeton University Press, Princeton, NJ (1990)
13. Freedman, Michael H.: Link compositions and the topological slice problem. Topology 32(1), 145-156 (1993)
14. Michael H. Freedman and Peter Teichner: 4-manifold topology. II. Dwyer's filtration and surgery kernels. Invent. Math. 122(3), 531-557 (1995)
15. Jonathan Hillman: Algebraic invariants of links, vol 52 of Series on Knots and Everything. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, second edition, (2012)
16. Jerome P. Levine: Knot modules. Trans. Amer. Math. Soc. 229, 1-50 (1977)
17. Raymond Lickorish, W. B.: An introduction to knot theory, Graduate Texts in Mathematics. Springer, New York, (1997)
18. Duncan McCoy: Null-homologous twisting and the algebraic genus. In 2019-20 MATRIX annals, volume 4 of MATRIX Book Ser, pages 147-165. Springer, Cham, [2021] (2021)
19. Katura Miyazaki: Band-sums are ribbon concordant to the connected sum. Proc. Amer. Math. Soc. 126(11), 3401-3406 (1998)
20. Matthias Nagel and Mark Powell: Concordance invariance of Levine-Tristram signatures of links. Doc. Math. 22, 25-43 (2017)
21. Lisa Piccirillo: Shake genus and slice genus. Geom. Topol. 23(5), 2665-2684 (2019)
22. Mark Powell: Twisted Blanchfield pairings and symmetric chain complexes. Q. J. Math. 67(4), 715-742 (2016)
23. Joseph, J.: Rotman, 2nd edn. An introduction to homological algebra. Universitext. Springer, New York (2009)
24. Lee Rudolph: Some topologically locally-flat surfaces in the complex projective plane. Comment. Math. Helv. 59(4), 592-599 (1984)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

[^0]: Mark Powell
 mark.a.powell@durham.ac.uk
 Peter Feller
 peter.feller@math.ch
 JungHwan Park
 jungpark0817@gmail.com
 1 Department of Mathematics, ETH Zurich, Zurich, Switzerland
 2 Department of Mathematical Sciences, KAIST, Daejeon, South Korea
 3 Department of Mathematical Sciences, Durham University, Durham, UK

