
ROCHLIN’S THEOREM

CHRISTIAN KREMER

Abstract. These notes are prepared for a seminar talk in the
seminar “Topological Manifolds 2” in Bonn, Summer term 2021.
The goal is to give some context on Rochlin’s theorem and to
explain the proof by Matsumoto from [7].

1. Rochlin’s theorem: History, proofs and applications

Let M be a smooth oriented closed 4-manifold1 and consider its
intersection form

H2(M)/torsion×H2(M)/torsion→ Z, (x, y) 7→ x · y

which is acquired by applying Poincare duality to the cup product

^ : H2(M)/torsion×H2(M)/torsion→ H4(M).

We denote the signature of M – by definition the signature of this
pairing - by σ(M).

Recall that a manifold admits an orientation if and only if its first
Stiefel-Whitney class w1(M) vanishes. An oriented manifold admits a
spin structure if and only if its second Stiefel-Whitney class w2(M) van-
ishes. Analogously, an oriented manifold which admits a spin structure
will be called a spin manifold. We will not need much more about spin
structures except for its relation to the second Stiefel-Whitney class.
Now we can formulate Rochlin’s theorem.

Theorem 1.1 (Rochlin). Let M be a closed, oriented smooth spin
4-manifold. Then the signature of M is divisible by 16.

The theorem is also sharp: an example of a spin 4-manifold with
signature −16 is given by the zero set of the Fermat quartic which is
defined as

K = {[w : x : y : z] ∈ CP 3 | w4 + x4 + y4 + z4 = 0}.

The manifold K is a complex surface, commonly known as a K3 surface.
The Topological properties of K are collected in [11]. In [13, p. 8], Kirby
gives a different description of this manifold in terms of a handlebody
decomposition.

1Most of our discussion (in particular, Rochlin’s theorem) carries over to the
PL-category.
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Rochlin’s original proof appeared in [1] in Russian. A French transla-
tion can be found in [7, p. 17 ff.]. We will explain the geometric proof
by Matsumoto, also from [7, p. 119 ff.].

1.1. Some historical remarks. In his original paper [1], Rochlin
proved his theorem with homotopy theoretic methods. In modern day
language, he computed the that the image of the third J-homomorphism
is isomorphic to Z/24. A nice exposition of this proof can be found in
[14].

In [6], Freedman and Kirby gave a geometric proof of Rochlin’s
theorem, which has a lot of similarities to the proof of Matsumoto
which shall be given in detail in these notes. It is notable about the
proof of Freedman and Kirby that they do something stronger: they
construct and compute a bordism group of 4-manifolds with embedded
characteristic surfaces. Rochlin’s theorem can then be checked on
generators of this bordism group.

1.2. Non-realisability of surgery obstructions. Let X be an w-
oriented Poincaré-complex of dimension n. Can every surgery obstruc-
tion in Ln(Zπ1(X), w) be realized by a surgery problem with target
X? A positive answer is provided by Wall’s realization theorem [9,
Theorems 5.8 and 6.5]. But can we do better and assume that the
source of our surgery problem is a closed manifold? Here, the answer
is no in general, and Rochlins theorem can be thought of as a first
instance of this phenomenon.

If we take k ≥ 2, X = S4k, covered with the trivial bundle, then
the index of the subgroup of realizable elements in L4k(Z) ∼= Z (the
isomorphism given dividing the signature ot a form by 8, thus mapping
the E8-form to 1 ∈ Z ) can be computed explicitly. It is

22k · (22k−1 − 1) · (3− (−1)k) · (2k − 1)! ·Bk

2 · 8 · (2k)!
· | Im J4k−1|,

where J4k−1 denotes the J-homomorphism and Bk the k-th Bernoulli
number. The order of the image of the J-homomorphism is known, so
this can be simplified to

(3− (−1)k)

2
· 22k−2 · (22k−1 − 1) · numerator(Bk/(4k)).

These results are explained in [12, Chapter 11]. The original reference
is [3].

2. Matsumoto’s geometric proof

In the following we present a proof of Rochlin’s theorem due to
Matsumoto, which appeared in [7]. Actually, Matsumoto proves a
congruence which is slightly stronger than Rochlin’s theorem, for which
we need the concept of characteristic homology classes.
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Definition 2.1. Let M be a 4-manifold. A homology class ξ ∈
H2(M,∂M ;Z) is characteristic if for every element a ∈ H2(M ;Z)

ξ · a ≡ a · a mod 2.

A characteristic surface for M is a properly embedded oriented surface
F ⊂M whose fundamental class is a characteristic homology class.

In Lemma 2.2 can show the existence of a characteristic surface for an
oriented 4-manifoldM easily under the assumption thatH1(M,∂M ;Z) =
0. Notice that if M is spin, we can do framed surgery on M to achieve
this condition. Since the outcome of surgery on M is related to M via an
oriented bordism, and since the signature is an oriented bordism invari-
ant, it is reasonable to work with the assumption H1(M,∂M ;Z) = 0.

Lemma 2.2. Every closed oriented 4-manifold M with H1(M ;Z) = 0
admits a characteristic homology class. Such a class can be represented
by a characteristic surface. If F0, F1 are characteristic surfaces which
represent the same class in H2(M ;Z), then there exists a orientable
embedded 3-manifold G ⊂M × I with G ∩M × {i} = Fi.

Proof. Notice that the second Stiefel-Whitney class w2(M) has the
property that for all α ∈ H2(M ;Z/2) we have

w2(M) ^ α = α ^ α.

Since H1(M ;Z) = 0, the reduction homomorphism

r : H2(M ;Z)→ H2(M ;Z/2)

is surjective, as can be seen from the Bockstein sequence associated to
the short exact sequence

0→ Z ·2−→ Z→ Z/2→ 0

and the fact that H1(M ;Z) = 0. Pick a preimage a of the Poincaré
dual of w2(M).

In a 4-manifold, every class in H2(M ;Z) can be represented by an
embedded oriented surface, and two such surfaces can always be joined
by an oriented 3-manifold in M × I. This can be found in [2, Corollaire
II.13, p. 43], but we also give a proof in the appendix, Theorem A.1. �

Here is another fundamental lemma which gives a good intuition for
characteristic surfaces and will be needed later.

Lemma 2.3. If F ⊂ M is a characteristic surface in an oriented 4-
manifold, then M \ F admits a spin structure, i.e. has trivial second
Stiefel-Whitney class.

Proof. We denote a tubular neighborhood of F by ν(F ). Note that the
inclusions F → ν(F ) and M \ν(F )→M \F are homotopy equivalences,
so we may work with M \ ν(F ). Consider the following commutative
diagram.
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H2(M ;Z/2) H2(M \ ν(F );Z/2)

H2(ν(F );Z/2) H2(M ;Z/2) H2(M, ν(F );Z/2)

i∗

PD PD

i∗ u

We want to show that w2(M \ ν(F )) = i∗w2(M) = 0. Since the
vertical maps are isomorphisms by Poincare-Lefschetz duality (e.g. see
[8, Corollary VI.8.4]), it suffices to see that u(PD(w2(M))) = 0. But
PD(w2(M)) = i∗[F ] as shown in the proof of 2.2, and u ◦ i∗ = 0. �

2.1. The Arf invariant. Let V be a finite dimensional Z/2-vector
space equipped with a nonsingular symmetric bilinear form (x, y) 7→
s(x, y). A quadratic enhancement of s is a function q : V → Z/2
satisfying

q(x+ y)− q(x)− q(y) = s(x, y).

The data of a symmetric bilinear form over Z/2 with a quadratic
enhancement is called a quadratic form. We define the Arf invariant or,
following Browder, “democratic invariant” of a quadratic form (V, s, q)
to be

Arf(V, s, q) =

{
0 if q sends strictly more elements of V to 0 than to 1;

1 else.

Although this definition is nice and does not depend on any choices,
there is another way to compute the Arf invariant, which will be more
useful to us.

Lemma 2.4. If {b1, c1, . . . , bn, cn} is a symplectic basis of (V, s, q), i.e.
s(bi, bj) = 0 = s(ci, cj) and s(bi, cj) = δij for all 1 ≤ i, j ≤ n, then

Arf(V, s, q) =
∑
i

q(bi)q(ci) ∈ Z/2.

This formula is quite famous, as it appears together with a picture of
C. Arf on the Turkish 10 lira banknote.

2.2. The Arf invariant of a characteristic homology class. Let
M be a compact, smooth, orientable 4-manifold and F a properly
embedded connected surface in M . We assume that ∂F is empty or S1

and that F is characteristic. The reason we are also interested in the
case ∂F = S1 is that if M = B4, and F can be pushed into S3 relative
boundary, it can be thought of as a Seifert surface for ∂F and we can
define the Arf invariant of a knot.

Furthermore, suppose H1(M) = 0. We will define a quadratic en-
hancement of the Z/2 intersection pairing on F . Let C be an immersed
S1 in F which is in general position. It bounds an immersed connected
orientable surface D in M which is nowhere tangent to F . Its normal
bundle νD is orientable since M is orientable, and it is even trivial
as D is homotopy equivalent to a CW-complex of dimension 1, and a
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bundle over a one dimensional CW-complex is trivial if and only if it is
orientable.

Pick a trivialization of νD. Of course, it induces a trivialization of
νD|∂D. Two such trivializations of νD differ up to homotopy by a map
g : D → SO(2) = S1. Now g|∂D is null-homotopic as it extends over D.
Indeed, consider the diagram:

[C, S1] H1(C) Hom(H1(C),Z)

[D,S1] H1(D) Hom(H1(D),Z)

∼= ∼=

i∗

∼= ∼=

α∗

Suppose the class of a map g : C → S1 extends over D. Then it lies in
the image of i∗. But α∗ is induced by the inclusion of the boundary

H1(C)→ H1(D)

which is null-homologous since D is orientable. Hence, α∗ = 0, so i∗ = 0.
But then g is null-homotopic. So the trivialization on νD|C is unique
up to strong fiber homotopy.

The normal bundle νC of C in F determines a sub-line bundle in
νD|∂D. Using the trivialization of νD|∂D, we can count the number of
twists of νC modulo 2 and call this number O(D). Denote by D · F the
number of intersection points of the interior of D with F and Self(C)
the number of self-intersections of C in F . We define

q(C) = O(D) +D · F + Self(C) ∈ Z/2.

Lemma 2.5. Let M be a compact, oriented smooth 4-manifold with
H1(M ;Z) = 0 and let F ⊂M be a characteristic surface. The function

q : H1(F ;Z/2)→ Z/2
is well-defined and a quadratic enhancement of the intersection paring
on H1(F ;Z/2).

Proof. We shall prove this in multiple steps.

• The element q(C) does not depend on the choice of the bounding
surface D.
Let D and D′ be surfaces bounding C. By spinning D around C
as in [6, p. 87], which changes both O(D) and D · F by one, we
may assume that Σ := D ∪D′ is a smoothly immersed oriented
closed surface.

Both D and D′ induce trivializations of νΣ|C , say τ and
τ ′. Changing the orientation of τ fiberwise (or exchanging
the vector fields giving the trivialization) we obtain a new
trivialization −τ and denote the difference of −τ and τ ′ by
d(−τ, τ ′) ∈ π1(SO(2)) = Z.

Recall that D and D′ have trivial normal bundles so we can
push each off itself inside M . The same is not true for Σ, but we
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can measure the failure of our ability to push Σ off itself with
d(−τ, τ ′).

Σ · Σ = d(−τ, τ ′)− 2D ·D′ ≡ d(−τ, τ ′) mod 2.

Now since F is characteristic, we have Σ · Σ ≡ Σ · F mod 2.
But observe that

Σ · F = D · F +D′ · F.
Here we used that we can arrange that Σ does not intersect F
in C, which can be achieved by making Σ transverse to C, so
that Σ and C do not intersect.

By definition,

O(D′) = O(D) + d(−τ, τ ′).
Thus,

O(D) +D · F ≡ O(D′)− d(−τ, τ ′) + Σ · F −D′ · F
≡ O(D′)− d(−τ, τ ′) + d(−τ, τ ′)−D · F
= O(D′) +D′ · F mod 2.

Hence, q(C) = O(D) + D · F + Self(C) only depends on the
immersed circle C.
• The element q(C) only depends on the homotopy class of the

immersed circle C in general position.
First we consider the case where C and C ′ are regularly homo-
topic. We can choose a smooth regular homotopy S1 × I → F
between them. Then S1 × I → F × I is an immersion. We
may, without changing it at the endpoints, assume that it is in
general position, since being an immersion is an open and dense
condition on the smooth maps S1 × I → F × I. Hence, its self
intersections are some arcs and circles, where the arcs either
connect two self intersection points of C or C ′ respectively, or
connect a self intersection point of C to a self intersection of C ′.
Thus, Self(C) = Self(C ′).

Let D be a surface bounding C. We will use the track of
the regular homotopy f : S1 × I → F to create a new surface
bounding f(S1 × {1}). Consider the bundle f ∗ν(F ) on S1 × I.
The surface D intersects F transversally, providing us with non-
vanishing section s of f ∗ν(F )|S1×{0}. As f |S1×0 is an immersion
we also obtain a non-vanishing section t of f ∗TF |S1×0. Pick an
isomorphism

Φ: f ∗TF → f ∗ν(F )

carrying t to s. Since f is a regular homotopy, the derivative of
f |S1×{r} applied to a standard trivializing vector field V on S1

induces a continuous map
6
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S1 × I → f ∗TF, (z, r) 7→ (z, r, df |S1×{r}(Vx))

Consider the composition

g′ : S1 × I → f ∗TF
Φ−→ f ∗ν(F ).

Using a metric on ν(F ), rescale g′ to a map g such that the
norm of g(x, r) is 1−r. We can glue g(S1×I) to D with a small
collar removed to get a surface D′ bounding f(S1 × {0}). The
following picture illustrates our situation. Note that, although
f : S1 × I → M is not an embedding, g embeds S1 × I. Now

Figure 1. Constructing the new surface D′

D ·F = D′ ·F and O(D) = O(D′) are clear from the construction.
Second, notice that when C and C ′ are homotopic, we can

apply the connected sum with a small figure 8 to C ′ until C ′ is
also regularly homotopic to C.

Figure 2. Adding a figure 8

The connected sum with a small figure 8 can be accompanied
by a boundary conneced sum of D with a small disc bounding
the figure 8. There will be no change in D · F , Self(C) will
increase by 1 for every figure 8 and O(D) will also change by 1.
Thus, q(C) = q(C ′).

7



Rochlin’s theorem Christian Kremer

• Let x0 ∈ F be a point. The function q induces a function
π1(F, x0)→ Z/2 which fulfills

q(ω ∗ ω′) = q(ω) + q(ω′) + [ω] · [ω′]
where [ω], [ω′] ∈ H1(F ;Z/2) are the images of ω, ω′ ∈ π1(F, x0)
under π1(F, x0)→ H1(F ;Z/2).

We can represent the elements ω, ω′ ∈ π1(F ) by circles C,C∗
as above, together with paths γ, γ′ from the base point to C or
C ′ respectively. We can multiply (C, γ) and (C ′, γ′) by taking
(C]γ∗(γ′)−1C ′, γ). This corresponds to the multiplication in the
fundamental group. As we saw above, q does not depend on
the representative (C, γ) of an element in π1(F ). Now we show
that q is multiplicative. Consider elements (C, γ), (C ′, γ′) and
surfaces D,D′ bounding C,C ′. Using the boundary connected
sum, we can define a surface D]∂D

′ bounding C]γ∗(γ′)−1C ′ which
fulfills D]∂D

′ ·F = D ·F+D′ ·F and O(D]∂D
′) = O(D)+O(D′).

The self-intersections of C]γ∗(γ′)−1C ′ are

Self(C) + Self(C ′) + C · C ′ mod 2.

Note that although γ and γ′ may intersect, the induced self-
intersections of C]γ∗(γ′)−1C ′ have an even number, so they do
not appear in the above sum.

To conclude, we have

q(ω ∗ ω∗) ≡ D]∂D
′ · F +O(D]∂D

′) + Self(C]γ∗(γ′)−1C ′) mod 2

≡ D · F +D′ · F +O(D) +O(D′)

+ Self(C) + Self(C ′) + C · C ′ mod 2

≡ q(ω) + q(ω′) + [ω] · [ω′] mod 2

• The function q factors through H1(F ;Z/2).
By the above, for ω, ω′ ∈ π1(F, x0) we have q(ω ∗ ω′) = q(ω′ ∗ ω)
since [ω] · [ω′] = [ω′] · [ω] mod 2. Thus, q factors through
H1(F ;Z). Note for C ∈ H1(F ;Z) we have q(C + C) = 2q(C) +
C · C ≡ 0 mod 2. Since H1(F ;Z/2) = H1(F ;Z)⊗ Z/2, we see
that q also factors through H1(F ;Z/2).

This finishes the proof of the lemma and the construction of q. �

Now we can assign to the quadratic form q : H1(F ;Z/2) → Z/2
its Arf invariant Arf(F ). We will need some freedom regarding the
characteristic surface F , so we prove the following lemma.

Lemma 2.6. The element Arf(F ) ∈ Z/2 only depends on the homology
class [F, ∂F ] ∈ H2(M,∂M) and the isotopy class of the embedding
∂F → ∂M .

Before we prove this lemma, we consider the two extreme cases of
applications, namely when one of the two dependencies of the Arf
invariant becomes trivial.
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Example 2.7. If M and F are closed, Arf(F ) is determined by the class
[F ] ∈ H2(M ;Z), so we can consider the Arf invariant of a characteristic
homology class.

Example 2.8. If M is D4 and F a Seifert surface of a knot f : S1 →
S3 = ∂D4 which we push into D4 to make it proper, this is known as
the Arf invariant of the knot. In this case [F, ∂F ] = 0, so it will really
only depend on the isotopy class of f . We denote it by Arf(f).

Now we prove Lemma 2.6. The proof is quite technical and can safely
be skipped when first reading these notes.

Proof of Lemma 2.6. Let F0 and F1 be characteristic surfaces satisfying
[F0, ∂F0] = [F1, ∂F1] and such that ∂Fi → ∂M , i = 0, 1 are isotopic.

Then there is an orientable 3-manifold V embedded in M×I such that
V ∩M×0 = F0 and V ∩M×1 = F1, and ∂V = V ∩M×0∪M×1∪∂F0×I.
This result is proven in [13, Theorem II.1.1], but the proof is lacking
some details, so we give a proof in the appendix.

As usual, F1 is constructed from F0 by successively attaching handles
to Int(F0)×[0, ε]. By the standard theory of handlebody decompositions,
we may assume that only 1- and 2-handles are attached. Since a 2-
handle corresponds to a 1-handle in the dual handlebody decomposition
(starting at F1) it suffices to show that attaching a 1-handle h leaves
the Arf invariant unchanged.

Figure 3. Adding a one-handle to a surface

The quadratic form q changes after attaching a 1-handle by addition
of a copy of the quadratic form

(Z/2[m]⊕ Z/2[l],

(
0 1
1 0

)
, q)

where m corresponds to the transverse circle and l runs through the
attached handle, so m, l give a symplectic basis. We also have q(m) = 0
by choosing the obvious disc bounding m inside the handle, so that

Arf(s) = q(m)q(l) = 0 · q(l) = 0.
9
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The Arf invariant is additive with respect to direct sums of quadratic
forms, so

Arf(F0, ∂F0) = Arf(F0, ∂F0) + Arf(s) = Arf(F1, ∂F1). �

2.3. The Proof. Now we are ready to formulate the main theorem of
this discussion.

Theorem 2.9. Let M be a closed oriented 4-manifold with H1(M ;Z) =
0 and let ξ be an integral characteristic homology class. Then

Arf(ξ) = (σ(M)− ξ · ξ)/8 mod 2.

We will prove this theorem soon, first giving some applications. We
start with Rochlin’s theorem.

Corollary 2.10 (Rochlin’s theorem). The signature of an oriented spin
4-manifold is divisible by 16.

Proof. Kill the first homology group of M via framed surgery on embed-
ded circles, preserving the spin structure and signature. Now the empty
set is a characteristic surface and evidently has zero self-intersection
and Arf invariant. Thus,

0 = σ(M)/8 mod 2

which of course just means that 16 divides σ(M). �

Remark 2.11. Another cute application of Theorem 2.9 is the following.
Consider the class ξ = 3·[CP 1] ∈ H2(CP 2;Z). Applying the congruence,
we see that Arf(ξ) = 1. Observe that the Arf invariant of a class that
can be represented by an embedded sphere, is always trivial, as the
sphere is simply connected. Hence, ξ cannot be represented by an
embedded sphere. However, it is known that a smooth algebraic curve
of degree d in CP 2 represents the class d · [CP 1]. The genus of such

an algebraic curve is known to be (d−1)(d−2)
2

. In particular, 3 · [CP 1]
can be represented by a smooth cubic, i.e. an elliptic curve which is
diffeomorphic to a torus.

As a preliminary step to prove Theorem 2.9, we will need a lemma
to gain some flexibility.

Let M be an oriented 4-manifold and F ⊂M an embedded oriented
surface. A meridian of F in M is a circle C in M \ F which bounds
an embedded disc D such that F intersects the interior of D precisely
once.

Lemma 2.12. Let M be a closed, oriented 4-manifold with H1(M ;Z) =
0 and let F be a characteristic surface. Every map f : S1 → M is
homotopic to an embedding not intersecting F . Additionally allowing f
to change by a meridian of F we can arrange that doing surgery on f
with the framing induced by the spin structure on M − F preserves the
property that F is characteristic and Arf(F ).
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Proof. By Whitney approximation we may assume that f is a smooth
embedding and by transversality, we may assume that f(S1) and F do
not intersect.

Since H1(M) = 0, we know that f(S1) bounds a surface D in M .
Making D transverse to F , we can assume that D and F have transverse
intersections, in k points, say. Using a meridian of F , we can change f
to arrange for this count to be algebraically zero. Let M ′ be the result
of surgery along f with the framing dictated by the spin structure. The
second homology of M ′ is generated by the homology of M \ f(S1),
by a small S2 ∼= K ⊂M around f(S1) and the newly added 2-handle
together with the null homology D of f(S1) in M \ ν(f(S1)). For
later purposes, we choose K to locally look like S2 × {0} ⊂ R4 in a
submanifold chart of f(S1), where S1 is embedded as {0}3 × R, such
that it does not intersect F . If S ⊂ M \ f(S1) is a surface, then its
intersections with F satisfy

S · S ≡ S · F mod 2

since this equation is satisfied in M . If S is the surface given by the null
homology D of f together with the core of the newly added handle, then
S ·F = 0. Now since we chose the framing of f(S1) for the surgery in a
way such that M ′ \ F admits a spin structure, the surface S ⊂M ′ \ F
satisfies S · S ≡ 0 mod 2. Clearly, K can be pushed off itself, so that
we have K ·K = K · F = 0.

We have shown that the equation

S · S ≡ S · F mod 2

holds on surfaces whose homology classes generate H2(M ′). Thus, F is
still characteristic.

The Arf invariant of F does not change as well: for every circle C ⊂ F ,
we may choose a surface D bounding C which does not intersect f(S1)
by transversality. Clearly, after surgery on f(S1), all of the numbers
D · F , Self(C) and O(D) are preserved. �

Proof of Theorem 2.9. We want to prove that a closed, oriented mani-
fold M with H1(M) = 0 and a characteristic surface F fulfills

Arf(F ) = (σ(M)− F · F )/8 mod 2.

By Lemma 2.12 we can do finitely many surgery steps away from F to
arrange that M is simply connected without changing the fact that F
is characteristic or Arf(F ).

Notice that both sides of the equation are additive with respect to
the pairwise connected sum. Luckily, Wall calculated the Grothendieck
group of simply-connected 4-manifolds with respect to CP 2.

Theorem 2.13 (Wall, [4], 4.4 on page 148). Let M be a simply-
connected 4-manifold. Then there are integers k, l,m, n such that

M]kCP 2]l(−CP 2) ∼= ]mCP 2]n(−CP 2).
11
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A characteristic surface for CP 2 is CP 1 with its standard embedding,
and if has 0 Arf invariant, self-intersection 1 and signature 1, so that the
formula is satisfied. A similar statement holds for (−CP 2,−CP 1), hence
we can apply Wall’s theorem and only have to prove the statement for a
characteristic surface in ]mCP 2]n(−CP 2). Up to cobordism (which nei-
ther changes the Arf invariant nor self-intersections), the characteristic
surface is a connected sum of surfaces in the CP 2s and −CP 2s, so we
can apply additivity of the formula with respect to pairwise connected
sums to reduce to the case of a characteristic surface in CP 2 or −CP 2

respectively. Both cases are equivalent, as can be seen by changing
orientations, so we only have to consider the case of CP 2.

A characteristic surface in CP 2 corresponds to an odd class in
H2(CP 2), say s · [CP 1]. It is represented by the zero set of a generic
homogenous polynomial of degree s. It is convenient to choose the
following algebraic curve C:

{[x : y : z]|xs − ys−1z = 0}.

This curve is not smoothly embedded, but we will cut out the only
singularity at [0 : 0 : 1] and replace it by something smooth2.

On the set where z 6= 0, we have the curve xs − ys−1 = 0. Let B
be a small ball around the origin with boundary S ∼= S3. Then S ∩ C
is a torus knot of type (s, s − 1): take B to be the ball with radius
2, consider the map S1 × S1 → B sending (z, w) to itself and observe
that the K(s− 1, s) := {(zs−1, zs)|z ∈ S1} is sent bijectively to the set
{xs− ys−1 = 0} ∩ ∂B. Pick a Seifert surface G ⊂ S for this knot. Then

Arf(F ) = Arf(G) = Arf(K(s, s− 1)).

It is not to hard to compute the Arf invariant of a torus knot. It will
be explained in Section 2.4. The result is

Arf(K(s, s− 1)) = (1− s2)/8 mod 2.

But

(1− s2)/8 = (σ(CP 2)− s[CP 1] · s[CP 1])/8 mod 2,

finishing the proof. �

Remark 2.14. Theorem 2.13 is also used as an input in the proof by
Freedman-Kirby [6]. In [7, p. 128], Matsumoto gives an easy proof of
this fact, using that the signature induces an isomorphism

σ : ΩSO
4 → Z

from the oriented cobordism group in dimension four to the integers.

2This still defines the same homology class as an algebraic curve close to C, e.g.
the zero set of xs − ys−1z + εys.

12
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2.4. Explanation of the knot-theoretic facts. We briefly explain
the calculation of the Arf invariant of a torus knot.

Let (p, q) be coprime integers. The (p, q)-torus knot is the knot
represented by the embedding

fp,q : S1 ↪→ S1 × S1 = T 2 ⊂ S3

sending t to (tp, tq), where T 2 ⊂ S3 is a standard unknotted embedding,
e.g. (z, w) 7→ (z, w)/

√
2. In the following, we will call this knot Kp,q.

We can compute the Alexander polynomial of the (p, q)-torus knot
to be

∆Kp,q =
(1− t)(1− tpq)
(1− tp)(1− tq)

.

This is shown in [10, p. 178].
Hence, we can calculate the Arf invariant by plugging in −1 as shown

in [5, p. 544], namely for a knot K with Alexander polynomial ∆K we
have

Arf(K) =

{
0 if ∆K(−1) ≡ ±1 mod 8;

1 if ∆K(−1) ≡ ±3 mod 8.

First assume p and q to be odd:

∆Kp,q(−1) =
4

4
= 1.

Assuming p to be even and q odd, and using de L’Hospitals rule:

∆Kp,q(−1) =
−(1− (−1)pq)− (1− (−1))pq(−1)pq−1

−p(−1)p−1(1− (−1)q)− q(−1)q−1(1− (−1)p)
=

2pq

2p
= q.

Thus,

Arf(Kp,q) =

{
0 if p, q both odd or one even and the other ±1 mod 8;

1 if one of p, q is even and the other ±3 mod 8.

In particular, the Arf invariant of the torus knot of type (s, s − 1)
with s odd is

1− s2

8
mod 2.

Indeed for s odd s ≡ ±1 mod 8 if and only if 1−s2
8
≡ 0 mod 2 and

s ≡ ±3 mod 8 if and only if 1−s2
8
≡ 1 mod 2.

Appendix A. Representing homology classes by embedded
surfaces

In the following, we want to show how homology classes in 4-manifolds
can be represented by surfaces.

Denote by ΩSO
2 (M) the bordism group of oriented surfaces embedded

in M , where two elements F0, F1 are bordant if there exists an oriented
3-manifold V embedded in M × I such that ∂V is the disjoint union of
F1 × 1 and F0 × 0 with opposite orientation. Here the sum is defined

13
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as follows: we can make two embedded surfaces transverse, and at each
intersection point take the connected sum.

LetMSO(2) be the Thom space of the universal bundle overBSO(2) =
BU(1) = CP∞. Thom observed in [2, p. 50], that MSO(2) is again
CP∞. The Pontryagin-Thom construction yields, for a smooth oriented
4-manifold, a bijection

τ : ΩSO
2 (M)→ [M,MSO(2)].

We describe τ . Let ν be the normal bundle of an embedded surface in
M , identified with a tubular neighborhood. Now ν is classified by a
bundle map into the universal bundle, and sending M \ ν to the point
at infinity yields a map M →MSO(2). Here we used that the Thom
space of a bundle over a compact space can be constructed by taking
the one point compactification of the total space of the bundle.

Since there is a canonical homeomorphism MSO(2) ∼= CP∞, we can
identify homotopy classes of maps f ∈ [X,MSO(2)] with complex line
bundles over X for any CW-complex X. Thus, taking the first Chern
class of this bundle induces a map [X,MSO(2)]→ H2(X). Explicitly,
this map is given by pulling back a generator of H2(MSO(2)) ∼= Z.

Our goal is to prove the following theorem, which is a reformulation
of [13, Theorem II.1.1].

Theorem A.1. Let M be a closed, oriented, smooth 4-manifold. Then
the following is a commutative diagram of isomorphisms:

ΩSO
2 (M) [M,MSO(2)]

H2(M) H2(M)

τ

e c1

PD−1

Here e sends an embedded surface to the image of its fundamental class,
PD−1 is the inverse of capping with the fundamental class of M and c1

is the first Chern class.

Proof. Note that τ , c1 and PD−1 are isomorphisms respectively by
the Pontryagin-Thom theorem, MSO(2) being a K(Z, 2) and Poincaré
duality. Hence, it suffices to show that the diagram commutes to finish
the proof. We will show c1 = PD−1 ◦ e ◦ τ−1. The inverse of τ can
be described as follows: since M is 4-dimensional, [M,MSO(2)] =
[M,CP 2] and we can assume that a map f : M → CP 2 is smooth and
transverse to CP 1. Now τ−1([f ]) = [f−1(CP 1) ↪→ M ]. The map f
classifies a complex line bundle over M and the first Chern class of a
complex line bundle is also the Euler class of this bundle. Now recall
that the Euler class of an oriented bundle over an oriented manifold is
always Poincaré dual to the fundamental class of the intersection of a
generic section with the zero section, by [8, Chapter VI, Proposition
12.8]. �
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In: Commentarii Mathematici Helvetici 28 (1954).

[3] Michel A. Kervaire and John W. Milnor. “Groups of Homotopy
Spheres: I”. In: Annals of Mathematics 77.3 (1963), pp. 504–537.
url: http://www.jstor.org/stable/1970128.

[4] C.T.C. Wall. “On simply connected 4-manifolds”. In: Journal
London Math. Soc. 39 (1964).

[5] J. Levine. “Polynomial Invariants of Knots of Codimension Two”.
In: Annals of Mathematics 84.3 (1966), pp. 537–554. issn: 0003486X.
url: http://www.jstor.org/stable/1970459.

[6] Michael Freedman and Robion Kirby. “A geometric proof of
Rochlin’s theorem”. In: Proceedings of Symopsia in Pure Mathe-
matics 32 (1978).

[7] Lucien Guillou and Alexis Marin, eds. A la Recherche de la Topolo-
gie Perdu. Vol. 62. Progress in mathematics. Birkhäuser, 1986.
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