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Block bundles: I 

By C. P. ROURKEand B. J. SANDERSON* 

Introduction 

The purpose of this and two subsequent papers is to establish for the 
piecewise-linear category a tool analogous to the vector bundle in the dif- 
ferential category. 

The fundamental problem is this. Given a smooth submanifold M n  c Qn", 
one can define a normal bundle to M in Q. I t  is a q-vector bundle uniquely 
determined up to isomorphism. What is the correct PL analogue of this result? 

The answer we present here is the normal block bundle, and the classic 
construction is the following. Suppose M, Q are triangulated by complexes 
K, L with K full in L. Form the dual complexes K*,  L*. Each t-cell a E K* 
is contained in a unique ( t  + 9)-cell of L* ,  called the block over a. These 
blocks fit together to form a normal block bundle to M in Q. 

In 9 1, we give the precise definition of a block bundle and prove several 
fundamental results. We also define Cartesian product, Whitney sum, and 
induced block bundle. 

In 5 2, we construct a universal block bundle using an analogue of the 
grassmannian. 

In 5 3, we introduce the semi-simplicial group FL~,which plays the same 
role for block bundles as the orthogonal group for vector bundles, and we as- 

sociate a principal I%~,-bundle to each block bundle having a simplicia1 base 
complex. 

In § 4, we prove existence of normal block bundles and a "tubular neigh- 
bourhood" theorem which implies uniqueness. This leads to the classification 
of regular neighbourhoods of manifolds. 

In 3 5 , we are concerned with connections with other types of bundle, and 
we have obstruction theories for the existence of normal disc-, plane-, and 
micro-bundles. 

In 3 6, we give an obstruction theory for the problem of smoothing a PL 

submanifold of a differential manifold. 
In future papers, we will prove the transversality theorems announced in 

[14], and investigate the groups of PL immersions and embeddings of spheres 
* The second named author was partially supported during the  summer of 1965 by 

the Centro de Investigacion del I.P.N., Mexico. D.F. 
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in spheres, with and without normal bundle, etc. (cf. Haefliger [3], Levine 1121). 
Since this paper was written, we have proved that  normal microbundles 

do not always exist in the PL category (see [14B]); thus block bundles appear 
to be the best possible bundle theory for this category. The normal block 
bundle forms a natural extension of the existing most powerful PL tool, 
namely the regular neighbourhood. 

Notation 

We work in the category of polyhedra and piecewise linear (PL) maps. If 
no statement is made to the contrary, all maps and spaces are in this category. 
In particular, we use "homeomorphism" to mean an isomorphism in this 
category. 

A polyhedron is a pair (X,  3)where X is a topological space and 3a 
(maximal) family of PL related locally finite triangulations. For a more general 
definition, see Zeeman [19]. If t: K -  X is a triangulation of X,  then we 
write I K I = X. Also, for obvious reasons, we confuse the space X with the 
polyhedron (X,  3). 

We have the following standard objects; euclidean n-space Rn ,  which 
may be identified with the n-fold Cartesian product of R'. There are inclu- 
sions R n  c Rna c . . . , and R- is the topological union. Of course R" is not 
a polyhedron but i t  has a "polystructure", see 1191. The n-cubs In= 

[ - 1,+ 11" cRn,  and the uni t  interval I= [O, 11. The ( n  - 1)-sphere8"-'= in 
or a'l", the boundary of In.The .n-simplex A" cR n  and A, = cl(An-An-'). An 
n-ball or cell (n-sphere) is a homeomorph of I"(Bn). 

Let X, Y be polyhedra. An isotopy of X i n  Y is a level preserving 
embedding F: X x I- Y x I. An isotopy of X is a level preserving home- 
omorphism F: X x I-X x I such that  F I X x (0) = 1(the identity map). 
(Note the distinction between an isotopy of X and an isotopy of X in X) .  An 
ambient isotopy of X i n  Y is an isotopy of X in Y which is the restriction of 
an isotopy of Y. An isotopy (ambient isotopy, etc.) of X mod a subpolyhedron 
X', is an isotopy F such that  F, I X' = F, I X'  all t E I. 

An n-manifold is a polyhedron each point of which has an n-ball neigh- 
bourhood. All embeddings of manifolds will be assumed to be locally $at (i.e., 
the image is a submanifold). Let M", &"+"be manifolds, then an embedding 
f:M -Q is proper if f-'(a&) = aM, and admissible if f-'(a&) is an ( n  - 1)-
dimensional submanifold of aM. Let M c Q be a proper submanifold. A collar 
of ( a s ,  aM) in (Q, M )  is an embedding h: (a'&, a'M) x I -+ (Q, M )  such that  
h / (a&, a'M) x (0) = 1and h-'M = dM x I. There are similar definitions of 
collars in more general situations. Collars always exist 1181. 
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By a complex, we mean a collection K of cells which cover a polyhedron 
X satisfying; 

( i ) o ,  z E K implies a'o, o n z are unions of cells in K. 
( i i )  i n t o  n i n t z  = 0. 

Again we write 1 K 1 = X. If K', K are complexes such that  1 K' I = I K I ,  then K '  
is a subdivision of K if, whenever a E K', there exists z E K such that  1 o I c 1 z I 
(here a and z are identified with the subcomplexes they determine). It can be 
shown that  any complex K has a subdivision given by a triangulation of I K I .  
If K and L are complexes, then K x L is a complex, and, if J is a subcomplex 
of K (JcK ) ,  and J' a subdivision, then J' f K (defined by a E J' + K if and 
only if o E J' or, o E K and I J1 n int I o 1 = 8)is also a complex. 

A collapse from X to Y is written X \ Y, and an elementary collapse 
X % Y as usual (see Zeeman [I91 for details). 

We use the terminology c.s.s. set (or complex) in its usual sense (see, for 
example, Kan [9A]), in particular, a c.s.s. set always possesses degeneracy 
functions, we also use the terminologies pointed c.s.s. set, c.s.s. group, c.s.s. 
map, etc. In our treatment of semi-simplicia1 sets, we will rely on our note 
[14C] which showed how to work without assuming the existence of degener- 
acies. A semi-simplicial set with no degeneracy functions will be called a A- 
set, similarly there are pointed A-sets, A-groups, A-maps, etc. See [14C] for 
the precise definitions, and also for notions of homotopy equivalence, and an 
analogue of J.H.C. Whitehead's theorem. 

1. Block bundle theory 

A q-block bundle ig/K consists of a total space E(5) and a complex K such 
that  1 K 1 c E(t),satisfying 

( i ) For each n-cell oi  E K,  there exists an ( n  + 9)-ball Pi c E(5)such that  

(Pi,oi) E In).( I n + q ,  

Pi is called the block over oi. 
( ii ) E(E)is the union of the blocks Pi. 
(iii) The interiors of the blocks are disj0int.l 
(iv) Let L = a, n oj ,  then pi n pj is the union of the blocks over cells 

of L. 
Block bundles tq ,  vq/K are isomorphic, written 5 r 7, if there exists a 

homeomorphism 

By an oversight, this condition was omitted from our announcement [14], we are  
indebted to R.Z. Goldstien for  pointing out the  omission. 
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such that  h I K = 1 and h(P,(E))= Pi(v)  for each oi E K. 
Eq/K is trivial if i t  is isomorphic with the trivial block bundle cq/K, where 

E(&q/K)= I K I x Iq and Pi(cq)= a, x Iqfor each a, E K. 
If L cK and E/K, then the restriction E I L is defined by Pi(E I L )  = P i ( [ )  

for each a, E L. 
Let a E K and E/K. We may also regard G as a subcomplex of K. An 

embedding 

h:o x E(E a)c E(%)I" I 

is a chart for E if i t  is an isomorphism of ~ q / owith E I a. An atlas for Eq/Kis 
a collection {hi),,,, of charts. 

THEOREM1.1. Given tq /K  such that I K I r In,  then E q  r cq. 
The proof of 1.1 is by induction on n. We shall assume the result in 

dimensions less than n and mark theorems depending on this assumption with 
a star. 

LEMMA1.2. Suppose (B;", B;) E (I"+', I") i = 1,2,  and h: B,"'~U BT.+ 

B,"+'U B," i s  a homeomorphism (hB: = B,"). Then there exists a homeomor- 
phism h': B;+q -B:+q extending h. 

For a proof see [19;Lem. 181. This lemma is needed to prove the follow- 
ing key proposition. 

PROPOSITION Suppose I K I r I", and K has just one n-cell on. Let 1.3." 
a"-I be any ( n  - 1)-cell i n  K ,  and let L be the subcomplex of K consisting of 
all cells except a" and a"-'. Suppose given Eq/K and an isomorphism 

t: E(cq/L)---+ E(Eq/ L ). 
Then t extends to an isomorphism -
t': E(cq/K) E(Eq/K). 

PROOF. Consider (E(EI L ) ,  L) .  It is an unknotted ball pair by hypothesis. 
Similarly ( , h n t q  - int (E([I L ) ) ,  an-'), where the block over a", is an 
unknotted ball pair by [8,Cor. 81, since i t  is the complement of the first pair 
in the unknotted sphere pair (,hn+q,6"). Hence, by Lemma 1.2, there is a 
homeomorphism t,: d(on x Iq)- extending t and the identity on o"-l., h n t q  

Let ,Bntq-l be the block over a"-'. By Theorem 1.1, there exists an 
isomorphism 

h: 0 % - 1  x Iq -E(%I an- l )  = p+q-1, 

and i t  follows that  ,Bmtq-' is a regular neighbourhood of on-' in M = ,h"+q -

int E(E / L )  which meets the boundary regularly. Similarly tl(on-' x F) is a 
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regular neighbourhood of om-'in M, and both meet the boundary regularly in 
the same set. (see Figure 1.) 

Figure 1 

Hence i t  follows from [9] that  there is an isotopy F, of M mod M IJ on-', 
such that  F,tl(an-' x Iq)= ,Bn+q-'. Now Fltl I M, t on L x Iq,and the identity 
on K, extend by Lemma 1.2 to the required isomorphism 

t': E(cq/K) ---+ E(Eq/K). 

PROPOSITION Any Eq/K,dim K S n ,  has a n  atlas. 1.4." 
PROOF. We have to show that  E q  1 o is trivial for each o E K. If dim o < n, 

the result follows a t  once from Theorem 1.1. Let an be an n-cell of K, and 
let on-' be an ( n  - 1)-cell in 6". Define L as in Proposition 1.3; E I L is trivial 
by Theorem 1.1, and any trivialization extends to a trivialization of E I an by 
Proposition 1.3, completing the proof. 

DeJinition. Suppose K' is a subdivision of K and E/K. E'/K' is a subdi- 
vision of 5 if , B i ( E )  = U,Bj(E'),where the union is taken over all j such that  
C T ~ EK', and Iojl c Ioil. 
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Now suppose given E/K, L c K and ?/L' a subdivision of E I L. We define 
rj + E / L '  + K by E(7  + 4)= E(5) and 

THEOREM1.5.* Suppose g iven  E/K a n d  K' a subdivis ion o f  K, dim K 5 n. 

T h e n  there exis ts  a subdivis ion ['/K' o f  5 .  
PROOF.Suppose [,/(K')'is a subdivision of 6 ( K T ,  where K '  denotes the 

r-skeleton of K. We wish to  extend this subdivision over Kr+l. Without loss 
of generality, we may suppose KT+'  contains a single ( r + 1)-cell, and K T  is 
i t s  boundary. Now [, + E/(Kr)' + KT" is trivial by Proposition 1.4, and a 
choice of trivialization determines E,,,. 

R e m a r k s .  (a) Results 1.4, 1.5, and 1.6 (below) are true for dim K = 

once the induction is complete. 
(b) Uniqueness of subdivision up to  isomorphism will be proved later 

(Theorem 1.9), and uniqueness up to isotopy in 94. 

THEOREM1.6.* Suppose g iven  E:/K, i = 1,2, dim K S n and  I K I \ L / 
( L  a subcomglex o f  K ) .  T h e n  a n y  i s o m o r p h i s m  

h : E(E1I L)  -E(E2I L )  
extends to  a n  i s o m o r p h i s m  

h:E(t1)-E(t2). 
PROOF. Let K', L' be subdivisions of K ,  L such that  there is a simplicia1 

collapse K' \ L', by [19; Th. 41 applied to the (finite) complexes cl ( K  - L),  
cl (K - L) n L. 

Let E:/K' be a subdivision of El (by Theorem 1.5), and let g/L' be the sub- 
division of [,1 L determined by [: and h .  Then again by Theorem 1.5, there 
is a subdivision [:/K' of < + &/L' + K. If we prove the theorem for [;, i t  will 
follow for Ei on taking unions of blocks. We prove this by induction on the 
simplicia1 collapse. 

Now if K: $ K:,,, then we can extend an isomorphism of E: I K:,, with 
6;I K:+, to  an isomorphism of E: 1 K: with EL 1 KL by Proposition 1.3, since 
6;I cl (K: - K:+,) is trivial by Proposition 1.4. 

COROLLARY1.7.* I f  I K I \ 0, dim K 5 n, t h e n  a n y  E/K i s  t r i v i a l .  In 
particular, we have Theorem 1.1in dimension n, completing the induc t ion .  

COROLLARY Suppose g i v e n  Eq, vq/K x I and  a n  i somorphism 1.8. 

h :  E(E 1 K x (0))-E(7  I K x (0)). 

T h e n  there i s  a n  i s o m o r p h i s m  
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h': E(5) -E(7) 
which extends h. 

PROOF. Let o e K. Then o x I\ o x (0) U d. x I ,  and the result follows 
from Theorem 1.6 by induction up the skeleton of K. 

THEOREM1.9. Suppose E', 7' a re  subdivisions of t/K. Then ['and  7' a re  
isomorphic. 

PROOF. Define E x I / K  x I by taking E(E x I )  = E(E) x I ,  and blocks 
P, x A over o i  x A, for A = (01, {I), I. 

Subdivide E x {O)/K' x (0) to 5' x (0) and [ x {l)/K1x {I) to  7' x {I), 
and extend over K' x I,using Theorem 1.5, to  give 5/K' x I. 

There exists an isomorphism h: E(t' x I)-E(5) extending the  identity 
on E(E'x {0}) by Corollary 1.8. Restricting h to E(P x {I}) gives the required 
isomorphism. 

We can now make the  following definition. 

Definition. Suppose given 5/L and v/K with I L I = 1 KI. We write 
t - 7 ,  t is equivalelzt to  7,  if there exist subdivisions t', 7' such tha t  E' r 7'. 

The relation is symmetric and reflexive (trivially), and transitive, for 
suppose t / K  - 7/L - C/J. Then, by definition, there exist t' z vl/L1 and 
5' z v,/L,. Let  L' be a common subdivision of L, and L,, and let $, 7: be sub- 
divisions of v,, 7, over L'. Now 7: = 7; by Theorem 1.9, since they are both 
subdivisions of 7 ,  and since they are also subdivisions of 51 and 5, the  result 
follows. 

Definition. Given E/K', K'a subdivision of K ,  the  amalgamation bundle 
7/K is formed by defining 

Pi(?) = UPj(E) 

where the union is taken over all o; e K' such that  I o'j I c I ai I .  It follows 
from Theorem 1.1 tha t  (Pi(v), oi) is an unknotted ball pair. Thus condition 
( i ) of the  definition of a block bundle is satisfied. Conditions ( i i ) ,  (iii) and (iv) 
are easily checked. Note tha t  whilst amalgamation and subdivision are inverse 
operations, subdivision is not well defined on representatives but only on iso- 
morphism classes (Theorem 1.9). 

Now let Iq (K)  denote the set of isomorphism classes of q-block bundles 
over K ,  and Iq(X)the set of equivalence classes over X. Associating to  each 
block bundle i ts  equivalence class defines a function a,: Iq(K)-Iq(lK I). 

THEOREM1.10. Let X = I K 1 ,  then 

a,: Iq(K)-Iq(X) 

i s  a bijection . 
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PROOF. TO prove a, is onto, suppose given E/L with L / = X. Let K' 
be a common subdivision of K and L ,  and let f'/K' be a subdivision of E. 
Amalgamating blocks, we have C/K with i: -- [. 

Now suppose given E/K, 7/K such tha t  E -- 7 .  An isomorphism of t' with 
7' is also an isomorphism of 6 with 7 , and therefore a, is injective. 

Remark. The bijection ay1a,: I,(K) - I,(L) for I K I  = I L I, may be 
described as follows. Take any common subdivision J of K and L, subdivide 
over J and then amalgamate. 

We now define further operations on block bundles exhibiting a strong 
analogy with vector bundle theory. 

Restriction. Let u / X  be an equivalence class, and let Y be a closed sub- 
space of X. Then there exist triangulations of X with Y a subcomplex, and the 
restriction u 1 Y is a well-defined equivalence class by Theorems 1.9 and 1.10. 

Remark. Restriction over an arbitrary subspace will be defined below, as 
a special case of induced bundle. 

Cartesian product. Suppose given [/K, 7/L. The Cartesian product 
E x 7/K x L is defined by 

( i ) E(%x 7) = E(E)x E(7)  
( i i )  Pij([ X 7) = Pi([) x Pj(71, o i  E K ,  o j  E L.  
We leave i t  to the reader to  check tha t  this is indeed a block bundle, and 

tha t  the operation is well-defined on equivalence classes. 
We denote the product of u / X  with the class of cO/K ( K = Y) by u x Y. 
Whitney sum. Given equivalence classes u/X, v/X, the  Whitney sum 

u @ v/X is defined to be u x v 1 A, where A = {(x,x) E X x X )  is identified 
with X by the  diagonal map. 

Induced bundle. Let f: X-- Y, and suppose given u/  Y. The induced class 
f *u /X is defined by 

f * ~  ~ I r f ,= x x  
where rf = {(x, fx) E X x Y} is identified with X by the  projection. 

THEOREM1.11. Let u / X  x I be a n  equivalence class, then 

PROOF. Pick a representative [/K x I for u. It is unique by Theorem 
1.10, and the  result follows by Corollary 1.8. 

From the  definition of induced bundle and Theorem 1.11we have 

COROLLARY1.12. Let f,  g: X- Y be homotopic maps, and let u / Y  be a?z 
equivalence class. Then f*u= g*u. 
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A t  this point i t  is not clear tha t  (fg)* = g*f *, and in order to prove this 
fact, we introduce another definition of induced bundle, which is also needed 
in 8 2. 

Let K be a simplicial complex, and suppose [g/K is a subbundle of the in- 
finite dimensional trivial bundle E"/K. More precisely, E(E) c K x R", and 

E(t)n oi x R" = Pi(E) each oi E K. 

Let f:L -K be a simplicial map. We define f "/L as follows. 
( i ) E(f") = (f x 1)-lE(E), where f x 1: L x R" -+K x R". 
( i i )  Pi(f # E )  = oix R" n E (  f#E), each oiE L.  
The following proposition links the  two definitions, and together with 

Theorem 1.10, proves that  f $6 does not depend on the embedding of E(E) in 
K x R". 

PROPOSITION1.13. Suppose E/K i s  a subbundle of E"/K, and f:  L -K a 
simplicial map. Then f # E  i s  a member of the equivalence class of f *u, 
where u i s  the equivalence class of 6. 

PROOF. Let n: L x K -+K be the  projection on K ,  and let ( L  x K) '  be 
a subdivision of L x K on which n is simplicial, and rf:L - ( L  x K) ' ,  
rf(x) = (x, fx), is simplicial 119; Lem. 11. Consider the commutative diagram 

f x 1L x R W - K x R "  
\ /

r f x l \  / n x l  

\/ 
( L  x K)'  x R" , 

Then rf x 1(E(f "1) is the restriction of n#E to  f (L),  and indeed, rf x 1 is 
an isomorphism between these two bundles. Thus i t  suffices to  prove tha t  
n#[ - L x E. But E(n#E) = E ( L  x E), and the block of L x 6 over o x T ,  

o E L,.s E K ,  is a union of blocks of n", which proves the result. 

Remarks. ( i ) In 8 2 we shall prove tha t  any block bundle is isomorphic 
with a subbundle of E". 

( ii ) Suppose K c L are simplicial complexes, and E/L, and let i :  K -L 
be the  inclusion. Then i # E  r E 1 K. Hence restriction bundles are a special 
case of induced bundles, and we can define restriction over an arbitrary subset, 
coherently, as the induced bundle by the inclusion map. 

(iii) Since i t  is clear tha t  (fg)# = gtf" and since any map is homotopic to  
a map which is simplicial with respect to  some triangulation, we have, by 
Corollary 1.11and Proposition 1.13, 

COROLLARY1.14. (fg)* = g*f * for any maps f and g. 
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2. The classifying space B P ~ ,  

In this section, we construct a locally finite simplicial complex BFL,and 

a universal block bundle Y ~ / B P ~ , .  
Let $9, be the c.s.s. complex whose k-simplexes are subbundles of &"/Ak 

([P/A" gq  if for each face AQf Ayincluding Ak), E([) n A" R" = E([ / A")). 

Now let h:Az-Ak be a monotone simplicial map, and suppose o c 9p). 
Then k#o c 9bz1,which defines the associated operation. 

Let K be a locally finite simplicial complex, and suppose an ordering of i ts  
vertices has been chosen (so tha t  each simplex is totally ordered). K may now 
be regarded as a A-set with typical k-simplex a monotone simplicial embedding 
o:Ak-4 K. K also determines a c.s.s. set K with typical k-simplex a monotone 
simplicial m a p  o: A" K. A A - m a p  f:K -+ g g  is a dimension preserving func- 
tion which commutes with the face maps (i.e., regarding A-sets as contra- 
variant functors, a A-map is just a natural transformation). Note tha t  f and 
the degeneracies in 9, determine a unique c.s.s. extension of f from K to 9,. 

PROPOSITION2.1. Let f:A h  Iq-4hkx R" be a n  i s o m o r p h i s m  onto  a 
subbundle .  T h e n  there  i s  a n  e x t e n s i o n  f': Ak x I q  -Ak x R", w h i c h  i s  a lso  
a n  i s o m o r p h i s m  on to  a subbundle .  

PROOF.First extend f to a map which is the  identity on Ak x (0). Then 
shift f into general position keeping Ak x IgU A' x (0) fixed [19; Ch. 61. This 
replaces f by an embedding with the  required properties. 

COROLLARY S u p p o s e  g i v e n  [q/K a n d  L c K ,  s i m p l i c i a l  complexes .  2.2. 
T h e n  a n y  i s o m o r p h i s m  f:E([ / L )  -L x R" on to  a subbundle  ex tends  t o  a n  
i s o m o r p h i s m  f':E ( t )  -K x R" on to  a subbundle .  

PROOF. The isomorphism is constructed inductively working up the  
skeleton of K - L using Propositions 1.4 and 2.1. 

COROLLARY 9, i s  a K a n  complex .  2.3. 
PROOF.Any block bundle over A, is trivial by Theorem 1.1, and so the  

result follows by 2.2 with K = A%nd L = A,. 
A m a p  f: X- 9,, where X is a polyhedron, is an ordered triangulation K 

of X and a A-map f: K - 9,. A homotopy  is a map of X x I to  9,. Let 
[X, 9,] denote the  set of homotopy classes; (cf. [14C] for the connection 
between this and the  usual definition of homotopy in c.s.s. sets). 

THEOREM2.4. T h e r e  i s  a b i j ec t ion  

9:[X, 9,l -+ Iq (X). 
PROOF.Let f:K--9, be a A-map with / K / = X, and let o k  c K. ok x Rmcan 

be identified with A% RR" by means of the ordering of the vertices of K. Thus 
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fo can be regarded as a subbundle of o x R", and so f determines a subbundle of 
K x  R". This defines q. Now suppose f: L-9, is a homotopy of X in 9,. By 
the same construction, this gives a block bundle over L ,  and by Theorem 1.11, 
the restrictions over X x {0), X x (1) are equivalent. Thus q is well defined. 

Corollary 2.2 implies that  g, is onto. To prove g, is 1-1, we need the  fol- 
lowing lemma, from which the result follows by 2.2. 

LEMMA2.5. Suppose KO, K, are triangulations of X x {0}, X x {I} 
respectively, then there i s  a triangulation L of X x I extending KO, K,. 

PROOF. Let K be a common subdivision of KO and K,, and triangulate 
X x {1/2) by K. We now have a cell complex consisting of simplexes of KO, 
K,, and K,  and cells o x [O, 1/21, o c KO, and o' x [1/2, I] ,  o' c K,. This com- 
plex can be subdivided to  the  required simplicial complex L by inductively 
starring a t  the levels X x {1/4), X x (314). 

PROPOSITION2.6. Ig(Bm)i s  countable. 
PROOF.Each block bundle iq/K, I K / = Zm, has a finite description, since 

E(E) may be triangulated so that  the  blocks and simplexes of K are subcom- 
plexes [19; Th. 11. Thus there are only a countable number of block bundles 
up to a homeomorphism of total space, which preserves blocks and simplexes 
of K setwise (and therefore need not be the identity on 8,). Let h: E(i)-4 

E(7) be such a homeomorphism, then, by definition of ( )#, 6 r (h j8")#7, and 
since h 2: 1 ,  the result follows by 1.12. 

It follows from Proposition 2.6 tha t  the  homotopy groups ~ ~ ( 8 , )  are all 
countable. We now proceed as in [13]. Using 117; Th. 131, one can show tha t  

there exists a locally finite simplicia1 complex B ~ L ,and a homotopy equivalence 

f:BPX,-~, . 
Let -~BPL,be the bundle given by f and Theorem 2.4. 

Now let g: X- I B P ~ ,I be a map. Then we have the  induced bundle 
g*rgjX defined up to  equivalence. By Corollary 1.12, g*rg depends only on the  

homotopy class of g. Write [X, BPL,] for the set of homotopy classes of maps 

of X into / B f i , ~ .  The above construction gives a function 

T(X): [X, BFLg] -Ig(X) 

which, by Theorem 2.4, is an isomorphism of sets. 
Let  f:X - Y be a map; define I,(f): I,(Y) -- I,(X) by I,(f)u = f *u. 

Then T is a natural transformation by Corollary 1.14, and we have proved 

THEOREM2.7. The t rans  formation 
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given by T(g) = g*y, i s  a natura l  equivalence of functors. 

3. The associated semi-simplicial principal bundle 

In this section, we associate a semi-simplicial principal bundle with a 
block bundle, and construct a universal principal bundle. 

Let TL,be the  A-group whose k-simplexes are self-isomorphism of c4/Ak. 
Face operators are defined by restriction. Degeneracy operators can be 
defined, but the natural choice is not piecewise-linear (by the standard mis- 
take), and, if modified, fails to give homomorphisms. For more detail see [14A; 

9 21. It follows from the fact  that  Ak 1 r I A, x 11, that  FL,satisfies the  
extension condition. 

Now let K be a simplicial complex with ordered vertices (so tha t  the 
vertices of any simplex are totally ordered), and suppose given a block bundle 
6°K. 

The associated principal bundle 6, is defined as follows 

( i ) The total A-set is defined by 

Ei"= {hi; hi: As x I,-E(6 I o,) is a chart for 6) 

(hi 1 As x (0 ) is the identification with oi determined by the vertex ordering). 

( i i )  The projection p: Ei"--,Kis)is given by p(hi) = oi. 
(iii) The action E("x ~ L F )-E("is composition. 


The group PZ~)
premutes the  elements of Ei" freely with orbit set K'", 
and i t  follows tha t  6, is indeed a A-principal bundle with base K,  and if 

dim K = k, the group of 6, is the k-skeleton PZ,k. 
Conversely, given E,, a principal bundle with base K and group PX,k, we 

construct a block bundle over K as follows. Let s: K -E(E,) be any dimen- 
sion preserving function satisfying ps = 1. Now d,s(ot) = s(d,ot)-F(i, o t )  for 

some uniquely determined FEFLF-').Take the topological sum of trivial 
bundles for each o E K. Paste these together by identifying each cq/ldio 
with (&,lo) I dio by the isomorphism given by F ( i ,  o)  and the ordering of the  
vertices of o. It may be checked that  these identifications are compatible 
when one passes to a face of o and this defines a block bundle iq/K. 

Let I P t ( K )  be the set of isomorphism classes of principal ~2 ; -bundles  
over K (dim K = k). The constructions above are inverse and (cf. Milnor [13]) 
the following is easily proved. 

PROPOSITION Let K k  be a simplicia1 complex with ordered vertices. 3.1. 
The process of assigning to a block bundle i t s  associated principal  bundle 
determines a bijection 
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Now let K be the  c.s.s. complex determined by K (an s-simplex of K is a 
monotone simplicia1 map X: A" K ) .  We now show how to  associate a prin- 

cipal PZ,-bundle (base K )  with a subbundle [/K of &"/K (recall tha t  any 
bundle is isomorphic with a subbundle of E" by Corollary 2.2). 

DEFINITION. The principal P?,-bundle E with base K associated with a 
subbundle [q/K of E"/K is defined by 

( i )  = {hi; hi: As x I,-X:([) is an isomorphism (where Xi E K'")).  
( i i )  p: E("-KK'" is given by phi = Xi. 

(iii) E("x FA!) --+ E(" is composition. 

Remark. A principal PZ,-bundle over K determines a principal PZ,k-
bundle over K (dim K = k) by restriction and hence a block bundle cq/K. We 
shall show that  this process induces a bijection on isomorphism classes. 

Owing to the lack of degeneracies in PZ,, this isomorphism is difficult to 
construct directly, and in order to  do this, we introduce the universal principal 
bundle (cf. [14C] for an  alternative proof). 

Let vqbe the  A-set whose k-simplexes are block and zero preserving 
embeddings 

f : A h  I q - + A kx Rm 

(i.e., f ( A h  I,) n As x Rw= f (As x I,)for each face AQf Ak, and f 1 Ak x (0) 
= 1). Face operators are defined by restriction and degeneracies can be 
defined inductively by modifying the natural choice. 

The following is a direct consequence of Proposition 2.1. 


PROPOSITION (a) Any A-map f:Ak- v,.
3.2. vqhas a n  extension f': A" 
(b) pq i s  a Kan  complex. 
An action vqx PZ,- vqis defined by composition making vqthe total 

space of a principal FL,-bundle yq with base 9,, and an easy argument analo- 
gous to  the proof of Theorem 2.4 shows tha t  yGs a universal bundle, (using 
Proposition 3.2). 

Now let f:K -9, be a map. f (and the degeneracies in 9,) determine a 
unique c.s.s. extension f ': K -+ 9,, and conversely f' determines f. 

Let p / K ,  which is a subbundle of E", be the  bundle given by f and 

Theorem 2.4, then i t  is easy to see tha t  the  principal PZ,~and FAq bundles 
induced by f and f' respectively are isomorphic to  the principal bundles asso- 
ciated with [/K. 

Let IP,(K) denote the  set of isomorphism classes of principal FAq-bundles 
over K. Then we have proved 
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THEOREM3.3. T h e  process o f  a s s i g n i n g  to  a q-subbundle o f  E " ~ Ki t s  as-

sociated PL,-bundle over K detel-mines a bi jec t ion 

Iq (K)+ If'q(K) 

This completes the transition to principal bundles. 

4. Classification of regular neighbourhoods 

Suppose W c Qn7qis a proper submanifold of Q, and both M and Q are 
compact. We say Q is an abstract I-egular neighbourhood of M if Q \ M. 

Now suppose given El K ,  then by using an atlas for [, we see tha t  E(E) 
may be collapsed to K by induction on the blocks of E starting with the top 
dimension. 

Now suppose 1 K 1 = Mn; i t  follows easily from Theorem 1.1 tha t  E(E) is 
a manifold, and M c E(E)is a proper submanifold. Hence E([) is an abstract 
regular neighbourhood of M. 

In this section we prove the converse to  this, namely that  any abstract 
regular neighbourhood of K 1 = Mn is the total space of a block bundle over 
K (Theorem 4.3), and we prove uniqueness by proving a full analogue of the  
smooth tubular neighbourhood theorem (Theorem 4.4). These results, to-
gether with the classification Theorems of § 2 and 3, give a homotopy classi-
fication of regular neighbourhoods (Corollary 4.7). 

We begin by proving a stronger version of the uniqueness of subdivision 
theorem, 1.9. 

THEOREM4.1. Suppose  E', ~j'lK'are  subdiv is ions  o f  $/K a n d  t h a t  E' 1 L' = 

7' 1 L' (L' being t h e  induced subd iv i s ion  o f  a subcomplex L c K).  
T h e n  there  i s  a n  isotopy o f  E([)mod K U E([ 1 L) r e a l i z i n g  a n  isomor-

p h i s m  o f  [' w i t h  q', a n d  keep ing  t h e  blocks o f  E setwise  fixed. 
We will need the  following new machinery: 
Cel lu lar  shel l ing.  The complex K is said to  shell ce l lu lar ly  to L c K if 

we can collapse K to L by elementary collapses across n-cells of K. If I L is 
an n-cell of K ,  we simply say K shells cellularly, and in this case i t  follows 
that  1 K E In. 

LEMMA4.2. L e t  K be a cell complex  such  t h a t  1 K r In.T h a n  there  
ex i s t s  a subd iv i s ion  K '  o f  K w h i c h  shells  ce l lu lar ly .  

For a proof, see Zeeman [20; Lemmas 1 and 21. 
PROOFOF THEOREM 4.1. If oi is a cell of K ,  then any isotopy of 

E([ I Si)mod Gi may be extended to an isotopy of ,Bi(E)mod oa,  by using a 
collar of ( E 1 6 )  2 )  in ( ( 0 )  This remark enables us to use an inductive 
argument up the skeleton of K - L ,  and the theorem reduces to  the case 
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when I K 1 r I",K has one n-cell and I L 1 is its boundary. This case we prove 
by induction on n. 

Now suppose K"  is a subdivision of K'. Then by Theorem 1.5, there 
exist subdivisions E", 7"/K" of E', 7' such tha t  E" 1 L" = q" / L", and any 
isotopy of E([)mod K u E(E 1 L) ,  realizing an isomorphism of r' with q", also 
realizes an isomorphism of E' with 7'. 

From this and Lemma 4.2, we may assume tha t  K' shells cellularly, and 
induct on the number of steps of the shelling. If there are no steps (K' has 
one n-cell) there is nothing to prove, so let the first step be K' Sj K,. 

Figure 2 

We use the following notation (cf. Figure 2). cl (K '  - K,) = an n-cell a i ,  
oi n K, = an ( n  - 1)-ball A, ai n aK' = an ( n  - 1)-ball B,  A and B both being 
subcomplexes of K'. 

Now Pi(fl) and Bi(vr) are both regular neighbourhoods in E(E) of 
oi  u E(E1jB) mod K, u E(6 I ( L  - int B)), which meet the boundary regularly 
(recall that  E', 7' are both trivial by Theorem 1.1). Therefore there is an 
isotopy of E(E)mod K U E(E I L)  carrying Pi(fl) onto Pi(?'), [8, Th. 31. So we 
may assume that  Pi(fl) = 8,(q1). 

Now f '  1 A, 7' 1 A agree over A c  L' by hypothesis. Therefore by induction, 
there is an isotopy of E(E' 1 A) mod A U E(EfI A) realizing an isomorphism of 
E' 1 A with 7' I A. By a similar remark to that  a t  the beginning of the proof, 
we can extend this isotopy over E(E), keeping K U E(E ( L)  fixed. So we may 
assume that  E' I A = 7' I A. 

Now E' ( K,, 7' 1 Kl agree over aKl and K, shells cellularly in one less step 
than Kt.  Therefore by induction there is an isotopy of E(E' I K,) mod E(E1/ K,)U K, 
carrying f '  1 K, to 7'1 K,. Extending this isotopy by the identity over 
E(E1/ si)completes the proof. 

The following theorems are the main results of this section. 
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THEOREM4.3. (a) Le t  Qn+qbe a n  abstract regular neighbourhood o f  a 
compact m a n i  fold M", and suppose given complexes L C  K such that  (M,M) = 

( I  K l l  I L I ) .  
T h e n  there i s  a block bundle Eq/Kw i t h  E(E)= Q. 
(b) Suppose further that  rjq/L i s  given such that  E(7)cQ. 

T h e n  E m a y  be chosen so that  E / L = rj. 


THEOREM4.4. (a) Let  Mnc Vn+qbe a compact proper submanifold,  and 
(M, lk)= ( 1  K 1, / L 1 )  for complexes L c K. Suppose E(Eq/K), E(rjq/K) c V. 

T h e n  there i s  a n  isotopy of E(6) mod M in V realizing a n  isomorphism 
o f ;  w i t h  rj. 

(b) Suppose fur ther  that  E(E), E(7) meet 'Ciregularly, i.e., in E(6 I L) ,  
E(rjI L )  respectively. 

T h e n  the isotopy of (a) m a y  be taken  to be ambient.  
(c) Suppose fur ther  that  f I L = rj  I L. 

T h e n  the isotopy o f  (b) m a y  be taken  to be mod 'CiU M. 


Remark .  For the sake of clarity of exposition, the statement and proof 
of 4.4 are given for a proper submanifold M of V. The proof however readily 
adapts to prove the following extension for an admissible submanifold. 

ADDENDUM Let Mnc V+qbe a compact admissible submani  fold, and 4.5. 
suppose ( I K I , I L I , / J j )= ( M , M , M ~'Ci), J C L C K .  T h e n  Theorem4.4 i s  
t rue  for t h i s  pair ,  on  replacing L by J in the conditions o f  (b) and (c). 

Now let Enq(Mm) denote the set of homeomorphism classes (homeomor- 
phism mod M )  of abstract regular neighbourhoods of M of dimension n + q. 

Equivalent block bundles are  homeomorphic, and so we have a function 

COROLLARY R i s  a bijection. 4.6. 
PROOF. R is onto by Theorem 4.3, and 1-1 by Theorem 4.4 (a) (using 

1.10). 

COROLLARY There i s  a bijection 4.7. 

%,(MI -[M, B%,] . 
PROOF: Apply Corollary 4.6 and Theorem 2.6. 
We prove Theorems 4.3 and 4.4 in reverse order. 
PROOFOF THEOREM 4.4. We will first prove the implications (c) - (b) -

(a), and then prove (c). 
(b) - (a). E(E)is a regular neighbourhood of Mmod M in V, so by the 

relative regular neighbourhood theorems [8], we may assume that  N = 
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8E(i)  n 3is a regular neighbourhood of M in p. Now E(E / L)  and N are 
regular neighbourhoods of M in dE(6). Thus there exists an isotopy of 8E(E) 
mod M throwing E(ElL) onto N. This isotopy may be extended to an isotopy 
of E ( E )  mod M by means of a collar of ( ~ E ( E ) ,M) in (E(E),M).  

Similar remarks apply to 7 ,  and (a) now follows from (b). 
(c) -- (b). Applying (c) to MC p ,  there is an isotopy of pmod M realiz-

ing an isomorphism of 6 / L with 7 / L .  This isotopy can be extended to an 
isotopy of V mod M by means of a collar of ( p ,  M) in ( V,M), hence (b) follows 
from (c). 

PROOFOF (c). We will prove (c) by induction on n.  It is sufficient to 
prove the result for any complex J with 1 J 1 = M. For suppose K, is a com-
mon subdivision of K ,  J. Use Theorem 1.5 to subdivide t ,  i;l to E', 7' over K, 
so that  6'1 L = 7'1 L .  

Let c, r/ be the amalgamations over J. If f ,  r/ are ambient isotopic mod 
U M, then, using a collar of 8E(E) n cl ( V - E(t))in cl ( V - E([)) and 

Theorem 4.1, we see that  f ' ,  7' are ambient isotopic mod Ci M, which proves 
that  E, 7 are, a s  required. 

Choose simplicia1 complexes B cA such tha t  ( 1  A 1, 1 B 1 )  = (M, M). 
We will prove (c) for the dual complex A* of A (constructed below), which 

has the advantage of also being a handle decomposition of M. 
Let A" be the second derived of A and, for each simplex ate A', define 

the dual cell a"-tE A* corresponding to at to  be ns t (P,A"), where the inter-
section is taken over vertices P of at. A* is the  cell complex consisting of 
these cells together with their intersections with M. 

Note that  B*, which consists of cells dual to simplexes of B', is a sub-
complex of A*. 

Each n-cell of A* corresponds to  a simplex of A (since i t  is dual to  a 
vertex of A'). Suppose a,,  a , ,  ..,a, are the  simplexes of A in order of increas-
ing dimension, and let a,, . ., a, be the corresponding n-cells of A*. 

The a, give a handle decomposition of M with the  index of ai being 
dim ai (for more details, the reader is referred to Zeeman [19; Ch. 91). 

Define 
R,= a,U a, ... U a, 
M, = cl(M - R,) 
v8= cl(V - E(EI R,)) 

(see Figure 3). 
(In the figure, a, corresponds to a, of dimension 1.) 

By elementary properties of the  handle decomposition of M (and the  
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Figure 3 

analogous one of M), these are all manifolds admissibly embedded in each 
other. 

Assuming s' / R,-, = 7 / R,-,, we shall show that  there exists an isotopy of 
Vmod v u M u E([ I R,-,), realizing an isomorphism of [ 1 R, with 1 R,. Thus 
the isotopy required by the theorem may be constructed inductively. 

Consider P,(f), P,(v) (the blocks over a,). These are both regular neigh- 
bourhoods of a, mod M, in V,-,, which meet vS-,regularly, and in the same 
set. Therefore by Hudson and Zeeman [9] there exists an isotopy of 
V,-, mod Q8-, u M,-I carrying P,(E) to P,(v). This isotopy extends trivially to 
an isotopy of Vmod u M. Thus we may assume that  P,(E) = P,(v). 

At this point, E / R,, 7 / R, agree except over the part of 6, not in R,-,, 
and we appeal to induction on n to make them agree here: 

By induction on n ,  E / (6, n M ~ ) ,  l(6, n M,) are ambient isotopic in 
,b, n v, mod 6, U d(,b, n v,). Extend this isotopy by means of collars of 
(,b8n v8 ,6,n &) in (B,, o,) and (V,, M,), and then trivially to an isotopy of 
V mod u M, and this completes the proof. 

PROOF In view of Theorem 1.10 and the fact that  equivalent OF 4.3(a). 
block bundles are homeomorphic, i t  is sufficient to find Eq/J with E(6)= Q, 
for any complex J with I J I = M. 

By the "classical" regular neighbourhood theorem, i t  is also sufficient to 
find EIJ with E(E) = N, any regular neighbourhood of M in Q. 

Choose simplicia1 complexes A c B such that  ( 1  A 1, I B ) = (M,Q), and 
define the dual complexes A*, B* as in the proof of Theorem 4.4, above. We 
will prove the theorem for J = A*. 
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Let atE A' be a simplex, then we have corresponding dual cells an-tE A*, 
Pn+q-tE B*, and if at c M, then we also have 

8%-t-1 -- on-t n M ,pn- tq- t - I  -- p n + q - t  Q . 
Now the  pair ( p ,a) is isomorphic with the  pair cone on ( lk(a t ,B'), lk (a t ,A')). 
Since M is a su'bmanifold of Q, i t  follows that  (P, o), and similarly (p,d), is 
an unknotted ball pair. 

Thus the cells @ over a form the blocks of a block bundle over A*, with 
total space N = the simplicia1 neighbourhood N(A, B"), the other conditions 
for a block bundle being apparent. 

PROOFOF 4.3(b). It follows from Theorem 4.3 (a) tha t  there exists 
E(E/K) = Q. Applying Theorem 4.4 (b) to  E I L and 7 1 L in Q, and extending 
the resulting isotopy by means of a collar of (Q, M) in (Q, M), we have the 
result . 

5. Connections with microbundles, etc. 

In this section, we define A-groups similar to  TL,, which correspond to 
sphere block bundles, open block bundles, and micro-block bundles. We show 
that  all these theories coincide by exhibiting homotopy equivalences between 
their groups, and we deduce obstruction theories for existence of normal 
closed, open, and micro-bundles of M in Q. We also show that  a block bundle 
gives rise to  a fibre space, with fibre a sphere. 

Definitions. P ~ , ( Z )is the A-group of which a k-simplex is a block-
preserving homeomorphism 

Ak x 2 9 - '  -Ak x 29-I . 
P%,(R) is the A-group of which a k-simplex is a block and zero-preserving 
homeomorphism 

Ak x Rq-Ak x Rg.  

P%,(,u) is the  A-group of which a k-simplex is a germ of block and zero-
preserving homeomorphisms defined on a neighbourhood of Ak x (0) in Ak x Iq. 

Face operators are defined by restriction (degeneracies cannot be defined 
to be homeomorphisms, for the same reason as for TL,, but  they are again 
unnecessary). That these are all Kan complexes is clear from the  fact tha t  
Ak z Ak x I. Suppose given a block-preserving homeomorphism 

h: Ak x 2 9 - I  -Ak x 2 9 - I  

and an extension h': Ak x Iq-+Ak x I q  of h 1 Ak x Zg-I which is zero-preserving. 
Then, h U h' can be extended to  h,: Ak x Iq-A h  Iqby conical extension in 
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the linear cone structure on A h  Iq with vertex the barycentre of Ak x {0), 
and h, is thus also zero-preserving. 

Using this construction, we get (by induction up the skeleton of P?;,(B)) 
a canonical embedding -

7:pZq(z)-PLq . 
THEOREM5.1. Y(P?;,(z)) is a deformation retract of f ig. 
In proving Theorem 5.1, and later theorems like i t ,  we shall use the follow- 

ing useful criterion, see [14C]. 

LEMMA5.2. Let K c  L be A-sets satisfying the Kan condition. Suppose 
that for any A-map f A, -L such that f ( i , )  cK ,  there exists an extension 
f':Ak-L such that f'(Ak-') c K. 

Then K is  a deformation retract of L. 
PROOFOF 5.1. Let f: A, x Iq --+ A, x Iq be the homeomorphism deter- 

mined by a A-map f,: A, -P?;,, and suppose f,(A,) cY(P?;,(~)). Extend 
f 1 A, x F-.l to f, : A h  2 9 - I  -+ A' x 2 9 - l ,  using the extension condition for 
I%!Lq(2).Now extend f U f ,  over Ak x Iqby conical extension (as in the defini- 
tion of Y )  first over Ak-' x Iq, then over Ak x Iq. Applying Lemma 5.2, we 
have the result. 

Let g:  TL,-FL,(,u)assign to each homeomorphism its germ. 

THEOREM5.3. --+ TLq(;t) is a (homomorphic) embedding with g r : TL,(B) 
~Y(P?;,(B))a deformation retract o f  FL,(,U). 

PROOF. gy is an embedding since two conical homeomorphisms agree near 
the vertex if and only if they agree. 

A A-map f: A, -TL,(,U),such that  f(k,)c gr(P?i,(B))determines a block 
and zero-preserving embedding -
f,: A, x Iq(&) A, x Rq some E , 

(Iq(&)= [ - E ,  + & I q ) ,  and we may assume that  f, 1 A, x Iq(&)extends t o  
f': A, x Iq-A, x Iq in Y P ~ , ( B ) .Now A, x (I9 - int la(&))is a collar of 

A, x (I9 - int I ~ ( E ) )  ,u A, x b(&) 

so we can extend f ,  U f '  to an embedding 

by using a collar of the image of f ,  U f' ( f , is not necessarily block-preserving 
except near A, x (0)) .  

Now f,(A, x Iq)and A, x Iqare both regular neighbourhoods of A, x (0)  
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in A, x Rq which meet the  boundary regularly and in the same set, and are 
therefore isotopic mod A, x R qU Ak x (0) [9]. 

Use this isotopy, and the fact tha t  Ak r A, x I to extend f, to an  
emdedding f3: A h  I F - Ak x Rq which is zero-preserving, block-preserving 
over Ak-' (and near Ak x {O)),and such tha t  f3(Ak-' x I q )  = Ak-I x Iq.Define 
f4, with domain 8(Ak x Iq),by 

f 4  1 A, x I~u A, x xq-I= f3  I A, x I~u x zq-1, 
and by f 4  1 Ak-' x I q  = the conical extension of f, 1 o'(Ak-' x I q ) .  

Now f, and the identity on Ak x (0) extend over Ak x Iq, by Lemma 1.2. 
Applying Lemma 5.2, we have the result. 

Any homeomorphism f: Ak x Iq- Ak x 19, such tha t  f(Ak x 1 9 )  = 

(Ak x b),can be extended to  a homeomorphism f': Ak x Rq -f Ak x Rq by the 
fact that  Rq - int Iqis an (open) collar of 19 .  Thus we have a homomorphic 
embedding -

C: PL, -P ~ , ( R ). 
THEOREM5.4. c(P?;,) i s  a deformation retract of TL,(R). 
PROOF. Suppose f:A,-P~,(R) determines a homeomorphism f,: A, x Rq--+ 

A, x Rq such tha t  f(A,)cc(TLq),we have to extend f, over Ak x Rq such tha t  
fl 1 Ak-l x Rq is in c(FLq). Since AksA, x I ,  i t  is only necessary to  show tha t  
fl is isotopic mod ,kkx Rqu Ak >: (0) to a homeomorphism A, x Rq --'A, x Rg 
which is obtained from a homeomorphism of A, x I"y "collaring" (as in the  
definition of c). 

The isotopy is constructed in two steps. 
Step 1. By the regular neighbourhood argument used in Theorem 5.3, 

we can isotope f, mod A, x R qU Ak x (0) to a homeomorphism f,, which 
preserves A, x Iq. 

Step 2. Now isotope f, to  c(f, 1 A, x Iq)by "combing" the collar, cf. [7]. 

Remark 5.5. ( i ) We have shown tha t  the  following scheme of A-homo-
morphisms are all homotopy equivalences (g' is defined by taking germs) 

fiq(/4 
( ii ) Homomorphisms i :  PT,-P%,(R) and b: PZ,-TLq(2)are defined 

by "ignoring the boundary" and "restricting to  the boundary" respectively. It 
is not hard to show tha t  b and r are homotopy inverse to  each other, and tha t  
i and c are homotopic. 
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We now define an open (micro, sphere) block bundle to  be the realization, 


constructed as in 5 3, of a principal FL,(R)(FL,(,u), FL,(Z))
bundle. 
Given a block bundle i ,  define c,(t) to be the open block bundle obtained 

by adding an open collar to E(%),  and i,(t)to be the open block bundle obtain- 
ed by removing the boundary of E(i). The significance of Remark 5.5 ( i i )  is 
tha t  c,(%) and i,(%) are isomorphic, and i t  follows from Theorem 5.4 tha t  i, 
induces a bijection on isomorphism classes (coinciding with tha t  induced by 
c,). We shall use the notion of open block bundle in 8 6 for comparison with 
vector bundles. 

Remark 5.5 ( i ) shows tha t  I,(K) is isomorphic with the set of isomor- 
phism classes of open, sphere, or micro-block bundles over K. This does not 
immediately show tha t  the theories coincide, one also needs to  know tha t  the 
notions of induced bundle are the  same. However, if we define induced open, 
sphere, and micro-block bundles in the same way as for ordinary block bundles 
(namely as the  restriction of the  Cartesian product, cf. 5 I), then this is im- 
mediate. 

More definitions. PL,(I)  is the  subgroup of FL,consisting of simplexes 
ok such tha t  po  = op, where p: Ak x I" Ak is the canonical projection. 

PL,(R) cP ~ , ( R ) ,  PL, c fig@), are defined similarly. and PL,(B) c fi,(~) 
, Remark. It is well known tha t  degeneracies can be defined in PL,(R), 
PL,, and PL,(B) making them c.s.s. groups. 

Let M" c Qn+q be a compact submanifold. A closed tube on M in Q is a 
neighbourhood N"-q of int M in Q, provided with a projection p: N- M, 
making N the total space of an I,-bundle with fixed zero section M, cf. Hirsch 

[5]. Two tubes are concordant if they are the restrictions of a tube on M x I 
in Q x I. There are similar definitions for open tubes and micro-bundles. We 
will examine the connection between closed tubes and block bundles; a similar 
exposition holds for open tubes, open block bundles, and micro-bundles, micro- 
block bundles. 

Define FL,/PL,(I) to  be the complex of right cosets of PL,(I) in l?~, 
(equivalence classes under the equivalence o -- o' -- a-lo' e PL,(I)), which 

has a natural right PZ, action. Given a q-block bundle i /Kk ,  where K is a 
simplicia1 complex with ordered vertices, we can form the associated 

FL,~/PL,~(I)-bundleas  follows. A k-simplex is an equivalence class of charts 

g: Ak x I+ E(t)under the equivalence, g -- g' -- g-'g' E PL,(I). P?II,~acts on 
the  right by composition. 

A cross-section of the associated bundle chooses for each simplex in K a 
compatible equivalence class, and gives us a PL,k(I) bundle over K by taking 
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as simplexes the members of these equivalence classes. This defines a closed 
tube over K exactly as  in the construction part  of Theorem 3.1. Con-
versely, given a closed tube N/K, we can form a block bundle by taking 

as blocks the restrictions over simplexes; the  associated ~ L , k / ~ L ~ ( I ) - b u n d l e  
has a natural cross-section, namely map each simplex to the equivalence class 
of fibre-preserving charts. 

From these remarks, and the  results of $ 4 ,  we deduce by an  easy argu- 
ment 

THEOREM5.6. Suppose M and  Q a r e  as  above, and  K i s  any  triangula- 
tion of M. Then concordance classes of closed tubes (respectively, open tubes, 
micro-bundles) on M i n  Q correspond bijectively with homotopy classes of 

cross-sections of the bundle over K with fibre I) (respectively,FL,/PL,( 
FL,(R)IPL,(R), ~L,(,u)/PL,) associated with any  normal block bundle i / K  to 
M i n  Q. 

Remark 5.7. ( i ) By Theorem 5.6, we have obstruction theories for the  
existence of closed tubes (open tubes, micro-bundles) with coefficients in 

~ , ( F L , ,  PL,(I)) (T~(P?',(R), PL*(R)), T~(P%(P), PL,!)). 
( i i )  The obstruction theories all have non-zero coefficients by [5,14B]. 

Note that  PL, 2: PL,(R) [ lo]  and PL,(R) $ PL,(I)  [I]. 
We conclude this section by proving that  a block bundle determines a 

fibre space with fibre a sphere, cf. Fadell [2]. 

Definition. c, is the A-set of block-preserving degree -t.l maps 

G, is the subcomplex of fibre-preserving maps (i.e., commuting with projec- 
tion on Ak). 

THEOREM5.8. G, i s  a deformation retract of c,. 
PROOF.Let  f: A, x 2,-'-A, x 2"' be block-preserving, and fibre-

preserving over A,. 
Let n,, n, be the projections of A, x Z9-l on Ak and 2,-' respectively. 

The homotopy 

enables us to extend f over Ak rA, x I ,  such tha t  the restriction over Ak-' 
is fibre preserving. 

Thus the result follows from Lemma 5.2. 

COROLLARY A block bundle determines a unique fibre space with 5.9. 
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fibre a (q - 1)-sphere. 
PROOF. Consider the sequence of homeomorphisms 

The result follows from Theorem 5.8 and the existence of principal classify- 
ing bundles (§ 3 and Stasheff [14D]) cf. [14C] (section on A-monoids) for more 
detail. 

Remark. The last result can also be obtained by a construction based on 
Fadell [ 2 ] ;one merely has to restrict his paths to  lie entirely in the block corre- 
sponding to  the  base simplex in which the  path starts. Denoting the  resulting 
fibre space by G(E), one then has a map g: G(%)-E,(%)= E(E) - K by 
restricting to end points of the  paths. One easily checks that  g is a homotopy 
equivalence, and tha t  the following diagram commutes up to  homotopy 

Here n is the  projection given by the collapse E(E) \ K (cf. § 4), and p is the  
projection of the  fibre space. 

6. Application to smoothing 

In this section we compare the  structure of a block bundle with tha t  of 
a vector bundle, and deduce an obstruction theory for smoothing a PL submani-
fold of a PL manifold with compatible differential structure. We will need a 

piecewise-differentia1 (PD) analogue of P?i;,(R). 

Definition. P%, is the A-set of which a k-simplex is a PD isomorphism 

where E ~ ( R )  denotes the  trivial open q-block bundle. Face operators are 
defined by restriction (degeneracies may be defined but will not be needed). 

Note tha t  P ~ , ( R )is a subcomplex of PD,and acts on the  right by com- 
position. 

PROPOSITION FD, i s  a 6.1. satisfies the extension condition, and  PL,(R) 
deformation retract of PD,. 

PROOF. Let f: A, -P%,. We want to show tha t  there exists an  exten- 

sion f': Ak-+ FD,such that ,  if f ( i k )  c FL,(R), then f'(Ak-') c FL,(R). This 
proves both parts of the  proposition. Now f determines a PD homeomorphism 
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f,:A, x Rq- Ak x R q  , 

which is isotopic (Whitehead 1161) to  a PL homeomorphism f2, and if f, 1 kkx Rq 
is PL, the isotopy may be taken mod A, x Rq. Using the fact tha t  Ak z A, x I, 
the result is proved. 

Definition. O,, the  c.s.s. analogue of the orthogonal group O(q), is 
defined as  follows. A k-simplex is an orthogonal vector bundle isomorphism 

which is also a diffeomorphism (i.e., o extends to  a diffeomorphism of a neigh- 
bourhood of Ak x Rq in Rk+q). Face and degeneracy operators are defined in 

the usual way. Note tha t  0, is a subcomplex of PE,, and acts on the  left by 
composition. 

Remark. The definition of 0, given here differs from that  given in Lashof 
and Rothenberg [ l l ] ,  which used PD homeomorphisms. This is to ensure that  

0, acts on FD,. 
PROPOSITION6.2. 0, satisfies the extension condition, and  i s  a de forma- 

tion retract of the singular complex of O(q). 
PROOF. The proposition follows easily from the following lemma and the 

fact that  0, may be identified with the  complex of differentiable maps 
A" O(q). 

LEMMA (Lashof and Rothenberg [ l l ;  proof of 1.11). Let M be a diferen- 
t ial  manifold, and f:Ak-M be a map which i s  diferentiable on Ak. Then 
f i s  homotopic mod Ak to a diferentiable map. 

Now let Eq/K be an open block bundle over the ordered simplicia1 complex 
K of dimension k. An r-simplex of the associated I?D,~-bundle is a PD 

isomorphism 

g: E(E 1 or)-E(cq(R)/Ar), o r €  K. 

The associated P%,-bundle over K is constructed similarly (cf. 8 3). 
An orthogonal structure on Eq is a subcomplex of the associated TD,k- 

bundle which is principal under left 0: action. An open block bundle with an 
orthogonal structure is called a t-vector bundle (triangulated vector bundle). 
An isomorphism of t-vector bundles E ,  7 is a homeomorphism h: E(E) --.E(7), 
which is an isomorphism of open block bundles, and which preserves orthogo- 
nal structures. A t-vector bundle over K determines a principal 0,-bundle 
over K unique up to isomorphism, and we now prove the converse of this. We 
first show how to  costruct a block bundle from an 0,-bundle: 
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THEOREM6.3. There i s  a C.S.S. complex BO, classifying for principal 
0,-bundles and  a jibration 

PROOF. Let 7 , ~ ~  complex with k-simplex a PD isomorphismbe the C.S.S. 

from E(i,(nk)), where nk E 9,, to  E ( E ~ ( R ) / A ~ ) .  Now 7 , ~ ~is contractible by a 
similar argument to tha t  used for V,, and 0, acts freely on the left of 7 , ~ ~  
by composition. Thus BO, = 7:D/0,is classifying for left (and hence for 

right) principal 0,-bundles. Now PE,- PcD-9, is a fibration, and factor- 
ing by 0, yields the theorem. 

Given an 0,-bundle E over K, by Theorem 6.3 we get a block bundle 
EJK. i,(S1) is an open block bundle which, by the  proof of 6.3, has an ortho- 
gonal structure isomorphic as a vector bundle with the geometrical realization 
of 6 (constructed as in $ 3). Similar considerations show uniqueness, and we 
have a bijection between isomorphism classes of 0,-bundles over K and iso- 
morphism classes of t-vector bundles over K. 

Rema.~.k.(1) By the above and Proposition 6.2, there is a bijection be- 
tween isomorphism classes of t-vector bundles and ordinary vector bundles 
over K. 

(2) Several of the  above constructions echo parts of Lashof and Rothen- 
berg, cf. [ll;$8 1-31. 

Now let t be an open block bundle. The associated P%;/O,~-bundle is 
defined as follows. A simplex of the  total space is an equivalence class of 

simplexes of the associated P%:-bundle under the equivalence 

One verifies a t  once (cf. $ 5) that  orthogonal structures on % correspond bijec- 
tively with cross-sections of the  associated FD,~/o,~-bundle. Combining this 
with the tubular neighbourhood theorem for open block bundles (analogy of 
Theorem 4.4 (a)) which follows from $ 5  and 4.4 (a), we have (cf. 5.6) 

THEOREM6.4. Let M" c Qnfq be a compact submanifold. Concordance 
classes of t-vector bundles on M i n  Q correspond bijectively with homotopy 

classes of cross-sections of the P%,/o,-bundle associated with any normal 
open block bundle on M i n  Q. 

Now let a be a smoothing of Q (i.e., a compatible differential structure), 
and denote by r ( M ,Q,) the set of equivalence classes of smoothings of Q con- 
cordant to a under the equivalence of concordance preserving M as  smooth 
submanifold. 
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The following theorem is close to Lashof and Rothenberg [ l l ;  Th. 7.11, 
and we therefore omit the proof. The essential ingredients are the Cairns- 
Hirsch product theorem [7] and Theorem 6.3 above. 

THEOREM6.5. L e t  Eq/K, I K 1 = M ,  be a n  open block bundle ,  and  suppose 
a i s  a smoothing o f  E(E). T h e n  there i s  a bi ject ion 

p: {concordance classes of orthogonal structures of E )  -r ( M , E(E),) , 
and  the n o r m a l  bundle  o f  a representat ive  o f  q ( x ) i s  isomorphic  a s  a vector 
bundle w i t h  a representat ive  o f  z. 

Combining Theorems 6.4 and 6.5 with the (smooth) concordance extension 
theorem [7; Th. 1.21, we deduce 

THEOREM6.6. L e t  M" c Q"-q be a compact subnzanifold,  and  let a be a 
smoothing o f  Q. T h e n  there i s  a bi ject ion between r ( M ,  Q,) and  the  set o f  

homotopy classes o f  cross-sections of  the  P%,/o,-bundle associated w i t h  a n y  
normal  open block bundle  o n  M in Q. 

Now writer:  = (8", 8;+,), where s denotes the  standard smoothing of Ytq. 

COROLLARY r: G n, (P%,, 0,)6.7. 
PROOF. By Theorem 6.5, and the  fact that  a normal block bundle on 8" 

in 8 "  is unique and trivial, we have 

This, and the (easily proved) fact tha t  ~,(P%,/o,)= 0, gives the result. 

R e m a r k .  The stable version of Corollary 6.5 was first proved by Hirsch 
[6], and a theorem similar to  6.6 appeared in the  preprint to  [4], cf. also 
Haefliger [3]. 

Theorem 6.5 gives an obstruction theory to smoothing M in Q, with 
coefficients in the r:. Wall has proved that  I?", 0 for all n (see [15]) and so 
we have 

COROLLARY6.8. M n  c Q;t2 M smoothable in Q,. 
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