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 TRANSACTIONS OF THE
 AMERICAN MATHEMATICAL SOCIETY
 Volume 251, July 1979

 ON 3-MANIFOLDS THAT HAVE FINITE FUNDAMENTAL

 GROUP AND CONTAIN KLEIN BOTILES

 BY

 J. H. RUBINSTEIN1

 ABSTRACT. The closed irreducible 3-manifolds with finite fundamental
 group and containing an embedded Klein bottle can be identified with
 certain Seifert fibre spaces. We calculate the isotopy classes of homeomor-

 phisms of such 3-manifolds. Also we prove that a free involution acting on a
 manifold of this type, gives as quotient either a lens space or a manifold in

 this class. As a corollary it follows that a free action of Zg or a generalized
 quaternionic group on S3 is equivalent to an orthogonal action.

 0. Introduction. We are in the PL category. The object of study is the class

 of closed, irreducible orientable 3-manifolds which contain embedded Klein

 bottles and have finite fundamental group. These 3-manifolds are easily

 shown to be exactly the Seifert fibre spaces [7] with at most 3 exceptional

 fibres of multiplicity 2, 2, p (p > 1) and the 2-sphere as orbit surface,

 excluding S2 x SI.
 We prove that any homeomorphism homotopic to the identity is isotopic to

 the identity for such a 3-manifold M (this was done for a particular case

 wherep = 2 in [4]). Also the factor group of the group of orientation-preserv-

 ing homeomorphisms of M by the normal subgroup of homeomorphisms

 isotopic to the identity, which is denoted SC(M), is shown to be one of the

 groups Z2, Z2 + Z2, S3 and S3 + Z2. There are no orientation-reversing
 homeomorphisms of M.

 Finally we establish that any free involution on M gives as quotient either a

 lens space or a 3-manifold in the above class. Let Q(8m) be the group

 {X,yyx2 = (Xy)2 = y2m }. As a corollary it follows that a free action of Q(2k)
 on S3, k > 3, is equivalent to an orthogonal action. Also simpler proofs of
 the analogous result in [5] and [6] for Z4 and Z8 are given.

 Note that the 3-manifolds in the above class are not sufficiently large.

 Therefore it is interesting to see that some of the results of Waldhausen [9]

 can be achieved in this case. In another paper [11] we will build on the work

 here to obtain that free actions of some finite groups of order 2m3n on S3 are

 equivalent to orthogonal actions.

 Received by the editors November 24, 1976 and, in revised form, March 20, 1978.
 AMS (MOS) subject classifications (1970). Primary 57A10, 57E05, 57E25; Secondary 55A10.
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 130 J. H. RUBINSTEIN

 Note added during revision. Similar results to ? 1 have been obtained by P.

 Kim, to ?2 by K. Asano, S. Cappell and J. Shaneson and to ?3 by B. Evans

 and J. Maxwell. I would like to thank the referee for his suggestions and

 improvements to the paper.

 1. Seifert spaces.

 DEFINITION. A closed surface J embedded in a 3-manifold M is incompress-

 ible if (1) J is a 2-sphere and J does not bound a 3-cell or (2) J is not a

 2-sphere and there is no disk D embedded in M with D n J = a

 noncontractible curve in J.

 LEMMA 1. Let K be a Klein bottle. Then there are exactly five isotopy classes
 of simple closed curves in K. If 7T1(K) = {a, bIb -lab = a'-} then these are
 represented by { 1), a, b, ab, b2.

 PROOF. See [4].

 Let M be a closed, irreducible orientable 3-manifold with finite fundamen-

 tal group and K be an embedded Klein bottle in M. Since M is orientable, K

 must be one-sided in M. We denote a small regular neighbourhood of K by
 N. Finally let Y = M - int N and denote aY = aN by L.

 LEMMA 2. K is incompressible and Y is a solid torus.

 PROOF. Suppose that K is compressible in M and let D be a disk with

 D n K = aD= C noncontractible in K. Then C is two-sided in K and

 therefore either is a nonseparating curve on K or divides K into two Mobius

 bands (cf. Lemma 1). Let N(D) be a small regular neighbourhood of D,

 which intersects K in an annulus A. Let Do and D1 be the two disjoint disks in

 aN(D) with aDo U aD, = aA. If we replace K by (K -int A) U Do U D1
 then the result is either a nonseparating 2-sphere (since K is one-sided) or two

 disjoint one-sided projective planes in M. Both of these possibilities con-

 tradict 7T1(M) is finite. So K must be incompressible.

 Since 7T1(M) is finite, by Lemma 14.12 of [12] it follows that Y is a

 handlebody as desired (i.e. a solid torus).

 PROPOSITION 3. The class of Seifert spaces with S2 as orbit surface and at

 most 3 exceptional fibres of multiplicity 2, 2, p (p > 1) excluding S2 X SI, is
 equivalent to the class of irreducible 3-manifolds which have finite fundamental
 group and contain an embedded Klein bottle.

 PROOF. Suppose M is of the latter type. 7T1(L) has generators given by a and

 b2 in iT1(K). N can be fibered by circles which have homotopy class b2, with

 two exceptional fibres of multiplicity 2 at the centres of the M6bius bands on

 K (with classes b and ab). Since K is incompressible, the boundary of a
 meridian disk for Y yields an element of 7T1(L) different from b2. So the
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 3-MANIFOLDS THAT HAVE FINITE FUNDAMENTAL GROUP 131

 fibering extends to Y with another exceptional fibre of multiplicity p (p > 1).

 Conversely let M be a Seifert fibre space as in the proposition. If X is a

 nonsingular arc in the orbit surface, joining the images of the exceptional

 fibres of multiplicity 2 and missing the image of the other exceptional fibre,

 then the set of points of M which project to X form a Klein bottle. Since M is

 not homeomorphic to S' x S2 it follows that 7rI(M) is finite and M has S3 as
 its universal cover. Therefore M is irreducible and the result is proved.

 Suppose M is a 3-manifold satisfying the conditions in Proposition 3. Let D

 be a meridian disk for Y and let C = aD. Assume the homotopy class

 {C) = a b2 , where m, n > 0 and (m, n) = 1. Then ,TI(M) has the presenta-
 tion {a, blb-lab = a-', amb2n = 1). Since K is incompressible, m # 0 and
 n #= 0. Conjugating amb2n = 1 by b, we see that a2m = b4n = 1. Let 4n = 2kn,
 where n1 is odd, and let b, denote bn'. Then 7TI(M) = Z,,l X G where the
 cyclic group has generator b2 and G = {a, bllb-labl = a-, amb2' = 1).

 If m is odd then G = D(2k, m) = {a,, blb-'alb, = a-', am = 1, b2k = 1),
 where a, = a2. If m is even then since (m, n) = 1 it follows that n is odd,
 k = 2 and n1 = n. In this case G = Q(4m) = {a, blb 2 = (abl)2 = am).

 In the degenerate case m = 1, clearly 7TI(M) = Z4n. By [1], M = L(4n,
 ? (2n - 1)) since M contains a Klein bottle.

 2. The homeotopy group. Let M be a 3-manifold with the properties in

 Proposition 3, throughout this section.

 THEOREM 4. If h: M -+ M is any homeomorphism with h,:HI(M, Z2)
 H1(M, Z2) equal to the identity, then h is isotopic to a map taking K to K.

 PROOF. Denote h(K) by K' and assume that K' and K are transverse. Since

 h# = id, h*: 7T1(M) - 7Tr1(M) must preserve the normal subgroup G of index 2
 obtained from the orientation-preserving elements of 7,T(K). (Note that com-

 mutators in 7,T(K) are orientation-preserving loops.) Since the image of 7T,(Y)

 in rl(M) is clearly G, it follows that K' n Y must be orientable.
 By the incompressibility of K' and K, and the irreducibility of M, there is

 an obvious isotopy of K' eliminating all the contractible curves of intersection

 of K' and K. Consequently it suffices to suppose that K' n Y contains annuli

 only and all the curves of K' n L are noncontractible and parallel on L. By

 the well-known fact that a properly embedded, incompressible annulus in a

 solid torus is parallel into the boundary, we can then find an isotopy of K'

 achieving K' n Y = 0.
 Let N' be a small regular neighbourhood of K' in N and let L' = N'. If

 the map 7,T(L') -, 7T1(N) has nontrivial kernel then the argument in Lemma
 14.12 of [12] implies that M is contained in N, which is impossible. So L' is
 incompressible in N, and letting W = N - int N' we see that W is an h

 cobordism. Therefore W is homeomorphic to S 1 x S 1 x I (cf. [8]) and there
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 132 J. H. RUBINSTEIN

 is an isotopy taking L' to L. Using [9] we can achieve K' = K by another

 isotopy, since N is sufficiently large.

 THEOREM 5. If h: M -> M is a homeomorphism homotopic to the identity then

 h is isotopic to the identity.

 PROOF. By Theorem 4 it suffices to assume h takes K to itself. Suppose h

 fixes the base point on K. Then h*: 7r1(K) -- r1(K) maps a to a+ 1 and b to
 b + 1 or (ab)+ 1 without loss of generality, by Lemma 1. There is an isotopy in

 K inducing conjugation of 7r1(K) by b. This takes a to a- and so we can

 assume h*(a) = a.
 As h is homotopic to the identity, b and h*(b) are conjugate in 7T1(M).

 Therefore for some element g, b - - lh*(b)g is in the normal closure of the
 relation r = amb2n in 7T1(K). By a calculation in 7T1(K), one sees that

 g - lh*(b)g = h*(b)a2i for some integer i. So

 b-lh*(b)a2= gi lr+ glg2r +g2 ....

 Suppose h*(b) = b- or (ab)'. If we put a = 1 in (+) then it follows that
 n = 1. On the other hand if we assume h*(b) = ab and set a2 = 1 in (+) then
 this gives a contradiction. Finally in the case that h*(b) = b, h: K-- K is
 homotopic to the identity. Therefore by [2], after an isotopy we obtain that h

 is the identity on K. Because h must be orientation-preserving it is easy to

 isotop h to the identity on N and then on all of M.

 Assume now that h*(b) = b-1 or (ab)-1 and n = 1, i.e., {aD} = b2am
 where D is a meridian disk for Y. Then the classes a and { aD} have

 intersection number ? 1 in L. We isotop K as follows:

 First we can move K till K n Y is an annulus A in L, with the curves of aA

 having homotopy class a. The meridian disk D can be assumed to meet A at a

 single arc. Therefore A is parallel to L - int A in Y and there is an isotopy of

 K taking A to L - int A. Then K can be shifted back to its original position,

 by the same argument as at the end of Theorem 4.

 Depending on the direction of the isotopy, we see that b is transformed to

 the class b(b2a'm)+ in 7T1(K). For the appropriate choice, the result is

 b - la -m. Consequently if the isotopy is applied to h then a homeomorphism is

 obtained which takes b to baP for some p. By the previous argument, this is

 isotopic to the identity as required.

 THEOREM 6. Let M be a 3-manifold as in Proposition 3. Then

 Z2 + Z2 if m#2andn 1,

 (M) Z2 if m#2andn= 1,
 S3 + Z2 if m =2andn 1,

 (S3 if m =2andn =1.
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 3-MANIFOLDS THAT HAVE FINITE FUNDAMENTAL GROUP 133

 There are no orientation-reversing homeomorphisms of M.

 PROOF. Let the map SC(M) -* Aut H1(M, Z2) given by h -* h, have kernel
 S. By Theorem 4, a homeomorphism h with isotopy class in ? can be

 assumed to map K to itself. By Lemma 1, without loss of generality h*:
 g1(K)-- n1(K) takes a to a"1 and b to b+' or (ab)+'. Conversely the
 homeomorphisms of K which transform the pair (a, b) to one of (a, b),

 (a-l, b-1), (a, ab), (a-l, (ab)-1) clearly map {aD} to { D )1 and so extend
 to homeomorphisms of M. Since there is an isotopy of K taking a to a-

 these maps give all possible isotopy classes in g.

 Suppose first that m is odd. Then H1(M, Z2) = Z2 and so 9 = SC(M). The

 argument in Theorem 5 shows that no pair of the elements b ?1, (ab)+ 1 are

 conjugate in 71(M) for n # 1, and so SC(M) = Z2 + Z2. On the other hand

 if n = 1 then a homeomorphism h with h(K) = K and h*(b) = (ab)-' is
 isotopic to the identity (by the method in Theorem 5). Therefore SC(M) = Z2
 in this case.

 Assume now that m is even. Then H1(M, Z2) = Z2 + Z2 and a homeomor-
 phism h taking K to K with h*(b) = (ab)' 1 induces a nontrivial involution in
 Aut H1(M, Z2). Therefore the same process as in the previous paragraph
 shows that 9 = Z2 if n l I and s = {} if n = 1.

 Let go be the quotient of 9C(M) by g. go is isomorphic to the image of
 SC(M) in Aut H1(M, Z) and we already know the latter group contains an

 element of order 2. So go = Z2 or S3 are the only possibilities. If the latter
 holds then there is a homeomorphism h: M -- M with h, E Aut H1(M, Z2) of
 order 3. Assume h*: 7T(M) -* '7T,(M) takes a to abi. Then abiY must have
 order 2m. Consequently b2"j is a power of a and so n divides j (since
 (m, n) = 1 and m is even). If j is odd then abi has order 4 and m = 2. If j is

 even then abi is a power of a and h, is not of order 3. This establishes that
 for mi # 2, g0 = Z2.

 Finally suppose m = 2. Then {aD } = a2b2n and b2 has intersection num-

 ber ? 2 with {aD } in L. Consequently there is a M6bius band B embedded

 properly in Y with aB having the homotopy class b2. But it is clear that

 another Mobius band B1 can be chosen in N with aB, = aB. So B U B1 gives
 a Klein bottle K' in M.

 By Lemma 2, M = N' U Y' where N' is a small regular neighbourhood of

 K' and Y' = M -int N' is a solid torus. Let D' be a meridian disk for Y'.

 Then {aD'} = a['b 2n where '7T1(K') = {ao, bol b- laobo = a}- 1), since the num-
 bers m, n are in 1-1 correspondence with the isomorphism class of the group

 7r1(M). Therefore it is clear that a homeomorphism from K to K' can be

 found which extends to M, and so go = S3.
 For m # 2, n = 1 we obtain SC(M) = go = Z2. If m = 2, n = 1 it follows

 that 9C(M) = go = S3. Finally suppose n # 1. Then 9C(M) contains a sub-
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 134 J. H. RUBINSTEIN

 group Z2 + Z2. Therefore if m =# 2, SC(M) = Z2 + Z2 and if m = 2 then

 SC(M) = S3 + Z2 since this is the only nonabelian group which has order 12

 and contains a normal subgroup Z2 (with quotient S3).

 Suppose h: M -- M is an orientation-reversing homeomorphism. If h# E
 Aut H1(M, Z2) is of order 3 then we replace h by h3. So it suffices to assume

 (by Theorem 4) that there is a Klein bottle K in M, so that after an isotopy of

 h, h(K) = K. Then if we compose h with a suitable orientation-preserving

 homeomorphism, a new h is obtained with h = id on K.

 By the argument in the last paragraph of the proof of Theorem 4, we can

 adjust h so that also h: N -- N. Then since h is orientation-reversing, it must

 be the case that h: L -- L is orientation-reversing. Suppose h*: 7T1(L) -7r(L)
 maps a to aVb' and b2 to aqb2r. Since h = id on K, it follows that in 7T1(K) the
 classes a and aibJ must be conjugate, and similarly for b2 and a qb2r. By a

 calculation in 7T1(K), one sees that i = ? 1,j = 0, q = 0 and r = 1. Then
 since h: L -- L is orientation-reversing, we find that i=- 1. But h*:
 7r1(L)-- 7T1(L) maps {aD} to {aD}+', and {(D }-amb2" form > O, n > O.
 This gives a contradiction.

 3. 2-groups acting freely on S 3. In [3] it is proved that a free action of Z2 on

 S3 is equivalent to an orthogonal action. We begin with a simple demonstra-
 tion of:

 PROPOSITION 7 [5]. Any free action of Z4 on S3 is equivalent to an orthogonal
 action.

 PROOF. By [3], the quotient of S3 by the action of the subgroup Z2 of Z4 iS
 RP3. Let P be an embedded projective plane in RP3. The action of Z4 gives a
 free involution g on RP3.

 Assume without loss of generality that P and gP are transverse (cf. the

 lemma in [5]). P n gP contains a loop which is one-sided in P and gP, and

 all the other components of P n gP bound disks in both surfaces. This

 follows by Poincare duality, since a one-sided curve in P gives an element of

 H1(RP3, Z2) dual to the class in H2(RP3, Z2) corresponding to gP.
 Suppose C is a curve of P n gP chosen so that C bounds a disk D in gP

 with (int D) n P = 0. Let C = aDI with D1 in P. If C is g-invariant then
 DI = gD. Hence D U D1 is a g-invariant sphere which bounds a g-invariant
 3-cell in RP3. By the Brouwer Fixed-Point Theorem, g has a fixed-point in
 this cell, which is a contradiction. Therefore C cannot be g-invariant and we

 can find a projective plane P1 which is obtained by a small isotopy of

 (P-int D1) U D, so that P1 n gPI has fewer components than P n gP.
 By this procedure we eventually reach a projective plane again denoted by

 P, with P n gP a single curve. The complement of a small g-invariant regular

 neighbourhood of P U gP in RP3 consists of two 3-cells interchanged by g.
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 3-MANIFOLDS THAT HAVE FINITE FUNDAMENTAL GROUP 135

 So the action of g is completely characterized and is equivalent to an

 orthogonal action.

 THEOREM 8. Suppose that M is a 3-manifold as in Proposition 3. If there is a

 free involution acting on M then the quotient is either a lens space or a manifold

 with the properties in Proposition 3.

 PROOF. Let M = N U Y where N is a small regular neighbourhood of a

 Klein bottle K embedded in M. Let g: M -- M be a free involution. We will
 show that the quotient has either an embedded Klein bottle or a genus 1

 Heegaard splitting and this clearly implies the result.

 Assume that gK and K are transverse. By exactly the same procedure as in

 Proposition 7, since K and gK are incompressible the contractible curves in
 their intersection can be eliminated. Suppose that a component C of K n gK

 is two-sided in K. If T is a small regular neighborhood of C in M then

 T - T n K has two components. Therefore gK n (T - T n K) = (gK n

 T) - C has two components, and this shows that C is two-sided in gK.

 Suppose next that K n gK contains two or more two-sided (noncontract-

 ible) curves in K. If C1, C2 are loops of this type then clearly C1 U C2 bounds

 annuli A, A' in K, gK respectively. Without loss of generality assume K n

 int A' = 0. Exactly one of the surfaces (K - int A) U A' and A U A' is a

 Klein bottle, which we denote by K,. Suppose C1 is g-invariant and let 'r:
 M -* Mo be the quotient of M by the action of g. By the argument on p. 14 of
 [13] (cf. also p. 44 of [12]) this case can only occur if sr(C,) is orientation-re-
 versing in Mo, i.e. MO is nonorientable. But MO is closed with finite fundamen-
 tal group so this gives a contradiction.

 Therefore neither C1 nor C2 can be g-invariant. If C1 =# gC2 then after

 separating K1 slightly from gKj, we see that K1 n gK1 has less components
 than K n gK. On the other hand, if C1 = gC2 then we can choose notation

 so that gA = A'. In this case if K1 = (K - int A) U A' then again after a

 small isotopy, K1 n gK1 has fewer curves than K n gK. Finally, if K1 = A U

 A' then K, is g-invariant and the result follows, since MO contains a Klein
 bottle.

 So we have established that for suitable choice of K, K n gK includes at
 most one two-sided curve. Assume K n gK has exactly one such curve C.

 Then C must be g-invariant, which gives a contradiction. Consequently it

 suffices to assume K n gK contains only one-sided curves.

 Case 1. K n gK is a single curve C.

 Let T be a small g-invariant regular neighbourhood of C, so that K n aT

 and gK n aT are single curves, C, and gC1 respectively. Let A be an annulus
 on aT between C, and gC,. Then K, = (K - int T) U A U (gK - int T) is
 an embedded Klein bottle in M. Since Mo is orientable, g is orientation-pre-
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 136 J. H. RUBINSTEIN

 serving on T and on aT. Therefore A cannot be g-invariant, because g

 interchanges the curves of MA. Consequently we can separate K1 slightly from

 gK, so that K1 n gKI consists of two one-sided curves.
 Case 2. K n gK = C U gC (where C is one-sided).

 Let T be a small regular neighbourhood of C (with T n gT = 0). Then

 ,r(T) is a solid torus in MO with gr(K n T) equal to a properly embedded
 Mobius band. Let K - int T - int gT = A and denote the closures of the

 components of M - int T - int gT - K - gK by Y1 and Y2.

 The well-known argument that a properly embedded, incompressible

 annulus in a solid torus is parallel into the boundary shows that either Y1 or

 Y2 is a solid torus, with a meridian disk D1 which intersects A and gA each in

 a single arc. We choose notation so that this is true for Y1. There are two

 possibilities:

 (1) Y1 and Y2 are both g-invariant.

 Let C' be a component of 8A. Then 7T(D1) is a meridian disk for the solid

 torus 7T(Y1) (because MO is orientable) and the curves g(C'), a-r(D,) have
 intersection number ?2 in a7T(Y1). So there is a Mobius band B embedded
 properly in 7T(Y1) with aB = 7T(C'). Consequently B U 7T(K n T) is a nonsin-

 gular Klein bottle in Mo.
 (2) g interchanges Y1 and Y2.

 In this case both Y1 and Y2 are solid tori, with meridian disks D1 and gD,
 which both cross A and gA each at single arcs. Therefore it is easy to see that

 Y1 U Y2 is homeomorphic to S1 x S1 x I. Consequently by [9], g( Y1 U Y2)

 is homeomorphic to the twisted line-bundle over a Klein bottle. This proves

 that Mo contains a Klein bottle.
 Case 3. K n gK = C1 U C2, with both curves g-invariant (and one-sided).

 Let T1 and T2 be small g-invariant regular neighbourhoods of C1 and C2.

 Define A, Y1, Y2 as in Case 2, using T1 and T2 instead of T and gT. Exactly

 as in Case 1, the two annuli on aT, between the curves K n aT, and
 gK n a T, cannot be g-invariant. Therefore it follows that g: Y1 -* Y2 is the
 only possibility. As in (2) of Case 2 above, we find that Y1 U Y2 is homeo-

 morphic to S1 x S1 x I. Consequently the torus a T, gives a g-invariant
 Heegaard splitting of M. This establishes that Mo has a Heegaard splitting of
 genus 1 and is a lens space.

 COROLLARY 9. A free action of Z8 or Q(2k), k > 3, on S3 is equivalent to an

 orthogonal action.

 PROOF. Suppose first that G = Z. or Q(8) and G acts freely on S3. Then
 there is a normal subgroup Z4 of G and by Proposition 7, the quotient of S3
 by Z4 is L(4, 1). Now this is a manifold of the type in Proposition 3. Let g be

 the free involution on L(4, 1) induced by the action of G on S3. Then by
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 3-MANIFOLDS THAT HAVE FINITE FUNDAMENTAL GROUP 137

 Theorem 8, the quotient of L(4, 1) by g is either a lens space or a manifold.

 with the properties in Proposition 3. But this is clearly the orbit space for the

 action of G on S3. Consequently the quotient of S3 by G is a Seifert

 manifold, by Proposition 3. Now the action of G is equivalent to an orthogo-

 nal action if and only if its orbit space can be Seifert fibered (see [101).
 Therefore the result is proved.

 For k > 3 the result follows by induction on k. Suppose Q(2k) acts freely

 on S 3. The action of the normal subgroup Q(2k-1) is equivalent to an

 orthogonal action by the inductive assumption. So the quotient of S3 by the

 action of Q(2k- '), which we will denote by M, is a Seifert manifold. Now it is

 easy to show that because 7T,(M) = Q(2k- 1), M has S2 as orbit surface and 3
 exceptional fibres of multiplicity 2, 2, p, with p > 1 (cf. [7] or[10]). Therefore
 M is a manifold of the kind in Proposition 3. There is a free involution on M

 induced by the action of Q(2k) on S3. Then by Theorem 8, the quotient of M

 by the involution is a Seifert manifold. Since this is just the orbit space for

 Q(2k), the proof is complete.
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