AMERICAN
 MATHEMATICAL
 SOCIETY

On 3-Manifolds That Have Finite Fundamental Group and Contain Klein Bottles
Author(s): J. H. Rubinstein
Source: Transactions of the American Mathematical Society, Jul., 1979, Vol. 251 (Jul., 1979), pp. 129-137

Published by: American Mathematical Society
Stable URL: https://www.jstor.org/stable/1998686
REFERENCES
Linked references are available on JSTOR for this-article:
https://www.jstor.org/stable/1998686?seq=1\&cid=pdf-
reference\#references_tab_contents
You may need to \log in to JSTOR to access the linked references.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Your use of the JSTOR archive indicates your acceptance of the Terms \& Conditions of Use, available at https://about.jstor.org/terms

ON 3-MANIFOLDS THAT HAVE FINITE FUNDAMENTAL GROUP AND CONTAIN KLEIN BOTTLES

BY
J. H. RUBINSTEIN ${ }^{1}$

Abstract

The closed irreducible 3-manifolds with finite fundamental group and containing an embedded Klein bottle can be identified with certain Seifert fibre spaces. We calculate the isotopy classes of homeomorphisms of such 3-manifolds. Also we prove that a free involution acting on a manifold of this type, gives as quotient either a lens space or a manifold in this class. As a corollary it follows that a free action of Z_{8} or a generalized quaternionic group on S^{3} is equivalent to an orthogonal action.

0. Introduction. We are in the PL category. The object of study is the class of closed, irreducible orientable 3-manifolds which contain embedded Klein bottles and have finite fundamental group. These 3-manifolds are easily shown to be exactly the Seifert fibre spaces [7] with at most 3 exceptional fibres of multiplicity $2,2, p(p \geqslant 1)$ and the 2 -sphere as orbit surface, excluding $S^{2} \times S^{1}$.

We prove that any homeomorphism homotopic to the identity is isotopic to the identity for such a 3 -manifold M (this was done for a particular case where $p=2$ in [4]). Also the factor group of the group of orientation-preserving homeomorphisms of M by the normal subgroup of homeomorphisms isotopic to the identity, which is denoted $\mathcal{H}(M)$, is shown to be one of the groups $Z_{2}, Z_{2}+Z_{2}, S_{3}$ and $S_{3}+Z_{2}$. There are no orientation-reversing homeomorphisms of M.

Finally we establish that any free involution on M gives as quotient either a lens space or a 3 -manifold in the above class. Let $Q(8 m)$ be the group $\left\{x, y \mid x^{2}=(x y)^{2}=y^{2 m}\right\}$. As a corollary it follows that a free action of $Q\left(2^{k}\right)$ on $S^{3}, k \geqslant 3$, is equivalent to an orthogonal action. Also simpler proofs of the analogous result in [5] and [6] for Z_{4} and Z_{8} are given.
Note that the 3-manifolds in the above class are not sufficiently large. Therefore it is interesting to see that some of the results of Waldhausen [9] can be achieved in this case. In another paper [11] we will build on the work here to obtain that free actions of some finite groups of order $2^{m} 3^{n}$ on S^{3} are equivalent to orthogonal actions.

[^0]Note added during revision. Similar results to $\S 1$ have been obtained by \mathbf{P}. Kim, to $\S 2$ by K. Asano, S. Cappell and J. Shaneson and to $\S 3$ by B. Evans and J. Maxwell. I would like to thank the referee for his suggestions and improvements to the paper.

1. Seifert spaces.

Definition. A closed surface J embedded in a 3-manifold M is incompressible if (1) J is a 2 -sphere and J does not bound a 3-cell or (2) J is not a 2-sphere and there is no disk D embedded in M with $D \cap J=\partial D$ a noncontractible curve in J.

Lemma 1. Let K be a Klein bottle. Then there are exactly five isotopy classes of simple closed curves in K. If $\pi_{1}(K)=\left\{a, b \mid b^{-1} a b=a^{-1}\right\}$ then these are represented by $\{1\}, a, b, a b, b^{2}$.

Proof. See [4].

Let M be a closed, irreducible orientable 3-manifold with finite fundamental group and K be an embedded Klein bottle in M. Since M is orientable, K must be one-sided in M. We denote a small regular neighbourhood of K by N. Finally let $Y=M-\operatorname{int} N$ and denote $\partial Y=\partial N$ by L.

Lemma 2. K is incompressible and Y is a solid torus.
Proof. Suppose that K is compressible in M and let D be a disk with $D \cap K=\partial D=C$ noncontractible in K. Then C is two-sided in K and therefore either iṣ a nonseparating curve on K or divides K into two Möbius bands (cf. Lemma 1). Let $N(D)$ be a small regular neighbourhood of D, which intersects K in an annulus A. Let D_{0} and D_{1} be the two disjoint disks in $\partial N(D)$ with $\partial D_{0} \cup \partial D_{1}=\partial A$. If we replace K by $(K-\operatorname{int} A) \cup D_{0} \cup D_{1}$ then the result is either a nonseparating 2 -sphere (since K is one-sided) or two disjoint one-sided projective planes in M. Both of these possibilities contradict $\pi_{1}(M)$ is finite. So K must be incompressible.

Since $\pi_{1}(M)$ is finite, by Lemma 14.12 of [12] it follows that Y is a handlebody as desired (i.e. a solid torus).
Proposition 3. The class of Seifert spaces with S^{2} as orbit surface and at most 3 exceptional fibres of multiplicity $2,2, p(p \geqslant 1)$ excluding $S^{2} \times S^{1}$, is equivalent to the class of irreducible 3-manifolds which have finite fundamental group and contain an embedded Klein bottle.

Proof. Suppose M is of the latter type. $\pi_{1}(L)$ has generators given by a and b^{2} in $\pi_{1}(K) . N$ can be fibered by circles which have homotopy class b^{2}, with two exceptional fibres of multiplicity 2 at the centres of the Möbius bands on K (with classes b and $a b$). Since K is incompressible, the boundary of a meridian disk for Y yields an element of $\pi_{1}(L)$ different from b^{2}. So the
fibering extends to Y with another exceptional fibre of multiplicity $p(p \geqslant 1)$.
Conversely let M be a Seifert fibre space as in the proposition. If λ is a nonsingular arc in the orbit surface, joining the images of the exceptional fibres of multiplicity 2 and missing the image of the other exceptional fibre, then the set of points of M which project to λ form a Klein bottle. Since M is not homeomorphic to $S^{1} \times S^{2}$ it follows that $\pi_{1}(M)$ is finite and M has S^{3} as its universal cover. Therefore M is irreducible and the result is proved.

Suppose M is a 3-manifold satisfying the conditions in Proposition 3. Let D be a meridian disk for Y and let $C=\partial D$. Assume the homotopy class $\{C\}=a^{m} b^{2 n}$, where $m, n \geqslant 0$ and $(m, n)=1$. Then $\pi_{1}(M)$ has the presentation $\left\{a, b \mid b^{-1} a b=a^{-1}, a^{m} b^{2 n}=1\right\}$. Since K is incompressible, $m \neq 0$ and $n \neq 0$. Conjugating $a^{m} b^{2 n}=1$ by b, we see that $a^{2 m}=b^{4 n}=1$. Let $4 n=2^{k} n_{1}$ where n_{1} is odd, and let b_{1} denote $b^{n_{1}}$. Then $\pi_{1}(M)=Z_{n_{1}} \times G$ where the cyclic group has generator $b^{2^{k}}$ and $G=\left\{a, b_{1} \mid b_{1}^{-1} a b_{1}=a^{-1}, a^{m} b_{1}^{2^{k-1}}=1\right\}$.

If m is odd then $G=D\left(2^{k}, m\right)=\left\{a_{1}, b_{1} \mid b_{1}^{-1} a_{1} b_{1}=a_{1}^{-1}, a_{1}^{m}=1, b_{1}^{2^{k}}=1\right\}$, where $a_{1}=a^{2}$. If m is even then since (m, n) $=1$ it follows that n is odd, $k=2$ and $n_{1}=n$. In this case $G=Q(4 m)=\left\{a, b_{1} \mid b_{1}^{2}=\left(a b_{1}\right)^{2}=a^{m}\right\}$.

In the degenerate case $m=1$, clearly $\pi_{1}(M)=Z_{4 n}$. By [1], $M=L(4 n$, $\pm(2 n-1))$ since M contains a Klein bottle.
2. The homeotopy group. Let M be a 3-manifold with the properties in Proposition 3, throughout this section.

Theorem 4. If $h: M \rightarrow M$ is any homeomorphism with $h_{\sharp}: H_{1}\left(M, Z_{2}\right) \rightarrow$ $H_{1}\left(M, Z_{2}\right)$ equal to the identity, then h is isotopic to a map taking K to K.

Proof. Denote $h(K)$ by K^{\prime} and assume that K^{\prime} and K are transverse. Since $h_{\#}=\mathrm{id}, h_{*}: \pi_{1}(M) \rightarrow \pi_{1}(M)$ must preserve the normal subgroup G of index 2 obtained from the orientation-preserving elements of $\pi_{1}(K)$. (Note that commutators in $\pi_{1}(K)$ are orientation-preserving loops.) Since the image of $\pi_{1}(Y)$ in $\pi_{1}(M)$ is clearly G, it follows that $K^{\prime} \cap Y$ must be orientable.

By the incompressibility of K^{\prime} and K, and the irreducibility of M, there is an obvious isotopy of K^{\prime} eliminating all the contractible curves of intersection of K^{\prime} and K. Consequently it suffices to suppose that $K^{\prime} \cap Y$ contains annuli only and all the curves of $K^{\prime} \cap L$ are noncontractible and parallel on L. By the well-known fact that a properly embedded, incompressible annulus in a solid torus is parallel into the boundary, we can then find an isotopy of K^{\prime} achieving $K^{\prime} \cap Y=\varnothing$.

Let N^{\prime} be a small regular neighbourhood of K^{\prime} in N and let $L^{\prime}=\partial N^{\prime}$. If the map $\pi_{1}\left(L^{\prime}\right) \rightarrow \pi_{1}(N)$ has nontrivial kernel then the argument in Lemma 14.12 of [12] implies that M is contained in N, which is impossible. So L^{\prime} is incompressible in N, and letting $W=N-\operatorname{int} N^{\prime}$ we see that W is an h cobordism. Therefore W is homeomorphic to $S^{1} \times S^{1} \times I$ (cf. [8]) and there
is an isotopy taking L^{\prime} to L. Using [9] we can achieve $K^{\prime}=K$ by another isotopy, since N is sufficiently large.

Theorem 5. If $h: M \rightarrow M$ is a homeomorphism homotopic to the identity then h is isotopic to the identity.

Proof. By Theorem 4 it suffices to assume h takes K to itself. Suppose h fixes the base point on K. Then $h_{*}: \pi_{1}(K) \rightarrow \pi_{1}(K)$ maps a to $a^{ \pm 1}$ and b to $b^{ \pm 1}$ or $(a b)^{ \pm 1}$ without loss of generality, by Lemma 1 . There is an isotopy in K inducing conjugation of $\pi_{1}(K)$ by b. This takes a to a^{-1} and so we can assume $h_{*}(a)=a$.

As h is homotopic to the identity, b and $h_{*}(b)$ are conjugate in $\pi_{1}(M)$. Therefore for some element $g, b^{-1} g^{-1} h_{*}(b) g$ is in the normal closure of the relation $r=a^{m} b^{2 n}$ in $\pi_{1}(K)$. By a calculation in $\pi_{1}(K)$, one sees that $g^{-1} h_{*}(b) g=h_{*}(b) a^{2 i}$ for some integer i. So

$$
\begin{equation*}
b^{-1} h_{*}(b) a^{2 i}=g_{1}^{-1} r^{ \pm 1} g_{1} g_{2}^{-1} r^{ \pm 1} g_{2} \ldots \tag{+}
\end{equation*}
$$

Suppose $h_{*}(b)=b^{-1}$ or $(a b)^{-1}$. If we put $a=1$ in (+) then it follows that $n=1$. On the other hand if we assume $h_{*}(b)=a b$ and set $a^{2}=1$ in (+) then this gives a contradiction. Finally in the case that $h_{*}(b)=b, h: K \rightarrow K$ is homotopic to the identity. Therefore by [2], after an isotopy we obtain that h is the identity on K. Because h must be orientation-preserving it is easy to isotop h to the identity on N and then on all of M.

Assume now that $h_{*}(b)=b^{-1}$ or $(a b)^{-1}$ and $n=1$, i.e., $\{\partial D\}=b^{2} a^{m}$ where D is a meridian disk for Y. Then the classes a and $\{\partial D\}$ have intersection number ± 1 in L. We isotop K as follows:

First we can move K till $K \cap Y$ is an annulus A in L, with the curves of ∂A having homotopy class a. The meridian disk D can be assumed to meet A at a single arc. Therefore A is parallel to $L-\operatorname{int} A$ in Y and there is an isotopy of K taking A to $L-\operatorname{int} A$. Then K can be shifted back to its original position, by the same argument as at the end of Theorem 4.

Depending on the direction of the isotopy, we see that b is transformed to the class $b\left(b^{2} a^{m}\right)^{ \pm 1}$ in $\pi_{1}(K)$. For the appropriate choice, the result is $b^{-1} a^{-m}$. Consequently if the isotopy is applied to h then a homeomorphism is obtained which takes b to $b a^{p}$ for some p. By the previous argument, this is isotopic to the identity as required.

Theorem 6. Let M be a 3-manifold as in Proposition 3. Then

$$
\mathscr{H}(M)= \begin{cases}Z_{2}+Z_{2} & \text { if } m \neq 2 \text { and } n \neq 1, \\ Z_{2} & \text { if } m \neq 2 \text { and } n=1, \\ S_{3}+Z_{2} & \text { if } m=2 \text { and } n \neq 1, \\ S_{3} & \text { if } m=2 \text { and } n=1\end{cases}
$$

There are no orientation-reversing homeomorphisms of M.
Proof. Let the map $\mathscr{H}(M) \rightarrow$ Aut $H_{1}\left(M, Z_{2}\right)$ given by $h \rightarrow h_{\sharp}$ have kernel \mathcal{G}. By Theorem 4, a homeomorphism h with isotopy class in \mathcal{G} can be assumed to map K to itself. By Lemma 1, without loss of generality h_{*} : $\pi_{1}(K) \rightarrow \pi_{1}(K)$ takes a to $a^{ \pm 1}$ and b to $b^{ \pm 1}$ or $(a b)^{ \pm 1}$. Conversely the homeomorphisms of K which transform the pair (a, b) to one of (a, b), $\left(a^{-1}, b^{-1}\right),(a, a b),\left(a^{-1},(a b)^{-1}\right)$ clearly map $\{\partial D\}$ to $\{\partial D\}^{ \pm 1}$ and so extend to homeomorphisms of M. Since there is an isotopy of K taking a to a^{-1} these maps give all possible isotopy classes in \mathcal{G}.

Suppose first that m is odd. Then $H_{1}\left(M, Z_{2}\right)=Z_{2}$ and so $\mathcal{G}=\mathscr{H}(M)$. The argument in Theorem 5 shows that no pair of the elements $b^{ \pm 1},(a b)^{ \pm 1}$ are conjugate in $\pi_{1}(M)$ for $n \neq 1$, and so $\mathscr{H}(M)=Z_{2}+Z_{2}$. On the other hand if $n=1$ then a homeomorphism h with $h(K)=K$ and $h_{*}(b)=(a b)^{-1}$ is isotopic to the identity (by the method in Theorem 5). Therefore $\mathcal{F}(M)=Z_{2}$ in this case.

Assume now that m is even. Then $H_{1}\left(M, Z_{2}\right)=Z_{2}+Z_{2}$ and a homeomorphism h taking K to K with $h_{*}(b)=(a b)^{ \pm 1}$ induces a nontrivial involution in Aut $H_{1}\left(M, Z_{2}\right)$. Therefore the same process as in the previous paragraph shows that $\mathcal{G}=Z_{2}$ if $n \neq 1$ and $\mathcal{G}=\{1\}$ if $n=1$.

Let \mathcal{G}_{0} be the quotient of $\mathscr{C}(M)$ by $\mathcal{G} . \mathcal{G}_{0}$ is isomorphic to the image of $\mathscr{H}(M)$ in Aut $H_{1}\left(M, Z_{2}\right)$ and we already know the latter group contains an element of order 2. So $\mathcal{G}_{0}=Z_{2}$ or S_{3} are the only possibilities. If the latter holds then there is a homeomorphism $h: M \rightarrow M$ with $h_{\#} \in$ Aut $H_{1}\left(M, Z_{2}\right)$ of order 3. Assume $h_{*}: \pi_{1}(M) \rightarrow \pi_{1}(M)$ takes a to $a^{i} b^{j}$. Then $a^{i} b^{j}$ must have order $2 m$. Consequently $b^{2 m j}$ is a power of a and so n divides j (since (m, n) $=1$ and m is even). If j is odd then $a^{i} b^{j}$ has order 4 and $m=2$. If j is even then $a^{i} b^{j}$ is a power of a and h_{\sharp} is not of order 3. This establishes that for $m \neq 2, \mathcal{G}_{0}=Z_{2}$.

Finally suppose $m=2$. Then $\{\partial D\}=a^{2} b^{2 n}$ and b^{2} has intersection number ± 2 with $\{\partial D\}$ in L. Consequently there is a Möbius band B embedded properly in Y with ∂B having the homotopy class b^{2}. But it is clear that another Möbius band B_{1} can be chosen in N with $\partial B_{1}=\partial B$. So $B \cup B_{1}$ gives a Klein bottle K^{\prime} in M.

By Lemma 2, $M=N^{\prime} \cup Y^{\prime}$ where N^{\prime} is a small regular neighbourhood of K^{\prime} and $Y^{\prime}=M-\operatorname{int} N^{\prime}$ is a solid torus. Let D^{\prime} be a meridian disk for Y^{\prime}. Then $\left\{\partial D^{\prime}\right\}=a_{0}^{m} b_{0}^{2 n}$ where $\pi_{1}\left(K^{\prime}\right)=\left\{a_{0}, b_{0} \mid b_{0}^{-1} a_{0} b_{0}=a_{0}^{-1}\right\}$, since the numbers m, n are in 1-1 correspondence with the isomorphism class of the group $\pi_{1}(M)$. Therefore it is clear that a homeomorphism from K to K^{\prime} can be found which extends to M, and so $G_{0}=S_{3}$.

For $m \neq 2, n=1$ we obtain $\mathscr{K}(M)=\mathcal{G}_{0}=Z_{2}$. If $m=2, n=1$ it follows that $\mathscr{C}(M)=\mathcal{G}_{0}=S_{3}$. Finally suppose $n \neq 1$. Then $\mathscr{H}(M)$ contains a sub-
group $Z_{2}+Z_{2}$. Therefore if $m \neq 2, \mathscr{H}(M)=Z_{2}+Z_{2}$ and if $m=2$ then $\mathscr{H}(M)=S_{3}+Z_{2}$ since this is the only nonabelian group which has order 12 and contains a normal subgroup Z_{2} (with quotient S_{3}).

Suppose $h: M \rightarrow M$ is an orientation-reversing homeomorphism. If $h_{\sharp} \in$ Aut $H_{1}\left(M, Z_{2}\right)$ is of order 3 then we replace h by h^{3}. So it suffices to assume (by Theorem 4) that there is a Klein bottle K in M, so that after an isotopy of $h, h(K)=K$. Then if we compose h with a suitable orientation-preserving homeomorphism, a new h is obtained with $h=$ id on K.

By the argument in the last paragraph of the proof of Theorem 4, we can adjust h so that also $h: N \rightarrow N$. Then since h is orientation-reversing, it must be the case that $h: L \rightarrow L$ is orientation-reversing. Suppose $h_{*}: \pi_{1}(L) \rightarrow \pi_{1}(L)$ maps a to $a^{i} b^{j}$ and b^{2} to $a^{q} b^{2 r}$. Since $h=$ id on K, it follows that in $\pi_{1}(K)$ the classes a and $a^{i} b^{j}$ must be conjugate, and similarly for b^{2} and $a^{q} b^{2 r}$. By a calculation in $\pi_{1}(K)$, one sees that $i= \pm 1, j=0, q=0$ and $r=1$. Then since $h: L \rightarrow L$ is orientation-reversing, we find that $i=-1$. But h_{*} : $\pi_{1}(L) \rightarrow \pi_{1}(L)$ maps $\{\partial D\}$ to $\{\partial D\}^{ \pm 1}$, and $\{\partial D\}=a^{m} b^{2 n}$ for $m>0, n>0$. This gives a contradiction.
3. 2-groups acting freely on S^{3}. In [3] it is proved that a free action of Z_{2} on S^{3} is equivalent to an orthogonal action. We begin with a simple demonstration of:

Proposition 7 [5]. Any free action of Z_{4} on S^{3} is equivalent to an orthogonal action.

Proof. By [3], the quotient of S^{3} by the action of the subgroup Z_{2} of Z_{4} is $R P^{3}$. Let P be an embedded projective plane in $R P^{3}$. The action of Z_{4} gives a free involution g on $R P^{3}$.

Assume without loss of generality that P and $g P$ are transverse (cf. the lemma in [5]). $P \cap g P$ contains a loop which is one-sided in P and $g P$, and all the other components of $P \cap g P$ bound disks in both surfaces. This follows by Poincaré duality, since a one-sided curve in P gives an element of $H_{1}\left(R P^{3}, Z_{2}\right)$ dual to the class in $H_{2}\left(R P^{3}, Z_{2}\right)$ corresponding to $g P$.

Suppose C is a curve of $P \cap g P$ chosen so that C bounds a disk D in $g P$ with (int $D) \cap P=\varnothing$. Let $C=\partial D_{1}$ with D_{1} in P. If C is g-invariant then $D_{1}=g D$. Hence $D \cup D_{1}$ is a g-invariant sphere which bounds a g-invariant 3-cell in $R P^{3}$. By the Brouwer Fixed-Point Theorem, g has a fixed-point in this cell, which is a contradiction. Therefore C cannot be g-invariant and we can find a projective plane P_{1} which is obtained by a small isotopy of $\left(P-\right.$ int $\left.D_{1}\right) \cup D$, so that $P_{1} \cap g P_{1}$ has fewer components than $P \cap g P$.

By this procedure we eventually reach a projective plane again denoted by P, with $P \cap g P$ a single curve. The complement of a small g-invariant regular neighbourhood of $P \cup g P$ in $R P^{3}$ consists of two 3-cells interchanged by g.

So the action of g is completely characterized and is equivalent to an orthogonal action.

Theorem 8. Suppose that M is a 3-manifold as in Proposition 3. If there is a free involution acting on M then the quotient is either a lens space or a manifold with the properties in Proposition 3.

Proof. Let $M=N \cup Y$ where N is a small regular neighbourhood of a Klein bottle K embedded in M. Let $g: M \rightarrow M$ be a free involution. We will show that the quotient has either an embedded Klein bottle or a genus 1 Heegaard splitting and this clearly implies the result.

Assume that $g K$ and K are transverse. By exactly the same procedure as in Proposition 7, since K and $g K$ are incompressible the contractible curves in their intersection can be eliminated. Suppose that a component C of $K \cap g K$ is two-sided in K. If T is a small regular neighborhood of C in M then $T-T \cap K$ has two components. Therefore $g K \cap(T-T \cap K)=(g K \cap$ $T)-C$ has two components, and this shows that C is two-sided in $g K$.

Suppose next that $K \cap g K$ contains two or more two-sided (noncontractible) curves in K. If C_{1}, C_{2} are loops of this type then clearly $C_{1} \cup C_{2}$ bounds annuli A, A^{\prime} in $K, g K$ respectively. Without loss of generality assume $K \cap$ int $A^{\prime}=\varnothing$. Exactly one of the surfaces $(K-\operatorname{int} A) \cup A^{\prime}$ and $A \cup A^{\prime}$ is a Klein bottle, which we denote by K_{1}. Suppose C_{1} is g-invariant and let π : $M \rightarrow M_{0}$ be the quotient of M by the action of g. By the argument on $p .14$ of [13] (cf. also p. 44 of [12]) this case can only occur if $\pi\left(C_{1}\right)$ is orientation-reversing in M_{0}, i.e. M_{0} is nonorientable. But M_{0} is closed with finite fundamental group so this gives a contradiction.

Therefore neither C_{1} nor C_{2} can be g-invariant. If $C_{1} \neq g C_{2}$ then after separating K_{1} slightly from $g K_{1}$, we see that $K_{1} \cap g K_{1}$ has less components than $K \cap g K$. On the other hand, if $C_{1}=g C_{2}$ then we can choose notation so that $g A=A^{\prime}$. In this case if $K_{1}=(K-\operatorname{int} A) \cup A^{\prime}$ then again after a small isotopy, $K_{1} \cap g K_{1}$ has fewer curves than $K \cap g K$. Finally, if $K_{1}=A \cup$ A^{\prime} then K_{1} is g-invariant and the result follows, since M_{0} contains a Klein bottle.

So we have established that for suitable choice of $K, K \cap g K$ includes at most one two-sided curve. Assume $K \cap g K$ has exactly one such curve C. Then C must be g-invariant, which gives a contradiction. Consequently it suffices to assume $K \cap g K$ contains only one-sided curves.

Case $1 . K \cap g K$ is a single curve C.
Let T be a small g-invariant regular neighbourhood of C, so that $K \cap \partial T$ and $g K \cap \partial T$ are single curves, C_{1} and $g C_{1}$ respectively. Let A be an annulus on ∂T between C_{1} and $g C_{1}$. Then $K_{1}=(K-\operatorname{int} T) \cup A \cup(g K-\operatorname{int} T)$ is an embedded Klein bottle in M. Since M_{0} is orientable, g is orientation-pre-
serving on T and on ∂T. Therefore A cannot be g-invariant, because g interchanges the curves of ∂A. Consequently we can separate K_{1} slightly from $g K_{1}$ so that $K_{1} \cap g K_{1}$ consists of two one-sided curves.

Case $2 . K \cap g K=C \cup g C$ (where C is one-sided).
Let T be a small regular neighbourhood of C (with $T \cap g T=\varnothing$). Then $\pi(T)$ is a solid torus in M_{0} with $\pi(K \cap T)$ equal to a properly embedded Möbius band. Let $K-\operatorname{int} T-\operatorname{int} g T=A$ and denote the closures of the components of $M-\operatorname{int} T$ - int $g T-K-g K$ by Y_{1} and Y_{2}.

The well-known argument that a properly embedded, incompressible annulus in a solid torus is parallel into the boundary shows that either Y_{1} or Y_{2} is a solid torus, with a meridian disk D_{1} which intersects A and $g A$ each in a single arc. We choose notation so that this is true for Y_{1}. There are two possibilities:
(1) Y_{1} and Y_{2} are both g-invariant.

Let C^{\prime} be a component of ∂A. Then $\pi\left(D_{1}\right)$ is a meridian disk for the solid torus $\pi\left(Y_{1}\right)$ (because M_{0} is orientable) and the curves $\pi\left(C^{\prime}\right), \partial \pi\left(D_{1}\right)$ have intersection number ± 2 in $\partial \pi\left(Y_{1}\right)$. So there is a Möbius band B embedded properly in $\pi\left(Y_{1}\right)$ with $\partial B=\pi\left(C^{\prime}\right)$. Consequently $B \cup \pi(K \cap T)$ is a nonsingular Klein bottle in M_{0}.
(2) g interchanges Y_{1} and Y_{2}.

In this case both Y_{1} and Y_{2} are solid tori, with meridian disks D_{1} and $g D_{1}$ which both cross A and $g A$ each at single arcs. Therefore it is easy to see that $Y_{1} \cup Y_{2}$ is homeomorphic to $S^{1} \times S^{1} \times I$. Consequently by [9], $\pi\left(Y_{1} \cup Y_{2}\right)$ is homeomorphic to the twisted line-bundle over a Klein bottle. This proves that M_{0} contains a Klein bottle.

Case 3. $K \cap g K=C_{1} \cup C_{2}$, with both curves g-invariant (and one-sided).
Let T_{1} and T_{2} be small g-invariant regular neighbourhoods of C_{1} and C_{2}. Define A, Y_{1}, Y_{2} as in Case 2, using T_{1} and T_{2} instead of T and $g T$. Exactly as in Case 1, the two annuli on ∂T_{1} between the curves $K \cap \partial T_{1}$ and $g K \cap \partial T_{1}$ cannot be g-invariant. Therefore it follows that $g: Y_{1} \rightarrow Y_{2}$ is the only possibility. As in (2) of Case 2 above, we find that $Y_{1} \cup Y_{2}$ is homeomorphic to $S^{1} \times S^{1} \times I$. Consequently the torus ∂T_{1} gives a g-invariant Heegaard splitting of M. This establishes that M_{0} has a Heegaard splitting of genus 1 and is a lens space.

Corollary 9. A free action of Z_{8} or $Q\left(2^{k}\right), k \geqslant 3$, on S^{3} is equivalent to an orthogonal action.

Proof. Suppose first that $G=Z_{8}$ or $Q(8)$ and G acts freely on S^{3}. Then there is a normal subgroup Z_{4} of G and by Proposition 7, the quotient of S^{3} by Z_{4} is $L(4,1)$. Now this is a manifold of the type in Proposition 3. Let g be the free involution on $L(4,1)$ induced by the action of G on S^{3}. Then by

Theorem 8, the quotient of $L(4,1)$ by g is either a lens space or a manifold with the properties in Proposition 3. But this is clearly the orbit space for the action of G on S^{3}. Consequently the quotient of S^{3} by G is a Seifert manifold, by Proposition 3. Now the action of G is equivalent to an orthogonal action if and only if its orbit space can be Seifert fibered (see [10]). Therefore the result is proved.

For $k>3$ the result follows by induction on k. Suppose $Q\left(2^{k}\right)$ acts freely on S^{3}. The action of the normal subgroup $Q\left(2^{k-1}\right)$ is equivalent to an orthogonal action by the inductive assumption. So the quotient of S^{3} by the action of $Q\left(2^{k-1}\right)$, which we will denote by M, is a Seifert manifold. Now it is easy to show that because $\pi_{1}(M)=Q\left(2^{k-1}\right), M$ has S^{2} as orbit surface and 3 exceptional fibres of multiplicity $2,2, p$, with $p>1$ (cf. [7] or [10]). Therefore M is a manifold of the kind in Proposition 3. There is a free involution on M induced by the action of $Q\left(2^{k}\right)$ on S^{3}. Then by Theorem 8 , the quotient of M by the involution is a Seifert manifold. Since this is just the orbit space for $Q\left(2^{k}\right)$, the proof is complete.

Bibliography

[^1]
[^0]: Received by the editors November 24, 1976 and, in revised form, March 20, 1978. AMS (MOS) subject classifications (1970). Primary 57A10, 57E05, 57E25; Secondary 55A10. Key words and phrases. Seifert fibre space, isotopy class of homeomorphisms, free group action.
 ${ }^{1}$ The author held a Rothman's Fellowship during this research.

[^1]: 1. G. Bredon and J. Wood, Nonorientable surfaces in orientable 3-manifolds, Invent. Math. 7 (1969), 83-110. MR 39 \#7616.
 2. D. Epstein, Curves on 2-manifolds and isotopies, Acta Math. 115 (1966), 83-107. MR 35 \# 4938.
 3. G. Livesay, Fixed point free involutions on the 3-sphere, Ann. of Math. 72 (1960), 603-611. MR 22 \#7131.
 4. T. Price, Homeomorphisms of Quaternion space and projective planes in four space, J. Austral. Math. Soc. 23 (1977), 112-128.
 5. P. Rice, Free actions of Z_{4} on S^{3}, Duke Math. J. 36 (1969), 749-751. MR 40 \#2064.
 6. G. Ritter, Free actions of Z_{8} on S^{3}, Trans. Amer. Math. Soc. 181 (1973), 195-212. MR 47 \#9611.
 7. H. Seifert, Topologie dreidimensionaler gefaserter Räume, Acta Math. 60 (1933), 147-238.
 8. J. Stallings, On fibering certain 3-manifolds, Topology of 3-Manifolds and Related Topics, Prentice-Hall, Englewood Cliffs, N. J., 1962.
 9. F. Waldhausen, On irreducible 3-manifolds which are sufficiently large, Ann. of Math. 87 (1968), 56-88. MR 36 \# 7146.
 10. P. Orlik, Seifert manifolds, Lecture Notes in Math., vol. 291, Springer-Verlag, Berlin and New York, 1972.
 11. J. H. Rubinstein, Free actions of some finite groups on S^{3}. I, Math. Ann. (to appear).
 12. J. Hempel, 3-manifolds, Ann. of Math. Studies, no. 86, Princeton Univ. Press, Princeton, N. J., 1976.
 13. J. Stallings, On the loop theorem, Ann. of Math. 72 (1960), 12-19. MR 22 \# 12526.

 Department of Mathematics, University of Melbourne, Parkville, Victoria 3052, Australia

