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Introduction

A compact, ^-irreducible 3-manifold M is said to be sufficiently large
if it admits a proper 2-sided embedding of a compact surface F not Sa

or P a , such that n^F) maps injectively into TT^M). Such an embedding
ia said to be incompressible. Waldhausen has shown in (12) that a
homotopy equivalence between two closed sufficiently large 3-manifolds
is homotopic to a homeomorphism and that two homotopic homeo-
morphisms are isotopic. He also had similar results for manifolds with
boundary. Heil in (3) extended these results to the non-orientable case.

If a sufficiently large 3-manifold M contains a separating incompres-
sible surface F then TTX(M) is of the form A *m(p) B, and if F is non-
separating then 7r1(Jf) is of the form A *ni(^. This paper was originally
intended to be a short note devoted to proving converses of the above
statements, given as Theorem 2.3 and Theorem 2.4 below.

Theorem 2.3 together with results of Waldhausen in (12) imply that
Neuwirth's Conjecture H in (7) is correct. It also provides a partial
answer to his Conjecture T.

It was pointed out to the author by G. A. Swarup that it should be
possible to extend the methods used in the proofs of these theorems to
greatly simplify the proof of Waldhausen's results in (12). This the
author has done and a complete proof that homotopy equivalent
sufficiently large 3-manifolds are homeomorphic is included in this paper.

The plan of the paper is as follows. In § 1 we present new proofs of
results of Feustel (2) and Jaco (4). Theorem 1.3 has also been proved
by G. A. Swarup in (11). We present these proofs partly for completeness
and partly because they seem to be simpler and more direct than the
original ones.

In § 2, we prove a theorem which has as immediate corollaries Wald-
hausen's result in (12) and Theorems 2.3 and 2.4jstated above. In § 3,
we give some applications of these results showing that most of the
interesting theorems on surfaces in 3-manifolds proved in (12) are
corollaries of Waldhausen's main result.
Quart. J. Math. Oxford (2), 23 (1972), 1S9-72.

D
ow

nloaded from
 https://academ

ic.oup.com
/qjm

ath/article/23/2/159/1572447 by U
niversity of G

lasgow
 user on 01 O

ctober 2023



160 G. P. SCOTT

The results we obtain in §§ 1 and 2 are not as strong as those obtained
by other authors, but it follows at once from § 3 that we can in fact
prove them in full strength after all.

We work throughout in the piecewise-linear category but all our results
hold also in the differential and topological categories. The author would
like to express his gratitude to G. A. Swarup for pointing out the possi-
bility of simplifying the proofs of (12). He would also like to thank
D. B. A. Epstein for a helpful conversation.

1. Some preliminary results
We will need the following definitions.
A 3-manifold M is P2-irreducible if any 2-sphere embedded in M

bounds a 3-ball, and M admits no 2-sided embedding of the projective
plane.

A map / : M -*• N, where M and N are manifolds, is proper if

= 8M.

Note that we shall not use the word 'proper' to mean that the inverse
image of a compact set is compact.

A compact surface F, not S2 or P2, which is properly embedded in
a 3-manifold M is incompressible if 7rx{F) maps injectively into TT^M).

We will also use the standard result that any sufficiently large
3-manifold M is aspherical. For the Projective Plane Theorem in (1)
implies that TT2(M) = 0 and either nx{M) is infinite or M is homeomorphic
to D3. We now look at the universal cover of M.

Finally the following classical theorem will be needed. The simplest
proof of this result is analogous to our proof of Waldhausen's theorem.

TKEOBEM 1.1. If f: M -»• N is a proper map of compact surfaces
inducing an isomorphism of fundamental groups and if M =£ S2 or P2

or D%, then f is properly homotopic to a map g such that either

(a) g is a homeomorphism, or

(b) g{M) c 8N and M is ^x I or the Moebius band.

We start with the following result, which though trivial appears not
to be well known.

LEMMA 1.2. Let Fn~l be a closed orientable manifold in the interior of
the orientable manifold Mn. Denote by [F] a generator of fift_1(i?

7, Z).
Then if [F] is non-zero in ^,_x(if, Z), it is also indivisible.
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ON SUFFICIENTLY LARGE 3-MANIFOLDS 161

Proof. If F fails to separate M, we can find a circle in M cutting F
transversely in one point. This circle represents an element of H^M)
dual to an element a; of if"-^JW.SJf) such that x[F] = 1. As evaluation
is a homomorphism the result follows in this case.

If F separates M into X and Y, then neither X nor Y can be compact
with boundary F, as [F] is non-zero in fin_1(Jf, Z). Therefore we can
rind a path cutting F transversely at one point and ending either in
some boundary component of M or 'at infinity'. The same argument
now applies using if necessary duality between homology with infinite
chains and cohomology with finite chains.

We can now prove the following two theorems. As we may not quote
any of Waldhausen's results in (12), our Theorem 1.4 is weaker than
the result in (4). This will be rectified at the end of § 3.

THEOREM 1.3. Let M3 be irrediicible and orientable and F2 c M3 a
dosed incompressible surface. Ifn^F) c 0 c TT-^M), where 0 is isomorphic
to the. fundamental group of a closed orientable surface L, then 0 = T^F).

Proof. Let N be the covering space of M determined by 0 c TTX(M).
Our embedding of F in M lifts to N. As i f is aspherical so is N and
hence N is homotopy equivalent to L.

So we have F -»- N -»- L where / is a homotopy equivalence. Now
/ o t is homotopic to a covering map of some finite degree r, by Theorem
1.1. Hence t#: Z ̂  H2(F, Z) -> H2(N, Z) ^ Z is multiplication by r.
Lemma 1.2 now tells us that r = ± 1 and hence 0 = v^F) as required.

THEOREM 1.4. Let M3 be P^-irreducible and F2 c M3 a closed incom-
pressible surface. If TT-^F) C OC n^M) where \O: TT^F)] is finite then
either

{a) 0 = TT^F), or

(b) \O: TT1(F)\ = 2 and F bounds a compact submanifold X of M
with njiX) = 0.

Note that if 0 is the fundamental group of a closed surface then
\O: n^F)} is automatically finite.

Proof. Take the covering space N of M determined by G c n^M).
Our embedding of F in M lifts to N.

If F fails to separate N then v^N) ^ H *Vl^ for some group H which
contradicts the fact that \O: v^F^ is finite. Therefore F separates N
into X and Y and TT^N) g* TT^X) *ffi(F) n^Y). As \Q: TT-^F)] is finite, we
deduce that ^ (X) = 0 and TTX(Y) = n^

M06.2.23 M
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162 G. P. SCOTT

Now if 0 ^ TTI(-F) then X has a non-trivial finite covering space X
determined by TT^F) c w1(X). Our embedding of F in 8X lifts to X
and the inclusion of F in X is a homotopy equivalence. Note that as
X is a non-trivial covering space of X, its boundary cannot consist
only of F.

Consider the following exact sequence

HS(X, dl; Z2) -+ H2(dX; Z2) -> H2{X; Z2).

As the dimension of the third group is one, and of the middle group at
least two, we deduce that X is compact with two boundary components.
Now consider the exact sequence

H2(X, e l ; Z) U HtfX; Z) X Hx(l; Z).

The map g is onto as the inclusion of F in X induces an isomorphism
HX{F, Z) -+ H^X, Z). If X is orientable then / and g are dual maps and
it follows that the rank of Hx(dX,Z) is twice the rank of R^(X,Z).
Hence dX consists of two copies of F, say F and F'. Consider the
composite F' c X -> F where the map X -*• F is a homotopy equiva-
lence. As the inclusion of F' in X induces an isomorphism

H2(F', Z) -> H2(X, Z),

the composite map F' -> F is of degree one, so induces an epimorphism
of fundamental groups. Now fundamental groups of compact surfaces
are Hopfian, so our map must actually induce an isomorphism of funda-
mental groups. Hence the inclusion of F' in X is also a homotopy
equivalence. If X is non-orientable, we get the same result by considering
the orientable double cover of X. I t follows that \O: TT1(-F

7)| = 2 and
that X is compact and bounded by F.

Now consider the projection map -n: N -*• M. As X is compact,
7T~1(JP) n X consists of dX and a finite number of compact covering
spaces of F. Let L be a component of TT~\F) n X. Then L c X and
ITTJ^X): TTX{L)\ is finite. I t follows from what we have already proved
that this index must be one or two. Hence as TT1(L) C n^F) c rr^X) we
must have L ~ F.

Thus 77—\F) n X consists of a finite number of copies of F which we
denote by Flt..., Fn and each Ft bounds a submanifold X t of X. Note
that TT^XJ) ^ 0 for TT^F^ C 7r1(Xi) c 0 and Ft cannot bound a compact
3-manifold Xi with 7r1(Xi) = TT^FJ. This follows from the previous
argument about X. There must be an F< such that Xi contains no other Fiy

and then TT IX will be a homeomorphism. To see this define S c Xt by
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ON SUFFICIENTLY LARGE 3-MANIFOLDS 163

S = {z e X^. 3y e Xit y ^ x, TT(X) = n(y)}. S is open and closed in Xt

and does not meet Ft.
Therefore if G ̂  ^(F), F bounds ^X^ in M as required, and this

completes the proof of Theorem 1.4.

2. The main result

We are now in a position to prove the following.

THEOREM 2.1. Let M and N be compact ^-irreducible 3-manifolds
with incompressible boundaries and let f: M -*• N be a proper map which
is a homotopy equivalence. Let F be an incompressible surface in N which
either fails to separate N or separates N into components neither of which
has fundamental group equal to TT^F). Then f is properly homotopic to
a map g such that either

(a) g\ : g~x{F) -> F is a homeomorphism, or

(b) g{M) c 8N. In this case dM consists of two copies of F and
= n^F), or 8M consists of one copy of F and fa^M): TT^F)] = 2.

Remarks. Our conditions on F are simply to ensure that f'1(F) can
never be empty.

Using Theorems 3.1 and 3.7, the result in case (6) can be improved to
say that i l f ^ . F x / o r j f i s a non-trivial bundle with fibre / over a
closed surface.

Proof of 2.1. The proof falls naturally into two cases, the second one
being very much easier.

Case 1. dF is empty.

We make/ transverse to F by a homotopy fixed on dM. Then/~1(JP)
is a union of closed surfaces in M and by applying the Loop Theorem
as in (9), we can suppose that each component is incompressible. Note
that no component can be homeomorphic to P s . Also if a component
is homeomorphic to S2 it must bound a 3-ball in M. Hence, as N is
aspherical, we can homotop / so as to remove this component.

Now let L b e a component of f~x(F). L is not S2 or P 2 and

f.:n1(L)-+Tr1(F)

is injective so Theorem 1.1 implies that we can homotop / so that
/ 1 : L -*• F is a covering map. Theorem 1.4 implies that either the map
is a homeomorphism or a double covering. In the latter case L bounds
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164 G. P. SCOTT

a submanifold X of M with TT^X) = fi1(n1(F)). This implies that we
can homotop/ | X modulo L to a map / ' with/'(X) c F. To construct
this homotopy we choose a triangulation of X and define our homotopy
onsimplicesof X working upward in dimension. ASTT1(X) =/i"1(7r1(-F')),
we can construct the required homotopy on the 1-skeleton of X. As N
and F are aspherical, it is trivial to extend our homotopy over the rest
of X. Thus we can homotop / so as to remove the component L from
f~l(F). Hence we can suppose that every component of/-1(.F) is mapped
homeomorphically to F.

Suppose f-1(F) is not connected. We denote the components by
Flt..., Fn. We also choose a base-point e e F and base-points ev..., en in
Fv..., Fn such that f(ei) = e. We know that /„,: ir^F^ e<) -> TT-^F, e) is
an isomorphism for each i.

We now come to the method of arc-chasing. Similar methods have
been used by Kneser and Stallings in (5) and (10). Choose two com-
ponents Fx and Fa of f~\F) and choose a path A in M from ex to e2. Then
/(A) is a loop ip N and so represents an element I of n^N, e). Let L be
a loop in M based at ex representing/i"1(i~1) e TT-^M, ej. Then the path
F = XL is a path from ex to e2 such that/(F) is a contractible loop in N.

We may suppose that F is immersed in M transversely to f~x(F)
except at the end points, and that T meets each Ft only in ê . Then
F n /-1(.F) divides F into a finite number of arcs F^..., Fr and each/(Fi)
is a loop in N representing some element g{ en^N^). Now our map
of F into N defines a map S1-*- N which is inessential by our construction
and so extends to a map h: D2 -*• N. We can suppose that h is transverse
to F, as F is collared in N, so that A~1(JP

I) is a union of circles in the
interior of D2 and of properly embedded arcs. We denote A~1(i'T) by S.
If S contains a circle C then C bounds a 2-disc B in D2. As h(C) is
inessential in N, it must be inessential in F, so we can replace A by a
map of h' equal to h outside B and such that h'(B) c F. Hence we can
homotop h further so as to remove C.

By repeating this we can suppose that S contains no circles. Now
any arc of S separates D2 and there must be an arc A such that one of
the corresponding components E of D2 does not meet 8 in its interior.
Then E n dD2 is an arc and h{E n 3D2) = /(FJ for some i. The disc E
defines a homotopy fixed on S n dD2 of E n 3D2 to A and so gi lies in
^{F,e).

If the corresponding arc Fi has both its end points at the same point ea

of M, we can homotop Tt modulo its endpoints to lie in Fs. Hence we
can homotop F so as to remove these two intersection points of F with
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ON SUFFICIENTLY LARGE 3-MANIFOLDS 165

. Thus we can suppose that there is an arc Yi with the property
that gi lies in TT1(F, e) and such that Ft has distinct endpoints es and et say.

If we cut M along Fs and -fj there will be a unique component X
containing copies of Fa and Ft in its boundary and containing the arc Fi.
If we take the covering space X of X corresponding to -rr^Fg) then our
embeddings of Fs and Ft in X will lift to X. For 7T1(-Pg) es) = irx{Ft, ee) via
the arc F̂ . The method of proof of the last part of Theorem 1.4 will
now show that X is compact with boundary two copies of Fs. I t follows
that the inclusion of Fa in X is already a homotopy equivalence. This
implies that we can homotop / 1 X modulo Fs U Ft to a map / ' such that
f'(X) c F. As before, we can define this homotopy simplex by simplex
of a triangulation of X.

As X does not meet dM, we can homotop/modulo dM so as to remove
Fs and Ft from f-x{F). By repeating this process we can arrange that
/-^•(F) is connected as required. This completes the proof of Theorem 2.1
in Case 1.

Case 2. dF is non-empty.

We first show that either the restriction of / to dM is homotopic to
a homeomorphism or we can prove case (b) of the theorem.

Let L be a component of dM and S be the component of dN with
f(L) c S. Then n^L) cfc1(TT1(8)) c TT^M) and Theorem 1.4 implies that
TT-^L) = /i"1(7r1(*S)) or has index two in it. In this second case L bounds
a submanifold X of M with TT-^X) = f+1{n1(S)). As L is a boundary
component of M we must have X = M. Therefore either / 1 : L -*• 8 is
homotopic to a homeomorphism or we have case (b) of the theorem as
required.

We now suppose that the restriction of/to each boundary component
of M is a homeomorphism. Suppose there are two distinct boundary
components Rx and R2 of M mapped to the same boundary component
8 of N. Choose a point e e S and points e1; e2 in R± and R2 such that
/(ei) = e. As in the proof of Case 1, we can find an arc F in M with
endpoints at e1 and e2 such that/(F) is a contractible loop in N. Again
as in the proof of Case 1 this implies that dM = R1U R2 and that the
inclusion of Rx in M is a homotopy equivalence. As N is aspherical, we
can prove case (b) of the theorem as required.

Now suppose that/1 dM is a homeomorphism. We make/transverse
to F and make f~\F) incompressible, as usual with no component of
f~x{F) being S2 or P2. Now choose a component Loff-^F). Theorem 1.1
tells us that we can homotop / so that L covers F and hence f\:L^>F
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166 G. P. SCOTT

is & homeomorphism, unless L = D2, S1 X / or the Moebius band. But
we know/1 dL is a homeomorphism, therefore the result is true in these
cases also. If L = D2 this is obvious, and if L = S1 X / it follows from
Theorem 1.1. If L is the Moebius band and the result is false, then
Theorem 1.1 implies that we can homotop L into a component circle S
oidF. But this would imply that the map/1: dL -*• S was of even degree
which contradicts the fact that it is a homeomorphism.

As any component L of f~x(F) maps homeomorphically onto F we
deduce that f~x(F) must already be connected and our result follows.

The following theorems are easy consequences of this result and its
method of proof.

THEOREM 2.2 (Waldhausen and Heil). Let M and N be compact
Pz-irreducible S-manifolds with incompressible boundaries and suppose
that N is sufficiently large. Let f.M^-Nbea proper map which is a
homotopy equivalence. Then f is properly homotopic to a map g such that
either

(a) g is a homeomorphism, or

(b) g{M) c dN. In this case either dM consists of two copies of a surface F,
= v1(F),or dM consists of one copy of F with \v1(M):n1(F)\ = 2.

Proof. We first choose a hierarchy for N [see (12)]. Our proof is by
induction on the length of the hierarchy. Take an incompressible surface
F in N, and apply Theorem 2.1. IS case (b) of Theorem 2.1 holds, then
we have proved case (b) of Theorem 2.2. If case (a) of Theorem 2.1 holds,
we cut N along F and cut M along f-1(F) to get a map / ' : M' -*• N'
satisfying all the hypotheses of Theorem 2.2 and in addition we can
suppose tha t / ' | dM' is a homeomorphism. We now apply our induction
hypothesis for Theorem 2.2 to the map/ ' . As / ' | dM' is a homeomorph-
ism,/' must satisfy case (a) of Theorem 2.2 and therefore we have proved
case (a) of Theorem 2.2 for the map/. If N has a hierarchy of length one,
then in the above we must have N' ^ D3 and M' ^ D3 so / ' is still
homotopic to a homeomorphism.

Remarks. Waldhausen considers a proper map f:M^-N which
induces an injection of fundamental groups. In order to obtain his
results we take the covering J\" of N corresponding to n^M) c n^N)
and apply Theorem 2.2 to the map / : M -> iv". Note that ft need not
be compact. But the proof of Case 2 of Theorem 2.1 shows that either
we can prove case (6) of Theorem 2.2 or the restriction o f / to dM is a
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ON SUFFICIENTLY LARGE 3-MANIFOLDS 167

homeotnorphism. A simple homology argument now shows that $ is
compact so $ is a finite covering space of N and is also sufficiently large.

Again the result stated here is weaker than Waldhausen's, for in
case (b) of the theorem Waldhausen says M is a line bundle over a
surface. We will be able to prove this also in § 3 of this paper.

THEOREM 2.3. Let M3 be closed and ^-irreducible and suppose
771(M) ^ A *c B, where G ̂  A or B and C is isomorphic to the funda-
mental group of a closed surface L. Then there is an incompressible
embedding of L in M separating M into M1 and M2 with 7T1(Jf1) = A,
77x(3f2) = B, and ir^L) = C.

THEOREM 2.4. Let M3 be closed and P^-irreducible and suppose
•n-^M) ^ A *c where C is isomorphic to the fundamental group of a closed
surface L. Then there is an incompressible embedding of Lin M such that
7r1(i) = C and M cut along Lisa connected 3-manifold N with TT^N) ^ A.

Proofs of Theorems 2.3 and 2.4. The idea is simply to work through
the proof of Theorem 2.1 using an appropriate Eilenberg-Maclane space
instead of the 3-manifold N. In the first case, we construct an E-M space
K(A *c B, 1) as follows. Choose Eilenberg-Maclane spaces, K(A, 1),
K(B, 1), and K(G, 1), which are simplicial complexes. We have simplicial
maps i0: K{C, 1) -»- K(A, 1) and t^ K(C, 1) -> K(B, 1) induced by the
inclusion maps of G in A and B. We take K(A *c B, 1) to be

K{A,\) U K(C,\)XI U K(B,\).
it x 0 ii X1

In the second case, we have two inclusion maps t0, it: K(G, 1) -*• K(A, 1)
and we take E(A *c, 1) to be K(A, 1) U K{G, 1) X / .

Y,xO
i , x l

Now choose a simplicial map/: M -*• K{0,1) inducing an isomorphism
of fundamental groups where 0 = A *c B or A * c as appropriate. We
can choose t e (0,1) so that K(G, 1) x {t} contains no vertices oif(M) and
we can suppose that t = $ without loss of generality. Then

is a closed surface possibly not connected in M. Denote this surface by T.
As usual we can suppose T is non-empty, incompressible, and has no
components homeomorphic to S* or P2. Hence F is not Si or P3. Note
that in either case 0 is infinite, hence M is aspherical. We can now
proceed precisely as in the proof of Theorem 2.1.

D
ow

nloaded from
 https://academ

ic.oup.com
/qjm

ath/article/23/2/159/1572447 by U
niversity of G

lasgow
 user on 01 O

ctober 2023



168 G. P. SCOTT

Remarks. Theorem 2.3 is false if we relax our condition that C be the
fundamental group of a closed surface. For let M = Mx U M^ U M3

where Mx n M3 is empty, Mx n M2 = 8MV M^n M3 = dM3, and M2 is
connected. Then TT-^M) ^ ir1(M1 U M^) ^^j ^(JfjU _3f3) and w1(24)
need not be isomorphic to the fundamental group of a closed surface.

A similar example will give a counter-example to Theorem 2.4.
Theorem 2.3 is also false if we relax the condition that M be P2-

irreducible. In Theorem 2.2 of (13) Waldhausen shows that there exists
an irreducible closed 3-manifold X which does not admit an incom-
pressibly embedded torus but has ZxZ CTTX{X). Let M = X1 # X2

where Xx ^ X2 ^ X. Then n^M) ^ TT^ZJ *ZXZ ({ZXZ)* TT^XJ).

Hence if Theorem 2.3 held we could embed a torus incompressibly in M.
But by the methods of (6), we could isotop this torus so as not to meet
the sphere along which X^ and X2 are joined and this would contradict
our hypothesis on X.

3. Applications

Tn this section, we apply Theorem 2.2 to prove some of the theorems
of (12). We can then go back to Theorems 1.4 and 2.2 to prove them
in full-strength by applying Theorems 3.1 and 3.7. We need to use the
following results to carry out this strengthening. Our first theorem was
originally proved by Stallings in (9).

THEOBEM 3.1. If X is a compact, Pt-irreducible 3-manifold with a
compact surface F c dX where inclusion in X is a homotopy equivalence,
thenX ^

Proof. If F is closed then as we showed in the proof of Theorem 1.4,
X must have boundary consisting of two copies of F such that the
inclusion of each in X is a homotopy equivalence. It follows that there
is a proper map / : Fxl-*• X which is a homeomorphism on 8(FXI)
and is a homotopy equivalence. Theorem 2.2 implies that X ~ Fxl
as required.

If F is not closed, we show similarly that dX is the double of F and
the inclusion of each copy of F in X is a homotopy equivalence. We
can then define a map / : Fxl-> X which is a homeomorphism on
B(FxI) and is a homotopy equivalence. Again this implies our result
by Theorem 2.2. Note that 8X is not incompressible, but as / is a
homeomorphism on d(FxI) anyway the proof of Theorem 2.2 goes
through.
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ON SUFFICIENTLY LARGE 3-MANIFOLDS 169

THEOBEM 3.2. Let F be a closed surface not S* or P2 and let 0 be an
incompressible surface in Fxl with dO c Fxl or 80 empty. Then 0 is
parallel to a surface in Fxl, i.e. there is an embedding of Ox I in Fx I
with 0 = GxOand Gxl U dOxI c Fxl.

Proof. We first note that 0 must separate Fxl, for the map
H2(G, dO; Z2) ->• H2(F xI,Fxl; Z2) is zero, as the second group is zero.
Let the complementary components be X and Y with FxO c X. Then
TT^FX I) ^ Ti{X) t^G) 77X(F). As the composite

TT^F X 0) -> TT^X) -+ TT^F X I)

is an isomorphism we deduce that n^X) = TT^F) and n^Y) = n^G).
Theorem 3.1 implies that Y ^ OxI and this proves the required result.

The final result we need is Theorem 3.7 below. We prove this by
quoting the following theorem which was proved in the orientable case
by Nielsen in (8) and extended to the non-orientable case by Zieschang
in (14).

THEOREM 3.3. Let F be a closed surface and f:F-+Fa map whose
n-th composite fn is homotopic to the identity map. Then f is homotopic
to a homeomorphism g where gn is the identity map of F.

I am grateful to C. T. C. Wall for suggesting the following application
of this result which seems to be of some general interest.

COBOLLABY 3.4. Let F be a closed surface and let 0 be a torsion-free
group which is an extension of TT^F) by Zn. Then 0 is the fundamental
group of a closed surface.

Proof. Any extension of a group H by a group K determines a homo-
morphism K -> O(H), the outer automorphism group of H. If H is
centreless, then conversely such a homomorphism determines a unique
extension of H by K.

We consider first the case when F is not a torus or Klein bottle and
so TTX{F) is centreless. Corresponding to 0 we have a homomorphism
(f>: Zn -*• O^^F)). ~Let a be a generator of Zn. Then <f>{a) determines
a map/: F ->- F such that/™ is homotopic to the identity. Theorem 3.3
says that we can take / to be a homeomorphism of order n. Hence some
extension 0' of 7r1( F) by Zn acts by homeomorphisms on R2 extending
the standard action oin^F). But corresponding to 0' we have a homo-
morphism (f>': Zn-> O(7T1(F)) and j> = <f>. I t follows that G' ^.0 and
so 0 acts on R*. As 0 is torsion-free this action must be free. For if the
action of g e 0 has a fixed point so does the action of any power of g.
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But some power of g lies in TT-^F) which we know acts freely. This proves
the required result.

In the case when F is a torus or Klein bottle the argument is much
easier.

Suppose that F is a torus and let </>: Zn -*• O[IT1(F)') be the homo-
morphism corresponding to our extension 0. Let a be a generator of Zn.
By choosing a suitable basis of rr^F), we can suppose that <f>(cc) has
m a t r i x (1 a\ (I 0

(o i) °r (o -
In the first case we must have a = 0 as the matrix must be of finite
order. Hence 0 is abelian and as 0 is torsion-free we have 0 ^ Zx Z.
In the second case, 0 has a subgroup of index 2 which is abelian and
hence isomorphic to Z X Z, so 0 itself is isomorphic to the fundamental
group of a Klein bottle.

Now suppose that F is a Klein bottle with </> and a as before. We
know that n-^F) ^ {a, b: ft-1oft = a"1} and that ir-^F) has infinite centre
generated by ft2. We also know that O(7r1(_F)) ^ Z2xZ2 where auto-
morphisms representing the four elements of O^TT^F)) are given by
a -> a*-1, b -*• ft*1. Hence tf>(cc) can take four possible values and we check
that in each case either G is isomorphic to the fundamental group of the
Klein bottle or that 0 cannot be torsion-free. In the case when <f> is
trivial, there exists g e 0 projecting down to a e Zn such that g com-
mutes with a and ft. Now gn e 7T1(-F) has the same property so gn is a
power of ft2. Hence gp(ft, g) s Z with generator h say. We can easily
see that 0 ^ {a,h: h^ah = a"1}, proving the required result.

In the general case, G will have a subgroup of index 2 corresponding
to ker(<£) which will be isomorphic to TTX(F). SO we will only consider
the case n = 2.

Case 1. There is g e G projecting down to a 6 Z2 such that g~lag = a~x,
g~xbg = ft. Then g2 is central in G and hence in TT^F), SO g2 = b27 for
some r. Hence (gb~r)2 = 1, so g = bT as G is torsion-free and we have
a contradiction.

Case 2. There is g e G projecting to a e Z% such that g~xag = a*1,
g~xbg = ft-1. Again g2 — ft2', so g and ft2r commute. But g^b^g = ft-2',
so r = 0 which implies (72 = 1 and is again a contradiction.

COROLLABY 3.5. LeX Mn be a manifold homotopy equivalent to a closed
surface not S2 or F2. If a cyclic group acts freely on M then the quotient
space N is also homotopy equivalent to a closed surface.
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Proof. We simply note that M is aspherical and hence so is the

quotient space N. Hence n^N) is torsion-free as N is finite-dimensional.
We now apply Corollary 3.4.

THEOREM 3.6. Let M3 be compact and Pi-irreducible with incompressible
boundary and let Fbe a closed surface homotopy equivalent to M. Then M
is homeomorphic to a bundle with fibre I over F.

Proof. The boundary of M contains no 2-spheres or projective planes
as M is P2-irreducible. Also note that M is aspherical so F cannot be
<SS or P2. Finally H3(M, Z2) = 0 so M has non-empty boundary. Let
L be a component oidM. Then Theorem 1.4 implies that n^L) = TT^F)
or in^F): 771(Z')| = 2 and L = dM. In the first case, Theorem 3.1 says
that M ^ Fx I. In the second case we can show M is a non-trivial
bundle with fibre / over F as follows. The composite map

L ^ dM c 4- F

is homotopic to a double covering map and this determines a bundle
with fibre I over F and projection TT say. Let X be the total space of

this bundle. Then the composite map X -5- F -4- M is a homotopy
equivalence. Also the inclusion L ^ dM c M is homotopic to the map
L ^ 8X -*• M. Hence we can homotop our map X -*• M to be a homeo-
morphism of dX to dM. The required result now follows by Theorem 2.2.

THEOREM 3.7. Lei M3 be a bundle with fibre I over a closed surface not S2

or P2. If TT: M -> N is a covering map then N is also a bundle with fibre I
over a closed surface.

Proof. We first show that N has incompressible boundary. Let L be
a component of dM and F = TT(L) and consider the natural map

• TT^N). Now 771(L) is of finite index in TT^F) and injects into
Hence the kernel of t* is finite and so trivial.

Now Theorem 1.4 shows that TT^F) = TT^N) or {n^N): n^F)] = 2,
and Theorem 3.1 shows that N ^. Fxl or NIB doubly covered by F X / .
Our result now follows from Corollary 3.5 and Theorem 3.6.
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