Differentiable and Combinatorial Structures on Manifolds

Author(s): Stephen Smale

Source: Annals of Mathematics, Nov., 1961, Second Series, Vol. 74, No. 3 (Nov., 1961), pp. 498-502
Published by: Mathematics Department, Princeton University
Stable URL: https://www.jstor.org/stable/1970294

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Your use of the JSTOR archive indicates your acceptance of the Terms \& Conditions of Use, available at https://about.jstor.org/terms

DIFFERENTIABLE AND COMBINATORIAL STRUCTURES ON MANIFOLDS

By Stephen Smale*

(Received December 5, 1960)

1. By extensions of our methods of a previous paper [7], hereafter referred to as GPC, we prove the following theorems. They are all generalizations of results in GPC.
(1.1) Theorem. Let C^{n} be a contractible C^{∞} compact manifold with simply connected boundary where $n \neq 3,4,5,7$. Then C^{n} is diffeomorphic to the n-disk D^{n}.
(1.2) Corollary. If $n \neq 4,5,7$, there is a unique C^{∞} structure up to diffeomorphism on the n-disk.
(1.3) COROLLARY. If $n \neq 4,7$, and $f: S^{n-1} \rightarrow E^{n}$ is a differentiable imbedding of the sphere in euclidean space, then the closure C of the bounded component of $E^{n}-f\left(S^{n-1}\right)$ is diffeomorphic to D^{n}.

The second corollary is a strong version of the differentiable Schoenflies problem, $n \neq 4,7$. Mazur's theorem [3] had already implied that C was homeomorphic to D^{n}.

Two abelian groups, Γ^{n} and A^{n}, studied by Milnor [4], Munkres [6], and Thom [8], have been found to be important in the theory of differentiable structures on manifolds. The group Γ^{n} is the group of diffeomorphisms of S^{n-1} modulo those which can be extended to D^{n}. It has been identified with the set of differentiable structures on S^{n} compatible with the standard triangulation of S^{n} (see GPC for more details and references for all these things discussed in the Introduction). The group A^{n} is the group of those differentiable structures on S^{n} which, minus a point, are diffeomorphic to E^{n}. In GPC it was proved that $A^{n}, n \neq 4$ is the group of all differentiable structures on S^{n}.

On the other hand a group \mathcal{H}^{n} of homotopy spheres of dimension n under " J-equivalence" has been studied by Kervaire and Milnor [2]. They have shown \mathscr{G}^{n} is finite, $n \neq 3$, and have computed the order of \mathscr{G}^{n}, $3<n \leqq 15$.
(1.4) Theorem. For $n \neq 3,4,6,7, \mathcal{H}^{n}=A^{n}=\Gamma^{n}$. Also $\mathcal{H}^{7}=A^{7}, \Gamma^{6}=$ A^{6}.
(1.5) Corollary. There are a finite number of differentiable struc-

[^0]tures on $S^{n}, n \neq 4,6$.
We also obtain here
(1.6) Theorem. Combinatorial analogues of (1.1) and (1.2) are valid with diffeomorphism replaced by combinatorial equivalence.
(1.7) Theorem. Combinatorial structures on spheres and cells are unique if their dimension is not $4,5,7$. That is, the Hauptvermutung is true for combinatorial n-manifolds which are homeomorphic to spheres or cells, $n \neq 4,5,7$.

We refer the reader to GPC, beginning, for the proof that (1.1)-(1.7) follow from the next two theorems.
(1.8) Theorem. Let M^{n} be an ($m-1$)-connected, C^{∞} closed manifold with $n \geqq 2 m-1$, and $(n, m) \notin\{(4,2),(3,2),(5,3),(7,4)\}$. Then there exists a non-degenerate (nice) C^{∞} function on M with type numbers M_{i} satisfying

$$
M_{0}=M_{n}=1, \quad M_{i}=0, \quad 0<i<m, n-m<i<n .
$$

(1.9) Theorem. Suppose M_{1}^{n} and M_{2}^{n} are J-equivalent ($m-1$)-connected closed C^{∞} manifolds with $n=2 m$ or $n=2 m+1$ and $(n, m) \notin$ $\{(4,2),(3,1),(6,3)\}$. Then M_{1}^{n} and M_{2}^{n} are diffeomorphic.
Remark. From the methods used here, it will be clear that all the previous theorems will be true also for $n=6,7$ if the following likely hypothesis is true.
Hypothesis. Let $f, g: S^{3} \rightarrow M^{6}$ be differentiable imbeddings which are homotopic with

$$
\pi_{0}\left(M^{\theta}\right)=\pi_{1}\left(M^{\theta}\right)=\pi_{2}\left(M^{\theta}\right)=0 .
$$

Then f and g are differentiably isotopic.
2. We emphasize that we are assuming the notation and terminology of GPC. We will prove
(2.1) Extended handlebody theorem. Let $n \geqq 2 s+1,(n, s) \notin$ $\{(4,1),(3,1),(5,2),(7,3)\}$ and $H \in \mathscr{H}(n, k, s)$. Suppose

$$
V=\chi\left(H ; f_{1}, \cdots, f_{r} ; s+1\right)
$$

and $\pi_{s}(V)=0$. Also if $s=1$, let

$$
\pi_{1}\left(\chi\left(H ; f_{1}, \cdots, f_{r-k} ; s+1\right)\right)=1 .
$$

Then $V \in \mathscr{H}(n, r-k, s+1)$.
We first note that (1.8) follows from (2.1) and the arguments of GPC. Also, since the proof of (1.9) involves nothing beyond straight-forward
application of methods of GPC and this paper, we omit it. Hence it remains to prove (2.1). We use the following special case of a very recent theorem of A. Haefliger [1].
(2.2) Theorem (Haefliger). Suppose $f, g: S^{k} \rightarrow M^{2 k}$ are differentiable imbeddings which are homotopic, $k>3$ and

$$
\pi_{0}(M)=\pi_{1}(M)=\cdots=\pi_{k-1}(M)=1
$$

Then f and g are differentiably isotopic.
(2.3) Theorem. Let $\gamma \in \pi_{k}\left(M^{2 k}\right)$ where $M^{2 k}$ is a C^{∞} simply-connected manifold and $k>2$. Then γ can be realized by a differentiable imbed$\operatorname{ding} f: S^{k} \rightarrow M^{2 k}$.

As has been observed by Milnor [5], one can prove this by using the work of Whitney [9]. See also [1].

The following theorem extends Theorem (2.1) of GPC. The proof is the same but uses Theorems (2.2) and (2.3) above, instead of the weaker theorems of Whitney and Wu used there.
(2.4) Theorem. Let $n \geqq 2 s+1$, $(n, s) \notin\{(4,1),(3,1),(5,2),(7,3)\}$, let $\sigma=\left(M, Q ; f_{1}, \cdots, f_{r} ; s+1\right)$ be a presentation of a manifold V, and assume $\pi_{1}(Q)=1$ if $n \leqq 2 s+2$, and $\pi_{2}(Q)=0$ if $n=2 s+1$. Then for any automorphism $\alpha: G_{r} \rightarrow G_{r}, V$ realizes $f_{\sigma} \alpha$.

Now (2.1) has been proved in GPC except for the case $n=2 s+1$, $s>3$. Thus in proving (2.1), assume $H \in \mathscr{G}(2 m+1, k, m), m>3$. From $\S 3$ of GPC it follows that

$$
H \in S_{1}^{m} \times D_{1}^{m+1}+\cdots+S_{k}^{m} \times D_{k}^{m+1}
$$

Let g_{1}, \cdots, g_{k} be the corresponding generators of $\pi_{m}(H)$ and h_{i} be the generators of $\pi_{m}(\partial H)$ corresponding to $q_{i} \times \partial D_{i}^{m+1}, q_{i} \in S_{i}^{m}$. Thus $\left\{g_{1}, \cdots, g_{k}, h_{1}, \cdots, h_{k}\right\}$ is an independent set of generators of the free abelian group $\pi_{m}(\partial H)$.

We can represent H in the form

$$
H=\chi\left(D^{2 m+1} ; \psi_{1}, \cdots, \psi_{k}\right)
$$

where

$$
\psi_{i}: \partial D_{i}^{m} \times D_{i}^{m+1} \rightarrow \partial D^{2 m+1}
$$

are imbeddings with the images of ψ_{i} disjoint. Then the above h_{i} can be represented by ψ_{i} restricted to $q_{i} \times \partial D_{i}^{m+1}$ for some $q_{i} \in \partial D_{i}^{m}$.

On the other hand

$$
V=\chi\left(H ; f_{1}, \cdots, f_{r}\right)=\chi(\sigma)
$$

where

$$
f_{i}: \partial D_{i}^{m+1} \times D_{i}^{m} \rightarrow \partial H
$$

are imbeddings. Let

$$
\pi_{m}(\partial H)=G_{k}+H_{k}
$$

where G_{k} is generated by g_{1}, \cdots, g_{k} and H_{k} by h_{1}, \cdots, h_{k}, and let

$$
\pi_{1}: \pi_{m}(\partial H) \rightarrow G_{k}
$$

be the projection. Since $\pi_{m}(V)=0, \pi_{1} f_{\sigma}$ is an epimorphism where

$$
f_{\sigma}: G_{r} \rightarrow \pi_{m}(\partial H)
$$

is induced by σ. Define an epimorphism $g: G_{r} \rightarrow G_{k}$ by $g D_{i}=g_{i}, i \leqq k$ and $g D_{i}=0, i>k$. Then by (4.1) of GPC there is an automorphism α of G_{r} such that $\pi_{1} f_{\sigma} \alpha=g$. Thus $\pi_{1} f_{\sigma} \alpha\left(D_{1}\right)=g_{1}$ or

$$
f_{\sigma} \alpha D_{1}=g_{1}+\sum_{1}^{k} a_{i} h_{i}
$$

Then by (2.4), we can assume $V=\chi\left(H ; f_{1}, \cdots, f_{r}\right)$ where the homotopy class of f_{1} restricted to $\partial D_{1}^{m+1} \times 0$ in $\pi_{m}(\partial H)$ is $g_{1}+\sum_{1}^{k} a_{i} h_{i}$ for some set of a_{i}.

Let Γ be the union of the subsets

$$
D_{2}^{m} \times D_{2}^{m+1}, \cdots, D_{k}^{m} \times D_{k}^{m+1}
$$

of H. Now it is clear that each $h_{i} \in \pi_{m}(\partial H)$ is the image of some class in $\pi_{m}(\partial H-(\partial H \cap \Gamma))$ under the homomorphism induced by inclusion. The same is true also for g_{1}. This implies that the class $g_{1}+\sum_{1}^{k} a_{i} h_{i}$ has the same property, or that there exists a map

$$
\bar{f}_{1}^{\prime}: \partial D^{m+1} \times 0 \rightarrow \partial H-(\partial H \cap \Gamma)
$$

which is homotopic in ∂H of the restriction of

$$
f_{1}: \partial D_{1}^{m+1} \times D_{1}^{m} \rightarrow \partial H
$$

to $\partial D_{1}^{m+1} \times 0$. By (2.3) we can realize \bar{f}_{1}^{\prime} by an imbedding. By (2.4) of GPC extended slightly by (2.2) of this paper we obtain a differentiable imbedding

$$
f_{1}^{\prime}: \partial D_{1}^{m+1} \times D_{1}^{m} \rightarrow \partial H-(\partial H \cap \Gamma)
$$

such that $\chi\left(H ; f_{1}^{\prime}\right)$ and $\chi\left(H ; f_{1}\right)$ are diffeomorphic.
If we generalize the definition $\chi\left(M ; \varphi_{1}, \cdots, \varphi_{k}\right)$ of GPC to include the case of handles of more than one dimension, we have $\chi\left(H ; f_{1}^{\prime}\right)$ is diffeomorphic to $\chi\left(H_{1} ; f_{1}^{\prime}, \psi_{2}, \cdots, \psi_{k}\right)$ where $H_{1}=\chi\left(D^{2 m+1} ; \psi_{1}\right)$. Then we have $\chi\left(H ; f_{1}\right)$ is diffeomorphic to $\chi\left(H_{2} ; \psi_{2}, \cdots, \psi_{k}\right)$ where $H_{2}=\chi_{1}\left(H_{1} ; f_{1}^{\prime}\right)$. By
the proof of (3.3) of GPC, H_{2} is diffeomorphic to $D^{2 m+1}$. Thus V is of form $\chi\left(H_{3} ; f_{2}, \cdots, f_{r}\right)$ where $H_{3}=\chi\left(H_{2} ; \psi_{2}, \cdots, \psi_{k}\right)$ is in $\mathcal{H}(2 m+1, k-1, m)$. By induction on k we get (2.1).

University of California, Berkeley

References

1. A. Haefliger, Differentiable imbeddings, Bull. Amer. Math. Soc., 67 (1961), 109-112.
2. M. Kervaire and J. Milnor, Groups of homotopy spheres, to appear.
3. B. Mazur, On embeddings of spheres, Bull. Amer. Math. Soc., 65 (1959), 59-65.
4. J. Milnor, Sommes de variétés différentiables et structures différentiables des sphères, Bull. Soc. Math. France, 87 (1959), 439-444.
5. ——, Differentiable manifolds which are homotopy spheres, mimeographed, Princeton University, 1959.
6. J. Munkres, Obstructions to the smoothing of piecewise differentiable homeomorphisms, Bull. Amer. Math. Soc., 65 (1959), 332-334.
7. S. Smale, Generalized Poincarés Conjecture in dimensions greater than four, Ann. of Math., 74 (1961) 391-406.
8. R. Тном, Des variétés trianguleés aux variétés différentiable, Proceedings of the International Congress of Mathematicians, 1958, Cambridge University Press, 1960.
9. H. Whitney, The self-intersections of a smooth n-manifold in $2 n$-space, Ann. of Math., 45 (1944), 220-246.

[^0]: * The author is an Alfred P. Sloan fellow.

