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Introduction

1

The recent efflorescence in the theory of polyhedral manifolds due to
Smale’s handle-theory, the differential obstruction theory of Munkres
and Hirsch, the engulfing theorems, and the work of Zeeman, Bing and
their students - all this has led to a wide gap between the modern the-
ory and the old foundations typified by Reidemeister’s Topologie der
Polyeder and Whitehead’s “Simplicial spaces, nuclei, andm-groups”.
This gap has been filled somewhat by various sets of notes, notably
Zeeman’s at I.H.E.S.; another interesting exposition is Glaser’s at Rice
University.

Well, here is my contribution to bridging the gap. These notes con-
tain:

(1) The elementary theory of finite polyhedra in real vector spaces.
The intention, not always executed, was to emphasize geometry,
avoiding combinatorial theory where possible. Combinatorially,
convex cells and bisections are preferred to simplexes and stellar
or derived subdivisions. Still, some simplicial techniquemust be
slogged through.

(2) A theory of “general position” (i.e., approximation of maps by
ones whose singularities have specifically bounded dimensions),
based on “non-degeneracy”. The concept ofn-manifold is gen-
eralized in the most natural way for general-position theory by
that of ND(n)-space - polyhedronM such that every map from
an n-dimensional polyhedron intoM can be approximated by a
non-degenerate map (one whose point-inverse are all finite). 2
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2 Introduction

(3) A theory of “regular neighbourhoods” in arbitrary polyhedra. Our
regular neighbourhoods are all isotopic and equivalent to the star
in a second-derived neighbourhoods are all isotopic and equiva-
lent to the star in a second-derived subdivision (this is more or
less the definition). Many applications are derived right after the
elementary lemma that “locally collared implies collared”. We
then characterize regular neighbourhoods in terms of Whitehead’s
“collapsing”, suitably modified for this presentation. Theadvan-
tage of talking about regular neighbourhoods in arbitrary polyhe-
dra becomes clear when we see exactly how they should behave
at the boundaries of manifolds.

After a little about isotopy (especially the “cellular moves” of
Zeeman), our description of the fundamental techniques in poly-
hedral topology is over. Perhaps the most basic topic omitted is
the theory of block-bundles, microbundles and transversality.

(4) Finally, we apply our methods to the theory of handle - presen-
tations ofPL-manifolds à la Smalés theory for differential man-
ifolds. This we describe sketchily; it is quite analogous tothe
differential case. There is one innovation. In order to get two
handles which homotopically cancel to geometrically cancel, the
“classical” way is to interpret the hypothesis in terms of the in-
tersection number of attaching and transverse spheres, to reinter-
pret this geometrically, and then to embed a two-cell over which
a sort of Whitney move can be made to eliminate a pair of in-
tersection. Our method, although rather ad-hoc, is more direct,
avoiding the algebraic complication of intersection numbers (es-
pecially unpleasant in the non-simply-connected case) as well as3

any worry that the two-cell might cause; of course, it amounts to
the same thing really. This method is inspired by the engulfing
theorem. [There are, by the way, at least two ways to use the
engulfing theorem itself to prove this point].

We do not describe many applications of handle-theory; we doob-
tain Zeeman’s codimension 3 unknotting theorem as a consequence.
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This way of proving it is, unfortunately, more mundane than “sunny
collapsing”.

We omit entirely the engulfing theorems and their diverse applica-
tions. We have also left out all direct contact with differential topology.

* * *

Let me add a public word of thanks to the Tata Institute of Funda-
mental Research for giving me the opportunity to work on these lectures
for three months that were luxuriously free of the worried, anxious stu-
dents and administrative annoyances that are so enervatingelsewhere.
And many thanks to Shri Ananda Swarup for the essential task of help-
ing write these notes.

John R. Stallings
Bombay

March, 1967





Chapter 1

Polyhedra

1.1 Definition of Polyhedra

Basic units out of which polyhedra can be constructed are convex hulls 4

of finite sets. Apolyhedron(euclidean polyhedron) is a subset of some
finite dimensional real vector space which is the union of finitely many
such units. (“Infinite polyhedra” which are of interest in some topolog-
ical situations will be discussed much later).

A polyhedral map f: P→ Q is a function f : P→ Q whose graph
is a polyhedron. That is, supposeP andQ are subsets of vector spaces
V andW respectively; the graph off , denoted byΓ( f ), is the set

Γ( f ) = {(x, y)|x ∈ P, y = f (x) ∈ Q}

which is contained inV×W, which has an evident vector space structure.
Γ( f ) is a polyhedron, if and only if (by definition),f is a polyhedral map.
Constant functions, as well as identity functionP → P are polyhedral
maps.

The question whether the composition of polyhedral maps is polyhe-
dral leads directly to the question whether the intersection of two poly-
hedra is a polyhedron. The answer is “Yes” in both cases. Thiscould be
proved directly, but we shall use a round about method which introduces
uneful techniques.

It will be seen that polyhedra and polyhedral maps form a cate-
gory. We are intersted in ‘equivalences’ in this category, that is maps5
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6 1. Polyhedra

f : P→ Q, which are polyhedral, one-to-one and onto. When do such
equivalences exist? How can they be classified? Etc...

A finite dimensional real vector spaceV has a unique interesting
topology, which can be described by any Euclidean metric on it. Polyhe-
dra inherit a relative topology which make them compact metric spaces.
Since polyhedral maps have compact graphs they are continuous. This
provides us with an interesting relationship between polyhedra and
topology. We may discuss topological matters about polyhedra - ho-
mology, homotopy, homeomorphy - and ask whether these influence the
polyhedral category and its equivalences.

After this brief discussion of the space of the subject, we proceed to
the development of the technique.

1.2 Convexity

R denotes the filed of real numbers, andV a finite dimensional vector
space over.

Let a, b ∈ V. Theline segmentbetweena andb is denoted by [a, b].
It is defined thus:

[a, b] = {ta+ (1− t)b|0 ≤ t ≤ 1}.

A setC ⊂ V is calledconvexif [ a, b] ⊂ C whenevera, b ∈ C.
ClearlyV itself is convex, and the intersection of any family of con-

vex sets is again convex. Therefore every setX ⊂ V is contained in a
smallest convex set - namely the intersection of all convex sets contain-
ing X; this is called theconvex hullof X, and is denoted byK(X).

Definition 1.2.1.A convex combinationof a subsetX of V is a point of6

V which can be represented by a finite linear combination

k∑

i=0

r i xi

wherexi ∈ X, r i ∈ R, r i ≥ 0 for all i, and
k∑

i=0
r i = 1.
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Proposition 1.2.2. The convex hull K(X) of X is equal to the set of
convex combinations of X.

Proof. Call the latterλ(X). It will be shown first thatλ(X) is convex and
containsX, henceK(X) ⊂ λ(X).

It x ∈ X, then 1·x is a convex combination ofX, henceX ⊃ λ(X). Let

ρ =
k∑

i=0
r i xi, σ =

ℓ∑
j=0

sjy j be two points ofλ(X). A typical point of [ρ, σ]

is of the formtρ+ (1− t)σ =
k∑

i=0
(tr i)xi +

ℓ∑
j=0

((1− t)sj)y j , where 0≤ t ≤ 1.

Since
k∑

i=0
tr i +

ℓ∑
j=0

(1− t)sj = t(
k∑

i=0
r i)+ (1− t)(

ℓ∑
j=0

sj) = t+ (1− t) = 1, and

all the coefficients are≥ 0, tρ + (1− t)σ is a convex combination ofX.
Henceλ(X) is convex.

To show thatλ(X) ⊂ K(X) it must be shown that any convex setC
containingX containsλ(X). Let ρ = r1x1 + · · · + rnxn, (xi ∈ X,

∑
r i = 1)

be a typical convex combination ofx1, . . . , xn. By induction onn it will
be shown that any convex setC containingX containsρ also. Ifn = 1,
= xi ∈ X ⊂ C. If n > 1, then 7

ρ = r1x1 + (1− r1)

(
r2

1− r1
x2 + · · · +

rn

1− r1
xn

)
.

That isρ is on the line segment betweenx1 and
r2

1− r1
x2 + · · · +

rn

1− r1
xn. By induction, the second point belongs toC, henceρ ∈ C.

Thusλ(X) ⊂ C. Thereforeλ(X) ⊂ K(X); andλ(X) = K(X). �

Definition 1.2.3.A finite subset{x0, . . . , xk} of V is said to beindepen-
dent(or affinely independent), if, for real numbersr0, . . . , rk, the equa-
tions

r0x0 + · · · + rkxk = 0 and

r0 + · · · + rk = 0,

inply that
r0 = . . . = rk = 0.
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Ex. 1.2.4.The subset{x0, . . . , xk} of V is independent if and only if the
subset{(x0, 1), . . . , (xk, 1)} of V × R is linearly independent.

Ex. 1.2.5.The subset{x0, . . . , xk} of V is independent if and only if the
subset{x1 − x0, . . . , xk − x0} of V is linearly independent.

Hence if{x0, . . . , xk} ⊂ V, x ∈ V, then {x0, . . . , xk} is independent if
and only if{x+ x0, . . . , x+ xk} is independent.

These two exercises show that the maximum number of independent
points inV is (dimV + 1).

The convex hull of an independent set{x0, . . . , xk} is called aclosed8

k-simplexwith vertices{x0, . . . , xk} and is denoted by [x0, . . . , xk]. The
numberk is called thedimensionof the simplex.

The empty set∅ is independent, its convex hull, also empty, is the
unique (−1)-dimensional simplex. A set of only one point is indepen-
dent; [x] = {x} is a 0-dimensional simplex. A set of two distinct points
is independent; the closed simplex with vertices{x, y} coincides with the
line segment [x, y] betweenx andy.

Proposition 1.2.6. If {x0, . . . , xn} ⊂ V, then{x0, . . . , xn} is independent
if and only if every point of K{x0, . . . , xn} is a unique convex combination
of {x0, . . . , xn}.

Proof. Let {x0, . . . , xn} be independent. Ifρ : r0x0 + · · · + rnxn = s0x0 +

· · · + snxn, with
∑

r i = 1 =
∑

si, then (r0 − s0)x0 + · · ·+ (rn − sn)xn = 0,
and (r0 − s0) + · · · + (rn − sn) = 0. Hence (r i − si) = 0 for all i, and the
expression forρ is unique.

If {x0, . . . , xn} is not independent, then there are real numbersr i , not
all zero such that

r0x0 + · · · + rnxn = 0 and

r0 + · · · + rn = 0.

Choose the ordering{x0, . . . , xn} so that there is aℓ for which

r i ≥ 0 if i < ℓ

r i ≤ 0 if i ≥ ℓ.
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9

Since not allr i are zero,r0 + · · · + rℓ−1 = (−rℓ) + · · · + (rn) , 0. Let
this number ber. Then

r0

r
x0 + · · · +

rℓ−1

r
xℓ−1 =

−rℓ
r

xℓ + · · · +
−rn

r
xn.

But these are two distinct convex combinations of{x1, . . . , xn}which
represent the same point, a contradiction. �

Proposition 1.2.7. The convex hull K(X) of X is equal to the union of
all simplexes with vertices belonging to X.

Proof. By 1.2.2, it is enough to show that a convex combination ofX
belongs to a simplex with vertices inX. Letρ = r1x1+ · · ·+ rnxn; xi ∈ X,∑

r i = 1, r i ≥ 0, be point ofK(X). It will be shown by induction onn
thatρ belongs to a simplex with vertices in the set{x1, . . . , xn}. If n = 1,
thenρ = x1 ∈ [x1]. So letn > 1.

If {x1, . . . , xn} is independent, there is nothing to prove. If not, there
ares1, . . . , sn, not all zero, such thats1x1+· · ·+snxn = 0 ands1+· · ·+sn =

0. Whensi = 0, define
r i

si
= ∞; then it can be supposed thatx1, . . . , xn

is arranged such that
∣∣∣∣∣
r1

s1

∣∣∣∣∣ ≥
∣∣∣∣∣
r2

s2

∣∣∣∣∣ ≥ . . . ≥
∣∣∣∣∣
rn

sn

∣∣∣∣∣ .

Thensn , 0. Hencexn = −
1
sn

(s1x1 + · · · + sn−1xn−1).

Therefore 10

ρ =

(
r1 − s1

rn

sn

)
x1 +

(
r2 − s2

rn

sn

)
x2

+ · · · +

(
rn−1 − sn−1

rn

sn

)
xn−1.

Since for alli < n,
∣∣∣∣ r i
si

∣∣∣∣ ≥
∣∣∣∣ rn
sn

∣∣∣∣, and since− s1
sn
− . . . −

sn−1
sn
= 1, this

expressesρ as a convex combination of{x1, . . . , xn−1}. By inductive
hypothesis,ρ is contained in a simplex with vertices in{x1, . . . , xn−1}.

�
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The following propositions about independent sets will be useful
later (See L.S. Pontryagin “Foundations of combinatorial Topology”,
Graylock Press, Rochester, N.Y., pages 1-9 for complete proofs).

Let dimV = m, andδ be a euclidean metric onV. First, propositon
1.2.4 can be reformulated as follows:

Ex. 1.2.8.Let {e1, . . . , em} be a basis forV, and{x0, . . . , xn} a subset of
V. Let xi = a1

i e1 + · · · + am
i em; 0 ≤ i ≤ n. Then the subset{x0, . . . , xn} is

independent if and only if the matrix



1 a1
0 a2

0 . . .a
m
0

1 a1
1 a2

1 . . .a
m
1

. . . . . .

1 a1
n a2

n . . .a
m
n



has rank (n+ 1).

Proposition 1.2.9. Let {x0, . . . , xn} be a subset of V, n≤ m. Given any11

(n + 1) real numbersǫi > 0, 0 ≤ i ≤ n, ∃ points yi ∈ V, such that
δ(xi , yi) < ǫi , and the set{y0, . . . , yn} is independent.

Sketch of the proof: Choose a set{u0, . . . , un} of (n + 1) independent
points and consider the setsZ(t) = {t u0 + (1− t)x0, . . . , tun + (1− t)xn},
0 ≤ t ≤ 1. Let N(Z(t)) denote the matrix corresponding to the set
Z(t) as given in 1.2.8. (the points being taken in the particularorder).
Z(1) = {u0, . . . , un}, hence some matrix of (n + 1)-columns ofN(Z(1))
has nonzero determinant. LetD(t) denote the determinant of the cor-
responding matrix inN(Z(t)). D(t) is a polynomial int, and does not
vanish identically. Hence there are numbers as near 0 as we like such
thatD(s) does not vanish. This means thatN(Z(s)) is independent, and
if s in near 0,Z(s)i will be nearxi . �

Hence in any arbitrary neighbourhood of a point ofV, there are (m+
1) independent points.

The above proof is reproduced from Pontryagm’s book. The next
propositions are also proved by considering suitable determinants (see
the book of Pontryagin mentioned above).
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Ex. 1.2.10.If the subset{x0, . . . , xn} of V is independent, then there
exists a numberη > 0, such that any subset{y0, . . . , yn} of V with
δ(xi , yi) < η for all i, is again independent.

Ex. 1.2.11.A subsetX = {x0, . . . , xn} of V is said to be ingeneral
position, if every subset ofX containingm+ 1 points is independent
(wherem= dimV).

Ex. 1.2.12.Given any subsetX = {x0, . . . , xn} of V and (n+ 1)-numbers 12

ǫi > 0, 0≤ i ≤ n, there exists pointsyi , 0 ≤ i ≤ n with δ(xi , yi) < ǫi , and
such that the subsetY = {y0, . . . , yn} of V is in general position.

Hint: Use 1.2.9, 1.2.10 and induction.

1.3 Openconvex sets

Definition 1.3.1.A subsetA of V is said to be anopen convex setif

(1) A is convex

(2) for everyx, y ∈ A, there exists 0, such that−ǫx + (1 + ǫ)y ∈ A,
(ǫ = ǫ(x, y) depending onx, y).

In otherwords the line segment jointingx andy can be prolonged a
little in A.

Clearly the empty set and any set consisting of one point are open
convex sets. So open convex sets inV need not necessarily be open in
the topology ofV.
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Clearly the intersection of finitely many open convex sets isagain
an open convex set.

Definition 1.3.2.Let {x1, . . . , xn} ⊂ V.

An open convex combinationof {x1, . . . , xn} is a convex combina-13

tion r1x1 + · · · + rnxn such that every coefficient r i > 0. The set of
all points represented by such open convex combinations is denoted by
0(x1, . . . , xn).

It is easily seen that 0(x1, . . . , xn) is an open convex set.

Definition 1.3.3.If {x0, . . . , xk} is independent, then 0(x0, . . . , xk) is
called an openk-simplex with vertices{x0, . . . , xk}. The numberk is
called the dimension of the simplex 0(x0, . . . , xk). If {i0, . . . , is} ⊂
{0, . . . , n}, then the open simplex 0(xi0 , . . . , xis) is called as-face(or a
face) of 0(x0, . . . , xk). If s< k, then, it is called aproper face.

Clearly, the closed simplex [x0, . . . , xk] is the disjoint union of 0(x0,

. . . , xk) and all its proper faces.
We give another class of examples of open convex sets below which

will be used to construct other types of open convex sets.

Definition 1.3.4.A linear manifold in V is a subsetM of V such that
wheneverx, y ∈ M andr ∈ R thenrx + (1− r)y ∈ M.

Linear manifolds inV are precisely the translates of subspaces of
V; that is, if V′ is a subspace ofV, andz ∈ V, then the setz+ V′ =
{z+ z′|z′ ∈ V′} is a linear manifold inV, and every linear manifold inV
is of this form. Moreover, given a linear manifoldM the subspaceVM

of V of which M is a translate is unique, namely,

VM = {z− y|z ∈ M, y ∈ M} = {z− z′|z ∈ M, z′ a fixed element ofM}.

14

Thus thedimensionof a linear manifold can be easily defined, and
is equal to one less than the cardinality of any maximal independent
subset ofM (see 1.2.5). A linear manifold of dimension 1, we will call
a line. If L is a line,a, b ∈ L, a , b, then every other point onL is
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of the form ta + (1 − t)b, t ∈ R. If M is a linear manifold inV and
dim M = (dimV − 1), then we callM ahyperplanein V.

Definition 1.3.5.Let V and W be real vector spaces. A functionϕ :
V →W is said to be a linear map, if for everyt ∈ R and everyx, y ∈ V,

ϕ(tx+ (1− t)y) = tϕ(x) + (1− t)ϕ(y).

Alternatively, one can characterize a linear map as being the sum of
a vector space homomorphism and a constant.

Ex. 1.3.6.In definition 1.3.5, it is enough to assume theϕ(tx+(1−t)y) =
tϕ(x) + (1− t)ϕ(y) for 0 ≤ t ≤ 1.

If A is a convex set inV andϕ : A→ W, (W a real vector space) is
a map such that, forx, y ∈ A, 0 ≤ t ≤ 1

ϕ(tx+ (1− t)y) = tϕ(x) + (1− t)ϕ(y),

then also we callϕ linear. It is easy to see thatϕ is the restriction toA
of a linear map ofV (which is uniquely defined on the linear manifold
spanned byA).

Ex. 1.3.7.Let A, V, W be as above andϕ : A→ W a map. Show thatϕ
is linear if and only if the graph ofϕ is convex. (graph ofϕ is the subset
of V ×W consisting of (x, y), x ∈ A, y = ϕ(x)).

Ex. 1.3.8.The images and preimages of convex sets under a linear map15

(resp. open convex sets) are convex sets (resp. open convex sets). The
images and preimages of linear manifolds under a linear map are again
linear manifolds.

A hyperplaneP in V for instance is the preimage of 0 under a linear
map fromV toR. Thus with respect to some basis ofV, P is given by an
equation of the form

∑
ℓi xi = d, wherexi are co-ordinates with respect

to a basis ofV andℓi, d ∈ R not all theℓi ’s being zero. HenceV − P
consists of two connected components (

∑
ℓi xi > d and

∑
ℓi xi < d),

which we will call thehalf-spacesof V determined byP. A half space
of V is another example of an open convex set.
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Definition 1.3.9.A bisectionof a vector spaceV consists of a triple
(P; H+,H−) consisting of a hyperplaneP in V and the two half spaces
H+ andH− determined byP.

These will be used in the next few section. A few more remarks:
Let the dimension ofV = m andV′ be a (m− k)-dimensional subspace
of V. Then extending a basis ofV′ to a basis ofV we can expressV′

as the intersection of (k − 1) subspace ofV of dimension (m− 1). Thus
any linear manifold can be expressed as the intersection of finite set
(non unique) of hyperplanes. Also we can talk of hyperplanes, linear
submanifolds etc. of a linear manifoldM in V. These could for example
be taken as the translates of such from the corresponding subspace of
V or we can consider them as intersections of hyperplanes and linear
manifolds inV with M. Both are equivalent. Next, the topology on16

V is taken to be topology induced by any Euclidean metric onV. The
topology on subspaces ofV inherited fromV is the same as the unique
topology defined by Euclidean metric onV. The topology on subspaces
of V inherited fromV is the same as the unique topology defined by
Euclidean metrics on them. And for a linear manifoldM we can either
take the topology onM induced fromV or from subspace ofV of which
it is a translate. Again both are the same. We will use these hereafter
without more ado.

1.4 The calculus of boundaries

Definition 1.4.1.Let A be an open convex set inV. A point x ∈ V − A
is called aboundary pointof A, if there exists a pointa ∈ A such that
O(x, a) ∈ A. The set of all boundary points ofA is called theboundary
of A and is denoted by∂A.

A number of propositions will now be presented as exercises,and
sometimes hints are given in the form of diagrams. In each given context
a real vector space is involved even when it is not explicitlymentioned,
and the sets we are considering are understood to be subsets of that
vector space.
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Ex. 1.4.2.A linear manifold has empty boundary. Conversely, if an
open convex setA has empty boundary, thenA is a linear manifold.

Remark. This uses the completeness of real numbers.

Ex. 1.4.3.If (P; H+,H−) is a bisection ofV, then∂H+ = ∂H− = P and
∂P = ∅.

Proposition 1.4.4. If A is an open convex set and x∈ ∂A, then for all
b ∈ A, 0(x, b) ⊂ A.

Proof. Based on this picture: There is ‘a’ such that 0(x, a) ⊂ A. Extend 17

a, b to a pointc ∈ A. For anyq ∈ 0(x, b), there exists ap ∈ 0(x, a) such
thatq ∈ 0(c, p). Sincec, p ∈ A, q ∈ A. Hence 0(x, b) ⊂ A.

�

Ex. 1.4.5.Let ϕ : V → W be a linear map, and letB be an open convex
set inW. Then∂(ϕ−1(B))(ϕ−1(∂B)). If ϕ is onto then equality holds.

Definition 1.4.6.The closureof an open convex setA is defined to be
A∪ ∂A; it is denoted byA.

Ex. 1.4.7.If A ⊂ B, thenA ⊂ B.
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Proposition 1.4.8. If a, b ∈ A and a, b, where A is an open convex set,
then there is at most one x∈ ∂A such that b∈ 0(a, x).

Proof. If b ∈ 0(a, x) andb ∈ 0(a, y); x, y ∈ ∂A, x , y, then 0(a, x)
and 0(a, y) lie on the same line, the line througha andb and both, are
on the same side ofa asb. Either x or y must be closer toa i.e. either
x ∈ 0(a, y) or y ∈ 0(a, x). If x ∈ 0(a, y), thenx ∈ A, but A ∩ ∂A = ∅.
Similarly y ∈ 0(a, x) is also impossible. �

Proposition 1.4.9. Let {x0, . . . , xn} be an independent set whose convex
hull is contained in∂A, where A is an open convex set. Let a∈ A. Then
{x0, . . . , xn, a} is independent.

Proof. 1.4.8 shows that each point ofK{x0, . . . , xn, a} can be written as18

a unique convex combination. Hence by 1.2.6{x0, . . . , xn, a} is indepen-
dent. �

Proposition 1.4.10.Let A and B be open convex sets. If B⊂ ∂A, then
∂B ⊂ ∂A.

Proof. Based on this picture:

The caseA or B is empty is trivial. Otherwise, letx ∈ ∂B, b ∈ B, a ∈
A; extend the segment [b, a] to a′ ∈ A. Let p ∈ 0(x, a); thenq ∈ 0(x, b)
can be found such thatp ∈ 0(q, a′). Sinceq ∈ 0(x, b) ⊂ B ⊂ ∂A, it
follows that 0(q, a′) ⊂ A, thereforep ∈ A. Hence 0(x, a) ⊂ A; obviously
x does not belong toA and sox ∈ ∂A. �
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Definition 1.4.11.If A and B are open convex sets, defineA < B to
meanA ⊂ ∂B.

1.4.10 implies that< is transitive.

Ex. 1.4.12.If A is an open convex set, thenA is convex.

Hint:

�

Proposition 1.4.13. If A and B are open convex sets with A∩ B , ∅, 19

then∂(A∩ B) is the disjoint union of∂A∩ B, A∩ ∂B and∂A∩ ∂B.

Proof. These three sets are disjoint, sinceA ∩ ∂A = B ∩ ∂B , ∅. Let
C ∈ A∩ B andx ∈ ∂(A∩ B); sincex ∈ V − (A∩ B) = (V −A)∪ (V − B),
x either (1) belongs toV − A and toV − B or (2) belongs toV − A and
to B or (3) belongs toA and toV − B. Since 0(x, c) ⊂ A∩ B, in case (1)
x ∈ ∂A ∩ ∂B, in case (2)x ∈ ∂A ∩ B and in case (3)x ∈ A ∩ ∂B. The
converse is similarly easy. �

Another way of stating 1.4.13 is to say thatA ∩ B = A∩ B, when
A∩ B , ∅.

Proposition 1.4.14. If A and B are open convex sets and A⊂ B and
A∩ B , ∅, then A⊂ B.

Proof. Let c ∈ A ∩ B, anda ∈ A. The line from ‘c’ to ‘ a’ may be
prolonged a little bit toa′ ∈ A. Sincea′ ∈ B, it follows that 0(a′, c) ⊂ B,
but a ∈ 0(a′, c). HenceA ⊂ B. �
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Proposition 1.4.15.If A = B, where A and B are open convex sets, then
A = B.

Proof. If A∩B = ∅, sinceA∪∂A = B∪∂B, we haveA ⊂ ∂BandB ⊂ ∂A.
By 1.4.10 we haveA ⊂ ∂A andB ⊂ ∂B. But A ∩ ∂A = ∅ = B ∩ ∂B.
HenceA ∩ B = ∅ is impossible except for the empty case. Then by
1.4.14,A ⊂ B andB ⊂ A. ThereforeA = B. �

Proposition 1.4.16. Let 0(x1, . . . , xn) denote the closure of0(x1, . . . ,

xn). Then0(x1, . . . , xn) = K{x1, . . . , xn}.

Proof. First, K{x1, . . . , xn} ⊂ 0(x1, . . . , xn). For let y ∈ K{x1, . . . , xn};20

theny is a convex linear combinationr1x1 + · · · + rnxn. Let z =
1
n

(x1 +

· · · + xn) ∈ 0(x1, . . . , xn). Then every point on the line segment 0(y, z) is
obviously expressed as an open convex combination ofx1, . . . , xn; hence
0(y, z) ⊂ 0(x1, . . . , xn), and soy ∈ 0(x1, . . . , xn).

Conversely, lety ∈ 0(x1, . . . , xn). If y ∈ 0(x1, . . . , xn), clearly y ∈

K{x1, . . . , xn}. Supposey ∈ ∂0(x1, . . . , xn); let z =
1
n

(x1 + · · · + xn) as

above. On the line segment 0(y, z), pick a sequenceai of points tending
to y. Now, ai ∈ 0(y, z) ⊂ 0(x1, . . . , xn) ⊂ K{xi , . . . , xn}. Let ai = r i1 x1 +

· · · + r in xn. r i j are bounded by 1. By going to subsequences if necessary
we can assume that the sequences{r i j } converge for allj, say tor j . Then∑

r j = 1, r j ≥ 0, and
∑

r i j x j converge to
∑

r j x j ∈ K{x1, . . . , xn}. But∑
r i j x j also converge toy. Hencey =

∑
r j x j andy ∈ K{x1, . . . , xn}. �

Definition 1.4.17.An open convex setA is said to be bounded, if for
every lineL in V, there are pointsx, y ∈ L, such thatA∩ L ⊂ [x, y].

Since in any caseA∩ L is an open convex set, eitherA∩ L is empty,
or A∩ L consists of a single point, orA∩ L is an open interval, possibly
infinite onL. The boundedness ofA then implies that ifA∩ L contains
at least two points, there arex, y ∈ L such thatA∩ L = 0(x, y).21

Proposition 1.4.18. If A is a bounded open convex set containing at
least two points, thenA = K(∂A).
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Proof. Since∂A ⊂ A andA is convex, it is always true thatK(∂A) ⊂ A.
Clearly ∂A ⊂ K(∂A). It remains only to show thatA ⊂ K(∂A). Let
a ∈ A. Let L be aline through ‘a’ and another pointb ∈ A (such another
point exists by hypothesis). SinceA is bounded, and{a, b} ∈ L ∩ A, it
follows thatA ∩ L = 0(x, y) for somex, y ∈ L. Clearly x, y ∈ ∂A, and
a ∈ [x, y] ⊂ K(∂A). �

Remark . With the hypothesis of 1.4.18, we haveA =
⋃
y

[a, y], ‘a’ a

fixed point ofA andy ∈ ∂A andA =
⋃
y

0(a, y) ∪ {a}.

Ex. 1.4.19.If A and B are open convex sets, andA < B, and B is
bounded, thenA is bounded.

Hint:

�

Ex. 1.4.20.Let A be an open convex set inV, andB be an open convex22

set inW. Then (1)A× B is an open convex set inV ×W; (2) ∂(A× B) is
the disjoint union of∂A× B, A× ∂B and∂A× ∂B; (3) A× B is bounded
if and only if A andB are, providedA , ∅, B , ∅.
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The following two exercises are some what difficult in the sense they
use compactness of the sphere, continuity of certain functions etc.

Ex. 1.4.21.The closure ofA defined above (1.4.6) coincides with the
topological closure ofA in V.

Ex. 1.4.22.An open convex set which is bounded in the sense of some
Euclidean metrix is bounded in the above sense, and conversely.

1.5 Convex cells

Definition 1.5.1.An open convex cellis defined to be a finite intersec-
tion of hyperplanes and half spaces, which as an open convex set is
bounded.

Clearly the intersection of two open convex cells is an open convex
cell, and the product of two open convex cells is an open convex cell.

With respect to a coordinate system in the vector space in which
it is defined, an open convex cell is given by a finite system of linear
inequalities. IfA is an open convex cell, by taking the intersection of all
the hyperplanes used in definingA, we can writeA = P∩H1∩ . . .∩Hℓ,
whereP is a linear manifold andHi are half spaces. SinceHi are open23

in the ambient vector spaceA is open inP. Let A = P′ ∩ H′1 ∩ . . . ∩ H′
ℓ′

be another such representation ofA. If A is nonempty, thenP = P′. For
A ⊂ P∩ P′ and if P , P′, P∩ P′ is of lower dimension thanP, henceA
cannot be open inP. ThusP′ = P; though theHi ’s andH′j ’s may differ.
HenceP can be described as the unique linear manifold which contains
A as an open subset. We define thedimensionof the open convex cellA
to be the dimension of the above linear manifoldP. If A = ∅, we define
the dimension ofA to be−1.

If A is an open convex cell, we will callA a closed convex cell.
The boundaryof a closed convex cell is defined to be the same as the
boundary of the open convex cell of which it is the closure. This is well
defined, sinceA = B impliesA = B, whenA andB are open convex sets
(1.4.15). Thedimensionof A is defined to be the same as the dimension
of A.
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Using 1.2.9 and 1.2.10, it is easily seen that the dimension of A is
one less than the cardinality of maximal independent set contained inA
or A. Similar remark applies forA also. Actually, using this description
we can extend the definition of dimension to arbitrary convexsets.

Ex. 1.5.2.If A is an open convex cell of dimensionK, andA1, . . . ,An

are open convex cells of dimension< K, thenA 1 A1 ∪ . . . ∪ An.

Proposition 1.5.3. An open k-simplex is an open convex cell of dimen-
sion k. A closed k-simplex is a closed convex cell of dimension k. 24

Proof. It is enough to prove for the openk-simplex. Let the openk-
simplex be 0(x0, . . . , xk) = A in the vector spaceV. The the unique
linear manifoldP containingA is the set of pointsr0x0 + · · · + rkxk,
wherer0 + · · · + rk = 1, r i ∈ R. Defineϕi(r0x0 + · · · + rkxk) = r i ; ϕi is
a linear map fromP to R. ThenHi = ϕ

−1
i (0,∞) is a half space relative

to the hyperplaneP and 0(x0, . . . , xk) = H0 ∩ . . . ∩ Hk. By extending
Hi to half spacesH′i in V suitably, 0(x0, . . . , xk) = P ∩ H′0 ∩ . . . ∩ H′k.
Boundedness ofA, and that dimA = k are clear. �

Proposition 1.5.4.Let A be a nonempty open cell. Then there is a finite
setP = {A1, . . . ,Ak} whose elements are open convex cells, such that

(a) A =
⋃

1≤i≤k
Ai.

(b) Ai ∩ A j = ∅ if i , j

(c) A is one of the cells Ai

(d) The boundary of each element ofP is union of elements ofP.
(Of course the empty set is also taken as such a union).

Proof. Let A = P∩ H1 ∩ . . . ∩ Hn, whereP is a linear manifold andHi

are half spaces with boundary hyperplanesPi. Let P be the set whose
elements are nonempty sets of the following sort:

Let
{1, . . . , n} = { j1, . . . , jq} ∪ {k1, . . . , kn−q}.
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Then if it is not empty the setP∩H j1 ∩ . . .∩H jq ∩Pk1 ∩ . . .∩Pk(n−q)

is an element ofP. The properties ofP follow from 1.4.13. 25

If the above, the union of elements ofP excludingA constitute the
boundary∂A of A. Then using 1.4.9, and the remarks preceding 1.5.2,
we have, ifAi ∈ P, Ai , A, then dimAi < dim A. We have seen that if
A is a bounded open convex set of dim≥ 1, thenA = K(∂A). Hence by
an obvious induction, we have �

Proposition 1.5.5. A closed convex cell is the convex hull of a finite set
of points.

A partial converse of 1.5.5, is trivial:

1.5.6 The convex hull of a finite set is a finite union of open (closed)
convex cells.

The converse of 1.5.5 is also true.

Ex. 1.5.7.The convex hull of a finite set is a closed convex cell.

Hint: Let {x1, . . . , xn} be a finite set in vector spaceV. By 1.4.16
K{x1, . . . , xn} = 0(x1, . . . , xn). It is enough to show that 0(x1, . . . , xn)
is an open convex cell. LetM be the linear manifold generated by
{x1, . . . , xn}. Let dimM = k. WriteA = 0(x1, . . . , xn), A = K{x1, . . . , xn}.
A is open inM. To prove the proposition it is enough to show thatA is
the inter section of half spaces inM.

Step 1.A and∂A are both union of open (hence closed) simplexes with
vertices in{x1, . . . , xn}. The assertion forA follows from 1.2.7.

Step 2.If B is a (k − 1)-simplex in∂A and N is the hyperplane inM26

defined byB, thenA cannot have points in both the half spaces defined
by N in M.

Step 3.It is enough to show that each point of∂A belongs to a closed
(k − 1)-simplex with vertices in{x1, . . . , xn}.

Step 4.Each pointx ∈ ∂A is contained in a closed (k − 1)-simplex
with verticer in{x1, . . . , xn}. To prove this letC1, . . . ,Cp be the closed
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simplexes contained in∂A with vertices inx1, . . . , xn which containx,
andD1, . . . ,Dq(⊂ ∂A) which do not containx. By Step (1)

⋃
i

Ci
⋃
j

D j =

∂A. Consider any pointa ∈ A and a pointb ∈ 0(a, x). Let C′i (resp.D′j)
denote the closed simplex whose vertices are those ofCi (resp.D j) and
‘a’. By the remark following 1.4.18.

⋃
i

C′i
⋃
j

D′j = A. Show that
⋃
i

C′i is

a neighbourhood ofb. If dim Ci < k− 1 for all i, then dimC′i ≤ k− 1 for
all i. Use 1.5.2 to show that in this case

⋃
C′i cannot be a neighbourhood

of b.

Since the linear image of convex hull of a finite set is also theconvex
hull of finite set, 1.5.7, immediately gives that the linear image of a
closed convex cell is a closed convex cell. IfA is an open convex cell in
V andϕ a linear map fromV to W, thenϕ(A) = ϕ(A), by 1.4.16, hence
by 1.4.15ϕ(A) is an open convex cell. Therefore

Proposition 1.5.8. The linear image of an open (resp. closed) convex
cell is an open (resp. closed) convex cell.

1.6 Presentations of polyhedra
27

If P is a set of sets andA is set, we shall write

A∨P

when A is a union of elements ofP. For example (d) of 1.5.4 can
be expressed as “IfA ∈ P, then∂A ∨ P”. We make the obvious
convention, when∅ is the empty set, thatφ ∨P no matter whatP is.

Definition 1.6.1.A polyhedral presentationis a finite setP whose ele-
ments are open convex cells, such thatA ∈P implies∂A∨P.

Definition 1.6.2.A regular presentationis a polyhedral presentationP
such that any two distinct elements are disjoint, that is,A ∈P, B ∈P,
A , B impliesA∩ B = ∅.

Ex. TheP of proposition 1.5.4 is a regular presentation.
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Definition 1.6.3.A simplicial presentationis a regular presentation
whose elements are simplicies and such that ifA ∈ P, then every fact
of A also belongs toP.

If Q ⊂P are polyhedral presentations, we callQ asubpresentation
of P. If P is regular (resp. simplicial) thenQ is necessarily regular
(resp. simplicial). The points of theO-cells of a simplicial presentation
will be called theverticesof the simplicial presentation. Thedimension
of a polyhedral presentationP is defined to be the maximum of the
dimensions of the open cells ofP.

Definition 1.6.4.If P is a polyhedral presentation|P | will be used to28

denote the union of all elements ofP. We say thatP is a presentation
of |P | or that|P | has a presentationP.

Recall that in 1.1, we have defined a polyhedron as a subset of areal
vector space, which is a finite union of convex hulls of finite sets. It is
clear consequence of 1.5.4, 1.5.5 and 1.5.6 that

Proposition 1.6.5. Every polyhedron has a polyhedral presentation. If
P is a polyhedral presentation, then|P | is a polyhedron.

Thus, if we define a polyhedron as a subset of a real vector space
which has a polyhedral presentation, then this definition coincides with
the earlier definition.

Proposition 1.6.6. The union or intersection of a finite number of poly-
hedra is again a polyhedron.

Proof. It is enough to prove for two polyhedra sayP andQ. Let P and
Q be polyhedral presentations ofP andQ respectively. ThenP ∪ Q is
a polyhedral presentation ofP ∪ Q; henceP ∪ Q is a polyhedron. To
prove thatP ∩ Q is a polyhedron, consider the setR consisting of all
nonempty sets of the formA∩ B, for A ∈P andB ∈ Q. It follows from
1.4.13 thatR is a polyhedral presentation. Clearly|R | = P∩ Q. Hence
by 1.6.5P∩ Q is a polyhedron. �

If X ⊂ Y are polyhedra, we will callX a subpolyhedronof Y. Thus
in 1.6.6,P∩ Q is a subpolyhedron of bothP andQ.
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1.6.7 If P andQ are two polyhedral presentations consider the sets
of the formA × B, A ∈ P, B ∈ Q. Clearly A × B is an open convex 29

cell, and by 1.4.20∂(A× B) is the disjoint union of∂A× B, A× ∂B and
∂A × ∂B. Thus the set of cells of the formA × B, A ∈ P, B ∈ Q is
a polyhedral presentation, regular if bothP andQ are. This we will
denote byP × Q. As above, we have, as a consequence thatP× Q is a
polyhedron, with presentationP × Q.

Ex. 1.6.8.The linear image of a polyhedron is a polyhedron (follows
from the definition of polyhedron and the definition of linearmap).

Recall that we have defined a polyhedral map between two polyhe-
dra as a map whose graph is a polyhedron.

Proposition 1.6.9. The composition of two polyhedral maps is a poly-
hedral map.

Proof. Let X, Y andZ be three polyhedra in the vector spacesU, V and
W respectively, and letf : X→ Y, g : Y→ Z be polyhedral maps. Then
Γ( f ) ⊂ U × V andΓ(g) ⊂ V ×W are polyhedra. By 1.6.7,Γ( f ) × Z and
X×Γ(g) are also polyhedra inU×V×W. By 1.6.6, (Γ( f )×Z)∩(X×Γ(g))
is a polyhedron. This intersection is the set

S : {(x, y, z) | x ∈ X, y = f (x), z= g(y)}

in U × V ×W. By 1.6.8 the projection ofU × V ×W to U ×W takes
S into a polyhedron, which is none other than the graph of the map
g ◦ f : X→ Z. Henceg ◦ f is polyhedral. �

If a polyhedral mapf : P→ Q, is one-to-one and onto we term it a
polyhedral equivalence.

Ex. 1.6.10.If, f : P → Q is a polyhedral map, then the mapg : P →
Γ( f ) defined byf ′(x) = (x, f (x)) is a polyhedral equivalence. 30

1.6.11 Dimension of a polyhedron
The dimension of a polyhedronP is a defined to be Max. dimC,

C ∈P, whereP is any polyhedral presentation ofP.
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OF course we have to check that this is independent of the presenta-
tion chosen. This follows from 1.5.2.

Let P andQ be two polyhedra andf : P→ Q be a polyhedral map.
Letγ : P×Q→ P andµ : P×Q→ Q be the first and second projections.
If C is any presentation ofΓ( f ), then the open cells of the formλ(C),
C ∈ C is a presentation ofP, regular if and only ifC is regular. If f
is a polyhedral equivalence, then the cells of the formµ(C), C ∈ C is a
presentation ofQ. This shows that

Proposition 1.6.12.The dimension of a polyhedron is a polyhedral in-
variant.

1.7 Refinement by bisection

Definition 1.7.1.If P andQ are polyhedral presentations, we say that
P refinesQ, or P is arefinementof Q provided

(a) |P | = |Q|

(b) If A ∈P, andB ∈ Q, thenA∩ B = ∅ or A ⊂ B.

In otherwords,P andQ are presentations of the same polyhedron
and each element (an open convex cell) ofP is contained in each ele-
ment ofQ which it intersects. Hereafter, when there is no confusion,we31

will refer to open convex cells and closed convex cells asopen cellsand
closed cells. A polyhedral presentation is regular if and only if it refines
itself.

Let B = (P; H+,H−) be a bisection of the ambient vector spaceV
(1.3.9);a a polyhedral presentation of a polyhedraon inV, and letA ∈ a.
We say thata admits a bisection byB at A, provided:

Whenever an open cellA1 ∈ a intersects∂A (i.e. A1 ∩ ∂A , ∅),
and dimA1 < dim A, then eitherA1 ⊂ P or A1 ⊂ H+ or A1 ⊂ H− (in
particular this should be true for any cell in the boundary ofA).

If a admits a bisection byB at A, then we define a presentationa′

as follows, and call it theresult of bisectinga byB at A:



1.7. Refinement by bisection 27

a′ consists ofa with the elementA removed, and with the nonempty
sets of the form,A∩ P or A∩ H+ or A∩ H−, that is

a′ =
{
(a − {A}) ∪ {A∩ P,A∩ H+, A∩ H−} − {∅}

}
.

By 1.4.13, and the definition of admitting a bisection,a′ is a poly-
hedral presentation. Clearlya′ refinesa, if a is regular.

We remark that it may well be the case thatA is contained inP or H+

or H−. In this event, bisecting atA changes nothing at all, that isa′ = a.
If this is the case we call the bisection trivial. It is also possible, in the
case of irregular presentations, that some or all of the setsA∩P, A∩H+, 32

A∩ H− may already be contained ina − {A} in this event, bisection will
not change as much as we might expect.

Ex. 1.7.2.Let A and B be two open cells, with dimA ≤ dim B and
A , B. Let B j : {P j; H+j ,H

−
j }1≤ j≤m be bisections of space such thatA

is the intersection of precisely one element from some of theB j ’s. If
A∩ B , ∅, then∃ anℓ, 1 ≤ ℓ ≤ m, such thatB∩ P, B∩ H+ andB∩ H−

are all nonvacuous.

What we are aiming at is to show that every polyhedral presentation
P has a regular refinement, which moreover is obtained fromP by
a particular process (bisections). The proof is by an obvious double
induction; we sketch the proof below leaving some of the details to the
reader.

Proposition 1.7.3. REFI (P ,P′, {Si})
There is a procedure, which, applied to a polyhedral presentation

P, gives a finite sequences{Si} of bisections (at cells by bisections of
space), which start onP, give end resultP ′, and P′ is a regular
presentation which refinesP.

Proof.

Step 1.First, we find a finite setB j : {P j; H+j ,H
−
j }, j = 1, . . . n of

bisections of the ambient space, such that every element ofP is an
intersection one element each from some of theB j ’s. This is possible
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because every element ofP is a finite intersection of hyperplanes and
half spaces, and there are only a finite number of elements inP.

Step 2.Write P = P0. Index the cells ofP0 in such a way that the33

dimension is a non decreasing function. That is definep0 to be the
cardinality ofP0, arrange the elements ofP0 asD0

0, . . . ,D
0
p0

, such that
dim D0

k ≤ dim D0
k+1 for all 0 ≤ k ≤ p0 − 1.

Step 3.S0,1 denotes the process of bisectingP0 at D0
0 by B1. Induc-

tively, we defineS0,k+1 to be the process of bisectingP0,k at D0
k+1 by

B1; andP0,k+1 the result. This is well defined since the elements of
P0 are arranged in the order of nondecreasing dimension. This can be
done until we getS0,p0 andP0,p0.

Step 4.Write P1 = P0,p0, repeat step (2) and then the step (3) with
bisectionB2 instead ofB1.

And so on until we getPn, when the process stops.Pn is clearly
a refinement ofP = P0; it remains to show thatPn is regular. Each
element byPn belongs to somePi, j and each element ofPn is a finite
intersection of exactly one element each from a subfamily oftheB j ’s.
It is easily shown by double induction that ifA ∈ Pn, then for anyj,
i ≤ j ≤ n, eitherA ⊂ P j or A ⊂ H+j or A ⊂ H−j . That isPn admits
a bisection atA by B j for any j, but the bisection is trivial. LetC,
D ∈ Pn, C , D C ∩ D , ∅, dimC ≤ dim D. Then sinceC is an
intersection of one element each from a subfamily of theB j ’s, by 1.7.3,
there exists anℓ such thatD∩Pℓ, D∩H+

ℓ
andD∩H−

ℓ
are all nonempty.

But this is a contradiction. HencePn is regular. WritePn = P′,34

Si, j = Sp0 + · · · + pi + j. This gives the “REFI (P ,P′, {Si})”. �

We can now draw a number of corollaries:

Corollary 1.7.4. Any polyhedron has a regular presentation.

Corollary 1.7.5. Any two polyhedral presentationsP, Q of the same
polyhedron X have a common refinementR, which is obtained fromP
and fromQ by a finite sequence of bisections.
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To see this, note thatP ∪ Q is a polyhedral presentation of X. The
application REFI(P∪Q,R, {Si}) providesR. Let{Ti} and{Uk} denote
the subsequences applying toP andQ respectively; observe that they
both result inR.

Corollary 1.7.6. Given any finite numberP1, . . . ,Pr of polyhedral
presentations, there is a regular presentationQ of |P1| ∪ . . .∪ |Pr |, and
Q has subpresentationsQ1, . . . ,Qr , with |Pi | = |Qi | for all i and Pi is
obtained fromQi by a finite sequence of bisections.

This is an application of REFI(P1∪ . . .∪Pr ,Q, {Si}) and an anal-
ysis of the situation.





Chapter 2

Triangulation

As we have seen, every polyhedral presentationP has a regular refine-35

ment. This implies that any two polyhedral presentations ofX have a
common regular refinement, that ifX ⊂ Y are polyhedra there are reg-
ular presentations ofY containing subpresentations coveringX, etc.. In
this chapter we will see that in fact every polyhedral presentation has
a simplicial refinement, and that given a polyhedral mapf : P → Q,
there exist simplicial presentations ofP andQ with respect to whichf
is “simplicial”.

2.1 Triangulation of polyhedra

A simplicial presentationS of a polyhedronX is also known as alinear
triangulation of X. We shall construct simplicial presentations from
regular ones by “barycentric subdivision”.

Definition 2.1.1.Let P be a regular presentation. Acenteringof P is
a functionη : P → |P |, such thatη(C) ∈ C, for everyC ∈P.

In other words, a centering is a way to choose a point each from
each element (an open convex cell) ofP.

Proposition 2.1.2. If C0,C1 . . .Ck are elements ofP, ordered with re-
spect to boundary relationship, then{η(C0), . . . , η(Ck)} is an indepen-
dent set for any centeringη of P.

31
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Proof. Immediate from 1.4.9, by induction. �

Proposition 2.1.3. Suppose thatP is a regular presentation and C∈
P ·C is the disjoint union of all open simplexes of the form36

0(η(A0), η(A1), . . . , η(Ak), η(C))

where Ai ∈P, A0 < A1 < . . . < Ak and Ai ⊂ ∂C.

Proof. By induction. Assume the proposition to be true for cells of di-
mension< dimC. ∂C is the union of all simplexes of the form 0(η(A0),
η(A1), . . . , η(Ak)) whereAi ∈ P, Ai < C andA0 < . . . < Ak (since<
is transitive). SinceC is a bounded open convex cellC is the union of
0(η(C), x), x ∈ ∂C andη(C) (see the remark following 1.4.18). Now
2.1.2 completes the rest. �

It follows from 2.1.2 and 2.1.3, that ifP is any regular presentation,
then the set of all open simplexes of the form 0(η(C0), . . . , η(Ck)), for
Ci ∈ P, with C0 < . . . < Ck, is a simplical presentation of|P |. This
leads to the following definition and proposition.

Definition 2.1.4.If P is any regular presentation,η a centering ofP;
thederived subdivision ofP relative toη is the set of open simplexes of
the form 0(η(C0), . . . , η(Ck)), Ci ∈ P, C0 < . . . < Ck. It is a simplicial
presentation (of|P |) and is denoted byd(P , η).

The vertices ofd(P , η) are precisely the points (0-cells)η(C), C ∈
P. Whenη is understood, or if the particular choice ofη is not so
important, we refer tod(P , η) as a derived subdivision ofP and denote
it by dP.

Proposition 2.1.5.Every polyhedral presentation admits of a simplicial
refinement.

Hence every polyhedron can be triangulated.37
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2.2 Triangulation of maps

Now, we return to polyhedral maps. Iff : P→ Q is a polyhedral map,
we have seen that the mapf ′ : P → Γ( f ) given by f ′(x) = (x, f (x))
is a polyhedral equivalence and that any presentation ofΓ( f ) gives a
presentation ofP by linear projection. Also, we saw in 1.3, that ifA is a
convex subset of vector spaceV andϕ : A→W a map ofA into a vector
spaceW, ϕ is linear if and only if the graph ofϕ is convex. Combining
these two remarks, we have that a polyhedral map is ‘piecewise linear’
or as Alexander called it ‘linear in patches’.

Next, an attempt to describe polyhedral maps in terms of presenta-
tions of polyhedra leads to the following definition.

Definition 2.2.1.Let a andB be regular presentations. A functionϕ :
a → B is calledcombinatorial if for all A1, A2 ∈ a, A1 ≤ A2 implies
ϕ(A1) ≤ ϕ(A2).

But unfortunately there may be several distinct polyhedralmaps
|a| → |B| inducting the same combinatorial mapa → B, and a map
|a| → |B| inducing some combinatorial mapa → B need not even be
polyhedral (We will see more of these when we come to ‘standard mis-
take’). If turns out that a mapa → B induces a unique map|a| → |B|
if we require that the induced map to be linear on each cell ofa. But in
this case it is sufficient to know the map on 0-cells (vertices); one can
extend by linearly. This naturally leads to simplicial maps.

Definition 2.2.2.Let X andY be polyhedra,S andZ simplicial pre- 38

sentations ofX and Y respectively. A mapf : X → Y is said to be
simplicial with respect toS andZ , iff

(1) f maps vertices of each simplex inS into the vertices of some
simplex inZ .

and

(2) f is linear on the closure of each simplex inS .

f is polyhedral, since its graph has a natural simplicial presentation
isomorphic soS .
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Let S andZ be two simplicial presentations. LetS0 (resp.Z0) be
the set of vertices ofS (resp.Z ). If L : S0 → Z0 is a map, which
carries the vertices of a simplex ofS is asimplicialmap fromS to Z .

Example 2.2.3.If ϕ : P → Q is a combinatorial mapη, θ centerings of
P andQ respectively, the map which carriesηC to θ(ϕ(C)) is a simpli-
cial map fromd(P , η) to d(Q, θ).

We now proceed to show that every polyhedral map is simplicial
with respect to some triangulations.

Let P andQ be two polyhedra andf : P→ Q be a polyhedral map.
Let P, Q andC be presentations ofP, Q andΓ( f ) ⊂ P× Q. Let a be a
regular presentation ofP×Q which refines (P ×Q)∪C , and letC ′ be
the subpresentation ofa which coversΓ( f ).

Let λ andµ be the projections ofP × Q onto P andQ respectively.39

By the refinement process there is a regular presentationQ′ of Q refining
Q such that:

(*) If A ∈ Q′, C ∈ C ′, A∩µ(C) , ∅, thenA ⊂ µ(C). Then, ifC ∈ C ′,
µ(C) is the union of elements ofQ′.

Now we look at the presentationsC ′′ = C ′ · (P × Q′) of Γ( f ). The
cells ofC ′′ are by definition of the formC′′ = C ∩ (A × B′), C ∈ C ′,
A ∈P, B′ ∈ Q′. ClearlyC′′ ⊂ C∩µ−1(B′). On the other hand, sinceQ′

is a refinement ofQ, there is an open cellB ∈ Q with B ⊃ B′. SinceC ′

is a subpresentation of a refinementa of P × Q, if C′′ , 0, C ⊂ A× B.
Hence if (x, y) ∈ C ∩ µ−1(B′), thenx ∈ A, y ∈ B′, so (x, y) ∈ A × B′.
HenceC∩µ−1(B′) ⊂ C∩ (A×B′) = C′′. ThusC′′ = C∩µ−1(B′). Hence
C ′′ can be also described as

C ′′ =
{
C ∩ µ−1(B′)|C ∩ µ−1(B′) , 0, C ∈ C ′, B′ ∈ Q′

}

Now, clearlyP′
= λ(C ′′) = {λ(D)|D ∈ C ′′} is a regular presenta-

tion of P(λ|Γ( f ) is 1− 1 andλ is linear) with reference to the ambient
vector spaces. Now the claim is thatf induces a combinatorial map
P′ → Q′. Let A be any cell ofP′ · (λ|Γ( f ))−1(A) is a cell ofC ′′, say
someC∩µ−1(B′). f (A) = µ(C∩µ−1(B′)) = µ(C)∩B′ = B′ by (*). Thus
f (A) ∈ Q′. ∂(C ∩ µ−1(B′)) is the union of∂C ∩ µ−1(B′), C ∩ µ−1(∂B′)
and∂C ∩ µ−1(∂B′); (by 1.4.5) and soµ(∂(C ∩ µ−1(B′))) is the union of



2.2. Triangulation of maps 35

µ(∂C) ∩ B′, µ(C) ∩ ∂B′, andµ(∂C) ∩ B′, henceµ(∂C) ⊂ B
1
. Hence if

A1 ≤ A, f (A1) ≤ B′. Thus f induces a combinatorial map fromP′ to 40

Q′. Moreover, since the presentationP′ comes fromC ′′, the graph of
f restricted to the closure of each cell ofP′ is a closed cell, and hence
f is linear on the closure of each cell ofP′.

The discussion so far can be summarized as:

Theorem 2.2.4. Let f : P → Q be a polyhedral map, and letP, Q
be polyhedral presentations of P and Q respectively. Then there exist
regular refinementsP′ andQ′ of P andQ such that

(1) If A ∈P′, f (A) ∈ Q′. The induced map fromP′ toQ′ is combi-
natorial.

(2) f is linear on the closure of each cell ofP′.

Furthermore,

2.2.5 If P andQ are regular and if there is a regular presentationC
of Γ( f ) such that

(a) For eachC ∈ C , λ(C) is contained in some element ofP,

(b) For eachC ∈ C , µ(C) is the union of elements ofQ,

then in the above theorem we can takeQ′ = Q (in other words, a com-
binatorial map can be found refining onlyP, notQ).

To apply 2.2.4 to the problem of simplicial maps, we can use 2.2.3
as follows: First we choose some centeringθ of Q′, and then a centering
η of P′ so that

f (η(C)) = θ( f (C)) for all C ∈P′.

Since f is linear an each element ofP′, we have thatf : P→ Q is 41

simplicial with respect tod(P′, η) andd(Q′, θ). Hence,

Corollary 2.2.6. Given a polyhedral map f: P→ Q, there exist trian-
gulationsS andZ of P and Q, with respect to which f is simplicial.
Moreover,S andZ can be chosen to refine any given presentations of
P and Q.
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Defining thesourceand target of a map f : K → L to be K and
L respectively. We may now state a more general result, details of the
proof left as an exercise.

Theorem 2.2.7.Let{Kα} be a finite set of polyhedra, withL = 1, . . . , n;
let fr : KLr → Kβr be a finite set of polyhedral maps, the sources and
targets being all in the given set of polyhedra. Suppose thatfor eachγ,
Lγ < βγ, and each KL occurs as the source of at most one of the maps
f (i.e.γ , δ impliesLγ , Lδ). LetPγ be a presentation of Kγ for each
γ. Then there is a set of simplicial presentations{Sγ}, with Sγ refining
Pγ, such that for allγ, fγ is simplicial with reference to

SLγ
and Sβγ

That is to say, the whole diagram{ fγ} can be triangulated.

The condition on sources is not always necessary, for example:

Ex. 2.2.8.A diagram of polyhedral maps

can be triangulated iff : X→ Y is an imbedding.42

However

Ex. 2.2.9.The following diagram of polyhedral maps (each map is a
linear projection)
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cannot be triangulated.

Ex. 2.2.10.Let P be a presentation of a polyhedronP in V. ϕ : V →W
be a linear map, thenϕ(P) = {ϕ(C)|C ∈P} is a presentation ofϕ(P).

Ex. 2.2.11.Let f : P→ Q be a polyhedral map, andX a subpolyhedron
of P. Then dimf (X) ≤ dimX.

Ex. 2.2.12.If f : P → Q is a polyhedral mapY is a subpolyhedron of
Q, f −1(Y) is a subpolyhedron ofX.

Next, one can discuss abstract simplicial complexes, theirgeometric
realizations etc. We do not need them until the last chapter.The reader
is referred to Pontryagin’s little book mentioned in the first chapter for
these things.
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Topology and Approximation

Since we know that intersection and union of two polyhedra isa polyhe- 43

dron, we may define a topology on a polyhedronX, by describing sets of
the formX−Y, for Y a subpolyhedron, as a basis of open sets. If, one the
other hand,X is a polyhedron in a finite dimensional real vector space
V, thenV has various Euclidean metrics (all topologically equivalent)
andX inherits a metric topology.

Ex. These topologies onX are equal.

The reason is that any point ofV is contained in an arbitrary small
open cell, of the same dimension asV.

It is easy to see tht a closed simplex with this topology is compact.
Hence every polyhedron, being a finite union of simplexes is compact.
The graph of a polyhedral map is then compact, and hencef is con-
tinuous. Thus we have an embedding of the category of polyhedra and
polyhedral maps into the category of compact metric spaces and contin-
uous maps.

It is with respect to any metric giving this topology that ourapprox-
imation theorems are phrased.

A polyhedron is an absolute neighbourhood retract, and the results
that we have are simply obtained from a hard look at such results for
A.N.R’s.

It turns our that we obtain a version of the simplicial approximation 44

theorem, which was the starting point, one may say, of the algebraic

39
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topology of the higher dimensional objects. The theorem hasbeen given
a ‘relative form’ by Zeeman, and we shall explain a method which will
give this as well as other related results.

We must first say something about polyhedral neighbourhoods.

3.1 Neighbourhoods that retract

Let P ⊂ Q be regular presentations. Consider the open cellsC of
Q, with C ∩ |P | , ∅, together withA, A < C, A ∈ Q, for suchC.
The set of all these open cells is a subpresentationsN of Q. |N | is a
neighbourhood of|P | in |Q|. For, if N ′ is the set of cellsC′ ∈ Q such
thatC

′
∩ |P | = ∅, thenN ′ is a subpesentation ofQ and |Q| − |N ′| ⊂

|N |. If Q is simplicial, N can be described as the subpresentation,
consisting of open simplexes ofQ with some vertices inP together
with their faces.

If P ⊂ Q is a subpresentation, we say thatP is full in Q; if for
everyC ∈ Q eitherC ∩ |P | = ∅ or there is aA ∈P with C ∩ |P | = A.

In the case of simplicial presentations, this is the same as saying that
if an open simplexσ of Q has all its vertices inP, thenσ itself is inP.

An example of a nonfull subpresentation:

3.1.1 If P ⊂ Q are regular presentations, thendP is full in dQ.45

For, if η is any centering, then an element (an open simplex) of
dQ is of the form 0(η(C0)), . . . , η(Ck)), Ck ∈ Q, C0 < . . . < Ck. If
Cℓ, 0 ≤ ℓ ≤ k, is the last element of theCi ’s that is inP, thenC j,
j ≤ ℓ, are necessarily inP. Then 0(η(C0), . . . , η(Cℓ)) ∈ dP, and
0(η(C0), . . . , η(Ck)) ∩ |dP | = 0(η(C0), . . . , η(Cℓ)).
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Definition 3.1.2.If P is full in Q, thesimplicial neighbourhood ofP in
Q, is the subpresentation ofdQ consisting of all simplexes ofdQ whose
verticesη(C) are centers of cellsC of Q with C ∩ |P | , ∅. It is denoted
by NQ(P) (or NQ(P , η) when we want to make explicit the centering).

Clearly NQ(P) is a full subpresentation ofdQ. It can be also de-
scribed as the set of elementsσ of dQ, for whichσ∩|dP | = σ∩|P | = ∅
plus the faces of suchσ. Hence|NQ(P)| is a neighbourhood of|P | in
the topological sense.

Such a neighbourhood as|NQ(P)| of |P | is usually referred to as
a ‘second derived neighbourhood’ of |P | in |Q|, for the following rea-
son: If X ⊂ Y are polyhedra; to get such a neighbourhood we first start
with a regular presentationa of Y containing a subpresentationB cov-
eringX, derive once so thatdB is full in da, then derive again and take
|Nda(dB)|.

Now we can define a simplicial mapr : NQ(P) → dP, using the 46

property of fullness ofP in Q. If C ∈ Q, with C ∩ |P | , ∅, we know
that there is aA ∈ P, such thatC ∩ |P | = A, and thisA is uniquely
determined byC. We definer(ηC) = ηA.

Ex. 3.1.3.The mapr thus defined is a simplicial retraction ofNQ(P)
ontodP.

That isr is a simplicial map fromNQ(P) to dP, which when re-
stricted todP is identity. r defines therefore a polyhedral map, which
also we shall callr : |NQ(P)| → |dP |. We have proved

3.1.4 If X is a subpolyhedron ofY, there is a polyhedronN which is a
neighbourhood ofX in Y, and there is a polyhedral retractionr : N → X.

3.2 Approximation Theorem

We imagine our polyhedra to be embedded in real vector spaces(we
have been dealing only with euclidean polyhedra) with euclidean met-
rics. Let X, Y be two polyhedra,ρ, ρ′ be metrics onX andY respec-
tively coming from the vector spaces in which they are situated. If α,
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β : Y→ X are two functions, we define

ρ(α, β) = Sup
x∈Y

ρ(α(x), β(x))

If A is a subset ofX, we define diamA = sup
x,y∈A

ρ(x, y), and if B is a

subset ofY, we define diamB = Sup
x,y∈B

ρ′(x, y).

We can considerX to be contained in a convex polyhedronQ. If47

X is situated in the vector spaceV, we can takeQ to be large cube or
the convex hull ofX. Let N be a second derived neighbourhood ofX
in Q and r : N → X be the retraction. NowQ being convex andN
a neighbourhood ofX andQ, for any sufficiently small subsetS of X,
K(S) ⊂ N (recall thatK(S) denotes the convex hull ofS). This can be
made precise in terms of the metric; and is a uniform propertysinceX is
compact. Next observe that we can obtain polyhedral presentationsP
of X, such that diameter of each element ofP is less than a prescribed
positive number. This follows for example from refinement process.
Now theorem is

Theorem 3.2.1. Given a polyhedron X, for everyǫ > 0, there exists
a δ > 0 such that for any pair of polyhedra Z⊂ Y, and any pair of
functions f : Y→ X, g : Z → X with f continuous and g polyhedral, if
ρ( f |Z, g) < δ, then there exists ag : Y→ X, g polyhedral,g|Z = g, and
ρ( f , g) < ǫ.

Proof. We embedX in a convex polyhedronQ, in which there is a poly-
hedral neighbourhoodN and a polyhedral retractionr : N → X as
above. It is clear from the earlier discussion, that givenǫ > 0, there is
a η > 0, such that if a setA ⊂ X has diameter< η, thenK(A) ⊂ N and
diamterr(K(A)) < ǫ. Defineδ = η/3.

Now because of the uniform continuity off , (Y is compact), there
is aθ > 0, such that ifB ⊂ Y and diam. (B) < θ, then diamf (B) < δ.48

From this it follows that, still assumingB ⊂ Y, and diameterB < θ,
and additionally thatρ( f |Z, g) < δ; that the setf (B) ∪ g(B ∩ Z) has
diameter less than 3δ = η. And hence we know that

(*)


K( f (B) ∪ g(B∩ Z)) ⊂ N, and

diamr(K( f (B) ∪ g(B∩ Z))) < ǫ.



3.2. Approximation Theorem 43

Then we find a presentationS of Y, such that the closure of every
element ofS has diameter less thanθ. Also there is a presentationZ of
Z on the closure of every element of whichg is linear. RefiningS ∪Z
and taking derived subdivisions (still calling the presentations covering
Y andZ, asS andZ respectively), we have the following situation:

Z ⊂ S , are simplicial presentations ofZ ⊂ Y, on each closed
Z -simplexg is linear, the diameter of each closedS -simplex< θ.

We now defineh : Y → Q as follows: On a 0-simplexv of Z ,
h(v) = g(v). On a 0-simplexw of S − Z , h(w) = f (w). Extendh
linearly on each simplex, this is possible sinceQ is convex. But now, if
σ = [v0, . . . , vn] is the closure of aS -simplex, thenh(σ) ⊂ K( f (σ) ∪
g(σ∩Z)) ⊂ N; this is a computation made above (*) since diam.σ < θ.

And soh(Y) ⊂ N. Also it is the case thath is polyhedral, sinceh is
liner on the closure of each simplex ofS , and on|Z | = Z, clearly,h
agrees withg.

Define,g : Y→ X to ber ◦ h. Sincer andh are polyhedral so isg; 49

sinceh|Z = g andr is identity onX; it follows thatg|Z = g. To compute
ρ(g, f ) we observe that anyy ∈ Y is contained in some closed simplex
σ, σ ∈ S , and bothf (y) andh(y) are contained inK( f (σ) ∪ g(σ ∩ Z));
and hence bothf (y) andg(y) are contained in

r(K( f (σ) ∪ g(σ ∩ Z)))

This set by (*) has diameter< ǫ. Henceρ(g, f ) < ǫ. �

We now remark a number of corollaries:

Corollary 3.2.2. Let X, Y, Z be polyhedra, Z⊂ Y, and f : Y → X a
continuous map such that f|Z is a polyhedral. Then f can be approx-
imated arbitrarily closely by polyhedral maps g: Y → X such that
g|Z = f |Z.

The next is not a corollary of 3.2.1, (it could be) but followsfrom
the discussion there.

3.2.3 Any two continuous mapsf1, f2 : Y→ X, if they are sufficiently
close are homotopic. (Also how close depends only onX, not Y or
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the maps involved). Iff1 and f2 are polyhedral, we can assume the
homotopy also to be polyhedral, and fixed on any sub-polyhedron on
which f1 and f2 agree.

Proof. Let N andX be as before. Letη be a number such that ifA ⊂ X,
diamA < η, thenK(A) ⊂ N. If ρ( f1, f2) < η, thenF(y, t) = t f1(y) + (1−
t) f2(y) ∈ N, for 0 ≤ t ≤ 1 and ally ∈ Y and r · F, wherer : N → X
is the retraction, gives the required homotopy. Iff1, f2 are polyhedral,
we can apply 3.2.1 to obtain a polyhedral homotopy with the desired
properties. �

Remark. The above homotopies are small in the sense, that the image50

of x is not moved too far fromf1(x) and f2(x).

3.2.4 Homotopy groups and singular homology groups of a polyhe-
dron can be defined in terms of continuous functions or polyhedral maps
from closed simplexes intoX. The two definitions are naturally isomor-
phic. The same is true for relative homotopy groups, triad homotopy
groups etc.

The corollary 3.2.2 is Zemman’s version of the relative simplicial
approximation theorem. From this (coupled with 4.2.13) onecan de-
duce (see M. Hirsch, “A proof of the nonretractibility of a cell onto its
boundary”, Proc. of A.M.S., 1936, Vol. 14), Brouwer’s theorems on the
noncontractibility of then-sphere, fixed point property of then-cell, etc.
It should be remarked that the first major use of the idea of simplicial
approximation was done by L.E.J. Brouwer himself; using this he de-
fined degree of a map, proved its homotopy invariance, and incidentally
derived the fixed point theorem.

It should be remarked that relative versions of 3.2.1 are possible.
For example define a pair (X1,X2) to be a space (or a polyhedron) and
a subspace (or a subpolyhedron) and continuous (or polyhedral) maps
f : (X1,X2) → (Y1,Y2) to be the appropriate sort of functionX1 → X2

which mapsX2 into Y2. Then Theorem 3.2.1 can be stated in terms of
pairs and the proof of this exactly the same utilising modifications of
3.1.4 and the remarks at the beginning of 3.2 which are valid for pairs.

Another relative version of interset is the notion ofpolyhedron over51
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A, that is, a polyhedral mapL : X→ A. A map f : (α : X→ A)→ (β :
Y → A) is a function f : X → Y such thatα = β · f ; we can consider
either polyhedral or continuous maps. The reader should state and prove
3.2.1 in this context (if possible).

3.3 Mazur’s criterion

We shall mention another result (see B. Mazur “The definitionof equiva-
lence of combinatorial imbeddings” Publications Mathematiques, No.3,
I.H.E.S., 1959) at this point, which shows that, in a certainsense, close
approximations to embeddings are embeddings (in an ambientvector
space).

Let Z be a simplicial presentation ofX, and letV be a real vector
space. LetZ0 denote the set of vertices ofZ . Given a functionϕ :
Z0 → V, we can define an extensioñϕ : |Z | → V by mapping each
simplex linearly. Clearly ifY ⊂ V is any polyhedron containing̃ϕ(X),
the resulting mapX → Y is polyhedral. We call̃ϕ the linear extension
of ϕ. ϕ̃ is called anembeddingif it maps distinct points ofX into distinct
points inV.

3.3.1 (Mazur’s criterion for non-embeddings)
If the linear extensioñϕ of ϕ : Z0 → V is not an embedding, then

there are two open simplexesσ andτ of Z , with no vertices in common,
such that̃ϕ(σ) ∩ ϕ̃(τ) , ∅.

Proof. The proof is in two stages.

(A) If σ = 0(v0, . . . , vn) and{ϕ(v0), . . . , ϕ(vn)} is not independent, then
there are facesσ1 andσ2 of σ, without vertices in common, such52

that ϕ̃(σ1) ∩ ϕ̃(σ2) , ∅ (This is just 1.2.6).

(B) Thus we can assume that for everyσ of Z , ϕ̃(σ) is also an open
simplex of the same dimension. Consider pairs of distinct open
simplexes{ρ, ρ′} such thtϕ̃(ρ) ∩ ϕ̃(σ′) , ∅. Let {σ, τ} be such a
pair, which in addition has the property dimσ + dimτ is minimal
among such pairs. We can now show thatσ andτ have no vertex
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in common. Ifσ = 0(v0, . . . , vm) andτ = 0(w1, . . . ,wn), then if
ϕ̃(σ) ∩ ϕ̃(τ) , 0, there is an equation

r0ϕ(v0) + · · · + rmϕ(vm) = s0ϕ(w1) + · · · + snϕ(wn)

with r0 + · · ·+ rm = 1 = s0 + s1 · · ·+ sn. Herer i andsi are strictly
greater than 0, for otherwise dimσ + dimτ will not be minimal.

Now if and have a common vertex, say, for example,v0 = w0, and
r0 ≥ s0, we can write

(r0 − s0)ϕ(v0) +
∑

i≥1

r iϕ(vi) =
∑

j≥1

sjϕ(w j).

Multiplying by (1− s0)−1, we see that some face ofϕ̃(σ) intersects
a proper facẽϕ(0(w1), . . . ,wn)) of ϕ̃(σ). So thatσ and τ had not the
minimal dimension compatible with the propertiesσ , τ, ϕ̃(σ)∩ ϕ̃(τ) ,
∅. �

Now it easily follows, since to check̃ϕ is an embedding we need
only check that finitely many compact pairs{(ϕ̃(σ), ϕ̃(τ)), σ ∩ τ = ∅} do
not intersect;

Proposition 3.3.2. Let Z be a simplicial presentation of X contained53

in a vector space V, letZ0 be the set of vertices. Then there exists an
ǫ > 0, such that ifϕ : Z0 → V is any function satisfyingρ(v, ϕ(v)) < ǫ

for all v ∈ Z0, then the linear extensioñϕ : X→ V is an embedding.

This is a sort of stability theorem for embeddings, that is, if we
perturb a little the vertices of an embedded polyhedron, we still have an
embedding.



Chapter 4

Link and Star Technique

4.1 Abstract Theory I
54

Definition 4.1.1(Join of open simplexes). Supposeσ and two open sim-
plexes in the same vector space. We say thatστ is defined, when

(a) the sets of vertices ofσ andτ are disjoint

(b) the union of the set of vertices ofσ andτ is independent.

In such a case we defineστ to be the open simplex whose set of
vertices is the union of those ofσ and ofτ. If σ is a 0-simplex, we will
denoteστ by {x}τ or τ{x} wherex is the unique point inσ.

We also, by convention, whereσ (or τ) is taken to be the empty set
∅, make the definition

∅σ = σ∅ = σ

Clearly dimστ = dimσ+dimτ+1, even when one or both of them
are empty.

Ex. 4.1.2.στ is defined if and only ifσ ∩ τ = ∅, and any two open
intervalsO(x, y), O(x′, y′) are disjoint, wherex, x′ ∈ σ, y, y′ ∈ τ, x , x′

or y , y′. In this caseστ is the union of open 1-simplexesO(x, y),
x ∈ σ, y ∈ τ.

This is easy. Actually it is enough to assumeO(x, y) ∩O(x′, y′) = ∅
for x, x′ ∈ σ, y, y′ ∈ τ; x , x′ or y , y′. That it is true for points ofσ 55

47
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andτ andσ ∩ τ = ∅ follow from this.

Ex. 4.1.3.Whenστ is defined, the faces ofστ are the same asσ′τ′,
whereσ′ andτ′ are faces ofσ andτ respectively. If eitherσ′ , σ or
τ′ , τ, thenσ′τ′ is a proper face ofστ.

Ex. 4.1.4.Letσ andτ be in ambient vector spacesV andW. In V×W×
R, let σ̃ = σ × 0× 0 andτ = 0× τ × 1. Thenσ̃τ̃ is defined.

Definition 4.1.5.Let S be a simplicial presentation, andσ an element
of S . Then thelink of σ in S denoted byLk(σ,S ) is defined as

Lk(σ,S ) = {τ ∈ S |στ is defined.}

Lk(σ,A ) = S if σ = ∅.

ObviouslyLk(σ,S ) is a subpresentation ofS .
In caseσ is 0-dimensional, we writeLk(x,S ) for Lk(σ,S ) where

x is the unique element inσ.

Ex. 4.1.6.If τ ∈ Lk(σ,S ), then

Lk(τ, Lk(σ,S )) = Lk(στ,S ).

Notation 4.1.7.If σ is an open simplex, then{σ} and{∂σ} will denote
the simplicial presentations ofσ and∂σ made up of faces ofσ.

Ex. 4.1.8.If τ = ρσ, and dimρ ≥ 0, then

Lk(ρ, {∂τ}) = {∂σ}

Lk(ρ, {τ}) = {σ}.

Definition 4.1.9.Let a andB be simplicial presentations such that for56

all σ ∈ a, τ ∈ B, στ is defined, andστ ∩ σ′τ′ = ∅ if σ , σ′ or τ , τ′.
Then we say that thejoin of a andB is defined, and define thejoin of a
andB, denoted bya ∗B to be the set

{
στ|σ ∈ a, τ ∈ B σ or τ may be empty

but not both.

}

By 4.1.3a ∗B is a simplicial presentation. If∅ is empty, we define
a ∗ φ = φ ∗ a = a.
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In casea andB are presentations of polyhedra inV andW, then
we construct, by 4.1.4,̃a andB̃ which are isomorphic toa andB, and
for which we can definẽa ∗ B̃. It clearly depends only ona andB
upto simplicial isomorphism; in this way we can constructabstractly
any joins we desire.

Ex. 4.1.10.a ∗B = B ∗ a
a ∗ (B ∗ C ) = (a ∗B) ∗ C .
That is whenever one side is defined, the other also is defined and

both are equal.

Ex. 4.1.11.If α ∈ a, β ∈ B, then

Lk(αβ, a ∗B) = Lk(α, a) ∗ Lk(β,B).

In particular, whenβ = ∅,

Lk(α, a ∗B) = Lk(α, a) ∗B

and whenL = ∅,

Lk(β, a ∗B) = a ∗ Lk(β,B).

If a is the presentation of a single point{v}, and is joinable toB,
then we calla ∗B; theconeonB with vertex v, and denote it byC(B). 57

B is called thebaseof the cone. If we make the convention, that the
unique regular presentation of a one point polyhedronv, is to be written
{{v}}, thenC(B) = {{v}} ∗B.

Definition 4.1.12.LetS be a simplicial presentation, andσ ∈ S . Then
thestar ofσ in S , denoted byS t(σ,S ), is defined to be{σ}∗Lk(σ,S ).

ClearlyS t(σ,S ) is a subpresentation ofS and is equal to∪{{τ}|τ ∈
S , σ ≤ τ}.

In caseσ contains only a single pointx, we writeS t(x,S ).

Ex. 4.1.13.Let S be a simplicial presentation,σ an element ofS . If τ
is a face ofσ with dimτ = dimσ − 1, then

Lk(σ,S ) = Lk(τ, {∂σ} ∗ Lk(σ,S )).
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Definition 4.1.14.If S is a simplicial presentation, thek-skeleton of
S , denoted bySk is defined to be

Sk = ∪{{σ}|σ ∈ S dimσ ≤ k}.

ClearlySk is a subpresentation ofS .

Ex. 4.1.15.If σ ∈ Sk and dimσ = ℓ, (ℓ ≤ k), then

Lk(σ,Sk) = Lk(σ,S )k−ℓ−1.

Ex. 4.1.16.Let f : P→ Q be a polyhedral map, simplicial with respect
to presentationsS andS ′ of P andQ respectively. Then

(1) f (Sk) ⊂ (S ′
k )

(2) If σ ∈ S , f (S t(σ,S )) ⊂ S t( fσ,S ′)

(3) For everyσ ∈ S , f (Lk(σ,S )) ⊂ Lk( f (σ),S ′) if and only if f58

maps every 1-simplex ofS onto a 1-simplex ofS ′.

(Strictly speaking, these are the maps induced byf ).

4.2 Abstract Theory II

Definition 4.2.1.Let P be a regular presentation andη a centering of
P. Let A ∈P. Thenthe dual of Aand thelink of A, with respect ofη,
denoted byδA andλA are defined to be

δA = {0(ηC0, . . . , ηCk) | A ≤ C0 < . . . < Ck, k ≥ 0}

λA = {0(ηC0, . . . , ηCk) | A < C0 < . . . < Ck, k ≥ 0}

whereCi ∈P for all i.

Clearly δA andλA are subpresentations ofdP = d(P , η). When
there are several regular presentations to be considered, we will denote
these byδPA andλPA. η will be usually omitted from the terminology,
and these will be simply calleddual of Aandlink of A.
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4.2.2 Every simplex ofdP belongs to someδA.

4.2.3 δA is the cone onλA with vertexηA.

Ex. 4.2.4.Let dimA = p, and consider anyp-simplexσ of dP con-
tained inA i.e.σ = 0(ηB0, . . . , ηBp), for someB0 < . . . < Bp = A. Then
λA = Lk(σ, dP).

4.2.5 SupposeP is, in fact, simplicial. Then we have defined bothλA
andLk(A,P). These are related thus:

A vertex ofλA is of the formηC whereA < C. There is a unique 59

B of P such thatC = AB. ηB is a typical vertex ofd(Lk(A,P)). The
correspondenceηC↔ ηB defines a simplicial isomorphism:

λA↔ d(Lk(A,P)).

Ex. 4.2.6.With the notation of 4.2.1,A < B if and only if δB ⊂ λA. For
anyA ∈P, λA is the union of allδB for A < B.

Ex. 4.2.7.If P is simplicial, A, B ∈ P, thenδA∩ δB , ∅ if and only
if A andB are faces of a simplex ofP. If C is the minimal simplex of
P containing bothA andB (thatC is the open simplex generated by the
union of the vertices ofA andB), thenδA∩ δB = δC.

Definition 4.2.8.If P is a regular presentation andη a centering ofP,
the dual k-skeleton ofP, denoted byPk is defined to be

Pk
=

{
0(ηC0, . . . , ηCp) | C0 < . . . < Cp, dimC0 ≥ k,

p ≥ 0, Ci ∈P .

}

ClearlyPk is a subpresentation ofdP, and is, in fact the union of
all δA for dimA ≥ k. It is even the union of allδA for dim A = k.

ThusδA, λA, Pk are all simplicial presentations.

Ex. 4.2.9.dP = P0 ⊃ P′ ⊃ . . . ⊃ Pn ⊃ Pn+1
= ∅, wheren is the

dimension ofP. Dim Pk
= n− k.

We shall be content with the computation of links of verticesof Pk.
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Ex. 4.2.10.If A ∈P, dimA ≥ k, then60

Lk(ηA,Pk) = {∂A}k ∗ λA.

Next, we consider the behaviour of polyhedral maps with respect to
duals.

Let f : P→ Q be a polyhedral map; letP andQ be two simplicial
presentations ofP andQ respectively with respect to whichf is simpli-
cial. If V is a centering ofQ, it can belifted to a centeringη of P, that
is f (ηA) = V f (A) for all A ∈P. (see 2.2).f is simplicial with respect
to d(P , η) andd(Q,V ) also. Now,

4.2.11 If A ∈P, f (δP A) ⊂ δQ( f (A)).

4.2.12 If B ∈ Q, then f −1(δQB) = ∪{δPA| f (A) = B}.

Remark . All these should be read as maps induced byf , etc. Since
each suchA must have dimension≥ dim B, we have

Proposition 4.2.13.With the above notation, for each k, f−1(Qk) ⊂Pk.

This property is dual to the property with respect to the usual skeleta
“ f (Pk) ⊂ Qk”.

Corollary 4.2.14. If dimP = n, thendim f −1(Qk) ≤ n− k.

In particular, if dimQ = m, andq is a point of an (open)m - dimen-
sional simplex ofQ, f −1(q) is a ≤ (n −m)-dimensional subpolyhedron
of P.

Ex. 4.2.15. f −1(Q′) = P1, if and only if every 1-simplex ofP is
mapped onto a 1-simplex ofQ. (i.e. no 1-simplex ofP is collapsed to
a simple point).

4.3 Geometric Theory
61

Definition 4.3.1.Let P andQ be polyhedra in the same vector spaceV.
We say that thejoin of P and Q is defined(or P ∗ Q is defined, of P and
Q are joinable), if:
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(a) P∩ Q = ∅

(b) If x, x′ ∈ P, y, y′ ∈ Q, and eitherx , x′ or y , y′; thenO(x, y) ∩
O(x′, y′) , ∅.

If the join of P and Q is defined, we define thejoin of P and Q,
denoted byP ∗ Q to be

P ∗ Q = ∪ {x, y] | x ∈ P, y ∈ Q}

By definition,P ∗ ∅ = ∅ ∗ P = P.
Every pointz∈ P ∗ Q can be written as:

z= (1− t)x+ ty, x ∈ P, y ∈ Q, 0 ≤ t ≤ 1.

The numbert is uniquely determined byz; y is uniquely determined
if z < P (i.e. if t , 0), x is uniquely determined ifz < Q (i.e. if t , 1).

4.3.2 Let P andQ be simplicial presentations ofP andQ; and sup-
pose the (geometric) joinP∗Q is defined. Then by 4.1.2, the (simplicial)
join P ∗ Q is defined, and we have|P ∗ Q| = P ∗ Q.

This shows thatP ∗ Q is a polyhedron.

Definition 4.3.3.If P1, Q1, P2, Q2 are polyhedra such thatP1 ∗ Q1 and
P2 ∗ Q2 are defined, andf : P1 → P2, g : Q1 → Q2 are maps,then the
join of f and g, denoted byf ∗ g, is the map fromP1 ∗ Q1 to P2 ∗ Q2

given by,

( f ∗ g)((1− t)x+ ty) = (1− t) f (x) + tg(y)

x ∈ P1, y ∈ Q1, 0 ≤ t ≤ 1.

4.3.4 In the above iff : P1 → P2, g : Q1 → Q2 are simplicial with 62

respect toP1, P2; Q, Q2, then f ∗ g : P1 ∗ Q1→ P2 ∗ Q2 is simplicial
with respect toP1 ∗ Q1 andP2 ∗ Q2. Thus the join of polyhedral maps
is polyhedral.
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4.3.5 If P ∗ Q is defined, (Id)p ∗ (IdQ) = IdP∗Q. If, P1 ∗ Q1, P2 ∗ Q2,
P3 ∗ Q3 are defined andf1 : P1 → P2, f2 : P2 → P3, g1 : Q1 → Q2,
g2 : Q2→ Q3 are maps, then

( f2 ◦ f1) ∗ (g2 ◦ g1) = ( f2 ∗ g2) ◦ ( f1 ∗ g1)

This says that the join is a functor of two variables from pairs of
polyhedra for which join is defined and pairs of polyhedral maps, to
polyhedra and polyhedral maps.

The join of a polyhedronP and a single pointv is called theconeon
P, (sometimes denoted byC(P)) with base Pand vertexv.

Ex. 4.3.6.C(P) is contractible.

Ex. 4.3.7.P ∗ Q− Q containsP as a deformation retract.

Hint: Use the map given by (∗) below.
Let us suppose thatP ∗ Q and the coneC(Q) with vertexv are both

defined. The interval [0, 1] is 0∗ 1, and so two maps can be defined:

β : P ∗ Q→ [0, 1], the join of P→ 0,Q→ 1,

α : C(Q)→ [0, 1], the join of v→ 0,Q→ 1.

Simply speaking,

α((1− t)x+ ty) = t

β((1− t)v+ ty) = t, for x ∈ P, y ∈ Q.

The correspondence:63

(*) (1 − t)x+ ty↔ (x, (1− t)v+ ty)

is a well defined function between

α−1([0.1)) and P× β−1([0, 1)).

It is a homeomorphism, in fact. But it fails to be in any sense poly-
hedral, since it maps, in general, line segments into curvedlines.
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Example.TakingP to be an interval,Q to be a point.

The horizontal line segment corresponds to the part of a hyperbola
under the above correspondence.

We can however find a polyhedral substitute for this homeomor-
phism.

Proposition 4.3.8.Let P, Q,α, β be as above, let0 < τ < 1. Then there
is a polyhedral equivalence.

L−1([0, τ]) ≈ P× β−1([0, τ])

which is consistant with the projection onto the interval[0, τ].

Proof. Let P andQ be simplicial presentations ofP andQ and take the
simplicial presentationT = {{0}, {τ}, (0, τ)} of [0, τ].

Consider the set of all sets of the formA(ρ, σ, i), whereρ ∈ P, 64

σ ∈ Q, i ∈ T andσ = ∅ iff i = {0}, defined thus:

A(ρ, ∅, 0) = ρ

A(ρ, σ, i) = ρσ ∩ L−1(i)

The set of all theseA(ρ, σ, i), call it a. It is claimed thata is a regular
presentation ofL−1([0, τ]), and thatA(ρ, σ, i) ≤ A(ρ′, σ′, i′) if and only
if ρ ≤ ρ′, σ ≤ σ′, i ≤ i′.
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Secondly, consider the set of all sets of the formB(ρ, σ, i) whereρ ∈
mathscrP, σ ∈ Q, i ∈ T , andσ = ∅ if i = {0} defined thus:

B(ρ, ∅, 0) = ρ × {v}

B(ρ, σ, i) = ρ × (σ{v} ∩ β−1(i))

It is claimed thatB of all suchB(ρ, σ, i) is a regular presentation of
P ×B−1([0, τ]), and thatB(ρ, σ, i) ≤ B(ρ′, σ′, i′) if and only if σ ≤ σ′,
ρ ≤ ρ′ andi ≤ i′.

Hence the correspondenceA(ρ, σ, i) ↔ B(ρ, σ, i) is a combinatorial
equivalencea ↔ B. If we choose the centeringsη andV of a andB
respectively such that

L(η(A(ρ, σ, (0, τ))) = τ/2

andβ (2 nd coordinate ofV (B(ρ, σ, (0, τ))) = τ/2. The induced sim-
plicial isomorphismd(a, η) ↔ d(B,V ) gives a polyhedral equivalence
L−1([0, τ)] ≈ P×B−1([0, τ]), consistent with the projection onto [0, τ].

It should perhaps be remarked that by choosingP andQ fine65

enough, our equivalence is arbitrarily close to the correspondence (*)
on page 67. �

Corollary 4.3.9. Let C(P) be the cone on P with vertex v, andL :
C(P) → [0, 1] be the join of P→ 0, v → 1. Then for anyτ ∈ (0, 1),
L−1([0, τ]) is polyhedrally equivalent to P× [0, τ] by an equivalence
consistent with the projection to[0, τ].

For, take Q= v in 4.3.8.

Corollary 4.3.10. LetL : P ∗Q→ [0, 1] be the join of P→ 0, Q→ 1;
let 0 < γ < δ < 1. ThenL−1([γ, δ]) is polyhedrally equivalent to
P×Q× [γ, δ] by an equivalence consistent with the projection to[γ, δ].

For, by 4.3.8,L−1([0, δ]) ≈ P× β−1([0, δ]) whereβ : C(Q) → [0, 1]
is the join of Q→ 1 and vertex→ 0. By 4.3.9, interchanging0 and
1, we see thatβ−1([γ, 1] ≈ Q × [γ, 1]; combining these and noting the
preservation of projection on[γ, δ], we have the desired result.
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Definition 4.3.11.Let K be a polyhedron andx ∈ K. Then a subpoly-
hedronL of K is a said to be a (polyhedral)link of x in K, if L ∗ x is
defined, is contained inK, and is a neighbourhood ofx in K.

A (polyhedral)star of x in K is the cone with vertexx on any link
of x in K.

Clearly, if a ∈ K1 ⊂ K, andK1 is a neighbourhood of ‘a’ in K, then
L ⊂ K1 is a link of ‘a’ in K1, if and only if it is a link of ‘a’ in K.

To show that links and stars exist, we triangulateK by a simplicial 66

presentationS with x as a vertex. Then|Lk(x,S )| is a link of x in K,
and|S t(x,S )| is a star ofx in K. In this case|S t(x,S )| − |Lk(x,S )| is
open inK; this need not be true for general links and stars.

Ex. 4.3.12.If S is any simplicial presentation ofK, andx ∈ σ ∈ S ,
then|{∂σ} ∗ Lk(σ,S )| is a link of x in K, and|{σ} ∗ Lk(σ,S )| is a star
of x in K.

(b) With δA, λA as in 4.2.1, ifx ∈ A, ∂A ∗ |λA| is a link of x in K.

Ex. 4.3.12′. (a) Let f : K → K′ be a one-to-one polyhedral map,
simplicial with reference to presentationsS and S ′ of K and
K′. Then for anyσ ∈ S , x ∈ σ

f ||{σ} ∗ Lk(σ,S )| is the join of

f ||{∂σ} ∗ Lk(σ,S )| andx→ f (x).

Formulate and prove a more general statement using 4.1.16

(b) With the hypothesis of 4.2.15, ifA0 is a 0-cell ofP, f (|λA0|) ⊂
|λ( f A0)| and

f ||δA0| is the join of A0→ f (A0) and f ||λA0|.

If x anda are two distinct points in a vector space, the set of points
(1− t)x+ ta, t > 0 will be called ‘the ray from x through a’.

Let L1 and L2 be two links ofx in k, then for each pointa ∈ L1,
the ray througha from x intersectsL2 in a unique pointh(a) (and every
point in L2 is such a image). It intersectsL2 in atmost one point, since67
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the cone onL2 with vertexx exists. It intersectsL2 in at least one point
since the cone onL2 must contain a neighbourhood of the vertex of the
cone onL1.

The functionh : L1 → L2 thus defined is a homeomorphism. But,
perhaps contrary to intution, it isnot polyhedral.

The graph of the maph in this simple case is a segement of a hyper-
bola.

The fallacy of believingh is polyhedral is old (See, Alexander “The
combinatorial theory of complexes”, Annals of Mathematics, 31, 1930);
for this reason we shall callh the standard mistakeafter Zeeman (see
Chapter I of “Seminar on Combinatorial Topology”). We shallshow
how to approximate it very well by polyhedral equivalences.

It might be remarked that the standard mistake is “piecewiseprojec-
tive”, the category of such maps has been studies by N.H. Kuiper [see
“on the Smoothings of Triangulated and combinatorial Manifolds” in
“Differential and combinatorial Topology”, A symposium in Honorof
Marston Morse, Edited by S.S. Cairns].

Definition 4.3.13.Let A andB be two convex sets. A one-to-one func-
tion from A ontoB,L : A→ B is said to bequasi-linear; if for eacha1,
a2 ∈ A,L([a1, a2]) = [L(a1),L(a2)].

In other words,L preserves line segments. It is easy to see thatL−168

is also quasi-linear.
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Example.Any homeomorphism of an interval is quasi-linear. InR2, the
map:

(r1, r2)→

(
r1

1− r1
,

r2

1− r1

)

as a map fromA = {(r1, r2) | 0 < r i < 1} to B = {(S1,S2) | D > Si > 0}
is quasi-linear.

Proposition 4.3.14. Let L : A → B be quasi-linear. Let{a0, . . . , an}

be an independent set of points in A, defining an open simplexσ. Then
{L(a0), . . . ,L(an)} is independent, and the simplex they define isL(σ).
Consequentlyτ is a face ofσ if and only ifL(τ) is a face ofL(σ).

The proof is by induction. Forn = 1, this is the definition. The
inductive step follows by writingσ = σ′{an} and noting that quasi-linear
map preserves joins.

Theorem 4.3.15.Let L1 and L2 be two links of x in K with h: L1→ L2,
the standard mistake. SupposeZ1 andZ2 are polyhedral presentations
of L1 and L2. Then there exist simplicial refinementsS1 and S2 of
Z1 and Z2 such that for eachσ ∈ S1, h(σ) ∈ S2 and h|σ is quasi-
linear. If f : L1 → L2 is defined as the linear extension of h restricted
to the vertices ofS1, then f is a polyhedral equivalence simplicial with
respect toS1 andS2 and such that f(σ) = h(σ) for all σ ∈ S .

Proof. We can suppose thatZ1 andZ2 are simplicial, and find a simpli-69

cial presentationP of (L1 ∗ x∪ L2 ∗ x) refining (Z1 ∗ {{x}} ∪Z2 ∗ {{x}}).
DefineS = Lk(x,P). It is clear that every simplexσ ∈ S is contained
in τ ∗ {x}, for τ ∈ Z1, and hence the standard mistakeh1 : |S | → L1

takesσ to h1(σ) ⊂ τ.
The restriction ofh1 toσ is quasi-linear. For, leta1, a2 ∈ σ; the three

pointsa1, a2, x determine a plane and in that plane an angular regionL,
which is the union of all rays fromx through the points of [a1, a2]. The
standard mistake, by definition, takes [a1, a2] ⊂ σ to L ∩ τ, which, it is
geometrically obvious, is just [h1(a1), h1(a2)].

This, together with 4.3.14, enables us to defineS1 = {h1(σ) | σ ∈
S }, and to see that this is a simplicial presentation refiningZ1.
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Similarly, via the standard mistakeh2 : |S | → L2, we have

S2 : {h2(σ) | σ ∈ S }.

Since, clearly,h : L1 → L2 is h2 ◦ h−1
1 and the composition and

inverse of quasi-linear maps are again quasi-linear, the major part of the
theorem is proved.

The last remark aboutf is obvious. �

4.3.16 If in 4.3.15, for a subpolyhedronK′ of L1, h|K′ is polyhedral,
then we can arrange forf : L1 → L2 of the theorem to be such that
f |K′ = h|K′.

For, all we need to do is to assure thatZ1 has a subpresentation70

coveringK; then becauseh is linear on each simplex inK, the resultant
f is identical withh there.

Corollary 4.3.17. Links (resp. stars) of x in K exist and all are all poly-
hedrally equivalent.

Proposition 4.3.18. If f : P→ Q is a polyhedral equivalence, then any
link of x in P is polyhedrally equivalent to any link of x in Q.

For triangulate f , and look at the simplicial links; they areobviously
isomorphic.

4.3.181. Allows to define thelocal dimensionof polyhedron K at x.This
is defined to be the dimension of any star ofx in K. By 4.3.17 this is
well defined. It can be easily seen that (by 4.3.12) the closure of the set
of points where the local dimension isp is a subpolyhedron ofK, for
any integerp.

We will next consider links and stars in products and joins.

Ex. 4.3.19.Let C(P) andC(Q) be cones with verticesv and w. Let
Z = (P×C(Q)) ∪ (C(P) × Q). Then

(a) C(P) ×C(Q) = C(Z), the cone onZ with vertex (v,w)

(b) P × w andv × Q are joinable, and (P × w) ∗ (v × Q) is a link of
(v,w) in C(Z).
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Hence by straightening our the standard mistake, we get a polyhe-
dral equivalenceP∗Q ≈ Z, which extends the canonical mapsP→ P×w
andQ→ v× Q. 71

Hint: It is enough to look at the following 2-dimensional picture for
arbitraryp ∈ P, q ∈ Q:

Ex. 4.3.20.Prove thatP∗Q ≈ (C(p) ×Q∪ P×C(Q)) utilising 4.3.8. If
ϕ : P ∗ Q→ [0, 1] is the join ofP→ 0, Q→ 1, the equivalence can be
chosen so thatϕ−1([0, 1/2]) goes toP×C(Q) andϕ−1([1/2, 1]) goes to
C(P) × Q.

Ex. 4.3.21(Links in products). If x ∈ P, y ∈ Q, then a link of (x, y) in
P× Q is the join of a link ofx in P and a link ofy in Q.

The join of X to a polyhedron{x1, x2} consisting of two points is
called the suspensionof X with vertices x1 and x2 and is denoted by
S(X). Similarly Kth order suspensions are defined.

Ex. 4.3.22(Links in joins). In P ∗ Q.

(1) Let x ∈ P ∗ Q− (P∪ Q), and letx = (1− t)p+ tq, p ∈ P, q ∈ Q, 72

0 < t < 1. If L1 is a link of p in P, L2 a link of q in Q, then
S(L1 ∗ L2) (with verticesp, q) is a link of x in P ∗ Q.
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(2) If p ∈ P, andL is a link of p in P, thenL∗Q is a link of p in P∗Q.

Hint: for 1. Consider simplicial presentationsP andQ of P and Q
havingp andq as vertices. ThenLk(p,P) ∗ Lk(q,Q) is a link ofO(p, q)
in P ∗ Q, by 4.1.11. Hence a link ofx in P ∗ Q = |{p, q} ∗ Lk(p,P) ∗
Lk(q,Q)| or the suspension ofLk(p,P) ∗ Lk(q,Q) with verticesp and
q. The general case follows from this.

4.4 Polyhedral cells, spheres and Manifolds

In this section, we utilize links and stars to define polyhedral cells,
spheres and manifolds and discuss their elementary properties.

Let us go back to the open and closed (convex) cells discussedin
1.5. If A is an open cell, then the closed cellA is the cone over∂A with
vertexa, for anya ∈ A.

Proposition 4.4.1. If A and B are two open cells of the same dimension,
then∂A and∂B are polyhedrally equivalent. Moreover the equivalence
can be chosen to map any given point x of∂A onto any given point y of
∂B.

Proof. Let dimA = n = dim B = n. Via, a linear isomorphism of the
linear manifolds containingA andB, we can assume thatA andB are in73

the samen-dimensional linear manifold, and moreover thatA∩ B , ∅.
Then∂A and∂B are both links of any point ofA ∩ B in A∪ B. Hence
∂A and∂B are polyhedrally equivalent. A rotation ofA will arrange for
the standard mistake to mapx to y. And 4.3.15, we can clearly arrange
for x andy to be vertices inS1 andS2. �

By joining the above map with a map of point ofA to a point ofB,
we can extend it to a polyhedral equivalence ofA andB. Thus any two
closed cells are polyhedrally equivalent.

Definition 4.4.2.A polyhedral n-sphere(or briefly ann-sphere) is any
polyhedron, polyhedrally equivalent to the boundary of an open cell of
dimension (n+ 1).
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By 4.4.1 this is well defined.

Definition 4.4.3.A polyhedral n-cell(or briefly ann-cell) is any poly-
hedron, polyhedrally equivalent to a closed convex cell of dimension
n.

By the remark after 4.4.1, this is well defined. All the cells and
spheres except the 0-sphere are connected.

Consider the “standardn-cell”, the closedn-simplex, and the “stan-
dard (n− 1)-sphere”, the boundary of an-simplex. By 4.1.8, 4.3.18 and
4.4.1, we have

Proposition 4.4.4. The link of any point in an n-sphere is an(n − 1)-
sphere.

Corollary 4.4.5. An n-sphere is not polyhedrally equivalent to an(m)-
sphere, if m, n.

Proof. By looking at the links using 4.4.4, and induction. � 74

4.4.6 If f : D ≈ σ is an equivalence of ann-cell with a closedn-
simplexσ, we see that for points ofC corresponding to points of∂σ,
the link in C is an (n − 1)-cell; and for points ofC corresponding to
points ofσ, the link inC is an (n− 1)-sphere.

Proposition 4.4.7. An n-sphere is not polyhedrally equivalent to an n-
cell.

Proof. Again by induction. Forn = 0, a sphere has two points and a
cell has only one point.

For n > 0, ann-cell has points which have (n − 1)-cells as links,
where as in a sphere all points have (n− 1)-spheres as links. And so, by
induction onn they are different. �

This allows us to define boundary for arbitraryn-cells, namely the
boundary of ann-cell C, is the set of all points ofC whose links are (n−
1)-cells. We will denote this also by∂C. This coincides with the earlier
definition for the boundary of a closed convex cell, and the boundary of
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a n-cell is an (n − 1)-sphere. And as in 4.4.5, ann-cell and an (m)-cell
are not polyhedrally equivalent ifm, n.

By taking a particularly convenient pairs of cells and sphere, the
following proposition is easily proved:

Ex. 4.4.8.Whenever they are defined,

(1) The join am-cell and ann-cell is a (m+ n+ 1)-cell.

(2) The join of am-cell and ann-sphere is a (m+ n+ 1)-cell.

(3) The join of am-sphere and ann-sphere is a (m+ n+ 1)-sphere.75

If in (1) of 4.4.8,C1 andC2 are the cells, then∂(C1 ∗ C2) = ∂C1 ∗

C2∪C1∗∂C2. In (2) of 4.4.8, ifC is the cell, andS the sphere∂(C∗S) =
∂C ∗ S.

Definition 4.4.9.A PL-manifold of dimension n(or aPL n-manifold) is
a polyhedronM such that for all pointsx ∈ M, the link of x in M is
either an (n− 1)-cell or an (n− 1)-sphere.

Definition 4.4.10.If M is a PL n-manifold, then the boundary ofM
denoted by∂M, defined to be∂M = {x ∈ M | link of x in M is a cell}.

Notation. If A is any subset ofM, the interior ofAand the boundary ofA
in the topology ofM, will be denoted by intMA and bdMA respectively.
M − ∂M is also usually called the interior ofM, this we will denote by

int M or
◦

M. Note that intM M = M, where as intM = M − ∂M.
It is clear from the proposition above, the manifolds of different di-

mensions cannot be polyhedrally equivalent, of course, from Brouwer’s
theorem on the “Invariance of domain”, it follows that they cannot even
be homeomorphic.

Proposition 4.4.11. If M is a PL n-manifold, then∂M is a PL (n − 1)-
manifold, and∂(∂M) = ∅.

Proof. We first observe thatM − ∂M is open inM. For if x ∈ M − ∂M,
let L be a link of x in M, S the corresponding star, such thatS − L is
open inM. S is a cell and∂S = L. If y ∈ S − L, then a link ofy in S is76
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a link of y in M, sinceS is a neighbourhood ofy. SinceS is a cell and
y ∈ S − ∂S, the link of y in S is a sphere. Hencey ∈ M − ∂M, for all
y ∈ S − L or M − ∂M is open inM. Hence∂M is closed inM.

If S is any simplicial presentation ofM andσ ∈ S , the |{∂σ} ∗
Lk(σ,S )} is a link of x in M for all x ∈ σ by 4.3.12. Henceσ ⊂ ∂M
or σ ⊂ M − ∂M. If σ ⊂ ∂M, ∂σ also is contained in∂M, since∂M is
closed.∂M being the union of all suchσ is a subpolyhedron ofM.

Let x be a point of∂M, L a link of x in M and S = L ∗ x, the
corresponding star such thatS − L is open.L is an (n− 1)-cell. And by
4.4.8,S is ann-cell with ∂S = L ∪ x ∗ ∂L. If y ∈ x ∗ ∂L − ∂L ⊂ S − L,
then a link ofy in S is a link of y in M as above. But a link ofy in S
is a cell, sincey ∈ ∂S. Hencex ∗ ∂L − ∂L ⊂ ∂M. Since∂M is closed,
x∗∂L ⊂ ∂M, and sincex∗∂L is a neighbourhood ofx in ∂M, ∂L is a link
of x in ∂M. Hence∂M is a PL (n− 1)-manifold without boundary. �

Remark. Thus, ifx ∈ ∂M, there exist linksL of x in M (for example, the
links obtained using simplicial presentations), such that∂L ⊂ ∂M and
∂L a link of x in ∂M. This need notbe true for arbitrary links. Also there
exists linksL of x ∈ ∂M in M, such thatL∩∂M = ∂L. For example, take
a regular presentationP of M in which x is a vertex and take|δP {x}|.

Proposition 4.4.12. Let M be a PL n-manifold, andS a simplicial 77

presentation of M. Ifσ ∈ S , then eitherσ ⊂ ∂M or M − ∂M, and

(1) |Lk(σ,S )| is a (n− k− 1)-cell if σ ⊂ ∂M

(2) |Lk(σ,S )| is a (n − k − 1)-sphere ifσ ⊂ M − ∂M where k is the
dimension ofσ.

Proof. Thatσ ⊂ ∂M or M−∂M is proved in 4.4.11. The proof of (1) and
(2) is by induction onk. It k = 0, this follows from definition. Ifk > 0,
let τ be a (k − 1)-face ofσ. ThenLk(σ,S ) = Lk(τ, {∂σ} ∗ Lk(σ,S )),
and |{∂σ} ∗ Lk(σ,S )| being the link of a point inσ is either (n − 1)-
sphere or a (n − 1)-cell. Hence, by induction,Lk(σ,S ) is either a cell
or sphere of dimension (n− 1)− (k − 1)− 1 = (n − k − 1). If σ ⊂ ∂M,
|{∂σ} ∗ Lk(σ,S )| is a cell. Hence|Lk(σ,S )| cannot be a sphere, since
then|{∂σ}|∗Lk(σ, )| = ∂σ∗ |Lk(σ, )| would be a sphere. Thus ifσ ⊂ ∂M,
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|Lk(σ,S )| is a (n− k− 1)-cell. Similarly ifσ ⊂ M − ∂M, |Lk(σ,S )| is
a (n− k− 1)-sphere. �

Ex. 4.4.13.(1) Let M be aPL m-manifold, andN a PL n-manifold.
Then M × N is a PL (m+ n)-manifold and∂(M × N) is the union of
∂M × N andM × ∂N.

Hint: Use, 4.3.21 and 4.4.8.

(2) If M ∗N is defined, it is not a manifold except for the three cases
of 4.4.8.

Hint: Use 4.3.22.

Proposition 4.4.14. (a) If f : S → S′ is a one-to-one polyhedral78

map of an n-sphere S into another n-sphere S′, then f is onto.

(b) If f : C → C′ is a one-to-one polyhedral map of an n-cell C into
another n-cell C′ such that f(∂C) ⊂ ∂C′, then f is onto.

Proof of (a): By induction. Ifn = 0, S has two points and the proposi-
tion is trivial. Letn > 0. Let f be simplicial with respect to presentations
S1 andS2 of S andS′. If x is any point ofS, x ∈ σ for someσ ∈ S1.
Consider

L1 = |{∂σ} ∗ Lk(σ,S1)|, S1 = |{∂σ} ∗ Lk(σ,S1)|,

L2 = |{∂( fσ)} ∗ Lk( fσ,S2)|, and S2 = |{ fσ} ∗ Lk( fσ,S2)|.

Since f is injective f mapsL1 → L2, and f |S1 is the join of f |L1

andx→ f (x). L1 andL2 are (n − 1)-spheres, and by inductionf |L1 is
bijective. Thereforef (S1) = S2. Hencef (S) is open inS′. SinceS is
compactf (S) is closed inS′. SinceS is connected,f (S) = S′. (b) is
proved similarly.

By the same method, it can be shown

Ex. 4.4.15.There is no one-to-one polyhedral map of ann-sphere into
ann-cell.

Ex. 4.4.16. (1) A PL-manifold cannot be imbedded in another PL-
manifold of lower dimension.
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(2) If M andN are two connected manifolds of the same dimension,
∂N , ∅, and∂M = ∅, thenM cannot be embedded inN. If ∂N is
also empty, and ifM can be embedded inN thenM ≈ N.

Ex. 4.4.17. (1) If M ⊂ N are twoPL n-manifolds, thenM − ∂M ⊂ 79

N − ∂N, andM − ∂M is open inN. Hint: Use 4.4.14 and 4.4.15.

In particular any polyhedral equivalence ofN has to takeN − ∂N
ontoN − ∂N and∂N onto∂N.

(2) If M ⊂ N− ∂N, bothM andN, PL (n)-manifolds, andx any point
of ∂M, show that there exist linksL of x in N, such that a link of
x in M is an (n− 1)-cell D ⊂ L, andD ∩ ∂M = ∂D.

Ex. 4.4.18.In 4.2.14, show that ifP is a PLn-manifold f −1(q)(∂ , ∅) is
a PL (n−m)-manifold and∂( f −1(q)) ⊂ ∂P.

4.5 Recalling Homotopy Facts

Here we discuss some of the homotopy facts needed later. The reader is
referred to any standard book on homotopy theory for the proof of these.

4.5.1 We define a spaceP to be (k−1)-connectediff, for any polyhedra
Y ⊂ X, with dimX ≤ k, every continuous mapY→ P has an extension
to X.

Thus, a (−1)-connected polyhedron must just be non-empty. Ak-
connected polyhedron fork ≤ −2, can be anything. Fork ≥ 0, it is
necessary and sufficient thatP be non-empty and thatπi(P) = 0 for
i ≤ k.

4.5.2 A pair of spaces (A, B) whereB ⊂ A, is k-connectedif for any
polyhedraY ⊂ X with dim X ≤ k, and f : X → A such thatf (Y) ⊂ B,
then f is homotopic to a mapg, leavingY fixed, such thatg(X) ⊂ B.

This is just the same as requiring thatπi(A, B) = 0 for i ≤ k. If A is 80

contractible (or just (k−1)-connected) and (A, B) is k-connected, thenB
is (k− 1)-connected.
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We shall have occasion to look at pairs of the form (A,A−B), which
we denoted briefly as (A,−B). The following discussion is designed to
suggest how to prove a result on the connectivity of joins, which is well
known from homotopy theory.

4.5.3 Let A1 ⊂ A, B1 ⊂ B, and suppose (A,−A1) is a-connected,
(B,−B1) is b-connected. Then (A×B,−A1×B1) is (a+b+1)-connected.

Let Y ⊂ X, dimX ≤ a+ b+ 1, and f : X→ A× B, with f (Y)∩ A1×

B1 = ∅.
We must now triangulateX finely by sayS . Look at|Sa| = X1 and

|S a+1| = X2. Then dimX1 ≤ a, dimX2 ≤ b, and so the two coordinates
of f are homotopic, using homotopy extension, to get a map, stillcalled
f1 such that

fA(X1) ∩ A1 = ∅, fB(X2) ∩ B1 = ∅.

BecauseX − X2 hasX1 as a deformation retract, we can first get
fB(X2)∩B1 = ∅ and thenf −1(A1×B1) is contained inX−X2. By chang-
ing, homotopically, only the first coordinate, we getf −1(A1 × B1) = ∅.

To go more deeply into this sort of argument, see Blakers and
Massey, “Homotopy groups of Triads” I, II, III”, Annals of Mathematics
Vol. 53, 55, 58.

4.5.4 If P is (a − 1)-connected,Q is (b − 1)-connected, thenP ∗ Q is81

(a+ b)-connected.
For, let C(P), C(Q) be cones with verticesv, w. Then (C(P),−v)

is a-connected, (C(Q),−w) is b-connected. Hence by 4.5.3, (C(P) ×
C(Q),−(v,w)) is (a+b+1)-connected. By 4.3.19, this pair is equivalent
to (C(P∗Q),−(v,w)). HenceP∗Q is (a+b)-connected. For a direct proof
of 4.5.4, see Milnor’s “Construction of Universal Bundles II (Annals of
Mathematics, 1956, Vol. 63).

4.5.5 The join ofK non-empty polyhedra is (k− 2)-connected. In par-
ticular (k − 1)-sphere is (k − 2)-connected. The join of a (k − 1)-sphere
and aa-connected polyhedron is (a + k)-connected. Thus akth suspen-
sion (same as the join with a (k − 1)-sphere) of a connected polyhedron
is at leastK-connected.
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General Position

We intend to studyPL-manifolds is some detail. There are certain basic82

techniques which have been developed for this purpose, one of which
is called “general position”. An example is the assertion that “if K is
a complex of dimensionk, M a PL-manifold of dimension> 2k, and
f : K → M is any map, thenf can be approximated by imbeddings”.
More generally we start with some notions “a mapf : K → M being
generic” and “a mapf : K → M being in “generic position” with re-
spect to someY ⊂ M”. This “generic” will be usually with reference to
some minimum possible dimensionality of “intersections”,“self inter-
sections” and “nicety of intersections”. The problem of general position
is to define useful generic things, and then try to approximate nongeneric
maps by generic ones for as large a class ofX’s, Y’s andM’s as possi-
ble (even in the case ofPL-manifolds, one finds it necessary to prove
general position theorems for arbitraryK).

It seems that the first step in approximating a map by such nicemaps
is to approximate bya so called nondegenerate map, that is a mapf :
K → M which preserves dimensions of subpolyhedra.

Now it happens that a good deal of ‘general position’ can be ob-
tained from just this nondegeneracy, that is ifY is the sort of polyhedron
in which maps from polyhedra of dimension≤ somen can be approx-
imate by nondegenerate maps, then they can be approxiamted by nicer 83

maps also. And the class of theseY’s is much larger than that ofPL-
manifolds.

69
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We call such spaces Non Degenerate (n)-spaces orND(n)-spaces.
The aim of this chapter is to obtain a good description of suchspaces
and prove a few general position theorems for these spaces.

5.1 Nondegeneracy

Proposition 5.1.1. The following conditions on a polyhedral map f:
P→ Q are equivalent:

(a) For every subpolyhedron X of P,

dim f (X) = dim X.

(b) For every subpolyhedron Y of Q,

dim f −1(Y) ≤ dimY.

(c) For every point x∈ Q, f−1(x) is finite.

(d) For every line segment[x, y] ⊂ P, x , y, f([x, y]) contains more
than one point.

(e) For everyP, Q with respect to which f is simplicial, f(σ) has
the same dimension asσ, σ ∈P.

(f) There exists a presentationP of p, on each cell of which f is
linear, and one-to-one.

Proof. Clearly

(a) =⇒ (d)

(b) =⇒ (c) =⇒ (d)

(e) =⇒ (f)

To see that (a)=⇒ (b):84

Consider a subpolyhedronY of Q; then f ( f −1(Y)) ⊂ Y.
Dim( f −1(Y)) = dim f ( f −1(Y)) by (a) and asf ( f −1(Y)) ⊂ Y, dim f ( f −1 ∗

Y)) ≤ dimY. Hence dim(f −1(Y) ≤ dimY.
To see the (d)⇒ (e):
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Let σ ∈ P. If f (σ) has not the same dimension as that ofσ, two
different vertices ofσ sayv1 andv2 are mapped onto the same vertex of
f (σ) sayv. Then [v1, v2] is mapped onto a single pointv, contradicting
(d).

Finally (f)⇒ (a):
To See this, first observe that iff is linear and one-to-one- on a cell

C, then it is linear one one-to-one onC also. Thus ifA is a polyhe-
dron in C, dim f (A) = dimA. But, X =

⋃
C∈P

(X ∩ C), and dimX =

MaxC∈P (dim X ∩C). It follows that dimf (X) = dimX.
Thus we have
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and therefore all the conditions are equivalent. �

Definition 5.1.2.We shall call a polyhedral mapf which satisfies any
of the six equivalent conditions of proposition 5.1.1.a nondegenerate
map.

Note that a nondegenerate map may have various “foldings”; in 85

other words it need not be a local embedding.

Ex. 5.1.3. (1) If f : P → Q is a polyhedral map, andP = P1 ∪

. . . ∪ Pk, Pi is a subpolyhedron ofP, 1 ≤ i ≤ k, and if f /Pi is
nondegenerate, thenf is nondegenerate.

(2) If f : P→ Q is nondegenerate, andX ⊂ P a subpolyhedron, then
f /X is also nondegenerate.

[Hint : Use 1.C].

Ex. 5.1.4. Proposition.The composition of two nondegenerate maps is
a nondegenerate map.
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Ex. 5.1.5. Proposition.If f : P1 → Q1, andg : P2 → Q2 are nonde-
generate, thenf ∗ g : P1 ∗ P2→ Q1 ∗ Q2 is nondegenerate.

In Particular conical extensions of nondegenerate maps areagain
nondegenerate.

[Hint: Consider presentations with respect to whichf , g are simpli-
cial and use 1f .].

Let f : P → Q be a polyhedral map,S andZ triangulations of
P andQ with reference to whichf is simplicial. Sk andZk as usual
denote thekth skeletons ofS and Z . Let θ, η be centerings ofS ,
Z respectively such thatf (θσ) = η( fσ) for σ ∈ S . Let S k andZ k

denote the dual skeletons with respect to these centerings.Then

Ex. 5.1.6. (a) f (Sk) ⊂ Zk.

f is nondegenerate if and only iff −1(Zk) ⊂ Sk.

(b) f −1(Z k) ⊂ S k86

f is nondegenerate if and only if

f (S k) ⊂ Z k.

(c) Formulate and prove the analogues of (a)

and (b) for regular presentations.

5.2 ND(n)-spaces. Definition and Elementary prop-
erties

Definition 5.2.1.A polyhedronM is said to be anND(n)-space (read
Non-Degenerate(n)-sace)if and only if:

for every polyhedronX of dimension≤ n, and any mapf : X→ M
and anyǫ > 0, there is anǫ-approximation tof which is nondegenerate.

This property is a polyhedral invariant:

Proposition 5.2.2. If M is and ND(n)-space, andL : M → M′ a poly-
hedral equivalence, then M′ is also ND(n).
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Proof. Obvious. �

Before we proceed further, it would be nice to know such spaces
exist. Here is an example:

Proposition 5.2.3. An n-cell is an ND(n)-space.

Proof. By 5.2.2, it is enough to prove forA, whereA is an open convex
n-cell in Rn. Let f : X → A be any map from a polyhedronX of
dimension≤ n. First choose a triangulationS of X, such thatf is
linear on each simplex ofS . Let v1, . . . , vr be the vertices ofS . First
we alter the mapf a little to a f ′ so thatf ′(v1), . . . , f ′(vr ) are all inA =
Interior ofA. This is clearly possible: We just have to choose points near87

f (vi)’s in the interior and extend linearly. Next, by 1.2.12 of Chapter 1,
we can choosey1, . . . , yr so thatyi is near f ′(vi) andyi ’s are in general
position, that is any (n+1) or less number of points ofy’s is independent.
If we choosey’s near enoughf ′(vi )’s, the y’s will be still in A, that is
why we shifted f (vi)’s into the interior. Now we defineg(vi ) = yi and
extend linearly on simplexes ofS to a get a mapX → M, which is
non-degenerate by 5.1.1 (f). And surely iff (vi) andyi are near enough,
g will be good approximation tof . �

The next proposition says, roughly, that anND(n)-space is locally
ND(n).

Proposition 5.2.4. If S is any simplicial presentation of an ND(n)-
space, andσ ∈ S , then|S t(σ,S )| is an ND(n)-space.

Proof. If x is a point ofσ, then |S t(σ,S )| is a cone with vertexx and
base∂σ ∗ |Lk(σ,S )| which is a link ofx in M; and |S t(σ,S )| − ∂σ ∗
|Lk(σ,S )| is open inM. If f : X → |S t(σ,S )| is any map from a
polyhedronX of dimension≤ n andǫ > 0, we first shink it towardsx
by a map f ′ say so thatf ′(X) ⊂ |S t(σ,S )| − ∂σ ∗ |Lk(σ,S )| so that
ρ( f , f ′) < ǫ/2. NowN = M− (|S t(σ,S )min−∂σ∗ |Lk(σ,S )|) is a sub-
polyhedron ofM, and f ′(X)∩N = ∅. Thereforeρ( f ′(X),N) > δ > 0. Let
η = min(δ, ǫ/2). SinceM is ND(n), we can obtain anη-approximation
to f ′, say g which is nondegenerate.g is an ǫ-approximation to f
andg(X) ∩ N = ∅, g(X) ⊂ M. Thereforeg(X) ⊂| S t(σ,S )|. Hence 88

|S t(σ,S )| is anND(n)-space. �
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Next we establish a sort of “general position” theorem forND(n)-
space.

Theorem 5.2.5. Let M be an ND(n)-space, K a subpolyhedron of M
of dimension≤ k. Let f : X → M be a map from a polyhedron X of
dimension≤ n−k−1. Then f can be approximated by a map g: X→ M
such that g(X) ∩ K = ∅.

Proof. Let D be a (k+ 1)-cell. Let f ′ : D × X→ M be the composition
of the projectionD × X → X and f , that is f ′(a, x) = f (x) for a ∈ D,
x ∈ X. By hypothesis, dim(D × X) ≤ n. Hencef ′ can be approximated
by a mapg′ which is nondegenerate. The dimension ofg′−1(K) ≤ k.
Considerπ(g′−1(K)); (whereπ is the projectionD × X → D), this has
dimension≤ k; hence it cannot be all of the (k + 1)-dimensionalD.
Choose somea ∈ D − π(g′−1(K)). Theng′(a × X) ∩ K = ∅. We define
g by, g(x) = g′(a, x), for x ∈ X. Since f (x) = f ′(a, x), andg′ can be
chosen to be as close tof ′ as we like, we can get ag as close tof as we
like. �

We can draw a few corollaries, by applying the earlier approxima-
tion theorems.

Ex. 5.2.6.If M is ND(n), K a subpolyhedron ofM of dimension≤ k,
then the pair (M,M − K) is (n− k− 1)-connected.

[Hint: It is enough to consider mapsf : (D, ∂D)→ (M,M−K), and
show that such anf is homotopic to a mapg by a homotopy which is
fixed on∂D, and withg(D) ⊂ M − K. First, by 5.2.5, one can get a very89

close approximationg1 to f with g1(D) ⊂ M − K. Then sinceg1|∂D
and f |∂D are very close, there will be a small homotopyh (3.2.3) in a
compact polyhedron inM − K with h0 = f |∂D, h1 = g1|∂D. Expressing
D as the identification space of∂D× I andD1 (a cell with∂D1 = ∂D×1)
at ∂D × 1 and patching uph and the equivalent ofg1 on D1, we get a
mapg : D → M, with g|∂D = f |∂D, g(D) ⊂ M − K andg close to f .
Then there will a homotopy off andg fixed on∂D].

As an application this and 5.2.4 we have:
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Proposition 5.2.7. If S is a simplicial presentation of an ND(n)-space
andσ ∈ S , then|Lk(σ,S )| is (n− dimσ − 2)-connected.

Proof. For by 5.2.4,|S t(σ,S )| = σ∗ |Lk(σ,S )| is ND(n), and by 5.2.6,
(|S t(σ,S )|, |S t(σ,S )| − σ) is (n − dimσ − 1)-connected, thus giving
that |S t(σ,S )| − σ is (n − dimσ − 2)-connected. But|Lk(σ,S )| is a
deformation retract of|S t(σ,S )| − σ. �

5.3 Characterisations ofND(n)-spaces

We now introduce two more properties: the first an inductively defined
local property calledA(n) and the second a property of simplicial pre-
sentations calledB(n) and which is satisfied by the simplicial presenta-
tions of ND(n)-spaces. It turns out that ifM is a polyhedron andS a
simplicial presentation ofM, thenM is A(n) if and only if S is B(n).
Finally, we complete the circle by showing thatA(n)-space have an ap-
proximation property which is somewhat stronger than that assumed for 90

ND(n)-spaces.A(n) shows thatND(n) is a local property.B(n) is useful
in checking whether a given polyhedron isND(n) or not. Using these,
some more descriptions and properties ofND(n)-spaces can be given.

Definition 5.3.1(The propertyA(n) for polyhedra).
Any polyhedron isA(0).
If n ≥ 1, a polyhedronM is A(n) if and only if the link of every point

in M is a (n− 2)-connectedA(n− 1).

Definition 5.3.2(The propertyB(n) for simplicial presentations).
A simplicial presentationS is B(n), if and only if for everyσ ∈ S ,

|Lk(σ,S )| is (n− dimσ − 2)-connected.

By 5.2.7, we have

Proposition 5.3.3. If M is ND(n), then every simplicial presentationS
of M is B(n).

The next to propositions show thatA(n) andB(n) are equivalent (ig-
noring logical difficulties).
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Proposition 5.3.4. If M is A(n), then every simplicial presentation of M
is B(n).

Proof. The proof is by induction onn. For n = 0, theB(n) condition
says that certain sets are (≤ −2)-connected, i.e. anyS is B(0), agreeing
with the fact that anyM is A(0). Letn > 0, and assume the proposition
for m< n.

Let |S | = M, σ ∈ S and dimσ = k.
If k = 0, then by the conditionA(n), the link of the element ofσ,

which can be taken to be|Lk(σ,S )| is (n− 2)-connected.91

If k > 0, let x be any point ofσ. Then a link ofx in M is ∂σ ∗
|Lk(σ,S )|, which isA(n− 1) by hypothesis.

Hence by inductive hypothesis, its simplicial presentation {∂σ} ∗
Lk(σ,S ) satisfiesB(n − 1). If τ is any (k − 1)-dimensional face of
σ,

|Lk(σ,S )| = |Lk(τ, {∂σ} ∗ Lk(σ,S ))|

which is ((n−1)− (k−1)−2)-connected i.e. (n− k−2)-connected since
{∂σ} ∗ Lk(σ,S ) is B(n− 1). �

Proposition 5.3.5. If a polyhedron M has a simplicial presentationS
which is B(n), then M is A(n).

Proof. The proof is again by induction. Forn = 0, it is the same as in the
previous case. And assume the proposition to be true for allm< n > 0.

Let x ∈ M. Thenx belongs to some simplexσ of S , and a link ofx
in M is ∂σ ∗ |Lk(σ,S )|. We must show that this is an (n− 2)-connected
A(n− 1).

As per connectivity, we note (settingk = dimσ) that∂σ is a (k−1)-
sphere; and byB(n), |Lk(σ,S )| is (n − k − 2)-connected. As the join
with a (k− 1)-sphere rises connectivity byk, ∂σ ∗ |Lk(σ,S )| is (n− 2)-
connected.

To prove that∂σ ∗ |Lk(σ,S )| is An−1, it is enough to show that
{∂σ} ∗ Lk(σ,S ) = S ′ say isB(n − 1); for then by induction it would
follow that |S ′| = ∂σ ∗ |Lk(σ,S )| is A(n − 1). Take a typical simplex
L of S ′. It is of the formβγ, β ∈ {∂σ}, γ ∈ Lk(σ,S ), with β or γ = ∅92

being possible. NowLk(L,S ′) = Lk(β, {∂σ}) ∗ Lk(γ, Lk(σ,S )).
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Let a, b, c be the dimensions ofα, β, γ respectively.a = b+ c+ 1.
Remember that dimσ = k. Therefore|Lk(β, {∂σ})| is a (k−b−2)-sphere.
Now |Lk(γ, Lk(σ,S ))| = |Lk(γσ,S )|; and byB(n) assumption, this is
(n − (c + k + 1) − 2) connected. Hence the join of|Lk(β, {∂σ})| and
|Lk(γ, Lk(σ,S ))| which is |Lk(α,S ′)| is

[(n− (c+ k+ 1)− 2)+ (k − b− 2)+ 1]-connected

that is ((n− 1)− a− 2)-connected.
Thus S ′ is B(n − 1), and therefore by induction|S ′| = ∂σ ∗

|Lk(σ,S )|, a link of x in M is a (n − 2)-connectedA(n − 1). Hence
M is A(n). �

We need the following proposition for the next theorem.

Proposition 5.3.6.LetP be a regular presentation of an A(n)-space M
andη be any centering ofP. Let A be any element ofP, anddimA = k.
Then

|λA| is an(n− k− 2)-connected An−k−1

and |δA| is a contractible An−k.

Proof. We know thatλA is the link of ak-simplex indP. SincedP
satisfiesB(n), |λA| is (n− k− 2)-connected.

If k = 0, λA is the link of a point and thereforeA(n− 1), sinceM is
A(n).

If k > 0, then∂A ∗ |λA| is a link of a point inM, and so isA(n− 1). 93

Take a (k − 1)-simplexσ of dP in ∂A; thenλA is Lk(σ, d{∂A} ∗ λA)
which (by induction onk), we know to be a presentation of anA((n −
1)− (k− 1)− 1)-space.

To prove that|δA| is A(n− k), we prove thatδA is B(n− k). Consider
its vertexηA, thenLk(ηA, δA) = λA, and|λA| is (n − k − 2)-connected.
For a simplexσ ∈ λA, we have|Lk(σ, δA)| =⊂ |(Lk(σ, λA))| which is
contractible. For a simplexτ = σ{ηA}, σ ∈ λA, Lk(τ, δA) = Lk(σ, λA).
If τ has dimensiont, σ has dimension (t − 1); and so|λA| beingA(n −
k− 1), |Lk(σ, λA)| is ((n− k− 1)− (t − 1)− 2)-connected, i.e.|Lk(τ, δA)|
is ((n− k) − t − 2)-connected. This shows thatδA satisfiesB(n− k). �
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Theorem 5.3.7.Let M be an A(n)-space, Y⊂ X polyhedra of dimension
≤ n, and f : X→ M a map such that f|Y is non-degenerate. Given any
ǫ > 0, there is anǫ-approximation g to f such that g is nondegenerate
and g|Y = f |Y.

Proof. The proof will be by induction onn. If n = 0, we takeg = f ,
since any map on a 0-dimensional polyhedron is nondegenerate.

So assumen > 0, that the proposition withm instead ofn to be true
for all m< n.

Without loss of generality we can assume thatf is polyhedral.
Choose simplicial presentationsZ ⊂ S , M of Y, X and M such that
f is simplicial with respect toS andM ; and such that the diameter
of the star of each simplex inM is less thanǫ. Let θ, η be center-
ings of S andM with f (θσ) = η( fσ) for all σ ∈ S . Then clearly94

f −1(M k) ⊂ S k f (Z k) ⊂M k and the diameter of|δρ| is less thanǫ for
everyρ ∈M .

Consider an arrangementA1, . . . ,Ar of simplexes ofM so that
dim Ai ≥ dim Ai+1, for 1 ≤ i ≤ k. The crucial fact about such an ar-
rangement is, for eachi, (*) λAi is the union ofδA j for some j’s less
thani.

We construct an inductive situation
∑

i such that

(1) Xi = f −1(|δA1| ∪ . . . ∪ |δAi |)

(2) Yi = Xi ∩ Y

(3) gi : Xi → M, a nondegenerate map

(4) gi( f −1|δAi |) ⊂ |δAi |

(5) gi |Xi−1 = gi−1

(6) gi |Yi = f |Yi

M n is the union of certainAi ’s in the beginning, sayAi ’s with i ≤ ℓ.
f −1(M n) ⊂ S n and|S n| is 0-dimensional. Hencef | f −1(|δA1| . . . |δAℓ|)
is already nondegenerate. If we take this to begℓ all the above properties
are satisfied an we have more than started the induction. Now let i > ℓ
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and suppose thatgi−1 is defined, that is we already have the situation∑
(i−1).

It follows from (4) and (5), that forj < i, gi−1( f −1|δA j |) ⊂ |δA j |, and
hence from (*) thatgi−1 mapsf −1(|λAi |) into |λAi |.

Also this shows that ifx ∈ f −1(|δA j |) then bothgi−1(x) and f (x) are 95

in |δA j |, which has diameter< ǫ, and sogi−1 is anǫ-approximation to
f |Xi−1.

There are ow two cases.

Case 1.dim Ai = k ≥ 1.

Look at|δAi |. This is a contractibleA(n−k). Let X′ = f −1(|δAi |) and
Y′ = (Y∩X′)∪ f −1(|λAi |). The mapsf onY∩X′ andgi−1 on f −1(|λAi |)
agree where both are defined by

∑
i−1(6), and are nondegenerate by hy-

pothesis and induction. Hence patching them up we get a nondegenerate
map f ′ : Y′ → |δAi |. Since|δAi | is contractiblef ′ can be extended to a
map (still denoted byf ′) of X′ to |δAi |. SinceX′ ⊂ |S k|, dimX′ ≤ n−k,
and|δAi | is A(n− k), there is a nondegenerate mapf ′′ : X′ → |δAi | such
that f ′′|Y′ = f ′|Y′, by using the theorem for (n− k) ≤ n− 1.

We now definegi to begi−1 on Xi−1 and f ′′ on X′; these two maps
agree where both are defined, namelyf −1(|λAi |). Thusgi is well de-
fined and is nondegenerate as bothf ′′ andgi−1 are nondegenerate. And
clearly all the six conditions of

∑
i are satisfied.

Case 2.Dim Ai = 0.

Let B1, . . . , Bs be the vertices ofS which are mapped ontoAi . Then

f −1(|δAi |) = |δB1| ∪ . . . |δBs|.

Let X′ = |λB1| ∪ . . . ∪ |λBs| = |S
1| ∩ f −1(|δAi |)

X′ is of dimension≤ n− 1, and containsf −1(|λAi |). Let Y′ = f −1(|λAi |). 96

Here the important point to notice is, thatY ∩ X′ ⊂ Y′. This is because
f |Y is nondegenerate:Y ∩ X′ ⊂ Z 1, so f (Y ∩ X′) ⊂ M 1. It is also in
|δAi | and thereforef (Y∩ X′) ⊂ |M 1| ∩ |δAi | = |λAi |.

We first extendgi−1|Y′ to X′ and then by conical extension tof −1

(|δAi |). gi−1 mapsY′ into |λAi | and is non-degenerate onY′. Since|λAi |
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is (n − 2)-connected, and dimX′ ≤ n − 1, gi−1|Y′ can be extended to a
map f ′ of X′ into |λAi | |λAi | is alsoA(n − 1). Hence by the inductive
hypothesis we can approximatef ′ by a nondegenerate mapf ′′ such that
f ′′|Y′ = f ′|Y′ = gi−1|Y′.

Hence f ′′||λB j |, 1 ≤ j ≤ s is nondegenerate and maps|λB j | into
|λAi |. We extend this to a maph j : |δB j | → |δAi |, by mappingB j to
Ai and taking the join is clearly nondegenerate. Since|δB j | ∩ |δB j′ | ⊂

|λB j | ∩ |λB j′ | ⊂ X′, if j , j′, h j ’s agree whereever their domains of
definition overlap. Similarlyh j andgi−1 agree where both are defined.
We now definegi to begi−1 on Xi−1 andh j on |δB j |. Thusgi is defined
on Xi−1 ∪ f −1(|δAi |) = Xi and is nondegenerate sincegi−1 andh j ’s are
nondegenerate. It obviously satisfies conditions 1-5 of

∑
i , to see that it

satisfies (6) also: Letσ is any simplex ofdZ in δB j, if B j is not a vertex
of σ there is nothing to prove; ifB j is a vertex ofσ, writeσ = {B j}σ

′.
Bothh j and f agree onσ′ andB j and onσ both are joins, hence both are
equal onσ. Then (6) is also satisfied and we have the situation

∑
i. �97

This theorem shows in particular thatND(n) is a local property;
and thatND(n)-spaces have stronger approximation property than is as-
sumed for them.

The following propostions, which depend on the computations of
links are left as exercises.

Ex. 5.3.8. Proposition.C(X) andS(X) areND(n) if and only if X is an
(n− 2)-connectedND(n− 1).

Thus thekth suspension ofX is ND(n) if and only if X is an (n−k−1)-
connectedND(n− k)-space.

Ex. 5.3.9. Proposition.Let S be a simplicial presentation ofX. Then
X is ND(n) if and only |Lk(v,S )| is (n − 2)-connectedND(n − 1) for
each vertexv of S .

Ex. 5.3.10. Proposition.If S is a simplicial presentation of anND(n)-
space, and 0≤ k ≤ n, then the skeletonSk is ND(k), and the dual
skeletonS k is ND(n− k).
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Thus the class ofND(n)-spaces is much larger than the class ofPL
n-manifolds, which incidentally areND(n) by theB(n)-property.

The results of this section can be summarised in the following propo-
sition:

Proposition 5.3.11. The following conditions on a polyhedron M are
equivalent:

(1) M is ND(n)

(2) M is A(n)

(3) a simplicial presentation of M is B(n) 98

(4) every simplicial presentation of M is B(n)

(5) there exists a simplicial presentationS of M such that|LK(v,S )|
is (n− 2)-connected An−1 for all v ∈ S anddimv = 0

(6) M satisfies the approximation property of theorem 5.3.7.

(7) M × I is ND(n+ 1).

5.4 Singularity Dimension

5.4.1 Definitions and RemarksLet P and M be two polyhedra,
dimP = p, dim M = m, p m, and f : P → M a nondegenerate map.
Ed define the singularity off (or the 2-fold singularity off ) to be set
{x ∈ P| f −1 f (x) contains at least 2 points}, and denote it byS( f ) or
S2( f ). By triangulating f , it can be seen easily thatS( f ) is a finite
union of open cells, so thatS( f ) is a subpolyhedron ofp.

Similarly, we define ther-fold singularity of f for r ≥ 3, to be the
set{x ∈ P| f −1 f (x) contains at leastr points}. This will be denoted by
Sr( f ). As aboveSr ( f ) is a finite union of open cells, so thatSr( f ) is a
subpolyhedron ofP. ClearlyS2( f ) ⊃ S3( f )) . . .; andSr ( f ) are empty
after a certain stage; sincef is nondegenerate.



82 5. General Position

The number (m− p) is usually referred to as thecodimension; and
the numberr(p) − (r − 1)m, for r ≥ 2 is called ther-fold point dimen-
sionand is denoted bydr (see e.g. Zeeman “Seminar on combinatorial
Topology”, Chapter VI). Clearlydr = dr−1 − (m− p).

It will be convenient to use the notions of dimension and imbedding99

in the following cases: (1) dimension ofA, whereA is a union of open
cells. In this case the dim.A denotes the maximum of the dimensions
of the open cells comprisingA and is the same as the dimension of the
polyhedronA. (2) Imbedding f of C → M, whenC is an open cell
and M a polyhedron. This will be used only whenf comes from a
polyhedral embedding ofC. In such a casef (C) will be the union of a
finite member of open cells. And ifA ⊂ M is some finite union of open
cells, thenf −1(A) will be finite union of open cells and one can talk of
its dimension etc..

A nondegenerate mapf : P → M will be said to be ingeneral
positionif

dim(Sr ( f )) ≤ dr , for all r

If p = m, this means nothing more than thatf is nondegenerate, so
usuallyp < m.

Proposition 5.4.2. Let P be a regular presentation of a polyhedron P
such that for every C∈ P, f |C is an embedding. Let the cells ofP
be C1, . . . ,Ct, arranged so thatdimCi ≤ dimCi+1, 1 ≤ i ≤ t, and let
Pi , i ≤ t be the subpolyhedron of P whose presentation is{C1, . . . ,Ci}.
Then

(i) S2( f |Pi) = S2( f |Pi−1) ∪ {Ci ∩ f −1( f (Pi−1))}

∪{Pi−1 ∩ f −1( f (Ci))}

(ii) Sr ( f |Pi) = Sr( f |Pi−1)

∪{Ci ∩ f −1( f (Sr−1( f |Pi−1))}

∪{Sr−1( f |Pi−1) ∩ f −1( f (Ci))}

This is obvious. If we writeP = S1( f ), (compatible with the defi-100

nition of Sr ’s, thenS1( f Pi) would be justPi , and only (ii) be written
(with r ≥ 2) instead of (i) and (ii).
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The proposition is useful in inductive proofs. For example,to check
that a nondegeneratef is in general position, it is enough check for each
little cell Ci, that dimCi ∩ f −1( f (Sr−1( f |Pi−1)) ≤ dr . If we have already
checked upto the previous stage; sincef is non-degeneratef −1 f (Sr−1

( f |Pi−1)) will of dimensiond(r−1), and then we will have to verify that
f Ci intersectsf (Sr−1( f |Pi))) in codimension≥ (m − p) or that (Ci)
intersectsf −1 f (Sr−1( f |Pi)) in codimension≥ m−p, (We usually say that
A intersects B in codimension qif dim(A∩B) = dim B−q. Similarly the
expression ‘A intersects B in codimension≥ q’ is used to denote dim(A∩
B) ≤ dim B − q). The aim of the next few propositions is to obtain
presentations on which it would be possible to inductively change the
map, so thatf (Ci) will intersect the images of the previous singularities
in codimension≥ (m− p). Proposition 5.4.7 and 5.4.9 are ones we need;
the others are auxilary to these.

Ex. 5.4.3.Let A, B, C, be three open convex cells, such thatA∩ B is a
single point andC ⊃ A∪ B. Then dimC ≥ dimA+ dim B.

[Hint: First observe that ifA′ andB′ are any twointersectingopen cells
thenLA′ ∩ LB′ = LA′∩B′ , whereLX denotes the linear manifold spanned
by X. Applying this to the above situation

dimC = dimLC ≥ dim L(A∪B) = dim LA + dim LB − dim(LA ∩ LB)

= dim LA + dim LB − dim(LA∩B)

= dim LA + dim LB, sinceA∩ B

is a point.] 101

Proposition 5.4.4. Let A be an open convex cell of dimension n, anda
a regular presentation ofA with A∈ a. If L is any linear manifold such
thatdim L∩ A = k ≥ θ, then there is a B∈ a, of dimension≤ n− k, with
B∩ L , ∅. Further, if A′ is any cell ofa contained in∂A, we can require
that A′ ∩ B = ∅.

Proof. If k = 0, we can chooseA itself to beB. If k > 0, consider
the regular presentationC = {C ∩ L|C ∩ L , ∅,C ∈ a} of A ∩ L.
C must have more than one 0-cell. Choose one of these 0-cells ofC.
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It must be the formB ∩ L for someB ∈ a. We would like to apply
5.4.2, for B, L ∩ A and A. But B and L ∩ A do not intersect. Since
we are interested in the dimension ofB, the situation can be remedied
as follows: LetD be ann-cell, such thatA ⊂ D. L ∩ D is againk-
dimensional. SinceB ⊂ D, B∩ L ⊂ D ∩ L, and asB∩ L is nonempty,
B andD ∩ L intersect.B∩ (D ∩ L) cannot be more than one point since
B∩ (D ∩ L) ⊂ B∩ L which is just a point. Applying 5.4.2 toB, D ∩ L
and D we haven = dimD ≥ dim B + dim(D ∩ L) = dim B + k, or,
dim B ≤ n− k.

To see the additional remark, observe that all the vertices of C can-
not be inA′, for thenL ∩ A ⊂ A′, contrary to the hypothesis thatL ∩ A
is nonempty. Hence we can choose a 0-cellB∩ L, B ∈ a of C not in A′.
Sincea is a regular presentationB∩ A′ = ∅. �

This just means that ifL does not intersect the cells ofa of dim ≤ ℓ,102

then dimension of the intersection is< n − ℓ, or codimension of inter-
sectoin is> ℓ. Using the second remark of 5.4.4 we have:

Corollary 5.4.5. LetP be a regular presentation, containing a full sub-
presentationQ (which may be empty). LetPk = {C ∈P − Q, dimC ≤
k}. If L is any linear manifold which does not intersectPk, thendim(L∩
(P − Q) ≤ n− k− 1, where n= dim(P − Q).

Proposition 5.4.6. Let A be a closed convex cell of dimension≥ k + q,
let S be a(k−1)-sphere in∂A: and B1, . . . , Br be a finite number of open
convex cells of dimension≤ q−1 contained in the interior of A. Further,
let S be a simplicial presentation of S . Then there is an open denseset
U of interior A such that if a∈ U, σ ∈ S , then the linear manifold
L(σ,a) generated byσ and ‘a’ does not intersect any of the Bi ’s.

Proof. For anyσ ∈ S , consider the linear manifoldsL(σ,Bi) generated
by σ and Bi, for 1 ≤ i ≤ r. Dim L(σ,Bi) ≤ k + q − 1. HenceUσ =

int A −
⋃
i

L(σ,Bi) is an open dense subset of intA. If a is any point of

Uσ, thenL(σ,a) does not intersect any of theBi ’s; for if there werea
B j with L(σ,a) ∩ B j , ∅, let b ∈ L(σ,a) ∩ B j. L(σ,b) ⊂ L(σ,a) and is
of the same dimension asL(σ,a), sinceb is in the interior ofA. Thus
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a ∈ L(σ,b) ⊂ L(σ,B j ) contrary to the choice ofa. Therefore if we take
U =

⋂
σ∈S

⋃
σ, U satisfies our requirements. �

Proposition 5.4.7. Let A be a closed convex cell of dimension≥ k + q, 103

let S be a(k− 1)-sphere contained in∂A, and let{B1, . . . , Br} be a finite
number of open convex cells in int A. Then there is an open dense subset
U of int A such that if a∈ U, then S∗ a intersects each of the Bi ’s in
codimension≥ q.

Proof. Let S be some simplicial presentation ofS. First let us consider
oneBi. Let Bi be a regular presentation ofBi containing a full subpre-
sentationXi coveringBi∩∂A. LetBq−1 = {C ∈ Bi−Xi , dimC ≤ q−1}.
By 5.4.6, there is an open dense subset of intA sayUi such that ifa ∈ Ui,
σ ∈ S , thenL(σ,a) does not intersect any of the elements ofBq−1. By
5.4.5, dimL(σ,a) ∩ (Bi − Xi) ≤ ni − q, whereni = dim Bi. Hence
dim(S ∗ a ∩ Bi) ≤ ni − q. Therefore if we takeU =

⋂
j U j , whereU j

constructed as above for each ofB j ’s, thenU, satisfies the requirements
of the proposition. �

Proposition 5.4.8. Letσ be a k-simplex,∆ a closed convex q-cell;P
a regular presentation ofσ ∗ ∆. Then there exists an open dense subset
U of ∆, such that if a∈ U, the linear manifold L(σ,a) spanned byσ
and a, does not intersect any cell C∈ P satisfying C∩ σ = ∅ and
dimC ≤ q− 1.

Proof. Let C ∈ P, with C ∩ σ = ∅ and dimC ≤ q − 1. The linear
manifold L(σ,C) has dimension≤ k + q, while L(σ,∆) has dimensionk +
q+1. ThereforeL(σ,C)∩∆ has dimension≤ q−1 and soUC = ∆−L(σ,C)

is open and dense in∆. DefineU to be the intersection of all theUC. If 104

a ∈ U, and there were someC of P of dimension≤ q− 1, C ∩ σ = ∅,
with L(σ,a) ∩ C , ∅, chooseb ∈ C ∩ L(σ,a); sinceb < σ, dimL(σ,b) =

k+ 1 = dimL(σ,a) and soL(σ,a) = L(σ,b) i.e. L(σ,a) ⊂ L(σ,C), or, a ∈ L(σ,C)

contrary to the choice ofa. �

Proposition 5.4.9. Let S be a(p− 1)-sphere,∆ a closed convex q-cell,
P a regular presentation of S∗ ∆. Then there exists
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(1) a regular refinementP′ of P

(2) a point a∈ ∆

(3) a regular presentationQ of S ∗ a such that

(a) Q contains a full subpresentationS covering S ,

(b) Each C ∈ Q − S is the intersection of a linear manifold
with a (unique) cell EC ∈ P′, if C , C′, EC , E′C, and if
C < C′, then EC < E′C

(c) dimC ≤ dim EC − q, for all C ∈ Q −S .

Proof. Let a, B be simplicial presentations ofS, ∆; and letP ′ be a
common simplicial refinement ofa ∗B andP. Sincea is full in a ∗B,
there is a subpresentation, sayS , of P′ coveringS. If σ ∈ a, σ ∗ ∆ is
covered by a subpresentation ina ∗B, hence there is a subpresentation
of P′, sayP′

σ, coveringσ ∗ ∆. Applying 5.4.8 toP′
σ, we get an open

dense subsetUσ of ∆. LetU be the intersection of the setsUσ for σ ∈ a.
Let a ∈ U. Obviously ‘a’ is in an (open)q-simplex ofP′ contained in105

∆. Hence ‘a’ belongs to aq-simplex ofB, call it ρ.
We defineQ to be union ofS , {a}, and all nonempty intersections

of the formL(σ,a)∩E, forσ ∈ a, E ∈P′−S . It is clear thatL(σ,a)∩E =
σ{a} ∩ E. MoreoverE ∩ S = F, F ∈ S (F may be empty) sinceS
is full in P′. This immediately gives thatQ is a regular presentation,
using the fact that∂(A ∩ B) is the disjoint union of∂A ∩ B, A ∩ ∂B,
∂A ∩ ∂B, for open convex cellsA, B with A ∩ B , ∅. MoreoverS is
full in Q. If C ∈ Q is of the formC = L(σ,a) ∩ E, we write E asEC.
By definition eachC ∈ Q − S is the intersection ofEC with a linear
manifold, and ifC′ < C, C′ ∈ Q −S , EC′ < EC sinceP′ is regular.
SinceL(σ,a) does not intersect any (≤ q − 1)-dimensional faceE of EC

with E∩S = ∅, by 5.4.5 dimL(σ,a)∩EC ≤ dim EC−q. It remains to verify
that if C1 , C2,C1, C2 ∈ Q−S , thenEC1 , EC2. LetC1 = L(σ,a)∩EC1,
C2 = L(τ,a) ∩ EC2; σ, τ ∈ a, EC1, EC2 ∈P′ −S , C1 , ∅ , C2. If σ = τ,
andC1 , C2, clearly EC1 , EC2. If σ , τ, thenC1 cannot be equal to
C2. In this caseEC1 ⊂ σρ, EC2 ⊂ τρ, (ρ defined in the first paragraph of
the proof). Butσρ andτρ are disjoint, henceEC1 , EC2. �
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Remark. In the above propositionP′ can be taken any presentation of
S ∗ ∆ refiningP and a join presentation ofS ∗ ∆.

Proposition 5.4.10.Let M be an ND(n)-space. Let X⊂ P be polyhedra 106

such that P= X ∪ C, C a closed convex cell, and X∩ C = ∂C, and
dimP = p ≤ n. Let f : P → M be a map such that f/X is in general
position. Then there exists an arbitrary close approximation g to f such
that g is in general position and g/X = f /X.

Proof. If p = n, any nondegenerate approximation off would do. So
let p < n. In particular dimC ≤ p < n.

Step A.Let D be an (≤ n)-dim-cell containing∂C in its boundary, and
such that

(1) D = ∂C ∗ ∆, ∆ a closed convex (n− p)-cell

(2) ∆ ∩C is a single point ‘d’ in the interior of bothC and and∆ so
thatC = d ∗ ∂C

(3) D ∩ P = C.

This is clearly possible (upto polyhedral equivalence by considering
P×0 in V×W, (whereV is the vector space containingP, W an (n− p)-
dimensional vector space), and taking an (n − p)-cell ∆ throughd × 0
in d × W, for somed ∈ C − ∂C etc. The join of the identity on∂C
and the retraction∆ → d gives a retractionr : D → C. Thus (f /C) · r
is an extension off /C. SinceM is anND(n)-space, (f /C) · r can be
approximated by a non-degenerage map, sayh, such thath/∂C = f /∂C.
Let us patch upf /X andh, and let this be also calledh; now h maps
X ∪ D = P∪ D into M and is nondegenerate. Triangulateh so that the
triangulation ofX ∪ D with reference to whichh is simplicial contains
a subpresentationD which refines a join presentation of∂C ∗ ∆ We
apply 5.4.9 now,D will be P′ there and we obtain, a pointa ∈ ∆, a 107

presentationB (what was calledQ there) of∂C ∗ a. Each cellB of B
not in∂C, is the intersection of a uniqueEB of D with a linear manifold,
if B′ < B thenEB′ < EB and dimB ≤ dim EB − (n− p).

Step B.Let B1, . . . , Br be the elements ofB not in∂C, arranged so that
dim Bi ≤ dim Bi+1; for 1 ≤ i < r. Let Xi = X ∪ B1 ∪ . . . ∪ Bi; Xi is a
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polyhedron. We define a sequence of embeddingsLi : Xi → X ∪ D,
such that

(1) Li |X is the identity embedding ofX in X ∪ D

(2) Li is an extension ofLi−1

(3) Li(Bi) ⊂ EBi

(4) hLi is in general position.

We shall construct theLi ’s one at a time begining withL0 : X →
X ∪ D, the inclusion,h ·L0 = f /X, is in general position, and we can
start the induction.

SupposeLi−1 is already constructed. Then dimSr (hLi−1) ≤ dr ; and
by (2), (3),Li−1 embeds∂Bi in ∂EBi ; considerh−1(hLi−1(Sr (hLi−1)))
intersected withEBi . Sinceh is nondegenerate, these consists of a finite
number of open convex cells of dimension≤ dr . We apply 5.4.7 to this
situation withq = n − p, A = EBi , S = Li−1(∂Bi) and {B1, . . . , } of
5.4.7 standing for the open cells ofh−1(hLi−1(Sr (hLi−1)) intersected
with EBi for all r ≥ 1. By 5.4.7, we can choose a point inEBi sayei (a
of 5.4.7) so thatLi−1(∂Bi) ∗ ei intersects all these (i.e. for allr ≥ 1) in108

codimension≥ (n− p). The join ofLi−1|∂Bi and the map of a pointbi

of Bi to ei gives the required extension onBi.
Then dim{Li Bi∩h−1(hLi−1(Sr (hLi−1))} ≤ dr −(n− p), equivalently

dim{(hLi Bi) ∩ hLi−1(Sr (hLi−1))}dr+1 ≤ dr+1, that is dim{(hLi Bi) ∩
hLi (Sr (hLi |Xi−1))}dr+1, sincehLi is an extension ofhLi−1.

Since

Sr+1(hLi) = Sr+1(hLi−1)

∪ {Bi ∩ (hLi )
−1(hLi (Sr (hLi |Xi−1)))

∪ {Sr (hLi |Xi−1) ∩ (hLi )
−1(hLi )(Bi)}

and sincehLi−1 is already in general position, dimSr+1(hLi) ≤ dr+1.
At the last stage, we get an imbeddingLr of X ∪ ∂C ∗ a in X ∪ D, such
thathLr is an general position.

ThathLr can be chosen as close tof as we like is clear. �
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Theorem 5.4.11.Let M be an ND(n)-space, X⊂ P polyhedradim p ≤
n and f : P→ M a map such that f|X is in general position. Then there
exists an arbitrary close approximation g to f such that g|X = f |X, and
g is in general position.

Proof. Let P be a regular presentation ofP with X covered by a sub-
presentationX . Let (P − X ) = {A1, . . . ,Ar} be arranged so that109

dimAi ≤ dim Ai+1, 1 ≤ i < r. Let Pi = X ∪ A1 ∪ . . . ∪ Ai, Xi = Pi−1.
Apply proposition 5.4.10 successively to (P1,X1) . . . , (Pr ,Xr).

This requires the following comment: We must use our approxima-
tion theorem, which forM andǫ > 0 givesδ(ǫ) > 0, such that for any
Y ⊃ Z, h1 : Y→ M, h2 : Z→ M, if h2 is polyhedral, andh1|Z is aδ(ǫ)-
approximation toh2, then there ish3 : Y → M, a polyhedral extension
of h2, which is anǫ-approximation toh1.

We wantg to be anǫ-approximation tof .

Defineǫr = ǫ, ǫi−1 = δ

(
ǫi

2

)
.

Denote f |Pi by fi. We start withg0 = f0 = f |X. Supposegi−1

is defined onPi−1 such thatgi−1 is in general position and is anǫi−1

approximation tofi−1. Then we first extendgi−1 to Pi say f ′i so that f ′i
is anǫ i

2
approximation tofi (this is possible sinceǫi−1 = δ(ǫi/2)) by the

approximation theorem. Then we use 5.4.10 to get anǫi/2 approximation
gi to f ′i such thatgi is in general position andgi |Pi−1 = gi−1. gi is an
ǫi-approximation tofi and is in general position.gr gives the required
extension. �

By the methods of 5.4.10, the following proposition can be proved:

Proposition 5.4.12.Let M be ND(n); dim p ≤ n, P= X ∪C, where C
is a closed p-cell, X∩C = ∂C. Let f : P→ M be a map, such that f|X 110

is nondegenerate; and calldim X = x. Then there is a nondegenerate
approximation g: P→ M, arbitrarily close to f , such that g|X = f |X,
and S(g) = S( f |X) plus (a finite number of open convex cells ofdim ≤
Max(2p− n, p+ x− n))

Sketch of the proof: First we proceed as in Step A of 5.4.10. Now
p = dimC. In Step B) instead of 4) we write

dim{Bi ∩ (hLi)
−1(hLi−1(Xi−1))} ≤ Max(2p− n, p+ x− n).
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And in the proof instead of the mess before, we have only to bother
abouth−1(hLi−1(Xi−1)), intersected withEBi .

h−1(hLi−1(Xi−1)) = h−1(hLi−1(X)) ∪ h−1(hLi−1(Bi ∪ . . . ∪ Bi−1) =

= h−1( f (X)) ∪ h−1(hLi−1(B1 ∪ . . . ∪ Bi−1)).

Now the only possibility ofh−1( f (X)) intersectingEBi is whenEBi ⊂

h−1( f (X)) sinceh is simplicial. Since dimBi ≤ dim EBi − (n − p), it
already intersects in the right codimension. And the intersections with
second set can be made minimal as before. �

Theorem 5.4.13.Let M be ND(n); X ⊃ P; dim p ≤ n, f : P → M a
map such that f|X is an imbedding. Then arbitrary close to f is a map
g : P→ M, such that g|X = f |X and calling x= dim X, p= dim P− X,

dimS(g) ≤ Max(2p− n, p+ x− n).

Proof. This follows from 5.4.12, as 5.4.11 from 5.4.10. �

This theorem is useful in proving the following embedding theorem111

for ND(n)-spaces.

Theorem 5.4.14(Stated without proof). Let M be a ND(n)-space, P
a polyhedron of dimension p≤ n − 3 and f : P → M a (2p − n +
1)-connected map. Then there is a polyhedron Q in M and a simple
homotopy equivalence g: P→ Q such that the diagram

P
g //

f

��?
?

?
?

?
??

?
?

?
?

?
?

Q

inclusion

��
M

is homotopy commutative.

The method of Step A in 5.4.10, gives;
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Proposition 5.4.15.Let M be an ND(n)-space, and P a polyhedron of
dimension p≤ n and f : P → M be any map. Then∃ a regular
presentationP of P, simplicial presentationM of M and an arbitrary
close approximation g to f such that, for each C∈P, g|(C) is a linear
embedding, and g(C) is contained in a simplexσC of M of dimension
= dimension C+ (n− p) and g(∂C) = ∂(gC) ⊂ ∂σC. MoreoverM can
be assumed to refine a given regular presentation of M.

Also a relative version of 5.4.15 could be obtained. �

And from this and 5.4.13.

Theorem 5.4.16.Let f : P → M be a map from a polyhedra P of
dim = p into an ND(n)-space M, p≤ n, and let Y be a subpolyhedron
of M of dimension y. Then there exists an arbitrary close approximation
g to f such that

dim(g(P) ∩ Y) ≤ p+ y− n.

And a relative version of 5.4.16. � 112

5.4.17 It should be remarked that the definition of ‘general position’
in 5.4.1 is a definition of general position, and other definitions are pos-
sible, and theorems, such as above can be proved. Here we formulate
another definition and a theorem which can be proved by the methods
of 5.4.10.

A dimensional functiond : P → {0, 1, . . .} is a function defined
on a polyhedron, with non-negative integer values, such that there is
some regular presentationP of P such that for allC ∈ P, x ∈ C,
d(x) ≥ dimC, andd is constant onC.

We sayd1 ≤ d2, if for all x ∈ P, d1(x) ≤ d2(x).
If f : P→ M is a nondegenerate map, andd a dimensional function,

andk1, . . . , ks non-negative integers, we define

S d( f ; k1, . . . , ks) = f −1{m ∈ M|∃ distinct points

x1, . . . , xs ∈ P, such that

d(xi) ≤ ki , and f (xi) = m for all i}.
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It is possible that such a set is a union of open simplexes, andhence
its dimension is easily defined.

A map f : P→ M is said to ben-regularwith reference to a dimen-
sional functiond on P if it is nondegenerate and

dimS d( f ; k1, . . . , ks) ≤ k1 + · · · + ks − (s− 1)n.

for all s, and alls-tuples of non-negative integers.
If dim P ≤ n, and since we havef nondegenerate then it is possible113

to show that a mapf is n-regular if it satisfies only a finite number of
such inequalities, namely those for which allki ≤ n− 1 ands< 2n.

The theorem that can be proved is this;

Theorem .Let X ⊂ P, f : P → M, where M is ND(n) and dim P ≤
n. Let dX and dP be dimensional functions on X and P, with dX ≤

dP|X. Suppose f|X in n-regular with reference to dX. Then f can be
approximated arbitrarily closely by g: P → M with g|X = f |X and g
n-regular with reference to dP.

The proof is along the lines of theorem 5.4.11. We find a regular
presentationP of P with a subpresentation coveringX, and such that
dX anddP are constant on elements ofP. We utilise theorem 5.4.10 to
getg on the cells ofP one at a time; in the final atomic construction,
analogous to part (B) of 5.4.10, we will have

S ⊂ ∂E

whereS is a (k−1)-sphere.E a cell of dimension≥ k+q, whereq = n−p
(the cell we are extending over is ap-cell, on whichdP is constant≥ p).
We have to insert ak-cell that will intersect such things as

h−1(Sdp(φi−1; k1, . . . , ks))

in dimension

dimSdp(φi−1; k1, . . . , ks) − q

≤ k1 + · · · + ks + dP(p-cell)− s.n.
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We can do this for our situation; this inequality will implygi is n-114

regular. �

Finally we can define on any polyhedronP a canonial dimensional
functiond:

d(x) : Min
{
dim(Stary in [Star ofx in P]

y ∈ [Star ofx in p]
}

A functionn-regular with reference to thisd will be termed, perhaps,
in general position, it being understood that the target of the function is
ND(n). Thus:

Corollary . If X ⊂ P, dimP ≤ n, f : P→ M, M a ND(n)-space, and if
f |X is in general position then f|X can be extended to a map g: P→ M
in general position such that g closely approximates f .

Conclusion 5.4.18.Finally, it should be remarked, that the above ‘gen-
eral position’ theorems, interesting though they are; are not delicate
enough for many applications in manifolds. For example, oneneed:
If f : X→ M a map of a polyhedronX into a manifold, andY ⊂ M, the
approximationg should be such that not only dim(g(X)∩Y) is minimal,
but also should haveSr (g) intersectY minimally e.g. if 2x+y < 2n, S(g)
should not intersectY at all. The above procedure does not seem to give
such results. If for example we know thatY can be moved by an isotopy
of M to make its intersections minimal with some subpolyhedra ofM,
then these delicate theorems can be proved. This is true in the case of
manifolds, and we refer to Zeeman’s notes for all those theorems.





Chapter 6

Regular Neighbourhoods

The theory of regular neighbourhoods in due to J.H.C. Whitehead, and 115

it has proved to be a very important tool in the study of piecewise linear
manifolds. Some of the important features of regular neighbourhoods,
which have proved to be useful in practice can be stated roughly as fol-
lows:

(1) a second derived neighbourhood is regular (2) equivalence of two
regular neighbourhoods of the same polyhedron (3) a regularneighbour-
hood collapses to the polyhedron to which it is regular neighbourhood
(4) a regular neighbourhood can be characterised in terms ofcollapsing.
Whitehead’s theory as well as its improvement by Zeeman are stated
only for manifolds. Here we try to obtain a workable theory ofregular
neighbourhoods in arbitrary polyhedra; our point of view was suggested
by M. Cohen.

If X is a subpolyhedron of a polyhedronK, we define a regular
neighbourhood ofX in P to be any subpolyhedron ofK which is the
image of second derived neighbourhood ofX, under a polyhedral equiv-
alence ofK which is fixed onX. It turns out that this is a polyhedral
invariant, and any two regular neighbourhoods ofX in K are equivalent
by an isotopy which fixed bothX and the complement of a common
neighbourhood of the two regular neighbourhoods. To secure(4) above,
we introduce “homogeneous collapsing”. Applications to manifolds are
scattered over the chapter. These and similar theorems are due espe- 116

cially to Newman, Alexander, Whitehead and Zeeman.

95
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6.1 Isotopy

Let X be a polyhedron andI the standard 1-cell.

Definition 6.1.1.An isotopyof X in itself is a polyhedral self-equiva-
lence ofX × I , which preserves theI -coordinate.

That is, ifh is the polyhedral equivalence ofX × I , writing h(x, t) =
(h1(x, t), h2(x, t)), we haveh2(x, t) = t. The map ofX into itself which
takesx to h1(x, t) is a polyhedral equivalence ofX and we denote this by
ht. Thus we can writeh as

h(x, t) = (ht(x), t).

We usually say that ‘h is an isotopy betweenh0 andh1’, or ‘h0 is
isotopic toh1’ or ‘ h is an isotopy fromh0 to h1’. The composition (as
functions) of two isotopics is again an isotopy, and the composition of
two functions isotopic to identity is again isotopic to identity.

Now we describe a way of constructing isotopies, which is particu-
larly useful in the theory of regular neighbourhoods.

Proposition 6.1.2. Let X be the cone on A. Let f: X → X be a
polyhedral equivalence, such that f|A = idA. Then there is an isotopy
h : X × I → X × I, such that h|(X × 0)∪ A× I = identity and h1 = f .

Proof. Let X be the cone onA with vertexv, the intervalI = [1, 0] is
the cone on 1 with vertex 0. Therefore by 4.3.19,X × I is the cone on
X × 1∪ A× I with vertex (v, 0). Define

h : X × 1∪ A× I → X × 1∪ A× I

117

h(x, 1) = ( f (x), 1) for x ∈ X

h(a, t) = (a, t) for a ∈ A, t ∈ I .

Sinceh|A = idA, h is well defined and is clearly a polyhedral equiv-
alence. We haveh defined on the base of the cone; we extend it ra-
dially, by mapping (v, 0) to (v, 0), that is we take the join ofh and
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Identity on (v, 0). Calling this extension alsoh, we see thath is a
polyhedral equivalence and is the identity on (A × I ) ∗ (v, 0). Since
X×0∪A× I ⊂ (A× I )∗ (v, 0), h is identity onX×0∪A× I . To show that
h preserves theI -coordinate, it is enough to check on (X×1)∗ (v, 0), and
this can be seen for example by observing that thet(x, 1)+ (1− t)(v, 0) of
X× I with reference to the conical representation is the same as the point
(tx+ (1− t)v, t) of X× I with reference to the product representation, and
writing down the maps. �

If h is an isotopy ofX in itself, A ⊂ X, and ifh|A× I = Id(A× I ) as in
the above case, we say thath leaves A fixed.And some times, ifh is an
isotopy between IdX andh1, we will just say that‘h is an isotopy of X’,
and then an arbitrary isotopy will be referred to as ‘an isotopy of X in
itself’. Probably this is not strictly abhered to in what follows; perhaps
it will be clear from the context, which is which.

From the above proposition, the following well known theorem of
Alexander can be deduced:

Corollary 6.1.3. A polyhedral automorphism of an n-cell which is the118

identity on the boundary, is isotopic to the identity by an isotopy leaving
the boundary fixed.

It should be remarked that we are dealing withI -isotopics and these
can be generalised as follows:

Definition 6.1.4.Let J be the cone onK with vertex 0. AJ-isotopy ofX
is a polyhedral equivalence ofX × J which preserves theJ-coordinate.

The isotopy is said to be between the mapX × 0 → X × 0 and the
mapX × K → X × K, both induced by the equivalence ofX × J. And
we can prove as above:

Proposition 6.1.5. Let X be the cone on A, and let f: X × K → X × K
be a polyhedral equivalence preserving the K-coordinate and such that
f |A × K = IdA×K. Then f is isotopic to the identity map of X by a J-
isotopy h: X× J→ X× J, such that on A× J and X×0, h is the identity
map.

This is in particular applicable whenJ is ann-cell.
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6.2 Centerings, Isotopies and Neighbourhoods of
Subpolyhedra

Let P be a regular presentation of a polyhedronP, and letη, θ be two
centerings ofP. Then obviously the correspondence

ηC⇐⇒ θC, C ∈P

gives a simplicial isomorphism ofd(P , η) andd(P , θ), which gives a
polyhedral equivalence ofP. We denote this byfθ,η (coming from map
ηC → θC). Clearly fη,θ = ( fθ,η)−1, and fη,θ0 fθ,ζ = fη,ζ whereη, θ, ζ are
three centerings of119

Proposition 6.2.1.The map fθ,η described above is isotopic to the iden-
tity through an isotopy h: P× I → P× I, such that if for a C∈P, η and
θ are the same on C and all D∈P with D < C then h|C × I is identity.

Proof. First, let us consider the case whenη andθ differ only on a single
cell A. Then fθ,η is identity except on|S t(ηA, d(P , η))| = |S t(θA, d(P ,

θ))|. This is a cone, andfθ,η is identity on its base; then by 6.1.2. We
obtain an isotopy of|S t(ηA, d(P , η))|, which fixes the base. Hence it
will patch up with the identity isotopy ofK − |(S t(ηA, d(P , η)))|.

The generalfθ,η is the composition of finitely many of these special
cases, and we just compose the isotopies obtained as above inthe spe-
cial cases. For isotopies constructed this way, the second assertion is
obvious. �

Let X be a subpolyhedron of a polyhedronP, and letP be a sim-
plicial presentation ofP containing a full subpresentationX covering
X. We have definedNP (X ) (in 3.1) as the full subpresentation ofdP,
whose vertices areηC for C ∈ P with C ∩ X , ∅. This of course de-
pends on a centeringη of P, and to make this explicit we denote it by
NP (X , η). |NP (X , η)| is usually called a ‘second derived neighbour-
hood of X’. We know that|NP (X , η)| is a neighbourhood ofX, and that
X is a deformation retract of|NP (X , η)| (see 3.1). Our next aim is to
show that any two second derived neighbourhoods ofX in P are equiva-
lent by an isotopy ofP leavingX, and a complement of a neighbourhood120

of both fixed. We go through a few preliminaries first.
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Ex. 6.2.2.With the same notation as above. Letη andθ be two center-
ings ofP such that for everyC ∈ P −X , with C ∩ X , ∅, ηC = θC.
Then

|NP (X , η)| = |NP(X , θ)|.

[Hint: This can be seen for example by taking subdivisions ofP which
are almost the same asd(P , η) andd(P , θ), but leaveX unaltered].

Proposition 6.2.3. With X, P, X , P as above, letη and θ be two
centerings ofP, andU the union of all elements ofP, whose closure
intersects X. Then there is an isotopy h of P fixed on X and P−U, such
that h1(|NP (X , η)|) = |NP (X , θ)|.

Proof. We first observe thatP− U is a subpolyhedron ofP and there is
a full subpresentationa of P which coversP−U, namely,C ∈ a if and
only if C∩ X = ∅. By 6.2.2 we can changeη andθ onX anda without
altering |NP (X , η)| and |NP(X , θ)|. So we may assume thatη andθ
are the same onX anda. The isotopyh of proposition 6.2.1 with the
new fθ,η in the hypothesis has the desired properties. �

With X, P, X , P as above, letϕ : P→ [0, 1] be map given by: if
v is aX -vertexϕ(v) = 0, if v is a (P −X )-vertexϕ(v) = 1, andϕ is
linear on the closures ofP-simplexes. Thenϕ−1(0) = X, sinceX is
full in P. If σ is a simplex ofP −X , thenσ ∩ X , ∅, if and only if
ϕ(σ) = (0, 1). If σ is a simplex ofa (a as in the proof of proposition 2.3)121

thenϕ(σ) = 1. Roughly, the mapϕ ignores the parts ofP away from
X and focusses its attention on a neighbourhood ofX. We will use this
map often.

Proposition 6.2.4. With the above hypotheses, if0 < α < β < γ < 1,
then there is an isotopy h of P, takingϕ−1([0, β]) ontoϕ−1([0, α]) and
leaving X and P− ϕ−1([0, γ]) fixed.

Proof. Let ϕ be the map:P → [0, 1] described above. Choose a cen-
tering ζ of P as follows: if σ is a simplex ofP with σ ∩ X , ∅,
thenϕ(ζσ) = γ, and chooseζ arbitrarily onX anda. Let P′ denote
d(P , ζ). Let X ′ be the subpresentation with|X ′| = |X | = X. Ob-
viously |NP (X , ζ)| = ϕ−1([0, γ]), and if ρ is any simplex ofP′ with
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vertices both in and out ofX ′, thenϕ(ρ) = (0, λ). Now choose two
centeringsθ andη of P′ such that ifρ ∈ P′ andϕ(P) = (0, λ), then
ϕ(ηC) = β andϕ(θC) = L and arbitrarily otherwise. Then clearly

|NP′(X ′, η)| = ϕ−1([0, β])

and |NP′(X ′, θ)| = ϕ−1([0, λ]).

We apply 6.2.3 now, andU of 6.2.3 in this case happens to be
ϕ−1([0, λ]). �

Proposition 6.2.5. Let P be a simplicial presentation,X a full sub-
presentation ofP, |P | = P, |X | = X, η a centering ofP; and
N = |NP (X , η)|. Letϕ be a simplicial refinement of d(P , η) withY the122

subpresentation covering X; letθ a centering ofO and N′ = |NQ(Y , θ)|.
Finally, let U be a neighbourhood of N. Then there is an isotopy h of
P, taking N onto N′; and leaving P−U and X fixed.

Remark . Note that ifU were somewhat large, or if there were noU
in the statement, then the proposition is an immediate consequence of
6.2.3 and 6.2.4.

Proof. We first replace the centeringη by a centeringη′ as follows:
Let ϕ : P → [0, 1] be the usual function given by,ϕ (X -vertex)= 0,
ϕ(P −X )-vertex= 1, andϕ is linear on the closures ofP-simplexes.
Chooseη′ such that ifρ is a simplex ofP with ϕ(ρ) = (0, 1), then
ϕ(η′ρ) = 1

2, fη′, η is a polyhedral equivalence carrying|NP(X , η)|
onto |NP (X , η′)| = ϕ−1([0, 1

2]). Actually fη′,η is isotopic to the identity,
but we will need only that it is a polyhedral equivalence. Letfη′,η(U ) =
U ′. As U ′ is a neighbourhood ofϕ−1([0, 1

2]); we can find aγ > 1
2

such thatϕ−1([0, γ]) ⊂ U ′. Since fη′,η is simplicial with reference to
d(P , η) and d(P , η′) andQ is refinement ofd(P , η), fη′,η carriesQ
onto a refinement ofd(P , η′). Let us call thisQ′, similarly fη′,η(Y ) by
Y ′ · |Y ′| = X. Let the centering ofQ′ induced fromθ beθ′. We have,

fη′,η(|NP (X , η)|) = |NP (X , η′)| = ϕ−1([0,
1
2

])

and
fη′,η(|NQ(Y , θ)|) = |NQ′(Y

′, θ′)|.
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Now choose another centeringθ1 of Q′ as follows:123

LetL, (0 < L < 1
2) be such that ifv is a vertex ofQ′ not in X, then

ϕ(v) > L · θ1 is chosen so that ifσ ∈ Q′ has vertices in and out ofX,
thenϕ(θ1σ) = L. Then clearly|NQ′(Y ′, θ1)| = ϕ−1([0,L]). By 6.2.4,
there is an isotopyh of P, leaving X and complement ofϕ−1([0, γ])
fixed, with h1 takingϕ−1([0, 1

2]) onto ϕ−1([0,L]). By 6.2.3 there is an
isotopyh′ leavingX and complement ofϕ−1([0, 1

2]) fixed, withh′1 taking
ϕ−1([0,L]) = |NQ′(Y ′, θ1)| onto |NQ′(Y ′, θ′)|.

Let f̃η′,η be the isotopy ofP in itself given by f̃η′,η(p, t) = ( fη′,η(p),
t)pP. Theng = f̃ −1

η′,η
◦h′◦h◦ f̃η′,η is the required isotopy. Firstg1 = fη′,η−1◦

h′1◦h1◦ fη′,η carriesN ontoN′. Secondly sinceP−U ′ ⊂ P−ϕ−1([0, 1
2])

andP − U ′ ⊂ P − ϕ−1([0, γ]), h andh′ are fixed onP − U ′. They are
also fixed onX. As fη′,η carriesX ontoX, U ontoU ′g also fixesX and
P−U . �

Corollary 6.2.6. Let X be a subpolyhedron of a polyhedron P. LetP1

andP2 be two simplicial presentation of P, containing full subpresen-
tationsX1 andX2 respectively with|X1| = |X2| = X. Letθ1 andθ2 be
centering ofP1 andP2, and N1 = |NP1(X1, θ1)|, N2 = |NP2(X2, θ2)|,
andU a neighbourhood of N1 ∪ N2 in P. Then there is an isotopy of P
leaving X and P−U fixed and taking N1 onto N2.

Proof. Take a common subdivisionQ of d(P1, θ1) andd(P2, θ2) and 124

apply 6.2.5 twice. �

6.3 Definition of “Regular Neighbourhoods”

Let X be a subpolyhedron of a polyhedronP.

Definition 6.3.1.A subpolyhedronN is said to be regular neighbour-
hood of X in P if there is a polyhedral equivalenceh of P on itself,
leavingX fixed, such thath(N) is a second derived neighbourhood ofX.

More preciselyN is a regular neighbourhood ofX if and only if

(i) there is a simplicial presentationP of P with a full subpresenta-
tion X coveringX and a centeringη of P; and
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(ii) a polyhedral equivalenceh of P fixed on X such thath(N) =
|NP (X , η)|.

Regular neighbourhoods do exist and ifN is a regular neighbour-
hood ofX in P, thenN is a neighbourhood ofX in P.

Proposition 6.3.2. If N1 and N2 are two regular neighbourhoods of X
in P andU a neighbourhood of N1∪N2 in P, then there exists in isotopy
h of P taking N1 onto N2 and leaving X and P−U fixed.

Proof. Let Pi , Xi , ηi , hi , i = 1, 2, be such that

hi |NPi (Xi , ηi)| = Ni , i = 1, 2.

Let Q1 be a subdivision ofd(P1, η1) such thath1 is simplicial with
reference toQ1, and letY1 be the subpresentation ofQ1 coveringX. Let125

θ1 be a centering ofQ1.

h1|NQ1(Y1, θ1)| = |Nh1Q1(Y1, h1θ1)| = N′1

say [Note thath1 is fixed onX].
By 6.2.5, there is an isotopyf , fixed onX andP − h−1

1 (U ) with f1
taking |(NP1(X1, η1)| onto|NQ1(Y1, θ1)|. Thenh̃1 f h̃−1

1 is an isotopy ofP
fixed onX andP−U and (̃h1 f h̃−1

1 )1 = h1 f1h−1
1 takesN1 ontoN′1 (where

h̃1 is the isotopy ofP in itself given byh̃1(p, t) = (h1(p), t)). Working
similarly with P2, we obtainf ′ with h̃2 f ′h̃−1

2 fixed onX andP−U and
(h̃2 f ′h̃−1

2 )1 = h2 f ′1h−1
2 taking N2 onto N′2. Now N′1 andN′2 are genuine

second derived neighbourhoods, andU is a neighbourhood ofN′1∪N′2.
Hence by 6.2.6 there is an isotopyg of P fixed onX andP − U , with
g1(N′1) = N′2.

(h̃2 f ′h̃−1
2 )−1g(h̃1 f h̃−1

1 ) is the required isotopy. �

Proposition 6.3.3. If f : P→ P′ is a polyhedral equivalence and N a
regular neighbourhood of X in P, then f(N) is a regular neighbourhood
of f(X) in P′.

Proof. Let P, P′ be a simplicial presentations ofP andP′ with ref-
erence to whichf is simplicial, η be a centering ofP, f (η) = η′ the
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induced centering onP′. We can assume thatP, P′ contain full sub-
presentationsX , X ′ coveringX andX′; (by going to subdivisions if
necessary).f (|NP (X , η)|) = |NP′(X ′, η′)|. By definition, there is a
polyhedral equivalencea of P fixed onX such thatp(N) = |NP (X , η)|. 126

Let p′ be the polyhedral equivalence ofP′ given by f ◦ p ◦ f −1. Then
( f ◦ p ◦ f −1)(N′) = ( f ◦ p)(N) = f (|NP (X , η)|) = |NP′(X ′, η′)|, and
if x′ ∈ f (X), f −1(x′) ∈ X, thereforef ◦ p ◦ f −1(x′) = f ◦ p( f −1(x′)) =
f ◦ f −1(x′) = x′. �

Notation 6.3.4.If A is a subset of a polyhedronP, we will denote by
intPN andbdPN the interior and the boundary ofN in the (unique) topol-
ogy of P.

Ex. 6.3.6.If N is a regular neighbourhood ofX in P, andB = bdPN,
thenX ⊂ N − B.

Ex. 6.3.7.Let X ⊂ N ⊂ Q ⊂ P be polyhedra, withN ⊂ intPQ. Then
N is a regular neighbourhood ofX in Q if and only if N is a regular
neighbourhood ofX in P.

Ex. 6.3.8.Let X ⊂ P be polyhedra. IfA is any subpolyhedron ofP, let
A′ denote the polyhedronA− intPX. ThenN is a regular neighbourhood
of X in P if and only if N′ is a regular neighbourhood ofX′ in P′.

Ex. 6.3.9.Let A be any polyhedron, andI the standard 1-cell. Let
0 < α < β < γ < 1 be three numbers. Then,A × [0,L] is a regular
neighbourhood ofA in A× I , andA× [L, γ] is a regular neighbourhood
of A× β in A× I .

6.3.10 Notation and proposition
If P is any simplicial presentation and

∑
any set of vertices of

P, we denote byP∑ the maximal subpresentation ofP whose set of
vertices is

∑
·P∑ if full in P. We writeδP (

∑
) or δ(

∑
) (whenP is

understood) for∪{|δν||ν ∈
∑
}. This is of course with reference to some127

centeringη of P. δP (
∑

) is a regular neighbourhood|P∑| in |P |. If
∑

is a set consisting of single vertexx, we have the some what confusing
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situationδP ({x}) = |δ{x}|, wherex denotes the 0-simplex with vertexx.
In this case we will write|δP x| or |δx| for δP ({x}).

Let N be a subpresentation of a simplicial presentation andη be a
centering ofP. Let P′

= d(P , η) andN ′
= d(N , η) (still calling

η|N asη). If
∑

is the set of vertices ofP′ consisting of the centers of
elements ofN , thenP′∑ = N ′

= d(N , η). N ′ is full in P′. Given a
centering ofP′

= d(P , η), we define

C ∗ = |δ(ηC)|, for any C ∈P

andN ∗
= δP′(

∑
) = ∪{C∗|C ∈ N } is a regular neighbourhood of|N |.

We use the same notation (N ∗) even whenN is not subpresentation,
but a subset ofP. These are used in the last part of the chapter. As
the particular centerings are not so important, we ignore them from the
terminology whenever possible.

6.4 Collaring

To study regular neighbourhoods in more detail we need a few facts
about collarings. This section is devoted to proving these.

Definition 6.4.1.Let A be a subpolyhedron of a polyhedronP. A is said
to becollared in P, if there is a polyhedral embeddingh of A× [0, 1] in128

P, such that

(i) h(a, 0) = ǫ for all a ∈ A

(ii) the image ofh is a neighbourhood ofA in P. And the image ofh
is said to be acollar of A.

Definition 6.4.2.Let N be a subpolyhedron of a polyhedronP and let
B = BdPN. N is said to bebicollared in P if and only if

(i) B is collared inN

(ii) B is collared inP− N.

Definition 6.4.2′. Clearly this is equivalent to saying that there is a poly-
hedral embeddingh of B× [−1,+1] in P such that
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(i) h(b, 0) = b, b ∈ B

(ii) h(B× (0,+1]) ⊂ P− N

(iii) h(B× [−1, 0]) ⊂ N

(iv) the image ofh is a neighbourhood ofB in P.

Proposition 6.4.3. If N is a regular neighbourhood of X in P, then N is
bicollared in P.

Proof. It is enough to prove this for some convenient regular neigh-
bourhood ofX. Let P be a simplicial presentation ofP containing a
full subpresentationX coveringX and letϕ : P → [0, 1] be the usual
map. We takeN to beϕ−1([0, 1

2]) clearly BdPN = ϕ−1(1
2). Let us denote

this byB. We can now show thatϕ−1([ 1
4,

3
4]) is polyhedrally equivalent

to B× [−1,+1] in the following way:
B has a regular presentationB consisting of all non empty setsσ ∩ 129

ϕ−1(1
2) for σ ∈P.

Likewiseϕ−1([4, 3
4]) has a polyhedral presentationQ consisting of

all non-empty sets of the following sorts:

σ ∩ ϕ−1(
1
4

)

σ ∩ ϕ−1(
1
4
,
1
2

)

σ ∩ ϕ−1(
1
2

)

σ ∩ ϕ−1(
1
2
,
3
4

)

σ ∩ ϕ−1(
3
4

) for σ ∈P

J = {{−1}, (−1, 0), {0}, (0,+1), {+1}} is regular presentation of [−1,
+1]. There is an obvious combinatorial isomorphism betweenQ and
B ×J , which determines, is a appropriate centerings, a polyhedral
equivalence betweenB× [−1,+1] andϕ−1([ 1

4,
3
4]) ⊂ P.

This shows thatN is bicollared inP. �
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Ex. 6.4.4.If A is collared inP, then any regular neighbourhood ofA in
P is a collar ofA.

[Hint: Use 6.3.7 and 6.3.9].

Thus if N is a regular neighbourhood ofX in P andB = BdPN, a
regular neighbourhood ofB in P− N is a collar ofB.

Ex. 6.4.5.If N1 is a regular neighbourhood ofX in P andN2 is a regular
neighbourhood ofN1 in P, then N2 − N1 = N2 − IntP N, is collar of
B1 = BdPN1.

[Hint: Use 6.3.8 and 6.4.4].

Ex. 6.4.6.If N1 is a regular neighbourhood ofX in P, andN2 is a regular130

neighbourhood ofN1 in P, thenN2 is a regular neighbourhood ofX in
P.

Ex. 6.4.7. (i) If N1 andN2 are two regular neighbourhoods ofX in P
with N1 ⊂ IntP N2, thenN2 − N1 is collar overB1 = BdPN1.

(ii) N2 is a regular neighbourhood ofN1.

[Hint: Take two regular neighbourhoodsN′2, N′1 of X, such that
N′2 − N′1 is a collar and try to pushN2 ontoN′2 andN1 ontoN′1].

The following remark will be useful later:

Ex. 6.4.8.Let N be bicollared inP andN′ be a regular neighbourhood
of N in P. Then there is an itopoty ofP takingN ontoN′. If X ⊂ IntP N,
this isotopy can be chosen so as to fixX.

Definition 6.4.9.A pair (B,C) of polyhedra withB ⊃ C, is said to be
a cone pairif there is a polyhedral equivalence ofB onto a cone onC,
which mapsC ontoC.

Clearly in such a case we can assume that the map onC is the iden-
tity. And if (B,C) is a cone pair,C is collared inB.

Definition 6.4.10.Let A ⊂ P be polyhedra, and ‘a’ a point of A. Then a
pair (LP, LA) is said to be alink of a in (P,A) if
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(i) LA ⊂ LP

(ii) LA is a link of a in A 131

(iii) LP is a link of a in P.

If (L′P, L
′
A) is another link ofa in (P,A), then the standard mistake

LP → L′P takesLA onto L′A, and therefore there is a polyhedral equiva-
lenceLP → LP′ taking LA → LA′ . We shall briefly term this an equiva-

lence of pairs (LP, LA)
≈
−→ (LP′ , LA′). So that, upto this equivalence, the

link of a in (P,A) is unique.

Definition 6.4.11.Let A ⊂ P be polyhedra.A is said to belocally col-
lared in P if the link of a in (P,A) is a cone pair for every pointa ∈ A.

Clearly A × 0 is locally collared inA × [0, 1], and therefore ifA
is collared inP, it is locally collared. We will show presently that the
converse is also true.

Definition 6.4.12.Let B be a subpolyhedron ofA × [0, 1]. B is said to
becross sectionif the projectionA× [0, 1]→ A, when restricted toB is
1− 1 and onto and so is a polyhedral equivalenceB ≈ A.

Proposition 6.4.13.Let B be a cross-section of A× [0, 1] contained in
A × (0, 1). Then there is a polyhedral equivalence h: A × [0, 1] →
A × [0, 1], leaving A× 0 and A× 1 pointwise fixed, and taking B onto
A× 1

2 and such that h(a× [0, 1]) = a× [0, 1] for all a ∈ A.

Remark . There is an obvious homeomorphism with these properties,
but it is not polyhedral.

Proof. Let p : A × [0, 1] → A be the first projection. Triangulate the132

polyhedral equivalencep|B : B → A. Let B anda be the simplicial
presentations ofB andA.

J =

{
{0},

(
0,

1
2

)
,

{
1
2

}
,

(
1
2
, 1

)
, {1}

}

is a simplicial presentation of [0, 1]. Consider the centeringη of a ×J
given byη(σ × τ) = (barycenter ofσ, barycenter ofτ), σ ∈ a, τ ∈J .



108 6. Regular Neighbourhoods

We will define another regular presentationC of A× I as follows:
For eachσ ∈ a, p−1(σ) is the union of the following five cells:

σ × 0, p−1(σ) ∩ B, σ × 1

λσ, ρσ;

whereλσ is the region betweenσ×0 andp−1(σ)∩B andρσ is the region
betweenp−1(σ) ∩ B andσ × 1. (Note thatp−1(σ) ∩ B ∈ B).

We takeC to be the set of all these cells asσ varies overa. Choose
a centeringθ of C , such that the first co-ordinate of each of the five cells
above is the barycenter ofσ.

Now there is an obvious combinatorial isomorphismC ≈ a ×J ;
and if we choose the centerings described we obtainh : A × I → A ×
I which is simplicial relative tod(C , θ) andd(a ×J , η), and has the133

desired properties. �
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6.4.13 In this situation, define

λB = {(a, t) | a ∈ A, t ∈ I ,∃b ∈ B, b = (a, s), t ≤ s}

i.e. this is all the stuff of the left ofB. Thenh takesλB ontoA× [0, 1
2], B

ontoA× 1
2. In particularB is collared inλB.

6.4.14 “Spindle Maps”. Let L ⊂ A, with the cone onL and vertex ‘a’
contained inA. Call the coneS. SupposeS − L is open inA (This
is the case when a is a vertex of a simplicial presentationa of A, and
L = |Lk(a, a)| andS = |S t(a, a)|.

Let β = I → I be an imbedding withβ(1) = 1. In this situation we
define the “spindle map”.

m(β, L, a) : A× I → A× I

thus: onL ∗ [a× I ], it is the join of the identity map onL with the map
(a, t)→ (a, β(t)) of a× I . On the rest ofA× I it is the identity map.

A spindle mapm is an embedding, and commutes with the projec-
tion onA. If B is a cross section ofA× I which does not intersectA× 1,
thenm(B) has these properties also.

Proposition 6.4.17.Let A⊂ P be polyhedra. If A is locally collared in
P, then A is collared in P.

Proof. In P× [0, 1], consider the subpolyhedronQ = P× 0∪ A× [0, 1].
We identifyP with P× 0 ⊂ Q. Let P be a simplicial presentation ofP,
in which a subpresentationa coversA. 134

Consider a vertex ‘a’ of a; let LA andLP denote|Lk(a, a)| and|Lk(a,
P)|. Then (LP, LA) is a link of a in (P,A) and there is a polyhedral
equivalenceγ : LP → LA ∗ ν for somev, taking LA onto LA. We can
makeγ identity on LA by composing with (λ|LA)−1 ∗ idν. And so we
supposeγ/LA is identity.

We can suppose thatv is so situated (for example in a larger vector
space) thatLA ∗ v and LA ∗ (a, 1) intersect only inLA. Thus we have
via γ and the identity onLA ∗ (a, 1), a polyhedral equivalence ofLQ =

LP ∪ LA ∗ (a, 1) with LA ∗ E whereE = {v, (a, 1)}, which is identity on
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LA∗(a, 1). NowLQ∗a is a star of ‘a’ in Q, and via this p.e. is polyhedrally
equivalent toLA ∗E ∗a. We can find a polyhedral equivalenceβ of E ∗a
(which is equivalent to a closed 1-cell) leavingv and (a, 1) fixed and
taking (a, 0) to (a, 1

2). Such a obviously takesa× [0, 1] ontoa× [ 1
2, 1].

Take the join ofβ and the identity mapLA, this gives a polyhedral
equivalence ofLQ ∗ a which is the identity onLQ. Hence this can be
extended to a polyhedral equivalence ofQ by identity outsideLQ ∗ a.
Let us call this equivalence ofQ, βa · βa(A× I ) ⊂ A× I , andβa|A× I is135

a spindle map.
Now take the compositionh in any order of all suchβa, with ‘a’

running over all the vertices ofa. This mapsA = A × 0 into a cross
sectionh(A) = B of A × [0, 1] which does not intersectA × 1 or A × 0.
Finally h(P) ∩ A× I = λB.

B is collared inλB, and so inh(P). Then, takingh−1 we see thatA
is collared inP. �

Corollary 6.4.16. If M is a P.L. Manifold with boundary M, then∂M is
collared in M.

Now, an application of the corollary:

Proposition 6.4.17.If h is an isotopy of∂M, then h extends to an isotopy
H of M.
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Proof. Letβ : I × I → I be the map given byβ(s, t) = Max(t−s, 0). This
is polyhedral, e.g. the diagram shows that triangulations and the images
of the vertices.

β(s, 0) = 0, β(1, t) = 0, β(0, t) = t. DefineH = (∂M × I ) × I →
(∂M × I ) × I by H((x, s), t) = ((hβ(s,t)(x), s), t). This is polyhedral.

H((x, s), 0) = ((hβ(s,0)(x), s), 0) = ((x, s), 0),

sinceh0 = Id. HenceH0 = Id of ∂M × I .

H((x, 0), t) = ((hβ(0,t)(x), 0), t) = ((ht(x), 0), t).

ThusH extends the isotopy∂M × 0 given byh (identifying ∂M and
∂M × 0). And 136

H((x, 1), t) = ((hβ(1,t)(x), 1), t)

= ((x, 1), t) since β(1, t) = 0.

HenceH|∂M × 1 is identity. Hence the isotopyh of ∂M extends
to an isotopyH of any collar so that at the upper end of the collar it is
identity again, and therefore it can be extended inside. Thus h extends
to an isotopy ofM. �
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6.5 Absolute Regular Neighbourhoods and some
Newmanish Theorems

Definition 6.5.1.A pair of a polyhedra (P,A) is said to be anabsolute
regular neighbourhoodof a polyhedronX, if

(i) X ⊂ P− A

(ii) P× 0 is a regular neighbourhood ofX × 0 in P× 0∪ A× [0, 1] ⊂
P× [0, 1].

HenceA is collared inP.

Probably, it will be more natural to considerX, P andA in an am-
bient polyhedronM in which P is a neighbourhood ofX as in links
and stars. But, after the definition of regular neighbourhood, absolute
regular neighbourhood is just a convenient name to use in some tricky
situations.

Ex. 6.5.2.If (P,A) is an absolute regular neighbourhood ofX and if
h : P → P′ is a polyhedral equivalence, then (P′, h A) is an absolute
regular neighbourhood ofh X.

Ex. 6.5.3.If N is a regular neighbourhood ofX in P, andB = BdPN,
then (N, B) is an absolute regular neighbourhood ofX.

Ex. 6.5.4.Let P ⊂ Q, and suppose that (P,A) is an absolute regular137

neighbourhood ofX, andP − A is open inQ, andA is locally collared
in Q− (P− A). ThenP is regular neighbourhood ofX in Q.

Ex. 6.5.5.Let C(A) be the cone onA with vertexv. Then (C(A),A) is
an absolute regular neighbourhood ofv.

In particular ifD is ann-cell, (D, ∂D) is an absolute regular neigh-
bourhood of any pointx ∈ D − ∂D.

Theorem 6.5.6. If D is an n-cell, M a PL-manifold, D⊂ Int M, then D
is a regular neighbourhood of any x∈ D − ∂D in M.
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Corollary 6.5.7. If D is an n-cell in an n-sphere S , thenS − D is an
n-cell.

Proof of the theorem: The proof of the theorem is by induction on the
dimension ofM; we assume the theorem as well as the corollary for
n− 1.

(i) First we must show thatD − ∂D is open inM. If we look at the
links, this would follow if we know that a polyhedral imbedding
of an (n− 1)-sphe re in an (n− 1)-sphere is necessarily onto. And
this can be easily seen by looking at the links again and induction.
(see 4.4 in particular 4.4.14 and 4.4.17(a)).

(ii) If we know that∂D is collared inM − int D (it is collared inD),
we are through by 6.5.4. For this, it is enough to show that∂D is
locally collared inM− int D. Consider a link ofa in M, saySn−1,
such that a link of ‘a’ in D is an (n − 1)-cell Dn−1

a ⊂ Sn−1
a , with 138

Dn−1
a ∩∂D = ∂Dn−1

a . It is clearly possible to choose such links (see
4.4.17(b)). Now, a link of ‘a’ in M−int D is Sn−1

a −(Dn−1
a −∂Dn−1

a ).
As in (i) Dn−1

a − ∂Dn−1
a is open inSn−1

a and therefore the link

of a in M − int D is Sn−1
a − Dn−1

a . But by the corollary to the
theorem in the (n − 1)-case, this is an (n − 1)-cell, say∆n−1 and
it meetsD in ∂Dn−1

a = ∂∆n−1. And (∆n−1, ∂∆n−1) is equivalent to
(C(∂∆n−1), ∂∆n−1). Therefore∂D is locally collared inM − int D
and we are through.

Proof of the corollary assuming the theorem:RepresentSn, a stan-
dardn-sphere as a suspension ofSn−1, a standard (n − 1)-sphere, and
observe that the lower hemisphere (sayDs) is a regular neighbourhood
of the south pole, says. Let f be a polyhedral equivalence ofS to Sn

taking a pointx ∈ D − ∂D to the south poles. By the theoremD is a
regular neighbourhood ofx, thereforef (D) is a regular neighbourhood
of the s in Sn. By 6.3.2 there is a polyhedral equivalencep of Sn such
that p(Ds) = f (D). Thereforef (S − D) = f (S) − f (D) = Sn − p(Ds) =
p(Sn) − p(Ds) = p(Sn − Ds) = p(Dn), whereDn denotes the upper
hemisphere. Thereforep−1 · f (S − D) = Dn or S − D is an-cell.
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Ex. 6.5.8. Corollary. If M is a PL n-manifold andD1, D2 are twon-
cells contained in the interior of the same component ofM, then there
is an isotopyh of the identity map ofM, such thath(D1) = D2.

We usually express this by saying that “any twon-cells in the interior139

of the same component ofM are equivalent” or that they are “equivalent
by an isotopy ofM”.

If M is a PL n-manifold, ∂M its boundary, then by 6.5.8, any two
(n− 1)-cells in the same component of∂M are equivalent by an isotopy
of ∂M. Since this is actually an isotopy of the identity, by 6.4.17we can
extend it toM. Thus

Proposition 6.5.9. Any two(n− 1)-cells in the same component of∂M
are equivalent by an isotopy of M.

This immediately gives

Ex. 6.5.10.If D is ann-cell and∆ an (n − 1)-cell in ∂D, then (D,∆)
is a cone pair (That is, there is a polyhedral equivalence of (D,∆) and
(C(∆),∆). And we have seen such a polyhedral equivalence can be as-
sumed to be identity on∆).

This can also be formulated as:

Ex. 6.5.101 If ∆i is an (n − 1)-cell in the boundary ofDi, an n-cell,
i = 1, 2, any polyhedral equivalence∆1 → ∆2 can be extended to a
polyhedral equivalenceD1→ D2.

Also from 6.5.9, it is easy to deduce if∆ is any (n − 1)-cell in ∂M,
then there is at least onen-cell D in M such thatD ∩ ∂M = ∆ ⊂ ∂D.
From this follows the useful proposition:

Ex. 6.5.11.If M is a PL n-manifold andD an n-cell with M ∩ D =
∂M ∩ ∂D = an (n − 1)-cell, thenM ∪ D is polyhedrally equivalent to
M. Moreover, the polyhedral equivalence can be chosen to be identity
outside any given neighbourhood ofM ∪ D in M.

The methods of the proof of the theorem 6.5.6, can be used to prove140

the following two propositions, which somewhat clarify thenature of
regular neighbourhoods in manifolds:
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Ex. 6.5.12.Let M be aPL-manifold,∂M its boundary (possibly∅), and
N a regular neighbourhood ofX in M. Then

(a) N is a PL-manifold with (non-empty) boundary unlessX is a
union of components ofM.

(b) If X ⊂ M − ∂M, thenN ⊂ M − ∂M, the interior ofM.

(c) If X ∩ ∂M , ∅, N ∩ ∂M is a regular neighbourhood ofX ∩ ∂M in
∂M.

(d) In case (c),BdMN is an (n−1)-manifold, meeting∂M in an (n−2)-
manifold∂N′, whereN′ = N ∩ ∂M.

[Note that intMN andbdMN denote the interior and boundary ofN
in the topology ofM. On the otherhand ifN is a PL-manifold int N
and∂N denotes the sets of points ofN whose links are spheres and cells
respectively].

Hint: Use 4.4.8.

Ex. 6.5.13.If N is a regular neighbourhood ofX in M, a PL-manifold
with X ⊂ int M, andN′ is polyhedrally equivalent toN and located in
the interior of aPL-manifoldM2 of the same dimension asM, thenN′ is
a regular neighbourhood ofX′ in M2, whereX′ is the image ofX under
the polyhedral equivalenceN → N′.

Ex. 6.5.14.A is any polyhedron, andI the standard 1-cell (A× I ,A× 1) 141

is an absolute regular neighbourhood ofA × 0. If 0 < L < 1, then
(A× I ,A× {0, 1}) is an absolute regular neighbourhood ofA× L.

Ex. 6.5.15.The union of twon-manifolds intersecting in an (n − 1)
submanifold of their boundaries is ann-manifold.

6.6 Collapsing

Definition 6.6.1.Let P be a regular presentation.A free edgeof P is
someE ∈P such that there exists one and only oneA ∈P with E < A.
We may termA theattaching membraneof the free edgeE. It is clear
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that A is not in the boundary of any other element ofP; for if A < B,
thenE < B. It is easily proved that dimA = 1+ dim E.

The setP − {E,A} is again a regular presentation, and is said to be
obtained fromP by anelementary collapseat the free edgeE.

Definition 6.6.2.We say that a polyhedral presentationP collapses
(combinatorially) to a polyhedral presentationQ, and writeP ց Q,
if there exists a finite sequence of presentations

P1, . . . ,Pk with P =P1 and Pk = Q

and cellsE1, . . . ,Ek−1, Ei ∈ Pi s.t. Pi is obtained fromPi−1 be an
elementary collapse atEi−1.

Proposition 6.6.3.If Q is obtained fromP by an elementary collapse at
E; and ifP′ is obtained fromP by bisecting a cell C by a bisection of142

space(L; H+,H−) and ifQ′ ⊂P′ is the subpresentation with|Q′| = |Q|,
thenP′ ց Q′. [Remark: Recall that, we have been always dealing with
Euclidean polyhedra].

Proof. If the bisection is trivial there is nothing to prove, so suppose
that the bisection is non trivial. Then there are three cases.

Case (i)C is neitherE nor A. In this case,E is a free edge ofP ′ with
attaching membraneA, andQ′ =P′ − {E,A}; thusQ′ is obtained from
P′ by an elementary collapse.

Case (ii)C = E. DefineE1 = H + ∩E, E2 = H − ∩E, F = L ∩ E. Then
we have

E1
~~

F A
``

~~
E2

``

and no other cells ofP′ are greater thanF, E1, E2 or A.
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ThusE1 is a free edge ofP′ with attaching membraneA; F is a free
edge ofP′ − {E1,A} with attaching membraneE2. The result of these
two elementary collapses isQ = Q′.

Case (iii)C = A 143

DefineA1 = H + ∩A, A2 = H − ∩A, B = L ∩ A. Now ∂A1 ∪ ∂A2

contains∂A, and therefore either∂A1 or∂A2 intersectsE; say,∂A1∩E ,
∅. ThenP′ being regular, we must haveE < A1; then for dimensional
reasons, dimE = dim B, we cannot haveE < B henceE ⊂ H+; and so
it is impossible to haveE < A2. In summary,E < A1 > B < A2.

ThusE is a free face ofP′ with attaching membraneA1; B is a free
face ofP′ − {E,A1} with attaching membraneA2. The result of these
two elementary collapses isQ′. �

Proposition 6.6.4. If P ց Q, and P′ is obtained from by a finite
sequence of bisections of cells, andQ′ is the subpresentation ofP ′

defined by|Q′| = |Q|; thenP′ ց Q′.
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Proof. The proof is by induction, first, on the number of collapses in
P ց Q, and second, on the number of bisections involved. The induc-
tive step is 6.6.3. �

Definition 6.6.5.We say that a polyhedronP collapses (geometrically)
to a subpolyhedron Q, if there is a regular presentationP of P with a
subpresentationQ coveringQ, such thatP collapses combinatorially
toQ. We writePց Q.

This notion is polyhedrally invariant:144

Proposition 6.6.6. If P ց Q, andα : P → X is a polyhedral equiva-
lence, then Xց α(Q).

L α

Proof. There are regular presentationsP, Q of P andQ, with P ց Q

combinatorially, and simplicial presentationsS , X of P andX with L
simplicial relative toS andX . There is a regular presentationP′ of
P refiningP andS , and obtained fromP (also fromS but we do not
need it in this proposition) by a finite sequence of bisections. Hence ifQ′

is the subpresentation ofP′ coveringQ, thenP′ ց Q′, by 6.6.4. Since
L is one-to-one and linear on each element ofP′, the setL(P′) =
{L(C) | C ∈P′} is a regular presentation ofX, which is combinatorially
isomorphic toP′; andL(Q′) is subpresentation coveringL(Q), which
is combinatorially isomorphic toQ′. ThrereforeL(P) ց L(Q′) or
Xց (Q). �

Proposition 6.6.7. If P1ց P2, and P2ց P3, then P1ց P2.

Proof. Let P1, P2 be presentation ofP1, P2 with P1ցP2, andP3,
P4 be presentations ofP2, P3 with P3 ց P4. By 1.10.6 there is a
regular refinementQ of P1∪P2∪P3∪P4, and subpresentationsQ1,
Q2, Q3, Q4 of with |Pi | = |Qi |, Qi obtained fromPi by a sequence of
bisections. ClearlyQ2 = Q3 and by 6.6.4,Q1 ց Q2, andQ3 ց Q4 and
thereforeP1ց P2. �

Proposition 6.6.8. If N is a regular neighbourhood of X in P, then Nց
X.
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Proof. By virtue of 6.6.6 and the definition of regular neighbourhood, it 145

is enough to look at any particularN. LetP be a simplicial presentation
of P with a full subpresentationX coveringX; and letϕ : P → [0, 1]
be the usual map. TakeN = ϕ−1([0, 1

2]).
Let

∑
denote all the simplexes ofP having vertices both inX and

(P −X ). We proveNց X by induction on the number of elements of∑
. If

∑
= ∅, thenN = X, and there is nothing to do. Hence we can start

the induction.
Let

N =X ∪ {σ ∩ ϕ−1((0,
1
2

)) | σ ∈
∑
}

∪ {σ ∩ ϕ−1(
1
2

) | σ ∈
∑
}

ThenN is a regular presentation ofN. If σ is an element of of
maximal dimension,σ ∩ ϕ−1(1

2) is a free edge ofN with attaching
membraneσ∩ϕ−1((0, 1

2)). (Note thatσ is aprincipal simplex ofP i.e.
not the face of any other simplex). After doing the elementary collapse
we are left withN ′. Now P − {σ} = P′ is a regular presentation
containingX , and the corresponding

∑′
=

∑
−{σ}. Hence inductively

N ′ ցX . And so,N ցX . �

Ex. 6.6.9.Let N′ be a neighbourhood ofX in P, (all polyhedra). If
N′ ց X, then there is a regular neighbourhoodN of X in P, N ⊂ IntP N′

such thatN′ ց N.

6.7 Homogeneous Collapsing

Let P be a regular presentation, withE, A ∈ P, E < A and dimA =
dimE + 1.

Recall the definition ofλPE. This is defined, relative to some cen-145

teringη of P, to be the full subpresentation ofdP whose vertices are,
{ηC | E < C ∈P}.

Definition 6.7.1.Let E, A, P; be as above andη be a centering ofP.
(E,A) is said to behomogenousin P, if there is a polyhedronX and a
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polyhedral equivalencef : |λPE| → X ∗ {u,w} a suspension ofX, such
that f (ηA) = w.

It is easily seen that if this is true for one centering ofP, then it is
true for any other centering ofP; hence “(E,A) is homogeneous inP”
is well defined.

Definition 6.7.2.Let X ⊂ N be subpresentations ofP. We say that
N collapses toX homogeneously (combinatorially) inP, if there is
a finite sequence of subpresentations ofP,

N1, . . . ,Nk

and pairs of cells (E1,A1), . . . , (Ek−1,Ak−1), Ei , Ai ← Ni such that

(1) N1 = N , Nk = X

(2) Ni+1 is obtained fromNi by an elementary collapse atEi , a free
edge ofNi with attaching membraneAi , for i = 1, . . . , k− 1 and

(3) (Ei ,Ai) is homogeneous inP, for i = 1, . . . , k− 1.

Proposition 6.7.3. If P′ is obtained fromP by bisecting a cell C by
a bisection of space(L; H+,H−): and if X ⊂ N ⊂ P, with X ob-
tained fromN by an elementary collapse at a free edge E with attach-
ing membrane A, where(E,A) is homogeneous inP; and if N ′, X ′

are the subpresentations ofP ′ covering|N | and |X |; thenN ′ ցX ′146

homogeneously inP′.

Proof. If the bisetion in trivial there is nothing to prove. If it is not
trivial, there are three cases as in the proof of proposition6.6.3.

Case 1:C is neitherE nor A. In this case the only problem is to show
that (E,A) is homogeneous inP′. Let us suppose that everything is
occuring in a vector spaceV of dimn; and let dimE = k. Then there
is an orthogonal linear manifoldM of dimension (n− k), intersectingE
in a single pointη(E) = e, say. It is fairly easy to verify that in such a
situation ifE < D, thenD ∩ M , ∅.
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If we now choose centerings ofP andP′ so that wheneverD∩M ,
∅, we have the center ofD belonging toM, then defining

Q = {D ∩ M | D ∩ M , ∅,D ∈P}

andQ′ similarly with respect toP′, we will have:

λP(E) = λQ(e)

λP′(E) = λQ′(e).

andQ,Q′ are regular presentations of|P | ∩M. Hence both|λP (E)| and
|λP′(E)| are links ofe in |P |∩M, and hence polyhedrally equivalent (by
an approximation to the standard mistake); if we choose a center of A
the same in both case, we get a polyhedral equivalence takingηA to ηA.
Finally, by hypothesis|λP (E)| is equivalent to a suspension withηA as a
pole; and so|λP′(E)| has the same property, and (E,A) is homogeneous
in P′.

Case 2:C = E; we defineE1, E2, F as in the proof of 6.6.3. We have to147

show that (E1,A) and (F,E2) are homogeneous inP′.
That (E1,A) is homogeneous inP′ follows from the fact|λP (E)| =

|λP′(E1)| (with appropriate centerings) because anyD > E1 in P′ is an
element ofP which is> E1 and hence,P being regular> E.

That (F,E2) is homogeneous inP′, we see by the formula:

λP′(F) = λP (E) ∗ {ηE1, ηE2}

(calling the appropriate centering ofP′ alsoη).

Case 3:C = A; we defineA1, A2, B as in the proof of 6.6.3. We have to
show that (E,A1) and (B,A2) are homogenous.

There is a simplicial isomorphismλP(E) ≈ λP′ (E) takingη(A) onto
η(A1). And as (E,A) is homogeneous inP, we have (E,A1) is homo-
geneous inP′.

That (B,A2) is homogeneous inP′ we see by a formula like that in
case 2:

λP′(B) = λP (A) ∗ {ηA1, ηA2}.

�
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Proposition 6.7.4. If N ց X homogeneously inP, andP′ is ob-
tained fromP by a finite sequence of bisections of space, andN ′, X ′

are the subpresentations ofP ′ covering|N | and |X |, thenN ′ ցX ′

homogeneously inP′.
This follows from 6.6.3, as 6.6.4 from 6.6.3.

Definition 6.7.5.Let P be a polyhedron, andX, N subpolyhedra ofP. N148

is said tocollapse homogeneously (geometrically) to X in P, if there are
regular presentationX ⊂ N ⊂ P coveringX, N andP respectively
such thatN collapses homogeneously toX combinatorially inP.

We write N ց X homogeneouslyin P. This definition is again
polyhedrally invariant:

Proposition 6.7.6. If N ց X homogeneously in P, andL : P→ Q is a
polyhedral equivalence, thenL(N) → L(X) homogeneously in Q.

This follows from 6.7.4 as 6.6.6 from 6.6.4.

Proposition 6.7.7. If N is a regular neighbourhood of X in P, then Nց
X homogeneously in P.

Proof. As in 6.6.8, we start with a simplicial presentationP of P in
which a full subpresentationX , coversX, and takeN = ϕ−1([0, 1

2])
whereϕ : P → [0, 1] is the usual map. By virtue of 6.7.6, and the
definition of regular neighbourhood, it is enough to prove that thisN ց
X homogeneously.

Let N be the regular presentation ofN consisting of cells of the
form:

simplexes ofX

σ ∩ ϕ−1((0,
1
2

)), for σ ∈P with ϕ(σ) = (0, 1)

σ ∩ ϕ−1(
1
2

), for σ ∈P with ϕ(σ) = (0, 1)

DefineP′ to consist of

all simplexes ofX ,

all simplexes ofP which have no vertices inX .
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σ ∩ ϕ−1((0,
1
2

))

σ ∩ ϕ−1((
1
2

))

σ ∩ ϕ−1(
1
2
, 1)



for σ ∈P with ϕ(σ) = (0, 1)

P′ is a regular presentation ofP which refinesP, and has as subpre-149

sentationsN andX . N andX are the same as in proposition 6.6.8,
and therefore we know thatN ց X . Now, the claim isN ց X
homogeneously inP′. In otherwords, ifE = σ ∩ ϕ−1(1

2), A = σ ∩

ϕ−1((0, 1
2)), whereσ ∈ P with ϕ(σ) = (0, 1), we have to show that

(E,A) is homogeneous inP′. In fact denoting byB the subpresenta-
tion of P′ coveringϕ−1(1

2), we have

λP′(E) = λB(E) ∗ {ηA, ηA′}, where

A′ = σ ∩ ϕ−1((
1
2
, 1)).

�

6.8 The Regular Neighbourhood Theorem

We have seen that ifN is a regular neighbourhood ofX in P, then

(1) X ⊂ int PN

(2) N is bicollared inP

(3) N ց X homogeneously inP.

Conversely.

6.8.1 The Regular Neighbourhood Theorem
If X N Pare polyhedra such that

(1) X ⊂ int PN
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(2) N is bicollared inP

(3) N ց X homogeneously inP 150

thenN is a regular neighbourhood ofX in P.
The proof will start with some technicalities which exploitthe ho-

mogeneity of the collapsing (TheX’s, P’s etc. occuring mean-while
should not be confused with theX, P of the theorem).

Proposition 6.8.2. Let Y ⊂ X be polyhedra, and let P= X ∗ {v,w} a
suspension of X. Then a regular neighbourhood of Y∗v in P is a regular
neighbourhood of v in P. [In other words, a regular neighbourhood of a
subcone of a suspension is a regular neighbourhood of one of the poles].

Proof. Let C1(X) denoteX ∗ v and letϕ : C1(X) → [0, 1] be the join
of the mapsX → 1 andv → 0. For anyZ ⊂ X, CL(Z) for 0 < L < 1
will denote the set of points{(1 − t)v + tz | z ∈ Z, 0 ≤ t ≤ L}. If Z is a
subpolyhedronCL(Z) = (Z ∗ v) ∩ ϕ−1([0,L]).

By 6.3.7, it is enough to prove the proposition for some regular
neighbourhood ofX ∗ v. Hence, by a couple of maps, it is enough to
show thatC5/8(X) is a regular neighbourhood ofC1

2
(Y) in C1(X). (It is

clearly a regular neighbourhood ofv in C1(X)).
Let X be a simplicial presentation ofX, containing a subpresenta-

tion Y coveringY. We define a regular presentation ofC1(X) to consist
of:

{v}σ for σ ∈X

σ{v} for σ ∈X − Y

σ{v} ∩ ϕ−1((0, 1
2))

σ{v} ∩ ϕ−1(1
2)

σ{v} ∩ ϕ−1(1
2, 1)


for σ ∈ Y

151

Then P has a subpresentationQ covering⊂ 1
2(Y), and for each

A ∈ P − Q with A ∩ C1
2
(Y) , ∅, ϕ(A) includes the interval (12, 1).

Choose a centeringη of P, so that for allA ∈P−Qwith A∩C1
2
(Y) , ∅,

ϕ(ηA) = 3
4.
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Thend(P , η) has the property that ifτ is a simplex with vertices
both indQ and indP − dQ, thenϕ(τ) contains (12,

3
4), anddQ is full in

dP. Choose a centeringθ of dP so that forτ ∈ dP with vertices in
and out of∂Q, ϕ(θτ) = 5

8. Now N = |NdP (dQ, θ)| = ϕ−1([0, 5/8]); and
thusϕ−1([0, 5/8]) is a regular neighbourhood of bothC1

2
(Y) andv. �

Now, let P be a polyhedron andP a simplicial presentation ofP.
Let

∑
be any set of vertices ofP andη a centering ofP. Recall the

definition ofδP (
∑

) andP∑ (6.3.10).

δP (
∑

) = ∪{|δPv | |v ∈
∑
}

P∑
= {σ ∈P all the vertices ofσσ are inP}

P∑ is full in P andδP (
∑

) = |NP (P∑)| is a regular neighbourhood of
|P∑| in P.

Let C(P) = P∗v be a cone onP andϕ : C(P)→ [0, 1] be the join of
v→ 0 andP→ 1. If L is a subpolyhedron ofP; 0 < L < 1, CL(L) will 152

mean (L ∗ v) ∩ ϕ−1([0,L]) as before. ByL × [α, β], 0 < α < β < 1, we
shall mean (L ∗ v) ∩ ϕ−1([α, β]). In particularCL(P) = ϕ−1([0,L]) and
P × [α, β] = ϕ−1([α, β]). The simplicial presentationP ∗ {{v}} of C(P)
will be denoted byC(P).

Proposition 6.8.3. There is a centering of C(P) with respect to which

(1) |δC(ϕ)v| = C1
2
(P)

(2) |δC(P)(a)| = |δP (a)| × [ 1
2 , 1] for any vertexa of P.

Proof. We take any centeringη of P, and extend it toC( ) by defining

η(σ{v}) =
1
2
η(σ) +

1
2

v, for σ ∈P .

Then it is obvious thatϕ is simplicial relative tod(C(P), η) and the
triangulation of [0, 1] with vertices{0, 1

2 , 1}. From this it easily follows
that |δC (P)v | = C1

2
(P).

The second assertion can be proved by a straight forward messy
computation as follows:
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A typical simplex ofδP (a) is a face of simplex ofd(P , η) of the
form 0(η0, η1, . . . , ηk), with a = η0, η − i = η(σi), {a} < σ1 < σ2 · · ·

< σk, σi ∈P. A point in [η0, . . . , ηk] × [ 1
2, 1] is uniquely determined by

t0, . . . , tk, L, such thatti ≥ 0,
∑k

0 ti = 1, 1
2 ≤ L ≤ 1, and the point is:

(*) α(
k∑

0

tiηi) + (1− α)v.

On the otherhand, a simplex ofδ ⊂ (P)(a) is a face of simplex153

determined by someℓ between 0 andk, and vertices

η0, . . . , ηℓ,
1
2
ηℓ +

1
2

v, . . . ,
1
2
ηk +

1
2

v,

with a = η0, ηi = η(σi), {a} < σ1 < σ2 . . . < σk, σi ∈ P. A typ-
ical point in the closure of such a simplex is uniquely determined by

r0, . . . , rℓ, sℓ, . . . , sk, wherer i , sj ≥ 0 and
ℓ∑
◦

r i +
k∑
ℓ

sj = 1. The point is

(**)
ℓ∑

0

r iηi +

k∑

ℓ

sj(
1
2
η j +

1
2

v).

Comparing coefficients in (*) and (**), we find that these points
coincide if:

(A) α = 1−
1
2

∑k
ℓ sj

ti =
r i

α
, i < ℓ

t =
rℓ + 1

2 sℓ
α

t j =
1
2

sj

α
, j > ℓ

(B) r i = αti , i < ℓ

rℓ = α(1+
∑k
ℓ t j) − 1

sℓ = 2(1− α(1+
∑k
ℓ+1 t j))

sj = 2αt j , j > ℓ.
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[To be sure, we should have started in (**) with an index different from
k. But it can be easily seen that, when determing whether the points
coincide, it is enough to consider (*) and (**)].

To show that|δC (P)(a)| ⊂ |δP (a)| × [ 1
2, 1], we need to check that if154

r ’s and s’s satisfy their conditions (being≥ 0, and of sum 1), then the
solutions in (A) forα and thet’s satisfy theirs (12 ≤ α ≤ 1 and thet’s are
≥ 0 with sum 1). This is easy.

To show that|δP (a)| × [ 1
2 , 1] ⊂ |δC (P)(a)|, we need to check if12 ≤

α ≤ 1, and thet’s are≥ 0 with sum 1, then there is someℓ for which
the solutions found in (B) satisfy the appropriate conditions. That the
sum ofr ’s and s’s is one is clear; to make all≥ 0, we takeℓ to be the
maximum of those integers (m) for which

1+
k∑

m

t j ≥ 1/α

Since 1/α ≤ 2, and
∑k

0 t j = 1, there is such anℓ; this choice ofℓ
makes bothr ’s ands’s ≥ 0. �

Remark. If
∑

is a set of verticer ofP, we have as above,

δC (P)(
∑

) = δP (
∑

) × [
1
2
, 1].

Now let P = X ∗ {u,w} be a suspension. We define thelower hemi-
sphere Lof P to be X ∗ u; it should be remarked thatL is a regular
neighbourhood ofu in P.

Proposition 6.8.4. With P, X, L as above there is a polyhedral equiva-
lence h: C(P)→ C(P) with h|P = idP, such that

h

({
L ×

[
1
2
, 1

]}
∪C1

2
(P)

)
= L ×

[
1
2
, 1

]
.

Proof. We can draw a picture which is a “cross section” through any
particular pointx in X:
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155

[The picture is actually the union of the two triangles [x, v,w] and
[x, v, u] in C(P), which we have flattened out to put in a planar picture.
The vertically shaded part is the porition ofL× [ 1

2 , 1] in the cross section
and the horizontally shaded part is the part ofC1

2
(P) in the cross section.

We have to push the union of these two into the vertically shaded por-
tion, and this uniformly over all cross sections].

From this picture we may see the following:C(P) is the union of

A =

{
X ×

[
1
2
, 1

]}
∗ {u,w}, and

B =

{
X ×

1
2

}
∗ J where J = v ∗ {u,w}.

And A∩ B =

{
X ×

1
2

}
∗ {u,w}.

Now J is just, polyhedrally, an interval, and so there is obviously a
polyhedral equivalencef : J→ J such that

f (u) = u, f (w) = w

f (
1
2

v+
1
2

w) =
1
2

v+
1
2

u.
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Such anf will take the part [u, v] ∪ [v, 1
2v+ 1

2w] onto [u, 1
2u+ 1

2v].
Let g : B→ B be the join off on J and identity onX× 1

2. It is clear
thatg|A ∩ B is the identity map, and so by extending by identity onA,
we get a polyhedral equivalence sayh : C(P)→ C(P). 156

It should be pictorially evident thath has the desired properties.�

Putting all these together we get the proposition which we need:

Proposition 6.8.5. Hypotheses:

(1) P is a simplicial presentation of P, C(P) the cone over P with
vertex v, C(P) =P ∗ {{v}}, and

∑
a set of vertices ofP.

(2) There is a polyhedron X and a polyhedral equivalence h: P →
X ∗ {u,w} such that h(|P∑|) = Y ∗ u, for some Y⊂ X.

(3) |δC (P)v| and δC(P)(
∑

) are constructed with reference to some
centeringV of C(P).

Conclusion: There is a polyhedral equivalenceα : C(P) → C(P) such
thatα|P = idP andα maps (δC(P)(

∑
)) ∪ (δC (P)v| onto (δC(P)(

∑
)).

Proof. Let η be the centering ofC(P) described in proposition 6.8.3.
Let f = fη,V be the simplicial isomorphism ofd(C(P),V ) onto
d(C(P), η).

Let h1 : C(P) → C(X ∗ {u,w}) be the join ofh : P→ X ∗ {u,w} and
the map vertex to vertex.

Now δP (
∑

) is a regular neighbourhood of|P∑| in P, and there-
fore h f(δP (

∑
)) is a regular neighbourhoodh f(|P∑|) in X ∗ {u,w}. But

f (|P∑|) = |P∑| - infact f maps everyP-simplex onto itself - and
h(|P∑|) = γ ∗u. Thush f(δP (

∑
)) is a regular neighbourhood ofY∗u in 157

X∗ {u,w}. Therefore by 6.8.2,h f(δP (
∑

)) is a regular neighbourhood of
u in X ∗ {u,w}. But so isX ∗ u. Hence there is a polyhedral equivalence
β : X ∗ {u,w} → X ∗ {u,w} such that

β(h f(δP (
∑

))) = X ∗ u.

Let β1 : C(X ∗ {u,w}) → C(X ∗ {u,w}) be the join of and identity
map of the vertex of the cone.
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Now f is such thatf (δC(P)(
∑

)) = f (δP (
∑

)) × [ 1
2 , 1] and f (|δC(P)

v|) = C1
2
(P).

Sinceβ1 andh1 are radial extensions the same thing holds, i.e.

β1h1 f (δ(C|P)(
∑

)) = β1h1( f (δP (
∑

)) × [
1
2
, 1]

= βh f(δP (
∑

)) × [
1
2
, 1]

which is{X ∗ u} × [ 1
2, 1], and

β1h1 f (|δC(P)v|) = β1h1(C1
2
(P))

= C1
2
(X ∗ {u,w}).

Applying 6.8.4, we get a polyhedral equivalence

γ : C(X ∗ {u,w})→ C(X ∗ {u,w}) with γ|X ∗ {u,w} =

identity and

γ

(
(X ∗ u) × [

1
2
, 1] ∪C1

2
(X ∗ {u,w})

)

= (X ∗ u) × [
1
2
, 1].

The desired mapα is now,

α = f −1 ◦ h−1
1 ◦ β

−1
1 ◦ γ ◦ β1 ◦ h1 ◦ f .

�

We will now write down two specific corollaries of proposition 6.8.5,158

which will immediately give the regular neighbourhood theorem. First
we recall the notation at the end of section 3 (6.3.10).

If P is regular presentation, given a centeringη of P and a center-
ing of d(P , η), we defined

C∗ = |δdP (ηC)|, for any C



6.8. The Regular Neighbourhood Theorem 131

andN ∗
= ∪{C∗|C ∈ N }, for any subsetN of P. If N is a subpre-

sentation ofP, thend(N , η) (whereη|N is again denoted byη) is full
in d(P , η). Writing N ′

= d(N , η)P′
= d(P , η), and

∑
as the set of

vertices ofP′ of the formηC, for C ∈ N , we see thatP′∑ = N ′ and
δP′(

∑
) = N ∗, which is a regular neighbourhood of|N | in |P |.

Corollary 6.8.6. Let P be a regular presentation with a subpresen-
tation N , E a free edge ofN with attaching membrane A such that
(E,A) is homogeneous inP. Then there is a polyhedral equivalence
h = |P | → |P | which is identity outside ofE ∗ |λP E| and which takes
N ∗ onto(N − {E})∗.

[Note: It is understood that there is a centeringη of P, and a centering
of d(P , η)].

Proof. Look atS t(ηE, dP); this is a presentation sayP′ of E ∗ |λPE|.
Let

∑
denote the set of vertices ofdP of the formηF for F < E and

ηA. Then|P′∑| is the join of∂E to ηA. Since|λPE| is equivalent to a
suspension (homogenity of (E,A)) with ηA going to a pole, we see that159

∂E ∗ |λPE| is equivalent to a suspension with|P′∑| going to a subcone.

And E ∗ |λPE| is a cone over∂E ∗ |λPE|. And consider the centering
of P′ coming from that ofd(P , η).

Thus we have the situation of 6.8.5, and making the necessarysub-
stitutions in 6.8.5, we get a polyhedral equivalenceα of |P′| = E∗|λP E|
taking |δ′P (ηE)| ∪ δP′(

∑
) ontoδP′(

∑
). |δP′(ηE)| is just E∗. Now ob-

serve that the set of centres of elements ofN in P′ is
∑
∪{ηE}. (This

is where we use the fact thatE is a free edge). ThereforeN ∗ ∩ |P′| =

E∗ ∪ δP′(
∑

) and (N − {E})∗ ∩ |P′| = δP′(
∑

). Soα takes the part of
(N ∗) in |P′| onto the part of (N − {E})∗ in |P′|. α is identity on the
base of the cone, andE∗ ⊂ |P′|. Therefore extendingα to an equiva-
lenceh of |P | by patching up with identity outside|P′|, we see thath
takesN ∗ onto (N −{E})∗ and is identity outside|P′| = E∗ |λPE|. �

Corollary 6.8.7. In the same situation, there is a polyhedral equiva-
lence h′ : |P | → |P | which is identity outsideA ∗ |λPA|, which takes
(N − {E})∗ onto (N − {E,A})∗.

[for this corollary we need only that E is a free edge of A, and Ais
the attaching membrane. Homogenity of(E,A) is not necessary].
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Proof. This time we callP′
= S t(ηA, dP), and

∑
the set of vertices

ηF, F < A andF , E. Then |P′∑| = ∂A − E. ∂A is equivalent to a
suspension with∂A− E as the lower hemisphere. Hence∂A ∗ |λPA| is160

equivalent to a suspension with|P′∑|mapping onto a subcone. Applying

6.8.5, we get a polyhedral equivalenceα′ of A ∗ |λPA| on itself, which
is identity on∂A ∗ |λPA| and takesδP′(

∑
) ∪ A∗ onto δP′ (

∑
). Since

E is a free edge andA is principal in N , δP′(
∑

) is just the part of
(N − {E,A})∗ in A ∗ |λPA|, andδP′ (

∑
) ∪ A∗ is the part of (N − {E})∗

in A ∗ |λPA|. Extendingα′ to an equivalenceh′ of |P | by patching up
with identity outsideA ∗ |λPA|, sinceA∗ is contained inA ∗ |λPA| we
see thath′ takes (N − {E})∗ onto (N − {E,A})∗ and is identity outside
A ∗ |λPA|. �

Thus in the situation of 6.8.6, if we take the compositionh′h of
the equivalences given by 6.8.6 and 6.8.7,h′ ◦ h takesN ∗ onto (N −

{E,A})∗. Support ofh′ ⊂ A ∗ |λPA|, support ofh ⊂ E ∗ |λPE|, hence
h′ ◦ h fixes, the polyhedron|(N − {E,A})|. This at once gives,

Proposition 6.8.8. If N ց X homogeneously inP, then there is a
polyhedral equivalence of|P |, which is identity on|X | and takesN ∗

ontoX ∗.

Corollary 6.8.9. If N ց X homogeneously in P, then any regular neigh-
bourhood of N in P is a regular neighbourhood of X in P.

Proof of the regular neighbourhood theorem 6.8.1.
By 6.8.9 any regular neighbourhood sayN′ of N is a regular neigh-

bourhood ofX. SinceN is bicollared inP, there is a polyhedral equiva-
lenceh of P takingN ontoN′. SinceX ⊂ IntP N, h can be chosen to be
fixed onX (see 6.4.8). ThereforeN is a regular neighbourhood ofX.

6.9 Some applications and remarks
161

In this section we make a few observations about the previousconcepts
in the context ofPL-manifolds
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6.9.1 Let M be aPL-manifold,∂M its boundary,P a regular presen-
tation of M. Let E, A ∈ P, E < A and dimA = dimE + 1. (E,A) is
homogeneous inP if and only if either bothE andA are in∂M or both
E andA are inM − ∂M.

Proof. Let η be a centering ofP. Let E′ ⊂ E a simplex ofd(P , η) of
dimension= dimE, andA′ = {ηA}E′. Now the problem is equivalent
to: When is|LK(E′, dP)| equivalent to a suspension withηA going to a
vertex? IfE andA are inM − ∂M, so areE′ andA′ and |LK(E′, dP)|
is a sphere, hence it is possible. IfE andA are both in∂M, so areE′

andA′ and|Lk(E′, dP)| is a cell, withηA contained in the boundary. So
again it is possible. IfE is in ∂M andA is in M − ∂M so areE′ andA′

and|Lk(E′, dP)| is a cell withηA in the interior. Hence in this case it is
impossible. �

Suppose now thatN andX are subpresentation ofP andN ց

X homogeneously inP. In the sequence of (elementary) homoge-
neous of collapses fromN to X , if a collapseC1 in the boundary
comes before a collapseC2 in the interior we can interchange them i.e.
if Ni−1 ց

C1 Ni ց
C2 Ni+1, then we can findN ′

i such thatNi−1 ց
C′2

N ′
i ց

C′1 Ni+1 and the free edge and attaching membrane ofCi andC′i ,
j = 1, 2 are the same. Doing this a finite number of times we have

6.9.2 If Nց X homogeneously inM, thenN ց X∪(N∩∂M)ց X. In 162

particular, this is true for regular neighbourhoods. Some rearrangement
is possible for the usual elementary collapses also:

Ex. 6.9.3.SupposeP ց Q, combinatorially, andP1, . . . ,Pk, 1 ≤ i ≤
k are subpresentations such thatPi is obtained fromPi−1 by an ele-
mentary collapse at the free edgeEi−1 with attaching membraneAi−1

and P = P1, Q = Pk. Then we can find subpresentationsP′
1,

P′
2, . . . ,P

′
k, P′

1 = P, P′
k = Q, such thatP′

i is obtained fromP′
i−1

by an elementary collapse at the free edgeE′i−1 with attaching mem-
braneA′i−1 and dimA′i ≥ dim A′i−1. Moreover, except for order, the pairs
(E′i ,A

′
i ) are the same as the pairs (E j ,A j).
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More briefly, we can rearrange the collapses in the order of non-
increasing dimension.

Ex. 6.9.4.An n-cell collapses to any (n − 1)-cell in its boundary. This
follows from 6.5.10.

Ex. 6.9.5.An n-cell is collapsible to any point in it.

We call polyhedroncollapsibleif it collapses to a point.

Ex. 6.9.5′. A collapsible polyhedron collapses to any point in it.
[Hint: By virtue of 6.9.3, it is enough to consider one dimensional

collapsible presentations with the given point as a vertex].

6.9.6 If M is a collapsiblePL n-manifold, thenM is an-cell.

Sketch of the proof: ∂M , ∅, for if ∂M = ∅, there is no free edge to
start the collapsing. Next we can assume thatM collapses to a point in
M − ∂M, either by 6.9.5′ or by 6.9.4 and 6.5.11. Now attach a collar163

of ∂M to M (to get PL-manifold M′) so that all the collapsing is in
the interior ofM′, hence homogeneous. Now all the conditions of the
regular neighbourhood theorem are satisfied. HenceM is the regular
neighbourhood of a print inM′, hence ann-cell.

The following two remarks will be useful in the next chapter.

6.9.7 Let f : K × Dn−k → Mn be an imbedding into intM, whereK is
a K-manifold andDn−k an (n− k)-cell. Thenf (K ×Dn−k) can be shrunk
into any given neighbourhood off (K × e) in M, for a fixede∈ int Dn−k

by an isotopy which can be assumed to be fixed onf (K × e).
K ×Dn−k ց K × e (this follows, for example, from 6.5.14 by induc-

tion). It is easily seen thatf (K × Dn−k) is a neighbourhood off (k × e)
in M and is bicollared.

Proposition 6.9.8. Let M be a PL n-manifold, and N a PL(n − 1)-
manifold in∂M, and Mց N. Then M is polyhedrally equivalent to
N × I. Moreover the polyhedral equivalence h: M ≈ N × I, can be so
chosen that h(n) = (n = 0) for n ∈ N.
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Proof. Such anN cannot be the whole of∂M. Either ∂N , ∅, or N
is a finite union of components of∂M (see 4.4.16). In any caseN is
bicollared in∂M. If N′ is regular neighbourhood ofN in ∂M, sinceN is
bicollared in∂M, N′ is polyhedrally equivalent toN (6.4.8).

SinceM ց N, there is a regular neighbourhood sayA of N in M
such thatM ց A (see 6.6.9). LetA ∩ ∂M = N′. ThenN′ is a regular
neighbourhood ofN in ∂M. It is clear thatA is polyhedrally equivalent 164

to N × I . Now attachB andC, B a collar over∂M − N′ andC a collar
overN to M such thatB∩C = ∅. Let the resulting manifold beM′.

Consider another collarC1 ⊂ C, and the manifoldsA ∪ C1 and
M ∪ C1. In M′, all the collapses fromM to A are in the interior and
henceM ց A homogeneously inM′, and the collapsing fromA ց N
continues to be homogeneous inM. ClearlyC1 ց N homogeneously
in M′. Thus bothA∪C1 andM ∪C1 collapse homogeneously inM′ to
N, both are neighbourhoods ofN in M′ and both are bicollared. Hence
there is an equivalenceA∪C1 ≈ M∪C1. ClearlyA∪C1 ≈ N× I . Hence
M ∪C1 ≈ N × I , henceM ≈ N × I .

To prove the last remark observe that ifL : N × I ≈ C1 is an
equivalence such thatL (n, 1) = n, for n ∈ N, the equivalenceM ≈
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M∪C1 can be chosen such that it carriesn ∈ N to L (n, 0) ∈ C1. Finally
the equivalenceA ∪ C1 ≈ M ∪ C1 can be assumed to be identity on
C1. �

6.10 Conclusion
165

Now let us, recaptitulate briefly the programme for proving the regular
neighbourhood theorem:

(A) We have a notion of equivalence of pairs

(P,X) ≈ (P′,X′)

(B) We define a regular neighbourhood ofX in P to be any thing
equivalent by an auto-equivalence of (P,X) to |NP (X )|, where
P is a simplicial presentation ofP with a full subpresentationX
coveringX.

(C) We have the notions of the cone onP, suspension onP, andP× I ;
and hence the idea of local collaring, collaring and bicollaring.

(D) We can prove: We can prove:P × [0, 1
2] is a regular neighbour-

hood ofP× 0 in P× [0, 1]. The lower half of the suspension ofP
is a regular neighbourhood of a pole. A locally collared subpoly-
hedron is collared. Regular neighbourhood of a pole. A locally
collared subpolyhedron is collared. Regular neighbourhoods are
bicollared.

(E) We have for regular presentations, the notion of collapsing, and
of homogeneous; and we prove thatN ց X homogeneously inP
if N is a regular neighbourhood ofX in P.

(F) Finally, we prove the converse, that ifN ց X homogeneously in
P, then a regular neighbourhood ofN is a regular neighbourhood
of X. We pick up a particular regular neighbourhood ofN and
strink it down a bit at a time to a particular regular neighbourhood
of X. In doing this, we need to have proved the theorem for a
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particular case:X′ is a pole of a suspensionP′ andN′ is a subcone166

of P′. An analysis of the proof shows that we need the result
for variousP′ of dimension less than that ofP. Hence we could
have proved this by induction on dimension, although it is simple
enough to prove in the special case by construction.

Now it should be remarked that precisely the same programme can
be carried out in other contexts. In particular for pairs:

A pair (P,Q) is a polyhedronP with a subpolyhedronQ; we say
(P1,Q1) ⊂ (P2,Q2) if P1 ⊂ P2, andQ1 = Q2∩P1. If (P1,Q1) ⊂ (P2,Q2)
we define the boundary of the former in the latter to be (bdP2P1,Q1 ∩

bdP2P1).
Define an equivalenceh : (P1,Q1) → (P2,Q2) to be a polyhedral

equivalenceα : P1 ≈ P2 mappingQ1 ontoQ2.
An admissible presentation of (P,Q) is a pair of regular presenta-

tionsQ ⊂ P with |P | = P, |Q| = Q. A free edge of an admissible
presentation (P ,Q) is anE ∈ P, which is a free edge ofP with at-
taching membraneA, such that ifE ∈ Q, thenA ∈ Q.

The programme can be carried out mechanically with the obvious
definition of homogeneous collapsing.

Finally, we draw some consequences, by applying toPL-manifolds.
Let A ⊂ B, whereA is a PL a-manifold andB is a PL b-manifold.

We say (B,A) is locally un-knottedif, for every x ∈ A, if (LB, LA) is
polyhedrally equivalent to (LA ∗ X, LA) for someX. It is possible to 167

show thatX must be either a cell or a sphere of dimensionb − a − 1;
and that ifA is connected, then either all theX’s are cells, in which
caseA is locally un-knotted in∂B or all X’s are spheres, in which case
∂A = A∩ ∂B.

It then occurs as in the case of a single manifold, that all thecollaps-
ing (in the pair sense) which is in the interior of (B,A) is homogeneous,
and hence we can prove the following result:

Let Da ⊂ ∆b, with (∆,D) a locally un-knotted pair of the sort where
∂D = D ∩ ∂∆. Then if∆ ց D ց point, the pair (∆,D) is an absolute
regular neighbourhood of a point (relative to (∂∆, ∂D) and so (∆,D) is
polyhedrally equivalent to (S∗D,D) whereS is a (b−a−1)-sphere, i.e.
(∆,D) is un-knotted.
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[This is a key lemma for Zeeman’s theorem, that (b − a) ≥ 3 ⇒
(∆,D) is un-knotted. See Zemman “Seminar on combinatorial Topol-
ogy”, Chapter IV, pp. 4-5].



Chapter 7

Regular collapsing and
applications

7.1 Regular collapsing
168

Let S be a simplicial presentation. We say thatσ ∈ S is anouter edge
of S , if there is a∆ ∈ S , such that ifσ ≤ ρ, ρ ∈ S , thenρ ≤ ∆, and
dim∆ > dimσ. In this case∆ is uniquely fixed byσ, and is of the form
∆ = στ, τ , ∅. The elements ofS havingσ as a face are exactly of
the formστ′, τ′ ≤ τ. The remaining faces of∆ are of the formσ′τ′,
σ′ < σ, τ′ ≤ τ; in otherwords they consist of{∂σ} ∗ {τ}. Thus

S ′
= S − {∆} ∪ [{∂σ} ∗ {τ}]

is a subpresentation ofS , and

|S | = |S ′| ∪ ∆

|S ′| ∩ ∆ = ∂σ ∗ τ

Let dim = ∆ = n. Then, we say thatS ′ is obtained fromS by an
elementary regular collapse(n) with outer edgeσ andmajor simplex∆.

If S = S1, . . . ,Sk = Z , andSi+1 is obtained fromSi by an
elementary regular collapse (n), we say thatS regularly collapses(n)
to Z .

139
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The elements of the theory of regular collapsing can be approached
from the point of view of “steller subdivisions” (cf. Section 13 of “sim-
plicial spaces, nuclei andm-groups” or the first few pages of Zeeman’s
“unknotting spheres”, Annals of Mathematics, 72, (1960) 350-361), but
for the sake of novelty we shall to something else.

169
7.1.1 Recalling Notations. σ, τ, . . . usually denote open simplexes.σ,
τ, . . . denote their closures(closed simplexes), and∂σ, ∂τ, . . . their bound-
aries. The simplicial presentation ofσ consisting ofσ and its faces in
denoted by{σ}, and that of∂σ consisting of faces ofσ by {∂σ} (see
54). στ stands for the join of the two open simplexesσ andτ, when
the join is defined. Ifσ is a 0-simplex andx is the unique point ofσ,
we will write {x}τ for στ. On the other hand the join of two polyhedra
P andQ when it is defined is denoted byP ∗ Q. Similarly the join of
two simplicial presentationsP andQ when it is defined is denoted by
P ∗ Q. For example ifστ is defined, then{∂σ} ∗ {τ} is the canonical
simplicial presentation of the polyhedron∂σ ∗ τ. If P is a polyhedron
consisting of a single pointx, we will sometimes writex ∗ Q instead of
P ∗ Q. With this notation{x}σ andx ∗ σ are the same.

Let ∆ be an (n − 1)-simplex,I = [0, 1], and letS be a simplicial
presentation of∆× I such that the projectionp : ∆× I → ∆ is simplicial
with reference toS and{∆}.

Then-simplexes ofS can be ordered as follows:Γ1, . . . , Γk, so that
if x ∈ ∆, x× I intersects theΓi ’s in order. That is∆ × 0 is a face ofΓ1,
Γ1 has another face∆1 which maps onto∆, ∆1 is a face ofΓ2, . . . ,∆i−1

is a face ofΓi, butΓi has another face that maps onto∆, call it ∆i and so
on. We start with∆0 = ∆ × 0 and end up with∆k = ∆ × 1.

Let us write∆ = στ in some way. LetT = ∆×0∪(∂σ∗τ)×I . (If σ =170

∅, T should be taken to be just∆ × 0). Then there is a subpresentation
Z of S which coversT.

Lemma 7.1.2. (With the above hypotheses and notation)S regularly
collapses(n) to Z .

Proof. We in fact show that there is a sequence of regular collapses with
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major simplexesΓk, . . . , Γ1. We must then define

Si = Z ∪ {Γ1} ∪ . . . ∪ {Γi}

and find some outer edge lying onΓi , so that the corresponding regular
collapse results inSi−1.

Now Γi is ann-simplex and its projection∆ is an (n − 1)-simplex,
therefore there are two verticesv1 andv2 of Γi (choosev1, v2 so that
the I -co-ordinate ofv1 is < the I -co-ordinate ofv2) which map into one
vertexv of ∆. Now∆ = στ and sov is a vertex of eitherσ or τ.

Case 1:v is a vertex ofσ. Writeσ = {v}σ′. Letσ′ andτ be the faces of
Γi lying overσ′ andτ. Then

Γi = {v1}{v2}σ̃
′τ̃

and the two faces ofΓi which are mapped onto∆ are

{v1}σ̃
′τ̃ = ∆i−1

and {v2}σ̃
′τ̃ = ∆i .

Defineσi = {v2}σ̃
′, τi = {v1}τ̃. It is claimed that if we takeσi as an 171

outer edge then the result of the elementary regular collapse with major
simplexΓi is Si−1.



142 7. Regular collapsing and applications

�

σi cannot be inZ ; because the only (dimσ)-simplex inσ× I which
is in Z is σ, andσi , σ sincev2 is a vertex ofσi. Also Γi is the
only simplex amongΓ1, . . . , Γi which containsv2 as a vertex. Hence if
σi ≤ ρ, ρ ∈ Si, thenρ ≤ Γi.

We then have to show thatΓi ∩Si−1 = ∂σi ∗ τi

∂σi ∗ τi = ∂({v2}σ̃
′) ∗ ({v1}τ̃)

= (σ̃′{v1}τ̃) ∪ (v2 ∗ ∂σ̃
′ ∗ {v1}τ̃).

The first term here is∆i−1, which is whereΓi intersectsΓ1∪. . .∪Γi−1.
The second term written slightly differently is [v1v2] ∗ ∂σ̃′ ∗ τ̃ to which172

we may add a part of the first term namely (σ̃′τ̃) to obtain all faces ofΓi

which map to

∂σ ∗ τ = ∂({v}σ1) ∗ τ
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= (σ′ ∗ τ) ∪ [∂σ′ ∗ τ ∗ v]

In other words, this isΓi ∩ [(∂σ ∗ τ) × I ].

This shows that

Γi ∩ |Si−1| = ∂σi ∗ τi;

and soSi to Si−1 is an elementary regular collapse with outer edgeσi

and major simplexΓi.

Case 2:v is a vertex ofτ. Wrtie τ = vτ′, defineσ̃, σ̃′ to be faces ofΓi

lying overσ andτ′. In this case

Γi = {v1}{v2}σ̃τ̃
′

and the two faces ofΓi which are mapped on∆ are

{v1}σ̃σ̃
′
= ∆i−1

and {v2}σ̃τ̃
′
= ∆i .

We now define

σi = {v2}σ̃

τi = {v1}τ̃
′

and make computations as before.

∂σi ∗ τi

= (σ̃ ∗ {v1}τ̃
′) ∪ (v2 ∗ ∂σ̃ ∗ {v1}τ̃

′)

= ∆i−1 ∪ ∂σ̃ ∗ [v1v2] ∗ τ̃′

and∂σ̃ ∗ [v1v2] ∗ τ̃′ = Γi ∩ [(∂σ ∗ τ) × I ] 173
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And this shows that if we perform an elementary regular collapse
(n) onSi with outer edgeσi and major simplexΓi, we getSi−1.

HenceS regularly collapses (n) to Z .
Define I1

= I , Ik
= Ik−1 × I , T1 = 0 ⊂ I ′, andTk = (Ik−1 × 0) ∪

(Tk−1 × I ) ⊂ Ik.
It is easy to see thatTk is a (k−1)-cell in∂Ik, and is the set of points

of Ik at least one co-ordinate of which is zero.
Let αk : Ik

= Ik−1 × I → Ik−1 be the projection.174

Lemma 7.1.3. Let Sn, Sn−1, . . . ,S1 be simplicial presentations of In,
In−1, . . . , I1 with respect to which all the mapsαn, . . . , α2, are simpli-
cial. Then there exist subpresentationsZn, Zn−1, . . . ,Z1 covering Tn,
Tn−1, . . . ,T1 respectively, and such thatSi regularly collapses (i) toZi

for all i.

Proof. The proof is by induction. It is easily verified thatS1 collapses
(1) toZ1.
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So, inductively, we know thatSi collapses (i) toZi, for i ≤ n − 1.
NowZn is just the subpresentation ofSn coveringIn−1×0∪|Zn−1|× I =
Tn.

Let the collapsing ofSn−1 to Zn−1 occur along the major simplexes
∆1, . . . ,∆k. Then we define

ai = Zn−1 ∪ {∆i} . . . {∆k}

and write∆i = σiτi , whereσi is the outer edge of the regular collapse
(n− 1) from ai to ai+1. Then∆i ∩ |ai+1| = ∂σi ∗ τi.

DefineBi = the subpresentation ofSn coveringIn−1 × 0 plusα−1
n

(|ai |). ThusB1 = Sn andBk+1 = Zn.
We will show thatBi regularly collapses (n) to Bi+1, stringing these

together, thenSn regularly collapses (n) to Zn.
To show thatBi regularly collapses (n) to Bi+1 it is enough to look 175

at the part ofBi coveringα−1
n (∆i) i.e.∆i × I . ∆i × I ∩ |Bi+1| = ∆i × 0∪

[(∂σi ∗ τi) × I ] andαn|∆i × I is just the projection∆i × I → ∆i which is
simplicial with reference to the subpresentation ofSn covering∆i×I and
{∆i}. And our lemma 7.1.2 is especially tailored for this situation. �

Theorem 7.1.4. Let A be a n-cell, B an n-cell in A, andP a regular
presentation of A. Then there is a simplicial presentationS refiningP,
with a subpresentationZ covering B, such thatS regularly collapses
(n) to Z .

Proof. There is a polyhedral equivalenceh : A → In, with h(B) = Tn.
Thenh is simplicial with reference to someP1 andQ, wherePαn can
be assumed to refineQ. The diagram

In αn
−−→ In−1→ . . .

α2
−−→ I ′

can be triangulated by simplicial presentationsSn, . . . ,S1, whereSn

can be assumed to refineQ. By 7.1.3,Sn regularly collapses (n) to
Zn, the subpresentation ofSn coveringTn. Therefore the isomorphic
presentationh−1(Sn) = S collapses regularly (n) to h−1(Zn) = Z . �
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Suppose thatS is a simplicial presentation of ann-cell A, regularly
collapsing (n) toZ , (|Z |) = B, an (n−1)-cell in∂A. Let the intermediate
stages be

S = S1, . . . ,Sk = Z ,

where is obtained fromSi by a regular collapse (n) at outer edgeσi and176

major simplex∆i = σiτi .

We define the upper boundary ofSi as follows:

upper boundary ofS1 = ∂(|S1|)-interior (|Z |)

upper boundary ofSi+1

= (upper boundary ofSi − σi ∗ ∂τi) ∪ ∂σi ∗ τi .

It can be alternatively defined as follows: Upper boundary ofSi =

unions of closures of (n− 1)-cellsE of Si , such that ifE < Z , E is the
face of exactly onen-simplex ofSi and if E ∈ Z thenE is the face of
no n-simplex ofSi .

Now we would like to assert that

7.1.5

(a) The upper boundary ofSi is an (n−1)-cell, with constant bound-
ary∂(|Z |). The upper boundary of the last stage is|Z |.

(b) ∆i intersects the upper boundary of precisely alongσi ∗ ∂τi. In
particular τi cannot be in the upper boundary ofSi for any i,
hence can never be in∂|Z |.

If in 7.1.3, in each column we do the collapsing as described in 7.1.2,
the above assertions can be verified in a straight forward manner, by
using similar properties ofSn−1 and an analysis of the individual steps
in 7.1.2. The general case seems to be more cumbersome (A proof is
given in the appendix). But the special case is enough for ourpurposes,
namely for the next theorem, the main result of this chapter.

First using 7.1.5, we define a polyhedral equivalenceϕi from the
upper boundary ofSi to the upper boundary ofSi+1 by ϕi = identity177
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outsideσi ∗∂τi, and onσi ∗∂τi, it is the join of the identity map∂σi ∗∂τi

to the map of centre ofσi to the centre ofτi.
Thus from∂|S | − |Z | to |Z |, we reach by simplicial moves, never

disturbing the boundary of|Z |.

Theorem 7.1.6.Let D be a(k + 1)-cell contained in the interior of an
n-cell ∆. Let ∂D = E1 ∪ E2, E1 and E2 two k-cells,∂E1 = ∂E2; let
X ⊂ ∆ be a polyhedron such that X∩D ⊂ ∂E1. Then there is an isotopy
of ∆, fixed on X∪ ∂∆, taking E1 onto E2.

Proof.

Consider∆ to be a standardn-cell, we can suppose that∂∆ ⊂ X, and
triangulate the whole picture, so that there are subpresentations covering
D, X. Refine the subpresentation coveringD, to S , which regularly
collapses (K + 1) to Z which coversE2. ExtendS to the whole of∆,
to sayP. Let the intermediate stages of the collapsing be

S = S1, . . . ,Sp = Z ,

Si+1 obtained fromSi by an elementary regular collapse (k + 1) at out 178

edgeσi and major simplexΓi = σiτi .
We will find an isotopy taking the upper boundary ofSi to the upper

boundary ofSi+1, and fixed except in a certainn-cell to be described.
Γi is a (k + 1)-simplex contained in the complement ofX, which is

also covered by a subpresentation ofP. So if take|λPΓi | =
∑

, say,∑
∗Γi ⊂ ∆, and (

∑
∗Γi) ∩ X = Γi ∩ X. Now Γi ∩ X must be contained

in ∂σi ∗ ∂τi, for this is the only part ofΓi which could contain points in
∂Ei. Let sandt be the centres ofσi andτi , the line segment [s, t] can be
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prolonged a little bit (here we use the fact that∆ is standard) tov andw
in ∆, so that

(
[v,w] ∗ (∂σi ∗ ∂τi) ∗

∑)
∩ X ⊂ ∂σi ∗ ∂τi

(
[v,w] ∗ (∂σi ∗ ∂τi) ∗

∑)
∩ upper boundary

of Si ⊂ ∂σi ∗ ∂τi. (here we use the fact that ifL ∩ (σ ∗ K) ⊂ L ∩ K,
whereσ is a simplex andK, L are polyhedra, then there is a stretching
σ′ of σ i.e. containingσ such thatL ∩ (σ′ ∗ K) ⊂ K ∩ L). Thus we
have in order{v, s, t,w} and there is a polyhedral equivalencef of [v,w],
taking v to v, s to t andw to w. Join f to the identity on∂σi ∗ ∂τi ∗

∑

and extend by identity outside of [v,w] ∗ ∂σi ∗ ∂τi ∗
∑

; call it hi . Now hi

is the result of a nice isotopy and takes the upper boundary ofSi to the
upper boundary ofSi+1.

The composition of thehi , will then take the upper boundary of179

S1 = E1 to the upper boundary ofSp = E2. �

Remark 7.1.7.In theorem 7.1.6,∆ can be replaced by any PL-manifold.
Of courseD should be in the interior.

Ex. 7.1.8.If N andM are two PL-manifolds andf : N × I → int M an
imbedding, show that there is an isotopy ofM fixing ∂M and carrying
f (N×0) to f (N×1∪∂N×I ). If X is a polyhedron inM, andX∩ f (N×I ) ⊂
∂ f (N × 0), the isotopy can be chosen to leaveX fixed.

7.2 Applications

Definition 7.2.1.Let S be ann-sphere, and
∑

a k-sphere inS. The
pair (S,

∑
) is said to beunknottedif (S,

∑
) is polyhedrally equivalent to

(X ∗
∑
,
∑

) for someX.
X must of course be an (n− k− 1)-sphere. Clearly a pair equivalent

to an unknotted pair is again unknotted.

Proposition 7.2.2. Let S be an n-sphere, and
∑

a k-sphere in S . If
there exists an(n− k − 1)-cell D in S such that D∗

∑
⊂ S , then(S,

∑
)

is unknotted.
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Proof. D∗
∑

is ann-cell, and so the closure ofS−D∗
∑

, say∆, is again
ann-cell and∂∆ = ∂(D∗

∑
) = ∂D∗

∑
. ThenS is polyhedrally equivalent

to a suspension of∂D ∗
∑

, hence (S,
∑

) is equivalent (X ∗
∑
,
∑

) where
X is a suspension of∂D. �

Corollary 7.2.3. If P is a regular presentation of an n-sphere S , and
A a (k + 1)-cell in P, then(S, ∂A) is unknotted.

Proof. TakeD = |δP A| (with respect to some centering ofP) in 7.2.2. 180

�

Proposition 7.2.4. If a k-sphere
∑

bounds a(k+ 1)-cell D contained in
the interior of a PL-manifold M, then there is an isotopy of M taking

∑

onto the boundary of a(k+ 1)-cell of some regular presentation of M.

Proof. Take a regular presentationP of M in which D is covered by a
full subpresentationQ. Consider ak-cell E of Q in ∂D and the (k + 1)-
cell, sayA of Q, which contains it in its boundary. Let∂A− E = E1 and
∂D − E = E2 andD − A = D′. ThenD′ is a (k + 1)-cell with boundary
E1∪E2 andE intersectD′ in ∂E1 = ∂E2. Hence by theorem 7.1.6, there
is an isotopy ofM taking E2 onto E1 and fixing E. Thus∂D will be
moved onto∂A.

�
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Corollary 7.2.5. Let S be an n-sphere, and
∑

a k-sphere in S .(S,
∑

) is
unknotted if and only if

∑
bounds a(k+ 1)-cell in S .

Proof. The necessity is clear. Sufficiency follows from 7.2.4 and 7.2.3.
�

Motivated by 7.2.4, we define ak-sphere
∑

in the interior of a PL-
manifold M to beunknottedif it bounds a (k+ 1)-cell in (the interior of)181

M. From 7.2.4 it is clear that

7.2.6 If A is a (k + 1)-cell of some regular presentation ofM, andA ⊂
int M, then∂A is unknotted. If

∑
1 and

∑
2 are two unknotted spheres

in the same component ofM, there is an isotopy ofM which takes
∑

1

onto
∑

2 keepingM fixed.

Definition 7.2.7.If D is ann-cell andE a k-cell in D, with ∂D ⊂ ∂E,
(D,E) is said to beunknotted if(D,E) is polyhedrally equivalent to (X ∗
E,E) for someX.

SinceE is not completely contained in∂D, such anX must be an
(n− k− 1)-sphere.

And we define a cellE in the interior of a PLn-manifold M to be
unknotted, if there is ann-cell D in M containingE such that (D,E) is
unknotted. A cell which is the closure of an open convex cell of some
regular presentation ofM is clearly unknotted. Given any two unknotted
cells D1 andD2 of the same dimension inM, there is an isotopy ofM
leaving∂M fixed and takingD1 onto D2. Given two unknottedk-cells
D1 andD2 in a PLn-manifold M, k < n, D1 ∩ D2 = ∅, then there is a
n-cell A containingD1 andD2 in D and such that the triple (A,D1,D2)
is equivalent to a standard triple. In particular ifk ≤ n − 2, from the
standard situation, we see that there is a (k+1)-cell A in int M containing
D1 andD2 in ∂A and inducing chosen orientations onD1 andD2. These
remarks will be used in the next chapter.

Now, as a corollary of 7.2.5, if
∑k ⊂ Sn arek andn-spheres and182

n ≥ 2k + 2, then (Sn,
∑k) is unknotted. The next casen = 2k + 1 is a

little more difficult. Actuallyn−k ≥ 3 is enough. But this will be proved
only in the next chapter. Here we sketch a proof of the casen = 2k + 1.
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Proposition 7.2.8.Let S be an n-sphere,
∑

a k-sphere in S , n= 2k+ 1,
and k2. (S,

∑
) is unknotted.

Sketch of the proof: By 7.2.5 it is enough to show that
∑

bounds a
(k + 1)-cell in S. To prove this it is enough to show that ak-sphere in
R2k+1 bounds a (k + 1)-cell. Consider ak-sphereP in R2k+1 and letP
be a simplicial presentation ofP. If σ andτ are two (≤ k)-dimensional
simplexes inR2k+1 and Lσ and Lτ the linear manifolds generated by
them,στ is defined if and only if given any pointx ∈ R2k+1, there is at
most one line throughx meetingLσ andLτ.

ConsiderL = ∪{L(σ,τ)|L(σ,τ) the linear manifold generated byσ,
τ ∈P, for whichστ is not defined.}

The dimension of all suchL(σ,τ) ≤ 2k, henceU = R2k+1− L is open
and dense inR2k+1. By the above remark, if we take any pointx ∈ U ,
then for any (σ, τ), σ ∈ P, τ ∈ P, at most one line throughx meets
σ andτ, that is, at most a finite number of lines throughx meetP more
than once. But each of these finite number lines throughx may meet
P more than twice. By similar arguments using triples (σ, τ, ρ), σ, τ,
ρ ∈ P, we can get an open dense setU ′ ⊂ R2k+1 such that ifx ∈ U ′,
only a finite number of lines meetP more than once, and each such
meetsP exactly twice. Now we choose such a pointx; let L1, . . . , Lp 183

be the lines throughx which meetP at two points. On eachLi, call
the point onP nearer tox asNi , and the otherFi , and consider the set
N1, . . . ,Np. If k ≥ 2, we can putN1, . . . ,Np is a 1-cell inP not meeting
Fi. Let N be a regular neighbourhood of that 1-cell inP. We can choose
N so thatFi < N for all i. N is ak-cell and (its complement inP) sayF
is anotherk-cell x ∗ N is a (k + 1)-cell, ∂(x ∗ N) = N ∪ x ∗ ∂N, andF
meetsx ∗ N, exactly in∂N. Hence by theorem 7.1.6, here is an isotopy
of R2k+1 takingN ontox∗ ∂N and keepingF fixed. But now (x∗ ∂)∪ F
is the boundary of the (k+1)-cell x∗F. SinceP is moved to (x∗∂N)∪F
by an isotopy,P also bounds some (k+ 1)-cell.



Appendix to Chapter VII

In the theory of regular collapsing, let us add the followingoperation184

(due to J.H.C. Whitehead): also namely the operation of removing a
principal simplex (open) from a simplicial presentation. This is called
“perforation”. If S is a simplicial presentation, andS ′ is obtained from
by removing a principali-simplex, we will say that “S ′ is obtained from
S by a perforation of dimensioni”, or more briefly “S ′ is obtained
from S by perforation (i)”. Ifn the definition or regular collapsing, we
did not put the restriction that the dimension of the major simplex should
be greater than that of the outer edge, then perforation alsowould come
under regular collapsing. Since regular collapsing as defined in 7.1 does
not change the homotopy type (even the simple homotopy type), where
as perforation does, we prefer to distinguish them.

A.1. Let S ′ ⊂ S be simplicial presentations such thatS ′ is contained
from S by an elementary regular collapse (n) at outer edgeσ and major
simplex∆ = στ. Let ρ ∈ S ′. Then

(a) Lk(ρ,S ) = Lk(ρ,S ′) if ρ is not a face of∆.

(b) If τ ≤ ρ < ∆, then Lk(ρ,S ′) is obtained fromLk(ρ,S ) by a
perforation of dimension (n− dimρ − 1).

(c) If ρ < ∆ andτ � ρ, thenLk(ρ,S ′) is obtained fromLk(ρ,S ) by
an elementary regular collapse of dimension (n− dimρ − 1).

The verification is easy. The only faces of∆ which are not covered
by (b) and (c) above are of those inS −S ′, that is those which contain185

σ as face. Of course these do not appear inS ′.
SupposeS collapses regularly (n) to Z . If ρ ∈ S − Z , ρ has

to disappear in some collapse; let us denote the major simplex of the
regular collapse (n) in whichρ is removed by∆ρ. If σρ is the outer edge
of the particular collapse, thenσρ ≤ ρ. What all is left ofLk(ρ,S ) at
this stage isLk(ρ{∆ρ}). With this notation, using A.1, we have easily the
following:

A.2

152
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(a) If ρ ∈ Z , thenLk(ρ,Z ) is obtained fromLk(ρ,S ) by perfora-
tions and regular collapses of dimension (n− dimρ − 1).

(b) If ρ ∈ S − Z , thenLk(ρ, {∆ρ}) is obtained fromLk(ρ,S ) by
perforations and regular collapses of dimension (n− dimρ − 1).

Let B ⊂ a be simplicial presentations and supposeB is obtained
from a by regular collapses and perforations of dimensioni. Then we
can rearrange the operations so that perforations come firstand regular
collapses later. This is easily seen by considering one perforation and
one regular collapse. If the perforation comes after the regular collapse,
we can reverse the order; of course the converse is not true. By a fi-
nite number of such changes, we can perform the perforationsfirst and
the regular collapses later, so that the end result is stillB. If |a| is a
connected PL(i)-manifold, the effect of a perforation (i) upto homotopy
type is the same as removing a point from the interior of|a|. Since a
regular collapse does not change the homotopy type, we have

A.3. If |a| is a connectedi-manifold, andB is obtained from byk perfo- 186

rations (i) and certain elementary regular collapses (i), then |B| has the
same homotopy type as|a| with k interior points removed. In particular
if |a| is a i-cell then|B| has the homotopy type of a wedge ofk spheres
of dimension (i − 1). If |a| is a i-sphere then|B| has the homotopy type
of a wedge of (k− 1) spheres of dimension (i − 1).

Of course, in the above wheni = 1, the wedge of 0-spheres has to
interpreted properly. That is we should take the wedge ofk 0-spheres to
be (k+1) distinct points, in particular ifk = 0 to be just a point. Suppose
|a| is a i-cell, and|B| has the homotopy type as point, for example when
|B| is a i-cell or an (i − 1)-cell. Then therecannotbe any perforations.
If |a| is a cell and|B| = ∂|a|, there is exactly one perforation. If|a| is a
i-sphere and|B| andi-cell in it, again, there is exactly one perforation.

It should be remarked, that all the above statemetns are madefor
the sake of proving Lemma 7.1.5 to which we proceed now. Let usfirst
recall the definition of the upper boundary. ConsiderS , a simplicial
presentation of ann-cell A regularly collapsing (n) to Z , where|Z | = B
is an (n− 1)-cell in A. Let the individual stages be

S = S1, . . . ,Sp = Z ,
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whereSi+1 is obtained fromSi by an elementary regular collapse (n)
at outer edgeσi and major simplex∆i = σiτi . (This is the hypothesis
for the rest of the appendix). Then the upper boundary ofSi (denoted
byσ(Si |Z )) is defined inductively as follows:

∂(S1|Z ) = ∂A− B = (∂|S1| − |Z |)

∂(Si+1|Z ) = {∂(Si |Z ) − σi ∗ ∂τi} ∪ ∂σi ∗ τi .

187

The trouble with this definition is that it is not clear that itis well
defined, e.g. thatσi ∗ ∂τi ⊂ ∂(S i |Z ). So we considr the following:

σ′(Si |Z ) = ∪{E|E is an (n − 1)-simplex ofSi such that (1) if
E ∈ Si − Z then E is the face of exactly onen-simplex of Si (2)
if E ∈ Z then E is the face of non-simplex of Si.} We claim that
∂(Si |Z ) = ∂

′
(Si |Z ). To begin with they are equal, that is wheni = 1.

Suppose they are equal fori. Then we will show that they are equal for

i + 1 also. In∂
1
(Si |Z ) and∂

1
(Si+1|Z ), the only changes can be from

faces of∆i . Now all the (n − 1)-simplexes in{σi} ∗ {∂τi} have to be in
δ1(Si |Z ) since∆i is the onlyn-simplex ofSi having them as faces. So

by inductionσi ∗ ∂τi is really in∂(Si |Z ). Now consider∂
1
(Si+1|Z ).

None of the (n− 1)-simplexes of{σi} ∗ {∂τi} is in this, since they are not
in Si+1. The (n− 1)-simplexes of{∂σi} ∗ {τi} have to be inσ1(Si+1|Z ).
For, consider any (n− 1)-simplexE of {∂σi} ∗ {τi}. If E is in Z , then∆i

is the onlyn-simplex ofS havingE as face, since that is removed there
is non-simplex ofSi+1 havingE as a face. IfE ∈ S − Z , there are
two n-simplexes inS havingE as a face. One of them∆i is removed.
The other should be inSi+1, since otherwiseE cannot be removed in188

any of the later collapses. Thus∂σi ∗τi is in ∂
1
(Si+1|Z ). Since we have

accounted for all the (n−1)-faces of∆i , these are the only changes from
∂
′
(Si |Z ) to ∂

′
(Si+1|Z ), that is

∂
1
(Si+1|Z ) = {∂

1
(Si |Z ) − σi ∗ ∂τi} ∪ (∂σi ∗ τi).

Hence by induction∂ and∂
1

coincide for alli, and∂ is well defined.

A.4. τi 1 ∂(Si |Z ).
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Proof. Supposeτi ⊂ ∂(Si |Z ). There are gour possibilities:

Either (1) τi ⊂ ∂A− B
or (2) τi ⊂ ∂B
or (3) τi ⊂ B− ∂B
or (4) τi ⊂ A− ∂A.

1

4

3
2

We will show thatτi ⊂ ∂(Si |Z ) is impossible in each case.
By A.2 in cases (2) and (3)Lk(τi ,Z ) is obtained fromLk(τi ,S )

by perforations and regular collapses of dimension (n − dimτi − 1).
In cases (1) and (4)Lk(τi , {∆τi }) (with the notation of A.2) is obtained
from Lk(τi ,S ) by perforations and regular collapses of dimension (n−
dimτi − 1). By A.3 and remarks thereafter, there cannot be any perfo-
rations in cases (1) and (2) and there is exactly one perforation in cases
(3) and (4).

By A.1; (b) in the collapse at outer edgeσi and major simplex∆i =

σiτi , what happens toLk(τi ,Si) is exactly a perforation of dimension189

(n − dimτi − 1). So straightaway we haveτi ⊂ ∂A − B or τi ⊂ ∂B is
impossible.

So, the only possibilities that remain are (3) and (4). Let usconsider
case (4) first. We claim that ifτi ⊂ ∂(Si |Z ) the one perforation on
Lk(τi ,S ) is already made. Since|Lk(τi ,S )| is a sphere, any (n − 1)-
simplex ofS havingτi as a face must be the face of twon-simplexes.
Soτi cannot be in∂(S1|Z )(S = S1). For the same reason,τi cannot
be in any∂(S j |Z ) with Lk(τi ,S j) = Lk(τi ,S1). Thusτi ⊂ ∂(Si |Z )
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implies Lk(τi ,Si) , Lk(τi ,S1). SupposeLk(τi ,S ) is changed for the
first time in thekth

i collapse,ki < i, that isLk(τi ,Ski ) = Lk(τi ,S1), but
Lk(τi ,Ski+1) , Lk(τi ,S1). SinceLk(τi ,S1) is a sphere; this operation
from Lk(τi ,S1) = Lk(τi ,Ski ) to Lk(τi ,Ski+1) is necessarily a perfora-
tion. So the one perforation onLk(τi ,S ) is already made. But in theith

collapse also what happens toLk(τi ,Si) is a perforation since∆i = σiτi

(by A.1.b). Since this is impossibleτi cannot be inA− ∂A.
Let us consider the remaining possibility (3),τi ⊂ B−∂B. |Lk(τi ,S )|

is ani-cell with boundary|Lk(τi ,Z )|. If τi ⊂ ∂(Si |Z ), we have to show
that τi ⊂ B − ∂B is also impossible. The case when dimτi = n − 1 is
easily disposed of, since in that case there is non-simplex havingτi as a
face. As in case (4)τi is not in∂(S1|Z ) andτi cannot be in∂(S j |Z ) if
Lk(τi ,S1) = Lk(τi ,S j). Again, the first operation onLk(τi ,S1) has to190

be a perforation. For, all the outer edges ofLk(τi ,S1) are inLk(τi ,Z ),
and a regular collapse ofLk(τi ,S1) removes a part ofLk(τi ,Z ). Thus
τi ⊂ ∂(Si |Z ) implies that the one perforation onLk(τi ,S1) is already
done. But then the result of theith collapse will be again a perforation
on Lk(τi ,Si) by A.1.b) since∆i = σiτi . So this is again impossible.

Thusτi cannot be in∂(Si |Z ) for any i. �

A.5. With the hypothesis of A.4.,∂(Si |Z ) is an (n−1)-cell with constant
boundary= ∂(|Z |) = ∂B.

Proof. ∂(S1|Z ) is an (n − 1)-cell with boundary= ∂B. Inductively,
assume that∂(Si |Z ) is an (n− 1)-cell with boundary∂B. By A.4, τi 1

∂(Si |Z ); in particular it cannot be in∂B. Sinceτi 1 ∂(Si |Z ), no
simplex ofS havingτi as a face can be in∂(Si |Z ). So∂σi∗τi intersects
∂(Si |Z ) precisely along∂σi ∗ ∂τi. Define∂i : ∂(Si |Z ) → ∂(Si+1|Z )
by ϕi: Identity outsideσi ∗ ∂τi , and onσi ∗ ∂τi, ϕi is the join of the
identity map on∂σi ∗ ∂τi and the map which carries the centre ofσi to
the centre ofτi ·ϕi is clearly a polyhedral equivalence; hence∂(Si+1|Z )
is an (n − 1)-cell. To see that∂(∂(Si |Z )) = ∂(∂(Si+1|Z )), observe
that the part ofσi ∗ ∂τi (if any) which is in∂(∂(Si |Z )) should be in
∂σi ∗ ∂τi. Sinceϕi is identity on this part, both the cells have the same
boundaries. �



Chapter 8

Handles ands-cobordism

8.1 Handles
191

A handle of dimension nandindex k, briefly called a (n, k)-handle, (or a
k-handle) is a pair (H,T) consisting of ann-cell H and (n− 1)-manifold
T of ∂H, such that there is a polyhedral equivalence

f : H ≈ A ∗ B

whereA is a (k − 1)-sphere,B a (n − k − 1)-sphere, andf (T) a regular
neighbourhood ofA in A ∗ B.

We denote handles by lower case script letters, ash, K, and so on.
Given a handle (H,T) as above, we callT the attaching tubeand

∂H − T thetransverse tubeof the handle. The polyhedral equivalencef
in the definition can be so thatf (T) = ϕ−1([0, 1

2]), whereϕ : A∗B→ 0, 1
is the join ofA → 0 andB → 1. When this is so,f −1(A) is called an
attaching sphereand f −1(B) a transverse sphereof the handle.

The pair (H, ∂H − T) is clearly a handle of dimensionn and index
n− k. It is called thedual of (H,T), and denoted by (H,T)∗.

The cone onX is denoted byC(X). We know that, by a standard
mistake,C(A∗B) ≈ C(A)×C(B). This equivalence will makeϕ−1([0, 1

2])
correspond toA × (C(B)). Therefore, in defining a handle, we could
require, in place off , the existence of a polyhedral equivalence 192

g : H ≈ D × ∆

157
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whereD is ak-cell,∆ an (n− k)-cell, and whereg(T) = (∂D) × ∆.
With this formulation, for anye in the interior of∆, then∂D × e is

an attaching sphere; and for anyf in the interior of∆, then f × ∂∆ is a
transverse sphere, in the handle (D × ∆, (∂D) × ∆). If e ∈ int∆, we call
D × e a coreof the handle. Ife ∈ ∂∆, we callD × e a boundary coreor
asurface coreof the handle. Similarly transverse cores are defined, and
the definitions can be extended to arbitrary handles by usingan equiva-
lence with the standard handle (so that even in the standard handle, we
have “more” cores than defined above). Note that there is no uniqueness
about attaching spheres, transverse spheres and cores in a handle, only
the attaching tube and the transverse tube are fixed.

Ex. 8.1.1.If H is ann-cell, andS a (k−1)-sphere in∂H, S is an attaching
sphere of some (n, k)-handle (H,T) if and only if S is unknotted in∂H.

We have the following two extreme cases of (n, k)-handles: If (H,T)
is a (n, 0)-handle there is no attaching sphere (T = ∅), ∂H is the trans-
verse tube as well asthe transverse sphere. Any point in the interior of
H can be considered as a core. If (H,T) is a (n, n)-handle,H is the at-
taching tube as well as the attaching sphere, the whole ofH is the core.
Also, note that for an (n, 1)-handle, the attaching tube consists of two
disjoint (n− 1)-cells.
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a core

attaching tube

a(3.1) - handle

attaching tube

a(3.2) - handle

an attaching
sphere

193

8.2 Relativen-manifolds and their handle presenta-
tions

A relative n-manifold is a pair (M,X), X ⊂ M, such that for everya ∈
M −X, the link ofa in M is either an (n− 1)-cell or an (n− 1)-sphere. If
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(M,X) is a relativen-manifold,∂(M,X) denotes the set of points ofM−X
whose links are cells.∂(M,X) is not a polyhedron, but∂(M,X) ∪ X and
∂(M,X) = ∂(M,X)∪(X∩∂(M,X)) are polyhedra; so that (∂(M,X)∪X,X)
and (∂(M,X),X′) (whereX1

= X∩∂(M,X)) are relative (n−1)-manifolds
without boundary. Any compact set in∂(M,X) is contained in an (n−1)-
manifold contained in∂(M,X).

We sometimes denote a relative manifold (M,X) by Gothic letter194

such asM , and∂(M,X) by ∂M .
If ( M,X) is a relativen-manifold, andA an n-manifold, such that

A ∩ M = ∂A ∩ ∂(M,X) is an (n − 1)-manifold, then it is easily proved
that (using, of course, theorems on cells in spheres etc..) that (M∪A,X)
is a relativen-manifold. As in the case of the manifolds, we have the
following proposition:

Proposition 8.2.1.Let (M,X) be a relative n-manifold, C an n-cell such
that C∩M = ∂C∩ ∂(M,X) is an(n− 1)-cell. LetU be any neighbour-
hood of C∩ M in M. Then there is an equivalence

f : (M,X) ≈ (M ∪C,X)

which is identity outsideU .

Let B ⊂ ∂A, and f : B→ M be an embedding withf (B) ⊂ ∂(M,X),
andB an (n − 1)-manifold. Then there is an identification polyhedron
M ∪ f A; and with the obvious convention of not distinguishing nota-
tionally betweenX and its image in (M ∪ f A), we have (M ∪ f A,X)
is a relativen-manifold, which we shall say is obtained from (M,X)
by attaching(A, B) by an embedding f. Of course, doing all this rig-
orously involves abstract simplicial complexes, their realizations and
proper abuse of notation; and we assume that this is done in each case
without mention.

Let M = (M,X) be a relativen-manifold, andh1, . . . , hp be (n, i)-
handles,h j = (H j ,T j). We speak ofM + h1 + · · · + hp, when

(1) Hi ∩ H j = ∅

(2) Hi ∩ M = Ti ⊂ ∂M , for all i.195
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In such a case by definition,

M + h1 + · · · + hp = (M ∪ H1 ∪ . . . ∪ Hp,X).

And we say thatM + h1+ · · ·+ hp is obtained fromM by attaching
p(n, i)-handles orp i-handles.

Also if we have fi : Ti → ∂M embeddings fori = 1, . . . , p and
fi(Ti) ∩ f j(T j) = ∅ for i , j, we may look at what we obtain fromM
by attachingh1, . . . , hp by the mapsf1, . . . , fp. The result we denote by
M ∪ f1 h1 ∪ . . . ∪ fp hp and say that it is obtained fromM by attaching
p(n, i)-handles by imbeddingsfi .

Definition 8.2.2.A handle presentationof a relativen-manifold (M,X)
is a (n+ 2)-tupleH = (A−1, . . . ,An), of polyhedra such that,

(1) X ⊂ A−1 ⊂ . . . ⊂ An = M

(2) A−1ց X

(3) (Ai ,X) = ai is a relativen-manifold for all i

(4) For eachi, there exist finitely many handles of indexi h(i)1 , . . . ,

h
(i)
pi

, such thatai = ai−1 + h
(i)
1 + · · · + h

(i)
pi

.

If follows from (3) and (4) thatA−1 is a neighbourhood ofX in M.
A−1 ց X implies thatA−1 ց N, for some regular neighbourhoodN of
X in M (see Chapter 6). We can even assume thatN ⊂ int MA−1. Now
if B = bdMN, thenA−1 − N ց B, hence is a collar overB. Thus there is 196

an equivalence ofA−1 to N which fixexX; that is polyhedrallyA−1 just
looks like a regular neighbourhood ofX in M.

Consider a relativen-manifold (M,X) whereM is a PLn-manifold,
andX a PL (n − 1)-manifold in M. Such a relative manifold, we term
a special case. If (M,X) is a special case, andH = (A−1, . . . ,An) is a
handle presentation of (M,X), then clearlyA−1 ≈ X × L, moreover the
equivalence can be assumed to carryx to (x, 0) for x ∈ X.

Theorem 8.2.3.Every relative manifold has a handle presentation.
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Proof. LetM = (M,X) be a relativen-manifold; letP be a regular pre-
sentation ofM with a subpresentationX coveringX. With a centering
η of P, we define the derived subdivisiond(P , η), and some derived
subdivisiond2P of d(P , η). Define

C∗ = |S t(ηC, d2P)|, for C ∈P

A−1 = ∪{C
∗|C ∈X }

Ak = ∪{C
∗|C ∈X , or C ∈P and dimC ≤ k}.

To thow thatH = (A−1, . . . ,An) is a handle presentation ofM , we
note:

(1) A−1 = |Nd(P,η)(dX )| is a regular neighbourhood ofX in M.

(2) (A−1,X) is a relative manifold. In fact, ifQ is any subset ofP,
containingX , andQ∗ denotes∪{C∗|C ∈ Q}, then (Q∗,X) is a
relativen-manifold.

These are easily proved.197

The only thing that remains to be shown is thatA−k = Ak−1 + k-
handles. Thek-handles evidently have to be (C∗,C∗ ∩ {∂C}∗), for C ∈
P − X and dimC = k. There are two different cases to consider,
depending on whetherC is in the interior or boundary ofM . Any how,
C∗ is ann-cell, sinceηC ∈ M − X and (M,X) is a relativen-manifold.

There is a canonical isomorphism

Lk(ηC, d2P) ≈ d(Lk(ηC, dP)),

which for D < C, takesC∗ ∩ D∗ to

D+ = |S t(ηD, d(Lk(ηC, dP)))|.

This shows thatC∗ ∩ {∂C}∗ corresponds to

NLk(ηC,dP)(d{pC}) in d(Lk(ηC, dP)).

A further fact is:

Lk(ηC, dP) = d{∂C} ∗ λC.
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Now if C is an interiork-cell, |λC| is an (n − k − 1)-sphere; and so,
composing all these facts together, we get a polyhedral equivalencef :
∂(C∗) ≈ ∂C ∗ |λC| which takesC∗ ∩ {∂C}∗ onto a regular neighbourhood
of ∂C. This directly shows that (C∗,C∗ ∩ {∂C}∗) is ak-handle.

If C is a boundaryk-cell, then|λC| is an (n− k− 1)-cell. LetF be a
cone on|λC|; we then use the standard trick which makesC∗, which was
the cone on|Lk(ηC, d2P)|, which is equivalent to∂C ∗ |λC|, equivalent
to C × F:

g : C∗ ≈ C × F,

in which the setC∗ ∩ {∂C}∗, which was mapped toNd{pC}∗λC(d{∂C}), 198

corresponds to
g(C∗ ∩ {∂C}∗) = (∂C) × F.

This shows, from our second way of looking at handles, that (C∗,
C∗ ∩ {∂C}∗) is ak-handle.

We might remark that in case (i),C ∩ ∂(C∗) is an attaching sphere,
but that in case (ii), this lies in the boundary of the attaching tube; that
is why case (ii) is somewhat more complicated than case (i). �

8.3 Statement of the theorems, applications, com-
ments

Here we state the main theorems of handle-theory and apply them to
situations such ass-cobordism and unknotting. We outline the proofs,
so that the rest of our work is devoted to the techniques whichmake this
outline valid. We say a few words about gaps (such as a thorough discus-
sion of Whitehead torsion) for which there are adequate references. Our
theorems and proofs are quite similar to those well-known for differen-
tial manifolds; of course, there is no worry about rounding off corners;
there is no need to use isotopy-extension theorems, since cellular moves
suffice. Finally, the crucial point is for homotopy to imply isotopy in
certain unstable dimensions; the result needed here has been described
by Weber, [see C. Weber, L’élimination des points doubles dans le cas
combinatoire, Comm. Math. Helv., Vol.41, Fasc 3, 1966-67];for variety
and interest, we prove the necessary result in a quite different way



164 8. Handles ands-cobordism

Definition 8.3.1.A relative n-manifold (M,X) is said to begeometri-199

cally trivial, if M ց X.

If ( M,X) is a special case, whereX is an (n−1)-submanifold of∂M,
M andn-manifold, when geometric triviality means just thatM ≈ X × I
with X corresponding toX × 0.

When A ⊂ B are finite CW-complexes, withA ֒→ B a homotopy
equivalence, thetorsion of (B,A), denoted byτ(B,A), is a certain ele-
ment of the Whitehead group ofπ1(B).

Definition 8.3.2.Suppose (M,X) is a special case. That (M,X) is alge-
braically trivial means:

(1) X ֒→ M is a homotopy equivalence.

(2) τ(M,X) = 0

(3) ∂(M,X) ֒→ M induces an isomorphism onπ1.

[Remark: Using a form of Lefschetz duality in the universal cov-
ering spaces, it is provable that (3) is implied by (1) plus the weaker
condition that∂(M,X) ֒→ M induces an injection onπ1].

If ( M,X) is not a special case, letN be a regular neighbourhood of
X in M. DefineM1 = M − N, andX1 = bdMN. Then (M1,X1) is a spe-
cial case, uniquely determined, upto polyhedral equivalence, by (M,X).
We call (M,X) algebraically trivial whenever (M1,X1) is algebraically
trivial.

When we know of (M,X) that only conditions (1) and (3) are satis-
fied, (M,X) being special, we call (M,X) anh-cobordism, andτ(M,X)
the torsionof this h-cobordism.

Clearly, if (M,X) is geometrically trivial, it is also algebraically triv-200

ial. The converse, we shall show, is true for relativen-manifold,n ≥ 6.
Let (M,X) be a relativen-manifold which is a special case. Here are

the main results.

Theorem A. If (M,X) is 1-connected, andℓ ≤ n − 4, then(M,X) has
a handle presentation with no handles of indices≤ ℓ. If furthermore,
(M,X) has a handle presentation with handles of indices≤ p only,
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then it has a handle presentation with handles of indices≥ ℓ + 1 and
≤ Max(ℓ + 2, p) only.

Theorem B. If (M,X) has a handle presentation with handles of indices
≤ n− 3 only, and n≥ 6, and if X ֒→ M is a homotopy equivalence with
τ(M,X) = 0, then it has a presentation without any handles; so that
M ց X.

Theorem C. If (M,X) is algebraically trivial and n≥ 6, then it is geo-
metrically trivial.

Theorem C holds for the general relativen-manifold, and this fol-
lows from Theorem C in the special case by referring to the special case
(M1,X1) described earlier.

Theorem A and B imply Theorem C byduality, which is described
in 8.8. We start with a handle presentationH of (M,X); by Theorem
A we can change the dual presentationH ∗ into one with no handles of
index≤ n− 4; dualizing this, we get a handle presentationH1 of (M,X)
without handles of indices≥ 4; sincen ≥ 6, Theorem B applies toH1.

8.3.3 We now list the techniques used in proving Theorems A and B.

(1) Cancelling pairs of handles.In a handle presentationH = 201

(A−1, . . . ,An), sometimes there is a very explicit geometrical reason why
a (k − 1)-handleh and ak-handleK nullify each other, so that they can
be dropped from the handle presentation. IfN is the transverse tube of
h, andT the attaching tube ofK, andN −N∩ T andT −N ∩T are both
(n − 1)-cells, this is the case. This alone suffices to prove Theorem A
whenℓ = 0. We discuss this in 8.5.

(2) Modifying the handle presentation.We want to shrink down
transverse and attaching tubes until they become manageable, and to
isotop things around. This can be done without damaging the essen-
tial structure, which consists of (a) The polyhedral equivalence class
of (M,X), (b) The number of handles of each index, (c) The salient
features of the algebraic structure, namely, the mapsπk(Ak,Ak−1) →
πk−1(Ak−1,Ak−2) and bases of these groups. This is done in 8.4.
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(3) Inserting cancelling pairs of handles,the opposite to (1) is some-
times necessary in order to simplify the algebraic structure; this occurs
in 8.6. This, together with (1) and (2), allows us to prove Theorem A
for ℓ = 1, at the expense of extra 3-handles. Once we have done this,
there are no more knotty group-theoretic difficulties, and the universal
covering spaces of theAi ’s are all embedded in each other. Then we can
take a closer look at.

(4) The algebraic structure.This consists of the boundary maps
πk(Ak,Ak−1) → πk−1(Ak−1,Ak−1). When there are no 1-handles, these
groups are free modules over the fundamental-group-ring, with bases
determined, upto multiplying by±π, by the handles. We can change202

bases in certain prescribed ways by inserting and cancelling pairs of
handles. This allows us to set up a situation where a (k − 1)-handle and
a k-handlealgebraicallycancel. We discuss this in 8.9. And now, both
Theorems A and B follow if we can get algebraically cancelling handles
to cancel in the real geometric sense. This amounts to getting anisotopy
out of a homotopyof attaching spheres; this is, of course, the whole
point; all the other techniques are a simple translation to handle presen-
tations of the theory of simple homotopy types of J.H.C. Whitehead.

(5) The isotopy lemma.This is the point where all dimensional re-
strictions really make themselves felt. The delicate case,which applies
to (n− 3)-and (n− 4)-handles, just barely squeaks by.

8.3.4 Thes-cobordism theorem. By an s-cobordismis meant a triple
(M; A, B), where M is an n-manifold; A and B are disjoint (n − 1)-
submanifolds of∂M; ∂M−A∪B is polyhedrally equivalent to∂A× I in
such a way that∂A corresponds to∂A×0 (and, of course,∂B to ∂A×1);
A ֒→ M andB ֒→ M are homotopy equivalences; andτ(M,A) = 0.

A trivial cobordism is a triple (M; A, B) equivalent to (A × I ; A ×
0,A× 1).

Theorem . If (M; A, B) is an s-cobordism, anddim M ≥ 6, then (M;
A, B) is a trivial cobordism.

Proof. This follows from theorem C. The pair (M,A) is a relative mani-
fold, special case; and all the hypothesis of Theorem C are clearly valid;
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in particular,π1(B) ≈ π1(∂M−A) ≈ π1(M), sinceB ֒→ M is a homotopy 203

equivalence. Hence, by theorem C, (M,A) is equivalent to (A× I ,A×0).
We know, by assumption, that∂M − A∪ B is a regular neighbourhood
of ∂A in ∂M − A; and clearly∂A× I is a regular neighbourhood of∂A×0
in ∂(A× I ) − A× 0. Thus we can fix up the equivalence of (M,A) to
(A× I ,A× 0) to take∂M − A∪ B onto∂A× I ; this leavesB to map onto
A× 1, which shows the cobordism is trivial. �

We remark that ifπ1(A) is trivial, thenτ(M,A) = 0 automatically. It
is with this hypothesis that Smale originally proved his theorem; various
people (Mazur and Barden) noticed that the hypothesis needed in the
non-simply-connected case, was just thatA ֒→ M he a simple homotopy
equivalence (whence the “s”); i.e. τ(M,A) = 0.

8.3.5 Zeeman’s unknotting theorem. We have already described the
notion of an unknotted sphere.

Theorem . If A ⊂ B, where A is a k-sphere, B an n-sphere, and k≤ n−3,
then A is unknotted in B.

Proof. By induction onn. For n ≤ 5, the cases are all quite trivial,
except fork = 2, n = 5, which has been treated earlier. Forn ≥ 6 we
will show that the pair (B,A) is equivalent to the suspension of (B′,A′)
whereB′ is an (n − 1)-sphere andA′ a (k − 1)-sphere; and clearly the
suspension of an unknotted pair of spheres is unknotted.

To desuspend, forn ≥ 6, we proceed thus:
If x ∈ A, then the link ofx in (B,A) is a pair of spheres which

is unknotted, by the inductive hypothesis. That is to say,A is locally
unknottedin B. In particular, we can find ann-cell E ⊂ B, such that 204

E∩A is ak-cell unknotted inE; and so that (∂E, ∂(E∩A)) is bicollared in
(B,A); in fact, this could have been done whether or notA were locally
unknotted.

DefineF = B− E. By earlier resultsF is ann-cell. Consider the
relative manifold (F, F∩A). It is easily seen that this pair is algebraically
trivial; because of codimension≥ 3 all fundamental groups are trivial,
and so Whitehead torsion is no problem; the homology situation is an
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easy exercise in Alexander duality. Hence, by Theorem C,F collapses
to F ∩ A; sinceF ∩ A is a k-cell, it collapses to a point; putting these
together, (F, F ∩ A) collapses to (pt, pt) in the category of pairs; these
collapses are homogeneous in the pair (B,A) because of local unknot-
tedness. We started with (F, F ∩A) bicollared, and hence, by the regular
neighbourhood theorem, suitably stated for pairs, (F, F ∩ A) is a regular
neighbourhood ofx ∈ A in (B,A), which is an unknotted cell pair (again
using local unknottedness).

Thus (B,A) is the union of two unknotted cell pairs (E,E ∩ A) and
(F, F ∩ A), which shows it is polyhedrally equivalent to the suspension
of (∂E, ∂(E ∩ A)). �

Remark 1. This is just Zeeman’s proof, except that we use our Theorem
C where Zeeman uses the cumbersome technique of ‘sunny collapsing”.

Remark 2. Lickorish has a theorem for desuspending general suspen-
sions embedded inSn in codimension≥ 3. It is possible, by a similar
argument, to replace “sunny collapsing” by Theorem C. The casen = 5205

can be treated by a very simple case of sunny collapsing.

Remark 3. If A ⊂ B, whereA is an (n − 2)-sphere locally unknotted
in the n-sphereB, andn ≥ 6, andB − A has the homotopy type of a
1-sphere, thenA is unknotted inB.

Proof exactly as in the codimension 3 case; we need to know that
Whitehead torsion is OK, which it is since the fundamental group of the
1-sphere is infinite cyclic; and this group has zero Whitehead torsion,
by a result of Graham Higman (units of group-rings).

Remark 4. It has been a folk result for quite a while that the Unknot-
ting Theorem followed from the proper statement of theh-cobordism
theorem.

8.3.6 Whitehead torsion. For any groupπ, there is defined a commu-
tative groupWh(π). Elements ofWh(π) are represented by square, in-
vertible matrices over the integer group ringZπ. Two matricesA and
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B represent the same element inWh(π), if and only if there are iden-
tity matricesIk and Iℓ, and a productE of elementary matrices, so that
A⊕ IK = E. (B⊕ Iℓ). Here

Ik denotes thek × k identity matrix.

U ⊕ V =

(
U 0
0 V

)

An elementary matrix is one of the following:

(a) In + ei j , whereei j is then× n matrix all of whose entries are zero
except for thei j th which is 1; andi , j.

(b) En(α; K), which is then × n matrix equal to the identity matrix,
except that thekkth entry isα; we restrictα to be an element of
±π.

By cleverly composing matrices of this sort, we can obtainIn + λei j 206

for anyλ ∈ Zπ, for instance.
Addition in Wh(π) is induced from⊕, or, equivalently, from matrix

multiplication.
The geometric significance ofWh(π) is that a homotopy equivalence

f : K → L between finiteCW-complexes determines an element of
Wh(π), π = π1(K), called thetorsion of f . If the torsion is zero, won-
derful things (e.g.s-cobordism) happen.

If π is the trivial group, thenWh(π) = 0, basically becauseZπ is
then a Euclidean domain.

If π is infinite cyclic, thenWh(π) = 0, by Higman. His algebraic
argument is easily understood; it is, in some mystical sense, the ana-
logue of breaking something the homotopy type of a circle into two
contractible pieces on which we use the result for the trivial group.

If π has order 5, thenWh(π) , 0. In fact, recent computations show
Wh(π) to be infinite cyclic.

Various facts aboutWhcan be found in Milnor’s paper. [“Whitehead
Torsion” Bulletin of A.M.S., Vol. 72, No. 3, 1966]. In particular, the
torsion of anh-cobordism can be computed (in a straight-forward, may
be obvious, way) from any handle presentation.
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There is another remark about matrices that is useful. LetA be an
n × k matrix overZπ, such that anyk-row-vector [i.e. 1× k matrix] is
some left linear combination, with coefficients inZπ, of the rows ofA;
in other words,A corresponds to asurjectionof a freeZπ-module with207

n basis elements onto one withk basis elements. Let 0k denote thek× k
zero matrix. Then there is a product of elementary (n + k) × (n + k)
matrices,E, so thatE.

(
A
0k

)
=

(
Ik

0n×k

)
. This is an easy exercise.

8.3.7 In homotopy theory we shall use such devices as univesal cover-
ing spaces, the relative Hurewicz theorem, and some homology compu-
tations (with infinite cyclic coefficient group). For example, if (H,T) is
ak-handle, then

Hi(H,T) = 0 for i , h

Hk(H,T) = Z, an infinite cyclic group,

We always arrange to have the fundamental group to act on the left
on the homology of the universal covering space.

Suppose that (M,X) is a relativen-manifold, special case, and (N,
X) = (M,X)+h1+ · · ·+hp, where theh’s are handles of indexk. Suppose
X, M, N are connected, and thatπ1(M)→ π1(N) is an isomorphism; this
implies that we can imagine not only thatM ⊂ N, but thatM̃ ⊂ Ñ, where
“∼” denotes universal covering space. Callπ = π1(M).

Then the homology groupsHi(Ñ, M̃) are left Zπ-modules. More
explicitly, Hi(Ñ, M̃) = 0 if i , k; and Hk(Ñ, M̃) is a freeZπ-module
with basis{[h1], . . . , [hp]}. What does [h j ] mean? We take any lifting
of h j = (H,T) to a handle (H′,T′) in Ñ; we pick either generator of
Hk(H′,T′), and map intoHk(Ñ, M̃) by inclusion, the result is [h j ]. The
ambiguity in defining [h j ] is simply stated: If we make another choice,208

then instead of [h j ] we haveα[h j ], whereα ∈ ±π.
Whenk ≥ 2, we can go further and say that, by the relative Hurewicz

theorem,πk(Ñ, M̃) ≈ Hk(Ñ, M̃) ≈ πk(N,M). And thus we have a fairly
well-defined basis ofπk(N,M) as a 2π-module, dependent on the han-
dlesh1, . . . , hp.

This shows, by the way, that (N,M) is (k − 1)-connected. We might
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have expected this, since, homotopically,N is obtained fromM by at-
tachingk-cells.

Another thing is a version of Lefschetz duality as follows: If M is
an oriented manifold, andX ⊂ M with X a polyhedron, thenHi(M,X) ≈
Hn−i(M, ∂M − X). Since universal covering spaces can all be oriented,
this works there. In particular, ifX ֒→ M is a homotopy equivalence,
thenHi(M̃, X̃) = 0 for all i, and soHi(M̃, ∂M̃ − X̃) = 0 for all i. When
∂M̃− X̃ is the universal covering space of∂M−X, that is, whenπ1(∂M−
X) ≈ π1(M), then the relative Hurewicz theorem will show that∂M −
X ֒→ M is a homotopy equivalence.

8.3.8 Infinite polyhedra. An infinite polyhedron Pis a locally compact
subset of some finite-dimensional real vector space, such that for every
x ∈ P, there is an ordinary polyhedronQ ⊂ P, such thatx is contained
in the topological interior ofQ in P. A polyhedral map f: P1 → P2,
between infinite polyhedra is a function, such that for everyordinary
polyhedronQ ⊂ P1, the graphΓ( f |Q) is an ordinary polyhedron.

The category of infinite polyhedra includes ordinary polyhedra; and 209

in addition, every open subset of an infinite polyhedron is aninfinite
polyhedron.

The link of a point in an infinite polyhedron is easily defined;it turns
out to be a polyhedral equivalence class of ordinary polyhedra. Hence
the notions of manifold any boundary in this setting are easily defined.

If M is an infiniten-manifold, then any compact subsetX ⊂ M is
contained in the topological interior of some ordinaryn-manifold N ⊂
M.

As for isotopies, we restrict ourselves to isotopies which are the
identity outside some compact set; such are the isotopies obtained from
finitely many cellular moves. Any such isotopy on the boundary of M
can be extended to an isotopy of this sort onM.

We can talk of regular neighbourhoods of ordinary (= compact) sub-
polyhedra in an infinite polyhedron, and the same theorems (including
isotopy, in this sense) hold.

These concepts are useful here because if (M,X) is a relativen-
manifold, then∂(M,X) is an infiniten-manifold. And now, any isotopy
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of ∂(M,X) extends to an isotopy ofM, leaving a neighbourhood ofX
fixed. In other words, this is convenient language for dealing with rela-
tive manifolds. This is the only situation where we shall speak of infinite
polyhedra; it is, of course, obvious that infinite polyhedracan be of use
in many other cases which are not discussed in these notes (inparticular,
in topological applications of the “Engulfing Theorem”).

8.4 Modification of handle presentations
210

If X = (A−1, . . . ,An) andH ′
= (B−1, . . . , Bn) are handle presentations

of the relativen-manifolds (M,X) and (M1,X1) respectively, anisomor-
phismbetweenH andH 1 is a polyhedral equivalenceh : M → N
taking X onto X′ andAi onto Bi for all i. Such an isomorphism gives a
1− 1 function between handles and preserves various other structures.

Let H = (A−1, . . . ,An) be a handle presentation of the relativen-
manifold (M,X) and let f : Ak → Ak be a polyhedral equivalence taking
X onto itself. Then byH f is meant the handle presentation (B−1, . . . , Bn)
of (M,X), where

Bi = f (Ai) for i < k

Bk = f (Ak) = Ak

Bi = Ai for i > k.

It is clear thatH f is a handle presentation of (M,X), the handles of
index> k are equal to those ofH , while a handle ofH of index≤ k
will correspond viaf to a handle ofH f .

There is another way upto isomorphism of looking atH f −1.
Supposef : Ak → Ak is as before. Let (H,T) be a (k + 1)-handle

of the presentationH . Attach (K,T) to Ak not by the inclusion ofT in
∂(Ak,X), but by f |T. In this way attaching all (k+1)-handels we get a rel-
ative manifold (Bk+1,X) and an equivalencefk+1 extendingf . Similarly
attach the (k+ 2)-handles toBk+1 one for each (k+ 2)-handle ofAk+2 by
the mapfk+1 suitably restricted; and so on. In this way we get a relative
manifold (Bn,X) and a handle presentation (A−1, . . . ,Ak, Bk+1, . . . , Bn)211

of (Bn,X). This will be denoted byH f . fn gives an equivalence of
(M,X) with (Bn,X) and an isomorphism ofH f −1 with H f .
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The main use in this chapter of the above modifications is for sim-
plifying handle presentations, that is to obtain presentations with as few
handles as possible, or without any handles or without handles upto cer-
tain index using the given algebraic data about (M,X). It should be noted
that (1)H f need not be isomorphic toH and (2)H f is not a handle
presentation of (M,X). (2) is not a serious drawback, sinceH f isomor-
phic toH f −1 via f −1

n and so whatever simplification one can do forH f

can be done also forH f −1, which is a handle presentation of (M,X) or
we can first do the simplifications inH f and pull the new handle pre-
sentation to one of (M,X) by f −1

n . We will adopt the procedure which
is convenient in the particular case. Iff : Ak → Ak is isotopic to the
identity leavingX fixed, (and this will be usually the case), thenH and
H f will have many homotopy properties in common; but more of this
later.

The most frequently used ways of modifications are catalogued be-
low:

8.4.1 Let (H,T) be ak-handle of the presentationH = (A−1, . . . ,An)
of (M,X). Then if S is a transverse sphere andN = ∂H − T the trans-
verse tube, we haveN a regular neighbourhood ofS in ∂(Ak,X). If N′

is any other regular neighbourhood ofS in ∂(Ak,X), there is an isotopy
of ∂(Ak,X) relatingN andN′ and this can be extended toAk, to give an 212

end resultf1, with f1(N) = N′. ThenH f1 has its new handle (f1H, f1T)
whose transverse tube inN′.

8.4.2 Let (H1,T1) be a (k + 1)-handle ofH , with an attaching sphere∑
. ThenT1 is a regular neighbourhood of

∑
in ∂(Ak,X). If T′1 is any

other regular neighbourhood of
∑

in ∂(Ak,X) we can obtain a polyhedral
equivalencef2 of Ak which isotopic to 1 fixingX, such thatf2(T1) =
T′1. ThenH f2 (which is isomorphic toH f −1

2
) will have its (k + 1)-

handle corresponding to (H1,T1) to have attaching tubeT′1, and handles
of index≤ k will be unchanged.

Combining 8.4.1 and 8.4.2, we have

Proposition 8.4.3. Let H = (A−1, . . . ,An) be a handle presentation
of the relative n-manifold(M,X); let h be a k-handle andK a (k + 1)-
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handle with a transverse sphere ofh being S and an attaching sphere
of K being

∑
. Let N and T be regular neighbourhoods of S and

∑
in

∂(Ak,X). Then there is a handle presentationH ′ of (M′,X′) is equiva-
lent to (M,X) with H ′ being isomorphic toH f for some f : Ak → Ak

isotopic to the identity leaving X fixed; so that inH ′ the handlesh′ and
K′ corresponding toh andK are such that:

the transverse tube ofh′ is N,

the attaching tube ofK′ is T , and

the kth level A′k of H ′ is equal to the

kth level Ak of H .

Proof. Using the equivalencesf1 and f2 given by 8.4.1 and 8.4.2,
(H f1)

f2 is the required presentation. It is isomorphic to the presenta-213

tion H( f −1
2 f1) of (M,X). Since bothf1 and f2 are isotopic to the identity

leaving X fixed, f −1
2 f1 has the same property. The last point is obvi-

ous. �

8.4.4 Let K = (H,T) be a (k + 1)-handle ofH , andS an attaching
sphere ofK. S is in ∂(Ak,X). Suppose thatS′ is anotherk-sphere in
∂(Ak,X) and that there is an equivalencef of Ak takingX onto itself and
such thatf (S) = S1. Then inH f , the handleK1 corresponding toK
will have S1 as an attaching sphere. If, for example, we can go from
S to S1 by cellular moves, the we can obtain an equivalencef of Ak

isotopic to 1 leavingX fixed and withf (S) = S1. This will also be used
in cancellation of handles, where it is more convenient to have certain
spheres as attaching spheres than the given ones.

8.4.5 Let h be ak-handle in a handle presentationH = (A−1, . . . ,An)
of a relativen-manifold. Then ifk ≤ n − 2, there ish isotopic to
the identity, h : Ak → Ak, leaving X fixed, such that the handleh1

of Hh corresponding toh has a boundary core in∂(A′k+1,X) where
Hh = (A′

−1, . . . ,A
′
n).

(Reader, have faith that this is usefull)
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We prove this by choosing attaching spheres for all the (k + 1)-
handles, finding a transverse sphere forh that intersects all the attaching
spheres only finitely, noting that the transverse sphere contains other
points, and then shrinking the attaching tubes and the transverse tube 214

conveniently. More explicitly.
Let K1, . . . ,Kp be the (k − 1)-handles ofH , with attaching spheres

S1, . . . ,Sp. Let N be the transverse tube ofh; there is a polyhedral
equivalencef : N ≈ Dk×∆n−k, so that for anyx ∈ int Dk, f −1(k×∂∆n−k)
is a transverse sphere tohh. Now, (S1∪. . .∪Sp)∩N is (≤ k)-dimensional,
and so, triangulating projDk · f so as to be simplicial and pickingx in
the interior of ak-simplex ofDk (see 4.2.14), we have found a transverse
sphere

∑
= f −1(x× ∂∆n−k) to h, such that

∑
∩(S1 ∪ . . . ∪ Sp) is finite.

Now,
∑

is an (n− k− 1)-sphere; and sincek ≤ n− 2, contains infinitely
many points; there isy ∈

∑
−(S1 ∪ . . . ,∪Sp).

Now then, if we take very thin regular neighbourhoods of
∑

, S1,

. . . ,Sp in ∂(Ak,X) the regular neighbourhood of
∑

will intersect those of
S1, . . . ,Sp in only small cells near each point of intersection of

∑
∩(S1,

. . . ,Sp), and hence there will be a cross-section of the
∑

-neighbourhood
[i.e., corresponding toDk × z, z ∈ ∂∆n−k, (x, z) = f (y)], throughy, not
meeting any of theSi neighbourhoods. We make these regular neigh-
bourhoods the transverse tube ofh and the attaching tubes ofK1, . . . ,Kp,
by changingH to (Hg1)

g2, whereg1 andg2 are equivalencesAk → Ak

isotopic to the identity, fixingX. In (Hg1)
g2 we have a boundary core

of the handle corresponding toh which misses all the attaching tubes
of the (k + 1)-handles (this is that “cross-section throughy”). We de-
fine h = g−1

2 g1: and sinceHh is isomorphic to (Hg1)
g2, we have some

boundary core ofh1 when h1 is the handle corresponding toh which 215

does not intersect the attaching tubes of all the (k + 1)-handles, and is
therefore in∂(A′k+1,X).

8.5 Cancellation of handles

Convention: Let us make the convention that a submanifold of another
manifold should mean this:

If A ⊂ B, A andB are PL-manifolds, we callA a submanifold ofB,
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if and only if, A∩ ∂B is (dimA− 1)-submanifold of∂A. We are usually
in this section interested only in the case dimA = dim B.

With this convention, ifA is a submanifold ofB, then B− A is a
submanifold ofB, andbdB(A) = bdB(B− A) = ∂A− ∂B. If C ⊂ B ⊂
A all PL-manifolds such that each is a submanifold of the next,then

A− (B−C) = A− B∪ C. We may therefore be justified somewhat in
writing A− B for A− B.

Thus, hereafter,A is a submanifold ofB means thatA is a submani-
fold of B in the above sense, and in that caseB− A stands forB− A.

Let H = (A−1, . . . ,An) be a handle presentation of a relativen-
manifold (M,X). Let h = (H, ∂H − N) be ak-handle with transverse
tubeN, andK = (K,T) be a (k + 1)-handle with attaching tubeT. Note
thatN ∪ T ⊂ ∂(Ak,X) with the above conventions we can write

Ak + h = ((Ak − h) ∪ K) ∪ H.
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a transverse sphere of 

an attaching

sphere of

is attached to      by 

216

Definition 8.5.1.We say thath andK can becancelledif 217
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(1) N ∩ T is a submanifold of bothN andT

(2) N − (N ∩ T) andT − (N ∩ T) are both (n− 1)-cells.

Supposeh andK can be cancelled. Then

Assertion 1.(Ak− h)∩K is an (n− 1)-cell contained in∂(Ak− h,X) and
in ∂K.

In fact, (Ak − h) ∩ K = T − (N ∩ T), which we assumed to be an
(n− 1)-cell.

Assertion 2.((Ak − h) ∪ K) ∩ H is an (n− 1)-cell contained in∂((Ak −

h) ∪ K,X) and in∂H. For

((Ak − h) ∪ K) ∩ H = attaching tube ofh plusN ∩ T

= (∂H − N) ∪ (N ∩ T)

= ∂H − (N − N ∩ T)

and this is an (n− 1)-cell, since∂H is an (n− 1)-sphere and (N−N∩T)
is an (n− 1)-cell in∂H.

Combining these two assertions with proposition 8.2.1, we have

Proposition 8.5.2. SupposeH = (A−1, . . . ,An) is a handle presenta-
tion of a relative n-manifold(M,X); and there areh = (H, ∂H − N) a
k-handle, andK = (K,T) a (k + 1)-handle that can be cancelled. Let
U be any neighbourhood of N∩ T in Ak. Then there is a polyhedral
equivalence

f : (Ak − h,X) ≈ (Ak + K,X)

which is identity outsideU .

This being so, we construct a new-handle presentation (B−1, . . . , Bn)218

of (M,X), which we denote byH − (h,K) as follows:

Bi = f (Ai) for i < k

Bk = f (Ak − h) = Ak + K

Bi = Ai for i > k.
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This of course depends onf somewhat observe that, since the at-
taching tubes of the (k + 1)-handles are disjoint, the attaching tubes of
(k + 1)-handles other thanK are in∂(Ak,X) − T ⊂ ∂(Ak + K, x), so that
H − (h,K) is a genuine handle-presentation.

8.5.3 (Description ofH − (h,K)). The number ofi-handles inH −

(h,K) is the same as the number ofi-handles ofH for i , k, k+ 1. For
i > k, eachi-handle ofH is a i-handle ofH − (h,K) with the single
exception ofK; and conversely. Fori ≤ k, eachi-handle ofH except
h, sayℓ, corresponds to thei-handle f (ℓ) of H − (h,K) and conversely
eachi-handle ofH − (h,K) is of this form. If the attaching tube ofK
does not interset somek-handleℓ, we can arrangef |ℓ to be identity, so
thatℓ itself occurs inH − (h,K).

The conditions forh andK to cancel are somewhat stringent. We
now proceed to obtain a sufficient condition onh andK, which will
enable us to cancel the handles corresponding toh andK in someH f .
This requires some preliminaries.

SupposeA, B, C are three PL-manifolds,A∪B ⊂ C−∂C. dimA = p,
dim B = q and dimC = p+ q, ∂A = ∂B = ∅. Let x ∈ A∩ B.

Definition 8.5.4.A and B are said to intersecttransversally at x in C, 219

if there is a neighbourhoodF of x in C and a polyhedral equivalence

f : F
≈
−→ S ∗

∑
∗v whereS is a (p− 1)-sphere,

∑
a(q− 1)-sphere, such

that

(1) f (x) = v

(2) f (A∩ F) = S ∗ v

(3) f (B∩ F) =
∑
∗v.

Proposition 8.5.5. Let S and
∑

be(p− 1)-and (q− 1)-spheres respec-
tively and E= S ∗

∑
∗v. Let D= S ∗ v, ∆ =

∑
∗v. SupposeE is any

simplicial presentation of E containing full subpresentations D andA
covering D and∆. Let P= |NE (D)| and Q= |NE (A )|. Then

(1) P∩ Q is a submanifold both of P and Q and is contained in the
interior of E (P,Q and P∩ Q are all (p+ q)-manifolds)
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(2) P− P∩ Qց P∩ ∂E

Q− P∩ Qց Q∩ ∂E.

Proof. First observe that, if the proposition is true for some centering
of E , then it is true for any centering ofE . Next, if E ′ is some other
presentation ofE such thatD and∆ are covered by full subpresentations,
it is possible to choose centerings ofE and E ′ so thatP = P′ and
Q = Q′. (P′, Q′ denoting the analogoues ofP and Q with reference
to E ′). Thus it is enough to prove the proposition for some suitable
presentationE ′ of E and a suitable centering ofE ′. Now we chooseE ′

to be a join presentation ofE = S ∗
∑
∗v and choose the centering so220

that (see 6.8.3 and the remark thereafter)

P′Q′ = |S t(v, dE ′)| = C1
2
(S ∗

∑
),

P′ − P′ ∩ Q′ = (P′ ∩ ∂E) × [
1
2
, 1], and

Q′ − P′ ∩ Q′ = (Q′ ∩ ∂E) × [
1
2
, 1].

And in this case (1) and (2) are obvious. �

Proposition 8.5.6. Suppose A and B are spheres of dimensions p and q
respectively, contained in the interior of a(p + q)-manifold C and that
A and B intersect at a single point x transversally in C. Then there are
regular neighbourhoods N and T of A and B in C, such that

(1) N∩ T is a submanifold of both N and T

(2) N− (N ∩ T) and T− (N ∩ T) are both(p+ q)-cells.

Proof. Let F be the nice neighbourhood ofx in C given by 8.5.4 i.e.
there is a polyhedral equivalencef : F ≈ E = S ∗

∑
∗v whereS is a

(p−1)-sphere and
∑

a (q−1)-sphere, such thatf (x) = v, f (A∩F) = S∗v,
and f (B ∩ F) =

∑
∗v. Then (A− F) is a (p − 1)-cell and (B− F) is a

(q − 1)-cell. LetS1 andE1 be triangulations ofF and E such thatf
is simplicial with reference toS1 andE1. We can assumeE1 contains
full subpresentations coveringS ∗ v and

∑
∗v. Now some refinement

S of S1 can be extended to a neighbourhood ofA ∪ B, denote it by
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S ′, it can be supposed thatS ′ contains full subpresentationsa, B
coveringA, B respectively. Letη be a centering ofS ′. Denote byE the 221

triangulation ofE corresponding toS by f , and byb the centering ofE
corresponding toη|S . ChooseN = |NS ′(a)| andT = |NS ′(B)|; and let
P, Qbe as in 8.5.5. IfP1 = f −1(P), Q1 = f −1(Q), thenP1 = (P1∩Q1)ց
P1 ∩ ∂F andQ1 − (P1 ∩ Q1) ց Q1 ∩ ∂F. ClearlyP1 ⊂ N, Q1 ⊂ T are
submanifolds andN ∩ T = P1 ∩ Q1. ThusN ∩ T is a submanifold of
bothN andT. N− (N∩T) = N− (P1∩Q1) = (N−P1)∪(P1− (P1∩Q1))
collapses to (N−P1) sinceP1− (P1∩Q1) collapsesP1∩∂F ⊂ (N−P1).
But N − P1 is a regular neighbourhood ofA− F in C − F which is a
(p−1)-cell. ThusN− (N∩T) ց N−P1ց A− F which is collapsible.
ThusN− (N∩T) is a collapsible (p+ q)-manifold, hence a (p+ q)-cell.
Similarly T − (N ∩ T) is a (p+ q)-cell. �

Definition 8.5.7.Let H = (A−1, . . . ,An) be a handle presentation of a
relativen-manifold (M,X). Leth be ak-handle andK be a (k+1)-handle
of H . We say that (h,K) can be nearly cancelledif there is a transverse
sphereS of h and an attaching sphere

∑
of K which intersect a single

point transversally in∂(Ak,X).

Proposition 8.5.8. SupposeH is a handle presentation of relative n-
manifold (M,X), h a k-handle andK a (k + 1)-handle inH . If h and
K can be nearly cancelled, then there is a polyhedral equivalence f :
Ak → Ak isotopic to the identity leaving X fixed such that, inH f the
handlesh′ andK′(= K) corresponding toh andK can be cancelled.

Proof. Follows from 8.4.3 and 8.5.6. �

8.6 Insertion of cancelling pairs of handles
222

In this section we discuss the insertion of cancelling pairsof handles
and two applications which are used in the following sections. First we
form a standard trivial pair as follows:
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Let D be ak-cell, I = [0, 1] and∆ an (n − k − 1)-cell. ThenE =
D × I × ∆ is ann-cell. Let

H1 = D × [
1
2
, 1] × ∆

T1 = ∂D × [
1
2
, 1] × ∆

Clearlyh = (H1,T1) is a handle of indexk. Next, let

H2 = D × [0,
1
2

] × ∆

T2 = ∂{D × [0,
1
2

]} × D

= {(D × 0)∪ (D ×
1
2

) ∪ (∂D × [0,
1
2

])} × ∆.

Clearly, K = (H2,T2) is a handle of index (k + 1). Finally, let F
denote (D×0×∆)∪ (∂D× I ×∆). (D×0×∆)∩ (∂D× I ×∆) = ∂D×0×∆
is an (n − 2)-manifold, henceF is an (n − 1)-manifold. MoreoverF is223

collapsible, hence it is an (n− 1)-cell.
Now, letH be a handle presentation of a relativen-manifold (M,X);

we take an (n − 1)-cell F′ in ∂(Ak,X) away from thek-and (k + 1)-
handles. That isF′ is in the common portion of∂(Ak−1,X), ∂(Ak,X) and
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∂(Ak+1,X) and clearly it is possible to choose such anF′ if (k + 1) < n,
that isk ≤ n− 2. Now we take some equivalenceα : F ≈ F′ and attach
E to Ak by α. Denote the result byAk ∪ E. SinceE is ann-cell meeting
∂(Ak,X) in an (n − 1)-cell F′, there is an equivalencef : Ak ≈ Ak ∪ E
leavingX fixed. Then we get a new handles presentation (B−1, . . . , Bn)
of (M,X) as follows:

Bi = f −1(Ai), for i < k,

Bk = f −1(Ak + h)

Bi = Ai for i > k.

Next we consider the problem of attaching a cancelling pair of k-
and (k + 1)-handles (h,K) to Ak, with h having a prescribed attaching
sphere. We recall from Chapter 7 (7.2) that a sphere in the interior of
a PL-manifoldN is unknotted (by definition) if it bounds ak-cell. In
such a case it bounds an unknotted cell (again in the sense of 7.2). If S
andS′ are two unknottedk-spheres in the same component ofN − ∂N,
then there is an isotopyht of N leavingN fixed such thath1(S) = S′.
Similarly if D andD′ are two unknottedk-cells in the same component
of N − ∂N, there is an isotopy ofN taking D onto D′. Similar remarks
apply in the case of relative manifolds also. 224

Now consider justAk, let F′ be any (n−1)-cell in∂(Ak,X) and form
Ak ∪ E by an equivalenceβ : F ≈ F′. ConsiderS = ∂D × α × e,
where 1

2 < α < 1 ande ∈ ∆ − ∂∆. S is an attaching sphere ofh, and∑
= ∂{D × [0, 1

2]} × e

= {(D × 0)∪ (D ×
1
2

) ∪ ∂D × [0,
1
2

]} × e

is an attaching sphere ofK.
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And {D × 0 ∪ ∂D × [0, α]} × e = C, say, is ak-cell boundingS =
∂D × α × e, an attaching sphere ofh. Moreover

C ∩
∑
= {D × 0∪ ∂D × [0,

1
2

]} × e

= C − ∂D × [
1
2
, α] × e

= C − (a regular neighbourhood ofS in C).

Finally C is unknotted inF.
The result of all this is, ifA is a (k−1)-sphere bounding an unknotted

k-cell B in ∂(Ak,X), then we can attach a cancelling pair ofk- and (k+1)-225

handles (h,K) such thatA is an attaching sphere ofh and an attaching
sphere ofK intersects∂(Ak,X) in B - (a given a regular neighbourhood
of A in B). This can also be seen as follows:

Let L be an (n − 1)-cell, A a (k − 1)-sphere inL bounding an un-
knottedk-cell B in the interior ofL. Let M be ann-cell containingL in
its boundary. We may joinA andB to an interior pointv of M and take
second derived neighbourhoods. LetH be a second derived neighbour-
hood ofA∗ v andK be the closure of [second derived neighbourhood of
B ∗ v − H]. Then (H,H ∩ L) is ak-handle, and (K, (K ∩ H) ∪ (K ∩ L))
is a (k + 1)-handle. Thek-handle hasA as an attaching sphere, and
an attaching sphere of the (k + 1)-handle intersectsL in (B - a regular
neighbourhood ofA in B). Thus we have,
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8.6.1 Let H = (A−1, . . . ,An) be a handle presentation of a relativen-
manifold (M,X) and letS ⊂ ∂(Ak,X) be a (k − 1)-sphere which bounds
an unknotted cellT in ∂(Ak,X). Then there are ak-handleh and a (k+1)-
handleK, such that

(1) S is an attaching sphere ofh

(2) There is an attaching sphere
∑

of K with
∑
∩Ak very closed to

T, that is
∑
∩Ak can be assumed to be (T - a prescribed regular

neighbourhood ofS in T).

(3) ((Ak,X) + h) + K exists and is polyhedrally equivalent to (Ak,X)
by an equivalent which is identity outside a given neighbourhood 226

of T in Ak.

If S is in ∂(Ak−1,X)∩ ∂(Ak,X) we can chooseh to have its attaching
tube in ∂(Ak−1,X), so that there is an obvious handle presentation of
((Ak + h) + K,X). We give below two applications of this construction.

8.6.2 Trading handles. Let H = (A−1, . . . ,An) be a handle presenta-
tion of a relativen-manifold (M,X). Let pi be the number ofi-handles
in H . Suppose that there is a (k − 1)-handleℓ (2 ≤ k ≤ n − 1)
with a transverse sphere

∑
, and that there is a (k − 1)-sphereS in

∂(Ak−1,X) ∩ ∂(Ak,X) such that (1)S is unknotted in∂(Ak,X), (2) S
intersects

∑
transversally at exactly one point in∂(Ak−1,X). Then there

is a procedure by which we can obtain another handle presentation H ′

of (M,X), such that (a) fori , k− 1 ork+ 1, the number ofi-handles in
H is equal to the number ofi-handles inH ′, (b) the number of (k−1)-
handles inH ′ is p(k−1) − 1 (c) the number of (k + 1)-handles inH ′ is
p(k+1) + 1. This is done as follows:

First consider onlyAk. Applying 8.6.1, we can add toAk a can-
celling pair of k- and (k + 1)-handles (h,K) such thatS is an attach-
ing sphere ofh, and the attaching tube ofS is in ∂(Ak−1,X). Write
(Ak + h) + K = B. Then the relative manifold (B,X) has the obvious
handle presentationK ′

= (B−1, . . . , Bk+1) where

Bi = Ai , for i ≤ k− 1
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Bk = Ak + h

Bk+1 = (Ak + h) + K = B.

227

In K′, the handlesℓ andh can be nearly cancelled. Hence for some
equivalencef of Ak−1, isotopic to identity and leavingX fixed, inK ′

f ,
the handlesℓ′ andh′(= h) corresponding toℓ andh can be cancelled.
Let K ′′

= K ′
f − (h′, ℓ′). K ′′ is a handle presentation of (B,X); the

number ofi-handle inK ′′ for i ≤ k − 1 is pi, the number of (k − 1)-
handles isK ′′ is pk−1−1, the number ofk-handles ispk and there is one
(k + 1)-handle. Also there is an equivalenceα : Ak → B which can be
assumed to be identity nearX. Thus we can pull backK ′′ to a handle
presentationK of (Ak,X) by α−1.

Now, we would like to add the (≥ k+1)-handles ofH to K to get a
new handle presentation of (M,X). But it may happen that the attaching
tubes of the (k+1)-handles ofH intersect the transverse tube ofα−1(K)
which is in∂(Ak,X). However, we can adopt the procedure of 8.4.5, to
get the desired type of handle presentations as follows:

Let K(k+1)
1 , K(k+1)

2 , K(k+1)
p(k+1)

be the (k + 1)-handles ofH , with at-
taching tubesT1,T2, . . . ,Tp(k+1) respectively. Choose some attaching
spheresS1, . . . ,Sp(k+1) of these handles, and then a transverse sphere∑

, of α−1(K) avoidingS1, . . . ,Sp(k+1). This is done in the same way as
in 8.4.5, using the product structure of the transverse tubeof α−1(K) as228

Dk+1 × ∆n−k−1 and noticing that theSi are nowk-dimensional. Then
choose a regular neighbourhoodN1 of

∑
1 which does not intersect the

Si ’s and do a modification of type 8.4.1 so that, for someg, in Kg the
handleK′ correspondingα−1(K) has N1 as its transverse tube. Now
choose regular neighbourhoodsT′i of Si in ∂(Ak,X) such thatT′i ∩N1 = ∅

for all i andT′i ∩ T′j = ∅ for all i, j, i , j. There is an equivalenceβ
of Ak isotopic to the identity leavingX fixed such thatβ(Ti) = T′i for

all i. Now attach the handlesK(k+1)
i to Ak not by the inclusion ofTi but

by β|Ti . Then we obtain a relativen-manifold say (C,X) and a genuine
handle presentation sayK1 of (C,X). Moreover the equivalenceβ of Ak

can be extended to an equivalenceβk+1 of Ak+1 with C. Now pull back
K1 to Ak+1 by (βk+1)−1. In the handle presentation (βk+1)−1(K1) of Ak+1

there are handles only upto index (k + 1); so that the handle of index
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≥ k + 2 of H can be added as they are to get a handle presentation of
(M,X) of the derived type.

8.6.3 The second application is concerning the maps in the homotopy

groups:πk(Ak,Ak−1)
bk
−→ πk−1(Ak−1,Ak−2). It will be seen later that under

suitable assumptions, these are freeZπ-modules with more or less well
defined bases. The problem is to find handle presentations forwhich
the matrices ofbk’s with reference to preferred bases will be in some229

convenient form (8.9). Here we describe an application of 8.6.1 which
is useful for this purpose.

Let N be a PLn-manifild, and assume that∂N is connected. Leth1,
h2 be twok-handles (2≤ k ≤ n − 2) so thatn ≥ 4) attached toN. If
we choose a cell in∂N intersecting the handles as “base point”, any at-
taching sphere ofh1(h2) determines a well defined element inπk−1(∂N).
Let the elements inπk−1(∂N) determined byh1 andh2 beα1 andα2. Let
θ be an element ofπ1(∂N). Imagine that the handles are in the form
hi = (Di × ∆i , ∂Di × ∆i), Di a k-cell, ∆i an (n − k)-cell i = 1, 2. Let
pi ∈ ∂∆i. Then, we have surface coresCi = Di × pi of hi , and repre-
sentativesSi = ∂Di × pi of αi. Let P be a path between a point ofS1

and a point ofS2 in ∂N representingθ. Sincen ≥ 4, we can assume
that P is an embedded arc, and sincek ≤ n − 2, that it meets eachSi

at exactly one point. NowP appears also as an arc joiningC1 andC2.
ThickenP, so that we have an (n− 1)-cell Q which intersectsC1 andC2

in (k − 1)-dimensional arcsE1 andE2 with Ei = ∂Ci ∩ ∂Q. We can be
careful enough to arrange forEi to be unknotted in∂Q, so that there is
ak-cell F ⊂ Q with ∂F ∩ ∂Q = E1 ∪ E2.

The composite objectC1 ∪ F ∪ C2 is now ak-cell with boundary
(S1 − E1)∪ [∂F − (E1∪ E2)] ∪ (S2 − E2), which represents inπk−1(∂N)
the elementα1 ± θα2. The sign depends onF, and we can chooseF so
as to have the prescribed sign (see Chapter 7). Moreover we can assume
thatC1∪F ∪C2 is unknotted in∂((N+ h1)+ h2)). StretchC1∪F ∪C2 a 230

little to another unknottedk-cell T so thatS = ∂T ⊂ (∂N - union of the
attaching tubes ofh1 andh2). That is, we have a (k− 1)-sphereS in ∂N
representingα1+ ǫθα2 (ǫ = ±1, prescribed) and bounding an unknotted
cell T in ∂(N + h1 + h2) andS is away fromh1 andh2. We now add a
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cancelling pair ofk- and (k + 1)-handlesh andK, so that an attaching
sphere ofh is S and an attaching sphere ofK intersects∂((N + h1 + h2)
alongC1 ∪ F ∪C2.

Now,
N + h1 + h2 ≈ ((N + h1 + h2) + h) + K

But thenh1 andK nearly cancel, since attaching sphere ofK inter-
sects a transverse sphere ofh1 exactly asC1 does, that is, at one point,
transversally. So that, after an isotopy we can find a (k + 1)-handleK′

such thath1 andK′ actually cancel. Thus

(N + h1 + h2) + h + K ≈ (N + h1 + h2) + h + K′

≈ (N + h2 + h).

We have proved,

Proposition 8.6.4.Let N be a PL n-manifold, with connected boundary
∂N; n ≥ 4. Let h1 and h2 be two handles attached to N, andα1, α2

be the elements inπk−1(∂N) given byh1 andh2; and θ be an element of
π1(∂N). Then there exists a handlehwhich can be attached to N, with its
attaching tube away fromh1 andh2 so that N+ h1+ h2 ≈ N+ h+ h2, and
the element ofπk−1(∂N) represented byh is α1 ± θα2, sign prescribed.

Remark 1. Some details, such as thickening ofP, choosing certains231

cells so as to be unknotted; are left out. These are easy to verify using
our definition of unknotted cells and choosing regular neighbourhoods
in the appropriate manifolds. There is another point to check: that the
homotopy groups can be defined with cells as ‘base points’, sothat we
can get away without spoiling the embeddings (of attaching spheres in
appropriate dimensions), when forming sums in the homotopygroups
or the action of an element of the fundamental group.

Remark 2. In 8.6.4, instead of the whole of∂N, we may as well take a
connected (n − 1)-manifoldN′ in ∂N and do every thing in its interior
of course, nowα1, α2 ∈ πr−1(N′) andθ ∈ π1(N′).

Remark 3. The proof can also be completed by observing thatS andS1

differ by cellular moves in (N + h2).
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8.7 Elimination of 0 - and 1-handles

The first thing to do is to remove all handles of index 0, and 1 toattain a
stage whereπ1(Ak) ≈ π1(M). At this point we can interpretπi(Ai ,Ai−1)
and so on as homology groups in universal covering spaces andthis
helps things along.

Proposition 8.7.1.Let (M,X) be a relative manifold, M connected, X,
∅, andH a handle presentation of(M,X). Then all the0-handles of
H can be eliminated by cancelling pairs of0- and1-handles ofH to
obtain a handle presentation of(M,X) free of0-handles.

Proof. A 0-handleh = (H, ∅) and a 1-handleK = (K,T) cancel if only if 232

the attaching sphere
∑

of K intersectsh in a single point; for the attach-
ing tubeT of K consists of two disjoint (n− 1)-cells, and the transverse
tube ofh is∂H, and so what we need is for exactly one of the (n−1)-cells
of T to be in∂H. So all the 0-handles ofH which are connected toA−1

(, ∅, sinceX , ∅) by means of 0- and 1-handles can be eliminated. But
every 0-handle must be one such; for ifℓ is a 0-handle ofH which is
not connected toA−1 by 0- and 1-handles, thenℓ together with all the
0- and 1-handles connected to it will form a component ofA1 which is
totally disjoint fromA−1. ThusA1 has at least two components, and so,
sinceπ0(A1) → π0(M) is an isomorphism, we have a contradiction to
the assumption thatM is connected. �

For the next stage, we need a lemma:

Lemma 8.7.1. A null homotopic1-sphere in the interior of a PL-man-
ifold M of dimension≥ 4 is unknotted.

Proof. Let S be a null homotopic 1-sphere in the interior ofM. We
have to show thatS bounds a 2-cell inM. Let D be a 2-cell, andα an
equivalence of∂D with S. SinceS is null homotopicα extends toD.
Approximateα by a mapβ in general position such thatβ|∂D = α|∂D,
andβ(D) ⊂ int M. The singular setS2(β) of β consists of finite number
of points andS3(β) etc. are all empty. So we can partionS2(β) into
two sets{p1, . . . , pm}, {q1, . . . , qm} such thatβ(pi ) = β(qi), 1 ≤ i ≤ m
and there are no other identifications. Choose some pointp on ∂D and



190 8. Handles ands-cobordism

join {p, p1, . . . , pm} by an embedded areγ which does not meet any of233

the qi ’s. Let N be a regular neighbourhood ofγ in D, which does not
contain any of theqi ’s. N is a 2-cell.

Let N ∩ D = ∂N ∩ ∂D = L, ∂N − L = K, andD − N = D′. SinceL
is a 1-cell,K is also 1-cell, andD′ is a 2-cell. Andβ|N as well asβ|D′

are embeddings. Soβ(∂D′) is unknotted inM. But by 7.1.6, there is an
isotopy carryingβ(L) to β(K) and leavingβ(∂D′ − K) fixed, that is, the
isotopy carriesS ontoβ(∂D′). HenceS is also unknotted. �

Remarks:

(1) The same proof works in the case of a null homotopicn-sphere in
the interior ofa ≥ (2n+ 2)-dimensional manifold.

(2) The corresponding lemma is true in the case of relative manifolds
also.

(3) If S is in ∂M, then the result is not known. It is conjectured by
Zeeman, that the lemma in this case is in general false (e.g. in the
case of contractible 4 dimensional manifolds of Mazur).

Proposition 8.7.2. Let H = (A−1, . . . ,An) be a handle presentation
without0-handles of relative n-manifold(M,X) and letπ1(M,A−1) = 0.
Then by admissible changes involving the insertion of2- and3-handles
and the cancelling of1- and2-handles, we can obtain fromH a handle
presentation of(M,X) without0- or 1-handles, provided n≥ 5.

Proof. Let h be a 1-handle ofH . By 8.4.5, we can assume that there is
a surface core ofh in ∂(A2,X).

Becauseπ1(M,A−1) = 0, thenπ1(A2,A−1) = 0 (from the homotopy
exact sequence of the triple (M,A2,A−1) and soC is homotopic leaving234

its end points fixed to a path inA−1. ∂(A−1,X) ⊂ A−1 is a homotopy
equivalence (we are confining ourselves to the special case after 8.3).
So we get a map, whereD is a 2-cell

f : D→ A2 − int A−1

with ∂D ⊃ C, such thatf (∂D −C) ⊂ ∂(A−1,X) and f |C = IdC.
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Now in the (≥ 4)-manifold∂(A−1,X) the removal of the attaching
tubes of the 1-handles does not disturb any homotopy of dimension≤ 2,
so that, we can arrange for

f (∂D −C) ⊂ ∂(A−1,X)- (attaching tubes of 1-handels)

⊂ ∂(A1,X) (sinceA−1 = A0).

Likewise in∂(A1,X), the removal of the attaching tubes of 2-handles
can be ignored as far as one-dimensional things go, so that wecan as-
sume

f (∂D −C) ⊂ ∂(A2,X),

and thatf |∂D is an embedding. Also, we can arrangef (∂D) to intersect
h precisely alongC.

Finally, then we have

f : D→ A2

with f (∂D) ⊂ ∂(A2,X) ∩ ∂(A1,X)

f |C = IdC, and this is the only place where

f (∂D) intersectsh. Hence f (∂D) intersects atransverse sphere ofh at
eactly one point transversally.

Now, upto homotopy,A2 is obtained from∂(A2,X) by attaching
cells of dimensions (n − 2) and (n − 1) [cf. duality 8.8]. Since (n − 235

2) ≥ 3, π2(A2, ∂(A2,X)) = 0. Thus the mapf can be deformed into
∂(A2,X) leaving f |∂D fixed. Thus the 1-spheref (∂D) is null homotopic
in ∂(A2,X), hence by Lemma 8.7.1 it is unknotted in∂(A2,X). Now we
can apply 8.6.3 to tradeh for a 3-handle. We can apply this procedure
successively until all the 1-handles are eliminated. Sincein this pro-
cedure, only the number of 1-handles and 3-handles is changed, in the
final handle presentation of (M,X) there will be no 0-handles either.�

Remark . If ( M,X) is ℓ-connected and 2ℓ + 3 ≤ n, we can adopt the
above procedure to get a handle presentation of (M,X) without handles
of index≤ ℓ.



192 8. Handles ands-cobordism

8.8 Dualisation

In this section, we discuss a sort of dualization, which is useful in getting
rid of the very high dimensional handles.

Let (M,X) be a relativen-manifold (remember that we are dealing
with the special cae;X and (n− 1)-submanifold of∂M), and letH be a
handle presentation of (M,X). Consider the manifoldM+ obtained from
M by attaching a collar over∂(M,X) (= ∂M −X by the notation of 8.5).

M+ = {M ∪ (∂M − X) × [0, 1]}

identifying x with (x, 0) for x ∈ ∂M − X. Let

M∗ = M+ − A−1

X∗ = {(∂M − X) × 1} ∪ {∂(∂M − X) × [0, 1]}

and X+ = (∂M − X) × 1.

236

We consider (M∗,X∗) as a dual of (M,X). Now H gives rise to a
handle presentationH ∗

= (B−1, . . . , Bn) of (M∗,X∗) as follows:

B−1 = (∂M − X) × [0, 1]
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Bk = M+ − An−k−1

= Bk−1 + h
∗
1 + · · · + h

∗
p(n−k)

.

Whereh1, . . . , hp(n−k) are the (n − k)-handles ofH . This H ∗, we
will call the dual ofH . The number ofk-handles inH is equal to the
number of (n− k)-handles inH ∗.

Now,

∂M∗ = X∗ ∪ ∂(A−1,X)

so that ∂(M∗,X∗) = ∂(A−1,X).

SinceA−1 is a collar over∂(A−1,X), this shows that (M,X) is a dual 237

of (M∗,X∗); and with this choice of the dual pairH is the dual ofH ∗.
Given any handle presentationK = (C−1, . . . ,Cn) of (M∗,X∗) with

C−1 = B−1, then we obviously get a handle presentationK ∗ of (M,X).
Even if C−1 , B−1, we can get a handle presentation of (M,X) whose
number ofk-handles is equal to the number of (n− k)-handles ofK as
follows:

Let X+ = ∂(M,X) × 1. In M+, C−1 ց X∗ and X∗ ց X, (both)
homogeneously. SinceC−1 is a collar overX∗; by using the theorems
about cells in spheres and cells in cells, we see thatC−1 is bicollared
in M+. MoreoverC−1 is a neighbourhood ofX+ in M+. Hence by the
regular neighbourhood theorem,C−1 is a regular neighbourhood ofX+

in M+. But B−1 is also a regular neighbourhood ofX+ in M+. Therefore,
there is an equivalencef of M+, fixing X+, with f (C−1) = B−1. Since
f (∂M+) = ∂M+ andC−1 ∩ ∂M+ = B−1 ∩ ∂M+ = X∗, f mapsX∗ onto
itself, and as∂M+ = X∪X∗, f has to mapX onto itself. Now the desired
handle presentation of (M,X) is given by

D−1 = f (A−1) (sinceA−1ց X, f (A−1)ց f (X) = X)

Dk = M+ − f (Cn−k−1)

= Dk−1 + ( f (K1))∗ + · · · + ( f (Kp(n−k)))
∗

whereK1, . . . ,Kp(n−k) are the (n− k)-handles ofK .
Thus
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8.8.1 If there is a handle presentation of (M∗,X∗) without handles of 238

index ≤ n − ℓ, then there is a handle presentation of (M,X) without
handles of index≥ ℓ. This gives:

8.8.2 Theorems A and B imply Theorem C.
SinceX ֒→ M is a homotopy equivalence andπ1(M) ≈ π1(∂(M,X)),

using duality in the universal covering spaces, that isHi(M∗,X∗) ≈
Hn−i(M,X) = 0, we see thatX∗ ֒→ M∗ is also a homotopy equiva-
lence. If n ≥ 6, then we can find a handle presentation of (M∗,X∗)
without handles of index≤ 6− 4 = 2 by Theorem A. Hence we can ob-
tain handle presentationH of (M,X) without handles of index≥ n− 2,
that is, with handles of index≤ n − 3 only. But then, by Theorem B,
asτ(M,X) = 0, we can get fromH a handle presentation of (M,X)
without any handles, that isM ց X.

8.8.3 If n = 5, and (M,X) is a h-cobordism, then there is a handle
presentation of (M,X) with only 2- and 3-handles.

Ex. 8.8.4.A (compact) contractible PL 2-manifold is a 2-cell.

8.9 Algebraic Description

We have already remarked (8.3.7) that there is a certain algebraic struc-
ture associated to a handle presentationH = (A−1, . . . ,An) of a relative
n-manifold (M,X). We suppose now that (M,X) is a special case, and
that there are no 0- or 1-handles inH (A−1 = A0 = A1). Also n ≥ 3 and
π1(X)→ π1(M) is an isomorphism. This we will call Hypothesis

8.9.1 In this case, the maps

π1(X)→ π1(A−1)→ . . .→ π1(An)

are all isomorphisms. The reasonπ1(A1) → π1(A2) is an isomorphism
is thatπ1(X) → π1(M) is an isomorphism andπ1(A1) → π1(A2) is a239

surjection. We identity all these groups and call itπ.
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Now, the groups
Ci = πi(Ai ,Ai−1)

are identified withHi(Ãi , Ãi−1). They are free modules overZπ with
bases corresponding to handles.H {h(i)1 , . . . , h

(i)
pi
} are thei-handles, the

basis ofCi is denoted by{[h(i)1 ], . . . , [h(i)pi
]} and the elements of this basis

are well defined upto multiplying by elements±π.
If f : Ak → Ak is a polyhedral equivalence isotopic to the identity, it

is easily seen that the algebraic structures already described forH and
H f may be identified.

In addition, we have a map

∂k : Ck → Ck−1

which is the boundary map of the triple (Ak,Ak−1,Ak−2). This is also
unchanged by changingH to H f .

If there are no handles of index≤ k− 2 andπk−1(M,X) = 0, we see:
First,πk−1(Ak,Ak−2) = 0, and hence from the exact sequence of the

triple (Ak,Ak−1,Ak−2) the map∂k : Ck → Ck−1 is surjective.
Dually, if there are no handles of index> k andπk(X,X) = 0, we

have
∂k : Ck → Ck−1 to be injective.

240

Now, the boundary map∂k plus the bases ofCk andCk−1 determine
a matrixBk in the usual way. That is, if

∂k

(
[h(k)

i ]
)
=

p(k−1)∑

j=1

αi, j[h
(k−1)
j ], αi, j ∈ Zπ

thenBk is thepk × p(k−1) matrix



α1,1 α1,2 . . . α1,p(k−1)

α2,1 α2,2 . . . α2,p(k−1)
...

...
...

...

αpk,1, αpk,2 . . . αpk,pk−1


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If we choose a different orientation of core ofh(k)
i , then [h(k)

i ] is re-

placed by - [h(k)
i ] (in the basis ofCk) so that theith row of Bk is multiplied

by−1. If we extend the handleh(k)
i along a path representingα ∈ π, then

[h(k)
i ] is replaced byα[h(k)

i ], so that theith row of Bk is multiplied byα.
Thus, by different choices of orientations of cores and paths to the “base
point”, we can changeBk somewhat. There is another type of modifica-
tion which we can do onBk: that is adding a row ofBk to another row
of Bk. This is done by using 8.6.3 as follows:

Consider twok-handlesh(k)
i andh(k)

j of H , and let 2≤ k ≤ n−2. We241

now apply 8.6.3 (Remark 2), withAk−1 = N, ∂(Ak−1,X) = N′, h(k)
i = h1,

h
(k)
j = h2. This gives a new handleh(k), away fromh(k)

i andh(k)
j , such that

Ak−1 + h
(k)
+ h

(k)
j ≈ Ak−1 + h

(k)
i + h

(k)
j

and∂[h], with proper choices, now represents [h(k)
i ] ± θ[h(k)

j ], (sign pre-

scribed), inπk−1(∂(Ak−1,X)). Also, we can assume thath(k) is away from
the attaching tubes of the other handles, so that

B = (Ak−1 + h
(k)) + h(k)

j (otherp−2
k k-handles ofH )

ψ
≈Ak,

andψ can be assumed to be identity onX.
Now (B,X) has an obvious handle presentationK = (B−1, . . . , Bn),

where

Bi = Ai,i≤k−1

Bk = B.

Thekth boundary map ofK , with the appropriate bases, has a ma-
trix which is the same asBk except forith row, which is now replaced
by the sum of theith row + (±θ) times thejth row, corresponding to the
relation

∂[h(k)] = ∂[h(k)
i ] ± θ∂[h(k)

j ]

We pull K to a handle presentationK ′ of (Ak,X) by ψ. In K and
K ′, the matrices of the boundary maps are the same if we choose the242



8.9. Algebraic Description 197

corresponding bases. AndK ′ can be extended to handle presentation
H ′ of (M,X) by adding the (≥ k + 1)-handles as they are. By doing a
finite number of such changes, we have

8.9.2 (Basis Lemma).H is a handle presentation satisfying 8.9.1,Bk

is the matrix of thekth boundary of map ofH (k≤n−2)
1 , with respect to

bases corresponding to handles. Given anypk × pk matrix E which is
the product of elementary matrices, then∃ a handle presentationH ′ of
(M,X) satisfying 8.9.1

(1) the number ofi-handles inH is the same as the number ofi-
handles inH ′, for all i, and

(2) the matrix of thekth boundary map ofH ′ with appropriate bases
corresponding to handles isE · Bk.

As an application of the “Basis Lemma”, we will prove a proposi-
tion, usually known as the “Existence Theorem forh-cobordisms”. Let
M be a PL (n−1)-manifold;M compact, with or without boundary. The
problem is to produce a PLn-manifoldW containingM in its boundary
such that (W,M) is ah-cobordism with prescribed torsion.

Proposition 8.9.3. If the dimension of M is greater than4, then given
anyτ0 ∈Wh(π1, (M)), there exists a h-cobordism(W,M) withτ(W,M) =
τ0.

Proof. Let A = (ai j ) be a matrix (m × m) representingτ0. Consider
N = M × I , identify M with M × 0. To (N,M) attachmcancelling pairs
of 2- and 3-handles andm 3-handles away from these. LetW′ be the
resulting manifold: and letH be the obvious handle presentation of243

(W′,M); H satisfies 8.9.1. Then the matrix of the 3rd boundary map
of H with appropriate bases is

[
Im
0m

]
. Consider the matrix

[
A 0
0 A−1

]
; this

is a product of elementary matrices. Hence by 8.9.2, we can obtain a
new handle presentationH ′ of (W′,M) satisfying 8.9.1, such that the
number of handles of each index is the same inH andH ′, and the 3rd

boundary map ofH ′ with bases corresponding to handles is
[
A 0
0 A−1

] [
Im

0m

]
=

[
A
0m

]
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Thus, ifK1, . . . ,K2m are the 3-handels andh1, . . . , hm the 2-handles
of H ′, and [Ki ], [hi ] denote the corresponding basis elements, then

∂[Ki] =
m∑

j=1

ai j [h j ], if i ≤ m

∂[Ki] = 0 if i > m.

Let W be the manifoldW′− (Km+1∪ . . .∪K2m). LetK be the handle
presentation of (W,N) given byhi ’s andKi ’s for i ≤ m. Then the 3rd

boundary map ofK has the matrixA. Clearly M ֒→ W is a homotopy
equivalence (A is non-singular). Since, dually we are attachingn−2 and
n− 3 handles to∂(W,M) to getW, andn− 3 ≥ 3, π1(∂(W,M))→ π1(W)
is an isomorphism. Hence (W,M) is ah-cobordism with the prescribed
torsionτ0. �

Again, consider a handle presentationH satisfying 8.9.1. Fork ≤244

n−3, Ak is, upto homotopy obtained by attaching cells of dimension≥ 3
to ∂(Ak,X). This shows,π1(∂(Ak,X)) → π1(Ak) is an isomorphism for
k ≤ n− 3; and hence ˜∂(Ak,X) = ∂(Ãk, X̃).

We are interested in the following question:
Suppose ak-sphere

∑
⊂ (Ak,X) represents inπk(Ak,Ak−1) the ele-

ment [h] corresponding to a particulark-handle. Then, is there a map
f :

∑
→ ∂(Ak,X) homotopic to the inclusion of

∑
in ∂(Ak,X), such that

f |a hemisphere of
∑

is an embedding onto a core ofh?
We note that∂(Ak,X) ∩ ∂(Ak−1,X)

= ∂(Ak,X) - (transverse tubes ofk-handles)

= ∂(Ak−1,X) - (attaching tubes ofk-handles)

and so∂(Ak,X) ∩ ∂(Ak−1,X) will have fundamental groupπ if either
(n− k − 1) ≤ (n− 1)− 3 or (k − 1) ≤ (n− 1) − 3, so thatk ≤ (n− 3) is
sufficient. This implies

˜∂(Ak,X) ∩ ∂(Ak−1,X) = ˜∂(Ak,X) ∩ ∂ ˜(Ak−1,X)

= ∂(Ãk, X̃) ∩ ∂(Ãk−1, X̃).

Consider the following diagram:245
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πk(∂(Ak,X), ∂(Ak,X) ∩ ∂(Ak−1,X))
i1 // πk(Ak,Ak−1)

πk(∂(Ãk, X̃), ∂(Ãk, X̃) ∩ ∂(Ãk−1, X̃))

α1

OO

i2 //

h1

��

πk(Ãk, Ãk−1)

h2

��

α2

OO

Hk(∂(Ãk, X̃), ∂(Ãk, X̃) ∩ ∂(Ãk−1, X̃))
i3 // Hk(Ãk, Ãk−1).

Hereh1, h2 are hurewicz maps,i1, i2, i3 are induced by inclusion
maps,α1 andα2 are the maps induces bỹM → M. All the induces
occuring are≥ 2. α1 andα2 are well known to be isomorphims.h1

andh2 are isomorphisms since the pairs are (k − 1)-connected. By ex-
cision, i3 is an isomorphism. Hencei2 and i1 are also isomorphisms.
Therefore, a boundary core ofh and

∑
represent the same element in

πk(∂(Ak,X), ∂(Ak,X) ∩ ∂(Ak−1,X)).
Thus the answer to out question is Yes:

8.9.4 Let H be a handle presentation satisfying the hypothesis 8.9.1.
Let k be an integer≤ n − 3 [or k ≥ 3, π1(∂(Ak,X)) → π1(Ak) is an
isomorphism,k ≤ n − 1]. Then two geometric objects, representing
the same element ofπk(Ak,Ak−1), also represent the same element of
πk(∂(Ak,X), ∂(Ak,X) ∩ ∂(Ak−1,X)). In particular, if

∑
⊂ ∂(Ak,X) is a

k-sphere, representing the element [h] in πk(Ak,Ak−1); then it represents246

the element [h] in πk(∂(Ak,X), ∂(Ak,X) ∩ ∂(Ak−1,X)). This means that
there is a homotopy in∂(Ak,X) from the identity map of

∑
of a map

taking the upper hemisphere of
∑

in a 1− 1 way onto a (boudnary) core
of h, and taking the lower hemisphere of into∂(Ak,X) ∩ ∂(Ak−1,X); in
particular the end result of

∑
will not intersect any other handles.

If
∑

is the attaching sphere of a (k + 1)-handleK and∂k+1([K]) =
[h], we have the above situation. We would like to get a suitableiso-
topy from the above homotopy information, to cancel the handles cor-
respondingK and h in someH f . This is provided by the following
lemma. Since the proof of this lemma is rather long and seems to be of
some general interest, we will postpone the proof to the lastsection.
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8.9.5 (Isotopy Lemma). With the hypotheses of 8.9.4, ifn addition,
n ≥ 6 andk ≤ n − 4, then there is an isotopy in∂(Ak,X) carrying

∑
to

anotherk-sphere
∑′, such that

∑′ intersects a transverse sphere ofh in
one point transversally and does not intersect the otherk-handles.

8.10 Proofs of Theorems A and B

In this section, we will prove Theorems A and B assuming the Isotopy
Lemma, which will be proved in the next section.

First let us see what are the types of manifolds and presentations
that we have to consider. Theorem A, forℓ ≤ 1 is proved in 8.7. So,
we can assumeℓ ≥ 2, and hencen ≥ 6. For Theorem B,ℓ = n and
n ≥ 6, by hypothesis. So again using 8.7, it is enough to considerhandle247

presentations satisfying 8.9.1, and in additionn ≥ 6.
We start with two observations concerning the matrices of the

boundary maps:

8.10.1 Let H be handle presentation satisfying 8.9.1,h(i)1 , . . . , h
(i)
pi

be
the i-handles ofH . Let Bk+1 = (αi j ) be the matrix of the (k + 1)st

boundary map∂k+1 with respect to preferred bases. That is,

∂k+1

([
h

(k+1)
i

])
=

pk∑

j=1

αi j [h
(k)
j ], αi j ∈ Z(π).

Supposeh(k)
1 andh(k+1)

1 can be cancelled. Then we have formed a

handle presentationH − (h(k)
1 , h

(k+1)
1 ) = (B−1, . . . , Bn) say, of (M,X) as

follows:

Bi = f (Ai) for i < k

Bk = f (Ak − h
(k)
1 ) = Ak + h

(k+1)
1

Bi = Ai for i > k.

Here f is an equivalenceAk − h
(k)
1 ≈ Ak + h

(k+1)
1 mappingX onto

itself. If the attaching tube ofh(k+1)
1 does not intersect any otherk-

handle excepth(k)
1 , f can be assumed to be identity on allh(k)

i , i ≥ 2.
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We assume that this is the case. Nowh(k)
2 , . . . , h

(k)
pk are all thek-handles

and h(k+1)
2 , . . . , h

(k+1)
p(k+1)

are all the (k + 1)-handles ofH − (h(k)
1 , h

(k+1)
1 ).

Thus (by abuse of notation) [h(k)
2 ], . . . , [h(k)

pk
] is a basis ofπk(Bk, Bk−1)

and [h(k+1)
2 ], . . . , [h(k+1)

p(k+1)] is a basis ofπk+1(Bk+1, Bk). Let ∂′k+1 denote the 248

(k + 1)st boundary map ofH − (h(k)
1 , h

(k+1)
1 ). Consider the following

commutative diagram (Ak+1 = Bk+1,Ak ⊂ Bk,Ak−1 ⊂ Bk−1):

πk+1(Ak+1,Ak)

i1∗
��

∂ // πk(Ak)

i2∗
��

j // πk(Ak,Ak−1)

i3∗
��

πk+1(Bk+1, Bk)
∂′ // πk(Bk)

j′ // πk(Bk, Bk−1)

In this diagram, the vertical maps are induced by inclusion,the hor-
izontal maps are canonical maps, andj ◦ ∂ = ∂k+1, j′ ◦ ∂′ = ∂′k+1. Now

i1∗
(
[h(k+1)

1 ]
)
= 0

i1∗
(
[h(k+1)

i ]
)
= [h(k+1)

i ] for i ≥ 2.

and

i30

(
[h(k)

1 ]
)
= 0,

i3∗
(
[h(k)

i ]
)
=

(
[h(k)

i ]
)

for i ≥ 2.

Hence, fori ≥ 2,

∂′k+1

(
[h(k+1)

i ]
)

= ∂′k+1 ◦ i1∗
(
[h(k+1)

i ]
)

= j′ ◦ ∂′ ◦ i1∗
(
[h(k+1)

i ]
)

= i3∗ ◦ j ◦ ∂
(
[h(k+1)

i ]
)

= i3∗ ◦ ∂k+1

(
[h(k+1)

i ]
)

= i3∗


pk∑

i=1

αi j [h
(k)
j ]


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=

pk∑

i=2

αi j

(
[h(k)

j ]
)

249

Thus, if the matrix of∂k+1 is (αi j ), then the matrix of∂′k+1 is (αi j ),

i ≥ 2, j ≥ 2. This we have as long as the attaching tube ofh
(k+1)
1 keeps

away from the transverse tubes of the handlesh(k)
i , i ≥ 2. (It is easy to

see thatα1,2 = . . . = α1,pk = 0, in this case). It does not matter even if
the attaching tubes of other (k+ 1)-handles intersect the transverse tube
of h(k)

1 .

8.10.2 If f : Ak → Ak is an equivalence isotopic to the identity leaving
X fixed, then inH f andH , the attaching spheres of the corresponding
(k+1)-handles represent the same elements inπk(Ak). Since the (k+1)st

boundary maps are factored throughπk(Ak), the corresponding matrices
are the same after the choice of obvious bases inH andH f , and hence
in H andH ( f −1).

Proof of Theorem A.

Step 1.Let H = (A−1, . . . ,An) be a handle presentation of (M,X) satis-
fying 8.9.1. We are given that (M,X) is ℓ-connected, then we know that
the sequence

πℓ+1(Aℓ+1,Aℓ)→ πℓ(Aℓ,Aℓ−1)→ . . . π2(A2,A−1)→ 0

is exact.250

Suppose that we have already eliminated upto handles of index (i −

1), that is inH , A−1 = A0 = . . . = Ai−1; then by (*),πi+1(Ai+1,Ai)
∂i+1
−−−→

πi(Ai ,Ai−1) is onto. LetBi+1 be the matrix (pi+1 × pi) of πi+1 with bases
corresponding to handles. Then, there exists a (pi+1 + pi) × (pi+1 + pi)
matrix E, which is the product of elementary matrices, such that

E ×

[
Bi+1

0pi

]
=

[
Ipi

0pi+1,pi

]
.

If we attach pi cancelling pairs of (i + 1), (i + 2)-handles away
from the handles of index≤ (i + 2) to the ith level of H , then in
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the resulting handle presentation (B−1, . . . , Bn) of (M,X), the matrix of
πi+1(Bi+1, Bi)→ πk(Bi, Bi−1) with appropriate bases is

[
Bi+1

0pi

]
.

Then, by the Basis Lemma, we can obtain a handle presentationof
(M,X) satisfying 8.9.1, with exactly the same number of handles of each
index as above, but (i + 1)st boundary matrix will now be

E ×

[
Bi+1

0pi

]
=

[
Ipi

0pi+1,pi

]

251

This means that starting fromH , we can obtain a handle presenta-
tion K = (C−1, . . . ,Cn) of (M,X) such that

(1) K satisfies 8.9.1, and there are no handles of indices≤ i − 1

(2) the (i + 1)st boundary map ofK has the matrix
[

Ipi
0

]
.

Now we can eliminate thei-handles one at a time as follows:

Step 2.Considerh(i+1)
1 andh(i)1 ·∂i+1([h(i+1)

1 ]) = [h(i)1 ]; andi ≤ n−4. Hence
by the Isotopy Lemma, there is an equivalencef of ∂(Ci ,X), such thatf
takes an attaching sphereS1 of h(i+1)

1 to anotheri-sphereS′1 andS′1 in-

tersects a transverse sphere ofh(i)1 at one point transversally. Moreover

it can be assumed thatf (attaching tube ofh(i+1)
1 ) does not intersect the

transverse tubes of the otheri-handles. f can be extended to an equiv-
alencef of Ci takingX onto itself and inK f the handles corresponding
h

(i)
1 andh(i+1)

1 can be nearly cancelled. By 8.5.8, there is an equivalence

g of Ci, so that in (K f )g
= K (g f), the handles correspondingh(i)1 and

h
(i+1)
1 can be cancelled. Again, we can require thatg ◦ f (attaching tube

of h(i+1)
1 ) should not intersect the transverse tubes of handlesh

(i)
j , j ≥ 2.

ConsiderK(g f)−1. This is a handle-presentation of (M,X), and inK(g f)−1 252

the handlesK(i)
1 andK(i+1)

1 say, corresponding toh(i)1 andh(i+1)
1 can be

cancelled. By 8.10.1, and sincef andg can be assumed to be isotopic
to identity, the (i + 1)st boundary map ofK(g f)−1 − (K(i)

1 ,K
(i+1)
1 ) has the
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matrix
[

I(pi−1)

0

]
. Hence, we can go on repeating step 2 to obtain a handle

presentation of (M,X) without handles upto indexi.
Thus, inductively, the first part of Theorem A is proved. The second

part is clear.

Proof of Theorem B: By Theorem A, we can assume that there is a
handle presentationH of (M,X) with handles of indices (n − 3) and
(n− 4) only. H obviously satisfies 8.9.1. Consider the map

∂n−3 : πn−3(An−3,An−4)→ πn−4(An−4,An−5).

HereA−1 = . . . = An−5. Let A be the matrix of∂n−3 with respect to
bases corresponding to handles.A is a nonsingular matrix, saym× m
matrix. Sinceτ(M,X) = 0, A represents the 0-element inWh(π). Hence
for someq ≤ m there exists an (m+ q) × (m+ q) matrix E which is the
product of elementary matrices, such that

E ×

[
A 0
0 Iq

]
= Im+q

Now we addq cancelling pairs of (n−3)- and (n−4)-handles toAn−5

away from the other handles, so that in the new handle presentation, say
K , of (M,X), the (n− 3)rd boundary map ofK has the matrix

[
A 0
0 Iq

]
.

Then by the Basis Lemma, we can obtain a new handle presentation253

K ′ of (M,X) with exactly (m+ q) handles of indices (n− 3) and (n− 4)
and no others, and such that the matrix of the (n − 3)rd boundary map
of K ′ with respect to bases corresponding to handles isIm+q. Now,
by a repeated application of Step 2 in the proof the Theorem A,all the
handles can be eliminated so thatM ց X.

8.11 Proof of the Isotopy Lemma

We begin with some elementary lemmas.
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Lemma 8.11.1.Let Q⊂ P, Y× ∆ ⊂ X be polyhedra, where∆ is k-cell
anddim Q ≤ k and f : p→ X a polyhedral map. Then the set of points
α ∈ ∆ such that Q∩ f −1(Y × α) = ∅ contains an open and dense subset
of ∆.

Proof. Let Q′ = f (Q) ∩ (Y × ∆). Then dimQ′ ≤ dim Q < k. The
projection ofQ′ to∆ does not cover most of the points ofk-dimensional
∆. Any point α not belonging to the projection ofQ′ to ∆ will satisfy
Q∩ f −1(Y × α) = ∅. �

Lemma 8.11.2. If dimQ = k in the above, then the set of pointsα ∈ ∆
such that Q∩ f −1(Y × α) is 0-dimensional contains an open and dense
subset of∆.

Proof. Triangulate the projection ofQ′ to ∆. If A is the simplicial
presentation of∆with respect to which this map is simplicial, then every
pointα of ∆ − |Ak−1| will have the above property by 4.2. �

Let f : P → X be a nondegenerate map, simplicial with respect to
the presentationsP, X of P, X. Let

∑
( f ) denote the closure of the set

S( f ) = {x ∈ P|∃y ∈ P, y , x, f (y) = f (x)} (see 5.4).
∑

( f ) is covered by 254

a subpresentation ofP, call it
∑

.

8.11.3 If σ is a principal simplex of
∑

, then f ||S t(σ,P)| is an embed-
ding.

Proof. Since f is nondegenerate it mapsLk(σ,P) into Lk( fσ,X ) and
on |S t(σ,P)| it is the join ofσ → fσ and |Lk(σ,P | → |Lk( fσ,X )|.
The map|Lk(σ,P)| → |Lk( fσ,X )| is an embedding; otherwise if
τ1 , τ2, τ1, τ2 ∈ Lk(σ,P) and fσ1 = fσ2, then f (στ1) = f (στ2)
so thatστ1 ∈

∑
, contrary to the assumption thatσ is a principal sim-

plex of
∑

. Hence the map|S t(σ,P)| → |S t( f (σ),X )| being the join of
embeddings is an embedding. �

Proof of the Isotopy Lemma for k ≤ n− 5: The situation is: We have
a handle presentationH of a relativen-manifold (M,X) which is a spe-
cial case, andH satisfies the hypothesis 8.9.1. We havek-sphereS



206 8. Handles ands-cobordism

(what was called
∑

in 8.9.4 and 8.9.5) in∂(Ak,X) representing [h] in
πk(Ak,Ak−1) whereh is ak-handle. We deduced in 8.9.4 that in this case
if k ≤ n − 3 there is a homotopyh : S × I → ∂(Ak,X ) such thath0 =

embeddingS ⊂ ∂(Ak,X) andh−1
1 (transverse tubes of allk-handles) is a

k-cell C which is mapped byh1 isomorphically onto a core ofh, so that
h1(S −C) ⊂ ∂(Ak,X) ∩ ∂(Ak−1,X).

In the isotopy Lemma, we have further assumed thatk ≤ n− 4. We
first prove the simpler case whenk ≤ n−5, that is when the co-dimension
of S in ∂(Ak,X) is ≥ 4.

We can by general position suppose
∑

(h) has dimension≤ 2(k+1)−255

(n− 1) = 2k + 3− n.
Now h is polyhedrally equivalent toDk × ∆n−k, with the transverse

tube ofh corresponding toD × ∂∆ ⊂ (Ak,X). For any pointα ∈ int D,
α × ∂∆ is a transverse sphere; and any such transverse sphere will in-
tersect the coreh1(C) transversally in exactly one point, sinceh1(C)
corresponds toD × β, for someβ ∈ ∂∆.

We try to apply Lemma 8.11.1 to this situation. Define

Q = “Shadow”
∑

(h) = [ProjS
∑

(h)] × I

P = S × I

P
f
−→ X ⊃ Y × ∆k becomes

S × I
h
−→ ∂(Ak,X) ⊃ transverse tube ofh ≈ ∂∆ × Dk.

The crucial hypothesis now is dimQ < k. Since, in general
dim(projS

∑
(h)) ≤ dim

∑
(h), we have dimQ ≤ dim

∑
(h)+1 ≤ 2k+4−n.

To have this< k is exactly where we needk ≤ n− 5.
The conclusion then is:
α × ∂∆. There exists a transverse sphereT of h of the formα × ∂∆,

for someα ∈ Int D, so thath−1(T) does not intersect the shadow of
the singularities

∑
(h) or, what amounts to the same, the “shadow” of

h−1(T), namely

Z = [projS h−1(T)] × I ⊂ S × I



8.11. Proof of the Isotopy Lemma 207

does not intersect
∑

(h). Hence there is some regular neighbourhoodN
of Z in S× I , with N∩

∑
(h) = ∅. This implies, sinceh0 is an embedding,

thath|S × 0∪ N is an embedding.
We clearly haveN ց N ∩ S × 0, and these are (k + 1)- andk- 256

manifolds,N ∩ S × 0 ⊂ ∂N. Thush(S × 0) = S andh[S × 0 − (N ∩
S × 0) + (∂N − S × 0)] = S′ differ in ∂(Ak,X) by cellular moves along
the manifoldh(N). Therefore (by 7.1.8) there is an isotopy of∂(Ak,X)
takingS ontoS′. By construction all ofh−1(T) is in N, andS′ contains
only h(∂N − S × 0) in h(N), and this will intersectT ath(h−1(T)∩S×1),
that is at point (corresponding toα × β) transversally.

By being only a bit more careful, considering the transversetubes
of otherk-handles, we can arrange forS′ not to intersect the otherk-
handles at all (ifT′ is a transverse sphere of somek-handle other than
h, thenh−1(T′) ∩ S × 1 = ∅, and there is an isotopy of∂(Ak,X) car-
rying ∂(Ak,X)-small regular neighbourhoods of prescribed transverse
sphere of the otherk-handles ot∂(Ak,X)-transverse tubes of the other
k-handles).

Remark. This already gives Theorem C forn ≥ 8.

The casek = n − 4.
In casek = n−4, n ≥ 6, the above result is still true, but this involves

some delicate points.
Sincen ≥ 6, we have (fork = n−4) the crucial number 2k+3−n > 0.
We consider, as beforeh : S × I → ∂(Ak,X) in general position, so

that dim
∑

(h) ≤ 2k+ 3− n. RememberingS = h(S × 0), we further use
general position so thath−1(S) ∩ S × (0, 1] is of dimension≤ k + (k +
1)− (n− 1) = 2k+ 2− n, and call

θ(h) = closure (h−1(S) ∩ S(0, 1]).

257

Makeh simplicial, say with reference toS of S × I , and refineS
to S ′ so thatθ(h) is covered by a subpresentationθ,

∑
(h) by a subpre-

sentation
∑

, and the projectionS × I → S is simplicial onS ′.
Now we have to pick our transverse sphereT = α × ∂∆n−k in the

transverse tubeDk × ∂Dn−k so that
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(1) h−1(T)∩ shadow
∑

(h) is 0-dimensional

(2) h−1(T) ∩
∑

(h) = ∅

(3) h−1(T)∩ shadow{(2k+ 2− n)-skeleton of
∑
} = ∅

OnS×0∪ a neighbourhood of [shadowh−1(T)], h is a local embed-
ding, using Lemma 8.11.3.

Let Q = shadowh−1(T). The finite set of pointsQ∩
∑

(h) does not
intersect any point ofh−1(T). Each point sayx ∈ Q∩

∑
(h) belongs to a

(2k+ 3− n)-simplex of
∑

j sayσx. Sinceσx has dimension≥ 1, we can
moverS × I in a tiny neighbourhood ofx by a polyhedral equivalence
f : S × I → S × I so as to movex around onσx, that is, so that

f (Q) ∩
∑

(h) = Q∩
∑

(h) − {x} + {x′},

where the choice ofx′ ranges over an infinite set.f will not moveh−1(T)
nor will it move S × 0. There are only a finitely many points to worry
about, and so we can find a polyhedral equivalencef : S × I → S × I ,
leavingh−1(T)∪S× 0 fixed, such that the set of pointsf (Q)∩

∑
(h) are

mapped byh into pairwise distinct points.
At this moment, we see that onS × 0 ∪ f (Q), h is an embedding.258

Sinceh is a local embedding on some neighbourhood off (Q) (we re-
strict f close to the identity so thatf (Q) ⊂ S× I - {(2k+ 2− n)-skeleton
of

∑
}), and an embedding onf (Q); hence it is an embedding on some

neighbourhood off (Q).
θ(h) is well out of the way, and soh actually embeds all ofS × 0∪

(a neighbourhood off (Q)).
We now proceed as before, usingf (Q) to move around along.
This trick looks a bit different from piping, which is that we would

have to do in the casen = 5, k = 1; this was the case when we had a null
homotopic 1-sphere⊂ 4-manifold unknotted.
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