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Introduction

1

The recent filorescence in the theory of polyhedral manifolds due to
Smale’s handle-theory, theftérential obstruction theory of Munkres
and Hirsch, the engulfing theorems, and the work of Zeemanrg 8nd
their students - all this has led to a wide gap between the matie-
ory and the old foundations typified by Reidemeister’s Togi der
Polyeder and Whitehead’s “Simplicial spaces, nuclei, argroups”.
This gap has been filled somewhat by various sets of noteablyot
Zeeman’s at I.H.E.S.; another interesting exposition &séi’'s at Rice
University.

Well, here is my contribution to bridging the gap. These saten-
tain:

(1) The elementary theory of finite polyhedra in real vectioaces.
The intention, not always executed, was to emphasize gepmet
avoiding combinatorial theory where possible. Combiriatiyy
convex cells and bisections are preferred to simplexes t@fdrs
or derived subdivisions. Still, some simplicial techniquast be
slogged through.

(2) A theory of “general position” (i.e., approximation ofaps by
ones whose singularities have specifically bounded diroaski
based on “non-degeneracy”. The concepnehanifold is gen-
eralized in the most natural way for general-position tiidoy
that of ND(n)-space - polyhedrom such that every map from
an n-dimensional polyhedron intM can be approximated by a
non-degenerate map (one whose point-inverse are all finite) 2
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2 Introduction

(3) Atheory of “regular neighbourhoods” in arbitrary pogdra. Our
regular neighbourhoods are all isotopic and equivalentécstar
in a second-derived neighbourhoods are all isotopic and/aqu
lent to the star in a second-derived subdivision (this iseavmr
less the definition). Many applications are derived righerathe
elementary lemma that “locally collared implies collaredNe
then characterize regular neighbourhoods in terms of \Wééd's
“collapsing”, suitably modified for this presentation. Tadvan-
tage of talking about regular neighbourhoods in arbitrasiytpe-
dra becomes clear when we see exactly how they should behave
at the boundaries of manifolds.

After a little about isotopy (especially the “cellular maVeof
Zeeman), our description of the fundamental technique®iyp
hedral topology is over. Perhaps the most basic topic othitte
the theory of block-bundles, microbundles and transvigysal

(4) Finally, we apply our methods to the theory of handle spre
tations of PL-manifolds a la Smalés theory forftrential man-
ifolds. This we describe sketchily; it is quite analogougthe
differential case. There is one innovation. In order to get two
handles which homotopically cancel to geometrically cirtbe
“classical” way is to interpret the hypothesis in terms df th-
tersection number of attaching and transverse spheresinter-
pret this geometrically, and then to embed a two-cell oveicivh
a sort of Whitney move can be made to eliminate a pair of in-
tersection. Our method, although rather ad-hoc, is momcdir
avoiding the algebraic complication of intersection nurshes-
pecially unpleasant in the non-simply-connected case)adlsas
any worry that the two-cell might cause; of course, it ameuat
the same thing really. This method is inspired by the engulfin
theorem. [There are, by the way, at least two ways to use the
engulfing theorem itself to prove this point].

We do not describe many applications of handle-theory; weldo
tain Zeeman’s codimension 3 unknotting theorem as a coesegqu
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This way of proving it is, unfortunately, more mundane thauariny
collapsing”.

We omit entirely the engulfing theorems and their diversdiegp
tions. We have also left out all direct contact witlffdiential topology.

* * *

Let me add a public word of thanks to the Tata Institute of Fund
mental Research for giving me the opportunity to work ongHestures
for three months that were luxuriously free of the worrieakiaus stu-
dents and administrative annoyances that are so enengltaghere.
And many thanks to Shri Ananda Swarup for the essential thekIp-
ing write these notes.

John R. Stallings
Bombay
March, 1967






Chapter 1
Polyhedra

1.1 Definition of Polyhedra

Basic units out of which polyhedra can be constructed argecohulls 4
of finite sets. Apolyhedron(euclidean polyhedron) is a subset of some
finite dimensional real vector space which is the union ofdlgimany
such units. (“Infinite polyhedra” which are of interest ims® topolog-
ical situations will be discussed much later).

A polyhedral map f. P — Qs a functionf : P —» Q whose graph
is a polyhedron. That is, suppoBeandQ are subsets of vector spaces
V andW respectively; the graph df, denoted by (f), is the set

I(f) ={(x y)Ixe P,y = f(x) € Q}

which is contained ivxW, which has an evident vector space structure.
I'(f) is a polyhedron, if and only if (by definition, is a polyhedral map.
Constant functions, as well as identity functiBn— P are polyhedral
maps.

The question whether the composition of polyhedral mapslige-
dral leads directly to the question whether the intersaatibtwo poly-
hedra is a polyhedron. The answer is “Yes” in both cases. dthitd be
proved directly, but we shall use a round about method winitbduces
uneful techniques.

It will be seen that polyhedra and polyhedral maps form a-cate
gory. We are intersted ireguivalencesin this category, that is mapss
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6 1. Polyhedra

f : P — Q, which are polyhedral, one-to-one and onto. When do such
equivalences exist? How can they be classified? Etc...

A finite dimensional real vector spa&é has a unique interesting
topology, which can be described by any Euclidean metri¢.dPalyhe-
dra inherit a relative topology which make them compact imspaces.
Since polyhedral maps have compact graphs they are consnudis
provides us with an interesting relationship between padyh and
topology. We may discuss topological matters about polsdnecdho-
mology, homotopy, homeomorphy - and ask whether these idithe
polyhedral category and its equivalences.

After this brief discussion of the space of the subject, voeeed to
the development of the technique.

1.2 Convexity

R denotes the filed of real numbers, avid finite dimensional vector
space over.

Leta, b € V. Theline segmenbetweera andb is denoted by4, b].
It is defined thus:

[ab] = (ta+ (L-tb0 < t < 1.

A setC c V is calledconvexf [ a, b] ¢ C whenevera, b € C.

ClearlyV itself is convex, and the intersection of any family of con-
vex sets is again convex. Therefore everyXet V is contained in a
smallest convex set - namely the intersection of all conet sontain-
ing X; this is called theonvex hullof X, and is denoted big (X).

Definition 1.2.1.A convex combinatioof a subseX of V is a point of
V which can be represented by a finite linear combination

k
Z M X
i=0

k
wherex; € X, ri e R, r; = Oforalli,and ) rj = 1.
i=0



1.2. Convexity 7

Proposition 1.2.2. The convex hull KX) of X is equal to the set of
convex combinations of X.

Proof. Call the latteri(X). It will be shown first thatt(X) is convex and
containsX, henceK(X) c A(X).

It X € X, then Lxis a convex combination of, henceX > A(X). Let
k ¢
p= 2 IiX,o = ) sjyjbetwo points ofi(X). A typical point of o, o]
i=0 j=0

k ¢
is of the formtp + (1-t)o = X (tri)xi + X, (1 -1)sj)yj, where 0< t < 1.
i=0 j=0

Sincei tri + zfj(l—t)sj = t(i ri)+(1—t)(§[] sj)=t+(1-t)=1,and
i=0 j=0 i=0 j=0

all the codficients are> 0, tp + (1 — t)o- is a convex combination of.
HenceA(X) is convex.

To show thati(X) c K(X) it must be shown that any convex €&t
containingX containsi(X). Letp = rixg + -+ mXn, (X € X, > r; = 1)
be a typical convex combination &f, ..., x,. By induction onn it will
be shown that any convex ggtcontainingX containsp also. Ifn =1,
=x € XcC.Ifn>1,then

ro In
rixg+@Q-r Xo+ -+ .
p=riXg+( 1)( e 1_r1Xn)

. . r
That isp is on the line segment betwees and - 2 Xo + -+ +

r

1-
Thus/i(X) cC. Thereforezl(X) c K(X); andA(X) = K(X). O

Definition 1.2.3. A finite subset{xg, ..., X<} of V is said to bandepen-
dent(or affinely independeintif, for real numbersy, ..., r, the equa-
tions

roXo+---+rex«=0 and
ro+---+rg=0,

inply that
ro=...=rc=0.
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Ex. 1.2.4.The subsetxy, ..., X} of V is independent if and only if the
subset(xg, 1), ..., (X, 1)} of V x R is linearly independent.

Ex. 1.2.5.The subsetxy, ..., X} of V is independent if and only if the
subsetx; — Xg, ..., Xk — Xo} of V is linearly independent.

Hence if{xg,..., X} c V, X €V, then {xo,..., X} is independent if
and only if{x+ Xp, ..., X+ X} is independent.

These two exercises show that the maximum number of indepénd
points inV is (dimV + 1).

The convex hull of an independent $&4, . .., X4} is called aclosed
k-simplexwith vertices{xo, ..., X} and is denoted byxp, ..., x]. The
numberk is called thedimensiorof the simplex.

The empty se® is independent, its convex hull, also empty, is the
unique ¢1)-dimensional simplex. A set of only one point is indepen-
dent; [X] = {x} is a O-dimensional simplex. A set of two distinct points
is independent; the closed simplex with verti¢es/} coincides with the
line segment¥, y] betweenx andy.

Proposition 1.2.6. If {Xg, ..., Xa} C V, then{xo,..., Xn} is independent
if and only if every point of Kxg, . . ., Xa} IS @ unigue convex combination

of {Xo, ..., Xn}.

Proof. Let{Xg,..., Xn} be independent. |5 : roXg + - - - + FnXn = SoXo +
ot SXn, With 31 = 1= 375, then (o — So)Xo + - + (f'n — Sn) % = 0,
and fo— )+ -+ (rh — ) = 0. Hence(; — 5) = 0 for all i, and the
expression fop is unique.

If {Xo,...,Xn}is notindependent, then there are real numbersot
all zero such that

foXo+---+rXy =0 and
ro+---+r,=0.

Choose the orderinfx, . . ., X,} so that there is &for which

>0 if i<¢
n<0 if i>¢
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Since not alk; are zeroyg + -+ +rp_g = (—rg) +---+ (rn) # 0. Let
this number be. Then

fo le-1 =T —I'n
p Xo r Xe-1 p Xe p Xn
But these are two distinct convex combination$xaf . . . , x,} which
represent the same point, a contradiction. O

Proposition 1.2.7. The convex hull KX) of X is equal to the union of
all simplexes with vertices belonging to X.

Proof. By [LZ.2, it is enough to show that a convex combinatiorXof
belongs to a simplex with vertices a Letp = riXg+---+rpXa; X € X,
>ri=1,r >0, be point ofK(X). It will be shown by induction om
thatp belongs to a simplex with vertices in the $gf, ..., X,}. If n=1,
thenp = x1 € [X1]. So letn > 1.

If {xq,..., X} is independent, there is nothing to prove. If not, there

ares,,..., Sy, hotall zerrq, such tha x;+- - -+SX, = 0 ands;+- - -+S, =
0. Whens =0, define—'_ = oo; then it can be supposed that ..., X,

is arranged such that

In

S

.
N
St

]
S

> ...

1
Thens, # 0. Hencex,, = —;(slxl 4+t S1Xno1)-
Therefore

p= (fl - Sir—n) Xy + (fz - Szr—n) X2
S S
+oee (rn—l - Sn—1r—n) Xn-1-
S

Since for alli < n, % %” , and since—% e % = 1, this
expresse® as a convex combination dk,...,X,-1}. By inductive
hypothesisp is contained in a simplex with vertices {{, ..., Xp_1}.

O

>

10
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The following propositions about independent sets will iseful
later (See L.S. Pontryagin “Foundations of combinatoriapdiogy”,
Graylock Press, Rochester, N.Y., pages 1-9 for completefgro

Let dimV = m, andé be a euclidean metric ovi. First, propositon
2.4 can be reformulated as follows:

Ex. 1.2.8.Let{ey,...,en} be a basis foW, and{xg, ..., X,} a subset of
V. Letx = ale; + - + @"y; 0 < i < n. Then the subsdk, . .., Xn} is
independent if and only if the matrix

1
1

WS
HRSR

.8

£,
2
#

1
has rank i + 1).

Proposition 1.2.9. Let{x,..., Xa} be a subset of V, g m. Given any
(n + 1) real numbersg > 0,0 < i < n, d points y € V, such that

6(%,Yi) < g, and the setyo, ..., Yn} is independent.

Sketch of the proof: Choose a sefuy, .. ., Uy} of (n + 1) independent
points and consider the setft) = {t up + (1 —t)Xg, ..., tun + (1 — )X},
0 <t < 1. Let N(Z(t)) denote the matrix corresponding to the set
Z(t) as given irCL.Z18. (the points being taken in the particolaler).
Z(1) = {ug,...,Us}, hence some matrix oh(+ 1)-columns ofN(Z(1))
has nonzero determinant. LB{(t) denote the determinant of the cor-
responding matrix ifN(Z(t)). D(t) is a polynomial int, and does not
vanish identically. Hence there are numbers as near 0 askeauich
that D(s) does not vanish. This means tiN{Z(s)) is independent, and
if sin near 0,Z(s); will be nearx;. ]
Hence in any arbitrary neighbourhood of a poinVgthere arerfi+
1) independent points.
The above proof is reproduced from Pontryagm’s book. The nex
propositions are also proved by considering suitable detemts (see
the book of Pontryagin mentioned above).
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Ex. 1.2.10.If the subset{xo, ..., X} of V is independent, then there
exists a number > 0, such that any subséyp,...,yn} of V with
6(%,Yi) < nforalli, is again independent.

Ex. 1.2.11A subsetX = {xo,..., Xy} of V is said to be ingeneral
position if every subset ofX containingm + 1 points is independent
(wherem = dimV).

Ex. 1.2.12.Given any subseX = {Xo, ..., Xa} of V and 1+ 1)-numbers 12
€ > 0,0<i < n, there exists pointg, 0 < i < nwith §(x;, Vi) < ¢, and
such that the subs&t= {yj, ..., yn} of V is in general position.

Hint: UseI.ZP[C1.2.10 and induction.

1.3 Openconvex sets
Definition 1.3.1.A subsetA of V is said to be almpen convex séft
(1) Ais convex

(2) for everyx, y € A, there exists 0, such thatex + (1 + €)y € A,
(e = e(x,y) depending orx, y).

—ex + (14 ¢€)y

In otherwords the line segment jointingandy can be prolonged a
little in A,

Clearly the empty set and any set consisting of one point pea o
convex sets. So open convex setd/imeed not necessarily be open in
the topology ofV.
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Clearly the intersection of finitely many open convex setagain
an open convex set.

Definition 1.3.2.Let{Xy, ..., X} € V.

An open convex combinationf {Xy, ..., X} iS a convex combina-
tion rix; + --- + X, such that every cdcientr; > 0. The set of
all points represented by such open convex combinationsristdd by
O(Xl, cee Xn)

It is easily seen that @, ..., X,) is an open convex set.

Definition 1.3.3.If {xo,..., X} is independent, then &,..., x) is
called an operk-simplex with verticegXp, ..., Xk}. The numbeik is
called the dimension of the simplexg(...,x). If {ig,...,is} C
{0,...,n}, then the open simplex K, ..., X,) is called as-face(or a
face) of Ok, ..., x). If s< Kk, then, it is called groper face

Clearly, the closed simplexy, . . ., ] is the disjoint union of OX,
.., %) and all its proper faces.
We give another class of examples of open convex sets beldghwh
will be used to construct other types of open convex sets.

Definition 1.3.4.A linear manifoldin V is a subseM of V such that
wheneverx, y € M andr € R thenrx + (1 —r)y € M.

Linear manifolds inV are precisely the translates of subspaces of
V; that is, if V' is a subspace d¥, andz € V, then the sez+ V' =
{z+ Z|Z € V’}is alinear manifold iV, and every linear manifold iKW
is of this form. Moreover, given a linear manifol the subspac¥y
of V of which M is a translate is unique, namely,

Vm =1{z-Vize M,ye M} = {z-Z|ze M, Z afixed element oM }.

Thus thedimensionof a linear manifold can be easily defined, and
is equal to one less than the cardinality of any maximal iedegnt
subset ofM (sed L.ZF5). A linear manifold of dimension 1, we will call
aline. If Lisaline,a, b € L, a # b, then every other point oh is
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of the formta + (1 - t)b, t € R. If M is a linear manifold inv and
dimM = (dimV - 1), then we calM ahyperplanen V.

Definition 1.3.5.Let V and W be real vector spaces. A functign :
V — Wi is said to be a linear map, if for everye R and everyx, y € V,

e(tx+ (1-1y) = to(x) + (1 - Ye(y)-

Alternatively, one can characterize a linear map as beiegtimn of
a vector space homomorphism and a constant.

Ex. 1.3.6.In definition[I.35, it is enough to assume thiex+ (1-t)y) =
te(X) + (1 —t)p(y) forO<t < 1.

If Ais a convex setiV andy : A — W, (W a real vector space) is
amap such that, fox, ye A, 0<t<1

e(tx+ (1 - 1)y) = to(x) + (1 - e(y),

then also we calp linear. It is easy to see that is the restriction tA
of a linear map ol (which is uniquely defined on the linear manifold
spanned by).

Ex. 1.3.7.Let A, V, W be as above and: A — W a map. Show thap
is linear if and only if the graph ap is convex. (graph op is the subset
of V x W consisting of K, y), X € A,y = ¢(X)).

Ex. 1.3.8.The images and preimages of convex sets under a linear nsap
(resp. open convex sets) are convex sets (resp. open cogt&Xx $he
images and preimages of linear manifolds under a linear mapgain
linear manifolds.

A hyperplaneP in V for instance is the preimage of O under a linear
map fromV toR. Thus with respect to some basis\gfP is given by an
equation of the forn} ¢ x; = d, wherex; are co-ordinates with respect
to a basis oV and¢;, d € R not all the¢;'s being zero. Henc¥ — P
consists of two connected componenis{(x, > d and . £ix < d),
which we will call thehalf-spacesf V determined byP. A half space
of V is another example of an open convex set.
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Definition 1.3.9.A bisectionof a vector spac&/ consists of a triple
(P; H*,H™) consisting of a hyperplane in V and the two half spaces
H* andH™ determined byP.

These will be used in the next few section. A few more remarks:
Let the dimension o/ = mandV’ be a (h — k)-dimensional subspace
of V. Then extending a basis ® to a basis oV we can expresy’
as the intersection ok(- 1) subspace o¥ of dimension (n— 1). Thus
any linear manifold can be expressed as the intersectiomioé fset
(non unique) of hyperplanes. Also we can talk of hyperplatiasar
submanifolds etc. of a linear manifoM in V. These could for example
be taken as the translates of such from the correspondirgpacé of
V or we can consider them as intersections of hyperplanesiaaalr |
manifolds inV with M. Both are equivalent. Next, the topology on
V is taken to be topology induced by any Euclidean metrid/orThe
topology on subspaces ®finherited fromV is the same as the unique
topology defined by Euclidean metric & The topology on subspaces
of V inherited fromV is the same as the unigue topology defined by
Euclidean metrics on them. And for a linear manifé/dwe can either
take the topology oM induced fromV or from subspace of of which
it is a translate. Again both are the same. We will use theseafter
without more ado.

1.4 The calculus of boundaries

Definition 1.4.1.Let A be an open convex setWh A pointxe V — A
is called aboundary pointof A, if there exists a poina € A such that
O(x,a) € A. The set of all boundary points @fis called theboundary
of Aand is denoted byA.

A number of propositions will now be presented as exerciaed,
sometimes hints are given in the form of diagrams. In eackrgbontext
a real vector space is involved even when it is not explicitgntioned,
and the sets we are considering are understood to be sulfsibtst o
vector space.
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Ex. 1.4.2.A linear manifold has empty boundary. Conversely, if an
open convex sel has empty boundary, thekis a linear manifold.

Remark. This uses the completeness of real numbers.

Ex. 1.4.3.If (P;H*,H") is a bisection oV, thengH* = gH~ = P and
oP = 0.

Proposition 1.4.4. If A is an open convex set andexdA, then for all
be A 0xb) cA.

Proof. Based on this picture: There ig ‘such that 0, a) c A. Extend 17
a, bto a pointc € A. For anyq € 0(x, b), there exists g € 0(x, a) such
thatqg € 0(c, p). Sincec, p € A, g € A. Hence 0k, b) c A.

O

Ex. 1.4.5.Lety : V — W be a linear map, and I& be an open convex
set inW. Thend(¢~1(B))(¢1(8B)). If ¢ is onto then equality holds.

Definition 1.4.6.The closureof an open convex séi is defined to be
AU JA; itis denoted byA.

Ex. 1.4.7.1f A c B, thenA c B.
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Proposition 1.4.8.1f a, b€ A and a# b, where A is an open convex set,
then there is at most oneexdA such that ke 0(a, x).

Proof. If b € 0(a,xX) andb € 0@ y); X, y € dA, X # Y, then 06, X)
and 04, y) lie on the same line, the line throughandb and both, are
on the same side & asb. Eitherx ory must be closer ta i.e. either
xe 0@y)orye0@x). If xe 0(@Yy), thenx € A, butAn dA = 0.
Similarly y € 0(a, X) is also impossible. m|

Proposition 1.4.9. Let{Xo, ..., Xn} be an independent set whose convex
hull is contained iMA, where A is an open convex set. Let A. Then
{Xo0,...,%n, &} is independent.

Proof. [[LZ:8 shows that each point Kfxo, . .., X, a} can be written as
a unique convex combination. Hencelby 1§ . . ., X», @} is indepen-
dent. O

Proposition 1.4.10.Let A and B be open convex sets. IEBA, then
0B c 0A.

Proof. Based on this picture:

The caseA or Bis empty is trivial. Otherwise, lete 0B,be B,a €
A; extend the segmenb,[a] to & € A. Let p € 0(x, a@); thenq € 0(x, b)
can be found such that € 0(g,&). Sinceq € 0(x,b) c B c A, it
follows that 0€, &) c A, thereforep € A. Hence 0x, a) c A; obviously
x does not belong té& and sox € dA. O
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Definition 1.4.11.If A and B are open convex sets, defide< B to
meanA c JB.

[LZT0 implies thak is transitive.
Ex. 1.4.12.If Ais an open convex set, thénis convex.

Hint:

z

—/

‘!!?

Proposition 1.4.13.If A and B are open convex sets withh®B # 0, 19
thend(An B) is the disjoint union 0bA N B, AN 9B anddA N dB.

_Y
A
o

Proof. These three sets are disjoint, sinke» dA = BN dB = 0. Let
¢ € AnBandx € (AN B); sincexe V- (ANnB) = (V-AU(V-B),
x either (1) belongs t& — A and toV — B or (2) belongs to/ — A and
to B or (3) belongs tA and toV — B. Since 0k, c) c AN B, in case (1)
x € JAN 9B, in case (2x € AN Band in case (3x € AN dB. The
converse is similarly easy. O

Another way of statinf_1.Z.13 is to say than B = AN B, when
AnNB=#0.

Proposition 1.4.14.1f A and B are open convex sets andcAB and
AN B # 0, then Ac B.

Proof. Letc € An B, anda € A. The_Iine from €' to ‘a may be
prolonged a little bit t&’ € A. Sincea’ € B, it follows that 0, ¢) c B,
buta e 0(@, c). HenceA c B. O
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Proposition 1.4.15.If A = B, where A and B are open convex sets, then
A=B.

Proof. If AnNB = 0, sinceAUJA = BUIB, we haveA c dBandB c dA.
By [LZT0 we havéA c JAandB c 9B. ButAN9A = 0 = Bn oB.
HenceA n B = 0 is impossible except for the empty case. Then by
[[LZ2T13,A c BandB c A. ThereforeA = B. O

Propositign 1.4.16. Let ﬁ(xl, ..., Xn) denote the closure df(xq,...,
Xn). Then0(Xq, ..., X)) = K{X1,..., Xn}.

Proof. First, K{Xy, ..., %} C O(X4,...,X,). Forlety € K{xa,...,Xn};
. . L 1
theny is a convex linear combinationx; + - - - + rpX,. Letz = ﬁ(xl +

-+ + Xp) € 0(Xg, ..., Xn). Then every point on the line segmeny,() is
obviously expressed as an open convex combination,of ., x,; hence
0(,2) C O(X4, . .., %), and soy € O(xq, . .., Xn).

Conversely, lety € 0(Xq, ..., %)). Ify € O(Xq,...,X), clearlyy €
K{X1,..., Xn}. Supposey € d0(X1,...,Xn); letz = %(xl + -+ + Xp) @S
above. On the line segmenty0f), pick a sequence; of points tending
toy. Now, g € O(y,2) c O(Xq, ..., %) C K{X;,..., Xn}. Leta =ri;Xq +
-+++Tj % Ij; are bounded by 1. By going to subsequences if necessary
we can assume that the sequericgsconverge for allj, say torj. Then
2rj=1r; >0, and} rj xj converge toy; rjxj € K{xy,...,X}. But
2. Ti;Xj also converge tyg. Hencey = 3 rjX; andy € K{xy,...,X,}. O

Definition 1.4.17.An open convex sef is said to be bounded, if for
every lineL in V, there are points, y € L, such thatAn L c [x,].

Since in any cas@ N L is an open convex set, eith&mn L is empty,
or An L consists of a single point, @&nN L is an open interval, possibly
infinite onL. The boundedness @éfthen implies that ifA N L contains
at least two points, there arey € L such thatA n L = 0(x, y).

Proposition 1.4.18.If A is a bounded open convex set containing at
least two points, theA = K(dA).
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Proof. SincedA c AandA is conve, it is always true that(dA) c A.
Clearly 0A c K(dA). It remains only to show thah c K(dA). Let
a € A. LetL be aline througha' and another poinb € A (such another
point exists by hypothesis). Sinéeis bounded, andia,b} € LN A, it
follows thatA N L = 0(x,y) for somex, y € L. Clearlyx, y € dA, and
ac[xy] c K(0A). O

Remark . With the hypothesis di .28, we have= |J[a,y], ‘@ a
y
fixed point ofAandy € 0AandA = | J0(a,y) U {a}.
y

Ex. 1.4.19.f A and B are open convex sets, aid < B, andB is
bounded, ther\ is bounded.

Hint:

O

Ex. 1.4.20.Let A be an open convex set W, andB be an open convex22

setinW. Then (1)Ax Bis an open convex set Mx W; (2) 9(Ax B) is
the disjoint union 0HA x B, A x 9B anddA x dB; (3) A x Bis bounded
if and only if A andB are, providedA = 0, B # 0.
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The following two exercises are some whdfidult in the sense they
use compactness of the sphere, continuity of certain fomstétc.

Ex. 1.4.21.The closure ofA defined above[{1.4.6) coincides with the
topological closure oAin V.

Ex. 1.4.22.An open convex set which is bounded in the sense of some
Euclidean metrix is bounded in the above sense, and cotyerse

1.5 Convex cells

Definition 1.5.1.An open convex celk defined to be a finite intersec-
tion of hyperplanes and half spaces, which as an open coreteis s
bounded.

Clearly the intersection of two open convex cells is an op@Ivex
cell, and the product of two open convex cells is an open coog#.

With respect to a coordinate system in the vector space ichwhi
it is defined, an open convex cell is given by a finite systemirafdr
inequalities. IfAis an open convex cell, by taking the intersection of all
the hyperplanes used in definidgwe can writeA = PNnHyiN...NH,
whereP is a linear manifold andH; are half spaces. Sindé are open
in the ambient vector spaceis open inP. LetA=P nH] n...NHj,
be another such representationfofif A is nonempty, the® = P’. For
AcPnP andifP = P, Pn P is of lower dimension thaP, henceA
cannot be open iR. ThusP’ = P; though theH;’s andHJf’s may difer.
HenceP can be described as the unique linear manifold which cositain
A as an open subset. We define thimensiorof the open convex cel
to be the dimension of the above linear manifBldif A = 0, we define
the dimension oA to be-1.

If Ais an open convex cell, we will calA a closed convex cell
The boundaryof a closed convex cell is defined to be the same as the
boundary of the open convex cell of which it is the closureisThwell
defined, sincé = B impliesA = B, whenA andB are open convex sets
(CZI5). Thedimensiorof A is defined to be the same as the dimension
of A.
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Using[L.Z® and1.Z10, it is easily seen that the dimensioh is
one less than the cardinality of maximal independent seagwed inA
or A. Similar remark applies foh also. Actually, using this description
we can extend the definition of dimension to arbitrary corsets.

Ex. 1.5.2.I1f Alis an open convex cell of dimensidf, andA,,..., A,
are open convex cells of dimensierK, thenA¢ AjU...UA,.

Proposition 1.5.3. An open k-simplex is an open convex cell of dimen-
sion k. A closed k-simplex is a closed convex cell of dimarsio 24

Proof. It is enough to prove for the opdrsimplex. Let the operk-
simplex be Ofo, ..., X) = A in the vector spac&. The the unique
linear manifoldP containingA is the set of pointggxg + -+ + kX,
whererg + -+ - + rg = 1, r; € R. Definegi(roxg + -« + reXe) = ri; ¢ is
a linear map fronP toR. ThenH; = goi_l(O, o) is a half space relative
to the hyperpland® and 0o, ..., %) = Ho N ... N Hx. By extending
H;j to half spacedd; in V suitably, Ok, ..., %) = PN H{N...NH.
Boundedness oA, and that dinA = k are clear. m]

Proposition 1.5.4. Let A be a nonempty open cell. Then there is a finite
setZ = {A4,..., A} whose elements are open convex cells, such that

@ A= U A.

1<i<k
(b) ANA; =0ifi #j
(c) Ais one of the cells A

(d) The boundary of each element &% is union of elements of?.
(Of course the empty set is also taken as such a union).

Proof. LetA=PnNnHiN...NHy wherePis a linear manifold andH;
are half spaces with boundary hyperplafgsLet &2 be the set whose
elements are nonempty sets of the following sort:

Let

(... ={jn. .. gt UtKe ..., K g).
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Thenifitis notempty the s N Hj, N...NnHj NP, N...N Py,
is an element oP. The properties of” follow from [[LZI3. 25
If the above, the union of elements &f excludingA constitute the
boundarydA of A. Then usind_1.4]9, and the remarks precefing11.5.2,
we have, ifA; € 2, A # A, then dimA; < dimA. We have seen that if
Ais a bounded open convex set of diml, thenA = K(dA). Hence by
an obvious induction, we have m|

Proposition 1.5.5. A closed convex cell is the convex hull of a finite set
of points.

A partial converse di-1.H.5, is trivial:

1.5.6 The convex hull of a finite set is a finite union of open (closed)
convex cells.
The converse dfZ1.3.5 is also true.

Ex. 1.5.7.The convex hull of a finite set is a closed convex cell.

Hint: Let {x1,..., Xy} be a finite set in vector spacé. By [LZ4I®
K{X1,..., X} = O(X,...,%). Itis enough to show that &, ..., X,)

is an open convex cell. LeM be the linear manifold generated by
(X1, ..., %}. LetdimM = k. Write A = 0(Xq, ..., Xn), A = K{X1, ..., Xn}.
Ais open inM. To prove the proposition it is enough to show tAa
the inter section of half spaces M.

Step 1.A anddA are both union of open (hence closed) simplexes with
vertices in{xy, ..., Xa}. The assertion foA follows from[LZ.T.

Step 2.If Bis a k — 1)-simplex indA and N is the hyperplane iM
defined byB, thenA cannot have points in both the half spaces defined
by Nin M.

Step 3.1t is enough to show that each point @b belongs to a closed
(k — 1)-simplex with vertices irixy, . .., Xn}.

Step 4.Each pointx € dA is contained in a closed (- 1)-simplex
with verticer in{xy, ..., X,}. To prove this leCy,...,C, be the closed
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simplexes contained iAA with vertices inxy, ..., X, which containx,
andDy, ..., Dg(c dA) which do not contairx. By Step (1)JCi UDj =
i j

0A. Consider any poina € A and a poinb € 0(a, X). LetC/ (resp.D])

denote the closed simplex whose vertices are tho§k @Esp.D;j) and

‘a. By the remark followind1.2.18| ) C/ | J D’j = A. Show that JC/ is
i j i

a neighbourhood df. If dim Cj < k—1 for alli, then dimC/ < k-1 for
alli. Use[L.5.P to show that in this casgC/ cannot be a neighbourhood
of b.

Since the linear image of convex hull of a finite set is alsactirevex
hull of finite set,[I.5J7, immediately gives that the linearage of a
closed convex cell is a closed convex cellAlfs an open convex cell in
V andy a linear map fronV to W, theng(A) = ¢(A), by[I.Z.16, hence
by[L.Z.T5o(A) is an open convex cell. Therefore

Proposition 1.5.8. The linear image of an open (resp. closed) convex
cell is an open (resp. closed) convex cell.

1.6 Presentations of polyhedra

27
If &2 is a set of sets andlis set, we shall write

Av &P

when A is a union of elements of”?. For example (d) ofZL5l4 can
be expressed as “lA € &2, thendA v £2”. We make the obvious
convention, wheif is the empty set, that v &2 no matter what?? is.

Definition 1.6.1.A polyhedral presentatiors a finite set?” whose ele-
ments are open convex cells, such that & impliesdAv .

Definition 1.6.2.A regular presentatiorns a polyhedral presentatiof?
such that any two distinct elements are disjoint, thafis, £, B € &2,
A # BimpliesAnB=0.

Ex. The &2 of propositior”LLE M is a regular presentation.
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Definition 1.6.3.A simplicial presentationis a regular presentation
whose elements are simplicies and such that & 42, then every fact
of A also belongs to?.

If Q c & are polyhedral presentations, we @l subpresentation
of 2. If & isreqgular (resp. simplicial) the@ is necessarily regular
(resp. simplicial). The points of th@-cells of a simplicial presentation
will be called theverticesof the simplicial presentation. Thimension
of a polyhedral presentatio®? is defined to be the maximum of the
dimensions of the open cells 6P.

Definition 1.6.4.1f &7 is a polyhedral presentatige?| will be used to
denote the union of all elements . We say that” is a presentation
of || or that|#?| has a presentatio”.

Recall that ifCL1, we have defined a polyhedron as a subsetaf a
vector space, which is a finite union of convex hulls of finigss It is
clear consequence R TH4,T15.5 Bnd1.5.6 that

Proposition 1.6.5. Every polyhedron has a polyhedral presentation. If
& is a polyhedral presentation, theg?| is a polyhedron.

Thus, if we define a polyhedron as a subset of a real vectoespac
which has a polyhedral presentation, then this definitianades with
the earlier definition.

Proposition 1.6.6. The union or intersection of a finite number of poly-
hedra is again a polyhedron.

Proof. It is enough to prove for two polyhedra sBRyandQ. Let &2 and
Q be polyhedral presentations Bfand Q respectively. The? U Q is
a polyhedral presentation & U Q; henceP U Q is a polyhedron. To
prove thatP N Q is a polyhedron, consider the s#t consisting of all
nonempty sets of the forlan B, for A € &2 andB € Q. It follows from
2713 thatZ is a polyhedral presentation. Cleaf#| = P N Q. Hence
by[L&BP n Qis a polyhedron. i

If X c Y are polyhedra, we will calK a subpolyhedrorof Y. Thus
in[L&.6,P n Qis a subpolyhedron of both andQ.
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1.6.7 If &2 andQ are two polyhedral presentations consider the sets
of the formA x B, A € &, B € Q. Clearly A x B is an open convex 29
cell, and by T.ZA@(A x B) is the disjoint union obA x B, A x 6B and
0A x 0B. Thus the set of cells of the forlAx B, A€ &, B € Q is

a polyhedral presentation, regular if both and@ are. This we will
denote by%? x Q. As above, we have, as a consequenceRhal is a
polyhedron, with presentatiof? x Q.

Ex. 1.6.8.The linear image of a polyhedron is a polyhedron (follows
from the definition of polyhedron and the definition of lineaap).

Recall that we have defined a polyhedral map between two pelyh
dra as a map whose graph is a polyhedron.

Proposition 1.6.9. The composition of two polyhedral maps is a poly-
hedral map.

Proof. Let X, Y andZ be three polyhedra in the vector spatkgs/ and
W respectively, and let : X — Y,g: Y — Z be polyhedral maps. Then
I'(f) c U xV andI'(g) c V x W are polyhedra. BEZL.G. T)(f) x Z and
XxT'(g) are also polyhedra id xVxW. By[L&.6, [(f)xZ)N(XxT'(g))

is a polyhedron. This intersection is the set

S {(xYy,2 | xe X y=f(x), z=g(y)}

inU x V x W. By[L.6.8 the projection o) x V x W to U x W takes
S into a polyhedron, which is none other than the graph of the ma
go f : X — Z. Hencego f is polyhedral. m|

If a polyhedral mapf : P — Q, is one-to-one and onto we term it a
polyhedral equivalence

Ex. 1.6.10.f, f : P —» Qs a polyhedral map, then the mgp P —
I'(f) defined byf’(x) = (x, f(X)) is a polyhedral equivalence. 30

1.6.11 Dimension of a polyhedron
The dimension of a polyhedroR is a defined to be Max. dig,
C e &, whereZ is any polyhedral presentation Bf



31

26 1. Polyhedra

OF course we have to check that this is independent of themtas
tion chosen. This follows frofn1.5.2.

Let P andQ be two polyhedra andl : P — Q be a polyhedral map.
Lety : PxQ — Pandu : PxQ — Q be the first and second projections.
If € is any presentation df(f), then the open cells of the fori(C),

C € ¥ is a presentation dP, regular if and only if¢" is regular. If f
is a polyhedral equivalence, then the cells of the fa@), C € ¥ is a
presentation 0. This shows that

Proposition 1.6.12. The dimension of a polyhedron is a polyhedral in-
variant.

1.7 Refinement by bisection

Definition 1.7.1.1f &2 andQ are polyhedral presentations, we say that
Z refines@, or £ is arefinemenbdf Q provided

@ 12| =1l
(b) If Ae &, andB e Q,thenAnB=0orAc B.

In otherwords,#? andQ are presentations of the same polyhedron
and each element (an open convex cellZéfis contained in each ele-
ment ofQ which it intersects. Hereafter, when there is no confusiam,
will refer to open convex cells and closed convex cellsgean celland
closed cells A polyhedral presentation is regular if and only if it refine
itself.

Let # = (P;H*,H™) be a bisection of the ambient vector spate
([39);a a polyhedral presentation of a polyhedraoWirand letA € a.
We say that admits a bisection by? at A, provided:

Whenever an open cef; € a intersectsdA (i.e. Ay N A # 0),
and dimA; < dimA, then eitherA; c Por Ay c H* or A; ¢ H™ (in
particular this should be true for any cell in the boundanApf

If a admits a bisection byZ at A, then we define a presentatioh
as follows, and call it theesult of bisecting: by % at A
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a’ consists ofi with the elemenfA removed, and with the nonempty
sets of the formANn PorAnH* orAn H™, that is

o ={(a—{A) UIANPANH*, AnH} - (0}}.

By [[.Z13, and the definition of admitting a bisectiahjs a poly-
hedral presentation. Cleardy refinesa, if a is regular.

We remark that it may well be the case tldas contained irP or H*
or H™. In this event, bisecting & changes nothing at all, thati$ = a.
If this is the case we call the bisection trivial. It is alscspible, in the
case of irregular presentations, that some or all of the/se®, AnNH*, 32
AN H™ may already be contained in- {A} in this event, bisection will
not change as much as we might expect.

Ex. 1.7.2.Let A and B be two open cells, with dilA < dimB and
A # B. Let%; : {Pj; Hj+, Hj‘}lgjgm be bisections of space such that
is the intersection of precisely one element from some of#hs. If
ANB=#0,thendant,1< ¢ <m,suchthaBNnP,BNH" andBNnH~
are all nonvacuous.

What we are aiming at is to show that every polyhedral pregiemnt
& has a regular refinement, which moreover is obtained frgnby
a particular process (bisections). The proof is by an olsvidouble
induction; we sketch the proof below leaving some of theitteta the
reader.

Proposition 1.7.3. REFI (£, 27, {S;})

There is a procedure, which, applied to a polyhedral prestorn
2, gives a finite sequencéS;} of bisections (at cells by bisections of
space), which start or?, give end result??’, and &2’ is a regular
presentation which refine?.

Proof.

Step 1.First, we find a finite sets; {Pj;Hj+,Hj‘}, j =1...nof
bisections of the ambient space, such that every elemen? o an
intersection one element each from some of #¢s. This is possible
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because every element 67 is a finite intersection of hyperplanes and
half spaces, and there are only a finite number of elemernt2.in

Step 2.Write & = 2. Index the cells of%, in such a way that the
dimension is a non decreasing function. That is defiggo be the
cardinality of %y, arrange the elements 6#, asD?, .. ., D?JO, such that

N0 <« dim PO
dimD, <dimD,, forall 0 < k < po - 1.

Step 3.Sp1 denotes the process of bisecting, at Dg by %4;. Induc-
tively, we defineSpy.1 to be the process of bisectingok at D(k’+l by
A1, and P41 the result. This is well defined since the elements of
P, are arranged in the order of nondecreasing dimension. Bhibe

done until we geBg p, and Zg p,.

Step 4.Write &1 = Py p,, repeat step (2) and then the step (3) with
bisection%, instead of#4;.

And so on until we get”,, when the process stops?, is clearly
a refinement of? = Z; it remains to show that?, is regular. Each
element byZ?, belongs to some”, ; and each element a¥, is a finite
intersection of exactly one element each from a subfamitthef;’s.
It is easily shown by double induction thatAf € £, then for anyj,
I < j <n, eitherAc PjorAc Hj+ orAc Hj‘. That is #2,, admits
a bisection atA by %, for any j, but the bisection is trivial. LeC,
De &Z,C+#DCND # 0, dmC < dimD. Then sinceC is an
intersection of one element each from a subfamily of#és, by[L.ZB,
there exists afi such thaD NP, DNH; andD nH; are all nonempty.
But this is a contradiction. Henc&?, is regular. Write&?, = &',
Sij =Sp, + -+ pi + J. This gives the “REFI &, &7, {S;})". ]

We can now draw a humber of corollaries:
Corollary 1.7.4. Any polyhedron has a regular presentation.

Corollary 1.7.5. Any two polyhedral presentation®’, Q of the same
polyhedron X have a common refinemefitwhich is obtained frony?
and from@Q by a finite sequence of bisections.
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To see this, note tha¥” U Q is a polyhedral presentation of X. The
application REF(Z2uQ, #Z, {S;}) providesZ. Let{T;} and{Uy} denote
the subsequences applying 6 and Q respectively; observe that they
both result inZ.

Corollary 1.7.6. Given any finite numbeg?,, ..., & of polyhedral
presentations, there is a regular presentat@of || U...U|%%|, and
Q@ has subpresentationQ;, ..., Q, with || = |@| for all i and & is
obtained from@; by a finite sequence of bisections.

This is an application of REFl#?1 U. ..U £, Q, {S;}) and an anal-
ysis of the situation.






Chapter 2
Triangulation

As we have seen, every polyhedral presentati®émas a regular refine-35
ment. This implies that any two polyhedral presentationX ¢fave a
common regular refinement, thattf c Y are polyhedra there are reg-
ular presentations of containing subpresentations coverigetc.. In
this chapter we will see that in fact every polyhedral préstion has

a simplicial refinement, and that given a polyhedral niapP — Q,
there exist simplicial presentations Bfand Q with respect to whichf

is “simplicial”.

2.1 Triangulation of polyhedra

A simplicial presentatior” of a polyhedronX is also known as knear
triangulation of X. We shall construct simplicial presentations from
regular ones by “barycentric subdivision”.

Definition 2.1.1.Let & be a regular presentation. genteringof &2 is
a functionn : &2 — |£2|, such tha;(C) € C, for everyC € &.

In other words, a centering is a way to choose a point each from
each element (an open convex cell)%t

Proposition 2.1.2. If Cg, C; ... Cy are elements of?, ordered with re-
spect to boundary relationship, thén(Cop),...,n(Cy)} is an indepen-
dent set for any centeringof &.

31
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Proof. Immediate froni_.1.419, by induction. O

Proposition 2.1.3. Suppose that” is a regular presentation and €
& - C is the disjoint union of all open simplexes of the form

where Ae 2, Ag <A1 <...<Acand A c dC.

Proof. By induction. Assume the proposition to be true for cells ief d
mension< dimC. dC is the union of all simplexes of the form:#f{Qo),
n(A1), ..., n(A)) whereA € &, A < CandAg < ... < A (since<

is transitive). SinceéC is a bounded open convex céllis the union of
0(7(C), x), x € dC andn(C) (see the remark following—LZ4118). Now
1.2 completes the rest. m|

It follows from[ZZ12 an@ 2113, that i#” is any regular presentation,
then the set of all open simplexes of the formy(@), . . ., n(Cy)), for
Ci e &, withCq < ... < Cy, is a simplical presentation ¢f?|. This
leads to the following definition and proposition.

Definition 2.1.4.1f & is any regular presentation,a centering of#;
thederived subdivision of” relative ton is the set of open simplexes of
the form 0G(Co), ..., n(Ck)), Ci € L, Cp < ... < Cy. Itis a simplicial
presentation (ofZ?|) and is denoted bgi(#2, n).

The vertices ofl(#2, ) are precisely the points (0-cellgC), C €
. Whenn is understood, or if the particular choice gfis not so
important, we refer tal(<2, ) as a derived subdivision a? and denote
it by d22.

Proposition 2.1.5. Every polyhedral presentation admits of a simplicial
refinement.

Hence every polyhedron can be triangulated.
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2.2 Triangulation of maps

Now, we return to polyhedral maps. 1f: P — Qs a polyhedral map,
we have seen that the mdp : P — I'(f) given by f/(X) = (x, (X))
is a polyhedral equivalence and that any presentatiofi( bf gives a
presentation oP by linear projection. Also, we saw [01.3, thatdfis a
convex subset of vector spadeandy : A — W a map ofA into a vector
spaceW, ¢ is linear if and only if the graph af is convex. Combining
these two remarks, we have that a polyhedral map is ‘pieeclivisar’
or as Alexander called it ‘linear in patches’.

Next, an attempt to describe polyhedral maps in terms ofeptas
tions of polyhedra leads to the following definition.

Definition 2.2.1.Let a and % be regular presentations. A functign:
a — A is calledcombinatorialif for all Ay, Ao € a, A1 < Ay implies

(A1) < p(A2).

But unfortunately there may be several distinct polyhednalps
la] — |4] inducting the same combinatorial map— %, and a map
la] = |4 inducing some combinatorial map— % need not even be
polyhedral (We will see more of these when we come to ‘stahdas-
take"). If turns out that a map — £ induces a unique map| — |4
if we require that the induced map to be linear on each call &ut in
this case it is sfiicient to know the map on 0-cells (vertices); one can
extend by linearly. This naturally leads to simplicial maps

Definition 2.2.2.Let X andY be polyhedra,” and Z simplicial pre- 38
sentations ofX andY respectively. A mapf : X — Y is said to be
simplicial with respect to” and %, iff

(1) f maps vertices of each simplex i#f into the vertices of some
simplex inZ.

and
(2) fislinear on the closure of each simplexifi.

f is polyhedral, since its graph has a natural simplicial gméstion
isomorphic sa?.
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Let.¥ and.Z be two simplicial presentations. Lefy (resp.%) be
the set of vertices of” (resp.%). If & . Y — 2 is a map, which
carries the vertices of a simplex of is asimplicial map from.# to 2.

Example 2.2.3If ¢ : & — Qs a combinatorial map, 6 centerings of
& andQ respectively, the map which carrig€ to 8(¢(C)) is a simpli-
cial map fromd(Z, n) to d(Q, 6).

We now proceed to show that every polyhedral map is simplicia
with respect to some triangulations.

Let P andQ be two polyhedra andl : P — Q be a polyhedral map.
Let £, Q and% be presentations &, Q andI'(f) c Px Q. Leta be a
regular presentation ¢ x Q which refines £Z x Q) U ¢, and lets” be
the subpresentation afwhich coverd’(f).

Let 2 andu be the projections oP x Q onto P andQ respectively.
By the refinement process there is a regular present@tion Q refining
Q such that:

MIfAe@,Cec%,Anu(C) # 0, thenA c u(C). Then, ifC € ¢”,
1(C) is the union of elements @ .

Now we look at the presentatiofs” = ¢’ - (£ x Q') of I'(f). The
cells of " are by definition of the forn€” = Cn (Ax B’), C € ¥,
Ae #,B Q. ClearlyC” c Cnu~Y(B’). On the other hand, sine®
is a refinement of, there is an open ceB € Q with B > B’. Since%”
is a subpresentation of a refinemerndf &2 x Q, if C” # 0,C c Ax B.
Hence if k,y) € Cnu1(B’), thenx e A,y € B, so (x,y) € Ax B'.
HenceCnu1(B’) c CN(AxB’) = C”. ThusC” = Cnu~(B’). Hence
%" can be also described as

¢ ={Cnu'(B)Cnu'(B)#0,Ce%’, B @]}

Now, clearly &2’ = A(€¢") = {A(D)|D € €} is a regular presenta-
tion of P(AI'(f) is 1— 1 andA is linear) with reference to the ambient
vector spaces. Now the claim is thatinduces a combinatorial map
P — Q. Let Abe any cell ofZ’ - (AI(f))"1(A) is a cell of €, say
someCnu(B). f(A) = u(Cnu1(B)) = u(C)NnB’ = B’ by (*). Thus
f(A) € Q. 4(C nu~1(B)) is the union ofdC N u~(B’), C N u~(6B")
anddC n u~1(0B); (by[LZB) and sa(0(C N x~1(B"))) is the union of



2.2. Triangulation of maps 35

4(8C) N B, u(C) N 8B, andu(dC) N B', henceu(dC) c B'. Hence if
A1 < A f(A1) < B’. Thusf induces a combinatorial map from’ to 40
Q. Moreover, since the presentatich’ comes froms”’, the graph of
f restricted to the closure of each cell 8f is a closed cell, and hence
f is linear on the closure of each cell ¢’.

The discussion so far can be summarized as:

Theorem 2.2.4.Let f : P — Q be a polyhedral map, and le¥, Q
be polyhedral presentations of P and Q respectively. Therethxist
regular refinements?’ andQ’ of &2 andQ such that

Q) fAe 22, f(A) € @. The induced map fror#’ to Q is combi-
natorial.

(2) fislinear on the closure of each cell 6¢”.

Furthermore,

2.2.5 If &2 andQ are regular and if there is a regular presentaéon
of I'(f) such that

() For eaclC € ¢, A(C) is contained in some element &f,
(b) For eaclC € %, u(C) is the union of elements @,

then in the above theorem we can take= Q (in other words, a com-
binatorial map can be found refining ondy, notQ).

To apply[ZZH4 to the problem of simplicial maps, we can[Ug&32.
as follows: First we choose some centerfigf @', and then a centering
n of &’ so that

f(7(C)) = 6(f(C)) forall Ce 2.

Sincef is linear an each element o#’, we have thaf : P —» Qis 41
simplicial with respect ta(<?’, n) andd(@’, 8). Hence,

Corollary 2.2.6. Given a polyhedral map f P — Q, there exist trian-
gulations. and 2 of P and Q, with respect to which f is simplicial.
Moreover,.¥ and % can be chosen to refine any given presentations of
P and Q.
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Defining thesourceandtarget of a mapf : K — L to beK and
L respectively. We may now state a more general result, dethihe
proof left as an exercise.

Theorem 2.2.7.Let{K,} be afinite set of polyhedra, witlf = 1,...,n;

let f : K — Kg be afinite set of polyhedral maps, the sources and
targets being all in the given set of polyhedra. Supposeftratachy,

<2, < By, and each K, occurs as the source of at most one of the maps
f (i.e.y # 6 implies.?, # .Z5). LetZ, be a presentation of JKfor each

y. Then there is a set of simplicial presentatidng, }, with .7, refining

2., such that for ally, f, is simplicial with reference to

Sy, and Sp
That is to say, the whole diagrafi, } can be triangulated.

The condition on sources is not always necessary, for exampl

Ex. 2.2.8.A diagram of polyhedral maps

"
\Z

X

can be triangulated if : X — Y is an imbedding.
However

Ex. 2.2.9.The following diagram of polyhedral maps (each map is a
linear projection)
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cannot be triangulated.

Ex. 2.2.10.Let & be a presentation of a polyhedrBrin V. ¢ : V - W
be a linear map, thep(Z?) = {¢(C)|C € £} is a presentation af(P).

Ex. 2.2.11.Let f : P — Q be a polyhedral map, arXla subpolyhedron
of P. Then dimf(X) < dimX.

Ex. 2.2.12If f : P — Qs a polyhedral majY is a subpolyhedron of
Q, f71(Y) is a subpolyhedron oX.

Next, one can discuss abstract simplicial complexes, gegimetric
realizations etc. We do not need them until the last chaptes. reader
is referred to Pontryagin’s little book mentioned in thetfekapter for
these things.






Chapter 3
Topology and Approximation

Since we know that intersection and union of two polyhedeapslyhe- 43
dron, we may define a topology on a polyhed¥rby describing sets of
the formX-Y, for Y a subpolyhedron, as a basis of open sets. If, one the
other hand X is a polyhedron in a finite dimensional real vector space
V, thenV has various Euclidean metrics (all topologically equingle
andX inherits a metric topology.

Ex. These topologies oK are equal.

The reason is that any point ¥fis contained in an arbitrary small
open cell, of the same dimension\as

It is easy to see tht a closed simplex with this topology is cach.
Hence every polyhedron, being a finite union of simplexe®mpact.
The graph of a polyhedral map is then compact, and hénisecon-
tinuous. Thus we have an embedding of the category of potghaid
polyhedral maps into the category of compact metric spacggantin-
uous maps.

It is with respect to any metric giving this topology that @prox-
imation theorems are phrased.

A polyhedron is an absolute neighbourhood retract, anddbelts
that we have are simply obtained from a hard look at such tsefu
A.N.R’s.

It turns our that we obtain a version of the simplicial appnmeation 44
theorem, which was the starting point, one may say, of thebadgc

39
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topology of the higher dimensional objects. The theorenbeas given
a ‘relative form’ by Zeeman, and we shall explain a methodolwhiill
give this as well as other related results.

We must first say something about polyhedral neighbourhoods

3.1 Neighbourhoods that retract

Let & c Q be regular presentations. Consider the open c&Itsf
Q, with C N |2| # 0, together withA, A < C, A € Q, for suchC.
The set of all these open cells is a subpresentatiohsf Q. |4] is a
neighbourhood of#?| in |Q|. For, if .4 is the set of cell€’ € Q such
thatC N |2| = 0, then./" is a subpesentation @ and|Q| — |.4"| C
/). If Q is simplicial, .4 can be described as the subpresentation,
consisting of open simplexes @f with some vertices inZZ together
with their faces.

If & c Qis a subpresentation, we say that is full in @; if for
everyC € Q eitherC N | 22| = 0 or there is A € & withC n |Z| = A.

In the case of simplicial presentations, this is the samayiag that
if an open simplexr of Q has all its vertices i, theno itself is in &2.

An example of a nonfull subpresentation:

3.1.1 If & c Qare regular presentations, theé is full in dQ.

For, if n is any centering, then an element (an open simplex) of
dQ is of the form 04(Co)),...,n(Ck)), Ck € Q, Cp < ... < Cy. If
Ce, 0 < € <k, is the last element of th€j’s that is in 27, thenC;,
j < ¢, are necessarily iZ. Then 0§(Cy),...,n(Cy)) € d&?, and
0(1(Co), - - -, n(Cx)) N1dZ| = 0(m(Co), - - ., n(Cr)).
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Definition 3.1.2.1f Zisfullin @, thesimplicial neighbourhood of” in

Q, is the subpresentation df consisting of all simplexes alQ whose
verticesy(C) are centers of cell§ of Q with C N |2| 0. It is denoted
by Ng(£2) (or Ng(£2, n) when we want to make explicit the centering).

Clearly Ng(£?) is a full subpresentation afQ. It can be also de-
scribed as the set of element®f dQ, for whichon|dZ| = onN| 2| =0
plus the faces of suctr. HencelNg(4?)| is a neighbourhood df| in
the topological sense.

Such a neighbourhood #¥4(2?)| of |Z?| is usually referred to as
a ‘second derived neighbourhdoaf |#2| in |Q|, for the following rea-
son: If X c Y are polyhedra; to get such a neighbourhood we first start
with a regular presentatiomof Y containing a subpresentatici cov-
ering X, derive once so that% is full in da, then derive again and take
INgo (d2)!.

Now we can define a simplicial map: Ng(£?) — d£2, using the 46
property of fullness ofZ in Q. If C € Q, with C n |Z| # 0, we know
that there is & € 2, such thalC n |2?| = A, and thisA is uniquely
determined byC. We definer (nC) = nA.

Ex. 3.1.3.The mapr thus defined is a simplicial retraction bf(<?)
ontod#.

That isr is a simplicial map fronNg(£?) to d£?, which when re-
stricted todZ? is identity. r defines therefore a polyhedral map, which
also we shall calf : |[Ng(£?)| — |d£?|. We have proved

3.1.4 If Xis a subpolyhedron of, there is a polyhedroN which is a
neighbourhood oK in Y, and there is a polyhedral retraction N — X.

3.2 Approximation Theorem

We imagine our polyhedra to be embedded in real vector spaces
have been dealing only with euclidean polyhedra) with eleeh met-
rics. LetX, Y be two polyhedrap, p’ be metrics onX andY respec-
tively coming from the vector spaces in which they are sédatlf «,
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B Y — Xare two functions, we define
p(a.B) = Squp(a(X),ﬁ(X))
Xe

If Ais a subset oK, we define dianh = supp(x,y), and ifBis a
X,yeA
subset ofY, we define dianB = Supp’(X, y).
x,yeB
We can consideX to be contained in a convex polyhedr@n If

X is situated in the vector spadg we can takeQ to be large cube or
the convex hull ofX. Let N be a second derived neighbourhoodXof
in Q andr : N — X be the retraction. Nov@ being convex andN

a neighbourhood oK and Q, for any suficiently small subse$ of X,
K(S) c N (recall thatK(S) denotes the convex hull &). This can be
made precise in terms of the metric; and is a uniform propsngeX is
compact. Next observe that we can obtain polyhedral prasens &2
of X, such that diameter of each element&fis less than a prescribed
positive number. This follows for example from refinemenbgass.
Now theorem is

Theorem 3.2.1. Given a polyhedron X, for every > 0, there exists
a é > 0 such that for any pair of polyhedra Z Y, and any pair of
functions f: Y — X, g: Z —» X with f continuous and g polyhedral, if
o(f|Z,g) < 8, then there existsg: Y — X, g polyhedral,g|Z = g, and
p(f.9) <e.
Proof. We embedX in a convex polyhedroR, in which there is a poly-
hedral neighbourhoodN and a polyhedral retraction : N — X as
above. It is clear from the earlier discussion, that giwen O, there is
an > 0, such that if a seA c X has diametek r, thenK(A) c N and
diamterr(K(A)) < e. Defines = /3.

Now because of the uniform continuity éf (Y is compact), there
isa# > 0, such that ifB c Y and diam. B) < 6, then diamf (B) < 6.

From this it follows that, still assuming c Y, and diameteB < 6,
and additionally thap(f|Z,g) < §; that the setf(B) U g(B n Z) has
diameter less thans3= . And hence we know that

{K(f(B) ug(BnZz)cN, and

© diamr(K(f(B) Ug(BN 2))) < e.
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Then we find a presentatio#’ of Y, such that the closure of every
element of” has diameter less th@nAlso there is a presentatia#f of
Z on the closure of every element of whiglis linear. Refining? U 2
and taking derived subdivisions (still calling the presdions covering
Y andZ, as. and % respectively), we have the following situation:

¥ c &, are simplicial presentations & c Y, on each closed
Z-simplexg is linear, the diameter of each closeflsimplex< 6.

We now defineh : Y — Q as follows: On a 0-simplex of %,
h(v) = g(v). On a O-simplexw of .7 — %, h(w) = f(w). Extendh
linearly on each simplex, this is possible sir@és convex. But now, if
o = [vo,...,Vn] is the closure of a”-simplex, therh(c) ¢ K(f(o) U
g(o- N Z)) c N; this is a computation made above (*) since diar 6.

And soh(Y) c N. Also it is the case thdt is polyhedral, sincé is
liner on the closure of each simplex of, and on|.%Z| = Z, clearly, h
agrees withy.

Define,g : Y — Xto ber o h. Sincer andh are polyhedral so ig; 49
sinceh|Z = g andr is identity onX; it follows thatg|Z = g. To compute
(0, f) we observe that any € Y is contained in some closed simplex
o, o € ., and bothf(y) andh(y) are contained itK(f(c") U g(o N 2));
and hence botli(y) andg(y) are contained in

r(K(f(e) uglon2)))
This set by (*) has diameter . Henceo(g, f) < e. O
We now remark a number of corollaries:

Corollary 3.2.2. Let X, Y, Z be polyhedra, Z Y,and f: Y - X a
continuous map such thatZ is a polyhedral. Then f can be approx-
imated arbitrarily closely by polyhedral maps gY — X such that
gz = f|Z.

The next is not a corollary ¢—3.2.1, (it could be) but follofvem
the discussion there.

3.2.3 Any two continuous map$, f> : Y — X, if they are stficiently
close are homotopic. (Also how close depends onlyXpmot Y or



44 3. Topology and Approximation

the maps involved). Iff; and f, are polyhedral, we can assume the
homotopy also to be polyhedral, and fixed on any sub-polyredn
which f; and f, agree.

Proof. Let N andX be as before. Lef be a number such thatf c X,
diamA < n, thenK(A) c N. If p(f1, f2) < n, thenF(y,t) = tfi(y) + (1 -
t)fo(y) € N,forO<t < landally € Yandr-F, wherer : N - X
is the retraction, gives the required homotopyfilf f, are polyhedral,
we can apph_3.2]1 to obtain a polyhedral homotopy with theirdd
properties. m|

50 Remark. The above homotopies are small in the sense, that the image
of xis not moved too far fronf1(x) and fa(x).

3.2.4 Homotopy groups and singular homology groups of a polyhe-
dron can be defined in terms of continuous functions or palgddanaps
from closed simplexes int§. The two definitions are naturally isomor-
phic. The same is true for relative homotopy groups, triachbtopy
groups etc.

The corollanyC3.ZR is Zemman'’s version of the relative dioial
approximation theorem. From this (coupled With Z.2.13) oae de-
duce (see M. Hirsch, “A proof of the nonretractibility of aloento its
boundary”, Proc. of A.M.S., 1936, \Vol. 14), Brouwer’s theors on the
noncontractibility of then-sphere, fixed point property of thecell, etc.

It should be remarked that the first major use of the idea oplsial

approximation was done by L.E.J. Brouwer himself; using the de-
fined degree of a map, proved its homotopy invariance, andantally
derived the fixed point theorem.

It should be remarked that relative versiond_of 3.2.1 aresiples
For example define a paiK{, X,) to be a space (or a polyhedron) and
a subspace (or a subpolyhedron) and continuous (or polghedaps
f 1 (X1, X3) = (Y1, Y>) to be the appropriate sort of functioh — Xo
which mapsX; into Y,. Then Theoreniz3:A.1 can be stated in terms of
pairs and the proof of this exactly the same utilising modtfans of
B12 and the remarks at the beginningal 3.2 which are valigéirs.

51 Another relative version of interset is the notionpaflyhedron over
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A thatis, a polyhedral magi : X - A. Amapf:(a: X—> A) - (8:
Y — A)is a functionf : X — Y such thatx = g - f; we can consider
either polyhedral or continuous maps. The reader shouie atel prove
BZ1 in this context (if possible).

3.3 Mazur’s criterion

We shall mention another result (see B. Mazur “The definiiibequiva-
lence of combinatorial imbeddings” Publications Mathamags, No.3,
I.H.E.S., 1959) at this point, which shows that, in a cert@nse, close
approximations to embeddings are embeddings (in an amb@mor
space).

Let 2 be a simplicial presentation of, and letV be a real vector
space. LetZp denote the set of vertices ¢f. Given a functiony :
2 — V, we can define an extensign: |Z| — V by mapping each
simplex linearly. Clearly ifY c V is any polyhedron containing(X),
the resulting maX — Y is polyhedral. We calp the linear extension
of ¢. ¢ is called arembeddingf it maps distinct points oK into distinct
points inV.

3.3.1 (Mazur’s criterion for non-embeddings)

If the linear extensiop of ¢ : 25 — V is not an embedding, then
there are two open simplexesandr of 2, with no vertices in common,
such thaip(o) N o(7) # 0.

Proof. The proof is in two stages.

(A) If o0 =0(vo,...,Vn) and{g(Vo),...,¢(Vn)}is notindependent, then
there are faces; ando of o, without vertices in common, sucls2
thato(o1) Ng(o2) # 0 (This is jusCI.Zb).

(B) Thus we can assume that for everyf 2, ¢(o) is also an open
simplex of the same dimension. Consider pairs of distinenop
simplexesip, p’} such thte(p) N p(c’) # 0. Let{o, 7t} be such a
pair, which in addition has the property dim+ dim7 is minimal
among such pairs. We can now show thradndr have no vertex
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in common. Ifo = 0(vg,...,Vmn) andt = O(wy, ..., W,), then if
o(0) Ng(r) # 0, there is an equation

ro@(Vo) + -+ + Ime(Vm) = Sop(Wa) + - - - + Shep(Whn)

withrg+---+rn=1= S+ s ---+ S, Herer; ands are strictly
greater than 0, for otherwise dim+ dimt will not be minimal.

Now if and have a common vertex, say, for example= wp, and
ro > S, wWe can write

(fo — So)¢(Vo) + ) Tig(Vi) = > Sjep(w).

i>1 j>1

Multiplying by (1 — sp)~%, we see that some face @fo) intersects
a proper facep(0(w),...,wy)) of ¢(o). So thato- andr had not the
minimal dimension compatible with the propertiest 7, (o) No(7) #
0. O

Now it easily follows, since to check is an embedding we need
only check that finitely many compact pal{&(c), ¢(7)),c N7 = 0} do
not intersect;

53  Proposition 3.3.2. Let 2 be a simplicial presentation of X contained
in a vector space V, let) be the set of vertices. Then there exists an
€ > 0, such that ifp : Z5 — V is any function satisfying(v, ¢(Vv)) < €
for all v e 29, then the linear extensiop : X — V is an embedding.

This is a sort of stability theorem for embeddings, that isyé
perturb a little the vertices of an embedded polyhedron,tildave an
embedding.



Chapter 4
Link and Star Technique

4.1 Abstract Theory |

54
Definition 4.1.1(Join of open simplexespupposer and two open sim-

plexes in the same vector space. We say dhais definedwhen

(a) the sets of vertices of andr are disjoint

(b) the union of the set of vertices ofandr is independent.

In such a case we definer to be the open simplex whose set of
vertices is the union of those ofand ofr. If o is a 0-simplex, we will
denoteot by {X}r or r{x} wherex is the unique point imr.

We also, by convention, where (or 7) is taken to be the empty set
0, make the definition

Ooc=00=0

Clearly dimor = dimo + dimt + 1, even when one or both of them
are empty.

Ex. 4.1.2.07 is defined if and only ifc " 7 = 0, and any two open
intervalsO(x, y), O(X,y’) are disjoint, where, X € 7, y, Y €T, X # X
ory # Y. In this casesr is the union of open 1-simplexe3(x,y),
XEOT,YET.

This is easy. Actually it is enough to assu@éx, y) N O(X,y’) = 0
forx, X e o,y,y €T; x# X ory # Y. That it is true for points o&r 55

47
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andT ando N 7 = 0 follow from this.

Ex. 4.1.3.Whenor is defined, the faces aefr are the same as’7/,
whereg”’ andr’ are faces ofr andr respectively. If either” # o or
v # 1, theno’7’ is a proper face aofr.

Ex. 4.1.4.Leto andr be in ambient vector spac¥sandW. InV x W x
R,letc =0 x0x0andr =0x 7 x 1. Theno is defined.

Definition 4.1.5.Let . be a simplicial presentation, amdan element
of . Then thdink of o in . denoted byLk(o, %) is defined as
Lk(o,.”) = {t € S)or is defined}
Lk(o, &)= if o=0.
ObviouslyLk(o, .¥) is a subpresentation of.

In caseo is O-dimensional, we writkk(x, .) for Lk(o, .#) where
X is the unique element .

Ex. 4.1.6.If T € Lk(c,.¥), then

Lk(r, Lk(0, .¥)) = Lk(oT, .9).
Notation 4.1.7.1f o is an open simplex, thefor} and{do} will denote
the simplicial presentations of anddo- made up of faces af.

Ex. 4.1.8.If T = po, and dimp > 0, then

Lk(o, {01}) = {00}

Lk(o, {7}) = {o}.
Definition 4.1.9.Let a and % be simplicial presentations such that for
alloc ea, 7€ A, orisdefined, andrrNo’'t’ =0if c 0’ ort # 7.

Then we say that thin of « and % is defined and define thgin of a
and 4, denoted by * 4 to be the set

oTlo € a, T € o orT may be empty
but not both.

ByH. I 3a + £ is a simplicial presentation.  is empty, we define
axp=¢=*a=a



4.1. Abstract Theory | 49

In casea and % are presentations of polyhedraVhandW, then
we construct, b 2114 and % which are isomorphic ta and %4, and
for which we can defin@ = Z. It clearly depends only on and %4
upto simplicial isomorphism; in this way we can constrabistractly
any joins we desire.

Ex. 4.1.100« B =B *a

ax(B*C)=(axB)*E.

That is whenever one side is defined, the other also is definéd a
both are equal.

Ex. 4.1.11If @ € a, B € B, then
Lk(aB, a * B) = Lk(a, a) * Lk(B, Z).
In particular, wherg = 0,
Lk(e, a « ) = Lk(e, a) * B
and when? = 0,
Lk(B, a * B) = a = Lk(B, B).

If ais the presentation of a single poifw}, and is joinable toZ,
then we calk « %; the coneon % with vertex v and denote it b(#). 57
% is called thebaseof the cone. If we make the convention, that the
unique regular presentation of a one point polyhedrdsa to be written
{{v}}, thenC(£) = {{v}} = A.

Definition 4.1.12.Let.¥ be a simplicial presentation, ande .. Then
thestar ofoin .7, denoted bys (o, .%¥), is defined to b¢o} = Lk(c, .¥).

ClearlyS (o, ) is a subpresentation of’ and is equal tw{{7}|r €
S o<1}
In caseo contains only a single point we write S {(x, .%).

Ex. 4.1.13.Let. be a simplicial presentation; an element of”. If t
is a face ofo- with dimz = dimo - 1, then

Lk(o, %) = LK(, {00} = Lk(o, .2)).
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Definition 4.1.14.1f . is a simplicial presentation, thHeskeleton of
., denoted by% is defined to be

S = U{{Tllo € L dimo < k}.
Clearly .% is a subpresentation of .

Ex. 4.1.15.If o € % and dimo- = ¢, (¢ < k), then
Lk(O’, yk) = Lk(O’, y)k_g_l.

Ex. 4.1.16.Let f : P —» Q be a polyhedral map, simplicial with respect
to presentations” and.#” of P andQ respectively. Then

(1) (A ()
@) lfoe.?, 1(S{o, 7)) c S{fo,.7")

(3) For everyo € .7, f(Lk(o, ) c Lk(f(0), ") if and only if f
maps every 1-simplex of” onto a 1-simplex of””.

(Strictly speaking, these are the maps induced by

4.2 Abstract Theory I

Definition 4.2.1.Let & be a regular presentation and centering of
Z. LetA e &. Thenthe dual of Aand thelink of A, with respect of,
denoted byA andAA are defined to be

6A ={0(nCop,...,nC) |A<Cp<... <Cxk=>0}
AA={0(nCo,...,nCY) |A<Cy<...<C, k> 0}

whereC; € &2 for all i.

Clearly 6A and AA are subpresentations df” = d(42,n). When
there are several regular presentations to be considesedijlixdenote
these by » Aanda»A. n will be usually omitted from the terminology,
and these will be simply calledual of Aandlink of A.
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4.2.2 Every simplex ofd< belongs to someéA.

4.2.3 6Ais the cone oA with vertexnA.

Ex. 4.2.4.Let dimA = p, and consider any-simplexo of d&Z con-
tained inAi.e. o = 0(Bo, . ..,nBp), for someBg < ... < By = A. Then
AA = Lk(o, d22).

4.2.5 Suppose? is, in fact, simplicial. Then we have defined bath
andLk(A, &2). These are related thus:

A vertex of 1A is of the formnC whereA < C. There is a unique 59
B of &2 such thalC = AB. nB is a typical vertex ofl(Lk(A, £2)). The
correspondencgC « nB defines a simplicial isomorphism:

1A & d(LK(A, 2)).

Ex. 4.2.6.With the notation oEZ.Z11A < Bif and only if 6B c AA. For
anyAe &, AAis the union of albB for A < B.

Ex. 4.2.7.1f & is simplicial, A, B € &2, thensAn 6B = 0 if and only

if AandB are faces of a simplex of. If C is the minimal simplex of
& containing bothA andB (thatC is the open simplex generated by the
union of the vertices oA andB), thensAn 6B = 6C.

Definition 4.2.8.1f &2 is a regular presentation and centering of#?,
the dual k-skeleton of?, denoted b)@" is defined to be

¥ _ { 0Co.....nCp) [ Co < .. < Cp,dimCo > k
p>0, Ce2.

Clearly X is a subpresentation df%?, and is, in fact the union of
all 6A for dimA > k. It is even the union of allA for dimA = k.
ThussA, A1A, ZX are all simplicial presentations.

Ex. 42.9d2 = 29> 22’ 5 ... > 2" 5 ™1 = (), wheren is the
dimension of#Z. Dim 22K = n— k.

We shall be content with the computation of links of vertios?X.
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Ex. 4.2.10.If Ae &2, dimA > k, then
Lk(nA, 2X) = (9A) « AA.

Next, we consider the behaviour of polyhedral maps witheesto
duals.

Let f : P — Q be a polyhedral map; le¥? and@ be two simplicial
presentations dP andQ respectively with respect to whichis simpli-
cial. If 7 is a centering of, it can belifted to a centering; of £, that
is f(nA) = 7 f(A) for all A e &. (sedZR).f is simplicial with respect
tod(<£,n) andd(Q, ¥') also. Now,

4211 If Ae 2, f(5.5A) C sa(F(A).

4.2.12 If Be Q, thenf~1(5gB) = U{6 »Alf(A) = B}.
Remark . All these should be read as maps inducedfbytc. Since
each suchh must have dimension dim B, we have
Proposition 4.2.13.With the above notation, for each k;}{Q") c K.
This property is dual to the property with respect to the Lskeleta
“f(P) C Q.
Corollary 4.2.14. If dimP = n, thendim f~%(Q¥) < n- k.
In particular, if dimQ = m, andq s a point of an (open - dimen-

sional simplex o, f~1(q) is a < (n — m)-dimensional subpolyhedron
of P.

Ex. 4.2.15.f74Q) = 21, if and only if every 1-simplex of? is
mapped onto a 1-simplex @. (i.e. no 1-simplex of? is collapsed to
a simple point).

4.3 Geometric Theory

Definition 4.3.1.Let P andQ be polyhedra in the same vector spate
We say that thgoin of P and Q is define¢or P « Q is defined of P and
Q are joinablg, if:
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@PNnQ=0

(b) If x, X € P,y,y € Q, and eitherx # X ory # y’; thenO(x,y) N
Oo(x,y) # 0.

If the join of P and Q is defined, we define thin of P and Q,
denoted byP x Q to be

PxQ=U{xy]l|xePyeQ}

By definition,P«0 =0« P = P.
Every pointz € P« Q can be written as:

z=(1-t)x+ty, xeP, yeQ, 0<t<l

The numbet is uniquely determined by, y is uniquely determined
if z¢ P (i.e. ift # 0), xis uniquely determined # ¢ Q (i.e. if t # 1).

4.3.2 Let &2 andQ be simplicial presentations & and Q; and sup-
pose the (geometric) joiR= Qs defined. Then by 4.1l.2, the (simplicial)
join & = Qis defined, and we haye” = Q| = P+ Q.

This shows thaP =« Q is a polyhedron.

Definition 4.3.3.1f Py, Q1, P2, Q, are polyhedra such th&; = Q, and
P, x Q, are defined, and : P; — P,, g: Q1 — Q are mapsthen the
join of f and g denoted byf = g, is the map fromP; * Qq to Py x Q>
given by,

(f =g ((1-t)x+ty) = (1 -)f(X) +tg(y)
XxeP1,yeQ,0<t< 1.

4.3.4 Inthe above iff : P1 —» P2, g : Q1 — Q, are simplicial with 62
respect ta?1, 2,; Q, Qz, thenf x g : P x Q1 — P, x Qy is simplicial
with respect ta#?; « Q1 and %2, = Q». Thus the join of polyhedral maps
is polyhedral.
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4.3.5 If P+ Qis defined, (Id) = (Idg) = ldp.q. If, P1* Q1, P2 % Qq,
P3 x Qz are defined and; : Py — Py, fo : P, — P3, 01 1 Q1 — Qy,
02 : Q2 — Qs are maps, then

(fa0 f1) x (G 0 91) = (f2% g2) o (f1 + 01)

This says that the join is a functor of two variables from paif
polyhedra for which join is defined and pairs of polyhedralpsato
polyhedra and polyhedral maps.

The join of a polyhedrorP and a single point is called theconeon
P, (sometimes denoted 6(P)) with base Pand vertex.

Ex. 4.3.6.C(P) is contractible.
Ex. 4.3.7.P «= Q — Q containsP as a deformation retract.

Hint: Use the map given by:] below.
Let us suppose th& = Q and the con€(Q) with vertexv are both
defined. The interval [A] is 0= 1, and so two maps can be defined:

B:P+Q—[0,1], thejoinof P—0,Q— 1,
a:C(Q) —»[0,1], thejoinof v—>0,Q— 1

Simply speaking,

a((L-t)x+ty) =t
B((l-tiv+ty)=t, for xePyeQ.

63 The correspondence:
* A -t)x+ty o (X (L-t)v+ty)
is a well defined function between
o }([0.1)) and Pxp71([0,1)).

It is a homeomorphism, in fact. But it fails to be in any senslyp
hedral, since it maps, in general, line segments into cuived.
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Example. Taking P to be an intervalQ to be a point.

i\
L P— /

Q)

The horizontal line segment corresponds to the part of arbgte
under the above correspondence.

We can however find a polyhedral substitute for this homeemor
phism.

Proposition 4.3.8.Let P, Q,a, 8 be as above, |€d < T < 1. Then there
is a polyhedral equivalence.

L7[0,7]) = PxB7([0,7])
which is consistant with the projection onto the interf@lz].

Proof. Let &2 andQ be simplicial presentations &andQ and take the
simplicial presentatiorZ = {{0}, {r}, (0, 1)} of [0, 7].

Consider the set of all sets of the forf{p, o, i), wherep € &2, 64
ceQ,ie 7 ando =0iff i = {0}, defined thus:

Alp,0,0) = p
Alp, o, i) = po- 0 LX)

The set of all thes&(p, o, i), call it a. It is claimed that is a regular
presentation of£~([0, 7]), and thatA(p, o, i) < A(p’, o, i’) if and only
fp<p,o<o,igi.



65

56 4. Link and Star Technique

Secondly, consider the set of all sets of the f@n, o, i) wherep €
mathscrPo € Q,i € .7, ando = 0 if i = {0} defined thus:

B(p.0.0) = p x {v}
B(o. 0.) = p x (v} N g7(D))

It is claimed that# of all suchB(p, o, 1) is a regular presentation of
P x %71([0, 7]), and thatB(p, o, i) < B(o’,0”,i") if and only if o < o,
p <p andi<i.

Hence the correspondenéép, o, 1) « B(p,o,1) is a combinatorial
equivalencex & A. If we choose the centeringsand ¥ of « and %#
respectively such that

L(n(Alp. 0. (0,7))) = 7/2

andpg (2 nd coordinate of/'(B(p, o, (0,7))) = 7/2. The induced sim-
plicial isomorphismd(a, ) < d(4, ¥') gives a polyhedral equivalence
L71([0,7)] ~ Px %71([0, 7]), consistent with the projection onto, [f].

It should perhaps be remarked that by choositfgand Q fine
enough, our equivalence is arbitrarily close to the comadpnce (*)
on page 67. O

Corollary 4.3.9. Let C(P) be the cone on P with vertex v, anfd :
C(P) — [0, 1] be the join of P— 0, v — 1. Then for anyr € (0, 1),
L71([0, 7)) is polyhedrally equivalent to K& [0, 7] by an equivalence
consistent with the projection {0, 7].

For, take Q= v in[433.

Corollary 4.3.10. Let £ : Px Q — [0, 1] be the join of P—» 0, Q — 1;

let0 < y < § < 1. ThenLY([y,d]) is polyhedrally equivalent to

P x Q x [y, 6] by an equivalence consistent with the projectiofyta].
For, by[Z38,£71([0,6]) ~ P x 8~1([0, 6]) wheres : C(Q) — [0, 1]

is the join of Q— 1 and vertex— 0. By[Z3.®, interchangin® and

1, we see thag*([y, 1] ~ Q x [y, 1]; combining these and noting the

preservation of projection ofy, 6], we have the desired result.
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Definition 4.3.11.Let K be a polyhedron and € K. Then a subpoly-
hedronL of K is a said to be a (polyhedrdipk of x in K, if L « x is
defined, is contained iK, and is a neighbourhood dfin K.

A (polyhedral)star of x in K is the cone with vertex on any link
of xin K.

Clearly, ifa € K1 c K, andKj is a heighbourhood of’ in K, then
L c Kpisalink of ‘a’ in Ky, if and only ifitis a link of ‘a’ in K.

To show that links and stars exist, we triangulktdy a simplicial 66
presentations with x as a vertex. ThefLk(x,.#)|is a link of x in K,
and|St(x,.¥)| is a star ofx in K. In this casdS (%, .%)| — |Lk(x, .%)| is
open inK; this need not be true for general links and stars.

Ex. 4.3.121f .7 is any simplicial presentation &, andx € o € .,
then|{do} = Lk(o, )| is a link of x in K, and|{c’} * Lk(o, .¥)| is a star
of xin K.

(b) With 6A, 1A as InN[AZ1L, ifx € A, 0A = |1A| is a link of x in K.

Ex. 4.3.12. (a) Letf : K —» K’ be a one-to-one polyhedral map,
simplicial with reference to presentationg and.”” of K and
K’. Then for anyr € ., x€ o

fli{o} « Lk(o, )| is the join of
fll{do} = Lk(o, )| andx — f(X).

Formulate and prove a more general statement ISIng#.1.16

(b) With the hypothesis df 4215, Ay is a 0-cell of 22, f(|1Ag]) C
|4(fAg)l and

fll6Ao] isthejoinof Ag — f(Ag) and f|lAAg|.

If xanda are two distinct points in a vector space, the set of points
(1 -t)x+ta, t > O will be called the ray from x through'a

Let L; andL, be two links ofx in k, then for each poina € Lq,
the ray througla from x intersectd_, in a unique point(a) (and every
point in L, is such a image). It intersects in atmost one point, sinces7
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the cone orl, with vertexx exists. It intersects in at least one point
since the cone oh, must contain a neighbourhood of the vertex of the
cone onlL.

The functionh : Ly — L, thus defined is a homeomorphism. But,
perhaps contrary to intution, it isot polyhedral.

L,

The graph of the mapin this simple case is a segement of a hyper-
bola.

The fallacy of believinch is polyhedral is old (See, Alexander “The
combinatorial theory of complexes”, Annals of Mathemat&%, 1930);
for this reason we shall call the standard mistakefter Zeeman (see
Chapter | of “Seminar on Combinatorial Topology”). We shstlow
how to approximate it very well by polyhedral equivalences.

It might be remarked that the standard mistake is “piecepisgc-
tive”, the category of such maps has been studies by N.H.dfgee
“on the Smoothings of Triangulated and combinatorial Maldi$” in
“Di fferential and combinatorial Topology”, A symposium in Homdr
Marston Morse, Edited by S.S. Cairns].

Definition 4.3.13.Let A andB be two convex sets. A one-to-one func-
tion fromAontoB, £ : A — Bis said to beguasi-linear if for eachay,
a € A L([a, a]) = [L(a1), L(a)].

In other words,£ preserves line segments. It is easy to see fhat
is also quasi-linear.
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Example. Any homeomorphism of an interval is quasi-linearRify the

map:
r ra
ry,r _—

asamapfromh = {(ry,r2) |0<ry < 1}toB = {(V, ) | 2 > ¥4 > 0}
is quasi-linear.

Proposition 4.3.14.Let £ : A — B be quasi-linear. Letay,...,a}
be an independent set of points in A, defining an open sinapl&hen
{L(ag), ..., L(an)} is independent, and the simplex they definé(s).
Consequently is a face ofr if and only if £(7) is a face ofL(o).

The proof is by induction. Fon = 1, this is the definition. The
inductive step follows by writing- = o”’{a,} and noting that quasi-linear
map preserves joins.

Theorem 4.3.15.Let Ly and L, be two links of xin K withh L; — L,
the standard mistake. Suppagé and %5 are polyhedral presentations
of Ly and Ly. Then there exist simplicial refinement, and % of
%1 and %5 such that for eaclr € .71, h(o) € % and Ho is quasi-
linear. If f : Ly — L, is defined as the linear extension of h restricted
to the vertices of/, then f is a polyhedral equivalence simplicial with
respect to¥, and.%, and such that (o) = h(o) for all o € .77 .

Proof. We can suppose that; and. 25 are simplicial, and find a simpli- 69
cial presentation? of (L1 = XU L = X) refining (27 = {{x}} U 2% = {{X}}).
Define.¥ = Lk(x, &2). Itis clear that every simplex € .# is contained
in % {x}, for r € Z3, and hence the standard mistdke: |.¥| — L1
takeso to hy(o) c 7.

The restriction ohy too is quasi-linear. For, ledy, ay € o; the three
pointsas, ap, X determine a plane and in that plane an angular regjon
which is the union of all rays fromt through the points ofd;, a]. The
standard mistake, by definition, takes,[ap] c o to L N7, which, itis
geometrically obvious, is jushi(a1), hi(a2)].

This, together witlir4.3714, enables us to defiie= {hi(0) | o €
7}, and to see that this is a simplicial presentation refirifig
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Similarly, via the standard mistake : |.| — Lo, we have
yg . {h2(0‘) | O’Ey}.

Since, clearlyh : Ly —» Lyishyo hll and the composition and
inverse of quasi-linear maps are again quasi-linear, therrpart of the
theorem is proved.

The last remark aboit is obvious. m]

4.3.16 If in 313, for a subpolyhedroK’ of L1, h|K’ is polyhedral,
then we can arrange fdr : Ly — L, of the theorem to be such that
fIK” = h|K".

For, all we need to do is to assure thi has a subpresentation
coveringK; then becaush is linear on each simplex i, the resultant
f is identical withh there.

Corollary 4.3.17. Links (resp. stars) of x in K exist and all are all poly-
hedrally equivalent.

Proposition 4.3.18.1f f : P — Q is a polyhedral equivalence, then any
link of x in P is polyhedrally equivalent to any link of x in Q.

For triangulate f, and look at the simplicial links; they asbviously
isomorphic.

4.3.18. Allows to define thdocal dimensiorof polyhedron K at xThis
is defined to be the dimension of any starxah K. By 31T this is
well defined. It can be easily seen that [by 4.B.12) the ctosiithe set
of points where the local dimension jsis a subpolyhedron ok, for
any integerp.

We will next consider links and stars in products and joins.

Ex. 4.3.19.Let C(P) and C(Q) be cones with verticeg andw. Let
Z=(PxC(Q)U(C(P)x Q). Then

(@) C(P) x C(Q) = C(2), the cone orzZ with vertex {, w)

(b) Pxwandv x Q are joinable, andR x w) = (v x Q) is a link of
(v, w) in C(2).
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Hence by straightening our the standard mistake, we getydgol
dral equivalenc®=Q ~ Z, which extends the canonical maps-> Pxw
andQ — vx Q. 71

Hint: It is enough to look at the following 2-dimensional pictui f
arbitrarype P,g e Q:

v, c(p) x q
o 4 (v.9)
£
+
Q//%@ <D X C(Q)
o)
(v,w) (p,w)

Ex. 4.3.20.Prove thatP = Q ~ (C(p) x QU P x C(Q)) utilising[23:8. If
¢ PxQ — [0,1] is the join of P — 0, Q — 1, the equivalence can be
chosen so thap=1([0, 1/2]) goes toP x C(Q) andey~%([1/2, 1]) goes to

C(P) x Q.

Ex. 4.3.21(Links in products)If x € P,y € Q, then a link of & y) in
P x Qis the join of a link ofx in P and a link ofy in Q.

The join of X to a polyhedron{xs, xo} consisting of two points is
calledthe suspensionf X with vertices x and x, and is denoted by
S(X). Similarly K" order suspensions are defined.

Ex. 4.3.22(Links in joins). In P« Q.

(1) Letxe PxQ-(PuQ),andletx=(1-t)p+tg,pe P,ge Q, 72
O<t< 1l IfLjisalink of pin P, Ly a link of g in Q, then
S(L1 * L) (with verticesp, q) is a link of xin P = Q.
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(2) If pe P,andLisalinkof pin P, thenL«Qis alink of pin Px Q.

Hint: for 1. Consider simplicial presentation® andQ of P and Q
having p andq as vertices. Thehk(p, &) = Lk(qg, Q) is a link of O(p, q)
in Z = Q, by[A111. Hence alink afin P« Q = |{p, g} = Lk(p, &) =
Lk(qg, Q)| or the suspension dfk(p, £2) = Lk(q, Q) with verticesp and
g. The general case follows from this.

4.4 Polyhedral cells, spheres and Manifolds

In this section, we utilize links and stars to define polyaddells,
spheres and manifolds and discuss their elementary piegert

Let us go back to the open and closed (convex) cells discuased
3. If Ais an open cell, then the closed cAlls the cone ovefA with
vertexa, for anya € A.

Proposition 4.4.1.If A and B are two open cells of the same dimension,
thendA anddB are polyhedrally equivalent. Moreover the equivalence
can be chosen to map any given point X¥afonto any given point y of
0B.

Proof. Let dimA = n = dimB = n. Via, a linear isomorphism of the
linear manifolds containing andB, we can assume thatandB are in
the saman-dimensional linear manifold, and moreover tihat B # 0.
ThendA andaB are both links of any point oA N Bin AU B. Hence
0A anddB are polyhedrally equivalent. A rotation #&fwill arrange for
the standard mistake to mago y. And[4.3T5, we can clearly arrange
for x andy to be vertices in7; and.#%. O

By joining the above map with a map of point Afto a point ofB,
we can extend it to a polyhedral equivalenceAadndB. Thus any two
closed cells are polyhedrally equivalent.

Definition 4.4.2.A polyhedral n-spherdor briefly ann-spherg is any
polyhedron, polyhedrally equivalent to the boundary of parocell of
dimension ( + 1).
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By .21 this is well defined.

Definition 4.4.3.A polyhedral n-cell(or briefly ann-cell) is any poly-
hedron, polyhedrally equivalent to a closed convex cell iofethsion
n.

By the remark aftef 4411, this is well defined. All the cellda
spheres except the 0-sphere are connected.

Consider the “standand-cell”, the closedh-simplex, and the “stan-
dard g — 1)-sphere”, the boundary ofrasimplex. BY4.1.B[4.3.18 and
&2, we have

Proposition 4.4.4. The link of any point in an n-sphere is &n — 1)-
sphere.

Corollary 4.4.5. An n-sphere is not polyhedrally equivalent to (@n)-
sphere, if mz n.

Proof. By looking at the links usingZ4.4.4, and induction. o 74

446 If f . D ~ o is an equivalence of an-cell with a closedn-
simplexo, we see that for points d@ corresponding to points dfo,
the link in C is an f — 1)-cell; and for points ofC corresponding to
points ofo, the link inC is an g — 1)-sphere.

Proposition 4.4.7. An n-sphere is not polyhedrally equivalent to an n-
cell.

Proof. Again by induction. Fon = 0, a sphere has two points and a
cell has only one point.

Forn > 0, ann-cell has points which haven(- 1)-cells as links,
where as in a sphere all points have-(1)-spheres as links. And so, by
induction onn they are diferent. O

This allows us to define boundary for arbitramcells, namely the
boundary of am-cell C, is the set of all points df whose links arer{—
1)-cells. We will denote this also BYC. This coincides with the earlier
definition for the boundary of a closed convex cell, and therloary of
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an-cell is an 6 — 1)-sphere. And as in4.4.5, arcell and an ifn)-cell
are not polyhedrally equivalent i # n.

By taking a particularly convenient pairs of cells and sphehe
following proposition is easily proved:

Ex. 4.4.8.Whenever they are defined,
(1) The join am-cell and am-cell is a fn+ n + 1)-cell.
(2) The join of am-cell and am-sphere is art+ n + 1)-cell.
(3) The join of am-sphere and an-sphere is ar+ n + 1)-sphere.

If in (1) of £4.8,C; andC; are the cells, theA(Cy = C,) = 4C; =
CoUC1#0Co. In (2) of[Z 4B, ifC is the cell, and the spheré(C«S) =
oC = S.

Definition 4.4.9.A PL-manifold of dimension ¢(or aPL n-manifold) is
a polyhedronM such that for all point< € M, the link of x in M is
either an f — 1)-cell or an i — 1)-sphere.

Definition 4.4.10.1f M is a PL n-manifold, then the boundary d¥l
denoted byM, defined to bédM = {x € M | link of xin M is a cel}.

Notation. If Ais any subset df, the interior ofAand the boundary ok
in the topology ofM, will be denoted by int, A and bdy A respectively.
M — dM is also usually called the interior &fl, this we will denote by

int M or I{J/I Note that inyM = M, where as inM = M — M.

It is clear from the proposition above, the manifolds dfatient di-
mensions cannot be polyhedrally equivalent, of coursen Bsouwer’s
theorem on the “Invariance of domain”, it follows that thegnoot even
be homeomorphic.

Proposition 4.4.11.1f M is a PL n-manifold, thedM is a PL(n — 1)
manifold, andi(9M) = 0.

Proof. We first observe thatl — M is open inM. Forif xe M — dM,
let L be a link ofx in M, S the corresponding star, such tt&t- L is
openinM. SisacellanddS=L. Ifye S—L,thenalink ofyin Sis
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a link of yin M, sinceS is a neighbourhood of. SinceS is a cell and
y € S—9S, the link ofy in S is a sphere. Hencge M — oM, for all
yeS-LorM-0MisopeninM. HencedM is closed inM.

If .7 is any simplicial presentation d¥l ando € ., the {00} =
Lk(o, .)} is a link of xin M for all x € o by &312. Hencer c oM
oroc c M-0M. If o c OM, do also is contained i@M, sincedM is
closed.dM being the union of all suchr is a subpolyhedron d¥1.

Let x be a point ofdM, L a link of xin M andS = L = X, the
corresponding star such that- L is open.L is an i — 1)-cell. And by
EZ38,Sisann-cellwithdS = Lux=dL. Ifye xxdL—-9dL c S— L,
then a link ofy in S is a link of y in M as above. But a link of in S
is a cell, sincey € 9S. Hencexx dL — dL c dM. SincedM is closed,
xxdL c M, and sincexxJL is a neighbourhood ofin dM, dL is a link
of xin dM. HencedM is a PL f1 — 1)-manifold without boundary. o

Remark. Thus, ifx € M, there exist links. of xin M (for example, the
links obtained using simplicial presentations), such thatc M and
oL alink of xin dM. This need notbe true for arbitrary links. Also there
exists linksL of x e M in M, such thatNndM = dL. For example, take
a regular presentatio® of M in which x is a vertex and tak s {x}|.

Proposition 4.4.12.Let M be a PL n-manifold, and” a simplicial 77
presentation of M. Ir € ., then eithero- ¢ M or M — dM, and

(1) |Lk(o, %)l is a(n -k — 1)-cell if o ¢ OM

(2) |ILk(o, #)|is a(n — k — 1)-sphere ifc ¢ M — dM where k is the
dimension ofr.

Proof. Thato- ¢ dM or M-dM is proved ifZ4711. The proof of (1) and
(2) is by induction ork. It k = 0, this follows from definition. Ik > 0,
let T be a k — 1)-face ofo. ThenlLk(o, %) = Lk(r, {do} * Lk(o, .¥)),
and|{do} = Lk(o, .7)| being the link of a point inr is either f — 1)-
sphere or ar{— 1)-cell. Hence, by induction, k(o %) is either a cell
or sphere of dimensiom(-1)-(k—1)-1=(n—-k-1). If o c M,
[{0c} = Lk(o, )| is a cell. HencélLk(o, )| cannot be a sphere, since
then|{do}| « Lk(o, )| = do = |Lk(o, )| would be a sphere. Thusdf c 0M,
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ILk(o, &) is a (0 — k= 1)-cell. Similarly ifc ¢ M — M, |Lk(c, .)| is
a (h— k- 1)-sphere. ]

Ex. 4.4.13.(1) Let M be aPL mmanifold, andN a PL r-manifold.
ThenM x N is a PL (m + n)-manifold andd(M x N) is the union of
0M x N andM x dN.

Hint: Use[Z4.321 and 4.4.8.

(2) If M =N is defined, it is not a manifold except for the three cases
of B43.

Hint: Use[4.3.2P.

Proposition 4.4.14. (@) If f : S —» S’ is a one-to-one polyhedral
map of an n-sphere S into another n-sphefet8en f is onto.

(b) If f : C — C’ is a one-to-one polyhedral map of an n-cell C into
another n-cell Csuch that {oC) c dC’, then f is onto.

Proof of (a): By induction. Ifn = 0, S has two points and the proposi-
tionis trivial. Letn > 0. Letf be simplicial with respect to presentations
S and.# of S andS’. If xis any point ofS, x € o for someo € ..
Consider

L1 = {00} * Lk(o, #1)I, S1 = |{0T} * Lk(o, 1),
Ly, = [{(fo)) + Lk(for,.%)|, and S, = [(fT) * Lk(fo, .75)l.

Since f is injective f mapsL; — L, and f|S; is the join of f|Ly
andx — f(x). Ly andL, are f— 1)-spheres, and by inductioiiL; is
bijective. Thereforef(S;) = S,. Hencef(S) is open inS’. SinceS is
compactf(S) is closed inS’. SinceS is connectedf(S) = S’. (b) is
proved similarly.

By the same method, it can be shown

Ex. 4.4.15.There is no one-to-one polyhedral map ofragphere into
ann-cell.

Ex. 4.4.16. (1) A PL-manifold cannot be imbedded in another PL-
manifold of lower dimension.
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(2) If M andN are two connected manifolds of the same dimension,
ON # 0, andoM = 0, thenM cannot be embedded M. If N is
also empty, and iM can be embedded i thenM ~ N.

Ex. 4.4.17. (1) If M c N are twoPL n-manifolds, thenM — oM c 79
N — dN, andM — M is open inN. Hint: Use[Z4TW andZ.4.115.

In particular any polyhedral equivalencefhas to takeN — N
ontoN — 6N anddN ontodN.

(2) If M c N=9N, bothM andN, PL (n)-manifolds, and any point
of M, show that there exist linkis of x in N, such that a link of
xin Misan f—1)-cellD c L, andD n oM = dD.

Ex. 4.4.18.InE.Z13, show that iP is a PLn-manifold f~1(q)(d # 0) is
a PL (0 — m)-manifold andd(f~%(q)) c oP.

4.5 Recalling Homotopy Facts

Here we discuss some of the homotopy facts needed later.egderis
referred to any standard book on homotopy theory for thefpobibese.

4.5.1 We define a spadeto be k—1)-connectedft, for any polyhedra
Y c X, with dim X < k, every continuous may — P has an extension
to X.

Thus, a £1)-connected polyhedron must just be non-emptyk-A
connected polyhedron fdt < -2, can be anything. Fdt > 0O, it is
necessary and fiicient thatP be non-empty and thatj(P) = 0 for
I <k

4.5.2 A pair of spacesA, B) whereB c A, is k-connectedf for any
polyhedraY c X with dimX < k, andf : X — A such thatf(Y) c B,
thenf is homotopic to a map, leavingy fixed, such thag(X) c B.

This is just the same as requiring thafA, B) = 0 fori < k. If Ais 80
contractible (or justk— 1)-connected) andX B) is k-connected, theB
is (k — 1)-connected.
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We shall have occasion to look at pairs of the fodnA— B), which
we denoted briefly asA; —B). The following discussion is designed to
suggest how to prove a result on the connectivity of joingctvis well
known from homotopy theory.

453 Let Ay c A B; c B, and supposeA,—A;) is a-connected,
(B, —B,) is b-connected. ThenXx B, —A; x B,) is (a+ b+ 1)-connected.

LetY c X,dimX <a+b+1,andf : X - Ax B, with f(Y) N A; x
B1=0.

We must now triangulatX finely by say.¥. Look at|.%] = X; and
.73+ = X5, Then dimX; < a, dim X, < b, and so the two coordinates
of f are homotopic, using homotopy extension, to get a mapgatikd
f1 such that

fA(X]_) NAL =0, fB(Xz) NnBy=0.

BecauseX — X, hasX; as a deformation retract, we can first get
fa(X2) N By = 0 and thenf ~1(A; x By) is contained inX — X,. By chang-
ing, homotopically, only the first coordinate, we det(A; x By) = 0.

To go more deeply into this sort of argument, see Blakers and
Massey, “Homotopy groups of Triads” I, I, 111", Annals of Mlaematics
Vol. 53, 55, 58.

45.4 If Pis (a- 1)-connectedQ is (b — 1)-connected, theR = Q is
(a + b)-connected.

For, letC(P), C(Q) be cones with verticeg, w. Then C(P), -V)
is a-connected, €(Q), —w) is b-connected. Hence Hy Z4.5.3C(P) x
C(Q), —(v,w)) is (a+ b+ 1)-connected. B4.3.19, this pair is equivalent
to (C(P+Q), —(v,w)). HenceP=Qis (a+h)-connected. For a direct proof
of 5.3, see Milnor’s “Construction of Universal BundlégAnnals of
Mathematics, 1956, Vol. 63).

4.5.5 The join ofK non-empty polyhedra ik( 2)-connected. In par-
ticular (k — 1)-sphere isK — 2)-connected. The join of & 1)-sphere
and aa-connected polyhedron is ¢ k)-connected. Thus K" suspen-
sion (same as the join with & ¢ 1)-sphere) of a connected polyhedron
is at leasK-connected.



Chapter 5
General Position

We intend to studyPL-manifolds is some detail. There are certain basiz
techniques which have been developed for this purpose, owhioh
is called “general position”. An example is the assertioat thf K is
a complex of dimensiok, M a PL-manifold of dimension> 2k, and
f : K —» M is any map, therf can be approximated by imbeddings”.
More generally we start with some notions “a mhp K — M being
generic” and “a magf : K — M being in “generic position” with re-
spect to som& c M”. This “generic” will be usually with reference to
some minimum possible dimensionality of “intersectiornself inter-
sections” and “nicety of intersections”. The problem of geh position
is to define useful generic things, and then try to approx@mangeneric
maps by generic ones for as large a clasX’sf Y's and M'’s as possi-
ble (even in the case d¢fL-manifolds, one finds it necessary to prove
general position theorems for arbitragy.

It seems that the first step in approximating a map by suchmages
is to approximate by so called nondegenerate map, that is a rhap
K — M which preserves dimensions of subpolyhedra.

Now it happens that a good deal of ‘general position’ can be ob
tained from just this nondegeneracy, that i¥ i the sort of polyhedron
in which maps from polyhedra of dimensiensomen can be approx-
imate by nondegenerate maps, then they can be approxiamteidds 83
maps also. And the class of thegis is much larger than that d?L-
manifolds.

69



70 5. General Position

We call such spaces Non Degeneratgdpaces oiND(n)-spaces.
The aim of this chapter is to obtain a good description of spdces
and prove a few general position theorems for these spaces.

5.1 Nondegeneracy

Proposition 5.1.1. The following conditions on a polyhedral map: f
P — Q are equivalent:
(a) For every subpolyhedron X of P,
dim f(X) = dim X.

(b) For every subpolyhedron Y of Q,
dim f~1(Y) < dimY.

(c) For every point xe Q, f~1(x) is finite.

(d) For every line segmernjk,y] c P, x# Yy, f([x,y]) contains more
than one point.

(e) For every &2, Q with respect to which f is simplicial, () has
the same dimension as o € .

(H There exists a presentatiat? of p, on each cell of which f is
linear, and one-to-one.

Proof. Clearly

(@ = (d)
(b) = (c) = (d)
(e) = ()

84 To see that (ay= (b):
Consider a subpolyhedrory of Q; then f(f"%(Y)) c V.
Dim(f~1(Y)) = dim f(f~1(Y)) by (a) and ad (f"1(Y)) c Y, dim f(f 1«
Y)) < dimY. Hence dim¢~1(Y) < dimY.
To see the (dy (e):
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Leto € &2. If f(o) has not the same dimension as thatotwo
different vertices of- sayv;, andv, are mapped onto the same vertex of
f(o) sayv. Then 1, v»] is mapped onto a single poirt contradicting
(d).

Finally (f) = (a):

To See this, first observe thatfifis linear and one-to-one- on a cell
C, then it is linear one one-to-one @ also. Thus ifA is a polyhe-

dron inC, dimf(A) = dimA. But, X = |J (XN C), and dimX =
Ce”

Maxce»(dim X N C). It follows that dimf(X) = dim X.

Thus we have
a c
f / d
\ ]
and therefore all the conditions are equivalent. O

Definition 5.1.2.We shall call a polyhedral map which satisfies any
of the six equivalent conditions of propositibn_5]14 nondegenerate
map.

Note that a nondegenerate map may have various “foldings”;8%
other words it need not be a local embedding.

Ex.5.13. () If f : P - Qs a polyhedral map, an = P, U
... UPy, Pjis a subpolyhedron oP, 1 < i < k, and if f/P; is
nondegenerate, theis nondegenerate.

(2) If f: P — Qisnondegenerate, antic P a subpolyhedron, then
f /X is also nondegenerate.

[Hint : Use 1.C].

Ex. 5.1.4. Proposition.The composition of two nondegenerate maps is
a nondegenerate map.
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Ex. 5.1.5. Proposition.f f : P; —» Qq, andg : P, — Q, are nonde-
generate, theffi = g : Py * P, — Q1 x Qy is nondegenerate.

In Particular conical extensions of nhondegenerate mapagae
nondegenerate.

[Hint: Consider presentations with respect to whichy are simpli-
cial and use 1 .].

Let f : P —» Q be a polyhedral map? and & triangulations of
P and Q with reference to whichf is simplicial. .# and 2 as usual
denote thek" skeletons of and Z. Let 6, n be centerings of”,
% respectively such that(6o) = n(fo) for o € 7. Let. 7K and ZX
denote the dual skeletons with respect to these centerlings
Ex. 5.1.6. (a) f(~4) c Zk.

f is nondegenerate if and only if () c .
(b) 1% c .7k
f is nondegenerate if and only if
f(7%) c X
(c) Formulate and prove the analogues of (a)
and (b) for regular presentations.

5.2 ND(n)-spaces. Definition and Elementary prop-
erties

Definition 5.2.1.A polyhedronM is said to be aND(n)-space (read
Non-Degeneratén)-sace)if and only if:

for every polyhedrorK of dimension< n, and any magd : X - M
and anye > 0, there is ar-approximation tof which is nondegenerate.

This property is a polyhedral invariant:

Proposition 5.2.2. If M is and NO(n)-space, and : M — M’ a poly-
hedral equivalence, then Ms also NIOn).
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Proof. Obvious. m]

Before we proceed further, it would be nice to know such space
exist. Here is an example:

Proposition 5.2.3. An n-cell is an N [n)-space.

Proof. By[E.2Z.2, it is enough to prove fak, whereA is an open convex
n-cell inR". Letf : X — A be any map from a polyhedroX of
dimension< n. First choose a triangulatior” of X, such thatf is
linear on each simplex of”. Letvy,...,V; be the vertices of”. First
we alter the mag a little to af’ so thatf’(vy), ..., f’(v) are all inA =
Interior of A. This is clearly possible: We just have to choose points near
f(vi)’s in the interior and extend linearly. Next, by 1.2.12 ofdpkerl,
we can choosgs, ..., Y so thaty, is nearf’(v;) andy;’s are in general
position, that is anyr(+1) or less number of points g% is independent.
If we choosey’s near enough’(v)’s, they’s will be still in A, that is
why we shiftedf(v;)’s into the interior. Now we defing(vi) = y; and
extend linearly on simplexes a# to a get a mapX — M, which is
non-degenerate iy 5.1.1 (f). And surelyf{f;) andy; are near enough,
g will be good approximation td. O

The next proposition says, roughly, that HiD(n)-space is locally
ND(n).

Proposition 5.2.4. If . is any simplicial presentation of an NB)-
space, andr € .7, then|S 1o, )| is an NO(n)-space.

Proof. If x is a point ofc, then|S o, )| is a cone with vertex and
basedo = |Lk(o, )| which is a link ofx in M; and|S (o, .%)| — do =
ILk(o, )| is open inM. If f : X — |Sto,.”)| is any map from a
polyhedronX of dimension< n ande > 0, we first shink it towardx
by a mapf’ say so thatf’(X) c |S{o,.”)| — do = |Lk(o, )| so that
o(f, ') < €/2. NowN = M —(|S (o, .#)min—do =|LKk(c, 7)) is a sub-
polyhedron ofM, andf’(X)NN = 0. Thereforep(f’(X), N) > 6 > 0. Let
n = min(s, €/2). SinceM is ND(n), we can obtain an-approximation
to f’, say g which is nondegenerateg is an e-approximation tof
andg(X) NN = 0, g(X) c M. Thereforeg(X) c| Sto,.)|. Hence 88
IS (o, )| is anN D(n)-space. O
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Next we establish a sort of “general position” theorem Kdp(n)-
space.

Theorem 5.2.5.Let M be an Nn)-space, K a subpolyhedron of M
of dimension< k. Let f: X — M be a map from a polyhedron X of
dimensiorc n—k-1. Then f can be approximated by a mapX —» M
such that gX) N K = 0.

Proof. LetD be a k + 1)-cell. Letf’ : D x X — M be the composition
of the projectionD x X — X and f, thatisf’(a,x) = f(x) for a € D,

x € X. By hypothesis, dinip x X) < n. Hencef’ can be approximated
by a mapg’ which is nondegenerate. The dimensiongtf!(K) < k.
Considerr(g ~1(K)); (wherexr is the projectionD x X — D), this has
dimension< k; hence it cannot be all of th& ¢ 1)-dimensionalD.
Choose soma € D — (g’ "}(K)). Theng'(ax X) N K = 0. We define
g by, g(X) = g'(a x), for x € X. Sincef(x) = f’(a, x), andg’ can be
chosen to be as close f6 as we like, we can get@as close tdf as we
like. i

We can draw a few corollaries, by applying the earlier apjmnax
tion theorems.

Ex. 5.2.6.I1f M is ND(n), K a subpolyhedron oM of dimension< Kk,
then the pair 1, M — K) is (n — k — 1)-connected.

[Hint: Itis enough to consider mags: (D, dD) — (M, M —K), and
show that such ari is homotopic to a mag by a homotopy which is
fixed ondD, and withg(D) c M — K. First, by[5.Z.b, one can get a very
close approximatiom; to f with g;(D) ¢ M — K. Then sinceg:|6D
and f|oD are very close, there will be a small homotdpy3.2.3) in a
compact polyhedron iM — K with hg = f|dD, h; = g1/0D. Expressing
D as the identification space 8D x| andD; (a cell withdD; = 9D x 1)
at oD x 1 and patching up and the equivalent af; on D;, we get a
mapg : D —» M, with gloaD = f|9D, g(D) c M — K andg close tof.
Then there will a homotopy of andg fixed ongD].

As an application this arld 5.2.4 we have:
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Proposition 5.2.7. If .7 is a simplicial presentation of an N(B)-space
ando € ., then|Lk(o, )| is (h — dimo — 2)-connected.

Proof. For byf[R.ZH|S (o, ¥)| = 7+ |Lk(o, -)| is ND(n), and by[5. 26,
(IStlo, ), IS0, )| — o) is (h — dimo — 1)-connected, thus giving
that|S{(o, )| — o is (n — dimo — 2)-connected. BufLk(c,.¥)| is a
deformation retract oS {0, )| — . O

5.3 Characterisations ofN D(n)-spaces

We now introduce two more properties: the first an inducyiwiefined
local property calledA(n) and the second a property of simplicial pre-
sentations calle@®(n) and which is satisfied by the simplicial presenta-
tions of ND(n)-spaces. It turns out that M is a polyhedron and” a
simplicial presentation oM, thenM is A(n) if and only if . is B(n).
Finally, we complete the circle by showing tha&tn)-space have an ap-
proximation property which is somewhat stronger than teatimmed for 90
N D(n)-spacesA(n) shows thalN D(n) is a local propertyB(n) is useful

in checking whether a given polyhedronND(n) or not. Using these,
some more descriptions and propertieN@(n)-spaces can be given.

Definition 5.3.1(The propertyA(n) for polyhedra)

Any polyhedron isA(0).

If n> 1, a polyhedrorM is A(n) if and only if the link of every point
in M is a (0 — 2)-connectedd(n — 1).

Definition 5.3.2(The propertyB(n) for simplicial presentations)
A simplicial presentatior” is B(n), if and only if for everyo € .7,
ILk(o, )| is (n — dimo — 2)-connected.

ByBE.Z1, we have

Proposition 5.3.3.1f M is ND(n), then every simplicial presentatio#
of M is B(n).

The next to propositions show thafn) andB(n) are equivalent (ig-
noring logical dificulties).
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Proposition 5.3.4.1f M is A(n), then every simplicial presentation of M
is B(n).

Proof. The proof is by induction om. Forn = 0, the B(n) condition
says that certain sets are £2)-connected, i.e. any’ is B(0), agreeing
with the fact that any is A(0). Letn > 0, and assume the proposition
form<n.

Let|.| = M, o € . and dimo- = k.

If k = 0, then by the conditio\(n), the link of the element ofr,
which can be taken to Qek(o, .#)| is (n — 2)-connected.

If kK > 0, letx be any point ofo. Then a link ofx in M is do =
ILk(c, -#)|, which isA(n — 1) by hypothesis.

Hence by inductive hypothesis, its simplicial presentatiéo}
Lk(o, .7) satisfiesB(n — 1). If 7 is any k — 1)-dimensional face of
o,

|Lk(o, )| = |Lk(t, {00} * Lk(o, )|

which is (h—1)- (k- 1) — 2)-connected i.en— k— 2)-connected since
{0o} = Lk(o, .¥) is B(n— 1). m|

Proposition 5.3.5. If a polyhedron M has a simplicial presentaticA
which is Bn), then M is An).

Proof. The proofis again by induction. Far= 0, itis the same as in the
previous case. And assume the proposition to be true fon allin > O.

Let x e M. Thenx belongs to some simplex of ., and a link ofx
in M is do = |Lk(c, .#)|. We must show that this is an ¢ 2)-connected
A(n-1).

As per connectivity, we note (settihg= dim o) thatdo is a k- 1)-
sphere; and b(n), |Lk(o, )| is (n — k — 2)-connected. As the join
with a (k — 1)-sphere rises connectivity Iy do = |Lk(co, 7)) is (n — 2)-
connected.

To prove thatdo = |Lk(o, )| is An-1, it is enough to show that
{00} = Lk(o, ) = .’ say isB(n — 1); for then by induction it would
follow that|.’| = do * |Lk(o, .| is A(n — 1). Take a typical simplex
L of .. Itis of the formBy, B € {00}, v € Lk(o, ), withB ory =0
being possible. Novtk(L, ) = Lk(B, {dc}) = LK(y, Lk(c, .%)).
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Let a, b, ¢ be the dimensions af, B, y respectivelya = b+ c + 1.
Remember that dimr = k. ThereforgLk(s, {0c})| is a k—b—2)-sphere.
Now |Lk(y, Lk(co, )| = |Lk(yo, )|; and byB(n) assumption, this is
(n - (c + k+ 1) — 2) connected. Hence the join @fk(s, {do})| and
ILk(y, Lk(c, )| which is|Lk(a, .")| is

[((n=(c+k+1)-2)+ (k- b-2)+ 1]-connected

thatis (f — 1) — a — 2)-connected.

Thus .’ is B(n — 1), and therefore by inductioh?”’| = do =
ILk(o, )|, a link of x in M is a (0 — 2)-connectedA(n — 1). Hence
M is A(n). O

We need the following proposition for the next theorem.

Proposition 5.3.6. Let £ be a regular presentation of an(#)-space M
andn be any centering of”. Let A be any element ¢¥, anddim A = k.
Then

1A is an(n — k — 2)-connected Ak 1

and|sA| is a contractible A .

Proof. We know thatlA is the link of ak-simplex ind<?. Sinced%?
satisfiesB(n), |1A| is (n — k — 2)-connected.

If k =0, AAis the link of a point and therefor&(n — 1), sinceM is
A(n).

If k> 0, thendA = |1A| is a link of a point inM, and so isA(n — 1). 93
Take a k — 1)-simplexo of d2 in dA; then AA is Lk(o, d{0A} = 1A)
which (by induction ork), we know to be a presentation of &((n —
1) - (k—1) - 1)-space.

To prove thatsA| is A(n— k), we prove thabA is B(n—k). Consider
its vertexnA, thenLk(nA, 6A) = 1A, and|1A| is (n — k — 2)-connected.
For a simplexo € 1A, we have|Lk(c, 6A)| =c |(Lk(o, 2A))| which is
contractible. For a simplex = o{nA}, o € AA, LK(r, 6A) = Lk(o, 1A).
If  has dimension, o has dimensiont(— 1); and sg1A| being A(n —
k—1), |Lk(c, AA)|is ((n— k- 1) — (t — 1) — 2)-connected, i.8Lk(r, 6A)|
is ((n— k) —t — 2)-connected. This shows thaA satisfiesB(n— k). O
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Theorem 5.3.7.Let M be an An)-space, Yc X polyhedra of dimension
<n,and f: X - M a map such that|¥ is non-degenerate. Given any
€ > 0, there is ane-approximation g to f such that g is nondegenerate
and dgY = f|Y.

Proof. The proof will be by induction om. If n = 0, we takeg = f,
since any map on a 0-dimensional polyhedron is nondegenerat

So assumea > 0, that the proposition witim instead of to be true
forallm<n.

Without loss of generality we can assume tHais polyhedral.
Choose simplicial presentation® c .7, .# of Y, X and M such that
f is simplicial with respect to¥ and.#; and such that the diameter
of the star of each simplex i/ is less thare. Let 0, n be center-
ings of ¥ and.# with f(60) = n(fo) for all o € .. Then clearly
1 7% c SKF(Z¥) c .#¥ and the diameter dbp| is less thare for
everyp € .

Consider an arrangemen, ..., A. of simplexes of.# so that
dimA; > dimAi,q, for 1 < i < k. The crucial fact about such an ar-
rangement is, for each (*) AA; is the union oféA; for somej’s less
thani.

We construct an inductive situatigry such that

(1) X = fY(6A U ... UISA)

@ Yi=XnY

(3) gi : X, » M, a nondegenerate map
(@) gi(f~H6Al) < I5A

(5) GilXi-1 =01

(6) gilYi = fIY;

/" is the union of certaifj’s in the beginning, say’s with i < ¢.
fY2" c " and|.#" is O-dimensional. Hencé f~1(|6A1]. .. |[0A.])
is already nondegenerate. If we take this tgpall the above properties
are satisfied an we have more than started the induction. Bigws|¢
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and suppose thag;_; is defined, that is we already have the situation
2(i-1)-

( It)follows from (4) and (5), that fojj < i, gi—1(f~116A;]) € I5A|l, and
hence from (*) thag;_, mapsf~1(1A) into |AA].

Also this shows that ik € f~1(|6Aj]) then bothg_1(x) and f(x) are 95
in |6A|, which has diametet €, and sog;_; is ane-approximation to
fIXi_q.

There are ow two cases.

Case 1dimA =k > 1.

Look at|6A;|. This is a contractiblé\(n—k). Let X’ = f~1(|6Aj]) and
Y = (YN X)U f~(AA]). The mapsf onY n X’ andg;_; on f1(]AA)
agree where both are defined By_1(6), and are nondegenerate by hy-
pothesis and induction. Hence patching them up we get a gendeate
mapf’ : Y — |6A]]. SincelsA;| is contractiblef’ can be extended to a
map (still denoted by’) of X’ to |sAi|. SinceX’ c |.#¥|, dimX’ < n—k,
and|6A;| is A(n — k), there is a nondegenerate mip: X' — |5A;j| such
that f”|Y’ = f’|Y’, by using the theorem fon(- k) < n- 1.

We now defingg; to begi_; on X;_; and f’” on X’; these two maps
agree where both are defined, naméty(|21A;]). Thusg; is well de-
fined and is nondegenerate as béthandg;_; are nondegenerate. And
clearly all the six conditions of; are satisfied.

Case 2DimA; = 0.
LetBy,..., Bsbe the vertices of” which are mapped ont&. Then

fL(16AIl) = 16B1 U . .. 5B.
Let X' = |ABg| U...U|1B4 = .7} n f7L(6A))

X’ is of dimension< n— 1, and containg ~1(JAA;]). LetY’ = f-1(AA|]). 96
Here the important point to notice is, théhh X’ c Y’. This is because
f|Y is nondegenerateY N X’ ¢ 21, sof(Y N X’) c .#*. ltis also in
|6A| and thereforef (Y N X) c |21 N [6A] = |AA].

We first extendgi_1|Y’ to X’ and then by conical extension fo!
(I6A]). gi_1 mapsY’ into |1A;| and is non-degenerate df. SinceliA|
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is (n — 2)-connected, and dil’ < n- 1, g-1]Y’ can be extended to a
map f’ of X" into |1A;| |1A;] is alsoA(n — 1). Hence by the inductive
hypothesis we can approximatéby a nondegenerate mdfi such that
f7IY = 1Y = gia|Y".

Hence f”||ABj,1 < j < sis nondegenerate and maps;| into
|AAi]. We extend this to a malp; : [6Bj| — [|6Ai|, by mappingB; to
A and taking the join is clearly nondegenerate. Sila@g| N [6Bj/| C
IABj| N |ABy| c X', if j # ], hj’s agree whereever their domains of
definition overlap. Similarlyh; andg;_; agree where both are defined.
We now defineg; to begi_1; on X;_1 andh; on|[6Bj|. Thusg; is defined
on Xi_1 U f71(6A]) = X and is nondegenerate singe; and hj's are
nondegenerate. It obviously satisfies conditions 1-50fto see that it
satisfies (6) also: Let is any simplex ol.Z” in 6B;, if Bj is not a vertex
of o there is nothing to prove; B; is a vertex ofo-, write o = {Bj}o”’.
Bothh; andf agree o’ andB; and orir- both are joins, hence both are
equal or. Then (6) is also satisfied and we have the situafipn O

This theorem shows in particular thBtD(n) is a local property;
and thatN D(n)-spaces have stronger approximation property than is as-
sumed for them.

The following propostions, which depend on the computatioh
links are left as exercises.

Ex. 5.3.8. Proposition.C(X) andS(X) areND(n) if and only if X is an
(n—2)-connectedND(n — 1).

Thus thek™™ suspension aX is ND(n) if and only if X is an —k—1)-
connected\N D(n — k)-space.

Ex. 5.3.9. Proposition.Let . be a simplicial presentation &f. Then
X'is ND(n) if and only |Lk(v, %) is (h — 2)-connected\N D(n — 1) for
each vertex of ..

Ex. 5.3.10. PropositionlIf .7 is a simplicial presentation of adD(n)-
space, and (< k < n, then the skeleton’ is ND(k), and the dual
skeletonsK is ND(n — k).
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Thus the class ol D(n)-spaces is much larger than the clas®bf
n-manifolds, which incidentally arlsi D(n) by the B(n)-property.

The results of this section can be summarised in the follgywhopo-
sition:

Proposition 5.3.11. The following conditions on a polyhedron M are
equivalent:

(1) Mis ND(n)
(2) Mis A(n)

(3) asimplicial presentation of M is (B) 98
(4) every simplicial presentation of M is(B

(5) there exists a simplicial presentatigrf of M such thatLK (v, .%)|
is (n — 2)-connected A, for all v € . anddimv =0

(6) M satisfies the approximation property of theolem™5.3.7.

(7) M x I is ND(n + 1).

5.4 Singularity Dimension

5.4.1 Definitions and RemarksLet P and M be two polyhedra,
dmP = p,dmM =m, pm andf : P - M a nondegenerate map.
Ed define the singularity of (or the 2-fold singularity off) to be set
{x € P|f~1f(x) contains at least 2 poirjtsand denote it byS(f) or
So(f). By triangulating f, it can be seen easily th&(f) is a finite
union of open cells, so th&(f) is a subpolyhedron gp.

Similarly, we define the-fold singularity of ffor r > 3, to be the
set{x € P|f~1f(xX) contains at least pointg. This will be denoted by
S:(f). As aboveS;(f) is a finite union of open cells, so that(f) is a
subpolyhedron oP. Clearly S2(f) > S3(f))...; andS;(f) are empty
after a certain stage; sindeis nondegenerate.
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The numberih — p) is usually referred to as thmdimensionand
the numberr(p) — (r — 1)m, for r > 2 is called ther-fold point dimen-
sionand is denoted by, (see e.g. Zeeman “Seminar on combinatorial
Topology”, Chapter VI). Clearlg, = d;_1 — (m— p).

It will be convenient to use the notions of dimension and iddieg
in the following cases: (1) dimension &f whereA is a union of open
cells. In this case the dimA denotes the maximum of the dimensions
of the open cells comprising and is the same as the dimension of the
polyhedronA. (2) Imbeddingf of C — M, whenC is an open cell
and M a polyhedron. This will be used only wheihcomes from a
polyhedral embedding aE. In such a casé(C) will be the union of a
finite member of open cells. And A c M is some finite union of open
cells, thenf~1(A) will be finite union of open cells and one can talk of
its dimension etc..

A nondegenerate map : P — M will be said to be ingeneral
positionif

dim(S,(f)) <d;, forall r

If p=m, this means nothing more than thiats nondegenerate, so

usuallyp < m.

Proposition 5.4.2. Let & be a regular presentation of a polyhedron P
such that for every G &2, f|C is an embedding. Let the cells &
be G,...,C;, arranged so thadimC; < dimCi,1, 1 <i < t, and let
Pi, i <t be the subpolyhedron of P whose presentatiofCis. . ., Ci}.
Then
() Sa(fIPi) = Sa(fIPi—1) U {Ci N f-1(F(Pi-1)))
U{Pi_1 n F73(F(C)))

(i) Si(fIPy) = S (fIPi-1)
U(Ci N FH(F(Sr-1(fIPi-1))}
UiSr-1(fIPi-1) 0 F74(F(Ci))
This is obvious. If we writed® = S1(f), (compatible with the defi-

nition of S;’s, thenSy(f P;) would be justP;, and only (ii) be written
(with r > 2) instead of (i) and (ii).
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The proposition is useful in inductive proofs. For exampbde;sheck
that a nondegenerafeis in general position, it is enough check for each
little cell C;, that dimC; N f~1(f(S;_1(f|Pi_1)) < d;. If we have already
checked upto the previous stage; sirfces non-degeneraté=f(S,_,
(fIPi-1)) will of dimensiond;_1), and then we will have to verify that
f Ci intersectsf(S;_1(f|P;))) in codimension> (m — p) or that C;)
intersectsf 1 f(S,_1(f|P;)) in codimensior> m-p, (We usually say that
A intersects B in codimensionfgdim(AN B) = dimB-q. Similarly the
expressionA intersects B in codimensieng' is used to denote dind{n
B) < dimB - g). The aim of the next few propositions is to obtain
presentations on which it would be possible to inductivélarge the
map, so thaff (C;) will intersect the images of the previous singularities
in codimensiore (m- p). Propositio 5.417 arld5.4.9 are ones we need;
the others are auxilary to these.

Ex. 5.4.3.Let A, B, C, be three open convex cells, such that Bis a
single point andC > AU B. Then dimC > dimA + dim B.

[Hint: First observe that i andB’ are any twadntersectingopen cells
thenLy N Ly = Lang, WhereLy denotes the linear manifold spanned
by X. Applying this to the above situation

dimC =dimLc > dim L(AUB) =dimLa+dimLg — dlm(LA N LB)
=dim La+ dim Lg — dim(LAmB)
=dimLa + dimLg, sinceANn B

is a point.] 101

Proposition 5.4.4. Let A be an open convex cell of dimension n, and
a regular presentation oA with A< a. If L is any linear manifold such
thatdimL N A = k > 6, then there is a E q, of dimensiorc n—k, with
BN L # 0. Further, if X is any cell ofa contained iDA, we can require
thatA’ N B = 0.

Proof. If k = 0, we can choosd itself to beB. If k > 0, cgnsider
the regular presentatiod = {CNLICNL # 0,C € af of AN L.
% must have more than one 0-cell. Choose one of these 0-cells of
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It must be the formB n L for someB € a. We would like to apply
B.Z2, forB, LN AandA. But BandL n A do not intersect. Since
we are interested in the dimension Bfthe situation can be remedied
as follows: LetD be ann-cell, such thatA ¢ D. LN D is againk-
dimensional. Sinc® c D,BNnL c DnL, and asBn L is honempty,
B andD n L intersect.Bn (D N L) cannot be more than one point since
BN (DNL)c BnLwhichis just a point. Applying5.412t8, DN L
andD we haven = dimD > dimB + dim(D n L) = dimB + k, or,
dmB<n-k

To see the additional remark, observe that all the verti€&s can-
not be inA, for thenL N A c A, contrary to the hypothesis thiatn A
is nonempty. Hence we can choose a 0-BetiL, B € a of € not in A'.
Sincea is a regular presentatidBN A" = 0. m|

This just means that if does not intersect the cells obf dim < ¢,
then dimension of the intersection<4sn — ¢, or codimension of inter-
sectoin is> £. Using the second remark [of 5.14.4 we have:

Corollary 5.4.5. Let & be aregular presentation, containing a full sub-
presentatior@ (which may be empty). Le?, = {% € & — Q,dimC <

k}. If L is any linear manifold which does not intersegk, thendim(Ln
(Z-Q) <n-k-1,where n=dim(Z - Q).

Proposition 5.4.6. Let A be a closed convex cell of dimensiok + q,
let S be gk—1)-sphere indA: and B, . .., B; be a finite number of open
convex cells of dimensiang— 1 contained in the interior of A. Further,
let . be a simplicial presentation of S. Then there is an open dseise
U of interior A such that if ac U, o € ., then the linear manifold
L) generated by and ‘a’ does not intersect any of thg'

Proof. For anyo € .7, consider the linear manifolds,.g) generated

by o andB;, for 1 <i <r. DimLy,pg) < k+qg- 1. HenceU, =

intA - JL,p) is an open dense subset of it If a is any point of
i

Uy, thenL. 4 does not intersect any of thg's; for if there werea

Bj with L;,ay N Bj # 0, letb € Liya N Bj. L € Lra and is
of the same dimension ds, 5, sinceb is in the interior ofA. Thus
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a € Lb C L) contrary to the choice c. Therefore if we take

U= N U, U satisfies our requirements. O
ey

Proposition 5.4.7. Let A be a closed convex cell of dimensik + q, 103
let S be gk — 1)-sphere contained idA, and let{B;, ..., B} be a finite
number of open convex cells in int A. Then there is an operedarisset

U of int A such that if ac U, then Sx a intersects each of the;'B in
codimensiore @.

Proof. Let.” be some simplicial presentation $f First let us consider
oneB;. Let % be a regular presentation Bf containing a full subpre-
sentationZ; coveringB; NdA. Let#Aq-1 = {C € Bi—Zi,dimC < qg-1}.
ByEB.4.8, there is an open dense subset chisayU; such that ifa € U,

o € .7, thenl, 4 does not intersect any of the elements/f ;. By
B45, dmLq N (% - Zi) < ni —q, wheren; = dimB;. Hence
dim(S = an Bj) < n — q. Therefore if we takdJ = (; Uj, whereU;
constructed as above for eachRByfs, thenU, satisfies the requirements
of the proposition. O

Proposition 5.4.8. Let o be a k-simplexA a closed convex g-cell¥?

a regular presentation aF = A. Then there exists an open dense subset
U of A, such that if ac U, the linear manifold k5 spanned byr

and a, does not intersect any cell € & satisfying Cn o = 0 and
dmC<qg-1

Proof. LetC € &, withCno = 0 and dimC < q- 1. The linear
manifold L,.c) has dimensiorx k + g, while L4 has dimensiork +

g+ 1. Therefore_(,.c)NA has dimensiox g—1 and sdJc = A-L,¢)

is open and dense . DefineU to be the intersection of all tHéc. If 104
a € U, and there were sont@ of &2 of dimension< q—1,Cno =0,

with L9 N C # 0, chooseb € C N Lyq; sinceb ¢ o, dimLp =
k+1=dm L(o-,a) and SOL((T,a) = L(o-,b) i.e. L((r,a) C L(O-’C), or,ae L(O‘,C)
contrary to the choice & O

Proposition 5.4.9. Let S be gp — 1)-sphere A a closed convex g-cell,
& aregular presentation of $ A. Then there exists
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(1) aregular refinement?’ of &2
(2) a pointae A
(3) aregular presentatior® of S « a such that

() Q contains a full subpresentatio”’ covering S,

(b) Each C e @ - .¥ is the intersection of a linear manifold
with a (unique) cell g € &', if C # C’, Ec # EL., and if
C<C, thenk < S

(c) dmC <dimEc —q,forallCe Q- .~.

Proof. Let a, & be simplicial presentations &, A; and let%?” be a
common simplicial refinement afx 2 and &?. Sincea is full in a * %,
there is a subpresentation, s&; of &2’ coveringS. If o € a, T * A is
covered by a subpresentationdn 2, hence there is a subpresentation
of &', say !, coveringo = A. Applying[5. 4.8 to2?/ , we get an open
dense subséi . of A. LetU be the intersection of the sdils. for o € a.
Leta € U. Obviously @' is in an (open)g-simplex of &2’ contained in
A. Hence &' belongs to ag-simplex of %, call it p.

We defineQ to be union of.¥, {a}, and all nonempty intersections
of the formL ;.5 NE, foro € a, E€ &'~ 7. Itis clear thal (5 NE =
o{a) N E. MoreoverENS = F, F € .¥ (F may be empty) since”
is full in &2, This immediately gives tha® is a regular presentation,
using the fact thab(A n B) is the disjoint union oA N B, AN 9B,
0A N 9B, for open convex cellé\, B with An B # 0. Moreover. is
fullin Q. If C € Q is of the formC = L, 5 N E, we write E asEc.
By definition eachC € Q — .7 is the intersection oEc with a linear
manifold, and ifC’ < C,C’ € Q - ., Ec < E¢ since#?’ is regular.
Sincel 5 does not intersect any(q — 1)-dimensional fac& of Ec
with ENS = 0, by[5.Z5 diml 5 NEc < dim Ec_q. It remains to verify
thatif C; # Cp,Cq,Cy € Q- .7, thenEg, # Ec,. LetCy = L(r,a) N Ec,,
C, = L(T’a)ﬂECZ;O',TE a, E(;l, E(;2 eXP -, Ci#0+Cor lfo =1,
andC; # Cy, clearlyEc, # Ec,. If o # 7, thenC; cannot be equal to
Co. In this caseEc, ¢ op, Ec, € 1p, (o defined in the first paragraph of
the proof). Butop andrp are disjoint, hencé&c, # Ec,. m|
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Remark. In the above propositio®?’ can be taken any presentation of
S « A refining &2 and a join presentation & = A.

Proposition 5.4.10.Let M be an N[Pn)-space. Let X P be polyhedra 106
such that P= X U C, C a closed convex cell, andXC = 9C, and
dimP =p<n. Let f: P> M be a map such that/X is in general
position. Then there exists an arbitrary close approximaty to f such
that g is in general position and/& = f/X.

Proof. If p = n, any nondegenerate approximationfoivould do. So
let p < n. In particular dinC < p < n.

Step A.Let D be an € n)-dim-cell containingdC in its boundary, and
such that

(1) D =9C = A, A a closed convex(— p)-cell

(2) AnCis asingle pointd’ in the interior of bothC and andA so
thatC =d = dC

3 bnP=C.

This is clearly possible (upto polyhedral equivalence hysigering
Px0inV xW, (whereV is the vector space containify W an (— p)-
dimensional vector space), and taking an-(p)-cell A throughd x 0
in d x W, for somed € C — §C etc. The join of the identity odC
and the retractio — d gives a retractiom : D — C. Thus (f/C) - r
is an extension of /C. SinceM is anND(n)-space, {/C) - r can be
approximated by a non-degenerage map hsaych thah/dC = f/oC.
Let us patch upf/X andh, and let this be also callddt now h maps
XuD =PuDinto M and is nondegenerate. Triangulateo that the
triangulation ofX U D with reference to whicln is simplicial contains
a subpresentatio” which refines a join presentation 6C « A We
apply[54D now,Z will be £’ there and we obtain, a poiate A, a 107
presentationZ (what was called? there) ofdC = a. Each cellB of %
not indC, is the intersection of a uniques of 2 with a linear manifold,
if B’ < BthenEg < Eg and dimB < dimEg — (n - p).

Step B.Let By, ..., B, be the elements o# not indC, arranged so that
dimBj < dimBj,q;forl <i<r. LetX; = XUBjU...UB;j; Xjis a
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polyhedron. We define a sequence of embeddiffys X; —» X U D,
such that

(1) ZIX s the identity embedding of in X U D
(2) 4 is an extension aff_;

(3) Z(Bi) c Eg

(4) h.% is in general position.

We shall construct theZ’s one at a time begining witl¥ : X —

X U D, the inclusionh - % = f/X, is in general position, and we can
start the induction.

Suppose_; is already constructed. Then dBp(h.%_1) < d;; and
by (2), (3),-4-1 embeds)B; in JEg; considerh™1(h.Z_1(S;(h.Z-1)))
intersected wittEg,. Sinceh is nondegenerate, these consists of a finite
number of open convex cells of dimensigrd,. We apply(5.47 to this
situation withq = n— p, A = Eg, S = .%_1(9B;) and{By,...,} of
standing for the open cells bf*(h.Z_1(S,(h.%_1)) intersected
with Eg, for all r > 1. By[5. 4T, we can choose a pointhg, saye (a

108 of BE41) so that%_1(dB;) * g intersects all these (i.e. for all> 1) in
codimensiore (n— p). The join of %4_,|0B; and the map of a poirt;
of B to g gives the required extension @

Then dim{.ZBinh Y(h.Z_1(S;(h.Z4_1))} < d; - (n—p), equivalently
dim{(h£B;) N hZ_1(Sr(hZi-1))}drs1 < driq, that is dinf(hZBj) N
hZ(Sr(h.Z|X_1))}dr .1, sinceh.Z is an extension di.%_1.

Since

Sr11(hf) = Sra(hZ-1)
U {Bi N (hL) (A (S (ZIXi-1))
U S (hZIXi-1) N (hL)H(hLh)(Bi))
and sincen.%_, is already in general position, di,1(h.%) < di,1.
At the last stage, we get an imbeddi&fy of X U dC x ain X U D, such

thath.# is an general position.
Thath.% can be chosen as close t@s we like is clear. O
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Theorem 5.4.11.Let M be an Nn)-space, Xc P polyhedradimp <
nand f: P - M amap such that|X is in general position. Then there
exists an arbitrary close approximation g to f such thpf g f|X, and

g is in general position.

Proof. Let 2 be a regular presentation Bfwith X covered by a sub-
presentation?”. Let (2 — Z°) = {As,...,A} be arranged so thati09
dimA < dimAi;, 1 <i<r. LetPp=XUAU...UA, X = Pi_1.
Apply propositio5.4.710 successively :( X1)..., (P, X).

This requires the following comment: We must use our apjpnaxi
tion theorem, which foM ande > 0 givesd(e) > 0O, such that for any
Yo>Z h:Y—> M, hy:Z— M,if hyis polyhedral, andh|Z is as(e)-
approximation td,, then there id;3 : Y — M, a polyhedral extension
of hy, which is ane-approximation td;.

We wantg to be ane-approximation tof.

Definee =€,6_1 =6 % .

Denote f|P; by fi. We start withgy = fg = f|X. Supposeay;_1
is defined onP;_; such thatg;_; is in general position and is a1
approximation tofi_;. Then we first extend;_; to P; say f so thatf’
is ane; approximation tof; (this is possible sincg_; = 6(ei/2)) by the
approximation theorem. Then we ISe5.%.10 to get,aapproximation
gi to f’ such thatg; is in general position angi|Pi_1 = gi_1. gi is an
g-approximation tof; and is in general positiong, gives the required
extension. O

By the methods df5.4:10, the following proposition can bevpd:

Proposition 5.4.12.Let M be NOn); dimp < n, P= XU C, where C

is a closed p-cell, X C = 4C. Let f: P —> M be a map, such that X 110
is nondegenerate; and callim X = x. Then there is a nondegenerate
approximation g. P — M, arbitrarily close to f, such that|¥ = f|X,

and S(g) = S(f|X) plus (a finite number of open convex celldoh <
Max(2p — n, p+ X —n))

Sketch of the proof: First we proceed as in Step A bf 5.4.10. Now
p = dimC. In Step B) instead of 4) we write

dim{B; N (hZ) (hZ_1(X-1))} < Max(2p—n, p+ x—n).
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And in the proof instead of the mess before, we have only thdyot
abouth™(h.Z_1(Xi_1)), intersected witlEg, .

h™ (g 1(Xi-1)) = (WG (X)) uh ™ (hZ 1 (BiU...UB_) =
= h(F(X)) UNYNZ_1(BLU ... U By 1),

Now the only possibility oh~1(f (X)) intersectingEg, is whenEg, ¢
h=1(f(X)) sinceh is simplicial. Since dinB; < dimEg, — (n - p), it
already intersects in the right codimension. And the imtetiens with
second set can be made minimal as before. m]

Theorem 5.4.13.Let M be NI¥n); X > P;dimp<n, f: P> Ma
map such that [X is an imbedding. Then arbitrary close to f is a map
g: P — M, such that ¢X = f|X and calling x= dim X, p=dimP - X,

dimS(g) < Max(2p-n, p+ x—n).
Proof. This follows from[2.4. 1P, as 5.4.111 frdm 5.4110. O

This theorem is useful in proving the following embeddingdtem
for ND(n)-spaces.

Theorem 5.4.14(Stated without proof) Let M be a N¥n)-space, P

a polyhedron of dimension g n—-3and f: P > Ma(2p-n+
1)-connected map. Then there is a polyhedron Q in M and a simple
homotopy equivalence:gP — Q such that the diagram

P—2 -0Q

inclusion

is homotopy commutative.

The method of Step A i 5.4.10, gives;
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Proposition 5.4.15.Let M be an N[¥n)-space, and P a polyhedron of
dimension p< nand f: P - M be any map. Thed a regular
presentation#? of P, simplicial presentation# of M and an arbitrary
close approximation g to f such that, for eacheC?, g|(C) is a linear
embedding, and(€) is contained in a simplexc of .Z of dimension
= dimension G+ (n — p) and gdC) = d(gC) c doc. Moreover.# can
be assumed to refine a given regular presentation of M.

Also a relative version di5.4.15 could be obtained. O
And from this and’2.4.13.

Theorem 5.4.16.Let f : P — M be a map from a polyhedra P of
dim = p into an NOn)-space M, p< n, and let Y be a subpolyhedron
of M of dimension y. Then there exists an arbitrary close agjpnation
g to f such that

dm@P)NnY)<p+y-n.

And a relative version df5.4.16. o 112

5.4.17 It should be remarked that the definition of ‘general positio
in[E4.1 is a definition of general position, and other defing are pos-
sible, and theorems, such as above can be proved. Here walébem
another definition and a theorem which can be proved by théodst
of . 4.70.

A dimensional functiod : P — {0,1,...} is a function defined
on a polyhedron, with non-negative integer values, suchttiexe is
some regular presentatio®? of P such that for allC € &2, x € C,
d(x) = dimC, andd is constant orC.

We sayd; < dy, if for all x € P, di(X) < da(X).

If f : P —> Misanondegenerate map, ahd dimensional function,
andka, .. ., ks non-negative integers, we define

Sdf;ki,... ks = f~1{me M3 distinct points
X1,...,Xs € P, such that
d(x) < ki, andf(x) = mfor all i}.
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It is possible that such a set is a union of open simplexeshande
its dimension is easily defined.

Amapf : P — Mis said to ben-regularwith reference to a dimen-
sional functiond on P if it is nondegenerate and

dimSdfike,... Ky < ki + - +ks— (5= 1)n.

for all s, and alls-tuples of hon-negative integers.

If dim P < n, and since we havé nondegenerate then it is possible
to show that a mag is n-regular if it satisfies only a finite number of
such inequalities, namely those for whichllk n— 1 ands < 2n.

The theorem that can be proved is this;

Theorem .Let X c P, f : P —» M, where M is NIIn) anddimP <

n. Let d and & be dimensional functions on X and P, witR &

dp|X. Suppose K in n-regular with reference toyd Then f can be
approximated arbitrarily closely by gP — M with gX = f|X and g
n-regular with reference togd

The proof is along the lines of theordm 5.4.11. We find a regula
presentation#? of P with a subpresentation covering and such that
dyx anddp are constant on elements 6f. We utilise theoreri’5.4.10 to
getg on the cells ofZZ one at a time; in the final atomic construction,
analogous to part (B) af5.410, we will have

S coE

whereS is a k—1)-sphereE a cell of dimensior> k+q, whereg = n—p
(the cell we are extending over igeecell, on whichdp is constant p).
We have to insert k-cell that will intersect such things as

h™(Sq,(¢i-1: K1, - - . k)
in dimension

dim Sy, (#i-1; K1, . ... ks) —q
< ki +---+Kks+dp(p-cell) - s.n.
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We can do this for our situation; this inequality will impty is n-
regular. O

Finally we can define on any polyhedréha canonial dimensional
functiond:

d(x) : Min{ dim(Stary in [Star ofx in P]
y € [Starofxin p]}

A function n-regular with reference to thiswill be termed, perhaps,
in general position, it being understood that the targebefftinction is
ND(n). Thus:

Corollary . If X c P,dimP < n, f: P - M, M a ND(n)-space, and if
f|X is in general position then|X can be extendedtoamap @ - M
in general position such that g closely approximates f.

Conclusion 5.4.18Finally, it should be remarked, that the above ‘gen-
eral position’ theorems, interesting though they are; aredelicate
enough for many applications in manifolds. For example, oeed:

If f:X — M amap of a polyhedroiX into a manifold, and c M, the
approximationg should be such that not only dig{(¥&) N'Y) is minimal,
but also should hav8, (g) intersecty minimally e.g. if 2+y < 2n, S(g)
should not intersect at all. The above procedure does not seem to give
such results. If for example we know thétan be moved by an isotopy
of M to make its intersections minimal with some subpolyhedralof
then these delicate theorems can be proved. This is trueinabe of
manifolds, and we refer to Zeeman'’s notes for all those #raer






Chapter 6
Regular Neighbourhoods

The theory of regular neighbourhoods in due to J.H.C. Whkieh and 115
it has proved to be a very important tool in the study of pidsevinear
manifolds. Some of the important features of regular nedghioods,
which have proved to be useful in practice can be stated tpaghfol-
lows:

(1) a second derived neighbourhood is regular (2) equicaleftwo
regular neighbourhoods of the same polyhedron (3) a regelghbour-
hood collapses to the polyhedron to which it is regular neigimhood
(4) aregular neighbourhood can be characterised in termsllapsing.
Whitehead'’s theory as well as its improvement by Zeeman tateds
only for manifolds. Here we try to obtain a workable theoryrefular
neighbourhoods in arbitrary polyhedra; our point of viewswsaggested
by M. Cohen.

If X is a subpolyhedron of a polyhedrd&, we define a regular
neighbourhood o in P to be any subpolyhedron & which is the
image of second derived neighbourhoodXofinder a polyhedral equiv-
alence ofK which is fixed onX. It turns out that this is a polyhedral
invariant, and any two regular neighbourhoods<ah K are equivalent
by an isotopy which fixed botiX and the complement of a common
neighbourhood of the two regular neighbourhoods. To sgd)rabove,
we introduce “homogeneous collapsing”. Applications taif@ds are
scattered over the chapter. These and similar theoremsuarespe- 116
cially to Newman, Alexander, Whitehead and Zeeman.

95
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6.1 Isotopy
Let X be a polyhedron antlthe standard 1-cell.

Definition 6.1.1.An isotopyof X in itself is a polyhedral self-equiva-
lence ofX x I, which preserves thecoordinate.

That is, ifhis the polyhedral equivalence &fx I, writing h(x,t) =
(he(x, 1), ho(x, 1)), we havehy(x,t) = t. The map ofX into itself which
takesx to hy(x, t) is a polyhedral equivalence #fand we denote this by
h:. Thus we can writd as

h(x,t) = (h(x). 1).

We usually say thath is an isotopy betweehy andhy’, or ‘hg is
isotopic toh;” or ‘h is an isotopy fromhg to h;’. The composition (as
functions) of two isotopics is again an isotopy, and the cositpn of
two functions isotopic to identity is again isotopic to idién

Now we describe a way of constructing isotopies, which igigar
larly useful in the theory of regular neighbourhoods.

Proposition 6.1.2. Let X be the cone on A. Let f X —» X be a
polyhedral equivalence, such thaAf= ida. Then there is an isotopy
h: XxIl — XxI,suchthat (Xx0)UAx | =identity and i = f.

Proof. Let X be the cone o\ with vertexv, the intervall = [1,0] is
the cone on 1 with vertex 0. Therefore by 4.3.X9x | is the cone on
Xx1U Ax | with vertex {,0). Define

h: XxXx1UAXI - Xx1UAXxI
117

h(x,1) = (f(x),1) for xe X
h(a,t) = (a,t) for aeAtel.
Sinceh|A = ida, hiis well defined and is clearly a polyhedral equiv-

alence. We havé defined on the base of the cone; we extend it ra-
dially, by mapping ¥,0) to (v,0), that is we take the join ofi and
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Identity on {,0). Calling this extension alsh, we see thah is a
polyhedral equivalence and is the identity ok X I) = (v,0). Since
Xx0UAXI c (Ax1)=(v,0), hisidentity onXx0UAXx I. To show that

h preserves thé-coordinate, it is enough to check ax¥x 1) (v, 0), and
this can be seen for example by observing thattkel)+ (1-t)(v, 0) of
Xx | with reference to the conical representation is the santeegadint
(tx+ (1-t)v, t) of Xx | with reference to the product representation, and
writing down the maps. O

If his anisotopy oiX in itself, A c X, and ifh|Ax| = Id(Ax1) asin
the above case, we say thaleaves A fixedAnd some times, ifiis an
isotopy between ldandhy, we will just say thath is an isotopy of X/
and then an arbitrary isotopy will be referred to as ‘an ipgtof X in
itself’. Probably this is not strictly abhered to in whatléls; perhaps
it will be clear from the context, which is which.

From the above proposition, the following well known theuaref
Alexander can be deduced:

Corollary 6.1.3. A polyhedral automorphism of an n-cell which is theis
identity on the boundary, is isotopic to the identity by atapy leaving
the boundary fixed.

It should be remarked that we are dealing witisotopics and these
can be generalised as follows:

Definition 6.1.4.Let J be the cone oK with vertex 0. AJ-isotopy ofX
is a polyhedral equivalence &fx J which preserves thé-coordinate.

The isotopy is said to be between the m¥x 0 —» X x 0 and the
mapX x K — X x K, both induced by the equivalence Xfx J. And
we can prove as above:

Proposition 6.1.5. Let X be the cone on A, and let X x K —» X x K

be a polyhedral equivalence preserving the K-coordinate surch that
flJAx K = Idaxk. Then f is isotopic to the identity map of X by a J-
isotopy h: Xx J — Xx J, such that on A J and Xx 0, h is the identity
map.

This is in particular applicable whehis ann-cell.
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6.2 Centerings, Isotopies and Neighbourhoods of
Subpolyhedra

Let &2 be a regular presentation of a polyhedfrand letr, 6 be two
centerings of22. Then obviously the correspondence

nC—6C, CeZ

gives a simplicial isomorphism af(<?, ) andd(<2, 6), which gives a
polyhedral equivalence d. We denote this by, ,, (coming from map
nC — 6C). Clearly f, 4 = (f,,), and f, ,0fs, = f,, Wheren, 6, { are
three centerings of

Proposition 6.2.1. The map §, described above is isotopic to the iden-
tity through an isotopy h Px | — Px1, such that if for a Ce &, n and
0 are the same on C and all B & with D < C then HC x | is identity.

Proof. First, let us consider the case wheandg differ only on a single
cell A. Thenfy, is identity except onS (A, d(Z, n))l = IS{OA, d(Z,
0))l. This is a cone, andy,, is identity on its base; then hy 6.1.2. We
obtain an isotopy ofS (A, d(<2, n))|, which fixes the base. Hence it
will patch up with the identity isotopy dk — (S t(nA, d(£2, n)).

The generalfy,, is the composition of finitely many of these special
cases, and we just compose the isotopies obtained as abthea spe-
cial cases. For isotopies constructed this way, the secssettion is
obvious. m]

Let X be a subpolyhedron of a polyhedrém and let#? be a sim-
plicial presentation oP containing a full subpresentatiod” covering
X. We have definet »(2") (in[3) as the full subpresentation @f?,
whose vertices argC for C € & with Cn X # 0. This of course de-
pends on a centeringof &2, and to make this explicit we denote it by
N (Z',n). IN»(Z,n)| is usually called asecond derived neighbour-
hood of X. We know thatiN4 (2", )| is a heighbourhood of, and that
X is a deformation retract dN4 (2", n)| (see[31l). Our next aim is to
show that any two second derived neighbourhoods iof P are equiva-
lent by an isotopy oP leaving X, and a complement of a neighbourhood
of both fixed. We go through a few preliminaries first.
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Ex. 6.2.2.With the same notation as above. lyeandd be two center-
ings of 2 such that for ever € & — 2", withCn X # 0, nC = 6C.
Then

INg (2", m)| = INo (2", O)I.

[Hint: This can be seen for example by taking subdivisiongivhich
are almost the same déZ7, n) andd(#, 9), but leaveZ" unaltered)].

Proposition 6.2.3. With X, P, 2", & as above, lety and 6 be two
centerings of??, and U the union of all elements a#, whose closure
intersects X. Then there is an isotopy h of P fixed on X ardJ? such
that ([N (27, n)l) = INo (27, ).

Proof. We first observe tha® — U is a subpolyhedron d® and there is
a full subpresentation of &2 which coversP? — U, namely,C € «aif and
only if Cn X = 0. By[E.Z2 we can changgandd on 2" anda without
altering|N#(Z", )| and|[N»(%",0)|. So we may assume thatand
are the same o™ anda. The isotopyh of propositionl[6.2Z11 with the
new fy,, in the hypothesis has the desired properties. O

With X, P, 27, &2 as above, lep : P — [0, 1] be map given by: if
vis a2 -vertexp(v) = 0, if vis a (& — Z")-vertexe(v) = 1, andy is
linear on the closures of?-simplexes. Therp~1(0) = X, since.Z is
fullin 2. If o is a simplex ofZ — 27, theno N X # 0, if and only if
¢(o) = (0,1). If o is a simplex ofa (a as in the proof of proposition 2.3)121
theng(o) = 1. Roughly, the magp ignores the parts dP away from
X and focusses its attention on a neighbourhoo¥.ofVe will use this
map often.

Proposition 6.2.4. With the above hypothesesQifc a < 8 < v < 1,
then there is an isotopy h of P, taking([0,]) onto ¢1([0, a]) and
leaving X and P- ¢~%([0, y]) fixed.

Proof. Let ¢ be the map:P — [0, 1] described above. Choose a cen-
tering ¢ of & as follows: if o is a simplex ofZ with o N X # 0,
theny({o) = vy, and choos& arbitrarily on 2™ anda. Let &’ denote
d(£,?). Let 27 be the subpresentation witl™”’| = |27 = X. Ob-
viously IN» (27, ) = ¢™([0,7]), and if p is any simplex of%?” with
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vertices both in and out of¢™’, theng(p) = (0,2). Now choose two
centeringy andn of &’ such that ifp € &2 andyp(Z?) = (0, 1), then
¢(nC) = B andy(6C) = L and arbitrarily otherwise. Then clearly

INZ' (27, )l = ¢ ([0, 8])
and INZ'(2”,0) = ¢ [0, ]).

We apply[6.ZB now, and” of B2Z3 in this case happens to be
¢~ ([0, ). o

Proposition 6.2.5. Let &2 be a simplicial presentationZ” a full sub-
presentation of#?, |#| = P, |Z| = X, n a centering of#; and

122 N =|Nx»(Z,n)l. Lety be a simplicial refinement o{ &2, ) with % the
subpresentation covering X; léf centering o7 and N = |Ng(#/, 6)|.
Finally, let 7 be a neighbourhood of N. Then there is an isotopy h of
P, taking N onto Nt and leaving P- % and X fixed.

Remark. Note that if %7 were somewhat large, or if there were B
in the statement, then the proposition is an immediate cpes®e of
and6.214.

Proof. We first replace the centering by a centering;’ as follows:
Lety : P — [0, 1] be the usual function given by, (2 -vertex)= 0,
(£ — X)-vertex= 1, andy is linear on the closures a#-simplexes.
Chooser’ such that ifp is a simplex of#? with ¢(po) = (0,1), then
e('p) = % fn’, n is a polyhedral equivalence carryiny (2", n)l
onto|N» (2", 1) = ¢~ ([0, %]). Actually f,, ,, is isotopic to the identity,
but we will need only that it is a polyhedral equivalence. Egl(%) =
%'. As %' is a neighbourhood ap~([0, 3]); we can find ay > 3
such thaty=3([0,y]) ¢ %’. Sincef, , is simplicial with reference to
d(Z,n) andd(Z,n’) andQ is refinement ofd(<7, ), f,, carriesQ
onto a refinement od(<2, 7’). Let us call this’, similarly f,; ,(%) by
%’ -1%’| = X. Let the centering of’ induced fromd be&’. We have,

NS ) = N (271 = 970, 3]

and
fr a(INQ(#,0)]) = INg (#”, 6')I.
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123 Now choose another centeridgof @ as follows:

Let £, (0 < £ < 3) be such that if7 is a vertex ofQ’ not in X, then
¢(v) > L -6, is chosen so that i~ € Q has vertices in and out of,
theng(h10) = L. Then clearlyiNg (%, 61)| = ¢1([0, £]). By EZ32,
there is an isotopy of P, leaving X and complement of1([0, y])
fixed, with hy taking ¢~([0, %]) onto ¢~([0, £]). By EZ3 there is an
isotopyh’ leavingX and complement a5~%([0, %]) fixed, with h’ taking
#7H(0, £]) = INg/(#",61)] ontoNg (2", 0)I.

Let f,,, be the isotopy oP in itself given by f,, ,(p,t) = (f, ,(p),
t)pP. Theng = ﬂljiioh’oho f,r., is the required isotopy. Firgh = f,, 10
h ohyo f, , carriesN ontoN’. Secondly sinc® -7’ c P—¢7 ([0, %])
andP - %’ c P - ¢7([0,%]), handh are fixed onP — %’. They are
also fixed onX. As f,, , carriesX onto X, % onto7’g also fixesX and
P-%. O

Corollary 6.2.6. Let X be a subpolyhedron of a polyhedron P. Eét
and &7, be two simplicial presentation of P, containing full sulgee-
tations 27 and 2> respectively with.21| = |2%| = X. Let#; and 8, be
centering of#?1 and #,, and N = [N, (21, 61)l, N2 = [N, (22, 62),
and% a neighbourhood of NU N in P. Then there is an isotopy of P
leaving X and P- % fixed and taking Nonto No.

Proof. Take a common subdivisiof of d(#21, 61) andd(%,, 6,) and 124
applyl[6.Zb twice. m|

6.3 Definition of “Regular Neighbourhoods”

Let X be a subpolyhedron of a polyhedrén

Definition 6.3.1.A subpolyhedronN is said to be regular neighbour-
hood of X in P if there is a polyhedral equivalendeof P on itself,
leaving X fixed, such thah(N) is a second derived neighbourhoodXof

More preciselyN is a regular neighbourhood &fif and only if

(i) there is a simplicial presentatio’ of P with a full subpresenta-
tion 2" coveringX and a centering of &7; and
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(i) a polyhedral equivalencé of P fixed on X such thath(N) =
INo (2, ).

Regular neighbourhoods do exist andNifis a regular neighbour-
hood ofX in P, thenN is a neighbourhood of in P.

Proposition 6.3.2. If N; and N> are two regular neighbourhoods of X
in P and% a neighbourhood of NJN, in P, then there exists in isotopy
h of P taking N onto N> and leaving X and P- % fixed.

Proof. Let &%, Zi, ni, hi,i = 1,2, be such that
hilN& (Zi,ni)l = N, i = 1,2.

Let Q; be a subdivision ofl(£?1, 1) such thath; is simplicial with
reference t@,, and let%; be the subpresentation @f coveringX. Let
01 be a centering of;.

h1|Ng, (%41, 61)| = INMmQu (%4, h161)| = N}

say [Note thah1 is fixed onX].

By B2, there is an isotopf, fixed onX andP — h;*(%) with f;
tak|ng|(Nj1(%1, n1)l onto|Ng, (%1, 61)!. Thenh; fh;* is an isotopy oP
fixed onX andP-% and hlfh Hy = hy f1hy 1 takele ontoN; (where
hy is the isotopy ofP in itself given byhl(p t) = (hi(p), t)). Workmg
S|m|IarIy with 22,, we obtainf’ with h, f/ h 1 fixed onX andP-% and
(h2f"h5Y)1 = hpf/h;t taking N, onto N, Now N; andN} are genuine
second derived nelghbourhoods e@rds a nelghbourhood dfi; UNJ.
Hence by[6.216 there is an isotogyof P fixed onX andP — %, with
a1(N7) = No.

(h2f hs l) 1g(hy fh;?) is the required isotopy. O

Proposition 6.3.3.If f : P —» P’ is a polyhedral equivalence and N a
regular neighbourhood of X in P, ther{N) is a regular neighbourhood
of f(X)in P".

Proof. Let &2, &2’ be a simplicial presentations & and P’ with ref-
erence to whichf is simplicial,  be a centering of”?, f(n) = n’ the
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induced centering o¥?’. We can assume tha?, &’ contain full sub-
presentations?”, 2" coveringX and X’; (by going to subdivisions if
necessary).f(INo(Z", 1)) = INe(Z”,7)|. By definition, there is a
polyhedral equivalence of P fixed onX such thatp(N) = [N (Z",n)|. 126
Let p’ be the polyhedral equivalence Bf given by f o po =1, Then
(fopo fHINY) = (f o p)(N) = f(IN2(2",n)l) = INo(2”,7)l, and

if X e f(X), f7X(x) € X, thereforef o po f~1(x) = f o p(f (X)) =
fof(x)=x. o

Notation 6.3.4.I1f A is a subset of a polyhedra®, we will denote by
intpN andbdprN the interior and the boundary bfin the (unique) topol-
ogy of P.

Ex. 6.3.6.1f N is a regular neighbourhood &f in P, andB = bdpN,
thenX c N - B.

Ex. 6.3.7.Let X ¢ N c Q c P be polyhedra, wittN c intpQ. Then
N is a regular neighbourhood of in Q if and only if N is a regular
neighbourhood oK in P.

Ex. 6.3.8.Let X c P be polyhedra. IfA is any subpolyhedron d?, let
A’ denote the polyhedroA—intpX. ThenN is a regular neighbourhood
of Xin P if and only if N” is a regular neighbourhood &f in P’.

Ex. 6.3.9.Let A be any polyhedron, and the standard 1-cell. Let
0 < a < B < vy < 1be three numbers. TheA,x [0, L] is a regular
neighbourhood oA in Ax |, andA x [ £, y] is a regular neighbourhood
of AXBinAxI.

6.3.10 Notation and proposition

If & is any simplicial presentation angd any set of vertices of
&, we denote by?y the maximal subpresentation g whose set of
vertices is}, - Py if full in &2. We writed»(}) or 6(3) (when & is
understood) fou{|év|lv € > }. This is of course with reference to somez7
centeringy of . §»(Y) is a regular neighbourhodd?y|in |Z|. If 3
is a set consisting of single vertexxwe have the some what confusing
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situations » ({X}) = |6{x}|, wherex denotes the 0-simplex with vertex
In this case we will writgd 5 x| or |6X| for 6 »({x}).

Let 4" be a subpresentation of a simplicial presentationahd a
centering of#. Let &2’ = d(£,n) and_#" = d(./",n) (still calling
nl- asn). If 3 is the set of vertices of?’ consisting of the centers of
elements of /4, thenﬁ”’Z =" =d(A,n). A isfullin &’. Given a
centering of%?’ = d(4, n), we define

¢" =16(nC)|, forany Ce &

and /"™ = 64(>) = U{C*IC € #} is a regular neighbourhood pf|.

We use the same notation(*) even when 4" is not subpresentation,
but a subset of”. These are used in the last part of the chapter. As
the particular centerings are not so important, we ignoeentfrom the
terminology whenever possible.

6.4 Collaring

To study regular neighbourhoods in more detail we need a &ts f
about collarings. This section is devoted to proving these.

Definition 6.4.1.Let A be a subpolyhedron of a polyhedrBnA is said
128 to becollaredin P, if there is a polyhedral embedditngof A x [0, 1] in
P, such that

() h(a 0)=cforallace A

(i) the image ofhis a neighbourhood oA in P. And the image oh
is said to be a&ollar of A.

Definition 6.4.2.Let N be a subpolyhedron of a polyhedréhand let
B = BdpN. N is said to bebicollaredin P if and only if

(i) Bis collared inN
(i) Bis collared inP — N.

Definition 6.4.2. Clearly this is equivalent to saying that there is a poly-
hedral embedding of B x [-1, +1] in P such that
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(i) h(b,0)=b,beB
(i) h(Bx (0,+1]) c P— N
(i) h(Bx[-1,0]) c N
(iv) the image oh is a neighbourhood d8 in P.

Proposition 6.4.3.If N is a regular neighbourhood of X in P, then N is
bicollared in P.

Proof. It is enough to prove this for some convenient regular neigh-
bourhood ofX. Let &2 be a simplicial presentation & containing a
full subpresentationZ” coveringX and lety : P — [0, 1] be the usual
map. We takeN to bep1([0, 3]) clearly BdeN = ¢~(3). Let us denote
this by B. We can now show that1([1, 3]) is polyhedrally equivalent
to B x [-1, +1] in the following way:

B has a regular presentaticd consisting of all non empty setsn 129
go_l(%) foro e &.

Likewise ¢ 1([4, %]) has a polyhedral presentati@hconsisting of
all non-empty sets of the following sorts:

1

-1
N —
rneZ)
11

-1

N [ —
e G3)

1

on 90_1(§)

13
Ne Yz, =
cNe (5 4)
3
o-ﬂgo_l(z) for ce&

7 = {{-1},(-1,0),{0}, (O, +1), {+1}} is regular presentation of-[L,
+1]. There is an obvious combinatorial isomorphism betw@eand
% x ¢, which determines, is a appropriate centerings, a polytedr
equivalence betwee x [-1, +1] andy~([3, 3]) c P.

This shows thaN is bicollared inP. O
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Ex. 6.4.4.If Ais collared inP, then any regular neighbourhood Afin
P is a collar ofA.
[Hint: Usel6.3¥ and6.3.9].

Thus if N is a regular neighbourhood &f in P andB = BdkN, a
regular neighbourhood @ in P — N is a collar ofB.

Ex. 6.4.5.1f N1 is a regular neighbourhood &fin P andN, is a regular
neighbourhood oN; in P, thenN, — N1 = N, — Intp N, is collar of
B; = BdpN;.

[Hint: Use[6.38 an@6.414].

Ex. 6.4.6.If Ny is a regular neighbourhood #fin P, andN is a regular
neighbourhood oN;j in P, thenN, is a regular neighbourhood &f in
P.

Ex. 6.4.7. (i) If Ny andN, are two regular neighbourhoods Xfn P
with Ny c Intp N, thenN, — N is collar overB; = BdpN;.

(i) N is a regular neighbourhood bf;.

[Hint: Take two regular neighbourhoods),, N; of X, such that
N7 — N; is a collar and try to pushl; ontoN; andN; ontoN;].

The following remark will be useful later:

Ex. 6.4.8.Let N be bicollared inP andN’ be a regular neighbourhood
of N in P. Then there is an itopoty ¢t takingN ontoN’. If X c Intp N,
this isotopy can be chosen so as toXix

Definition 6.4.9.A pair (B, C) of polyhedra withB > C, is said to be
acone pairif there is a polyhedral equivalence Bfonto a cone ort,
which mapsC ontoC.

Clearly in such a case we can assume that the m#&pisrthe iden-
tity. And if (B, C) is a cone pairC is collared inB.

Definition 6.4.10.Let A c P be polyhedra, andd’ a point of A. Then a
pair (Lp, La) is said to be dink of ain (P, A) if
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(I) LacLp
(i) Laisalinkofain A 131
(i) Lpisalink ofain P.

If (L, L)) is another link ofa in (P, A), then the standard mistake
Lp — L takesLa onto L), and therefore there is a polyhedral equiva-
lenceLp — Lp takingLa — La. We shall briefly term this an equiva-
lence of pairs(p, La) 5 (Lp, La). So that, upto this equivalence, the
link of ain (P, A) is unique.

Definition 6.4.11.Let A c P be polyhedra A is said to bdocally col-
laredin P if the link of ain (P, A) is a cone pair for every poirt e A.

Clearly A x 0 is locally collared inA x [0, 1], and therefore ifA
is collared inP, it is locally collared. We will show presently that the
converse is also true.

Definition 6.4.12.Let B be a subpolyhedron &% x [0, 1]. Bis said to
becross sectiorif the projectionA x [0, 1] — A, when restricted t® is
1-1 and onto and so is a polyhedral equivaleBce A.

Proposition 6.4.13. Let B be a cross-section of A[0, 1] contained in
A x (0,1). Then there is a polyhedral equivalence: A x [0,1] —

A x [0, 1], leaving Ax 0 and Ax 1 pointwise fixed, and taking B onto
Ax % and such that ax [0,1]) = ax [0, 1] for alla € A.

Remark . There is an obvious homeomorphism with these properties,
but it is not polyhedral.

Proof. Let p : Ax [0,1] — A be the first projection. Triangulate tha32
polyhedral equivalencgB : B — A. Let & anda be the simplicial
presentations oB andA.

-folod) 2 ool

is a simplicial presentation of [@]. Consider the centeringof a x ¢
given byn(o x 1) = (barycenter otr, barycenter ot),c € a, 7€ ¢7.
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We will define another regular presentatighof A x | as follows:
For eachr € a, p~1(c) is the union of the following five cells:

ox0,ptc)nB, ox1
/lO'spO';

whereA,, is the region betweem x 0 andp(c) N B andp,, is the region
betweenp~(c) N Bando x 1. (Note thatp~(c) N B € ).

We take% to be the set of all these cells asvaries overn. Choose
a centering of ¥, such that the first co-ordinate of each of the five cells
above is the barycenter of

ox1

Po

o x0

Now there is an obvious combinatorial isomorphigi= a x ¢ ;
and if we choose the centerings described we obitairA x | — A x

133 | which is simplicial relative tal(%’,6) andd(a x _#,7), and has the
desired properties. m|
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6.4.13 |In this situation, define
Ag={(at)|aeAtel,FbeB,b=(a9,t <5

i.e. this is all the stff of the left of B. Thenh takesig ontoAx [0, 3], B
onto A x % In particularB is collared inig.

6.4.14 “Spindle Maps”. LetL c A, with the cone o and vertex &
contained inA. Call the coneS. SupposeS — L is open inA (This
is the case when a is a vertex of a simplicial presentatioh A, and
L = |Lk(a, a)| andS = |S1(a, a)|.

LetB = | — | be an imbedding witi#(1) = 1. In this situation we
define the Spindle map.

mB,L,a) i Ax 1l - Ax|

thus: onL = [ax I], it is the join of the identity map ok with the map
(at) — (a,B(t)) ofax |. Onthe rest oA x | it is the identity map.

A spindle mapm s an embedding, and commutes with the projec-
tion onA. If Bis a cross section &k x | which does not interseé x 1,
thenm(B) has these properties also.

Proposition 6.4.17.Let Ac P be polyhedra. If A is locally collared in
P, then A is collared in P.

Proof. In P x [0, 1], consider the subpolyhedrédp= Px0U Ax [0, 1].
We identify P with P x 0 c Q. Let &2 be a simplicial presentation &,
in which a subpresentatiancoversA. 134

Consider a vertexa of a; let Ly andLp denoteLk(a, a)] and|Lk(a,
). Then Lp,Lp) is a link of ain (P, A) and there is a polyhedral
equivalencey : Lp — La = v for someyv, taking L onto La. We can
makey identity onL by composing with {|La)~? = id,. And so we
supposey/La is identity.

We can suppose thatis so situated (for example in a larger vector
space) that.a = vandLa = (a, 1) intersect only inLa. Thus we have
via y and the identity orLa * (a, 1), a polyhedral equivalence o =
Lp U La = (a, 1) with La « E whereE = {v, (a, 1)}, which is identity on
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Lax(a,1). NowLq+ais astar ofa’ in Q, and via this p.e. is polyhedrally
equivalent td_ = E * a. We can find a polyhedral equivalengef E = a
(which is equivalent to a closed 1-cell) leavingand @, 1) fixed and
taking @, 0) to (a, 2). Such a obviously takesx [0, 1] ontoa x [3, 1].

Take the join of3 and the identity mafh., this gives a polyhedral
equivalence ot g * a which is the identity orLg. Hence this can be
extended to a polyhedral equivalence@by identity outsidelq * a.
Let us call this equivalence @, B; - Ba(Ax 1) c Ax |, andBaJAx | is
a spindle map.

Now take the compositioh in any order of all suckB,, with ‘@
running over all the vertices af. This mapsA = A x 0 into a cross
sectionh(A) = B of A x [0, 1] which does not intersed& x 1 or A x 0.
Finally h(P) nAx | = AB.

B is collared inAB, and so inh(P). Then, takingh™ we see that\
is collared inP. m]

Corollary 6.4.16. If M is a P.L. Manifold with boundary M, theéM is
collared in M.

Now, an application of the corollary:

Proposition 6.4.17.1f h is an isotopy 06M, then h extends to an isotopy
H of M.
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Proof. LetB : I xI — | be the map given bg(s, t) = Max(t—s, 0). This
is polyhedral, e.g. the diagram shows that triangulatiovsthe images
of the vertices.

B(s0) = 0,8(L,t) = 0,3(0,t) = t. DefineH = (M x1)x1 —
(OM x 1) x 1 by H((x, 9),t) = ((hgs(X), ), t). This is polyhedral.

H((X’ S)’ O) = ((hﬁ(S,O)(X)’ S)’ O) = ((X’ S)’ O)’
sincehp = Id. HenceHg = Id of 0M x I.
H((x, 0).t) = ((Ns(0,0(X), 0). 1) = ((he(x), 0), 1).

ThusH extends the isotop§M x 0 given byh (identifying 9M and
oM x 0). And 136

H((X’ 1)’ t) = ((hﬁ(l,t)(x)v l)’ t)
=((x,1),t) since B(1,t) =0.

HenceH|oM x 1 is identity. Hence the isotoply of dM extends
to an isotopyH of any collar so that at the upper end of the collar it is
identity again, and therefore it can be extended inside.shrextends
to an isotopy ofM. O
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6.5 Absolute Regular Neighbourhoods and some
Newmanish Theorems

Definition 6.5.1.A pair of a polyhedra R, A) is said to be ambsolute
regular neighbourhooaf a polyhedronX, if

() XcP-A

(i) PxO0is aregular neighbourhood 8fx 0inPx0UAXx[0,1] c
Px[0,1].

HenceA is collared inP.

Probably, it will be more natural to consid®; P andA in an am-
bient polyhedronM in which P is a neighbourhood oK as in links
and stars. But, after the definition of regular neighboudhaabsolute
regular neighbourhood is just a convenient name to use ire gdoky
situations.

Ex. 6.5.2.If (P,A) is an absolute regular neighbourhood>ofand if
h: P — P is a polyhedral equivalence, theR’(h A) is an absolute
regular neighbourhood df X.

Ex. 6.5.3.If N is a regular neighbourhood of in P, andB = BdpN,
then (\, B) is an absolute regular neighbourhoodXof

Ex. 6.5.4.Let P c Q, and suppose thaP(A) is an absolute regular
neighbourhood oK, andP — A is open inQ, andA is locally collared
in Q— (P - A). ThenP is regular neighbourhood &€ in Q.

Ex. 6.5.5.Let C(A) be the cone o\ with vertexv. Then C(A), A) is
an absolute regular neighbourhoodvof

In particular if D is ann-cell, (D, dD) is an absolute regular neigh-
bourhood of any poink € D — D.

Theorem 6.5.6.1f D is an n-cell, M a PL-manifold, O Int M, then D
is a regular neighbourhood of anyeD — gD in M.
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Corollary 6.5.7. If D is an n-cell in an n-sphere S, theéh— D is an
n-cell.

Proof of the theorem: The proof of the theorem is by induction on the
dimension ofM; we assume the theorem as well as the corollary for
n-1.

(i) First we must show thab — dD is open inM. If we look at the
links, this would follow if we know that a polyhedral imbeddj
of an (h— 1)-sphe re in ann(— 1)-sphere is necessarily onto. And
this can be easily seen by looking at the links again and tinmhuc
(sedZM in particuldr 24114 ahd 4.4.17(a)).

(i) If we know thatdD is collared inM — int D (it is collared inD),
we are through bly6.3.4. For this, it is enough to show #ais
locally collared inM —int D. Consider a link o&in M, sayS"2,
such that a link of& in D is an fi — 1)-cell D™t ¢ SI-1, with 138
D2-1noD = aDYL. Itis clearly possible to choose such links (see
EZTT(b)). Now, alink of& in M—int D is S-1—(D2-1-oD71).
As in (i) DI - 9D is open inSY~! and therefore the link
of ain M —intD is S-1 — D2-1. But by the corollary to the
theorem in therf{ — 1)-case, this is am(- 1)-cell, sayA"™* and
it meetsD in 9DI-1 = 9A™1. And (A"1, A1) is equivalent to
(C(OA™ 1), A1), ThereforedD is locally collared inM — int D
and we are through.

Proof of the corollary assuming the theorem:Represeng", a stan-
dardn-sphere as a suspension®t1, a standardr(— 1)-sphere, and
observe that the lower hemisphere (§ay is a regular neighbourhood
of the south pole, sag. Let f be a polyhedral equivalence 8fto S"
taking a pointx € D — gD to the south poles. By the theorenD is a
regular neighbourhood of, thereforef (D) is a regular neighbourhood
of thesin S". By[6.3.2 there is a polyhedral equivaleng®f S" such
thatp(Ds) = f(D). Thereforef (S — D) = f(S) — f(D) = S"— p(Ds) =
p(S" — p(Ds) = p(S"—Dg) = p(Dy), whereD,, denotes the upper
hemisphere. Therefonrg™: - f(S - D) = D, or S — D is an-cell.
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Ex. 6.5.8. Corollary.If M is aPL n-manifold andD1, D, are twon-
cells contained in the interior of the same componentiotthen there
is an isotopyh of the identity map oM, such thah(D1) = D».

We usually express this by saying that “any twoells in the interior
of the same component M are equivalent” or that they are “equivalent
by an isotopy ofM”.

If M is aPL n-manifold, M its boundary, then by 6.3.8, any two
(n—1)-cells in the same component&fl are equivalent by an isotopy
of M. Since this is actually an isotopy of the identity,[by 6.2vi&’ can
extend it toM. Thus

Proposition 6.5.9. Any two(n — 1)-cells in the same componentdil
are equivalent by an isotopy of M.

This immediately gives

Ex. 6.5.10.If D is ann-cell andA an ( — 1)-cell in 9D, then D, A)

is a cone pair (That is, there is a polyhedral equivalencddoA} and
(C(A), A). And we have seen such a polyhedral equivalence can be as-
sumed to be identity on).

This can also be formulated as:

Ex. 6.5.1G If A; is an 1 — 1)-cell in the boundary oD;, ann-cell,
i = 1,2, any polyhedral equivalency — A, can be extended to a
polyhedral equivalencB; — D».

Also from[G6.5.9, it is easy to deduceAfis any o — 1)-cell inoM,
then there is at least omecell D in M such thatD N M = A c dD.
From this follows the useful proposition:

Ex. 6.5.11If M is aPL nmanifold andD an n-cell with M N D =
OM N adD = an [ - 1)-cell, thenM U D is polyhedrally equivalent to
M. Moreover, the polyhedral equivalence can be chosen todyeiig
outside any given neighbourhood EfuU D in M.

The methods of the proof of the theorEm8.5.6, can be usedte pr
the following two propositions, which somewhat clarify thature of
regular neighbourhoods in manifolds:
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Ex. 6.5.12.Let M be aPL-manifold,dM its boundary (possiblg), and
N a regular neighbourhood &fin M. Then

(@) N is a PL-manifold with (non-empty) boundary unlessis a
union of components df1.

(b) If Xc M -0M, thenN c M — dM, the interior ofM.

(c) f XN oM = 0, NndM is a regular neighbourhood &fn oM in
oM.

(d) Incase (c)BduN is an fi—1)-manifold, meetingM in an ((—2)-
manifolddN’, whereN’ = N N oM.

[Note that infsN andbdyyN denote the interior and boundary Mf
in the topology ofM. On the otherhand iN is a PL-manifold int N
andoN denotes the sets of points Mfwhose links are spheres and cells
respectively].

Hint: Use[4.4.B.

Ex. 6.5.13.If N is a regular neighbourhood &f in M, a PL-manifold

with X c int M, andN’ is polyhedrally equivalent tt and located in
the interior of aPL-manifold M, of the same dimension &8, thenN’ is

a regular neighbourhood of in M, whereX’ is the image o under
the polyhedral equivalendd — N’.

Ex. 6.5.14 A'is any polyhedron, antithe standard 1-celx1,Ax 1) 141
is an absolute regular neighbourhood/dk 0. If 0 < £ < 1, then
(Ax1,Ax{0,1}) is an absolute regular neighbourhoodfok L.

Ex. 6.5.15.The union of twon-manifolds intersecting in am(- 1)
submanifold of their boundaries is armanifold.

6.6 Collapsing

Definition 6.6.1.Let &2 be a regular presentatioi free edgeof &7 is
someE € &2 such that there exists one and only éne & with E < A.
We may termA the attaching membranef the free edgde. It is clear
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that A is not in the boundary of any other element#f, for if A < B,
thenE < B. Itis easily proved that dilA = 1+ dimE.

The set# — {E, A} is again a regular presentation, and is said to be
obtained from#” by anelementary collapsat the free edgé&.

Definition 6.6.2.We say that a polyhedral presentatiof collapses
(combinatorially to a polyhedral presentatioR, and write &2 \, Q,
if there exists a finite sequence of presentations

Pp,.... P with Z=2 and H=Q

and cellsE,, ..., E1, Ej € & s.t. & is obtained from#?;_; be an
elementary collapse &;_;.

Proposition 6.6.3.If Q is obtained fromZ? by an elementary collapse at
E; and if 22’ is obtained fromZ? by bisecting a cell C by a bisection of
spacegL; H+, H-) and ifQ c &’ is the subpresentation witQ'| = |Q|,
thenZ’ \, Q. [Remark: Recall that, we have been always dealing with
Euclidean polyhedra].

Proof. If the bisection is trivial there is nothing to prove, so sape
that the bisection is non trivial. Then there are three cases

Case (i)C is neitherE nor A. In this caseE is a free edge 082’ with
attaching membrand, and@’ = &’ — {E, A}; thus@’ is obtained from
2’ by an elementary collapse.

Case (ii)C = E. DefineE; =H+nNE,E; =H-nE,F =LNE. Then
we have

and no other cells of?’ are greater thak, E;, E; or A



6.6. Collapsing 117

ThuskE; is a free edge of?” with attaching membrang; F is a free
edge of#’ — {E;, A} with attaching membrang,. The result of these
two elementary collapses @ = Q’.

Case (ii)C = A 143
DefineA1 = H+nNA, Ao = H-nNA, B=LnNnA NowdA; UiA

containsdA, and therefore eith&rA; or dA; intersectsE; say,0A1NE #

0. ThenZ?’ being regular, we must hae < A;; then for dimensional

reasons, dink = dim B, we cannot hav& < B henceE c H+; and so

itis impossible to hav& < Ay. In summaryE < A; > B < A;.

E E

A Ay
B

Ay
> = =0 =

ThusE is a free face of2?” with attaching membran&;; Bis a free
face of 22’ — {E, A1} with attaching membrand,. The result of these
two elementary collapses . O

Proposition 6.6.4. If &2 \, Q, and &’ is obtained from by a finite
sequence of bisections of cells, a@{ is the subpresentation of?’
defined by@'| = |Q|; then &’ \, @'.
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Proof. The proof is by induction, first, on the number of collapses in
P\, Q, and second, on the number of bisections involved. The induc
tive step i$6.613. o

Definition 6.6.5.We say that a polyhedroR collapses (geometrically)
to a subpolyhedron Qf there is a regular presentatia® of P with a
subpresentatio® coveringQ, such that?” collapses combinatorially
to Q. We writeP \, Q.

144 This notion is polyhedrally invariant:

Proposition 6.6.6. If P \, Q, anda : P — X is a polyhedral equiva-
lence, then X\, a(Q).

L «

Proof. There are regular presentatiosd, Q of P andQ, with &7 \, Q
combinatorially, and simplicial presentatiors, 2" of P andX with £
simplicial relative to.# and Z". There is a regular presentaticA’ of
P refining & and.”, and obtained fron®? (also from.# but we do not
need it in this proposition) by a finite sequence of bisedtidtience iR’
is the subpresentation oP’ coveringQ, then2?’ \, @', byl[6.6.4. Since
L is one-to-one and linear on each elementZf, the setL(&?’) =
{L(C) | C e &2’} is aregular presentation & which is combinatorially
isomorphic to2?’; and £(Q’) is subpresentation covering(Q), which
is combinatorially isomorphic t@2’. Threrefore£(£?) \, L(Q') or

XN (Q). O
Proposition 6.6.7.1f Py N\, P2, and B Y\, P3, then R Y\ P».

Proof. Let 221, &2, be presentation d?;, P, with &2 \, &», and 3,
P, be presentations d®,, P3 with 923 \, &2;. By 1.10.6 there is a
regular refinemen® of &2, U &2, U &3 U &4, and subpresentationdy,
Qo, Q3, Q4 of with |Zj| = |Qj|, @ obtained from<Z?; by a sequence of
bisections. Clearl®R; = Q3 and by[l6.64Q1 \, @2, andQ3 \, Q4 and
thereforeP; N\, P>. O

Proposition 6.6.8.1f N is a regular neighbourhood of X in P, then'\
X.
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Proof. By virtue of[6.6.6 and the definition of regular neighbourtioid 145
is enough to look at any particulél. Let &2 be a simplicial presentation
of P with a full subpresentatiori?” coveringX; and lety : P — [0, 1]
be the usual map. Take = ¢~([0, 3]).

Let 3 denote all the simplexes @P having vertices both it?” and
(& - Z). We proveN \ X by induction on the number of elements of
>.If Y, =0, thenN = X, and there is nothing to do. Hence we can start
the induction.

Let

1
N =2 Uleng 0oy )
1,1
Ul ng ) loe )

Then .4 is a regular presentation . If o is an element of of
maximal dimensiong- N go_l(%) is a free edge of#” with attaching
membraner N ¢~ 2((0, %)). (Note thaio is aprincipal simplex of £ i.e.
not the face of any other simplex). After doing the elementalapse
we are left with.#”’. Now & — {0} = &2’ is a regular presentation
containing2”, and the corresponding’ = >, —{c’}. Hence inductively
NN 2. And so,. N\, 2. O

Ex. 6.6.9.Let N’ be a neighbourhood of in P, (all polyhedra). If
N’ N\, X, then there is a regular neighbourhddaf X in P, N c Intp N’
such thatN’ ~\ N.

6.7 Homogeneous Collapsing

Let & be a regular presentation, with A € &, E < Aand dimA =
dimE + 1.

Recall the definition oft »E. This is defined, relative to some cent45
teringn of &, to be the full subpresentation df? whose vertices are,
{n€ | E <Ce £}

Definition 6.7.1.Let E, A, &Z; be as above anglbe a centering 0f2.
(E, A) is said to benhomogenouin &, if there is a polyhedroiX and a
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polyhedral equivalencé : |[1»E| — X x {u, w} a suspension ok, such
that f (nA) = w.

It is easily seen that if this is true for one centering&f then it is
true for any other centering a¥; hence “E, A) is homogeneous i#?”
is well defined.

Definition 6.7.2.Let 2" c .4 be subpresentations ¢P. We say that
A collapses taZ” homogeneously (combinatorially) i#?, if there is
a finite sequence of subpresentations’f

Moo Sk
and pairs of cellsEi, A7), ..., (Ex-1, A1), Ei, A < 4{ such that
Q) M=N, M=X

(2) #,1 is obtained from# by an elementary collapse Bt, a free
edge of 4 with attaching membrang;, fori = 1,...,k— 1 and

(3) (E;, A)) is homogeneous i?, fori=1,...,k-1.

Proposition 6.7.3. If &2’ is obtained from<? by bisecting a cell C by

a bisection of spacé;H+,H-): and if 2" c .4/ c £, with £ ob-
tained from.4" by an elementary collapse at a free edge E with attach-
ing membrane A, wher, A) is homogeneous iw7; and if 47, 2"

are the subpresentations 6’ covering|.#| and|.2|; then 4" \, 2"’
homogeneously iB?’.

Proof. If the bisetion in trivial there is nothing to prove. If it isoh
trivial, there are three cases as in the proof of proposBié3.

Case 1:C is neitherE nor A. In this case the only problem is to show
that (E, A) is homogeneous i?’. Let us suppose that everything is
occuring in a vector spacé of dimn; and let dimE = k. Then there
is an orthogonal linear manifolil of dimension § — k), intersectinge

in a single pointy(E) = e, say. It is fairly easy to verify that in such a
situation ifE < D, thenD N M = 0.
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If we now choose centerings 6F and%?’ so that whenevddNM #
0, we have the center & belonging toM, then defining

Q={DNM|DNM=#0,D e £}
and@’ similarly with respect to#?’, we will have:

A7(E) = 4a(®
17 (E) = 10 (®.

andQ, @ are regular presentations|e?| N M. Hence bothi»(E)| and

|12 (E)| are links ofein |#2|n M, and hence polyhedrally equivalent (by
an approximation to the standard mistake); if we choose tecefh A

the same in both case, we get a polyhedral equivalence takingnA.
Finally, by hypothesi$l »(E)| is equivalent to a suspension wijA as a
pole; and s 22’ (E)| has the same property, artel @) is homogeneous

in &,

Case 2:.C = E; we defineE;, E, F as in the proof df6.613. We have ta47
show that E1, A) and §, E) are homogeneous it?’.

That E1, A) is homogeneous i#?’ follows from the facii4(E)| =
|12 (E1)| (with appropriate centerings) because &ny E; in &’ is an
element ofZ which is> E; and henceZ? being regular- E.

That (F, E») is homogeneous i?’, we see by the formula:

A (F) = 22 (E) = {nEa, nE3}

(calling the appropriate centering 6’ alson).

Case 3.C = A; we defineA, Ay, B as in the proof of 6.613. We have to
show that E, A;) and B, Ay) are homogenous.

There is a simplicial isomorphisib(E) ~ A4 (E) takingn(A) onto
n(A1). And as E, A) is homogeneous i’?, we have E, A;) is homo-
geneous inz?’.

That (B, Az) is homogeneous i?’ we see by a formula like that in
case 2:

Ag(B) = A2 (A) * {nA1, nAz}.
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Proposition 6.7.4.1f .4\, Z homogeneously it#?, and &’ is ob-
tained fromZ by a finite sequence of bisections of space, .2y 2™~
are the subpresentations 6f’ covering|#"| and|.Z"|, then /" \, 2"’
homogeneously iB?’.

This follows fron6.613, d5 6.6.4 frdm 616.3.

Definition 6.7.5.Let P be a polyhedron, and, N subpolyhedra oP. N
is said tocollapse homogeneously (geometrically) to X jrffhere are
regular presentatior?” c .4 c &2 coveringX, N andP respectively
such that 4" collapses homogeneously # combinatorially inZ.

We write N N, X homogeneouslin P. This definition is again
polyhedrally invariant:

Proposition 6.7.6. 1f N N\, X homogeneously in P, anfl: P - Qis a
polyhedral equivalence, thefi(N) — £(X) homogeneously in Q.
This follows fromi 6,714 d56.6.6 frdm 616.4.

Proposition 6.7.7.1f N is a regular neighbourhood of X in P, then\|
X homogeneously in P.

Proof. As in[66.8, we start with a simplicial presentatiod of P in
which a full subpresentatiot?”, coversX, and takeN = ¢~([0, %])
whereg : P — [0,1] is the usual map. By virtue ¢ 6.7.6, and the
definition of regular neighbourhood, it is enough to prowat thisN
X homogeneously.

Let .4+ be the regular presentation bf consisting of cells of the
form:

simplexes ofZ"

o N (O, %)), for oce 2 with (o) =(0,1)

on go_l(%), for oce 2 with ¢(o)=(0,1)
Define %’ to consist of

all simplexes of%",
all simplexes of%Z which have no vertices ir#".
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770, )
on go_l((%)) foroce 2 with (o) =(0,1)
e ()

&’ is a regular presentation & which refines#?, and has as subpre149
sentations/” and 2". .4 and 2" are the same as in propositibn 616.8,
and therefore we know that” N\, 2". Now, the claim is/” \, 2
homogeneously inZ?’. In otherwords, ifE = o N 1(3), A = o n

o (0, %)), whereo € & with ¢(o) = (0,1), we have to show that
(E, A) is homogeneous i¥?’. In fact denoting by the subpresenta-
tion of 2’ coveringy~1(3), we have

Ag(E) = 12(E) = {nA,nA’}, where

A =orne(G 1)

6.8 The Regular Neighbourhood Theorem

We have seen that M is a regular neighbourhood &fin P, then
(1) XcintpN
(2) Nis bicollared inP
(3) N\, X homogeneously i.

Conversely.

6.8.1 The Regular Neighbourhood Theorem
If X N Pare polyhedra such that

(1) X cintpN
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(2) N is bicollared inP
(3) N\, X homogeneously i 150

thenN is a regular neighbourhood &fin P.

The proof will start with some technicalities which expldie ho-
mogeneity of the collapsing (Th¥'s, P’s etc. occuring mean-while
should not be confused with th& P of the theorem).

Proposition 6.8.2. Let Y c X be polyhedra, and let P X « {v,w} a
suspension of X. Then a regular neighbourhood e%¥h P is a regular
neighbourhood of v in P. [In other words, a regular neighboood of a
subcone of a suspension is a regular neighbourhood of oreqgfdles].

Proof. Let C1(X) denoteX = v and lety : C1(X) — [0, 1] be the join
of the mapsX — 1 andv — 0. ForanyZ c X,C.(Z)for0< L < 1
will denote the set of pointf1 —t)v+tz|ze Z0<t< L}. If Zisa
subpolyhedrorC £(Z) = (Z = v) n ¢ 1([0, £]).

By 631, it is enough to prove the proposition for some ragul
neighbourhood oK = v. Hence, by a couple of maps, it is enough to
show thatCs/g(X) is a regular neighbourhood ﬁ)‘% (Y) in Cy(X). (Itis
clearly a regular neighbourhood wfn C;(X)).

Let 2" be a simplicial presentation of, containing a subpresenta-
tion % coveringY. We define a regular presentation@f(X) to consist
of:

v}, for ceZ
olvy for ce 2 -%

151
Then &7 has a subpresentatia® covering c %(Y), and for each
A e P - Qwith An Ci(Y) # 0, ¢(A) includes the interval L 1).

Choose a centeringof &2, so that for allA e #2—Q with ch%(Y) # 0,
o(nA) = 3.
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Thend(£2,n) has the property that if is a simplex with vertices
both indQ and indZ? — dQ, theny(r) contains % ;3;), anddQ is full in
d&?. Choose a centeringof d£? so that forr € d£? with vertices in
and out ofdQ, ¢(6r) = 3. Now N = [Ny (dQ, 6)| = ¢~([0, 5/8]); and
thuse ([0, 5/8]) is a regular neighbourhood of bomZL(Y) andv. 0O

Now, let P be a polyhedron and” a simplicial presentation d?.
Let Y, be any set of vertices of? andn a centering of#?. Recall the

definition of6 »(3) and 2y €310).

57()) =Vl Ve ) )

Py = {o € & all the vertices otro are in#}

Py isfullin & andé » () = IN» (5 )| is a regular neighbourhood of
|332| in P.

LetC(P) = Pxvbe a cone o andy : C(P) — [0, 1] be the join of
v — 0andP — 1. If L is a subpolyhedron d?; 0 < £ < 1,C,(L) will 152
mean [ * V) N ¢ ([0, £]) as before. ByL x [a,4],0<a <B < 1, we
shall meanl( = v) N ¢~ ([, A]). In particularC,(P) = ¢~([0, £]) and
P x [a,8] = ¢ Y([a,A]). The simplicial presentatior” = {{v}} of C(P)
will be denoted byC(£2).

Proposition 6.8.3. There is a centering of &) with respect to which
(1) locv = C1(P)
(2) 16c(2)(@)] = 162(a)l x [3, 1] for any vertexa of 2.

Proof. We take any centeringof &2, and extend it t&( ) by defining

n(o{v}) = %n(o-) + %V, for oe 2.
Then it is obvious thap is simplicial relative tad(C(4?), ) and the
triangulation of [Q1] with vertices{O, % 1}. From this it easily follows
The second assertion can be proved by a straight forwardymess
computation as follows:
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A typical simplex of§(a) is a face of simplex ofi(#2,n) of the
form O(nOa n,.. -ank)! Wlth a= no, n — i = 77(0'|)a {a} <01 <02
<o o € 2. Apointinno,...,n] X [%, 1] is uniquely determined by
to,...,t, £, such that; > 0, YKt = 1,3 < £ < 1, and the point is:

k
*) o> tim) + (1= a)v.
0

On the otherhand, a simplex 6f c (22)® is a face of simplex
determined by somébetween 0 andél, and vertices

1 +1V 1 +1V
770a-~-,77£’, 277[ 279277k 2a

with a = ng, nj = n(oi), (&} < o1 < 02... < ok, i € L. Atyp-
ical point in the closure of such a simplex is uniguely deiaed by

¢ k
ro,....fes Ses..., Sk, Wherer;, sj > 0 andy ri + 3, s; = 1. The point is
o ¢

¢ k.o 1 1
() ; g + 2[] i3 + 5V

Comparing cofficients in (*) and (**), we find that these points
coincide if:

1
m)azl—zzﬁq
fi

ti=—,i<?
a
t:r5+%Sg
a
1ls; .
tj:é;’J>£

B) ri=at,i<?
re=a(l+ x5t -1
§ = 2(1- o1+ 2,4 1)
Sj = 2atj, | > .
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[To be sure, we should have started in (**) with an indeffatient from
k. But it can be easily seen that, when determing whether timgpo
coincide, it is enough to consider (*) and (**)].

To show thatd« () (a)l C 16 (a)] x [%, 1], we need to check that if154
r's andss satisfy their conditions (being 0, and of sum 1), then the
solutions in (A) fora and thet's satisfy theirs § <a < 1landthd’s are
> 0 with sum 1). This is easy.

To show thatd »(a)| x [, 1] < |64(#)(a)l, we need to check i <
a < 1, and thet’'s are> 0 with sum 1, then there is sondgfor which
the solutions found in (B) satisfy the appropriate conditio That the
sum ofr's ands’s is one is clear; to make alt 0, we takef to be the
maximum of those integersnj for which

k

1+ >t 2 1/a

m

Since Ja < 2, andykt; = 1, there is such af; this choice oft
makes bothr’s ands's > 0. o

Remark. If 3] is a set of verticer of, we have as above,

seo(Y) = 65(3) %1511

Now let P = X« {u, w} be a suspension. We define tbaver hemi-
sphere Lof P to be X = u; it should be remarked that is a regular
neighbourhood ofi in P.

Proposition 6.8.4. With P, X, L as above there is a polyhedral equiva-
lence h: C(P) — C(P) with hlP = idp, such that

1 1
h({LX E,l E,l:|

Proof. We can draw a picture which is a “cross section” through any
particular pointxin X:

}UC%(P)): L x
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155
[The picture is actually the union of the two triangles\|, w] and
[% v, U] in C(P), which we have flattened out to put in a planar picture.
The vertically shaded part is the poritionlok [%, 1]in the cross section
and the horizontally shaded part is the par€efP) in the cross section.
We have to push the union of these two into the vertically etdgubr-
tion, and this uniformly over all cross sections].
From this picture we may see the followinG(P) is the union of

A:{Xx

%,1]}*{u,w}, and
1
B:{sz}*\] where J = v {u,w}.
1
And AmB:{XxE}*{u,W}.

Now J is just, polyhedrally, an interval, and so there is obvipusl
polyhedral equivalencé : J — J such that

f(W=u f(w)=w

f(1v+lw)—:—Lv+—u
2 27 2 27
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Such anf will take the part fi, V] U [v, v + 2w] onto [u, $u + 2v].
Letg: B — Bbe the join off onJ and identity orX x 3. Itis clear
thatg|/A n B is the identity map, and so by extending by identityAn
we get a polyhedral equivalence dayC(P) — C(P). 156
It should be pictorially evident thathas the desired propertieso

Putting all these together we get the proposition which wane
Proposition 6.8.5. Hypotheses:

(1) &2 is a simplicial presentation of P, (@) the cone over P with
vertex v, §&) = & = {{v}}, and}, a set of vertices af”.

(2) There is a polyhedron X and a polyhedral equivalencefh —
X {u,w} such that §#5|) = Y = u, for some Yc X.

(3) 10# )V and 6c(»)(2) are constructed with reference to some
centering?” of C(<?).

Conclusion: There is a polyhedral equivalenae: C(P) — C(P) such
thata|P = idp anda maps §c(»)(2)) U (6% (2)Vl onto Gc(z)(2))-

Proof. Let n be the centering of (<) described in proposition 6.8.3.
Let f = f,4 be the simplicial isomorphism ofi(C(2?),7) onto
d(C(2).m).

Leth; : C(P) —» C(X * {u,w}) be the join ofh: P — X * {u,w} and
the map vertex to vertex.

Now §»(3) is a regular neighbourhood ¢#”5| in P, and there-
forehf(65()) is a regular neighbourhodulf (| #5|) in X = {u, w}. But
f(1Zs) = |P5| - infact f maps everyZ?-simplex onto itself - and
h(|Zx[) = y=u. Thushf(6»(})) is a regular neighbourhood &f«uin 157
X {u, w}. Therefore by 6.81h f(52(3))) is a regular neighbourhood of
uin X = {u,w}. But so isX = u. Hence there is a polyhedral equivalence
B X« {u,w} — X = {u,w} such that

ﬁ(hf((sgﬂ(Z))) =X * U

LetB1 : C(X = {u,w}) —» C(X = {u,w}) be the join of and identity
map of the vertex of the cone.
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Now f is such thatf (5c(#) (X)) = f(62(2)) X [%, 1] and f(loc(»)
V) = C(P).
Sincep; andh; are radial extensions the same thing holds, i.e.

B f 6 (3 = Bih(10.5(3 ) x5, 1]
= T (3 ) x [5,1]
which is{X = u} x [, 1], and

Bihaf(l6c)M) = B1ha(C1(P))
= C% (X = {u, w}).

Applying[6.8.4, we get a polyhedral equivalence
v C(X={uw}) - C(X=*{uw}) with y|Xx{uw}=
identity and
v (X*u) x [:—ZL, 1ju C%(X * {u,w}))
= (X *u) x [:—ZL, 1].

The desired map is now,

a=ftohtoptoyopiohyof.

i

158 We will now write down two specific corollaries of propostil6.8.5,
which will immediately give the regular neighbourhood thexn. First
we recall the notation at the end of sectiof.3(6.13.10).

If &2 is regular presentation, given a centeringf &2 and a center-
ing of d(Z, n), we defined

C* =64z (C)|, forany C
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and /" = U{C*|C € .4}, for any subsets” of &. If 4" is a subpre-
sentation of#2, thend(./", ) (wheren|_4" is again denoted by) is full
in d(£,n). Writing 4" = d(./,n) 2’ = d(£,n), and}, as the set of
vertices of#?’ of the formnC, for C € 47, we see thatzz’Z = /" and
6 (3) = A, which is a regular neighbourhood [o§| in |£2].

Corollary 6.8.6. Let &2 be a regular presentation with a subpresen-
tation .4, E a free edge of#” with attaching membrane A such that
(E, A) is homogeneous i?. Then there is a polyhedral equivalence
h = |2 — | 2| which is identity outside dE * |1, E| and which takes
A onto (A —{E})*.

[Note: It is understood that there is a centerin@f &2, and a centering
of d(&, n)].

Proof. Look atS {5E, d2?); this is a presentation say’ of E » [ »E|.

Let Y, denote the set of vertices di” of the formyF for F < E and

nA. Then|@i| is the join of )E to nA. Since|1»E]| is equivalent to a
suspension (homogenity dE(A)) with A going to a pole, we see thatls9
OE * |12 E| is equivalent to a suspension Wlt@’z| going to a subcone.

And E * |1»E]| is a cone ovedE x |A1»E|. And consider the centering
of &’ coming from that otl(£2, ).

Thus we have the situation Bf6.B.5, and making the necessiary
stitutions if6.8.5, we get a polyhedral equivalenaf | 2’| = Ex|1»E|
taking |67, (nE)| U 0.2/ (¥) onto 65 (). 165 (nE)| is justE*. Now ob-
serve that the set of centres of elements/ofin &7’ is Y, U{nE}. (This
is where we use the fact thitis a free edge). Thereforg™ N |Z’| =
E*Uda (D) and (V" — {EDN* N |2’ = 64(3)). Soa takes the part of
(A7) in | 2’| onto the part of (¥ — {E})" in |#’|. « is identity on the
base of the cone, arl®* c |Z?’|. Therefore extending to an equiva-
lenceh of || by patching up with identity outsidg?’|, we see thah
takes.4* onto (# —{E})* and is identity outside?’| = Ex|1»E|. O

Corollary 6.8.7. In the same situation, there is a polyhedral equiva-
lence K : | 2| — |2] which is identity outsideé\ = |1 A|, which takes
(" —{E})*" onto (4 —{E, A})*.

[for this corollary we need only that E is a free edge of A, an A
the attaching membrane. Homogenity(Bf A) is not necessary].
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Proof. This time we call??’ = S{(nA,d&?), and} the set of vertices
nF, F < AandF # E. Then|9?’z| = 0A— E. 0Ais equivalent to a
suspension witdA — E as the lower hemisphere. HengA = |15 A is
equivalent to a suspension Wlt@’zl mapping onto a subcone. Applying

B.83, we get a polyhedral equivaleneeof A = |15A| on itself, which
is identity ondA = [1»A| and takesi» () U A* onto 6 »(3}). Since
E is a free edge and\ is principal in.4", 62 (}) is just the part of
(N —{E,A)"in Ax|15A|, ands (X)) U A" is the part of (4 — {E})*
in A% |1,A|. Extendinge’ to an equivalenc&’ of |.2| by patching up
with identity outsideA = |1»A|, sinceA* is contained i = |1,A] we
see thaty takes (/" — {E})* onto (/" — {E, A})* and is identity outside
Ax|A7A. O

Thus in the situation dfi’6.8.6, if we take the compositigh of
the equivalences given iy 6.B.6 dnd 8.8v7¢ h takes./* onto (/" —
{E, A}))*. Support ot c A« [15A|, support ofh c E = |1»E|, hence
i o hfixes, the polyhedroi(./" — {E, A})|. This at once gives,

Proposition 6.8.8.If .4~ N\, 2" homogeneously i, then there is a
polyhedral equivalence ¢f2|, which is identity orj.2"| and takes #"*
onto 2°*.

Corollary 6.8.9. If N N, X homogeneously in P, then any regular neigh-
bourhood of N in P is a regular neighbourhood of X in P.

Proof of the regular neighbourhood theoren[6.8.11.

By 689 any regular neighbourhood dd§/of N is a regular neigh-
bourhood ofX. SinceN is bicollared inP, there is a polyhedral equiva-
lenceh of P taking N ontoN’. SinceX c Intp N, h can be chosen to be
fixed onX (sed6.418). Therefor is a regular neighbourhood of.

6.9 Some applications and remarks

In this section we make a few observations about the predonsepts
in the context ofPL-manifolds
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6.9.1 Let M be aPL-manifold,dM its boundary,#? a regular presen-
tation of M. LetE, Ae &, E < Aand dimA = dmE + 1. (E,A) is
homogeneous i if and only if either bothE andA are indM or both
E andAare inM — M.

Proof. Letrn be a centering of?. LetE’ c E a simplex ofd(<2, i) of
dimension= dimE, andA’ = {nA}E’. Now the problem is equivalent
to: When is|LK(E’, d£?)| equivalent to a suspension wifh going to a
vertex? IfE andA are inM — M, so areE” andA’ and|LK(E’, d2?)|

is a sphere, hence it is possible.Bfand A are both indM, so areE’
andA’ and|Lk(E’, d£?)| is a cell, withnA contained in the boundary. So
again it is possible. IE is in dM andAisin M — M so areE’ and A’
and|Lk(E’, d2?)| is a cell withnA in the interior. Hence in this case it is
impossible. m]

Suppose now that” and 2™ are subpresentation gP and.4" \,
Z homogeneously irZ. In the sequence of (elementary) homoge-
neous of collapses from” to 27, if a collapseC; in the boundary
comes before a collap$& in the interior we can interchange them i.e.
if A1 N\ A N\C2 A1, then we can find#” such that#_; \,%
N \Ct 4,1 and the free edge and attaching membrang; @ndC;,
j = 1,2 are the same. Doing this a finite number of times we have

6.9.2 If N\, Xhomogeneously iM, thenN N\, XU(NNIM) \{ X. In 162
particular, this is true for regular neighbourhoods. Soesrangement
is possible for the usual elementary collapses also:

Ex. 6.9.3.SupposeZ \, @, combinatorially, and#y, ..., %, 1<i <

k are subpresentations such th#&t is obtained from<Z_; by an ele-
mentary collapse at the free edgge; with attaching membrang;_;
and ¥ = 1, Q = P Then we can find subpresentatiodg’,
P n Py, P = P, Py = Q, such that?] is obtained from#/ |
by an elementary collapse at the free edgje, with attaching mem-
braneA’ , and dimA’ > dim A’ ,. Moreover, except for order, the pairs
(E{, AY) are the same as the paii§;(A)).
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More briefly, we can rearrange the collapses in the order af no
increasing dimension.

Ex. 6.9.4.An n-cell collapses to anyn(— 1)-cell in its boundary. This
follows from[E5.10D.

Ex. 6.9.5.An n-cell is collapsible to any point in it.
We call polyhedrorcollapsibleif it collapses to a point.

Ex. 6.9.8. A collapsible polyhedron collapses to any point in it.
[Hint: By virtue of[6.9.3, it is enough to consider one dimiensl
collapsible presentations with the given point as a vertex]

6.9.6 If M is a collapsiblePL n-manifold, thenM is an-cell.

Sketch of the proof: M # 0, for if 9M = 0, there is no free edge to
start the collapsing. Next we can assume tatollapses to a point in
M — oM, either by[&.9bor by[6.9.4 and 65711. Now attach a collar
of 6M to M (to get PL-manifold M’) so that all the collapsing is in
the interior ofM’, hence homogeneous. Now all the conditions of the
regular neighbourhood theorem are satisfied. Hevicis the regular
neighbourhood of a print iM’, hence am-cell.

The following two remarks will be useful in the next chapter.

6.9.7 Letf :Kx D"k - M"be animbedding into in¥l, whereK is
aK-manifold andD"* an (- k)-cell. Thenf(K x D" K) can be shrunk
into any given neighbourhood d{K x €) in M, for a fixede € int D" K
by an isotopy which can be assumed to be fixed @t x €).

K x D%\, K x e (this follows, for example, frofi6.5.14 by induc-
tion). Itis easily seen that(K x D" K) is a neighbourhood of(k x €)
in M and is bicollared.

Proposition 6.9.8. Let M be a PL n-manifold, and N a P(n — 1)-
manifold indM, and M\, N. Then M is polyhedrally equivalent to
N x |I. Moreover the polyhedral equivalence:iM ~ N x I, can be so
chosen that fn) = (n = 0) for n € N.
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Proof. Such anN cannot be the whole afM. EitherdN # 0, or N
is a finite union of components &M (see[4.4.716). In any cad¢ is
bicollared indM. If N’ is regular neighbourhood &f in 9M, sinceN is
bicollared indM, N’ is polyhedrally equivalent tdl (6.4.8).

SinceM X\, N, there is a regular neighbourhood sayf N in M
such thatM \ A (sed6.619). LeAn dM = N’. ThenN’ is a regular
neighbourhood oN in M. It is clear thatA is polyhedrally equivalent 164
to N x |I. Now attachB andC, B a collar overdM — N’ andC a collar
overN to M such thaB N C = 0. Let the resulting manifold b#’.

Consider another colla€; c C, and the manifoldA U C; and
M U Cy. In M’, all the collapses fronM to A are in the interior and
henceM \, A homogeneously itM’, and the collapsing from N\, N
continues to be homogeneoushh ClearlyC; N\, N homogeneously
in M’. Thus bothA U C; andM U C; collapse homogeneously M’ to
N, both are neighbourhoods bfin M” and both are bicollared. Hence
there is an equivalenc®UC; ~ MUC;. ClearlyAuC; ~ Nx 1. Hence
MUC; =~ NxI, henceM ~ N x |.

To prove the last remark observe thatdf : N x| ~ Cy is an
equivalence such tha¥’(n,1) = n, for n € N, the equivalenceM =
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M UC; can be chosen such that it carries N to .£(n, 0) € C;. Finally
the equivalencéA U C; » M U C; can be assumed to be identity on
Cl. O

6.10 Conclusion

Now let us, recaptitulate briefly the programme for provihg tegular
neighbourhood theorem:

(A) We have a notion of equivalence of pairs

(P X)~ (P, X)

(B) We define a regular neighbourhood Xfin P to be any thing
equivalent by an auto-equivalence & X) to [N»(2")|, where
& is a simplicial presentation ¢ with a full subpresentatior®”
coveringX.

(C) We have the notions of the cone Bnsuspension oR, andP x I;
and hence the idea of local collaring, collaring and bicoig

(D) We can prove: We can prové x [0, %] is a regular neighbour-
hood ofP x 0 in P x [0, 1]. The lower half of the suspension Bf
is a regular neighbourhood of a pole. A locally collared spp
hedron is collared. Regular neighbourhood of a pole. A lgcal
collared subpolyhedron is collared. Regular neighbouwlkcare
bicollared.

(E) We have for regular presentations, the notion of coitapsand
of homogeneous; and we prove tizat\, X homogeneously i
if N is a regular neighbourhood fin P.

(F) Finally, we prove the converse, thaiNf\, X homogeneously in
P, then a regular neighbourhood Hfis a regular neighbourhood
of X. We pick up a particular regular neighbourhoodMfand
strink it down a bit at a time to a particular regular neighthmod
of X. In doing this, we need to have proved the theorem for a
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particular caseX’ is a pole of a suspensid?f andN’ is a subcone

of P’. An analysis of the proof shows that we need the result
for variousP’ of dimension less than that & Hence we could
have proved this by induction on dimension, although itispse
enough to prove in the special case by construction.

Now it should be remarked that precisely the same progranane c
be carried out in other contexts. In particular for pairs:

A pair (P, Q) is a polyhedronP with a subpolyhedrorQ; we say
(P1, Q1) € (P2, Q2) if P1 € P2, andQq = Q2NPy. If (P1, Q1) € (P2, Q2)
we define the boundary of the former in the latter to bd>(P1, Q1 N
bdp,P1).

Define an equivalenck : (P1, Q1) — (P2, Q) to be a polyhedral
equivalencer : P ~ P, mappingQ; onto Qs.

An admissible presentation oP,(Q) is a pair of regular presenta-
tionsQ c £ with |Z2| = P, |Q = Q. A free edge of an admissible
presentation £2,Q) is anE € &2, which is a free edge of? with at-
taching membrang, such that ifE € @, thenA € Q.

The programme can be carried out mechanically with the aisvio
definition of homogeneous collapsing.

Finally, we draw some consequences, by applyingltemanifolds.

Let A c B, whereAis aPL amanifold andB is a PL b-manifold.
We say B, A) is locally un-knottedif, for every x € A, if (Lg,La) is
polyhedrally equivalent tol(s = X, La) for someX. It is possible to 167
show thatX must be either a cell or a sphere of dimension a — 1;
and that ifA is connected, then either all th€s are cells, in which
caseA is locally un-knotted irdB or all X’s are spheres, in which case
0A=AnNJB.

It then occurs as in the case of a single manifold, that altthaps-
ing (in the pair sense) which is in the interior &, @A) is homogeneous,
and hence we can prove the following result:

Let D@ c AP, with (A, D) a locally un-knotted pair of the sort where
0D = DN AA. ThenifA N\, D\ point, the pair 4, D) is an absolute
regular neighbourhood of a point (relative @A(dD) and so {, D) is
polyhedrally equivalent to§ = D, D) whereS is a o—a— 1)-sphere, i.e.
(A, D) is un-knotted.
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[This is a key lemma for Zeeman'’s theorem, that(a) > 3 =
(A, D) is un-knotted. See Zemman “Seminar on combinatorial Fopol
ogy”, Chapter 1V, pp. 4-5].



Chapter 7

Regqular collapsing and
applications

7.1 Regular collapsing

168
Let.” be a simplicial presentation. We say that . is anouter edge

of .7, ifthere is aA € ¥, such that ifo- < p, p € .7, thenp < A, and
dimA > dimo. In this case is uniquely fixed by, and is of the form
A = o7, 7 # 0. The elements of” havingo as a face are exactly of
the formo’, 7 < 7. The remaining faces of are of the formo’'7’,
o’ < o, 7 <1, inotherwords they consist ¢do} = {T}. Thus

S = —{A}U [{00} = {T}]
is a subpresentation of, and
7] =" TUA
L7 |NA =80T

Letdim = A = n. Then, we say that”” is obtained from¢” by an
elementary regular collaps@) with outer edger andmajor simplexA.

If & = A,...,% = %, and %1 is obtained from.; by an
elementary regular collapse)( we say that regularly collapsegn)
to Z.

139
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The elements of the theory of regular collapsing can be a@ued
from the point of view of “steller subdivisions” (cf. Seatid 3 of “sim-
plicial spaces, nuclei ana-groups” or the first few pages of Zeeman’s
“unknotting spheres”, Annals of Mathematics, 72, (1960)-361), but
for the sake of novelty we shall to something else.

7.1.1 Recalling Notations. o, 7, ... usually denote open simplexes,
7,...denote their closurgslosed simplexespnddo, dr, . . . their bound-
aries. The simplicial presentation @fconsisting ofo- and its faces in
denoted by{c}, and that ofdo consisting of faces ofr by {do} (see
B4). o7 stands for the join of the two open simplexesandr, when
the join is defined. Ir is a 0-simplex and is the unique point ofr,
we will write {x}r for or. On the other hand the join of two polyhedra
P and Q when it is defined is denoted By« Q. Similarly the join of
two simplicial presentations” and@Q when it is defined is denoted by
Z « Q. For example ifor is defined, therido} = {7} is the canonical
simplicial presentation of the polyhedréda « 7. If P is a polyhedron
consisting of a single point, we will sometimes writex « Q instead of
P x Q. With this notation{X}c- andx o are the same.

Let A be an 6 — 1)-simplex,| = [0, 1], and let. be a simplicial
presentation oA x | such that the projectiop : A x | — A is simplicial
with reference to?” and{A}.

Then-simplexes of¥ can be ordered as follow§y, ..., Tk, so that
if Xxe A, xx | intersects th&i's in order. That isA x 0 is a face ofi'y,
I'1 has another facAa; which maps ontd\, A; is a face ofl,, ..., Aj_1
is a face off’j, butI'; has another face that maps ontocall it Aj and so
on. We start witltAg = A x 0 and end up witlAy = A x 1.

Let us writeA = o7 in some way. LeT = Ax0U(@o+T)x|. (If o =
0, T should be taken to be jugtx 0). Then there is a subpresentation
% of . which coversT.

Lemma 7.1.2. (With the above hypotheses and notatiori)regularly
collapsegn) to Z.

Proof. We in fact show that there is a sequence of regular collapghs w
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major simplexegy,...,T';. We must then define

F=2U{l}U...ull}}

and find some outer edge lying ®h so that the corresponding regular
collapse results in7_;.

Now T is ann-simplex and its projection is an fi — 1)-simplex,
therefore there are two vertices andv, of I'j (choosevy, Vo so that
thel-co-ordinate of; is < thel-co-ordinate of/;) which map into one
vertexv of A. Now A = o7 and sov is a vertex of eitheo- or 7.

Case 1:vis a vertex ofr. Write o = {v}o”’. Letg” andt be the faces of
I lying overo’ andr. Then

[ = {(vi}{va}5'7

and the two faces df; which are mapped ont are

Defineoi = {w}d’, 7i = {v1}7. It is claimed that if we take-; as an 171
outer edge then the result of the elementary regular calgjith major
simplexT; is ¥ _1.
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V2
o
\7, \\\\
&' & ; 7@}} 7
/ZJ\TZ'
U1
O-/I . T
o

O

o cannot be inZ’; because the only (dim)-simplex ino-x | which
isin & is o, andoj # o sincev, is a vertex ofoq. AlsoTj is the
only simplex amongd's, ..., I'j which contains/, as a vertex. Hence if
oi < p,p €S, thenp <Tj.

We then have to show that N .¥%_1 = o * Tj

Ao T = I({v2)G”) * ({vi)7)
= (F7{V}T) U (V2 % 057 = {V1}7).
The first term here ia;_;, which is wherd; intersectd’;U. . .UT_;.
The second term written slightly ftierently is f1vy] = 95 = 7 to which

we may add a part of the first term nameby %) to obtain all faces of;
which map to

do «T = (Vo) =T



7.1. Regular collapsing 143
=@ *T)U[00 +T * V]

In other words, this i§; N [(do * T) x 1].
This shows that

i N1l = do + T;
and so.¥ to .%_1 is an elementary regular collapse with outer edge

and major simplex;.
Case 2:vis a vertex ofr. Wrtie T = v/, defines, ¢’ to be faces of

lying overo and7’. In this case
[ = {(vil{va}o?’

and the two faces df; which are mapped on are

(Vi}o6" = A1
and W)t = A

We now define

oi = {W}o

~/

7i = (v}t
and make computations as before.

OO * Tj
= (g * {V]_}%’) U (V2 * 00 * {Vl}%')

= Ai_1 U O = [vivo] * T/

anddg = [vivo] * T =T N [(8o + T) x 1] 173
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V2

U1 T3

v

And this shows that if we perform an elementary regular psia
(n) on . with outer edger; and major simpleX’;, we get.¥;_;.

Hence.¥” regularly collapsesn) to & .

Definell = I, 1K= 1K1 x|, Ty =0c I’,andTx = (I x0)U
(Tier x 1) c 1K,

It is easy to see tha, is a k- 1)-cell indl¥, and is the set of points
of IX at least one co-ordinate of which is zero.

Letay : 1¥ =151 x| — 1% be the projection.

Lemma 7.1.3. Let %, Y1, ..., be simplicial presentations of'|
In-1, ..., It with respect to which all the maps,, ..., as, are simpli-
cial. Then there exist subpresentatio#g, 251, ..., 21 covering T,
Th1,..., T1 respectively, and such that; regularly collapses (i) taZ
for all i.

Proof. The proof is by induction. It is easily verified thaf; collapses
(1) to £.
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So, inductively, we know that/ collapses (i) taZ;, fori < n- 1.
Now Z;, is just the subpresentation of, coveringl "1 x0u|Z)_1|x| =
Th.

Let the collapsing of#,_; to 251 occur along the major simplexes
A1, ..., Ax. Then we define

G = 25 1 U{A) ... (Ay)

and writeA; = ojti, whereg is the outer edge of the regular collapse
(n— 1) from a; to ai1. ThenA; N |aj,1] = doj = Ti.

Define%; = the subpresentation of;, coveringl™! x 0 plusa;®
(lail). Thus#, = ./, and%By,1 = Zn.

We will show that%; regularly collapses) to %, 1, stringing these
together, then;, regularly collapsesnj to Z;.

To show that%; regularly collapsesn] to %, it is enough to look 175
at the part of%; coveringe; 2(A) i.e. Ai X 1. Aj X | N|Bipa] = Aj x0U
[(8ci = 7T;) x 1] andan|A; x | is just the projectiomy; x | — Aj which is
simplicial with reference to the subpresentationsyfcoveringA; x| and
{Ai}. And our lemmd 7112 is especially tailored for this sitaati O

Theorem 7.1.4.Let A be a n-cell, B an n-cell in A, ané? a regular

presentation of A. Then there is a simplicial presentatiémefining &7,

with a subpresentatior®” covering B, such that” regularly collapses
(n) to Z.

Proof. There is a polyhedral equivalenbe A — I", with h(B) = T".
Thenh is simplicial with reference to some¢?; andQ, whereZ?, can
be assumed to refir@. The diagram

N L N
can be triangulated by simplicial presentatioff, .. ., .1, where.#;,
can be assumed to refi®@ By[Z13,.7, regularly collapsesn] to

%q, the subpresentation o, coveringT,,. Therefore the isomorphic
presentatiom™(.#) = .7 collapses regularlyn) toh™1(27) = 2. o
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Suppose that”’ is a simplicial presentation of ancell A, regularly
collapsing () to %, (|.Z]) = B, an f—1)-cell indA. Let the intermediate
stages be

S =S =2,

where is obtained fron¥; by a regular collapsej at outer edger; and
major simplexA; = oT;.

We define the upper boundary &f as follows:
upper boundary ot = 9(|.71)-interior (2]
upper boundary of4, 1

= (upper boundary ot — o = d71;) U doj = 7.

It can be alternatively defined as follows: Upper boundarybt
unions of closures ofn(— 1)-cellsE of .4, such that ifE ¢ 2, E is the
face of exactly on@-simplex of.# and ifE € 2 thenE is the face of
no n-simplex of.#;.

Now we would like to assert that

7.1.5

(@) The upper boundary of; is an f— 1)-cell, with constant bound-
ary 0(1.Z|). The upper boundary of the last stagé44.

(b) A; intersects the upper boundary of precisely alohg dri. In
particular r; cannot be in the upper boundary of for anyi,
hence can never be HZ|.

Ifin I3, in each column we do the collapsing as describBdL2,
the above assertions can be verified in a straight forwardnerartby
using similar properties of/,_1 and an analysis of the individual steps
in[ZT2. The general case seems to be more cumbersome (Aiproo
given in the appendix). But the special case is enough foporposes,
namely for the next theorem, the main result of this chapter.

First usingCZIb, we define a polyhedral equivalepcérom the
upper boundary of/ to the upper boundary of4,1 by ¢; = identity
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outsideo  drj, and oro; = d1j, it is the join of the identity mapo = d;
to the map of centre af; to the centre of;.

Thus fromd|.¥| — | Z| to | %], we reach by simplicial moves, never
disturbing the boundary ¢£7|.

Theorem 7.1.6.Let D be a(k + 1)-cell contained in the interior of an
n-cell A. LetdoD = E; U E,, E; and B two k-cells,0E; = 0E;; let
X c A be a polyhedron such that XD c dE;. Then there is an isotopy
of A, fixed on XU 9A, taking E onto B.

Proof.

ConsiderA to be a standard-cell, we can suppose théa c X, and
triangulate the whole picture, so that there are subprasens covering
D, X. Refine the subpresentation coveribgto ., which regularly
collapses K + 1) to 2 which coversE,. Extend.# to the whole ofA,
to say#. Let the intermediate stages of the collapsing be

S =P = 2,

#+1 Obtained from¥; by an elementary regular collapde« 1) at out 178
edgeo; and major simpleX; = oiT;.

We will find an isotopy taking the upper boundary.@fto the upper
boundary of#, 1, and fixed except in a certamcell to be described.

I is a k + 1)-simplex contained in the complementXfwhich is
also covered by a subpresentation#f So if take|1»I| = 3, say,
Y« c A, and ¢ «[;) N X = T; n X. NowT; n X must be contained
in o = dt;j, for this is the only part of; which could contain points in
OE;. Let sandt be the centres af; andr;, the line segmentyt] can be
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prolonged a little bit (here we use the fact thais standard) to andw
in A, so that

([V, w] = (0o * O7) * Z) N X C doj = 0T
([v, W] * (Ao * O}) * Z) N upper boundary

of S c doi = dri. (here we use the fact thatlifn (o « K) ¢ L n K,
whereo is a simplex an, L are polyhedra, then there is a stretching
o’ of o i.e. containingo such thatL N (¢’ * K) ¢ KN L). Thus we
have in ordefyv, s,t, w} and there is a polyhedral equivalentef [v, w],
takingv to v, stot andw to w. Join f to the identity omdo; = drj * 3,
and extend by identity outside of,w] = doj = dtj = 3.; call it hj. Now h;

is the result of a nice isotopy and takes the upper boundasy; b the

upper boundary of4, ;.
The composition of thdy, will then take the upper boundary of
1 = Eq to the upper boundary of}, = Es. m|

Remark 7.1.7.In theorenfZ.116A can be replaced by any PL-manifold.
Of courseD should be in the interior.

Ex. 7.1.8.If N andM are two PL-manifolds and : N x| — int M an
imbedding, show that there is an isotopyMffixing dM and carrying
f(NxO0) to f(Nx1UINXI). If Xis a polyhedron itM, andXn f(NxI) c
of(N x 0), the isotopy can be chosen to leaVéixed.

7.2 Applications

Definition 7.2.1.Let S be ann-sphere, an@ a k-sphere inS. The
pair (S, Y)) is said to baunknottedf (S, }) is polyhedrally equivalent to
(X« >, >) for someX.

X must of course be am¢ k — 1)-sphere. Clearly a pair equivalent
to an unknotted pair is again unknotted.

Proposition 7.2.2. Let S be an n-sphere, arg a k-sphere in S. If
there exists afin —k — 1)-cell Din S suchthat > 3’ c S, then(sS, )
is unknotted.
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Proof. D« 3} is ann-cell, and so the closure &-Dx ), sayA, is again
ann-cellanddA = d(D«})) = dD=Y.. ThenSis polyhedrally equivalent
to a suspension @D = Y, hence §, ') is equivalent X = 3, >.) where
X'is a suspension a@iD. O

Corollary 7.2.3. If &2 is a regular presentation of an n-sphere S, and
A a(k+ 1)-cellin &, then(S, dA) is unknotted.

Proof. TakeD = |56 2 A| (with respect to some centering &f) in[.Z2. 180
m|

Proposition 7.2.4. If a k-sphere}’ bounds gk + 1)-cell D contained in
the interior of a PL-manifold M, then there is an isotopy of akihg 3
onto the boundary of & + 1)-cell of some regular presentation of M.

Proof. Take a regular presentatia#f of M in which D is covered by a
full subpresentatio®. Consider &-cell E of Q in 9D and the kK + 1)-
cell, sayA of Q, which contains it in its boundary. L6A — E = E; and
dD —E = E; andD — A = D’. ThenD’ is a k + 1)-cell with boundary
E; UE; andE intersectD’ in dE; = JE,. Hence by theorein 7.1.6, there
is an isotopy ofM taking E, onto E; and fixing E. ThusaD will be
moved ontaA.

]

y
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Corollary 7.2.5. Let S be an n-sphere, arXla k-sphere in S(S, })) is
unknotted if and only i} bounds gk + 1)-cell in S.

Proof. The necessity is clear. 8iciency follows fron 7.2 and 7.2.3.
i

Motivated by[Z.ZZ}, we definelasphere}’ in theinterior of a PL-
manifold M to beunknottedf it bounds a k + 1)-cell in (the interior of)
M. From[ZZH it is clear that

7.2.6 If Ais a k + 1)-cell of some regular presentation Mf andA c
int M, thendA is unknotted. If};; and ), are two unknotted spheres
in the same component ™, there is an isotopy o which takes}';
onto Y, keepingM fixed.

Definition 7.2.7.1f D is ann-cell andE ak-cell in D, with 6D c JE,
(D, E) is said to baunknotted if D, E) is polyhedrally equivalent toX
E, E) for someX.

SinceE is not completely contained ifiD, such anX must be an
(n—k - 1)-sphere.

And we define a celE in theinterior of a PL n-manifold M to be
unknotted if there is ann-cell D in M containingE such that D, E) is
unknotted. A cell which is the closure of an open convex cefiame
regular presentation dfl is clearly unknotted. Given any two unknotted
cells D1 and D, of the same dimension iN, there is an isotopy o
leavingoM fixed and takingD; onto D,. Given two unknotted-cells
D; andD; in a PLn-manifold M, k < n, D; n D, = 0, then there is a
n-cell A containingD; andD, in D and such that the tripleA( D1, D)
is equivalent to a standard triple. In particulakiic n — 2, from the
standard situation, we see that there ik-gl()-cell Ain int M containing
D1 andD; in dA and inducing chosen orientations Ba andD,. These
remarks will be used in the next chapter.

Now, as a corollary of ZZ215, i£X c S" arek and n-spheres and
n > 2k + 2, then 8", £¥) is unknotted. The next case= 2k + 1 is a
little more dfficult. Actuallyn—k > 3 is enough. But this will be proved
only in the next chapter. Here we sketch a proof of the cas&k + 1.
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Proposition 7.2.8.Let S be an n-spherg; a k-spherein S, & 2k+1,
and K. (S, X)) is unknotted.

Sketch of the proof: By [ Z5 it is enough to show th& bounds a
(k + 1)-cell in S. To prove this it is enough to show thakaphere in
R%+1 bounds aK + 1)-cell. Consider &-sphereP in R%*! and let#
be a simplicial presentation &f. If o andt are two € k)-dimensional
simplexes inR%*! and L, and L, the linear manifolds generated by
them,o 7 is defined if and only if given any point € R%**1, there is at
most one line througl meetingL, andL,.

ConsiderL = U{L( 5|l the linear manifold generated hy,

7 e 2, for whichor is notdefined}

The dimension of all suchy,..) < 2k, hencez = R%*1 — | is open
and dense iiR%*1, By the above remark, if we take any pok& %,
then for any §, 1), o € &, T € &2, at most one line througk meets
o andr, that is, at most a finite number of lines througmeetP more
than once. But each of these finite humber lines throxghay meet
P more than twice. By similar arguments using triples, o), o, T,

p € 2, we can get an open dense get c R+ such that ifx € %,
only a finite number of lines med® more than once, and each such
meetsP exactly twice. Now we choose such a poitlet Ly,...,L, 183
be the lines throughx which meetP at two points. On each;, call
the point onP nearer tox asN;, and the otheF;, and consider the set
Ni,...,Np. If K> 2, we can pulNy, ..., Npis a 1-cell inP not meeting

Fi. LetN be aregular neighbourhood of that 1-celHnWe can choose

N so thatF; ¢ N for alli. N is ak-cell and (ts complement irP) sayF

is anotherk-cell x = N is a K + 1)-cell, d(x = N) = N U x x dN, andF
meetsx = N, exactly indN. Hence by theorefi 7.1.6, here is an isotopy
of RZ+1 takingN onto x = dN and keepingF fixed. But now & d) U F

is the boundary of thek@ 1)-cell x+ F. SinceP is moved to k+xdN)UF

by an isotopyP also bounds somék & 1)-cell.
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Appendix to Chapter VII

In the theory of regular collapsing, let us add the followamgration
(due to J.H.C. Whitehead): also namely the operation of wmgoa
principal simplex (open) from a simplicial presentatiorhisTis called
“perforation”. If . is a simplicial presentation, and” is obtained from
by removing a principalsimplex, we will say that®”” is obtained from
. by a perforation of dimensioif, or more briefly "%’ is obtained
from .7 by perforation (i)”. Ifn the definition or regular collapsing, we
did not put the restriction that the dimension of the majondiex should
be greater than that of the outer edge, then perforatiorvatsitd come
under regular collapsing. Since regular collapsing as défin(Z] does
not change the homotopy type (even the simple homotopy tygdere
as perforation does, we prefer to distinguish them.

Al Let.” c . be simplicial presentations such th&t is contained
from . by an elementary regular collaps®$ &t outer edge- and major
simplexA = o1. Letp € /. Then

(@) Lk(p, ) = Lk(o, ") if p is not a face of\.

(b) If T < p < A, thenLk(p,.”’) is obtained fromLk(p,.) by a
perforation of dimensionn(— dimp — 1).

(c) If p < Aandr £ p, thenLk(p, ") is obtained fronmLk(p, ) by
an elementary regular collapse of dimensior-dimp — 1).

The verification is easy. The only facesMdfvhich are not covered
by (b) and (c) above are of those.ifi — .7, that is those which contain
o as face. Of course these do not appea#ih

Suppose? collapses regularlyn) to &. If p € ¥ — %, p has
to disappear in some collapse; let us denote the major singiléhe
regular collapsen) in which p is removed by\,. If o, is the outer edge
of the particular collapse, then, < p. What all is left ofLk(p,.”) at
this stage ist(p{Kp}). With this notation, using A.1, we have easily the
following:

A.2

152
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(@) If p € Z, thenLk(p, Z) is obtained fromLk(p, .”) by perfora-
tions and regular collapses of dimension{dimp — 1).

(b) If p € ¥ — %, thenLk(p, {Kp}) is obtained fromLk(p, %) by
perforations and regular collapses of dimensior imp — 1).

Let # c a be simplicial presentations and suppages obtained
from a by regular collapses and perforations of dimensioithen we
can rearrange the operations so that perforations comefidstegular
collapses later. This is easily seen by considering onegibn and
one regular collapse. If the perforation comes after thaleggollapse,
we can reverse the order; of course the converse is not tryea fiB
nite number of such changes, we can perform the perforaticstand
the regular collapses later, so that the end result is#tillIf |q is a
connected PL(i)-manifold, thefect of a perforation (i) upto homotopy
type is the same as removing a point from the interiofapf Since a
regular collapse does not change the homotopy type, we have

A.3.If |a] is a connectedmanifold, and% is obtained from bk perfo- 186
rations (i) and certain elementary regular collapseshént#| has the
same homotopy type &g with k interior points removed. In particular

if |a| is ai-cell then|%| has the homotopy type of a wedgelo$pheres

of dimension ( — 1). If |a] is ai-sphere then#| has the homotopy type

of a wedge of K — 1) spheres of dimensiom £ 1).

Of course, in the above wher= 1, the wedge of 0-spheres has to
interpreted properly. That is we should take the wedde@tpheres to
be k+1) distinct points, in particular & = 0 to be just a point. Suppose
la| is ai-cell, and|%| has the homotopy type as point, for example when
| %8| is ai-cell or an { — 1)-cell. Then there&annotbe any perforations.

If |a| is a cell and 4| = dlal, there is exactly one perforation. |t is a
i-sphere andi#| andi-cell in it, again, there is exactly one perforation.

It should be remarked, that all the above statemetns are foade
the sake of proving LemniaZ:1.5 to which we proceed now. Léirsts
recall the definition of the upper boundary. Considér a simplicial
presentation of an-cell Aregularly collapsingrf) to 2, where|%| = B
is an f1— 1)-cell in A. Let the individual stages be

S =P Sy = 2,
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where.¥,, is obtained from%; by an elementary regular collaps® (
at outer edger; and major simplex; = oiri. (This is the hypothesis
for the rest of the appendix). Then the upper boundanyofdenoted
by o (.].%)) is defined inductively as follows:

(AIZ) = dA-B = (014 - 1Z))
NSl Z) = (0(A1Z) - T + 1} U doi + 7.

The trouble with this definition is that it is not clear thaistwell
defined, e.g. thafF; = dr; c 4(.i|Z). So we considr the following:

7 (A12) = UEE is an f — 1)-simplex of 4 such that (1) if
E € 4 - Z thenE is the face of exactly one-simplex of .% (2)
if E € & thenE is the face of nan-simplex of 4.} We claim that
ANAIZ) = 5'(,54|3:”). To begin with they are equal, that is whiea 1.
Suppose they are equal fiorThen we will show that they are equal for
i + 1 also. Ind (] 2) andd (#,1]%), the only changes can be from
faces ofA;. Now all the fi — 1)-simplexes infai} = {0ri} have to be in
YA Z) sinceA is the onlyn-simplex of.# having them as faces. So
by inductiona; = dt; is really in5(54|ff). Now conside@l(ymlff).
None of the (1 — 1)-simplexes ofa;} = {07} is in this, since they are not
in .%4,1. The (1— 1)-simplexes ofdci} = {7;} have to be it (1| %Z).
For, consider anyn(— 1)-simplexE of {0} = {7i}. If Elisin &, thenA;
is the onlyn-simplex of.# havingE as face, since that is removed there
is non-simplex of.%1 havingE as a face. IE € .¥ — &, there are
two n-simplexes in¥ havingE as a face. One of thery, is removed.
The other should be i/, 1, since otherwisde cannot be removed in
any of the later collapses. Thds: =7 isin El(ymlff). Since we have
accounted for all then- 1)-faces ofp;, these are the only changes from
3 (A12) 109 (F11 %), that is

51(,54+1|g) - {51(‘%|g) -0 * 0t} U (00 * Ti).

Hence by inductiod anda" coincide for alli, andd is well defined.
A4 .1 ¢ (A Z).
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Proof. Supposer; ¢ 4(.%|%). There are gour possibilities:

Either (1) 71 cdA-B
or (2) 7coB
or (3) 7icB-6B
or 4) ticA-09A

&

©
pla

A

We will show thatrj ¢ 8(.%|%) is impossible in each case.

By A.2 in cases (2) and ()k(rj, 2) is obtained fromLk(ri, %)
by perforations and regular collapses of dimension-(dimr; — 1).

In cases (1) and (4)k(ri, {A,}) (with the notation of A.2) is obtained
from Lk(ri, ) by perforations and regular collapses of dimension (
dimz; — 1). By A.3 and remarks thereafter, there cannot be any perfo-
rations in cases (1) and (2) and there is exactly one peidorat cases

(3) and (4).

By A.1; (b) in the collapse at outer edge and major simplex\; =
oiti, what happens tak(r, .#) is exactly a perforation of dimensions9
(n—dimt; — 1). So straightaway we hawe c JA— Bor i c dBis
impossible.

So, the only possibilities that remain are (3) and (4). Letarssider
case (4) first. We claim that if; c d(.#|%) the one perforation on
Lk(tj,.¥) is already made. Sindék(zj,.¥)| is a sphere, anyn(— 1)-
simplex of ¥ havingt; as a face must be the face of twesimplexes.
Sori cannot be iM(.#|Z)(.¥ = #). For the same reason, cannot
be in anyd(.7j|Z) with Lk(zi,.#]) = Lk(zi,-#1). Thust; c d(A|Z)
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implies Lk(t;, #4) # Lk(ti, #1). Suppose.k(ri, .#) is changed for the
first time in thekith collapsek; < i, that isLk(zi, #) = Lk(ti,.#1), but
LK(ti, S +1) # LK(7i, .#1). SincelLk(z;,.#1) is a sphere; this operation
from Lk(ri, 1) = LK(ri, %) to Lk(7i, #+1) is necessarily a perfora-
tion. So the one perforation drk(r;,.¥) is already made. But in th&
collapse also what happenslik(z;, %) is a perforation sincg; = ot
(by A.1.b). Since this is impossible cannot be imA — dA.

Let us consider the remaining possibility (3),c B-adB. |Lk(ri, )|
is ani-cell with boundanyLk(ri, Z)|. If 7i ¢ 8(#]%), we have to show
thatt; c B — 0B is also impossible. The case when diim=n -1 is
easily disposed of, since in that case there is1sgmplex havingr; as a
face. As in case (4); is not ind(.7112’) andr; cannot be ird(.7}| Z) if

190  Lk(ri, 1) = LK(ri, .}). Again, the first operation obk(r;,.#1) has to

be a perforation. For, all the outer edged &fr;, .#;) are inLk(ri, &),
and a regular collapse ak(ri, .#1) removes a part ofk(z;, Z). Thus
7 € (#41%) implies that the one perforation drk(r,.#1) is already
done. But then the result of th® collapse will be again a perforation
on Lk(ri, #) by A.1.b) sinceA; = oj7i. So this is again impossible.

Thust; cannot be i(.%| %) for anyi. O

A.5. With the hypothesis of A.44(.%| %) is an fi—1)-cell with constant
boundary= 9(|.Z’]) = 9B.

Proof. (.#11%) is an f — 1)-cell with boundary= 9B. Inductively,
assume thad(.#4| %) is an f— 1)-cell with boundaryyB. By A.4, 7; ¢
(A1Z); in particular it cannot be i®B. Sincer; ¢ d(.%|%), no
simplex of.” havingr; as a face can be ﬁ(yi |Z). S0doi*Tj intersects
0(A|Z) precisely alondio = dti. Defined; : (A1 Z) — (S 11 %)
by ¢i: Identity outsides; = drj, and ono; = dtj, ¢ is the join of the
identity map oo = dr; and the map which carries the centresgfto
the centre of; - ¢ is clearly a polyhedral equivalence; hed{e#. 1| %)
is an (1 — 1)-cell. To see thab(d(#|%)) = 9(3(S.1%)), observe
that the part o = d7; (if any) which is ind(4(.#12")) should be in
doj = d7i. Sincey; is identity on this part, both the cells have the same
boundaries. m]



Chapter 8
Handles ands-cobordism

8.1 Handles

191
A handle of dimension andindex k briefly called a §, k)-handle, (or a
k-handle) is a pairH, T) consisting of am-cell H and 1 — 1)-manifold
T of dH, such that there is a polyhedral equivalence

f:HxAxB

whereAis a k — 1)-sphereB a (n — k — 1)-sphere, and(T) a regular
neighbourhood oA in A = B.

We denote handles by lower case script letter$, & and so on.

Given a handleH, T) as above, we call' the attaching tubeand
0H — T thetransverse tubef the handle. The polyhedral equivalence
in the definition can be so th&(T) = ¢ ([0, %]), wherep : AxB — 0,1
is the join of A — 0 andB — 1. When this is sof “1(A) is called an
attaching spherand f~1(B) atransverse spheref the handle.

The pair H,0H — T) is clearly a handle of dimensiamand index
n—Kk. Itis called thedual of (H, T), and denoted byH, T)*.

The cone onX is denoted byC(X). We know that, by a standard
mistake C(AxB) ~ C(A)xC(B). This equivalence will make([0, %])
correspond toA x (C(B)). Therefore, in defining a handle, we could
require, in place of, the existence of a polyhedral equivalence 192

g:H~DxA

157
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whereD is ak-cell, A an ( — k)-cell, and whereg(T) = (dD) x A.

With this formulation, for anye in the interior ofA, thendD x eis
an attaching sphere; and for afyn the interior ofA, thenf x 0A is a
transverse sphere, in the handleX A, (D) x A). If e e intA, we call
D x eacoreof the handle. I € dA, we callD x e aboundary coreor
asurface coreof the handle. Similarly transverse cores are defined, and
the definitions can be extended to arbitrary handles by wsingquiva-
lence with the standard handle (so that even in the standardidy we
have “more” cores than defined above). Note that there is iquaness
about attaching spheres, transverse spheres and coresula,honly
the attaching tube and the transverse tube are fixed.

Ex. 8.1.1.1f His ann-cell, andS a (k—1)-sphere idH, S is an attaching
sphere of somen(k)-handle d, T) if and only if S is unknotted iroH.

We have the following two extreme casesmfi)-handles: If H, T)
is a (h, 0)-handle there is no attaching sphefe= 0), dH is the trans-
verse tube as well abetransverse sphere. Any point in the interior of
H can be considered as a core. H,T) is a (, n)-handle,H is the at-
taching tube as well as the attaching sphere, the whdttisfthe core.
Also, note that for anr(, 1)-handle, the attaching tube consists of two
disjoint (h — 1)-cells.
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/ «?~ a core

— a(3.1) - handle
%
% attaching tube

7

b

an attaching
sphere

N

2 a(3.2) - handle
A attaching tube

193

8.2 Relativen-manifolds and their handle presenta-
tions

A relative n-manifold is a pair (1, X), X c M, such that for evera €
M - X, the link ofain M is either anif — 1)-cell or an i — 1)-sphere. If
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(M, X) is a relativen-manifold,d(M, X) denotes the set of points bf—X
whose links are cellsi(M, X) is not a polyhedron, bud(M, X) U X and
(M, X) = a(M, X)u(XNa(M, X)) are polyhedra; so thad(M, X)uUX, X)
and P(M, X), X") (whereX! = Xna(M, X)) are relative ii—1)-manifolds
without boundary. Any compact setdiM, X) is contained in ann-1)-
manifold contained id(M, X).

We sometimes denote a relative manifol, X) by Gothic letter
such as#, ando(M, X) by .4 .

If (M, X) is a relativen-manifold, andA an n-manifold, such that
AN M = 9dANn M, X) is an f — 1)-manifold, then it is easily proved
that (using, of course, theorems on cells in spheres etat N1 U A, X)
is a relativen-manifold. As in the case of the manifolds, we have the
following proposition:

Proposition 8.2.1. Let(M, X) be a relative n-manifold, C an n-cell such
that Cn M = dC N d(M, X) is an(n — 1)-cell. LetZ be any neighbour-
hood of Cn M in M. Then there is an equivalence

f:(M,X)~(MUC,X)
which is identity outside” .

LetB c dA, andf : B— M be an embedding witfi(B) c (M, X),
andB an (h — 1)-manifold. Then there is an identification polyhedron
M Us A; and with the obvious convention of not distinguishing nota
tionally betweenX and its image in M Uz A), we have M Ut A, X)
is a relativen-manifold, which we shall say is obtained frorvi(X)
by attaching (A, B) by an embedding .f Of course, doing all this rig-
orously involves abstract simplicial complexes, theirlizadions and
proper abuse of notation; and we assume that this is donecincese
without mention.

Let .7 = (M, X) be a relativen-manifold, andb, ...,bp be [,i)-
handlesp; = (Hj, T;). We speak of#Z + by + --- + hp, when

(1) HinHj =0

(2) Hin M =T, c 0.4, for all i.
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In such a case by definition,
MADL+ - +Dhp=(MUHLU...UHp, X).

And we say that# + b1 + - - - + D is obtained from# by attaching
p(n, i)-handles op i-handles.

Also if we havef; : Ti —» d.# embeddings foi = 1,...,p and
fi(Ti) n f;(T;) = 0 fori # j, we may look at what we obtain from#
by attachinghs, ..., bp by the mapsfy, ..., f,. The result we denote by
A U, b1 U ... Ug, bp and say that it is obtained from# by attaching
p(n, i)-handles by imbedding§.

Definition 8.2.2.A handle presentatioof a relativen-manifold (M, X)
isa(+ 2)-tuples”Z = (A_4,...,An), of polyhedra such that,

1) XcAjic...cA=M
(2) AN X
(3) (A, X) = qj is a relativen-manifold for alli

(4) For each, there exist finitely many handles of index b(i), et
b\, such thaty = aig + b + - + 5.

If follows from (3) and (4) thatA_; is a neighbourhood ofX in M.
A_; \, Ximplies thatA_; N\, N, for some regular neighbourhodd of
Xin M (see Chaptdid 6). We can even assume khat int yA_;. Now
if B=boyN, thenA_1 — N\, B, hence is a collar oveB. Thus there is 196
an equivalence ofA_; to N which fixex X; that is polyhedrallyA_; just
looks like a regular neighbourhood Xfin M.

Consider a relative-manifold (M, X) whereM is a PLn-manifold,
andX a PL (1 — 1)-manifold inM. Such a relative manifold, we term
aspecial caself (M, X) is a special case, an#’ = (A_1,...,Ay) is a
handle presentation oM, X), then clearlyA_; = X x L, moreover the
equivalence can be assumed to casty (X, 0) for x € X.

Theorem 8.2.3. Every relative manifold has a handle presentation.
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Proof. Let.Z = (M, X) be a relativex-manifold; let<? be a regular pre-
sentation ofM with a subpresentatiof?” coveringX. With a centering

n of &2, we define the derived subdivisiai{.£?, ), and some derived
subdivisiond? # of d(2, ). Define

C*=|S{(nC,d>°2), for Ce 2
A, =U{CICe 2}
Ac=U{CICe 2, or CeZ and dimC <Kk}

To thow that77” = (A_1, ..., Ay) is a handle presentation of, we
note:

(1) A_1 = INg».»(dZ")|is a regular neighbourhood &fin M.

(2) (A_1,X) is a relative manifold. In fact, i is any subset of?,
containing 2", andQ* denotesu{C*|C € @}, then @*,X) is a
relative n-manifold.

These are easily proved.

The only thing that remains to be shown is thai = A1 + k-
handles. Thé-handles evidently have to b€, C* n {dC}*), for C €
P - 2 and dimC = k. There are two dierent cases to consider,
depending on whethe® is in the interior or boundary o#/. Any how,
C*is ann-cell, sincenC € M — X and (M, X) is a relativen-manifold.

There is a canonical isomorphism

Lk(nC, d®2) ~ d(Lk(;C, d2)),
which for D < C, takesC* n D* to
D™ =S {D, d(Lk(»C, d2)))!.
This shows tha€* N {dC}* corresponds to
Nikgcdz) (d{pC}) in d(Lk(»C,d)).
A further fact is:

Lk(;C,d2) = d{dC} * AC.
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Now if C is an interiork-cell, |AC]| is an f — k — 1)-sphere; and so,
composing all these facts together, we get a polyhedravalgumcef :
0(C*) ~ 9C % |AC| which takes<C* N {dC}* onto a regular neighbourhood
of AC. This directly shows thai@*, C* n {dC}*) is ak-handle.

If Cis a boundark-cell, then|AC| is an g — k — 1)-cell. LetF be a
cone orAC|; we then use the standard trick which mak&swhich was
the cone onLk(;;C, d?>22)|, which is equivalent téC  |AC|, equivalent
toCx F:

g:C"~CxF,

in which the selC* n {0C}*, which was mapped tdlg(pc).ac({0C}), 198
corresponds to
g(C* n {aC}") = (6C) x F.

This shows, from our second way of looking at handles, t@at (
C* n {0C}*) is ak-handle.

We might remark that in case (i N §(C*) is an attaching sphere,
but that in case (ii), this lies in the boundary of the attaghtiube; that
is why case (ii) is somewhat more complicated than case (i). 0O

8.3 Statement of the theorems, applications, com-
ments

Here we state the main theorems of handle-theory and apeiy tb
situations such as-cobordism and unknotting. We outline the proofs,
so that the rest of our work is devoted to the techniques whigke this
outline valid. We say a few words about gaps (such as a thardisgus-
sion of Whitehead torsion) for which there are adequateeates. Our
theorems and proofs are quite similar to those well-knowrdifberen-
tial manifolds; of course, there is no worry about rounditfigocorners;
there is no need to use isotopy-extension theorems, sitlotacenoves
sufice. Finally, the crucial point is for homotopy to imply isptoin
certain unstable dimensions; the result needed here hasdeseribed
by Weber, [see C. Weber, L'élimination des points doublassde cas
combinatoire, Comm. Math. Helv., Vol.41, Fasc 3, 1966-&a1variety
and interest, we prove the necessary result in a quiferdnt way
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199 Definition 8.3.1.A relative n-manifold (M, X) is said to begeometri-
cally trivial, if M\, X.

If (M, X) is a special case, whekeis an fi— 1)-submanifold obM,
M andn-manifold, when geometric triviality means just thdt~ X x |
with X corresponding t&X x 0.

When A c B are finite CW-complexes, with — B a homotopy
equivalence, théorsion of (B, A), denoted byr(B, A), is a certain ele-
ment of the Whitehead group oi(B).

Definition 8.3.2.Suppose M, X) is a special case. ThalA X) is alge-
braically trivial means:

(1) X — M is a homotopy equivalence.
(2) 7(M,X) =0
(3) (M, X) — M induces an isomorphism on.

[Remark: Using a form of Lefschetz duality in the universalc
ering spaces, it is provable that (3) is implied by (1) plus theaker
condition thaty(M, X) — M induces an injection om,].

If (M, X) is not a special case, &t be a regular neighbourhood of
Xin M. DefineM; = M — N, andX; = bdyN. Then My, X;) is a spe-
cial case, uniquely determined, upto polyhedral equivaehy M, X).
We call (M, X) algebraically trivial wheneverM, X;) is algebraically
trivial.

When we know of i, X) that only conditions (1) and (3) are satis-
fied, (M, X) being special, we callM, X) an h-cobordism andr(M, X)
thetorsion of this h-cobordism.

200 Clearly, if (M, X) is geometrically trivial, it is also algebraically triv-
ial. The converse, we shall show, is true for relativananifold,n > 6.

Let (M, X) be a relativen-manifold which is a special case. Here are

the main results.

Theorem A. If (M, X) is 1-connected, and < n — 4, then(M, X) has
a handle presentation with no handles of indiece¥. If furthermore,
(M, X) has a handle presentation with handles of indigesp only,
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then it has a handle presentation with handles of indieeé+ 1 and
< Max(¢ + 2, p) only.

Theorem B. If (M, X) has a handle presentation with handles of indices
<n-3only, and n> 6, and if X< M is a homotopy equivalence with
7(M, X) = 0, then it has a presentation without any handles; so that
M\ X.

Theorem C. If (M, X) is algebraically trivial and n> 6, then it is geo-
metrically trivial.

TheorenTT holds for the general relatimamanifold, and this fol-
lows from Theoren IC in the special case by referring to theiapease
(Mg, X;) described earlier.

TheorenTA andB imply Theore C uality, which is described
inB.8. We start with a handle presentatigfi of (M, X); by Theorem
Alwe can change the dual presentati#fi into one with no handles of
index< n-4; dualizing this, we get a handle presentati#h of (M, X)
without handles of indices 4; sincen > 6, TheoreniLB applies tg73.

8.3.3 We now list the techniques used in proving TheorEths Aldnd B.

(1) Cancelling pairs of handles.In a handle presentationZ = 201
(A_1, ..., An), sometimes there is a very explicit geometrical reason why
a (k — 1)-handle) and ak-handle nullify each other, so that they can
be dropped from the handle presentationNIfs the transverse tube of
b, andT the attaching tube o, andN - NNT andT - NN T are both
(n — 1)-cells, this is the case. This aloneffszes to prove Theorefml A
when¢ = 0. We discuss this in8.5.

(2) Modifying the handle presentationWe want to shrink down
transverse and attaching tubes until they become managesfd to
isotop things around. This can be done without damaging $ksere
tial structure, which consists of (a) The polyhedral eqenee class
of (M, X), (b) The number of handles of each index, (c) The salient
features of the algebraic structure, namely, the nmagsy, A1) —
m-1(Ak_1, Ak_2) and bases of these groups. This is dorlelh 8.4.
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(3) Inserting cancelling pairs of handlethe opposite to (1) is some-
times necessary in order to simplify the algebraic str@gtthis occurs
inB8. This, together with (1) and (2), allows us to prove dieen[A
for ¢ = 1, at the expense of extra 3-handles. Once we have done this,
there are no more knotty group-theoreti¢hdulties, and the universal
covering spaces of thy's are all embedded in each other. Then we can
take a closer look at.

(4) The algebraic structure.This consists of the boundary maps
(A, Ac-1) — mre1(Ax1, Ace1). When there are no 1-handles, these
groups are free modules over the fundamental-group-ririth bases

202 determined, upto multiplying by, by the handles. We can change
bases in certain prescribed ways by inserting and cangefiairs of
handles. This allows us to set up a situation whete-al)-handle and
a k-handlealgebraically cancel. We discuss this [0.8.9. And now, both
Theorem$&A andB follow if we can get algebraically cancellirandles
to cancel in the real geometric sense. This amounts to gedtirsotopy
out of ahomotopyof attaching spheres; this is, of course, the whole
point; all the other techniques are a simple translatioratudle presen-
tations of the theory of simple homotopy types of J.H.C. \&inéad.

(5) The isotopy lemmarThis is the point where all dimensional re-
strictions really make themselves felt. The delicate cabich applies
to (n— 3)-and 6 — 4)-handles, just barely squeaks by.

8.3.4 Thes-cobordism theorem. By an s-cobordisnis meant a triple
(M; A, B), where M is an n-manifold; A and B are disjoint 6 — 1)-
submanifolds obM; M — AU Bis polyhedrally equivalent t6Ax | in
such a way thadA corresponds t8A x 0 (and, of coursa)Bto A x 1);
A — M andB — M are homotopy equivalences; ar(d, A) = 0.

A trivial cobordismis a triple (M; A, B) equivalent to A x I; A x
0,Ax1).

Theorem .If (M; A, B) is an s-cobordism, andimM > 6, then(M;
A, B) is a trivial cobordism.

Proof. This follows from theorerlIC. The paiM, A) is a relative mani-
fold, special case; and all the hypothesis of Thedrém C agxlglvalid;
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in particular,r1(B) ~ m1(0M—A) ~ m1(M), sinceB — M is a homotopy 203
equivalence. Hence, by theoré&h ®1,(A) is equivalent toAx I, Ax 0).

We know, by assumption, th&M — AU B is a regular neighbourhood

of 6Ain M — A; and clearlypAx|1 is a regular neighbourhood 8Ax0

in d(Ax1)—Ax0. Thus we can fix up the equivalence &f,(A) to
(Ax1,Ax0)to takedM — AU B ontodA x I; this leavesB to map onto

A x 1, which shows the cobordism is trivial. m]

We remark that ifr1(A) is trivial, thent(M, A) = 0 automatically. It
is with this hypothesis that Smale originally proved hisottean; various
people (Mazur and Barden) noticed that the hypothesis megdthe
non-simply-connected case, was just that> M he a simple homotopy
equivalence (whence tha”; i.e. 7(M, A) = 0.

8.3.5 Zeeman'’s unknotting theorem. We have already described the
notion of an unknotted sphere.

Theorem .If A c B, where A is ak-sphere, B an n-sphere, andik—3,
then A is unknotted in B.

Proof. By induction onn. Forn < 5, the cases are all quite trivial,
except fork = 2, n = 5, which has been treated earlier. Fop 6 we

will show that the pair B, A) is equivalent to the suspension & (A)
whereB’ is an i — 1)-sphere and\’ a (k — 1)-sphere; and clearly the
suspension of an unknotted pair of spheres is unknotted.

To desuspend, far > 6, we proceed thus:

If x € A, then the link ofx in (B, A) is a pair of spheres which
is unknotted, by the inductive hypothesis. That is to #ays locally
unknottedin B. In particular, we can find an-cell E c B, such that 204
EnAis ak-cell unknotted irg; and so thatdE, (ENA)) is bicollared in
(B, A); in fact, this could have been done whether or Aatere locally
unknotted.

DefineF = B— E. By earlier results is ann-cell. Consider the
relative manifold F, FNA). Itis easily seen that this pair is algebraically
trivial; because of codimension 3 all fundamental groups are trivial,
and so Whitehead torsion is no problem; the homology siinat an
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easy exercise in Alexander duality. Hence, by Thedrér® €ollapses
to F N A; sinceF n Ais ak-cell, it collapses to a point; putting these
together, E, F N A) collapses to [ft, pt) in the category of pairs; these
collapses are homogeneous in the pBirAX) because of local unknot-
tedness. We started witk,(F N A) bicollared, and hence, by the regular
neighbourhood theorem, suitably stated for palFsF(n A) is a regular
neighbourhood ok € Ain (B, A), which is an unknotted cell pair (again
using local unknottedness).

Thus B, A) is the union of two unknotted cell pair&(E N A) and
(F, F n A), which shows it is polyhedrally equivalent to the suspensi
of (OE, 4(E N A)). i

Remark 1. This is just Zeeman'’s proof, except that we use our Theorem
[0 where Zeeman uses the cumbersome technique of ‘sunnpsiolig.

Remark 2. Lickorish has a theorem for desuspending general suspen-
sions embedded iB8" in codimensior> 3. It is possible, by a similar
argument, to replace “sunny collapsing” by Theofém C. Tleena- 5

can be treated by a very simple case of sunny collapsing.

Remark 3.If A c B, whereA is an f — 2)-sphere locally unknotted
in the n-sphereB, andn > 6, andB — A has the homotopy type of a
1-sphere, ther is unknotted inB.

Proof exactly as in the codimension 3 case; we need to knoiw tha
Whitehead torsion is OK, which it is since the fundamentalgrof the
1-sphere is infinite cyclic; and this group has zero Whiteheasion,
by a result of Graham Higman (units of group-rings).

Remark 4. It has been a folk result for quite a while that the Unknot-
ting Theorem followed from the proper statement of theobordism
theorem.

8.3.6 Whitehead torsion. For any groupr, there is defined a commu-
tative groupWh(r). Elements oW h(r) are represented by square, in-
vertible matrices over the integer group ridg. Two matricesA and
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B represent the same elementWi(rr), if and only if there are iden-
tity matricesly andl,, and a produck of elementary matrices, so that
Aelk =E. (B l,). Here

Ik denotes thé& x k identity matrix.

u o
UGBV_(0 V)

An elementary matrix is one of the following:

(@) In + &j, whereg; is then x n matrix all of whose entries are zero
except for théj which is 1; and # j.

(b) En(a; K), which is then x n matrix equal to the identity matrix,
except that th&k" entry isa; we restricte to be an element of
+7T.

By cleverly composing matrices of this sort, we can obtaim 1e; 206
for any A € Zr, for instance.

Addition in Wh(r) is induced fromm, or, equivalently, from matrix
multiplication.

The geometric significance @ hr) is that a homotopy equivalence
f : K — L between finiteCW-complexes determines an element of
WHr), n = m1(K), called thetorsion of f. If the torsion is zero, won-
derful things (e.gs-cobordism) happen.

If & is the trivial group, thenWWh(x) = 0, basically becausgrn is
then a Euclidean domain.

If 7 is infinite cyclic, thenWh(r) = 0, by Higman. His algebraic
argument is easily understood; it is, in some mystical setheeana-
logue of breaking something the homotopy type of a circle into
contractible pieces on which we use the result for the triyiaup.

If = has order 5, theWVh(r) # 0. In fact, recent computations show
WHh(rr) to be infinite cyclic.

Various facts aboltv hcan be found in Milnor’s paper. [“Whitehead
Torsion” Bulletin of A.M.S., Vol. 72, No. 3, 1966]. In partitar, the
torsion of anh-cobordism can be computed (in a straight-forward, may
be obvious, way) from any handle presentation.
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There is another remark about matrices that is useful. ALis¢ an
n x k matrix overZn, such that ank-row-vector [i.e. 1x k matrix] is
some left linear combination, with cfigients inZr, of the rows ofA,;
in other words A corresponds to aurjectionof a freeZrz-module with
n basis elements onto one witlbasis elements. Lef@enote theék x k
zero matrix. Then there is a product of elementary (k) x (n + k)
matrices,E, so thatE. (4 ) = (¥, ). This is an easy exercise.

8.3.7 In homotopy theory we shall use such devices as univesat-cove
ing spaces, the relative Hurewicz theorem, and some homalmgpu-
tations (with infinite cyclic cofficient group). For example, iH, T) is
ak-handle, then

Hi(H,T)=0 for i#h
Hk(H,T) = Z  aninfinite cyclic group,

We always arrange to have the fundamental group to act orethe |
on the homology of the universal covering space.

Suppose thatN, X) is a relativen-manifold, special case, andil(
X) = (M, X)+b1+---+bp, where the)'s are handles of indeik Suppose
X, M, N are connected, and that(M) — 71(N) is an isomorphism; this
implies that we can imagine not only tHétc N, but thatM c N, where
“~" denotes universal covering space. Ga# m1(M).

Then the homology groupsli(N, M) are left Zz-modules. More
explicitly, Hi(N, M) = 0 if i # k; andHy(N, M) is a freeZz-module
with basis{[b1],...,[bp]}. What doesH;] mean? We take any lifting
of h; = (H,T) to a handle K, T’) in N; we pick either generator of
Hk(H’, T), and map intcH(N, M) by inclusion, the result ishf]. The
ambiguity in defining §;] is simply stated: If we make another choice,
then instead offf;] we havea[h;], wherea € +n.

Whenk > 2, we can go further and say that, by the relative Hurewicz
theorem (N, M) ~ Hy(N, M) ~ (N, M). And thus we have a fairly
well-defined basis ofry(N, M) as a Z-module, dependent on the han-
dleshy,...,bp.

This shows, by the way, thalN(M) is (k — 1)-connected. We might
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have expected this, since, homotopicalyjs obtained fromM by at-
tachingk-cells.

Another thing is a version of Lefschetz duality as follows:M is
an oriented manifold, and c M with X a polyhedron, thek'(M, X) ~
Hn-i(M, M — X). Since universal covering spaces can all be oriented,
this works there. In particular, X — M is a homotopy equivalence,
thenH(M, X) = 0 for all i, and soH;(M, M — X) = 0 for alli. When
M - X is the universal covering spaced¥ — X, that is, whenr,(OM —
X) ~ n1(M), then the relative Hurewicz theorem will show tlédl —
X = M is a homotopy equivalence.

8.3.8 Infinite polyhedra. An infinite polyhedron Rs a locally compact
subset of some finite-dimensional real vector space, sathidhevery
x € P, there is an ordinary polyhedrd@ c P, such thatx is contained
in the topological interior of) in P. A polyhedral map f: P; — Py,
between infinite polyhedra is a function, such that for evenginary
polyhedronQ c P4, the grapH’(f|Q) is an ordinary polyhedron.

The category of infinite polyhedra includes ordinary potyfze and 209
in addition, every open subset of an infinite polyhedron idrdimite
polyhedron.

The link of a point in an infinite polyhedron is easily definédyrns
out to be a polyhedral equivalence class of ordinary polsdnetience
the notions of manifold any boundary in this setting arelgaifined.

If M is an infiniten-manifold, then any compact subs¢tc M is
contained in the topological interior of some ordinarynanifold N c
M.

As for isotopies, we restrict ourselves to isotopies which the
identity outside some compact set; such are the isotopiaénell from
finitely many cellular moves. Any such isotopy on the bougdzafrM
can be extended to an isotopy of this sort\n

We can talk of regular neighbourhoods of ordinagycbmpact) sub-
polyhedra in an infinite polyhedron, and the same theorenwduing
isotopy, in this sense) hold.

These concepts are useful here becausdifX) is a relativen-
manifold, thend(M, X) is an infiniten-manifold. And now, any isotopy
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of d(M, X) extends to an isotopy d¥1, leaving a neighbourhood of
fixed. In other words, this is convenient language for dealitith rela-
tive manifolds. This is the only situation where we shalladpef infinite
polyhedra; it is, of course, obvious that infinite polyhedsa be of use
in many other cases which are not discussed in these notearfiaular,
in topological applications of the “Engulfing Theorem”).

8.4 Modification of handle presentations

If 2" =(A_q,...,Ay) ands?” = (B_4,..., By) are handle presentations
of the relativen-manifolds (M, X) and (M2, X*) respectively, amsomor-
phismbetweens# and .#* is a polyhedral equivalende : M — N
taking X onto X’ andA; onto B; for all i. Such an isomorphism gives a
1 - 1 function between handles and preserves various othetigtes.
Let 57 = (A_1,...,An) be a handle presentation of the relative
manifold (M, X) and letf : Ax — Ax be a polyhedral equivalence taking
Xonto itself. Then by#; is meant the handle presentati@{, ..., By)
of (M, X), where

B = f(A) for i<k

Bk = f(Ak) = A«
Bi=A for i>k

It is clear that7#; is a handle presentation dfi( X), the handles of
index > k are equal to those ofZ, while a handle of7# of index < k
will correspond viaf to a handle of#;.

There is another way upto isomorphism of looking7&t-1.

Supposef : Ax — A is as before. LetH, T) be a k + 1)-handle
of the presentatio””. Attach (K, T) to Ax not by the inclusion of in
0(Ax, X), but by f|T. In this way attaching allk+1)-handels we get a rel-
ative manifold Byg,1, X) and an equivalencé,, extendingf. Similarly
attach the + 2)-handles tdBy.1 one for eachK + 2)-handle ofA,, by
the mapfy,, suitably restricted; and so on. In this way we get a relative
manifold B, X) and a handle presentatioA (..., Ax, Bki1,...,Bn)
of (Bn, X). This will be denoted by#'. f, gives an equivalence of
(M, X) with (Bp, X) and an isomorphism of#; -1 with 2.
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The main use in this chapter of the above modifications isifor s
plifying handle presentations, that is to obtain presématwith as few
handles as possible, or without any handles or without lesnabto cer-
tain index using the given algebraic data abdit X). It should be noted
that (1) need not be isomorphic te¢” and (2).7# " is not a handle
presentation of1, X). (2) is not a serious drawback, sing&’ isomor-
phic to./#; 1 via f;1 and so whatever simplification one can do f&t'
can be done also fa#7;-1, which is a handle presentation d¥1{X) or
we can first do the simplifications iw’" and pull the new handle pre-
sentation to one of\, X) by f;1. We will adopt the procedure which
is convenient in the particular case. flf: Ax — Ax is isotopic to the
identity leavingX fixed, (and this will be usually the case), the#i and
¢ will have many homotopy properties in common; but more of thi
later.

The most frequently used ways of modifications are catalbdpge
low:

8.4.1 Let (H,T) be ak-handle of the presentatioft” = (A_1,...,An)

of (M, X). Then ifS is a transverse sphere aNd= dH — T the trans-
verse tube, we havld a regular neighbourhood & in 9(Ax, X). If N’

is any other regular neighbourhood ®in d(Ax, X), there is an isotopy

of d(Ax, X) relatingN andN’ and this can be extended Aq, to give an 212
end resultfy, with f1(N) = N’. ThenJ#;, has its new handlef(H, f1T)
whose transverse tube M.

8.4.2 Let (H1,T1) be a k+ 1)-handle of77, with an attaching sphere
2. ThenTy is a regular neighbourhood ¢f in d(Ax, X). If T] is any
other regular neighbourhood pfin d(Ax, X) we can obtain a polyhedral
equivalencef, of Ax which isotopic to 1 fixingX, such thatf,(T;) =
T;. Then 2% (which is isomorphic to%”fgl) will have its k + 1)-
handle corresponding télg, T1) to have attaching tubg/, and handles
of index < k will be unchanged.
Combining 8.4l and8.4.2, we have

Proposition 8.4.3. Let 7 = (A_1,...,An) be a handle presentation
of the relative n-manifoldM, X); let h be a k-handle an®k a (k + 1)-
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handle with a transverse spherelpbeing S and an attaching sphere
of & being),. Let N and T be regular neighbourhoods of S gndn
0(Ax, X). Then there is a handle presentatigff’ of (M’, X’) is equiva-
lent to (M, X) with #” being isomorphic ta##; for some f: Ax — A
isotopic to the identity leaving X fixed; so that#f’ the handle$’ and
K’ corresponding td and & are such that:

the transverse tube of is N,

the attaching tube at’ is T, and
the K" level A of /#” is equal to the
kM level A of 7.

Proof. Using the equivalenced; and f, given by[BZ4] and"84.2,
(#4,)% is the required presentation. It is isomorphic to the prsen
tion ,%’ffilfl) of (M, X). Since bothf; and f, are isotopic to the identity
leaving X fixed, fz,‘1 f, has the same property. The last point is obvi-
ous. i

8.4.4 Let® = (H,T) be a k + 1)-handle ofs#, andS an attaching
sphere ofR. S is in 9(Ax, X). Suppose tha®’ is anotherk-sphere in
d(Ax, X) and that there is an equivalent®f A taking X onto itself and
such thatf(S) = St. Then ins#", the handle’? corresponding t&

will have St as an attaching sphere. If, for example, we can go from
S to St by cellular moves, the we can obtain an equivalefaaf Ay
isotopic to 1 leavingX fixed and withf(S) = S*. This will also be used

in cancellation of handles, where it is more convenient teehaertain
spheres as attaching spheres than the given ones.

8.4.5 Leth be ak-handle in a handle presentatioff = (A_1,...,An)
of a relativen-manifold. Then ifk < n — 2, there ish isotopic to
the identity,h : Ax — Ay, leaving X fixed, such that the handlg
of J#, corresponding td has a boundary core (A, ,, X) where
= (A g A

(Reader, have faith that this is usefull)
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We prove this by choosing attaching spheres for all the ()-
handles, finding a transverse spherelftirat intersects all the attaching
spheres only finitely, noting that the transverse spherd¢agu other
points, and then shrinking the attaching tubes and theweass tube 214
conveniently. More explicitly.

LetKy,...,Rp be the k- 1)-handles of’7, with attaching spheres
Si1,...,Sp. Let N be the transverse tube of there is a polyhedral
equivalencef : N ~ D*xA™ K so that for any € int DX, f~1(kxdA")
is a transverse spherefb. Now, (S1U...USp)NNis (< k)-dimensional,
and so, triangulating prgk - f so as to be simplicial and pickingin
the interior of ak-simplex of DK (sedZ.2-14), we have found a transverse
spherey, = f1(xx 0A™K) to b, such thaty, N(Sy U ... U Sp) is finite.
Now, > is an i — k — 1)-sphere; and sinde< n - 2, contains infinitely
many points; there ige >, —(S1 U ..., USp).

Now then, if we take very thin regular neighbourhoodsXhfS1,

..., Spin d(Ay, X) the regular neighbourhood df will intersect those of
Si1,...,Spin only small cells near each point of intersectionydf(S1,

..., Sp), and hence there will be a cross-section offhraeighbourhood
[i.e., corresponding t®X x z, z € A" K, (x,2) = f(y)], throughy, not
meeting any of th&s; neighbourhoods. We make these regular neigh-
bourhoods the transverse tubey@ind the attaching tubes 81, ..., &,

by changings# to (7,)%, whereg; andg, are equivalence8y — A
isotopic to the identity, fixing<. In (7,)% we have a boundary core
of the handle corresponding towhich misses all the attaching tubes
of the k + 1)-handles (this is that “cross-section through We de-
fine h = g;*g1: and sinces#, is isomorphic to ¢7)%, we have some
boundary core of! whenp?! is the handle corresponding towhich 215
does not intersect the attaching tubes of all the ()-handles, and is
therefore ing(A,, ;. X).

8.5 Cancellation of handles

Convention: Let us make the convention that a submanifold of another
manifold should mean this:
If A c B, AandB are PL-manifolds, we calh a submanifold oB,



176 8. Handles ang-cobordism

if and only if, An dB is (dimA — 1)-submanifold obA. We are usually
in this section interested only in the case dim: dim B.

With this convention, ifA is a submanifold oB, thenB - A is a
submanifold ofB, andbdg(A) = bdg(B- A) = 0A-9B. If C c B C
A all PL-manifolds such that each is a submanifold of the nthén
A-(B-C) = A- BUC. We may therefore be justified somewhat in
writing A — Bfor A— B.

Thus, hereafterA is a submanifold o8 means thaf\ is a submani-
fold of B in the above sense, and in that c&se A stands foB — A.

Let 77 = (A_1,...,A) be a handle presentation of a relative
manifold (M, X). Leth = (H,dH — N) be ak-handle with transverse
tubeN, and® = (K, T) be a k + 1)-handle with attaching tube. Note
thatN U T c d(A, X) with the above conventions we can write

Ac+h=((Ac-Dh)UK)UH.
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a transverse sphere of f

OH - N

an attaching
sphere of ¢

¢ is attached to Ay by T

Definition 8.5.1.We say thabh and& can becancelledif
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(1) NN T is a submanifold of bottN andT
(2) N=(NNnT)andT - (NN T) are both i — 1)-cells.

Supposé andK can be cancelled. Then

Assertion 1.(Ax—Db) nK is an f— 1)-cell contained id(Ax — b, X) and
in oK.

In fact, A&k —p) N K = T — (N n T), which we assumed to be an
(n—1)-cell.

Assertion 2.((Ax — h) U K) n H is an f — 1)-cell contained ird((Ax —
h) U K, X) and ingH. For

((Ax = b) U K) n H = attaching tube of plusNN'T
=@H-N)UNNT)
=dH-(N-NNT)

and this is anrf— 1)-cell, sincedH is an fi— 1)-sphere andy{—-NNT)
is an 1 — 1)-cell inoH.

Combining these two assertions with proposifion 8.2.1, axeh

Proposition 8.5.2. Supposes” = (A_1,...,Ay) is a handle presenta-
tion of a relative n-manifoldM, X); and there are) = (H,0H — N) a
k-handle, and® = (K, T) a (k + 1)-handle that can be cancelled. Let
% be any neighbourhood of N T in Ac.. Then there is a polyhedral
equivalence

fr(Ac=0,X) ~ (Ac+ K, X)
which is identity outside” .

This being so, we construct a new-handle presentaBon (.., B,)
of (M, X), which we denote by? — (), &) as follows:

B = f(A) for i<k
Bi= f(Ak—D) = Ac+ &
Bi=A for i>k
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This of course depends ohsomewhat observe that, since the at-
taching tubes of thek(+ 1)-handles are disjoint, the attaching tubes of
(k + 1)-handles other thaf are ind(Ax, X) — T c d(Ax + K, X), so that
2 — (b, RK) is a genuine handle-presentation.

8.5.3 (Description of.7# — (b, K)). The number of-handles in7z —
(b, R) is the same as the numberidiandles of77 fori # k, k+ 1. For
i > Kk, eachi-handle ofs7 is ai-handle of 7 — (b, &) with the single
exception of®; and conversely. Fdr< k, eachi-handle of. 77 except
b, say¢, corresponds to thiehandlef(¢) of o7 — (b, &) and conversely
eachi-handle of 77 — (b, &) is of this form. If the attaching tube of
does not interset sonehandle, we can arrangéd|¢ to be identity, so
that? itself occurs in7Z — (b, R).

The conditions foh and & to cancel are somewhat stringent. We
now proceed to obtain a ficient condition onh and &, which will
enable us to cancel the handles correspondirfgaiod & in some.7#;.
This requires some preliminaries.

Suppose, B, C are three PL-manifoldduB c C-4C. dimA = p,
dmB=qganddimC=p+0q,0A=90B=0. Letxe AnB.

Definition 8.5.4.A and B are said to intersedtansversally at x in C 219
if there is a neighbourhoo#& of x in C and a polyhedral equivalence

f:F>Sx > =vwhereS is a (p — 1)-sphere, a(q — 1)-sphere, such
that

Q) f(x)=v

(2 f(ANF)=S=xv

() f(BNF) =Y xv.
Proposition 8.5.5.Let S and}, be(p — 1)-and(q — 1)-spheres respec-
tively and E= S« Y «v. Let D= S v, A = } *v. Suppos&’ is any

simplicial presentation of E containing full subpreseitat ¥ and .o/
covering D andA. Let P=|Ng(2)| and Q= [Ng(7)|. Then

(1) Pn Q is a submanifold both of P and Q and is contained in the
interior of E (B Q and Pn Q are all (p + g)-manifolds)
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(2 P-PNnQN\,PNnJE
Q-PNnQ N\, QnIE.

Proof. First observe that, if the proposition is true for some cenge
of &, then it is true for any centering &. Next, if &’ is some other
presentation o such thaD andA are covered by full subpresentations,
it is possible to choose centerings éfand &’ so thatP = P’ and
Q = Q. (P, Q denoting the analogoues &fand Q with reference
to &’). Thus it is enough to prove the proposition for some suitabl
presentations” of E and a suitable centering 6. Now we choose&™”
220 to be a join presentation & = S * ) «v and choose the centering so
that (se€6.813 and the remark thereafter)

P'Q =IS(v.d") = Cy(S= D).
P-P NnQ =(P" NJE) x [%, 1], and
Q-PNnQ =(Q NndE) x [%,1].

And in this case (1) and (2) are obvious. m|

Proposition 8.5.6. Suppose A and B are spheres of dimensions p and g
respectively, contained in the interior of(a + g)-manifold C and that

A and B intersect at a single point x transversally in C. Theare are
regular neighbourhoods N and T of A and B in C, such that

(1) NN T is a submanifold of both N and T
(2) N—=(NnT)and T— (N NnT) are both(p + g)-cells.

Proof. Let F be the nice neighbourhood afin C given by[8.5.} i.e.
there is a polyhedral equivalende: F ~ E = S = ) «v whereS is a
(p—1)-sphere an{l’ a (q—1)-sphere, such thd(x) = v, f(ANF) = Sxv,
andf(BNF) = Y +v. Then A—F)isa (p- 1)-celland B-F) is a
(g - 1)-cell. Lets and &1 be triangulations of and E such thatf
is simplicial with reference t¢#; andé1. We can assumé; contains
full subpresentations covering = v and Y’ «v. Now some refinement
< of ¥ can be extended to a neighbourhood”od B, denote it by
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<, it can be supposed tha¥’ contains full subpresentations %2
coveringA, Brespectively. Let be a centering af”’. Denote by4 the 221
triangulation oft corresponding t¢” by f, and byb the centering of
corresponding tg|.”. ChooseN = [N.o/(a)] andT = |No(%)|; and let
P, Qbe asif8.515. IP; = f1(P), Q; = f(Q), thenP; = (P1NQy) \,
P1ndF andQ; — (P1 N Q1) \y Q1 NIF. ClearlyP; c N, Q1 c T are
submanifolds andN N T = P; N Q;. ThusN N T is a submanifold of
bothN andT. N-(NNT) = N=(P1n Q1) = (N-P)U(P1-(P1n Q1))
collapses tol{l — P;) sinceP; — (P1 N Q1) collapsed1 ndF c (N —Py).
But N — P is a regular neighbourhood éf—- F in C — F which is a
(p—1)-cell. ThusN - (NNT) \, N-P; \, A—F which is collapsible.
ThusN — (N NT) is a collapsible p + g)-manifold, hence ag+ qg)-cell.
Similarly T = (NN T)is a (p+ g)-cell. O

Definition 8.5.7.Let 7 = (A_1,...,Ay) be a handle presentation of a
relativen-manifold (M, X). Let be ak-handle and&k be a k+ 1)-handle
of 7. We say thatlf, ) can be nearly cancelledithere is a transverse
sphereS of h and an attaching sphege of & which intersect a single
point transversally id(Ay, X).

Proposition 8.5.8. Supposes” is a handle presentation of relative n-
manifold (M, X), h a k-handle and® a (k + 1)-handle ins7. If h and
& can be nearly cancelled, then there is a polyhedral equivadef :
Ax — A isotopic to the identity leaving X fixed such that, J#% the
handlesy’ and &’ (= &) corresponding td and & can be cancelled.

Proof. Follows from[8.4.B anf 8.3.6. m|

8.6 Insertion of cancelling pairs of handles

222
In this section we discuss the insertion of cancelling pafreandles
and two applications which are used in the following sedidfirst we
form a standard trivial pair as follows:
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N
>

1

AN

|
1 1
1
1

/' Hy /
0
1 \

MANN

NNN—

Let D be ak-cell, | = [0,1] andA an (h — k — 1)-cell. ThenE =
D x| x Ais ann-cell. Let

Hy = Dx[%,l]xA
lean[%,l]xA
Clearlyh = (H1, T1) is a handle of indek. Next, let
1
Hy = Dx[O,E]xA
1
T, =0{D x [0, E]} x D
1 1
={(Dx0)u (D x E)U(GDX[O,E])}XA.
Clearly, 8 = (H2,T) is a handle of indexk(+ 1). Finally, letF
denote Dx0xA)U (@D x1xA). (Dx0xA)N(@DxIxA) =dDx0xA
223 is an f — 2)-manifold, hencd- is an g — 1)-manifold. MoreoverF is
collapsible, hence it is am( 1)-cell.
Now, letsZ be a handle presentation of a relativenanifold (M, X);

we take anif — 1)-cell F” in d(Ax, X) away from thek-and K + 1)-
handles. That i&’ is in the common portion a¥(Ax_1, X), (A, X) and
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0(Axs1, X) and clearly it is possible to choose suchFnf (k+ 1) < n,
that isk < n— 2. Now we take some equivalenge F ~ F’ and attach
E to A by a. Denote the result by U E. SinceE is ann-cell meeting
J(A, X) in an (h— 1)-cell F’, there is an equivalence: Ax ~ AxU E
leaving X fixed. Then we get a new handles presentatBn (.. ., Bp)
of (M, X) as follows:

B = fi(A), for i<k

Bc = f (A +b)
Bi=A for i>k

Next we consider the problem of attaching a cancelling pak-o
and k + 1)-handles §, &) to Ak, with b having a prescribed attaching
sphere. We recall from Chaptier [7{]7.2) that a sphere in thegiantof
a PL-manifoldN is unknotted (by definition) if it bounds lecell. In
such a case it bounds an unknotted cell (again in the selsg)ofif’S
andS’ are two unknotted-spheres in the same componenf\bf 9N,
then there is an isotoply of N leavingN fixed such thah;(S) = S'.
Similarly if D andD’ are two unknotted-cells in the same component
of N — 9N, there is an isotopy di taking D onto D’. Similar remarks
apply in the case of relative manifolds also. 224

Now consider justy, let F’ be any — 1)-cell ind(Ax, X) and form
A U E by an equivalencg : F ~ F’. ConsiderS = dD X a X €,
where% < a < lande e A—0A. S is an attaching sphere §f and
> =0(Dx[0,3]}xe

:{(DxO)U(Dx%)Uan[O,:—ZL]}xe

is an attaching sphere &f
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|
! S
|
“
- /F ——————————— b - e -
:/’I .
//:---: ------------ T- ------ :k/C
X 'E/——r:
I —> /"' ___________ T T
A__)///. ...................
D/

And {D x 0U D x [0,a]} x e = C, say, is &-cell boundingS =
0D x a x €, an attaching sphere of Moreover

1
CmZ:{DXOUan[O,E]}xe

:C—an[:—ZL,a] X e
= C - (aregular neighbourhood & in C).

Finally C is unknotted irnF.
The result of all this is, iAis a k—1)-sphere bounding an unknotted
225 k-cell Bin d(Ax, X), then we can attach a cancelling paikeand +1)-

handles §, &) such thatA is an attaching sphere §fand an attaching
sphere off intersectsi(Ax, X) in B - (a given a regular neighbourhood
of Ain B). This can also be seen as follows:

Let L be an i — 1)-cell, A a (k — 1)-sphere inL bounding an un-
knottedk-cell B in the interior ofL. Let M be ann-cell containingL in
its boundary. We may joirh andB to an interior pointv of M and take
second derived neighbourhoods. ltebe a second derived neighbour-
hood of A= v andK be the closure of [second derived neighbourhood of
B« v—H]. Then H,H nL)is ak-handle, andK, (K n H) U (K N L))
is a Kk + 1)-handle. Thek-handle hasA as an attaching sphere, and
an attaching sphere of th& ¢ 1)-handle intersectk in (B - a regular
neighbourhood oA in B). Thus we have,



8.6. Insertion of cancelling pairs of handles 185

8.6.1 Let.Z = (A_1,...,An) be a handle presentation of a relative
manifold (M, X) and letS c d(Ax, X) be a k — 1)-sphere which bounds
an unknotted cell in d(Ax, X). Then there arekehandlef) and a k+1)-
handlef, such that

(1) Sis an attaching sphere bf

(2) There is an attaching sphefeof & with 3, NA¢ very closed to
T, that is}, NA¢ can be assumed to b& ¢ a prescribed regular
neighbourhood o8 in T).

(3) ((Ax, X) + b) + K exists and is polyhedrally equivalent t&( X)
by an equivalent which is identity outside a given neighbood 226
of T in Ax.

If Sisind(Ax_1, X) N d(Ax, X) we can choos# to have its attaching
tube ind(Ax-1, X), so that there is an obvious handle presentation of
((Ax + D) + &, X). We give below two applications of this construction.

8.6.2 Trading handles. Let 57 = (A_1,...,Ay) be a handle presenta-
tion of a relativen-manifold (M, X). Let p; be the number of-handles
in 2. Suppose that there is & ¢ 1)-handle¢ (2 < k < n-1)
with a transverse spherg, and that there is ak(— 1)-sphereS in
0(Ak-1, X) N 9(Ax, X) such that (1)S is unknotted ind(Ax, X), (2) S
intersectsy, transversally at exactly one pointdAx_1, X). Then there
is a procedure by which we can obtain another handle presentg””’
of (M, X), such that (a) for # k—1 ork + 1, the number of-handles in
2 is equal to the number ofhandles in#”, (b) the number of— 1)-
handles in’Z” is pk-1) — 1 (c) the number ofk + 1)-handles i7" is
Pk+1) + 1. This is done as follows:

First consider onlyAc. Applying [B:6.1, we can add téx a can-
celling pair ofk- and k + 1)-handles i, &) such thatS is an attach-
ing sphere ofj, and the attaching tube @ is in (A1, X). Write
(Ax + b) + & = B. Then the relative manifoldB, X) has the obvious
handle presentatiot¢” = (B_1, ..., Bk:1) where

Bi=A, for i<k-1
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Bc=Ac+D
Bki1 = (Ak+Dh)+ 8 =B.

In &, the handleg and} can be nearly cancelled. Hence for some
equivalencef of A¢_1, isotopic to identity and leavin¥ fixed, in ¢,
the handleg” andly(= b) corresponding t& andf can be cancelled.
Let.z"” = 2/ - (v',t’). " is a handle presentation oB,(X); the
number ofi-handle in.z” fori < k- 1 is p;, the number of K — 1)-
handles is#” is px_1—1, the number ok-handles ik and there is one
(k + 1)-handle. Also there is an equivalenee Ax — B which can be
assumed to be identity ne&r Thus we can pull backs”’ to a handle
presentation’#” of (Ay, X) by o L.

Now, we would like to add thex( k+ 1)-handles of#Z to 7 to get a
new handle presentation dfi( X). But it may happen that the attaching
tubes of theK+ 1)-handles of/Z intersect the transverse tubewf (})
which is ind(Ax, X). However, we can adopt the proceduré_0f 8.4.5, to
get the desired type of handle presentations as follows:

Let &Y, /5D, qiD) be the k + 1)-handles of#, with at-
taching tubesTy, Ta, ..., Ty, respectively. Choose some attaching
spheresS;, ..., Sp,,,, of these handles, and then a transverse sphere
Y, of @™ 1(]) avoiding Sy, ..., Spuy- This is done in the same way as
in 843, using the product structure of the transverse tiilae}(K) as
D*1 x A"™*-1 and noticing that théS; are nowk-dimensional. Then
choose a regular neighbourhobd of }; which does not intersect the
Si’s and do a modification of tyde8.4.1 so that, for sognén .7 the
handleR’ correspondingr~1(R) hasN; as its transverse tube. Now
choose regular neighbourhoo@isof S; in 9(Ax, X) such thall/ NNy = 0
foralli andT/ N TJf = ( for alli, j, i # j. There is an equivalengg
of Ay isotopic to the identity leavinK fixed such thag(T;) = T, for
all i. Now attach the handlé'sl(k*l) to A not by the inclusion off; but
by B|Ti. Then we obtain a relative-manifold say C, X) and a genuine
handle presentation sa¥; of (C, X). Moreover the equivalenggof Ay
can be extended to an equivalerg; of Ax,1 with C. Now pull back
#7110 Aki1 by (Brs1) L. In the handle presentatiofi 1) 2(#1) of A1
there are handles only upto inddk« 1); so that the handle of index
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> k + 2 of s can be added as they are to get a handle presentation of
(M, X) of the derived type.

8.6.3 The second application is concerning the maps in the homiotop

groups:mk(Ax, Ax_1) i m-1(Ax_1, A_2). It will be seen later that under
suitable assumptions, these are fleemodules with more or less well
defined bases. The problem is to find handle presentationstimh

the matrices oby’s with reference to preferred bases will be in sonme9
convenient form[{8]9). Here we describe an applicatioh &fIBwhich

is useful for this purpose.

Let N be a PLn-manifild, and assume thahl is connected. Léiq,
ho be twok-handles (2< k < n— 2) so thatn > 4) attached tdN. If
we choose a cell idN intersecting the handles as “base point”, any at-
taching sphere df; () determines a well defined elementrig 1 (ON).

Let the elements im_1(dN) determined by, andh, bea; anda,. Let

0 be an element of1(0N). Imagine that the handles are in the form
bi = (Dj x Aj,0D;j x A)), D ak-cell, Aj an (W — k)-celli = 1,2. Let
pi € dA;. Then, we have surface cor€s = D; x p; of b, and repre-
sentativesS; = dD; x p; of ¢j. Let P be a path between a point 8f
and a point ofS, in N representing. Sincen > 4, we can assume
that P is an embedded arc, and sinke< n — 2, that it meets each;
at exactly one point. NowW appears also as an arc joiniftlg andCo.
ThickenP, so that we have am 1)-cell Q which intersect&; andC,
in (k — 1)-dimensional arck; andE, with E; = dC; n §Q. We can be
careful enough to arrange f&; to be unknotted idQ, so that there is
ak-cellF c Qwith 9F N 9Q = E1 U E».

The composite objed; U F U C, is now ak-cell with boundary
(S1 - E1) U[OF — (E1 U E2)] U (S2 — Ep), which represents ing_1(dN)
the elementr; + 6ap. The sign depends dn, and we can choode so
as to have the prescribed sign (see Chdpter 7). Moreoverma&ssame
thatC, U F UC; is unknotted imd((N + b1) + by)). StretchC;UFUC,a 230
little to another unknotte#t-cell T so thatS = 4T c (N - union of the
attaching tubes dj; andly). That is, we have &(- 1)-sphereS in 6N
representingr, + efa> (e = =1, prescribed) and bounding an unknotted
cell T in (N + by + b)) andS is away fromp; andh,. We now add a
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cancelling pair ok- and k + 1)-handlesh and &, so that an attaching
sphere ofy is S and an attaching sphere 8fintersectsH)((N + b1 + bp)
alongC; U F U Co.
Now,
N+Dby+bh2~ ((N+by+bh2)+b)+8

But thenh; and& nearly cancel, since attaching spheretahter-
sects a transverse spherehpfexactly asC; does, that is, at one point,
transversally. So that, after an isotopy we can find & {)-handlef’
such thaty; andf’ actually cancel. Thus

(N+Dr+b2) +h+ R = (N+Dhr+ b)) +h+ &
~ (N + b2 + D).

We have proved,

Proposition 8.6.4. Let N be a PL n-manifold, with connected boundary
ON; n > 4. Leth; and b, be two handles attached to N, and, a»

be the elements im._1(0N) given byh; andb,; and 6 be an element of
n1(0N). Then there exists a handjevhich can be attached to N, with its
attaching tube away frorm andb, so that N+ 1 + b2 ~ N+b+ by, and
the element ofy_1(0N) represented by is a1 + 8ay, sign prescribed.

Remark 1. Some details, such as thickening Bf choosing certains
cells so as to be unknotted; are left out. These are easy ifg using
our definition of unknotted cells and choosing regular niemirhoods
in the appropriate manifolds. There is another point to khétat the
homotopy groups can be defined with cells as ‘base pointshaowve
can get away without spoiling the embeddings (of attachpiteres in
appropriate dimensions), when forming sums in the homotppyps
or the action of an element of the fundamental group.

Remark 2. InB.6.3, instead of the whole &N, we may as well take a
connectedr{ — 1)-manifoldN" in N and do every thing in its interior
of course, nowry, az € mr_1(N’) andd € w1(N).

Remark 3. The proof can also be completed by observing $hahdS;
differ by cellular moves inN + by).
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8.7 Elimination of O - and 1-handles

The first thing to do is to remove all handles of index 0, and dttain a
stage wherer1(Ay) ~ m1(M). At this point we can interpret;(A;, Ai_1)
and so on as homology groups in universal covering spaceshisd
helps things along.

Proposition 8.7.1.Let(M, X) be a relative manifold, M connected,*
0, and 57 a handle presentation diM, X). Then all theO-handles of
¢ can be eliminated by cancelling pairs @f and 1-handles of77 to

obtain a handle presentation ¢/, X) free of0-handles.

Proof. A 0-handleh = (H, 0) and a 1-handI& = (K, T) cancel if only if 232
the attaching spherg of & intersectd) in a single point; for the attach-
ing tubeT of K consists of two disjointr{ — 1)-cells, and the transverse
tube offy is 9H, and so what we need is for exactly one of the {)-cells

of T to be indH. So all the 0-handles of# which are connected t&_;

(# 0, sinceX # 0) by means of 0- and 1-handles can be eliminated. But
every 0-handle must be one such; forifs a 0-handle of7Z which is

not connected té\_; by 0- and 1-handles, thehtogether with all the

0- and 1-handles connected to it will form a componen#pfvhich is
totally disjoint fromA_;. ThusA; has at least two components, and so,
sincemrg(A1) — mp(M) is an isomorphism, we have a contradiction to
the assumption tha#l is connected. O

For the next stage, we need a lemma:

Lemma 8.7.1. A null homotopicl-sphere in the interior of a PL-man-
ifold M of dimensiore 4 is unknotted.

Proof. Let S be a null homotopic 1-sphere in the interior . We
have to show tha® bounds a 2-cell irM. Let D be a 2-cell, andr an
equivalence obD with S. SinceS is null homotopica extends taD.
Approximatea by a mapg in general position such thgioD = «|dD,
andp(D) c int M. The singular se$,(B) of g consists of finite number
of points andS3(8) etc. are all empty. So we can parti@3(8) into

two sets{ps,..., Pm}, {1, ..., 0Gm} Such thai3(p) = B(g), 1 < i< m
and there are no other identifications. Choose some jpaamtdD and
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join {p, p1,..., pm} by an embedded arewhich does not meet any of233
theg’s. Let N be a regular neighbourhood ¢fin D, which does not
contain any of thej’s. N is a 2-cell.

LetNND=0NNnoD =L,dN-L =K,andD - N = D’. SinceL
is a 1-cell,K is also 1-cell, and’ is a 2-cell. AndB|N as well ag3|D’
are embeddings. $8(0D’) is unknotted inM. But by[Z1.6, there is an
isotopy carrying3(L) to 8(K) and leaving3(dD’ — K) fixed, that is, the
isotopy carriesS ontog(dD’). HenceS is also unknotted. O

Remarks:

(1) The same proof works in the case of a null homotapsphere in
the interior ofa > (2n + 2)-dimensional manifold.

(2) The corresponding lemma is true in the case of relativeiiolds
also.

(3) If Siis in M, then the result is not known. It is conjectured by
Zeeman, that the lemma in this case is in general false (ethei
case of contractible 4 dimensional manifolds of Mazur).

Proposition 8.7.2. Let 7 = (A_1,...,An) be a handle presentation
without 0-handles of relative n-manifol@M, X) and letr1(M, A_;) = 0.
Then by admissible changes involving the insertio@-@fnd 3-handles
and the cancelling of- and2-handles, we can obtain frog?’ a handle
presentation ofM, X) withoutO- or 1-handles, provided & 5.

Proof. Let) be a 1-handle ofZ. By[B 45, we can assume that there is
a surface core dfin 9(Az, X).
Becauser;(M, A 1) = 0, thenr1(A2, A1) = 0 (from the homotopy
234 exact sequence of the tripl&( Ay, A_;) and soC is homotopic leaving
its end points fixed to a path iA 1. d(A_1,X) c A_; is a homotopy
equivalence (we are confining ourselves to the special desd&3).
So we get a map, whei2 is a 2-cell

f:D— Ay—intA;

with 9D > C, such thatf (0D — C) c 9(A_1, X) and f|C = Idc.
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Now in the & 4)-manifold 9(A_1, X) the removal of the attaching
tubes of the 1-handles does not disturb any homotopy of diiloeg 2,
so that, we can arrange for

f(0D — C) c d(A_1, X)- (attaching tubes of 1-handels)
Cc 0(A1, X) (sinceA_1 = Ay).

Likewise ind(Aq, X), the removal of the attaching tubes of 2-handles
can be ignored as far as one-dimensional things go, so thaaweas-
sume

f(9D - C) € d(Ag, X),

and thatf|0D is an embedding. Also, we can arranfyéD) to intersect
b precisely alongC.
Finally, then we have

f:D— Ao
with (D) c d(Az, X) N d(A1, X)
fIC =1dc, and thisis the only place where

f(0D) intersectsh. Hencef(dD) intersects atransverse spherehait
eactly one point transversally.

Now, upto homotopyA; is obtained fromd(A,, X) by attaching
cells of dimensionsn(— 2) and q — 1) [cf. duality[B8]. Sincerf— 235
2) > 3, m(A2, (A2, X)) = 0. Thus the magf can be deformed into
d(A2, X) leaving f|oD fixed. Thus the 1-sphergdD) is null homotopic
in 9(Az, X), hence by Lemm@8.4.1 it is unknottedd(,, X). Now we
can apph8B.613 to tradi for a 3-handle. We can apply this procedure
successively until all the 1-handles are eliminated. Sincthis pro-
cedure, only the number of 1-handles and 3-handles is chamgéhe
final handle presentation o, X) there will be no 0-handles eithero

Remark. If (M, X) is ¢-connected and+ 3 < n, we can adopt the
above procedure to get a handle presentatiodvb) without handles
of index< ¢.
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8.8 Dualisation

In this section, we discuss a sort of dualization, which efulsn getting
rid of the very high dimensional handles.

Let (M, X) be a relativen-manifold (remember that we are dealing
with the special caeX and f1— 1)-submanifold obM), and let>7 be a
handle presentation ol{, X). Consider the manifolt¥1* obtained from
M by attaching a collar ovei(M, X) (= dM — X by the notation of 815).

M* ={M U (M - X) x [0, 1]}
identifying x with (x, 0) for x e M — X. Let

M =M*"-A4
X* = {(OM = X) x 1} U {8(OM — X) x [0, 1]}
and X" = (M - X)x 1.

o

-4 LLLBis.- - -

236
We consider 1%, X*) as a dual of i1, X). Now # gives rise to a
handle presentatio”” = (B_1, ..., By) of (M*, X*) as follows:

B_1 = (AM — X) x [0, 1]
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Bk=M" - Ap k1
=Bra+by -+ by

Whereb,, .. - Dpy are the O — K)-handles of7. This o7*, we
will call the dual of.7#. The number ok-handles in7# is equal to the
number of fi — k)-handles inz#*.

Now,

AM* = X* UH(A_1, X)
so that 9(M*, X*) = 9(A_1, X).

SinceA_; is a collar oved(A_1, X), this shows thatNl, X) is a dual 237
of (M*, X*); and with this choice of the dual pai#’ is the dual of>#*.

Given any handle presentatiod” = (C_4,...,C,) of (M*, X*) with
C_1 = B_1, then we obviously get a handle presentatisii of (M, X).
Even if C_; # B_;, we can get a handle presentation bf, K) whose
number ofk-handles is equal to the number of{ k)-handles of’#2” as
follows:

Let X* = (M, X) x 1. In M*, C_1 N\, X* and X* \, X, (both)
homogeneously. Sindgé_; is a collar overX*; by using the theorems
about cells in spheres and cells in cells, we see ¢hatis bicollared
in M*. MoreoverC_; is a neighbourhood oX* in M*. Hence by the
regular neighbourhood theore®, ; is a regular neighbourhood &f*
in M*. ButB_; is also a regular neighbourhoodXf in M*. Therefore,
there is an equivalence of M*, fixing X*, with f(C_;) = B_;. Since
f(OM*) = 0M*™ andC_; N dM* = B_y n oM™ = X*, f mapsX* onto
itself, and agM* = XU X*, f has to mapX onto itself. Now the desired
handle presentation off, X) is given by

D.1= f(Aq) (sinceA s\, X F(A 1), F(X) = X)
Dk = M* - f(Chk-1)
= D1+ (F(R2))" + -+ + (F(Rppy )"

wherefy, ..., RKpp are the f — k)-handles of’".
Thus
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8.8.1 If there is a handle presentation dfl{, X*) without handles of 238
index < n — ¢, then there is a handle presentation bf, K) without
handles of index ¢. This gives:

8.8.2 Theorem$& A anfB imply Theoreld C.

SinceX — M is a homotopy equivalence ang(M) ~ m1(0(M, X)),
using duality in the universal covering spaces, thaHiM*, X*) ~
HM™(M, X) = 0, we see thaX* — M* is also a homotopy equiva-
lence. Ifn > 6, then we can find a handle presentation Mg (X*)
without handles of index 6 — 4 = 2 by TheorenlA. Hence we can ob-
tain handle presentatiog?” of (M, X) without handles of index n— 2,
that is, with handles of index n — 3 only. But then, by Theorefl B,
ast(M, X) = 0, we can get fromsZ a handle presentation ofA, X)

without any handles, that gl \, X.

8.8.3 If n = 5, and M, X) is a h-cobordism, then there is a handle
presentation of N1, X) with only 2- and 3-handles.

Ex. 8.8.4.A (compact) contractible PL 2-manifold is a 2-cell.

8.9 Algebraic Description

We have already remarkdd{813.7) that there is a certaitbgestruc-
ture associated to a handle presentatith= (A_1, ..., A,) of a relative
n-manifold (M, X). We suppose now thai\, X) is a special case, and
that there are no 0- or 1-handles#f(A_1 = Ag = A1). Alson > 3 and
m1(X) — m1(M) is an isomorphism. This we will call Hypothesis

8.9.1 Inthis case, the maps

m1(X) = m1(A1) — ... = m1(An)

are all isomorphisms. The reasei(A1) — 71(Ap) is an isomorphism
239 is thatm1(X) — m1(M) is an isomorphism angdi(A1) — m(A2) is a
surjection. We identity all these groups and cait.it
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Now, the groups
Ci = mi(A, A1)

are identified withH;(A;, A._1). They are free modules ové&@r with
bases corresponding to handleﬁ?{b('), .. .,b(,;)} are thei-handles, the
basis ofC; is denoted by[bg)], e, [bgi)]} and the elements of this basis
are well defined upto multiplying by elements.

If f:Ax— Agisapolyhedral equivalence isotopic to the identity, it
is easily seen that the algebraic structures already @estcfor.s2” and
¢ may be identified.

In addition, we have a map

Ok : Cx — Cr1

which is the boundary map of the triplé&y, Ax_1, Ax_2). This is also
unchanged by changing?’ to ;.

If there are no handles of indexk — 2 andr_1(M, X) = 0, we see:

First, m_1(Ax, Ax_2) = 0, and hence from the exact sequence of the
triple (Ax, Ax_1, Ax_2) the mapdy : Cx — Cy_1 is surjective.

Dually, if there are no handles of index k and (X, X) = 0, we
have

Ok : Ck » Cx_1 to be injective.

240
Now, the boundary mag plus the bases &y andCy_; determine
a matrixBy in the usual way. That is, if

Pk-1)

a(o®1) = > aij 0%, iy € Zn

=1
thenBy is the px X p-1) Matrix

@11 @12 ... @lpgy
21 a2?2 e QZ,p(kfl)

ap 1, Ap2 oo Apepes
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If we choose a dferent orientation of core clfi(k), then bi(k)] is re-
placed by - [)i(k)] (in the basis ofCy) so that theé' row of By is multiplied
by —1. If we extend the handllék) along a path representinge =, then
[bi(k)] is replaced byy[bi(k)], so that tha'™ row of By is multiplied bya.
Thus, by diferent choices of orientations of cores and paths to the “base
point”, we can chang8y somewhat. There is another type of modifica-
tion which we can do omBy: that is adding a row oBy to another row
of Bk. This is done by using8.8.3 as follows:

Consider t\Nd(-handIeSI)i(k) andbg") of #7,and let2< k < n-2. We
now apph8.6B (Remark 2), withy_; = N, (A1, X) = N’, I)i(k) = b,
bﬁk) = I),. This gives a new handig¥, away frombi(k) andbgk), such that

A1+ 50 4589~ Ay + 5 + b

andd[b], with proper choices, now representék)l] + e[bgk)], (sign pre-
scribed), inm_1(8(Ax-1, X)). Also, we can assume thigf is away from
the attaching tubes of the other handles, so that

B=(Ac1+5%) +b% (otherpk-handles o)
v

zA‘(?

andy can be assumed to be identity &n

Now (B, X) has an obvious handle presentatigh= (B_1,..., By),
where

Bi = Aji<k-1
By = B.

Thek™ boundary map of#, with the appropriate bases, has a ma-
trix which is the same aBy except fori!" row, which is now replaced
by the sum of theé" row + (6) times thej™ row, corresponding to the
relation

91®] = 9[5®] = 9o ]

We pull 2# to a handle presentatia#” of (Ax, X) by . In ¢ and
£, the matrices of the boundary maps are the same if we choese th
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corresponding bases. And” can be extended to handle presentation
2" of (M, X) by adding the £ k + 1)-handles as they are. By doing a
finite number of such changes, we have

8.9.2 (Basis Lemma). .Z is a handle presentation satisfying 8l Bi,
is the matrix of thek boundary of map ot%”l(ksn‘z), with respect to
bases corresponding to handles. Given py px matrix E which is
the product of elementary matrices, théa handle presentatios”” of

(M, X) satisfying[8.9.11

(1) the number of-handles ins# is the same as the number iof
handles inz#”, for all i, and

(2) the matrix of thek™ boundary map of#” with appropriate bases
corresponding to handlesis- By.

As an application of the “Basis Lemma”, we will prove a propos
tion, usually known as the “Existence Theorem liecobordisms”. Let
M be a PL f—1)-manifold; M compact, with or without boundary. The
problem is to produce a Ph-manifold W containingM in its boundary
such that\\, M) is ah-cobordism with prescribed torsion.

Proposition 8.9.3. If the dimension of M is greater thaf) then given
anytg € Wh(ry, (M)), there exists a h-cobordis(iV, M) with 7(W, M) =
T0-

Proof. Let A = (g;) be a matrix (n x m) representingro. Consider

N = M x I, identify M with M x 0. To (N, M) attachm cancelling pairs

of 2- and 3-handles aneh 3-handles away from these. L@t be the
resulting manifold: and let# be the obvious handle presentation a#3
(W, M); 7 satisfied{89]1. Then the matrix of th& ®oundary map

of # with appropriate bases |g" |. Consider the matrikf % |; this

is a product of elementary matrices. Hence[Dy 8.9.2, we c#airob
new handle presentatios”’ of (W', M) satisfying[8.9.1L, such that the
number of handles of each index is the same#hand.7#”, and the &

boundary map of7” with bases corresponding to handles is

o w2 ar]-[an
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Thus, ifK4,..., 8oy are the 3-handels arid, . . ., b, the 2-handles
of 2, and Ri], [bi] denote the corresponding basis elements, then

o8] =Y aylyl, if i<m
=1

J/]=0 if i>m

Let W be the manifoldV’' — (] 1 U. . .UKom). Let# be the handle
presentation of\{, N) given byb;’s and&;’s for i < m. Then the
boundary map of#” has the matribA. ClearlyM — W is a homotopy
equivalenceA is non-singular). Since, dually we are attaching2 and
n— 3 handles t&(W, M) to getW, andn— 3 > 3, 71(d(W, M)) — m1(W)
is an isomorphism. Henc&\{ M) is ah-cobordism with the prescribed
torsiontyg. O

Again, consider a handle presentatig#i satisfying[8.9.1l. Fok <
n-3, A« is, upto homotopy obtained by attaching cells of dimensidh
to d(Ax, X). This showsr1(d(Ax, X)) — m1(Ax) is an isomorphism for
k < n— 3; and hencd(Aq, X) = d(A, X).

We are interested in the following question:

Suppose &-sphered, c (A, X) represents imrk(Ax, Ax_1) the ele-
ment ] corresponding to a particuld-handle. Then, is there a map
f: > — d(Ak X) homotopic to the inclusion df, in d(Ax, X), such that
fla hemisphere o}’ is an embedding onto a core ig?

We note that(Ax, X) N d(Ax_1, X)

= J(Ax, X) - (transverse tubes d¢fhandles)
= 0(Ax_1, X) - (attaching tubes df-handles)

and sod(Ax, X) N d(Ax_1, X) will have fundamental group if either
(n-k-1)<(n-1)-3ork-1)<(n-1)-3,sothak < (n—-3)is
suficient. This implies

(A X) N (A1, X) = (A, X) N O(Ai 1. X)

Consider the following diagram:
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70 (Pre X), (P X) 1 (A1, X)) — (A A1)

1 0(B K, (A X 0 (A1, X)) — 2> (A )

- !

H@(Be. X, (A ) 0 (A1, ) —= HilBe Ac1).

Herehy, hy are hurewicz mapsdy, i, iz are induced by inclusion
maps, 1 anda, are the maps induces by — M. All the induces
occuring are> 2. a1 anda; are well known to be isomorphimsh;
andh, are isomorphisms since the pairs ake-(1)-connected. By ex-
cision, i3 is an isomorphism. Hence andi; are also isomorphisms.
Therefore, a boundary core dfand . represent the same element in
7k(0(Aks X), 0(Ak, X) N 0(Ax-1, X))

Thus the answer to out question is Yes:

8.9.4 Let 7 be a handle presentation satisfying the hypotHesisi8.9.1.
Let k be an integex n— 3 [or k > 3, 711(0(A, X)) — m1(Ax) is an
isomorphism,k < n - 1]. Then two geometric objects, representing
the same element of (A, Ax_1), also represent the same element of
k(0(Ax, X), 0(Ax, X) N d(Ax_1, X)). In particular, ify, c d(Ax, X) is a
k-sphere, representing the elemdtif mx(Ax, Ax_1); then it represents 246
the elementt]] in m(0(Ax, X), d(Ax, X) N d(Ak-1, X)). This means that
there is a homotopy id(Ax, X) from the identity map ofy, of a map
taking the upper hemisphere Bfin a 1- 1 way onto a (boudnary) core
of h, and taking the lower hemisphere of ird@Ax, X) N 9(Ax-1, X); in
particular the end result gf will not intersect any other handles.

If > is the attaching sphere of & € 1)-handle® anddy.1([]]) =
[b], we have the above situation. We would like to get a suitadae
topy from the above homotopy information, to cancel the temdor-
responding® andf in some.#;. This is provided by the following
lemma. Since the proof of this lemma is rather long and seerhs bf
some general interest, we will postpone the proof to theskastion.
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8.9.5 (Isotopy Lemma). With the hypotheses ¢f_8.9.4, if addition,
n > 6 andk < n- 4, then there is an isotopy #(Ax, X) carrying )’ to
anotherk-sphere})’, such thaty)” intersects a transverse spheré drf
one point transversally and does not intersect the dtemdles.

8.10 Proofs of Theorem§A and B

In this section, we will prove Theorerid A ahdl B assuming tlo¢olsy
Lemma, which will be proved in the next section.

First let us see what are the types of manifolds and presemsat
that we have to consider. Theoré&m A, o 1 is proved i 8J7. So,
we can assumé > 2, and hencen > 6. For TheoreniLBf = n and

247 n > 6, by hypothesis. So again usingl8.7, it is enough to conkigledle
presentations satisfyilg 8.9.1, and in addition 6.

We start with two observations concerning the matrices ef th

boundary maps:

8.10.1 Let .”# be handle presentation satlsfylmg)il),, ... (5.) be
the i-handles of’7. Let By,1 = (ajj) be the matrix of thel(+ 1)t
boundary may,, with respect to preferred bases. That is,

Oks1 [b(k+1)] Zalj[b . aij € Z(n).

Supposeb(lk) and b(1k+1) can be cancelled. Then we have formed a
handle presentatiog?” — (b(lk),b(lk+1)) = (B_1,...,Bp) say, of M, X) as
follows:

Bi=f(A) for i<k

Bi= f(A— 1) = A+ by
Bi=A for i>k

Here f is an equivalenceéy, — b(lk) ~ A+ b(lk+l) mapping X onto
itself. If the attaching tube olj(lk+1) does not intersect any othér
handle except)(lk), f can be assumed to be identity on l#h), i > 2.
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We assume that this is the case. Nl)g??/ e I)(p‘f() are all thek-handles
and b5+, .. p%*D are all the k + 1)-handles of7” — (%, p*1).

P(k+1)
Thus (by abuse of notation))gf) (k)] is a basis ofrk(By, Bk-1)
and 31, b8 D] is a basis ofrk+1(Bk+1, By). Letd;, denote the 248

(k + 1) boundary map of# — (b(k),b(lk”)). Con5|der the following
commutative diagramA,1 = By.1, Ak € Bk, Ak_1 C By_1):

Tt (A1, A) — 1A — (A Av1)

S

o J
1 (Bis1, B) L mie(Bx) —> (B Bi1)

In this diagram, the vertical maps are induced by inclusiba hor-
izontal maps are canonical maps, gndd = dk1, J' 0 9" = 9y, ;. Now

i ([3]) =
iz, ([ 1) = (M) for i=2

and

o (80) =0
iz, (bY]) = (1) for i>2

il

Hence, for > 2,

» ([b(k+1)])
= Oy © 1, ([bi(k+l)])
= 0@ oiy (IH*M))
=iz, 0 ] od([nY])
= i, © der ([0]4H])

= i3 (Z aij [bgk)]]
=
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i (%)

M'o

i=2
249

Thus, if the matrix 0k, 1 is (ij), then the matrix ob,, , is («ij),
i > 2, > 2. This we have as long as the attaching tube(l'fﬂl) keeps
away from the transverse tubes of the hancﬂf@si > 2. (Itis easy to
see thatv1o = ... = agpk = 0, in this case). It does not matter even if
the (%ttaching tubes of othét ¢ 1)-handles intersect the transverse tube
of by,

8.10.2 If f: Ax — Axis an equivalence isotopic to the identity leaving
X fixed, then inz" and.»#, the attaching spheres of the corresponding
(k+1)-handles represent the same elementg(iAy). Since thek+ 1)t
boundary maps are factored througliAy), the corresponding matrices
are the same after the choice of obvious base#’iand.7# ', and hence

in 2 ands7(f71).

Proof of Theorem A.

Step 1.Let.Z = (A_1,...,An) be a handle presentation dfl( X) satis-
fying[B9.1. We are given thaM, X) is £-connected, then we know that
the sequence

mer1(Aer1, Ar) = me(Ar, Armr) — .. ma(A2, Al) = 0

is exact.

Suppose that we have already eliminated upto handles of iinde

Oiv1

1), thatisinsZ, A 1= Ag = = A_1; then by (*), 7, 1(AL 1, A) —
mi(Ai, Ai_1) is onto. LetBj,1 be the matrix pi.1 x pi) of .1 with bases
corresponding to handles. Then, there existpia (+ pi) X (piz1 + Pi)
matrix E, which is the product of elementary matrices, such that

Bii1 :[ |p.

Opi Opi+1spi
If we attach p; cancelling pairs ofi(+ 1), (i + 2)-handles away

from the handles of index (i + 2) to thei® level of 2, then in

E x
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the resulting handle presentatioB_(, ..., By) of (M, X), the matrix of
mi+1(Biy1, Bi) — mk(B;, Bi_1) with appropriate bases is

Bit1
Opi .

Then, by the Basis Lemma, we can obtain a handle presentation
(M, X) satisfyind 891, with exactly the same number of handiesoh
index as above, but ¢ 1) boundary matrix will now be

0pi+1,pi
251

This means that starting froo#’, we can obtain a handle presenta-
tion # = (C_y,...,Cy) of (M, X) such that

Bi+l

E x 0p

(1) 7 satisfie§8.911, and there are no handles of indices 1
(2) the {+ 1) boundary map of#” has the matriy '# |

Now we can eliminate thehandles one at a time as follows:

Step 2.Considen! " andp?-d;,.1 (15" ]) = [o0]; andi < n-4. Hence

by the Isotopy Lemma, there is an equivaleriaaf 9(C;, X), such thatf
takes an attaching sphegg of bg”) to anotheri-sphereS; andS] in-
tersects a transverse sphereb@fat one point transversally. Moreover

it can be assumed thét(attaching tube or)g”)) does not intersect the
transverse tubes of the othiehandles.f can be extended to an equiv-
alencef of C; taking X onto itself and ik’ the handles corresponding
bg) andbg”) can be nearly cancelled. By 8.8, there is an equivalence
g of Cj, so that in (# )9 = @9, the handles corresponding’ and
bg”) can be cancelled. Again, we can require thatf (attaching tube

of bg”)) should not intersect the transverse tubes of hariffleg > 2.
Consider’(ys)-1. This is a handle-presentation &fi(X), and In.%(ys)1 252
the handlesk!) and &) say, corresponding t5!’ and!*? can be
cancelled. By 8.10l1, and sindeandg can be assumed to be isotopic
to identity, the {( + 1) boundary map oft (g1 — (S{g),ﬁg”)) has the
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matrix '“’5“ . Hence, we can go on repeating step 2 to obtain a handle
presentation of N1, X) without handles upto indeix

Thus, inductively, the first part of Theorem A is proved. Theand
part is clear.

Proof of Theorem B: By Theorem A, we can assume that there is a
handle presentatio#Z’ of (M, X) with handles of indicesn(— 3) and
(n—4) only. 2Z obviously satisfieE8.9.1. Consider the map

On-3 : mn-3(An-3, An-4) = mn-4(An-4, An_s).

HereA ; = ... = An_s. Let A be the matrix ob,_3 with respect to
bases corresponding to handlésis a nonsingular matrix, say x m
matrix. Sincer(M, X) = 0, A represents the 0-element\Wih(). Hence
for someqg < mthere exists annf+ @) x (m+ @) matrix E which is the
product of elementary matrices, such that

A O

Now we addj cancelling pairs ofrf{—3)- and —4)-handles td\, s
away from the other handles, so that in the new handle prtsemtsay
2, of (M, X), the (1 — 3)"d boundary map of#” has the matrix

A O

0 'q] '

253 Then by the Basis Lemma, we can obtain a new handle presamtati
7 of (M, X) with exactly fn+ q) handles of indicesn— 3) and 6 — 4)
and no others, and such that the matrix of the-3)"® boundary map
of JZ’ with respect to bases corresponding to handlds.ig. Now,
by a repeated application of Step 2 in the proof the TheoremllAhe
handles can be eliminated so tht\, X.

8.11 Proof of the Isotopy Lemma

We begin with some elementary lemmas.
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Lemma 8.11.1.Let Qc P, Yx A c X be polyhedra, whera is k-cell
anddimQ < kand f: p —» X a polyhedral map. Then the set of points
@ € A such that Q1 f71(Y x @) = 0 contains an open and dense subset
of A.

Proof. Let @ = f(Q) N (Y x A). Then dimQ’ < dimQ < k. The
projection ofQ’ to A does not cover most of the pointsleflimensional
A. Any pointa not belonging to the projection @ to A will satisfy
Qnf(Yxa)=0. O

Lemma 8.11.2.If dimQ = k in the above, then the set of points A
such that @1 f~1(Y x a) is 0-dimensional contains an open and dense
subset of\.

Proof. Triangulate the projection o) to A. If & is the simplicial
presentation ofA with respect to which this map is simplicial, then every
pointa of A — 41| will have the above property iy 4.2. m]

Let f : P —» X be a nondegenerate map, simplicial with respect to
the presentations?, 2" of P, X. Let >.(f) denote the closure of the set
S(f)={xe PAye Py x f(y) = f(X)} (sed&}).>(f) is covered by 254
a subpresentation o, call it 3.

8.11.3 If g is a principal simplex of’, thenf||S (o, £?)| is an embed-
ding.

Proof. Sincef is nondegenerate it map&(o, &) into Lk(fo, 27) and
on|Sto, 2)| itis the join of — fo and|Lk(o, 2| — |Lk(fo, 2)|.
The map|Lk(c, )| — |Lk(fo, 27)| is an embedding; otherwise if
T1 # T2, T1, T2 € Lk(o, &) and fo1 = fop, thenf(ory) = f(o12)
so thatory € ), contrary to the assumption thatis a principal sim-
plex of 3.. Hence the majs (o, £2)| — |S{(f(0), 27)| being the join of
embeddings is an embedding. O

Proof of the Isotopy Lemma for k < n — 5: The situation is: We have
a handle presentatiaf?’ of a relativen-manifold (M, X) which is a spe-
cial case, and7 satisfies the hypothedis 8P.1. We h&vsphereS



255

206 8. Handles ang-cobordism

(what was called; in and_8.915) iM(Ax, X) representingt] in
7k(Ax, Ax_1) where is ak-handle. We deduced [0-8.9.4 that in this case
if kK < n— 3 thereis ahomotophi: S x| — d(A, Z) such thathy =
embeddingS c d(Ax, X) and hzl (transverse tubes of dtthandles) is a
k-cell C which is mapped by, isomorphically onto a core df, so that
hi1(S - C) c d(Ax, X) N d(Ax-1, X).

In the isotopy Lemma, we have further assumed khatn — 4. We
first prove the simpler case whkrx n-5, that is when the co-dimension
of Sin d(A, X) is = 4.

We can by general position suppggéh) has dimensior 2(k+1)—
(n-1)=2k+3-n.

Now b is polyhedrally equivalent t®* x A", with the transverse
tube of}h corresponding t® x dA c (Ag, X). For any poinia € intD,

a X 0A is a transverse sphere; and any such transverse sphera-will i
tersect the cordn (C) transversally in exactly one point, sinte(C)
corresponds t@ x B, for somes € 9A.

We try to apply LemmB8.I1l.1 to this situation. Define

Q= “Shadow” »"(h) = [Projs " ()] x|

P=SxI
f
P — X oY x Ak becomes

h
Sx | = d(A, X) O transverse tube df ~ 9A x DX.

The crucial hypothesis now is di@@ < k. Since, in general
dim(projs >;(h)) < dim };(h), we have dinQ < dim }(h)+1 < 2k+4-n.
To have this< k is exactly where we nedd< n-— 5.

The conclusion then is:

a X 0A. There exists a transverse sphé&ref [) of the forma x A,
for somea € IntD, so thath™(T) does not intersect the shadow of
the singularities),(h) or, what amounts to the same, the “shadow” of
h=1(T), namely

Z = [projsh™(T)] x 1 c Sx|
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does not intersect,(h). Hence there is some regular neighbourhdbd
of Zin Sx1, with Nn X (h) = 0. This implies, sincéyg is an embedding,
thath|]S x 0U N is an embedding.

We clearly haveN \, NN S x 0, and these ark(+ 1)- andk- 256
manifolds,N NS x 0 c dN. Thush(S x0) = Sandh[Sx0- (NN
Sx0)+ (0N - S x 0)] = S differ in 9(Ax, X) by cellular moves along
the manifoldh(N). Therefore (by_Z.118) there is an isotopyaff, X)
takingS ontoS’. By construction all oh™1(T) is in N, andS’ contains
only h(dN — S x 0) in h(N), and this will intersecT ath(h~(T)nSx1),
that is at point (corresponding tox B) transversally.

By being only a bit more careful, considering the transveubes
of otherk-handles, we can arrange f8f not to intersect the othd¢
handles at all (iff’” is a transverse sphere of sokdandle other than
b, thenh™(T’) N S x 1 = 0, and there is an isotopy @A, X) car-
rying d(Ax, X)-small regular neighbourhoods of prescribed transverse
sphere of the othek-handles oB(Ax, X)-transverse tubes of the other
k-handles).

Remark. This already gives Theorem C far> 8.

The casek = n— 4.

In case&k = n—4, n > 6, the above result is still true, but this involves
some delicate points.

Sincen > 6, we have (fok = n—4) the crucial numberk2-3—-n > 0.

We consider, as befofe: S x | — 9(Ax, X) in general position, so
that dim};(h) < 2k + 3—n. Remembering = h(S x 0), we further use
general position so tha&t(S) N S x (0, 1] is of dimension< k + (k +
1)-(n-1)=2k+2-n, and call

6(h) = closure b1(S) N S(0, 1)).

257
Make h simplicial, say with reference t¢ of S x |, and refine?
to .’ so thatg(h) is covered by a subpresentatién}’(h) by a subpre-
sentationy;, and the projectiol® x | — S is simplicial on.”.
Now we have to pick our transverse sph@re= @ x A" in the
transverse tubB® x D" K so that
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(1) h™(T)n shadowy.(h) is O-dimensional
@ i Mnxh =0
(3) h™}(T)n shadow{(2k + 2 — n)-skeleton ofy} = 0

On S x 0U a neighbourhood of [shadow(T)], his a local embed-
ding, using LemmA38.111.3.

Let Q = shadowh™(T). The finite set of point§ N 3 (h) does not
intersect any point dfir}(T). Each point sayx € Q n 3(h) belongs to a
(2k + 3 - n)-simplex of}; ; sayox. Sinceoy has dimensiorx 1, we can
moverS x | in a tiny neighbourhood ok by a polyhedral equivalence
f:Sx| — SxI soastomovearound ornry, that is, so that

HQN D () =Qn > () -4+ (X},

where the choice of ranges over an infinite set.will not moveh=(T)
nor will it move S x 0. There are only a finitely many points to worry
about, and so we can find a polyhedral equivalehces x | — S x I,
leavingh(T) U S x 0 fixed, such that the set of point$Q) n 3.(h) are
mapped byh into pairwise distinct points.

At this moment, we see that daix 0 U f(Q), h is an embedding.
Sinceh is a local embedding on some neighbourhood ) (we re-
strict f close to the identity so thdt(Q) c S x| - {(2k + 2 — n)-skeleton
of 3}), and an embedding of{Q); hence it is an embedding on some
neighbourhood of (Q).

o(h) is well out of the way, and sb actually embeds all 0% x 0U
(a neighbourhood of (Q)).

We now proceed as before, usifi¢Q) to move around along.

This trick looks a bit diferent from piping, which is that we would
have to do in the case= 5, k = 1; this was the case when we had a null
homotopic 1-sphere 4-manifold unknotted.
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