Simply-connected 4-manifolds with a given boundary

Richard Stong

Department of Mathematics, University of California at Los Angeles, Los Angeles, CA 90024, USA

Received 3 January 1992

Abstract

Stong, R., Simply-connected 4-manifolds with a given boundary, Topology and its Applications 52 (1993) 161–167.

Let M be a closed, oriented, connected 3-manifold and let (\mathbb{Z}^n, L) be a symmetric bilinear form which presents $H_*(M;\mathbb{Z})$. Let $\mathcal{V}_L(M)$ be the set of all oriented homeomorphism types of compact, 1-connected, oriented 4-manifolds with boundary M and intersection pairing isomorphic to (\mathbb{Z}^n, L) . We will give a complete description of the sets $\mathcal{V}_L(M)$.

Keywords: Simply-connected 4-manifolds.

AMS (MOS) Subj. Class.: 57N13.

Introduction

In [2] Freedman classified closed, 1-connected, oriented 4-manifolds up to orientation preserving homeomorphism (modulo a few technical details that are removed in either Quinn [4] or Freedman and Quinn [3]). This result has been generalized in a number of ways. In particular, Vogel [6] and Boyer [1] have both given partial results on classifying compact, 1-connected, oriented 4-manifolds with specified boundary. The goal of this paper is to complete the analysis given by Boyer.

Let M be a closed, oriented, connected 3-manifold which will be fixed throughout this discussion. Let (\mathbb{Z}^n, L) be any symmetric bilinear form presenting $H_*(M; \mathbb{Z})$. Define $\mathcal{V}_L(M)$ to be the set of all oriented homeomorphism types of compact, 1-connected, oriented 4-manifolds with boundary M and intersection pairing isomorphic to (\mathbb{Z}^n, L) . With these definitions Boyer gives essentially the uniqueness half of the classification. If L is an odd form, then Boyer constructs an injective map $c_L^t \times \Delta : \mathcal{V}_L(M) \to B_L^t(M) \times \mathbb{Z}/2\mathbb{Z}$, where $\Delta : \mathcal{V}_L(M) \to \mathbb{Z}/2\mathbb{Z}$ is the Kirby-Siebenmann invariant and $B_L^t(M)$ is a double coset space described in more

Correspondence to: Professor R. Stong, Department of Mathematics, Rice University, Houston, TX 77251, USA.

0166-8641/93/\$06.00 © 1993 - Elsevier Science Publishers B.V. All rights reserved

detail below. If L is even, then the analysis is more subtle. Boyer constructs an injective map $\hat{c}_L : \mathscr{V}_L(M) \to \hat{B}_L(M)$, where $\hat{B}_L(M)$ is again a double coset space.

Let $T_1(M)$ denote the torsion subgroup of $H_1(M;\mathbb{Z})$ and let $l_M: T_1(M) \times T_1(M) \to \mathbb{Q}/\mathbb{Z}$ be the link pairing. For an Abelian group A let A^* denote the dual group.

Definition. A bilinear form (\mathbb{Z}^n, L) presents $H_*(M; \mathbb{Z})$ if there is an exact sequence

$$0 \longrightarrow H_2(M;\mathbb{Z}) \stackrel{h}{\longrightarrow} \mathbb{Z}^n \stackrel{\mathrm{ad}(L)}{\longrightarrow} [\mathbb{Z}^n]^* \stackrel{\partial}{\longrightarrow} H_1(M;\mathbb{Z}) \longrightarrow 0$$

such that

(i) if $ad(L)(\xi_i) = m_i \eta_i$ (i = 1, 2) where $m_1 m_2 \neq 0$, then

 $l_{\mathcal{M}}(\partial \eta_1, \partial \eta_2) \equiv -L(\xi_1, \xi_2)/m_1 m_2 \pmod{1},$

(ii) if $\beta \in H_2(M; \mathbb{Z})$ and $\eta \in [\mathbb{Z}^n]^*$, then $\partial(\eta) \cdot \beta = \eta(h(\beta))$. Such an exact sequence is called a *presentation of* $H_*(M; \mathbb{Z})$ by (\mathbb{Z}^n, L) .

Note that if V is a compact, oriented, 1-connected 4-manifold with boundary M and we fix an isomorphism $H_2(V; \mathbb{Z}) \cong \mathbb{Z}^n$, then we obtain a presentation of $H_*(M; \mathbb{Z})$ by $(H_2(V; \mathbb{Z}), \cdot)$ from the long exact sequence of the pair (V, M) which we will call the *geometric presentation* of V. In particular $\mathcal{V}_L(M)$ is empty unless L presents $H_*(M; \mathbb{Z})$.

The heart of the constructions will be the following result of Freedman and Quinn [3, Theorem 10.5] (which for simplicity has been specialized to the case at hand). Call a subgroup B of a free Abelian group A a summand if the quotient A/B is free.

Theorem (Freedman and Quinn). Let W be a closed, 1-connected 4-manifold and $(V, \partial V)$ a compact, 1-connected 4-manifold with connected boundary. Let $h: V \to W$ be a map that preserves intersection numbers with $h_* H_2(V) \subset H_2(W)$ a summand. If ω_2 vanishes on $H_2(W)$ or does not vanish on the subspace perpendicular to $h_* H_2(V)$, then h is homotopic to a π_1 -negligible embedding.

Roughly the construction is as follows. Fix a particularly nice 1-connected 4-manifold V_0 with $\partial V_0 = M$. Then the 1-connected 4-manifolds with boundary M are just the complements of the π_1 -negligible embeddings of V_0 in closed, 1-connected 4-manifolds. These embeddings by the theorem above are constructible by homotopy data.

Odd forms

Suppose L is an odd form (which will be fixed throughout this discussion). The classifying space $B_L^t(M)$ may be described as follows. Let A(M) denote the set of

162

all presentations of $H_*(M;\mathbb{Z})$ by (\mathbb{Z}^n, L) . Any two presentations differ by a pair of automorphisms (α_1, α_2) from $(H_1(M;\mathbb{Z}), H_2(M;\mathbb{Z}))$ to itself satisfying two compatibility conditions derived from (i) and (ii) above. Boyer defines A(M) to be the group of all such pairs so this definition is equivalent to Boyer's. Define $B_L^i(M)$ to be the double coset space obtained by modding out by the pairs of maps induced by homeomorphisms of M and automorphisms of the form L. This coset space is studied in detail in Boyer [1]. However since we need only show existence and not uniqueness it is enough to find two 4-manifolds (differing in their Kirby-Siebenmann invariants) whose geometric presentation is the given one.

Fix a presentation

$$0 \longrightarrow H_2(M;\mathbb{Z}) \stackrel{h}{\longrightarrow} \mathbb{Z}^n \stackrel{\mathrm{ad}(L)}{\longrightarrow} \left[\mathbb{Z}^n\right]^* \stackrel{\partial}{\longrightarrow} H_1(M;\mathbb{Z}) \longrightarrow 0$$

of $H_*(M)$ by (\mathbb{Z}^n, L) . The construction problem we are faced with is not changed if we switch to a different integral basis for \mathbb{Z}^n and adjust the maps accordingly, therefore we may choose a particularly nice one. If $b_1(M) = k$, then ad(L) has a k-dimensional kernel and we may assume the basis $\{e_1, e_2, \ldots, e_n\}$ is chosen so that $\{e_1, e_2, \ldots, e_k\}$ is a basis for ker(ad(L)). In this basis for \mathbb{Z}^n and the dual basis $\{e_i^*\}$ for $[\mathbb{Z}^n]^*$ ad(L) has the form

$$\begin{pmatrix} 0 & 0 \\ 0 & A \end{pmatrix}$$

where A is a symmetric integral matrix with $|\det(A)| = |T_1(M)|$.

Fix also a smooth, compact, 1-connected 4-manifold V_0 with boundary M. Assume further that the intersection form of V_0 is odd. For simplicity we may further assume that V_0 has a handlebody structure with only one 0-handle and some 2-handles. As above choose a basis $\{f_1, f_2, \ldots, f_m\}$ for $H_2(V_0; \mathbb{Z})$ in which the first k basis elements are in the kernel of $i_* : H_2(V_0; \mathbb{Z}) \to H_2(V_0, M; \mathbb{Z})$. After taking connected sums with $S^2 \times S^2$ sufficiently many times we may assume $m \ge n$. We may further assume this basis is chosen so that $\partial(f_i^*) = \partial(e_i^*)$ for $1 \le i \le n$ and $\partial(f_i^*) = 0$ for i > n. With respect to the basis $\{f_i\}$ and the Poincaré dual basis $\{f_i^*\}$ for $H_2(V_0, M; \mathbb{Z})$, i_* has the form

$$\begin{pmatrix} 0 & 0 \\ 0 & B \end{pmatrix}$$

where B is also a symmetric integral matrix with $|\det(B)| = |T_1(M)|$. After making handle passes we may assume this basis corresponds to the handlebody structure assumed on V_0 .

We wish to find a closed, 1-connected 4-manifold W and a π_1 -negligible embedding $h': V_0 \to W$ for which the complement $W - \operatorname{int}(h'(V_0))$ gives the presentation above. To see what W should be let (Y, M) be a hypothetical Poincaré pair with intersection form (\mathbb{Z}^n, L) . View V_0 as built from M by attaching 2-handles dual to the basis above, then a 4-handle. Adding only the 2-handles to (Y, M) will produce a space W_0 homotopy equivalent to a wedge of 2-spheres. We wish to describe the intersection form on this space. (Alternately one can simply R. Stong

define W by the formula we will derive below. Then one reverses this calculation to check that the complement is correct.)

A basis for $H_2(W_0)$ can be built as follows. Start with the basis $\{e_1, e_2, \ldots, e_n\}$ for $H_2(Y)$. For $1 \le i \le n$ build classes by taking the dual class $e_i^* \in H_2(Y, M)$ and the dual $f_i^* \in H_2(V_0, M)$ and joining their boundaries by a surface Σ_i in M. For i > n build classes by taking the dual to f_i and adjoining a null-homology of the boundary in M. Denote this basis by $\{e_1, e_2, \ldots, e_n, g_1, \ldots, g_m\}$.

Lemma 1. With respect to the basis $\{e_1, e_2, \ldots, e_n, g_1, \ldots, g_m\}$ the intersection form on $H_2(W_0)$ has the following form

$$Q = \begin{pmatrix} k & n-k & k & n-k & m-n \\ 0 & 0 & I & 0 & 0 \\ 0 & A & 0 & I & 0 \\ I & 0 & * & * & * \\ 0 & I & * & & \\ 0 & 0 & * & A^{-1} - B^{-1} \end{pmatrix}$$

where B^{-1} is the inverse to B in $GL(m-k, \mathbb{Q})$ and A^{-1} is the inverse to A in $GL(n-k, \mathbb{Q})$ extended by zeroes to be $(m-k) \times (m-k)$.

Proof. Most of the entries specified are obvious from the construction. To see that the lower rightmost block is $A^{-1} - B^{-1}$ note that it is enough to compute the intersection of Ng_i with Ng_j where $N = |T_1(M)|$. For $1 \le i \le n$ a representative for Ng_i may be described as follows. Take N copies of e_i^* and cap off the boundary in M by a surface Σ' and take N copies of f_i^* in V_0 and cap off the boundary by the surface obtained from $-\Sigma'$ by adding a copy of Σ_i to each boundary component. Thus Ng_i is expressed as a union of a class α_i in Y and a class β_i in M. For i > n we have a similar representative with $\alpha_i = 0$. The class α_i has $e_j \cdot \alpha_i = N\delta_{ij}$ therefore $\alpha_i = NA^{-1}e_i + \gamma$ where γ is some element of ker(ad(L)). Since γ does not affect intersection numbers this shows that $\alpha_i \cdot \alpha_j = N^2(A^{-1})_{ij}$. A similar result holds for the β_i thus $g_i \cdot g_j = (A^{-1})_{ij} - (B^{-1})_{ij}$, where by convention $(A^{-1})_{ij} = 0$ if either i > n or j > n.

Note that the matrices A^{-1} and B^{-1} have rational coefficients however the difference is always integral since the inverse is up to sign the lift of the link pairing. Specifically $l_M(\partial(e_i^*), \partial(e_j^*)) \equiv -(A^{-1})_{ij} \pmod{1}$. The unspecified entries depend on the details of the construction above. By choosing the Σ_i , $1 \le i \le k$, correctly we may arrange that the off-diagonal unspecified entries are zero and the diagonal ones are 0 or 1. Since the intersection form of V_0 is odd we may assume the diagonal entries are zero by altering the caps. \Box

164

Lemma 2. The matrix above is unimodular.

Proof. By elementary cancelations it is enough to show that the matrix

$$Q = \begin{pmatrix} A & I & 0 \\ I & A^{-1} - B^{-1} \\ 0 & A^{-1} - B^{-1} \end{pmatrix}$$

is invertible. Break B^{-1} into blocks as

$$B^{-1} = \begin{pmatrix} D & E^{\mathrm{T}} \\ E & F \end{pmatrix}.$$

Then Q becomes

$$Q = \begin{pmatrix} A & I & 0 \\ I & A^{-1} - D & -E^{\mathrm{T}} \\ 0 & -E & -F \end{pmatrix}.$$

Subtracting A times the second column from the first column gives

$$\begin{pmatrix} 0 & I & 0 \\ DA & A^{-1} - D & -E^{\mathrm{T}} \\ EA & -E & -F \end{pmatrix}$$

thus it is enough to show that

$$\begin{pmatrix} DA & -E^{\mathrm{T}} \\ EA & -F \end{pmatrix}$$

is invertible. Over \mathbb{Q} this matrix can be written as

$$B^{-1}\begin{pmatrix} A & 0\\ 0 & -I \end{pmatrix}.$$

The first term has determinant $\pm |T_1(M)|^{-1}$ and the second has determinant $\pm |T_1(M)|$, hence this matrix is invertible. \Box

From these two lemmas and the theorem of Freedman and Quinn above the existence is now clear. Let W be either of the two closed, oriented, 1-connected 4-manifolds whose intersection pairing is given by the matrix Q above (with the unspecified entries taken to be zero). Let $-V_0$ denote V_0 with the opposite orientation. The construction of W_0 includes an implicit map $h_*: H_2(-V_0) \rightarrow H_2(W)$ onto a summand and preserving intersection numbers. Since V_0 is homotopy equivalent to a wedge of 2-spheres this map is realized by a map $h: -V_0 \rightarrow W$. Further ω_2 does not vanish on the perpendicular subspace to $h_*H_2(-V_0)$ since L and hence A is odd. Therefore h is homotopic to a π_1 -negligible embedding $h': -V_0 \rightarrow W$. Let $V = W - \operatorname{int}(h'(-V_0))$. Then V is a compact, oriented, 1-connected 4-manifold whose geometric presentation is the given one. Starting with the other closed, oriented, 1-connected 4-manifold whose intersection pairing is given

R. Stong

by the matrix Q produces a second example with opposite Kirby-Siebenmann invariant.

Theorem 3. If L is an odd symmetric bilinear form presenting $H_*(M; \mathbb{Z})$, then the map $c'_L \times \Delta : \mathscr{V}_L(M) \to B'_L(M) \times \mathbb{Z}/2\mathbb{Z}$ is bijective.

Even forms

The case of even forms is almost the same as that of odd forms. Suppose we are given a presentation of $H_*(M;\mathbb{Z})$ by (\mathbb{Z}^n, L) . If V is any compact, oriented, 1-connected 4-manifold with intersection form L and boundary M, then V has a unique spin structure. This spin structure induces a spin structure on M. As shown in Boyer and sketched below only a special subset of the spin structures on M can occur in this way. The classifying space $\hat{B}_L(M)$ is again a double coset space. Start with all the pairs of a presentation of $H_*(M;\mathbb{Z})$ by (\mathbb{Z}^n, L) and a spin structure on M of the type required and again quotient by homeomorphisms of M and automorphisms of L. As before since we are only interested in showing existence not uniqueness it will be enough to show that any such pair is realized by some 4-manifold V.

Before mimicking the argument above we must first discuss quadratic enhancements of the link pairing following [1,5]. Define a quadratic enhancement q of the link pairing to be a function $q:T_1(M) \to \mathbb{Q}/\mathbb{Z}$ satisfying

- (i) $q(a+b) = q(a) + q(b) + l_M(a, b)$, for all $a, b \in T_1(M)$,
- (ii) $q(ma) = m^2 q(a)$, for all $a \in T_1(M)$ and $m \in \mathbb{Z}$.

Let $I^1(M) = H^1(M; \mathbb{Z}) \otimes \mathbb{Z}/2\mathbb{Z} \subset H^1(M; \mathbb{Z}/2\mathbb{Z})$. With these definitions Taylor [5] shows the following

Proposition (Taylor). (1) For any spin structure σ on M there is an associated quadratic enhancement q_{σ} of l_M and any quadratic enhancement q of l_M arises in this way.

(2) Two spin structures on M induce the same quadratic enhancement if and only if they differ by an element of $I^{1}(M)$.

(3) Let V be a compact, 1-connected, spin 4-manifold with boundary M and σ the spin structure induced by V. Let $\xi \in H_2(V; \mathbb{Z})$ have image $m\eta \in H_2(V, M; \mathbb{Z})$ with $m \neq 0$. Then $q_{\sigma}(\partial \eta) \equiv -(\xi \cdot \xi)/2m^2 \pmod{1}$.

As an immediate corollary we see that a presentation of $H_*(M)$ by (\mathbb{Z}^n, L) determines a quadratic enhancement. If V is any closed, 1-connected, oriented 4-manifold with boundary M and intersection form L, it must induce a spin structure on M with this enhancement, i.e., in the appropriate orbit of the action of $I^1(M)$ on the spin structures. Boycr denotes this subset by $\text{Spin}_L(M)$. To show existence we need only show that for any presentation and any spin structure

 $\sigma \in \text{Spin}_{L}(M)$ there is a closed, 1-connected, oriented 4-manifold with boundary M realizing this data.

We proceed as for odd forms except that we choose the manifold V_0 with the additional property that V_0 is spin and the induced spin structure on M is σ . The calculation above goes through exactly as before producing a unimodular matrix Q (again with the unspecified entries taken to be zero). Further since L and V_0 induce the same quadratic enhancement of the link pairing we have by part (3) of the proposition above that the diagonal entries of $A^{-1} - B^{-1}$ are even and Q determines an even form.

Let W be the unique closed, oriented, 1-connected 4-manifolds whose intersection pairing is given by the matrix Q above. The construction of W_0 includes an implicit map $h_*: H_2(-V_0) \to H_2(W)$ onto a summand and preserving intersection numbers. Since V_0 is homotopy equivalent to a wedge of 2-spheres this map is realized by a map $h: -V_0 \to W$. Further $\omega_2(W) = 0$ since Q is even. Therefore h is homotopic to a π_1 -negligible embedding $h': -V_0 \to W$. Let $V = W - int(h'(-V_0))$. Then V is a compact, oriented, 1-connected 4-manifold whose geometric presentation is the given one. Further W has a unique spin structure which must induce the unique spin structures on $-V_0$ and V. The spin structure on $-V_0$ induces the structure σ on M hence so must V.

Theorem 4. If L is an even symmetric bilinear form presenting $H_*(M;\mathbb{Z})$, then the map $\hat{c}_L: \mathscr{V}_L(M) \to \hat{B}_L(M)$ is bijective.

References

- S. Boyer, Simply-connected 4-manifolds with a given boundary, Trans. Amer. Math. Soc. 298 (1986) 331–357.
- [2] M. Freedman, The topology of 4-manifolds, J. Differential Geom. 17 (1982) 357-453.
- [3] M. Freedman and F. Quinn, Topology of 4-Manifolds (Princeton University Press, Princeton, NJ, 1990).
- [4] F. Quinn, Ends of maps III, Dimensions 4 and 5, J. Differential Geom. 17 (1982) 503-521.
- [5] L. Taylor, Relative Rochlin invariants, Topology Appl. 18 (1984) 259-280.
- [6] P. Vogel, Simply-connected 4-manifolds, Seminar Notes 1 (Aarhus University, Aarhus, 1982) 116-119.