HOMEOMORPHISMS OF COMPACT 3-MANIFOLDS

G. A. Swarup

(Received 3 May 1976)
In this paper, we study the possibility of extending some of Wladhausen's results[13], to compact irreducible 3-manifolds which are not P^{2}-irreducible. We say that a compact irreducible 3 -manifold M is sufficiently large if M can be reduced to 3 -cells and $P^{2} \times I$'s by splitting along incompressible surfaces. For many M, M is sufficiently large if and only if its orientation cover is a connected sum of sufficiently large 3 -manifolds (in the sense of Waldhausen) and $S^{1} \times S^{2}$ s. Also a large class of P^{2}-reducible manifolds are sufficiently large in our sense (see 84). The main result of this paper says that two sufficiently large 3 -manifolds are homeomorphic if and only if they have isomorphic group systems (see §3). However, every isomorphism of group systems need not even be induced by a map (see $\S 2$).

One of the results needed in proving homeomorphism theorems in the orientable case is that homotopy equivalences can be split along incompressible surfaces (see [1,2] and [8]). Since P^{2}-reducible 3-manifolds are not aspherical, it is hard to carry out this kind of proof. We get around this difficulty by generalizing the invariant of [9] to all compact 3 -manifolds. That is, to every compact 3 -manifold M, we associate an invariant $\tau(M)$ in a certain homology group of the group system of M with coefficients in the twisted integers $\hat{\mathbf{Z}}$. The theorem of $\S 1$ says that an isomorphism Θ of the group systems of two manifolds M and N is induced by a homotopy equivalence if and only $\Theta_{* \tau}(M)= \pm \tau(N)$. In $\S 2$ we show that for P^{2}-reducible and irreducible manifolds M and N, if there is an isomorphism of group systems, then one can find an isomorphism which carries the invariant to the invariant. This together with the naturality of the invariant τ and the theorem of $\S 1$ help to prove the homeomorphism theorem in $\S 3$. In $\S 4$ we give criteria for an irreducible manifold to be sufficiently large.

The results of $\S 1$ and $\S 2$ in the closed case are obtained earlier (in [11]) and are proved more generally here. However, we will use heavily the results of [10].

I wish to thank E. Dror, G. Mislin, K. Johannson and F. Waldhausen for several discussions which helped in the preparation of this paper. Moreover, Waldhausen has helped substantially with the material of $\S 4$ and Theorem 4.1 in a joint effort.

81. AN INVARIANT FOR THE HOMOTOPY TYPE OF COMPACT 3-MANIFOLDS

In this section, we construct an invariant which characterizes the homotopy type of compact 3 -manifolds. This was done in [9] and [11] for closed 3-manifolds, and we follow the same pattern using the homology of group systems considered by H. Trotter [12]. By a group system $\left\{G, G_{i}, \varphi_{i}\right\}$, we mean a group G and finite number of homomorphisms $\varphi_{i}: G_{i} \rightarrow G$. A map of group systems $\Phi:\left\{G, G_{i}, \varphi_{i}\right\} \rightarrow\left\{G^{\prime}, G_{i}^{\prime}, \varphi_{i}^{\prime}\right\}$ consists of homomorphisms $\varphi: G \rightarrow G^{\prime}, \varphi_{i}: G_{i} \rightarrow G_{(i)}^{\prime}$ (where for each $i, G_{j(i)}^{\prime}$ may be any of the $G_{j}^{\prime \prime}$) such that $f \circ \varphi_{i}=\varphi_{i(i)}^{\prime} \circ f_{i}$. We say that Φ is an isomorphism, if φ, φ_{i} are all isomorphisms, the number of $G_{i}^{\prime \prime}$ s and $G_{i}^{\prime \prime}$ s is the same and j is a permutation. Let $\left\{G, G_{i}, \varphi_{i}\right\}$ and $\left\{G, G_{i}, \varphi_{i}^{\prime}\right\}$ be two group systems involving the same groups but possibly different maps. We say they are equivalent if for each i there is an element g_{i} of G such that $\varphi_{i}^{\prime}(x)=g_{i} \varphi_{i}(x) g_{i}^{-1}$ for each $x \in G_{i}$. Composition of an isomorphism and an equivalence will be called a conjugate isomorphism or briefly a c-isomorphism. Trotter shows in [12] how to associate homology and cohomology to a group system $\left\{G, G_{i}, \varphi_{i}\right\}$ with coefficients in G-modules. He also shows that equivalent group systems possess naturally isomorphic homologies. We make the following identification for studying the homologies:

Let K be a $K(G, 1)$-space and K_{i} be $K\left(G_{i}, 1\right)$-spaces. For each i, we can construct a map $f_{i}: K_{i} \rightarrow K$ inducing φ. Form the $K(G, 1)$-space, again denoted by K, from the Union $K_{i} \times[0,1] \cup K$ by identifying $(x, 1)$ with $f_{i}(x)$ for each $x \in K_{i}$. Thus we can consider K_{i} as subcomplexes of K. We make the convention that G acts on the left of \tilde{K} the universal cover of
K. Then for any right G-module A and any left G-module B, we identify $H_{k}\left(\left\{\varphi_{i}\right\} ; A\right)$ with $H_{k}\left(K, \cup K_{i} ; A\right)$ and $H^{k}\left(\left\{\varphi_{i}\right\} ; B\right)$ with $H^{k}\left(K, \cup K_{i} ; B\right)$. Here we have abbreviated the group system as $\left\{\varphi_{i}\right\}$.

Let M be any compact 3 -manifold and let m be a base point in the interior of M. We fix a local orientation at m. Then (M, m) defines a class of equivalent group systems which we denote by $\mathscr{(G}(M, m)$ or $\left(3(M)\right.$. We form $\left(K, \cup K_{i}\right)$ as above for $(\leftrightarrows)(M)$. Then we have a map $\alpha:(M, \partial M) \rightarrow\left(K, \cup K_{i}\right)$ inducing isomorphisms in the fundamental groups of various spaces. We usually consider the $\pi_{1}(M, m)$ module $\tilde{\mathbf{Z}}$, that is integers on which $\pi_{1}(M, m)$ action is given by orientation. We define $\tau(M, m)$ to be the image of the fundamental cycle by the map $\alpha *: H_{3}(M, \partial M ; \tilde{\mathbf{Z}}) \rightarrow H_{3}\left(K, \cup K_{i} ; \tilde{\mathbf{Z}}\right)$. Thus $\tau(M, m)$ is an element of $H_{3}(\mathscr{G}(M, m) ; \tilde{\mathbf{Z}})$. We sometines abbreviate it as $\tau(M)$.
1.1 Theorem. Let $(M, \partial M)$ and $(N, \partial N)$ be compact 3-manifolds and let $\Phi:(3)(M, m) \rightarrow$ $\circlearrowleft(N, n)$ be a orientation-true c-isomorphism of their group systems. There is an oriented homotopy equivalence $f:(M, \partial M, m) \rightarrow(N, \partial N, n)$ with $f_{*}=\Phi$ if and only if $\Phi_{* \tau}(M, m)=\tau(N, n)$.
1.2 Remark. This is an extension of the results of [9] and [11] and the methods there can be adopted to prove 1.1. However, we will use the results of Hendriks in [4], where he gave a short proof of the theorem in the closed case.

We will first recall Hendrik's results: For any compact 3 -manifold ($M, \partial M, m$), Hendriks associates an element $\Lambda(M, m)$ in $H^{3}\left(M, \partial M ; \pi_{2}\left(M-B^{0}\right)\right)$. Here B is a 3-cell in the interior of M and B° is the interior of B. The invariant $\Lambda(M, m)$ is the obstruction to retracting M onto $M-B^{0}$. Let $B(M, m)=\Lambda(M, m) \cap[M]$, the dual of $\Lambda(M, m)$. Thus $B(M, m)$ is an element of $H_{0}\left(M, \pi_{2}\left(M-B^{0}\right) \otimes \tilde{Z}\right)$. Here the tensor product is taken over integers and the action of π_{1} is the diagonal action. Let M^{i} and N^{i} denote the i-skeletons of M and N respectively. Suppose that we are given a map $f^{\prime}: M^{1} \cup \partial M \rightarrow N$ such that $f^{\prime}(\partial M) \subset \partial N$ and f induces an isomorphism in the fundamental groups. Let $\varphi^{2}: M-B^{0} \rightarrow N-D^{0}$ be an extension of f^{\prime}; where D is a cell in the interior of N. Then, Hendriks proves by obstruction theory
1.3 Theorem. There is a map $f:(M, \partial M) \rightarrow(N, \partial N)$ extending f^{1} if and only if $f *\left(\varphi_{*}{ }^{2} \otimes 1\right) B(M, m)=d B(N, n)$ for some integer d. Moreover, if the condition is satisfied one can realize a f of degree d.

Identifying $H_{0}\left(M ; \pi_{2}\left(M-B^{0}\right) \otimes \tilde{\mathbf{Z}}\right)$ with $\tilde{\mathbf{Z}} \underset{\pi_{1}(M, m)}{\otimes} \pi_{2}\left(M-B^{0}, m\right)$ and assuming that M is closed,
Hendriks shows that there is an injection $h_{M, m}: H_{3}\left(\pi_{1}(M, m) ; \tilde{\mathbf{Z}}\right) \rightarrow \tilde{\mathbf{Z}} \underset{\pi_{1}(M, m)}{\otimes} \pi_{2}\left(M-B^{0}, m\right)$ such that $h_{M, m}(\tau(M, m))=B(M, m)$.

We will now prove 1.1 using 1.3. Necessity of the condition is clear, so we have only to prove the sufficiency. Firstly by filling up with discs we may assume that none of the boundary components of M and N is a 2 -sphere. We form a ($K, \cup \partial K_{i}$) from ($M, \partial M$) as follows. If a component of ∂M is a projective plane, we adjoin an infinite projective space P^{*} to M along the particular boundary component. The components which are not projective planes are left unchanged. Then we add cells of dimension $\geqslant 3$ away from the boundary to M to embed it in a $K(\pi, 1)$-space K. Let K_{i} denote the boundary components of M which are not projective planes and the infinite projective planes added along the boundary. We will denote $\cup K_{1}$ by ∂K and we have an embedding $\alpha:(M, \partial M) \rightarrow(K, \partial K)$ which induces isomorphisms on the fundamental groups of various spaces involved. Moreover the 2 -skeleton M^{2} of M coincides with the 2-skeleton K^{2} of K. We make a similar construction for ($N, \partial N$) and obtain an embedding $\beta:(N, \partial N) \rightarrow(L, \partial L)$. We use α (resp. β) to identify the group systems of $(K, \partial K)$ and $(M, \partial M)$ (resp. $(L, \partial L)$ and $(N, \partial N)$). Thus we have a c-isomorphism Φ of the group systems of $(K, \partial K)$ and $(L, \partial L)$.

Reorder the components L_{i} of ∂L so that Φ maps $\pi_{1}\left(K_{i}\right)$ to $\pi_{1}\left(L_{i}\right)$; let φ_{i} be the induced isomorphism. If K_{i} is not a P^{∞} we take any map \bar{f}_{i} inducing φ_{i}. If K_{i} is a P^{∞}, let K_{i}^{2} and $L_{i}{ }^{2}$ denote the 2 -skeletons of K_{i} and $L_{i} ; K_{i}{ }^{2}, L_{i}{ }^{2}$ are boundary components of M and N respectively. Consider the induced orientations on K_{i}^{2}, L_{i}^{2} and let \bar{f}_{i}^{2} be any map of K_{i}^{2} to L_{i}^{2} which induces an isomorphism in the fundamental groups and which is of degree one. We take \bar{f}_{i} to be any
extension of \bar{f}_{i}^{2}. We next take a map $\bar{f}: K \rightarrow L$ inducing φ. Since Φ is a c-isomorphism, $\bar{f} \mid K_{\mathrm{i}}$ and \bar{f}_{i} are homotopic. Hence by homotopy extension Theorem we may assume that $\bar{f} \mid K_{i}=\bar{f}_{i}$. We will further homotope \bar{f} to make it cellular. The restriction of \bar{f} gives us a map $M^{2} \rightarrow N^{2}$ such that ∂M is mapped to ∂N. We will denote f^{1} the restriction of \bar{f} to $\partial M \cup M^{1}$ and by f^{2} the restriction of \bar{f} to M^{2}.

Let $\bar{\tau}(M, m)$ and $\bar{\tau}(N, n)$ denote the images of the fundamental cycles of M and N in $H_{3}(K, \partial M ; \tilde{\mathbf{Z}})$ and $H_{3}(L, \partial N ; \overline{\mathrm{Z}})$ respectively. Consider the following commutative diagram, where all the vertical maps are induced by \bar{f}.

Here (in both horizontal sequences) $1 \otimes \partial$ is an isomorphism since $M-B^{0}$ (resp. $N-D^{0}$) contains the 2 -skeleton of K. The map h is the Herewicz isomorphism with local coefficients \mathbf{Z} and e is injective since the previous term is $H_{3}\left(M-B^{0}, \partial M ; \tilde{\mathbf{Z}}\right)$ (resp. $H_{3}\left(N-D^{0}, \partial M ; \tilde{\mathbf{Z}}\right.$) and up to homotopy there are no extra 3-cells. Identifying the last terms with $H_{0}\left(M ; \pi_{2}\left(M-B^{\circ}\right) \otimes \tilde{\mathbf{Z}}\right)$ and $\left.H_{0}\left(N-D^{0}\right) \otimes \overline{\mathbf{Z}}\right)$, inspection shows that $h_{M, m}(\bar{\tau}(M, m))=B(M, m)$ and $h_{N, n}(\bar{\tau}(N, n))=$ $B(N, n)$, where $h_{M, m}\left(\right.$ resp. $\left.h_{N . n}\right)$ is the composite $(1 \otimes \partial)^{-1} \circ h \circ e$. Since $h_{M . m}$ and $h_{N . n}$ are injective, we see that $\bar{f} *(\bar{\tau}(M, m))=\bar{\tau}(N, n)$ if and only if $\left(1 \otimes \bar{f}_{*}\right) B(M, m)=B(N, n)$. Next consider the diagram

Let $y=\bar{f} *(\bar{\tau}(M, m))=-\bar{\tau}(N, n)$. Then $i_{N}(y)=\bar{f} *(\tau(M, m))-\tau(N, n)=0$. Hence $y=j_{N}(x)$ for some x. Moreover $i \partial(y)=0$. If L_{i} is a component of ∂N which is not a projective plane, then $H_{2}\left(L_{i} ; \tilde{\mathbf{Z}}\right)$ is a direct summand of both $H_{2}(\partial N ; \tilde{\mathbf{Z}})$ and $H_{2}(\partial L ; \tilde{\mathbf{Z}})$. This shows that the component of ∂y in $H_{2}\left(L_{i} ; \tilde{\mathbf{Z}}\right)$ is zero if L_{i} is not the infinite projective space. If L_{i} is an infinite projective space, then \bar{f}_{i} is a degree one map (by construction) on the particular component of ∂M. If N_{i} denotes the corresponding component of ∂N, then we have that the component of ∂y in $H_{2}\left(N_{i} ; \tilde{\mathbf{Z}}\right)$ is zero. Thus $\partial y=0$. This implies that $\partial x=0$. Now $H_{3}(\partial L, \partial N ; \overline{\mathbf{Z}})$ is isomorphic to a direct sum $\oplus H_{3}\left(P^{\infty}, P^{2} ; \overline{\mathbf{Z}}\right)$ and the boundary map corresponds to the direct sum boundary maps $H_{3}\left(P^{\infty}, P^{2} ; \tilde{\mathbf{Z}}\right) \rightarrow H_{2}\left(P^{2} ; \tilde{\mathbf{z}}\right)$. Since this map is injective we conclude that $x=0$. Thus $y=0$ or $\bar{f}_{*}(\bar{\tau}(M, m))=\bar{\tau}(N, n)$. By the previous argument, this implies that $B(M, m)$ goes to $B(N, n)$. Now, Theorem 1.3 gives a degree one map $f:(M, \partial M) \rightarrow(N, \partial N)$ inducing. Such a map is automatically homotopy equivalence. This completes the proof of Theorem 1.3.

The invariant clearly has naturality properties with respect splitting along closed surfaces. We study one of these properties in $\S 3$. The proof of 1.1 shows:
1.4 Addendum to 1.1. If in 1.1 we are given an oriented homotopy equivalence $g: \partial M \rightarrow \partial N$ compatible with Φ, then we can find a f extending g iff $\Phi *(\tau(M))=\tau(N)$.

82. THE INVARIANT IN THE CASE OF IRREDUCIBLE 3-MANIFOLDS

Irreducible 3-manifolds which are P^{2}-irreducible are either aspherical or orientable and have a homotopy sphere as their universal cover. Hence the invariant is easily understood in these case. So we will study it in the case of compact irreducible 3 -manifolds which contain 2 -sided
projective planes. If the manifold is homotopy equivalent to $P^{2} \times I$ (or $P^{2} \times S^{1}$), the invariant is easily calculated and is seen to be the generator of group isomorphic to $\tilde{\mathbf{Z}}_{2}$ (or \emptyset). For the rest of the section, we will assume that M satisfies the following hypothesis:

H1. M is irreducible, ∂M is incompressible, M contains two sided projective planes and M is not homotopy equivalent to $P^{2} \times I$ or $P^{2} \times S^{1}$.

For such a (M, m), we showed in [10] (see proposition 4.1 and 4.2 of [10]) that by splitting M along a finite number of two sided projective planes, we obtain components $N_{1}, \ldots, N_{k}(k \geqslant 1)$ such that
(a) $\partial N_{i} \neq 0, N_{i}$ is not a homotopy $P^{2} \times I$ and any projective plane in $N_{i}-\partial N_{i}$ is pseudo-parallel to the boundary.
(b) If \tilde{N}_{i} denotes the orientation cover of N_{i}, then $\pi_{l}\left(\tilde{N}_{\mathrm{i}}\right)$ is indecomposable, torsion-free and is not isomorphic to \mathbf{Z}, and
(c) If \hat{N}_{i} denotes the manifold obtained by capping the boundary spheres in \bar{N}_{i}, then \hat{N}_{i} is aspherical.

If $\pi_{1}(\tilde{M}, \tilde{m})$, the fundamental group of the orientation cover has a free decomposition of length n, then the number of projective planes (along which M is split) is exactly $n-1$. We may arrange the N_{i} so that there are connected submanifolds $M_{i}, 1 \leqslant i \leqslant n$, of M with
(2.1) $N_{1}=M_{1} \subset M_{2} \ldots \subset M_{n}=m$, and
(2.2) For $1<i \leqslant k, M_{i}$ is obtained by identifying a component of ∂M_{i-1} with a component of ∂N_{i}. For $k<i \leqslant n, M_{i}$ is obtained by identifying two distinct components of ∂M_{i-1}.

Let the images of the above projective planes in $M M_{2}, \ldots, P_{n}$. We will denote by P_{1} the projective plane in ∂N_{1} which contains the base point m. Of course, $P_{1}=P_{i}$ for some $i, 1<i \leqslant n$.

If we attach infinite projective spaces to N_{i} along the boundary components which are projective planes, the resulting manifolds \bar{N}_{i} are easily seen to be aspherical. In the orientation cover \tilde{N}_{i}, this corresponds adding infinite spheres along sphere boundary components; the result we will still denote by \hat{N}_{i}. Similarly, the space \bar{M} obtained from M by attaching infinite projective spaces along P_{2}, \ldots, P_{n} is aspherical. We will denote its double cover by \hat{M}. Note that \bar{M} is built from \bar{N}_{i}, just as M is built from N_{i}. Similar remark holds for \hat{M} and \hat{N}_{i}. The subspaces corresponding to M_{i} will be denoted by $\bar{M}_{i}, \bar{M}_{i}, \hat{M}_{i}, \ldots$. If X is any one of these spaces $\bar{N}_{i}, \hat{N}_{i}, \bar{M}_{i}, \hat{M}_{i}, \partial X$ will denote the following: Suppose X is obtained from a submanifold Y of M (resp. \bar{M}). Then ∂X will be the union of ∂Y and the infinite projective spaces (resp. infinite spheres) added along the components of ∂Y. Thus $\tau(Y)$ can be identified with the image of the fundamental cycle of Y in $H_{3}(X, \partial X ; \tilde{\mathbf{Z}})$.

By excision, $H_{3}\left(\bar{N}_{i}, \partial \bar{N}_{i} ; \tilde{\mathbf{Z}}\right) \approx H_{3}\left(N_{i}, \partial N_{i} ; \overline{\mathbf{Z}}\right) \approx \mathbf{Z}$. For $1<i \leqslant k$, we have exact sequences:

$$
\begin{aligned}
0 \longrightarrow H_{3}\left(\bar{M}_{i}, \partial \bar{M}_{i} ; \tilde{\mathbf{Z}}\right) \longrightarrow H_{3}\left(\bar{M}_{i}, \partial \bar{M}_{i-1} \cup \partial \bar{N}_{i} ; \tilde{\mathbf{Z}}\right) \longrightarrow & H_{2}\left(\partial \bar{M}_{i-1}\right. \\
& \left.\cup \partial \bar{N}_{i}, \partial \bar{M}_{i} ; \tilde{\mathbf{Z}}\right) \longrightarrow H_{2}\left(\bar{M}_{i}, \partial \bar{M}_{i} ; \tilde{\mathbf{Z}}\right) \longrightarrow
\end{aligned}
$$

Next,

$$
H_{3}\left(\bar{M}_{i}, \partial \bar{M}_{i-1} \cup \partial \bar{N}_{i} ; \tilde{\mathbf{Z}}\right) \approx H_{3}\left(\bar{M}_{i-1}, \partial \bar{M}_{i-1} ; \tilde{\mathbf{Z}}\right) \oplus H_{3}\left(\bar{N}_{i}, \partial \bar{N}_{i} ; \tilde{\mathbf{Z}}\right),
$$

and

$$
H_{2}\left(\partial \bar{M}_{i-1} \cup \partial \bar{N}_{i}, \partial \bar{M}_{i} ; \tilde{\mathbf{Z}}\right) \approx H_{2}\left(\partial \bar{M}_{i-1} \cap \partial \bar{N}_{i} ; \tilde{\mathbf{Z}}\right) \approx H_{2}\left(P^{*} ; \tilde{\mathbf{Z}}\right) \approx \mathbf{Z}_{2} .
$$

Moreover, the fundamental cycle of M_{i-1} (or N_{i}) shows that this last term is homologous to the rest of the boundary components of M_{i-1} (or N_{i}). Thus, we have short exact sequences:

$$
\begin{equation*}
0 \longrightarrow H_{3}\left(M_{i}, \partial M_{i} ; \overline{\mathbf{Z}}\right) \longrightarrow H_{3}\left(M_{i-1}, \partial M_{i-1} ; \tilde{\mathbf{Z}}\right) \oplus H_{3}\left(N_{i}, \partial N_{i} ; \tilde{\mathbf{Z}}\right) \longrightarrow \mathbf{Z}_{2} \longrightarrow 0, \quad 1<i \leqslant k . \tag{2.3}
\end{equation*}
$$

This shows that $H_{3}\left(\bar{M}_{i}, \partial \bar{M}_{i} ; \tilde{\mathbf{Z}}\right)$ is a free abelian group of rank i. Comparison of this with the exact sequence

$$
\begin{equation*}
0 \longrightarrow H_{3}\left(\hat{M}_{i}, \partial \hat{M}_{i} ; \mathbf{Z}\right) \longrightarrow H_{3}\left(\hat{M}_{i-1}, \partial \hat{M}_{i-1} ; \mathbf{Z}\right) \oplus H_{3}\left(\hat{N}_{i}, \partial \hat{N}_{i} ; \mathbf{Z}\right) \longrightarrow 0 \tag{2.3'}
\end{equation*}
$$

shows that, we have exact sequences

$$
\begin{equation*}
0 \longrightarrow H_{3}\left(\hat{M}_{i}, \partial \hat{M}_{i} ; \mathbf{Z}\right) \xrightarrow{j} H_{3}\left(\bar{M}_{i}, \partial \bar{M}_{i} ; \tilde{\mathbf{Z}}\right) \longrightarrow \mathbf{Z}_{2} \longrightarrow 0 \tag{2.4}
\end{equation*}
$$

and that

$$
j *\left(\tau\left(\tilde{M}_{i}\right)\right)=2 \tau\left(M_{i}\right)
$$

For i with $k<i \leqslant n$, we have isomorphisms

$$
H_{3}\left(\bar{M}_{i}, \partial \bar{M}_{i} ; \tilde{\mathbf{Z}}\right) \longrightarrow H_{3}\left(\bar{M}_{i-1}, \partial \bar{M}_{i-1} ; \overline{\mathbf{Z}}\right)
$$

since the extra projective plane has connected complement in M_{i}. Again, comparison with \hat{M} shows that (2.4) is valid for all $i, 1 \leqslant i \leqslant n$. Thus, we have
2.5 Lemma. If M satisfies $\mathrm{H} 1, H_{3}(\mathcal{H}(M, m) ; \tilde{\mathbf{Z}})$ is a free abelian group of rank k. The inclusion $i: \mathfrak{G}(\tilde{M}, \tilde{m}) \rightarrow \mathfrak{G}(M, m)$ yields an exact sequence

$$
0 \longrightarrow H_{3}(G(\tilde{M}, \tilde{m}) ; \mathbf{Z}) \xrightarrow{i \cdot} H_{3}(\uplus(M, m) ; \tilde{\mathbf{Z}}) \longrightarrow \mathbf{Z}_{2} \longrightarrow 0
$$

such that $i *(\tau(\bar{M}, \bar{m}))=2 \tau(M, m)$.
We will use this to prove:
2.6 Proposition. Let $\left(M^{1}, m^{1}\right)$ and $\left(M^{2}, m^{2}\right)$ satisfy H , and let $\Theta: ~\left(B\left(M^{1}, m^{1}\right) \rightarrow(G)\left(M^{2}, m^{2}\right)\right.$ be a c-isomorphism of their group systems. Then there is a c-isomorphism $\Phi: \mathfrak{G}\left(M^{1}, m^{1}\right) \rightarrow$ $(\xi)\left(M^{2}, m^{2}\right)$ such that $\Phi *\left(\tau\left(M^{1}, m^{1}\right)\right)=\tau\left(M^{2}, m^{2}\right)$.

Proof. We will first consider a M as in the discussion preceding 2.5. Identify $H_{3}(\mathcal{G}(\bar{M}) ; \mathbf{Z})$ with $\left.\oplus H_{3}(\circlearrowleft)\left(\tilde{N}_{i}\right) ; \mathbf{Z}\right)$. This is a free abelian group on k generators and we may assume that $\tau(\bar{M}, \tilde{m})$ is represented by $(1,1, \ldots, 1)$. Let ϵ_{l} denote the element of $H_{3}(\mathcal{G}(\tilde{M}) ; \tilde{Z})$ which has -1 in lth place and 1 elsewhere. We will first show that there is an orientation-true c-automorphism Ψ of $\mathscr{S}(M)$ such that $\Psi_{*}(\tau(M))=\epsilon_{1}$. Here $\tilde{\Psi}$ denotes the c-automorphism of $\mathscr{S}(\bar{M})$ induced by Ψ.

Let g_{j} be the element of $\pi_{1}(M, m)$ represented by P_{j}. We identify $\pi_{1}\left(N_{i}\right), \pi_{1}\left(M_{i}\right)$, with subgroups of $\pi_{1}(M, m)$. By choosing paths from P_{j} to m suitably, we may assume that g_{j} are in $\pi_{l}\left(M_{k}, m\right)$. If $P_{j}{ }^{1}$ and $P_{j}{ }^{2}$ are the components of ∂M_{k} corresponding to $P_{j}(j>k)$, we may assume that P_{j}^{1} represents g_{j} with respect to a path in M_{k} from $P_{i}{ }^{1}$ to m. Let P_{j}^{2} represent \bar{g}_{j} with respect to a path from P_{j}^{2} to m in M_{k}. The composite path from P_{j}^{2} to $P_{j}{ }^{1}$ gives a generator t_{j} in $\pi_{1}(M, m)$ such that $g_{i}=t_{j} \bar{g}_{i} t_{j}^{-1}$.

Let $M_{j}{ }^{1}$ and M_{j}^{2} be the two parts into which $P_{j}(2 \leqslant j \leqslant k)$ divides M_{k}, with M_{j}^{1} containing N_{j}. We define a c-automorphism Φ_{1} of $(G)\left(M_{k}, m\right)$ by defining $\varphi_{1}: \pi_{1}\left(M_{k}, m\right) \rightarrow \pi_{1}\left(M_{k}, m\right)$ as follows:

$$
\begin{array}{llc}
\varphi_{1}(g)=g & \text { if } & g \in \pi_{1}\left(M_{1}^{2}\right) \\
\varphi_{1}(g)=g_{1} g g_{1} & \text { if } & g \in \pi_{1}\left(M_{1}^{\prime}\right) .
\end{array}
$$

Let X_{1}, \ldots, X_{t} be the components of the closure of $M_{1}{ }^{1}-N_{1}$. Let $P_{j(s)}=N \cap X_{s,}, 1 \leqslant s \leqslant t$. We define Φ_{2} by defining $\varphi_{2}: \pi_{1}\left(M_{k}, m\right) \rightarrow \pi_{1}\left(M_{k}, m\right)$ as follows:

$$
\varphi_{2}(g)=g \quad \text { if } \quad g \in \pi_{1}\left(M_{1}^{2} \cup N_{l}\right)
$$

and

$$
\varphi_{2}(g)=g_{i(s)} g g_{i(s)} \quad \text { if } \quad g \in \pi_{1}\left(X_{s}\right), \quad 1 \leqslant s \leqslant t
$$

Let $\Phi=\Phi_{2} \circ \Phi_{1}$ and $\varphi=\varphi_{2} \circ \varphi_{1} . \varphi$ carries g_{j}, \bar{g}_{j} to their conjugates. Let $\varphi\left(g_{j}\right)=h_{i} g_{i} h_{i}^{-1}$ and $\varphi\left(\bar{g}_{i}\right)=\bar{h}_{i} \bar{g}_{j} \bar{h}_{j}^{-1}$. The elements $h_{j} t_{j}\left(\bar{h}_{j}\right)^{-1}$ and $h_{j} g_{j} t_{j}\left(\bar{h}_{j}\right)^{-1}$ have opposite parities. We map t_{j} onto the one which has the same parity as t_{j}. Thus Φ extends to an orientation-true c-isomorphism Ψ of $G(M, m)$. And clearly Ψ has the desired property.

We next show that with the hypotheses of $2.6, \Theta$ can be replaced by an orientation-true c-isomorphism. This together with 2.5 and the last statement of the above paragraph will complete the proof of 2.6 . We first split M^{2} as above. Then by 4.3 of [10], M^{\prime} can be split exactly as M^{2} is split. We will denote the subspaces of $M^{j}(j=1,2)$ corresponding $N_{i}, M_{i}, P_{i}, \ldots$ by $N_{i}^{i}, M_{i}^{j}, P_{i}^{j}, \ldots$. Since M^{1} is split exactly as M^{2} is split, $G\left(N_{i}^{1}\right), ~(3)\left(M_{i}^{1}\right), \ldots$ are carried to $\mathfrak{G}\left(N_{i}^{2}\right), \mathfrak{G}\left(M_{i}^{2}\right), \ldots$ by Θ. Moreover if t_{i}^{2} (resp. $\left.t_{j}^{1}\right)$ is represented by a loop formed of a path joining $P_{j}^{2.2}$ (resp. $P_{j}^{2.1}$) to $P_{j}^{1.2}$ (resp. $P_{j}^{1.1}$) and $\theta\left(t_{j}{ }^{1}\right)=t_{j}^{2}$. All this can be achieved by taking a map ($\left.M^{1}, m^{1}\right) \rightarrow\left(\bar{M}^{2}, m^{2}\right)$ inducing Θ and splitting M^{1} exactly as \bar{M}^{2} is split (see [10]). We next observe
that the induced maps $\left(G G\left(N_{i}^{\prime}\right) \rightarrow\left(G G\left(N_{i}^{2}\right)\right.\right.$ are automatically orientation-true. This is seen as follows. Let θ_{i} be the induced isomorphism $\pi_{1}\left(N_{i}^{1}\right) \rightarrow \pi_{1}\left(N_{i}^{2}\right)$. Consider \bar{N}_{i}^{2} and the cover L_{i} of N_{i}^{1} corresponding to the subgroup $\theta_{i}^{-1}\left(\pi_{1}\left(\tilde{N}_{i}^{2}\right)\right)$. Since $\pi_{1}\left(\bar{N}_{i}^{2}\right)$ is torsion-free, L_{i} does not have any two-sided projective planes in it. Let \hat{L}_{i} be the manifold obtained by capping of the boundary spheres in L_{i}. Then, we have an c-isomorphism $\ddot{\Theta}_{i}:(B)\left(\hat{L}_{i}\right) \rightarrow(G)\left(\hat{N}_{i}^{2}\right)$, and \hat{N}_{i}^{2} is aspherical. $\pi_{1}\left(\hat{L}_{I}\right)$ is indecomposable, infinite and is not isomorphic to \mathbf{Z} and ∂L_{1} is incompressible; all these properties follow from those of \hat{N}_{i}^{2}. Hence \hat{L}_{i} is also aspherical and $\hat{\Theta}_{i}$ is induced by a homotopy equivalence $\left(\hat{L}_{i}, \partial \hat{L}_{i}\right) \rightarrow\left(\hat{N}_{i}^{2}, \partial \hat{N}_{i}^{2}\right)$. Hence \hat{L}_{i} and L_{i} are orientable and thus $\pi_{1}\left(L_{i}\right)=\pi_{1}\left(\hat{N}_{i}^{1}\right)$ in $\pi_{1}\left(N_{i}{ }^{1}\right)$. Hence θ_{i} is orientation-true. Then, it follows that the map induced by Θ from $\left(5\left(M_{k}{ }^{1}\right) \rightarrow(5)\left(M_{k}{ }^{2}\right)\right.$ is also orientation-true. Thus, the only thing that can go wrong is that for some $j>k, t_{j}^{1}$ and t_{j}^{2} may have opposite parities. We change Θ, by mapping t_{j}^{1} to $g_{1}^{2} t_{j}^{2}$ for such j. It is east to verify that we obtain an orientation-true c-isomorphism. This completes the proof of 2.6 .
2.7 Remark. The above proof shows that even for M^{1}, M^{2} satisfying H 1 , there are c-isomorphisms $\Theta:\left(\mathcal{G}\left(M^{1}\right) \rightarrow\left(\mathfrak{b}\left(M^{2}\right)\right.\right.$ which are not orientation-true and even if they are orientation-true, they need not be induced by maps. On the other hand, it is immediate from 2.5, 2.6 and 1.1:
2.8 Corollary. Let M^{1} and M^{2} satisfy H1. If $\left(\mathbb{B}\left(M^{1}\right)\right.$ and $\left(56\left(M^{2}\right)\right.$ are c-isomorphic, then (M^{1}, ∂M^{1}) and ($M^{2}, \partial M^{2}$) are homotopy equivalent.
2.9 Remark. In the next section we show that 2.6 and 2.8 are more generally true. Similarly 2.5 can be extended, but we do not need it for the homeomorphism problem.

83. CONSTRUCTION OF HOMEOMORPHISMS

In this section, we consider the homeomorphism problem for a class of irreducible 3 -manifolds which contain 2 -sided projective planes. We first extend Waldhausen's notion of "sufficiently large" (see [13] and [3]). Let M_{1} be a compact irreducible 3-manifold. A hierarchy for M_{i} (of length n) is a sequence of triples.
$M_{j}, F_{i} \subset M_{i}, \cup\left(F_{j}\right) \subset M_{j}, M_{i+1}=$ closure of $\left(M_{i}-\cup\left(F_{i}\right)\right)$ in M_{j} where j ranges from 1 to n, such that
(a) F_{j} is incompressible and two-sided in $M_{j}, \cup\left(F_{j}\right)$ is a regular neighbourhood of F_{j} in M_{j}, and
(b) each component of M_{n} either a 3 -cell or homeomorphic to $P^{2} \times I$.

We say that M is sufficiently large if M has a hierarchy. In $\S 4$, we show that for many M, M is sufficiently large if and only if its orientation cover is connected sum of $S^{1} \times S^{2}$ s and sufficiently large 3 -manifolds (in the sense of Waldhausen). We note that the 3 -cell is also sufficiently large.

We first have to consider the splittings of 3 -manifolds along incompressible surfaces and see how the associated invariants behave (we will only consider splittings along connected incompressible surfaces). Let S be a property embedded two-sided incompressible surface in a 3 -manifold N. Let N_{1}, N_{2} (one of them may be vacuous) be the manifolds obtained by splitting N along S. If T is a component of ∂N and T^{\prime} a component of ∂N_{1} or ∂N_{2} we say that $T^{\prime}<T$ if $T^{\prime} \cap T \neq \emptyset$. Let M be another 3-manifold, and let $\Phi: \mathfrak{G}(M, m) \rightarrow(\mathfrak{G}(N, n)$ be a c-isomorphism of their group systems. Let T be a component of ∂M and L a component of ∂N. We say that T and L are Φ-related, if one of the φ_{i} carries $\pi_{1}(T)$ to $\pi_{1}(L)$. The main tool of the homeomorphism theorem is the following:
3.1 Proposition. Let M and N be compact irreducible 3-manifolds and let $\Theta: ~(6 f(M) \rightarrow(G)(N)$ be a c-isomorphism of their group systems. Let S be a property embedded, connected, two-sided incompressible surface in N and let N_{1}, N_{2} be the manifolds obtained by splitting N along S. If the complement of S is connected, we assume that $N_{2}=\emptyset$. Then
(a) There is a connected, two-sided, properly embedded incompressible surface R homeomorphic to S in M dividing M into $M_{1}, M_{2}\left(M_{2}=\emptyset\right.$ if $\left.N_{2}=\emptyset\right)$ and there are c-isomorphisms $\Theta_{i}: \mathfrak{G}\left(M_{i}\right) \rightarrow \mathscr{G}\left(N_{i}\right), j=1,2$ such that

$$
\Theta / \pi_{i}\left(M_{i}\right)=\Theta_{i} / \pi_{l}\left(M_{i}\right), \quad j=1,2 .
$$

(b) If $L_{1}, L_{2}<T, L_{i}^{\prime}, L_{2}^{\prime}<T^{\prime}$ (one of the L_{i} and one of the L_{i}^{\prime} may be vacuous) with $L_{i} \subset \partial M_{i}, L_{j}^{\prime} \subset \partial N_{j}$ and if T, T^{\prime} are Θ-related, then L_{j}, L_{j}^{\prime} are Θ_{j}-related, $j=1$, 2. If $L_{1}, L_{2} \subset \partial M_{1}$
(this happens only when $N_{2}=\emptyset$), and if T, T^{\prime} are Θ-related then we can reorder the L_{j}^{\prime} such that $\left(L_{j}, L_{j}^{\prime}\right), j=1,2$ are Θ_{1}-related.
(c) If $\Theta *(\tau(M))=\tau(N)$, then $\left(\Theta_{1}\right) *\left(\tau\left(M_{i}\right)\right)=\tau\left(N_{i}\right), j=1,2$.
3.2 Addendum. In 3.1, if there is a oriented homotopy equivalence $f:(M, \partial M) \rightarrow(N, \partial N)$ with $f_{*}=\Theta$ and $f / \partial M$ is a homeomorphism, then we can find oriented homotopy equivalences $f_{i}:\left(M_{i}, \partial M_{j}\right) \rightarrow\left(N_{i}, \partial M_{i}\right)$ with $\left(f_{j}\right) *=\Theta_{j}, f_{i} / \partial M_{j}$ is a homeomorphism and $f_{i} \mid\left(\partial M \cap \partial M_{j}\right)=$ $f \mid\left(\partial M \cap \partial M_{j}\right), j=1,2$.
3.3 Remark. In the P^{2}-irreducible case of 3.1 , the manifolds are aspherical and stronger results than 3.1 are valid (see [1], [2] and [8]). At two points below, we appeal to the arguments of these papers.

Proof of 3.1. We first construct a system of $K(\pi, 1)$-spaces from N as in $\S 1$ and $\S 2$ and use it to split M. We saw in $\$ 2$, that for irreducible 3-manifolds with incompressible boundary, we can construct $K(\pi, 1)$-spaces in a natural way by adjoining infinite projective spaces along a finite number of two-sided projective planes. The same result is easily seen to be valid for any compact irreducible 3 -manifold, since we can first split along discs to obtain boundary-incompressible manifolds. Since S is incompressible, we may assume that none of these projective planes intersects S and for the same reason no component of ∂N intersecting S is a projective plane. We first add $P^{\infty \infty} s$ along the components of ∂N which are projective planes and then add a finite number of P^{∞} s along two-sided projective planes in the criterion of N away from S. Thus we obtain a system of $K(\pi, 1)$-space, K, K_{i} and an inclusion $\alpha:(N, \partial N) \rightarrow\left(K, \cup K_{i}\right)$ which induces an isomorphism of the group systems. The 2 -skeleton of K is the same as the 2 -skeleton of N and α is a homeomorphism on the components of ∂N which are not projective planes. As before we denote $\cup K_{i}$ by ∂K. Since K, K_{i} are $K(\pi, 1)$-spaces, we can find a map $f:(M, \partial M) \rightarrow(K, \partial K)$ with $f_{*}=\Theta$. We may assume that f is a homeomorphism on the components of ∂M which are not projective planes. By a further homotopy constant on ∂m we may make f transverse to S. Now, we use Loop Theorem (see [1], [2] and [8]) to make $f^{-1}(S)$ incompressible. Then for each component R of $f^{-1}(S),(f / R) *$ maps $\pi_{1}(R)$ injectively into $\pi_{1}(S)$. If $\partial S \neq \emptyset, \pi_{1}(S)$ is free and thus R cannot be closed. Moreover $f / \partial R$ maps ∂R homeomorphically into ∂S. Thus the degree of f / R is not zero. Hence $f / \partial R$ is a homeomorphism onto ∂S. Hence $\partial\left(f^{-1}(S)\right) \subset \partial R$. Since $f^{-1}(S)$ has no closed components, we conclude that $f^{-1}(S)=R$. If S is closed $f^{-1}(S)$, even when incompressible may have several components. In this case, [1], [2], [8] show how to reduce $f^{-1}(S)$ to one component without changing f on ∂M if M is P^{2}-irreducible. However, the same arguments are valid in P^{2}-reducible case using the Theorems 4.1, 5.2 and 5.4 of [10]. Thus in either case, we can make $R=f^{-1}(S)$ connected and incompressible and $f / R: R \rightarrow S$ induces isomorphisms in the fundamental groups. From the construction $3.1(\mathrm{a})$ and $3.1(\mathrm{~b})$ are clear. In 3.2 we can take $f=\alpha \circ g$. If $\partial R \neq \emptyset$, we homotope f / R to a homeomorphism of R onto S without changing $f / \partial R$. Since the 2 -skeleton of K is the same as the 2 -skeleton of N, this gives us a map f^{\prime} of M^{2} to N^{2} (where M^{2} and N^{2} are the 2-skeletons of M and N) such that $f^{\prime} / \partial M_{1} \cup \partial M_{2}$ is a homeomorphism and extends $f / \partial M$. Moreover the induced maps $\left(\mathcal{B}\left(M_{1}\right) \rightarrow G\left(N_{1}\right)\right.$ and $(G)\left(M_{2}\right) \rightarrow\left(B\left(N_{2}\right)\right.$ are the same as those given by $3.1(\mathrm{a})$ and hence if we prove $3.1(\mathrm{c}), 3.2$ follows. It remains to prove $3.1(\mathrm{c})$.

We first note that we may consider N as the union $N_{1} \underset{S \times\{-1\}}{\cup} S \times[-1,+1] \underset{S \times\{+1\}}{\cup} N_{2}$ and we may consider M as the union $M_{1} \underset{R \times\{-1\}}{ } R \times[-1,+1] \underset{R \times\{+1\}}{ } M_{2}$. Split K along S and write similarly $K=K_{1} \underset{s \times\{-1\}}{ } S \times[-1,+1] \underset{S \times i+1\}}{ } K_{2}$. If one of the N_{i} is empty, one has to make appropriate changes which we will omit. Let $\partial K_{i}, i=1,2$ denote ∂N_{i} union the infinite projective planes added to ∂N along the components of ∂N which are in ∂N_{i}. Then ($K_{i}, \partial K_{i}$) may not form a $K(\pi, 1)$-system for $\left(N_{i}, \partial N_{i}\right)$, if S is a disc and the resulting component of ∂N_{I} is a projective plane. In this case, we adjoin an infinite projective space to ∂K_{i} along the projective plane and then add further cells of dimension $\geqslant 3$ to obtain $K(\pi, 1)$-system ($\left.K_{i}^{\prime}, \partial K_{i}^{\prime}\right), i=1,2$. In any case, we have $\left(N_{i}, \partial N_{i}\right) \subset\left(K_{i}, \partial K_{i}\right) \subset\left(K_{i}^{\prime} . \partial K_{i}^{\prime}\right), i=1,2$

$$
\begin{equation*}
\text { and } \quad \partial K_{i} \cap S \times[-1,+1]=\partial K_{i} \cap S \times[-1,+1]=S \times\{-1\} \tag{3.4}
\end{equation*}
$$

and

$$
\partial K_{2}^{\prime} \cap S \times[-1,+1]=\partial K_{2} \cap S \times[-1,+1]=S \times\{+1\} .
$$

And f induces maps of $\left(M_{i}, \partial M_{i}\right)$ to $\left(K_{i}^{\prime}, \partial K_{i}^{\prime}\right), i=1,2$. Consider the following diagram:

In the diagram (3.5), the maps in the horizontal sequences are induced by inclusions and so also the vertical maps in the upper squares. The vertical maps in the lower squares are induced by f and its restrictions f_{1}, f_{2}, \ldots. All the homologies are with respect to the coefficients $\tilde{\mathbf{Z}}$. Since we are assuming that $\Theta *(\tau(M))=\tau(N), \Theta$ is orientation-true and all the maps are well defined. The map i_{K} is injective by 3.4. Let r and s denote the fundamental cycles of $R \times I$ and $S \times I$ respectively. We have

$$
\begin{array}{rlrl}
j_{N}([N]) & =i_{N}\left(\left[N_{1}\right],\left[N_{2}\right], s\right) & \\
j_{M}([M]) & =i_{M}\left(\left[M_{1}\right],\left[M_{2}\right], r\right) & & \\
\alpha *[N] & =\tau(N),\left(\alpha_{j}\right) *\left(\left[N_{j}\right]\right)=\tau\left(N_{i}\right), & & j=1,2 \\
f_{*}[M] & =\tau(M),\left(f_{i}\right) *\left(\left[M_{j}\right]\right)=\tau\left(M_{j}\right), & & j=1,2 .
\end{array}
$$

By hypothesis,

$$
\alpha *[N]=f *[M]=\tau(N)=\tau(M)
$$

Hence

$$
j_{K} \alpha *[N]=j_{K} f_{*}[M]
$$

But

$$
\begin{aligned}
j_{K} \alpha *[N] & =\alpha * j_{N}[N] \\
& =\alpha * i_{N}\left(\left[N_{1}\right],\left[N_{2}\right], s\right) \\
& =i_{K}\left(\tau\left(N_{1}\right), \tau\left(N_{2}\right), s\right) .
\end{aligned}
$$

Similarly

$$
j_{K} f *[M]=i_{K}\left(\tau\left(M_{1}\right), \tau\left(M_{2}\right), r\right)
$$

Since i_{K} is injective, we conclude that

$$
\tau\left(M_{i}\right)=\tau\left(N_{i}\right) \quad \text { in } \quad H_{3}\left(K_{i}^{\prime}, \partial K_{i}^{\prime} ; \tilde{\mathbf{Z}}\right), \quad i=1,2
$$

This completes the proof of $3.1(\mathrm{c})$.
3.6 Corollary. 2.6 and 2.8 are valid without the assumption that ∂M is incompressible. That is, it is enough to assume that M^{1} and M^{2} are non-orientable and irreducible.

Proof. We first observe that in 2.6 , given Θ, the Φ we constructed has the property that if $T, T^{\prime}, T \subset \partial M^{1}, T^{\prime} \subset \partial M^{2}$ are Θ-related, then T, T^{\prime} are Φ-related. Similarly in 2.8 given c-isomorphism $\Theta:\left(\mathcal{G}\left(M^{1}\right) \rightarrow \mathbb{G}\left(M^{2}\right)\right.$, there is a oriented homotopy equivalence $f:\left(M^{1}, \partial M^{1}\right) \rightarrow$ ($M^{2}, \partial M^{2}$) such that if T, T^{\prime} are Θ-related, then $f(T) \subset T^{\prime}$. Also 2.6 and 2.8 are easily seen to be valid when M^{1}, M^{2} are homotopy equivalent to $P^{2} \times S^{1}$ or $P^{2} \times I$.

We now extend these results, by induction on the number of discs needed to reduce M^{2} to boundary incompressible manifolds. Suppose that this number is n for M^{2} and we have extended 2.6 and 2.8 when the number is $\leqslant n-1$. Let $\Theta: \mathfrak{G}\left(M^{1}\right) \rightarrow\left(\mathfrak{H}\left(M^{2}\right)\right.$ be a c-isomorphism and let S be an incompressible disc in M^{2}. Let S split M^{2} into $M^{2.1}$ and $M^{2.2}$. We apply 3.1 to obtain $R, M^{1,1}$ and $M^{1,2}$ and c-isomorphisms $\Theta_{1}:\left(\mathcal{G}\left(M^{1, j}\right) \rightarrow\left(\mathcal{G}\left(M^{2, j}\right), j=1,2\right.\right.$ satisfying 3.1 (b). By
induction we can find $\Phi j:\left(\mathcal{B}\left(M^{1 . j}\right) \rightarrow(G)\left(M^{2 . j}\right), j=1,2\right.$ such that $\left(\Phi_{j}\right) *\left(\tau\left(M^{1 . j}\right)\right)=\tau\left(M^{2 . i}\right)$ and Θ_{i}-related components are Φ_{j}-related. Applying 2.8 , we find oriented homotopy equivalences $f_{j}: M^{1 . J} \rightarrow M^{2, j}$ such that $f_{j}(T) \subset T^{\prime}$ if T and T^{\prime} are Φ_{j}-related, $j=1,2$. By $3.1(\mathrm{~b})$ and the relation of Θ_{j} and Φ_{j}, we can patch them up to obtain an oriented homotopy equivalence $f:\left(M^{1}, \partial M^{1}\right) \rightarrow$ ($M^{2}, \partial M^{2}$). This proves 2.8 . Taking the induced map in the group systems, we see that 2.6 is valid too.

Now let M^{1} and M^{2} be two irreducible 3-manifolds which are sufficiently large and let $\Theta:\left(\Im\left(M^{1}\right) \rightarrow\left(\Im\left(M^{2}\right)\right.\right.$ be a c-isomorphism. By 3.6 we can find a c-isomorphism $\Psi: \circlearrowleft\left(M^{1}\right) \rightarrow(\leftrightarrows)\left(M^{2}\right)$ with $\Psi *\left(\tau\left(M^{1}\right)\right)=\tau\left(M^{2}\right)$. By 2.8 , we can find a map $f:\left(M^{1}, \partial M^{1}\right) \rightarrow\left(M^{2}, \partial M^{2}\right)$ such that $f *=\Psi$ and $f / \partial M^{1}$ is a homeomorphism. We take a hierachy for M^{2} and split M^{2} along the first incompressible surface S to obtain $M^{2.1}$ and $M^{2.2}$. By 3.1 and 3.2 we can split M^{1} into $M^{1.1}$ and $M^{1.2}$ and find maps $f_{j}:\left(M^{1, j}, \partial M^{1, j}\right) \rightarrow\left(M^{2 . j}, \partial M^{2, j}\right)$ satisfying the conclusions of 3.1 and 3.2. In particular $f_{1} \cup f_{2}|\partial M=f| \partial M$. Now $M^{2 . j}$ have hierarchies of length less than the hierarchy of M^{2}. Using 3.1(c), we can easily construct homeomorphisms when $M^{2, j}$ are 3-cells or $P^{2} \times I$ s. Thus by induction we have
3.7 (Homeomorphism Theorem). Let M^{1} and M^{2} be two irreducible, sufficiently large 3manifolds. If there is a c-isomorphism $\Theta:\left(\mathfrak{S}\left(M^{1}\right) \rightarrow\left(\mathscr{G}\left(M^{2}\right)\right.\right.$, then $\left(M^{1}, \partial M^{1}\right)$ and $\left(M^{2}, \partial M^{2}\right)$ are homeomorphic. If $\Theta_{*}\left(\tau\left(M^{1}\right)\right)=\tau\left(M^{2}\right)$, then we can find a homeomorphism $f:\left(M^{1}, \partial M^{1}\right) \rightarrow$ $\left(M^{2}, \partial M^{2}\right)$ with $f_{*}=\Theta$.

84. CRITERLA FOR SUFFICIENTLY LARGENESS

In the case of a 3 -manifold M which is irreducible and P^{2}-irreducible, good criteria are known for existence of hierarchies (see [13] and [3]). Note that in our terminology "sufficiently large" is equivalent to "having a hierarchy". We say that an irreducible 3-manifold satisfies Property H if it satisfies H 1 and H 2 below:
$\mathrm{H} 1) \partial M$ is incompressible and any two sided projective plane in M is parallel to the boundary.

H 2) If ∂M consists entirely of projective planes, then their number is not two.
We say that a 3-manifold M satisfies Property H^{\prime} if by splitting M along projective planes and incompressible discs, M can be reduced to manifolds satisfying Property H. It can be seen that the manifolds constructed by Jaco in [5] satisfy Property H and the manifolds constructed by Row in [7] satisfy Property H^{\prime}. The main result of this section is the following Theorem which is proved in collaboration with F . Waldhausen.
4.1 Theorem. Let M be a non-orientable irreducible 3-manifold which satisfies Property H^{\prime}. Then M is sufficiently large.

We will first show that the theorem follows from the lemma 4.2 below. We denote by \hat{M}, the manifold obtained by capping the boundary spheres in \tilde{M}.
4.2 Lemma. If M is non-orientable and satisfies H and if \hat{M} is sufficiently large, then there exists a two-sided incompressible surface $(S, \partial S) \subset(M, \partial M)$ such that S represents a non-trivial element of $H_{2}(M, \partial M ; \tilde{\mathbf{Z}})$ or $H_{2}(M, \partial M ; \overline{\mathbf{Z}})$.

If we prove this lemma, the proof of 4.1 can be completed as in [13], pp. 61-64. Waldhausen needs that if $\partial M \neq \emptyset$, then ∂S should represent a non-trivial element of $H_{2}(\partial M ; \mathbf{Z})$. However, the only implication of this that he uses is that S is not parallel to the boundary. Clearly, if ($S, \partial S$) represents a non-trivial element of $H_{2}(M, \partial M ; \tilde{\mathbf{Z}})$ or $H_{2}(M, \partial M ; \mathbf{Z})$ then S cannot be parallel to the boundary. Thus, it remains to prove Lemma 4.2.

Proof of 4.2. The lemma is proved in [3] if $\partial M=\emptyset$, since if M satisfies H and $\partial M=\emptyset$, then M is P^{2}-irreducible. Thus in what follows we may assume that $\partial M \neq \emptyset$. However, $\partial \hat{M}$ may be empty.

Let $\mathbf{Z}\left[\mathbf{Z}_{2}\right]$ denote the group ring of the cyclic group of order 2 . Then, we have an exact sequence:

$$
\begin{equation*}
0 \longrightarrow \overline{\mathbf{Z}} \longrightarrow \mathbf{Z}\left[\mathbf{Z}_{2}\right] \longrightarrow \mathbf{Z} \longrightarrow 0 \tag{4.3}
\end{equation*}
$$

Identifying \mathbf{Z}_{2} with the deck transformation group of \bar{M}, we see that $H_{i}\left(M ; \mathbf{Z}\left[\mathbf{Z}_{\mathrm{J}}\right]\right) \approx H_{i}(\tilde{M} ; \mathbf{Z})$ and $H^{i}\left(M ; \mathbf{Z}\left[\mathbf{Z}_{2}\right]\right) \approx H^{i}(\bar{M} ; \mathbf{Z})$. Since M is non-orientable $H_{3}(M, \partial M ; \mathbf{Z})=0$. Then, from (4.3), we obtain an exact sequence:

$$
0 \longrightarrow H_{2}(M, \partial M ; \overline{\mathbf{Z}}) \longrightarrow H_{2}(\tilde{M}, \partial \tilde{M} ; \mathbf{Z}) \xrightarrow{i} H_{2}(M, \partial M ; \mathbf{Z}) \longrightarrow \cdots
$$

If $p: \tilde{M} \rightarrow M$ is the covering projection, then the map i can be identified with $p *$. If $H_{2}(M, \partial M ; \overline{\mathbf{Z}}) \neq 0$, then its dual $H^{1}(M ; \mathbf{Z}) \neq 0$ and as in [14], we can map M to a circle and obtain an incompressible surface ($S, \partial S$) in ($M, \partial M$) representing a non-trivial element of $H_{2}(M, \partial M ; \tilde{\mathbf{Z}})$. Thus we have to consider the case when $H_{2}(M, \partial M ; \tilde{\mathbf{Z}})=0$. In this case the map $i: H_{2}(\tilde{M}, \partial \tilde{M} ; \mathbf{Z}) \rightarrow H_{2}(M, \partial M ; \mathbf{Z})$ is injective. We claim that $H_{2}(\bar{M}, \partial \tilde{M} ; \mathbf{Z})$ is a non-trivial torsion-free group. That there is no torsion is clear by duality because $H^{\prime}(\tilde{M} ; \mathbf{Z})$ is isomorphic to $\operatorname{Hom}\left(H_{1}(\bar{M} ; \mathbf{Z}) ; \mathbf{Z}\right)$ which is torsion-free. To show that it is non-trivial, it is enough to show that $H_{2}(\hat{M}, \partial \hat{M} ; \mathbf{Z})$ is non-trivial. Again if $\partial \hat{M} \neq \emptyset$, the statement follows from [14]. If $\partial \hat{M}=\emptyset$, then by our assumption, ∂M has at least 4 projective planes in the boundary. Then extending the involution on \hat{M} to \hat{M}, we get an orientation reversing involution on \hat{M} with at least 4 fixed points. An application of Lefshetz' fixed point formula shows that $H_{2}(\hat{M} ; \mathbf{Z}) \neq 0$. Since $\partial \hat{M}=\emptyset$ in this case, we have in general $H_{2}(\hat{M}, \partial \hat{M} ; \mathbf{Z}) \neq 0$ and therefore $H_{2}(\bar{M}, \partial \tilde{M} ; \mathbf{Z}) \neq 0$. Now, by [14], we can find a two-sided incompressible, properly embedded surface ($R, \partial R$) in ($\hat{M}, \partial \hat{M}$) representing a non-trivial element $H_{2}(\hat{M}, \partial \hat{M} ; \mathbf{Z})$. By pushing it off a finite number of discs, we can move it into \tilde{M}. Again $(R, \partial R)$ represents a non-trivial element of $H_{2}(\bar{M}, \partial \tilde{M} ; \mathbf{Z})$. Now 4.2 will follow from 4.4 and the Loop Theorem.
4.4 Sublemma. If there is a properly embedded surface $(R, \partial R) \subset(\tilde{M}, \partial \tilde{M})$ representing a non-trivial element r of $H_{2}(\tilde{M}, \partial \bar{M} ; \mathbf{Z})$ then there is a properly embedded two-sided orientable surface $(S, \partial S) \subset(M, \partial M)$ representing either $i *(r)$ or $2(i *(r))$ in $H_{2}(M, \partial M ; \mathbf{Z})$.

Proof of 4.4. We will use the methods of cuts (see C. D. Papakyriokopoulos's paper in Annals of Math. 66 (1957) or J. R. Stallings, ibid 72 (1960)) to prove 4.4. We may first assume that $p(R)$ intersects transversally. The self-intersections of $p(R)$ consists of segments or circles. The inverse of image of a segment ω in R consists of two disjoint segments ω_{1}, ω_{2} which are properly embedded in R and which map homeomorphically onto ω under p. The inverse image of circle ω will consist of (i) either two disjoint circles ω_{1}, ω_{2} in the interior of R each of which maps homeomorphically onto ω under p, or (ii) one circle ω_{1} in the interior of R such that $P \mid \omega_{2}: \omega_{1} \rightarrow \omega$ in a double cover. Figures la and 1 b represent the cases when ω is segment or ω is circle whose inverse image consists of two circles. If ω is segment, 1a (resp. 1b) represents a regular neighbourhood of ω in M. The two discs at the edges are in ∂M. If ω is a circle identify the two discs such that the segment $a_{1} c_{1}$ is identified with $b_{1} d_{1}$ and $a_{2} c_{2}$ is identified with $b_{2} d_{2}$. The resulting solid torus represents a neighbourhood of ω in $M-\partial M$ (ω is necessarily an orientation preserving loop). The arrows in the boundary represent the following. We fix orientation on R and choose the induced orientation on the pieces of R (rectangles or annuli) which map into the neighbourhood of ω, say T, represented in the figures. In the pieces in T, we choose the orientation given by these via p and the induced orientations on the boundaries are represented by arrows. Thus 1 la and lb represent two possibilities. By reversing the arrows we get the other two possible cases. Figure 2 corresponds to the case when $p^{-1}(\omega)$ is connected. In this case ω is necessarily orientation reversing. Identify the two discs at the edges so that the segments $a_{1} c_{1}$ is identified with $b_{2} d_{2}$ and $a_{2} c_{2}$ with $b_{1} d_{1}$. The results is a solid Klein bottle which represents a neighbourhood of ω in $M-\partial M$. The arrows again represent the orientation chosen as above. By reversing all the arrows, we get the other possible case.

We next get an orientable surface S^{\prime} in $(M, \partial M)$ such that $\left[S^{\prime}\right]=p[R]$. Outside the neighbourhoods of ω chosen as above we take S to be the part of $p(R)$ outside the neighbourhoods. And we take the induced orientation. If ω is segment, in case la, we take two disjoint rectangular pieces in the 3 -cell such that one of them has $c_{2} d_{2}$ and $c_{1} d_{1}$ in its boundary, intersects the boundary of the 3 -cell transversally and meets the annulus in the figure exactly along the segments $c_{2} d_{2}$ and $c_{1} d_{1}$. The other is chosen similarly with respect $a_{1} b_{1}$ and $a_{2} b_{2}$. If ω is a circle, in case la, we further choose the rectangle spanning $c_{2} d_{2}, c_{1} d_{1}$ so that the two extra pieces in the boundary match when we identify the edge cells. In either case we choose an

Fig. 1. In la, lb , if ω is a circle $a_{1} c_{1}, b_{1} d_{1}$ and $a_{2} c_{2}, b_{2} d_{2}$ are identified.

Fig. 2. In $2, a_{1} c_{1}, b_{2} d_{2}$ and $a_{2} c_{2}, b_{1} d_{1}$ are identified.
orientation on the rectangle so that the orientation induced on the pieces $c_{2} d_{2}$ and $c_{1} d_{1}$ is as shown in Fig. 1a. Case 1 b is handled similarly. In case 2 (Fig. 2), we take two disjoint rectangles spanning $a_{1} b_{1}, c_{2} d_{2}$ and $a_{2} b_{2}$ and $a_{2} b_{2}, c_{1} d_{1}$ such that in the identification of the edge cells, the extra pieces in the boundaries of the rectangles match properly. Thus we get one annulus and we choose the orientation which induces the orientation on the pieces $a_{1} b_{1}, \ldots$ as indicated in the figure. We adjoin these rectangles or annuli to the image of R outside the neighbourhoods and call it S^{\prime}. Clearly, we get an orientable surface with $p[R]=\left[S^{\prime}\right]$. In general S^{\prime} is not two-sided. If S^{\prime} is two-sided we take $S=S^{\prime}$. Otherwise, we take a regular neighbourhood V of S^{\prime} and take $S=$ the closure of $\partial V-(\partial V \cap \partial M)$. It is clear that [S] represents $2\left[S^{\prime}\right]$ in $H_{2}(M, \partial M ; Z)$. This proves 4.3 and therefore 4.2 and 4.1.
4.5 Remark. In the proof of 4.2 , what we mainly needed was that either $H_{2}(M, \partial M ; \overline{\mathbf{z}}) \neq 0$ or $H_{2}(\bar{M}, \partial \bar{M} ; \mathbf{Z}) \neq 0$. Even when ∂M consists of two projective planes, one of these conditions may be satisfied and in that case M is sufficiently large. However, if \hat{M} is closed and $H_{2}(\hat{M} ; \mathbf{Z})=\mathbf{0}$, even if \hat{M} is sufficiently large, we have not been able to show that M is sufficiently large.

The above proofs show that for M satisfying H 1 even if ∂M consists of two projective planes, if we can find an incompressible surface in M not parallel to the boundary, then M is sufficiently large. Thus as in [13] and [14], we have
4.6 Proposition. If M satisfies $\mathrm{H} 1, M$ is sufficiently large if either
(1) $\pi_{1}(M)$ is non-trivial amalgamated free product or
(2) $H_{1}(M ; \mathbf{Z})$ is a non-trivial infinite group.

REFERENCES

1. C. D. Feustel: A splitting theorem for closed orientable 3-manifolds, Topology 11 (1972), 151-158.
2. C. D. Feustel: A generalization of Kneser's Conjecture, Pacif. J. Math. 46 (1973), 123-130.
3. W. Heil: On P^{2}-irreducible 3-manifolds, Bull. Am. math. Soc. 75 (1969), 772-775.
4. H. Hendriks: Homotopy type of compact 3-manifolds, Preprint (1975).
5. W. Jaco: Finitely presented subgroups of 3-manifold groups, Inv. Math. 13 (1971), 335-346.
6. G. R. Livesay: Involutions with two fixed points on the 3-sphere, Ann. Math. 78 (1963), 582-593.
7. W. H. Row: Irreducible 3-manifolds whose orientable covers are not prime, Proc. Am. math. Soc. 34 (1972), 541-545.
8. G. P. Scott: On sufficiently large 3-manifolds, Q. J. Math. 23 (1972), 159-172.
9. G. A. Swarup: On a Theorem of C. B. Thomas, J. Lond. math. Soc. 8 (1974), 13-21.
10. G. A. Swarup: Projective planes in irreducible 3-manifolds, Math. Z. 132 (1973), 305-317.
11. G. A. Swarcp: Homotopy type of closed 3-manifolds, preprint (1974)
12. H. Trotter: Homology of group systems with applications to knot theory, Ann. Math. 76 (1962), 465-498.
13. F. Waldhausen: On irreducible 3-manifolds which are sufficiently large, Ann. Math. 87 (1968), 56-88.
14. F. Waldhalsen: Gruppen mit Zentrum und 3-dimensionale Mannigfaltigkeiten, Topology 6 (1967), 505-517.

Tata Institute of Jundamental Research,
National Centre of the Government of India
for Nuclear Science and Mathematics.

