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Preface
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The notes were typed up in a collaborative effort of the lecturers and many participants of the
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website: https://maths.dur.ac.uk/users/mark.a.powell/topological-manifolds.html.

There was a followup seminar course at the University of Bonn in the summer semester
of 2021. Notes from those talks, provided by the speakers, have been incorporated into these
notes. Here is the seminar website: https://maths.dur.ac.uk/users/mark.a.powell/topological-
manifolds-seminar.html.

The lectures and seminar talks were live streamed, and recordings are available upon request.
Please contact Mark or Aru for access.
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Preview

We begin with an overview of the field of topological manifold theory in general and a
preview of what we will discuss. First, we define topological manifolds.

Definition 0.1 (Topological manifold). A topological space M is said to be an n-dimensional
topological manifold if it is

(i) Hausdorff, i.e. any two points may be separated by open neighbourhoods;
(ii) locally Euclidean, i.e. for every x ∈ M there is an open neighbourhood U ∋ x that is

homeomorphic to either Rn or Rn+ := {y⃗ ∈ Rn | y1 ≥ 0}; and
(iii) paracompact, i.e. any open cover has a locally finite refinement.

Note that by allowing the possibility of Rn+ we are defining what some authors call a “manifold
with boundary”. With our definition we avoid having to specify that a boundary is permitted,
however this means we must then stipulate when one is expressly forbidden.

You may also have seen other definitions of manifolds, e.g. requiring second countability
or metrisability. We will see presently that some other definitions are equivalent to the one
above, and in the exercises you will explore examples of spaces lacking one or other of the above
properties.

The word “manifold” comes from German. Specifically, Riemann used the term Mannig-
faltigkeit in his PhD thesis to describe a certain generalisation of surfaces. This was translated to
“manifoldness” by Clifford. Prior to Riemann, mathematicians had classically studied geometry,
first Euclidean, then spherical and hyperbolic. Surfaces were studied in depth, including by
Riemann. As you probably know the first systematic account of the field of topology was in
Analysis situs by Poincaré, and the first definition he wrote down was of what he called a
manifold. In modern terms, he defined a smooth manifold. Here is a quick reminder of the
definition (the modern one, not Poincaré’s).

Definition 0.2 (Smooth manifold). Let Mn be a topological manifold. A chart on M is a pair
(U,φ) where U ⊆ M is open and φ : U

∼=−→ Rn is a homeomorphism. If (U,φ) and (V, ψ) are two
charts on M such that U ∩ V ̸= ∅ then the map ψ ◦ φ−1 is said to be a transition map (this is a
homeomorphisms, as a composite of homeomorphisms). If ψ ◦ φ−1 is further a diffeomorphism
then the charts (U,φ) and (V, ψ) are said to be smoothly compatible.

A smooth atlas for M is a collection of smoothly compatible charts for M whose domains
cover M . A smooth structure on M is a maximal smooth atlas, where maximal means that any
chart smoothly compatible with the atlas is already contained in the atlas.

A couple of remarks are in order. First, Poincaré’s original definition of a (smooth) manifold
had been as a subset of Euclidean space satisfying a given collection of smooth functions. The
Whitney embedding theorem from the 1930s showed that every smooth n-manifold (satisfying
the definition above) embeds in R2n+1, and so the two notions coincide.

Second, the definition above indicates a recipe for imposing more structure on topological
manifolds. By requiring the transition maps to be smooth, we obtain smooth manifolds. Similarly,
by imposing further (or fewer) conditions, e.g. symplectic, complex, C1, etc., we may produce
more categories of manifolds. In this course, we will focus on unadulterated topological manifolds,

xiii



xiv PREVIEW

with occasional cameos by smooth manifolds and piecewise-linear manifolds. We define the
latter next.

As you probably noticed in your algebraic topology courses, it is often convenient to work
with simplicial complexes rather than purely abstract spaces, e.g. when computing homology
groups. This was especially true in the early days of topology.

Definition 0.3. A manifold is said to be triangulated if it is homeomorphic to the geometric
realisation of a (locally finite) simplicial complex.

A piecewise-linear manifold, often called a PL manifold is a manifold with a particularly
nice triangulation.

Definition 0.4 (PL manifold (preliminary)). An n-manifold is piecewise linear (PL) if it has a
triangulation such that the link of every vertex is a PL (n− 1)-sphere or PL (n− 1)-ball.

Rest assured, we will carefully define what a PL sphere is later in the course. An intuitive
way to think about the definition is that it is a strengthening of the “locally Euclidean” condition
in the definition of a manifold, specifically that not only does each point have a neighbourhood
homeomorphic to Euclidean space, but that such neighbourhoods may further be taken to be
PL equivalent to Euclidean space. An alternative definition of PL manifolds requires that the
transition maps be piecewise-linear maps on Euclidean space (also to be defined carefully in the
future). In other words, a PL manifold is a topological manifold with a maximal PL atlas. A
result of Dedecker [Ded62] shows that the two definitions coincide.

By definition, both smooth and PL manifolds are topological manifolds, by forgetting the
extra structure. By results of Cairns (1934) and Whitehead (1940) every smooth manifold is PL.
Since the very inception of manifold theory, e.g. in Analysis situs, there has been much interest
in the relationship between these three categories. Here are some other fundamental questions.

(1) Is a given CW complex homotopy equivalent to a TOP manifold? PL? DIFF?
(2) Given two manifolds, are they homotopy equivalent? Are they homeomorphic? If they

are PL or smooth, are they PL homeomorphic or diffeomorphic respectively?
(3) When do manifolds embed in one another?
(4) For a given topological manifoldM , what is the space of self-homeomorphisms Homeo(M)?

Given a pair of manifolds M and N , what is the space of embeddings Emb(M,N)?
These are huge, very general questions. Too general, to expect to be able to have answers of

a manageable level of complexity. We will make some initial steps on the long quest to answering
interesting special cases of them in this course.

To guide our investigations, it might help to focus on some more specific questions, that we
shall aim to discuss in the course, and which represent some highlights of the theory.

− The (generalised) Poincaré conjecture: if a closed n-dimensional manifold M is
homotopy equivalent to the n-sphere Sn, is M homeomorphic to Sn?

– Yes, classical for n ≤ 2, Perelman for n = 3 (2003), Freedman for n = 4 (1982),
Smale, Stallings, Newman for n ≥ 4 (1960s). True in PL category for n ̸= 5, for
n = 4 the PL question is equivalent to the DIFF question. In DIFF it has been
reduced to problems in homotopy theory for n > 4, while it is wide open for n = 4.

− The Schoenflies problem: is every embedding of Sn−1 in Sn equivalent to the
standard (equatorial) embedding?

– Solved in the topological category by M. Brown (1960), assuming bicollared, false
otherwise. It is true in smooth category for n ≥ 5, open for n = 4.

− Can topological manifolds manifolds be triangulated?
– Not always, for n = 4 Casson (1980s), for n ≥ 5 Manolescu (2013).

− Double suspension problem: Let M be a (homology) manifold with H∗(M ;Z) ∼=
H∗(Sn;Z). Is the double suspension Σ2M a TOP manifold? If yes, then Σ2M ∼= Sn+2.
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– Yes, Cannon, Edwards.
We will substantially address some of the above questions in this course. Some basic tools in
smooth and PL topology include:

− tangent bundles;
− tubular neighbourhoods;
− handle decompositions; and
− transversality.

In stark contrast, these are difficult theorems in the topological category; we will see how to
prove them.

Along with the tools listed above, there are also certain standard “tool theorems”, such as:
− the h- and s-cobordism theorems and
− the surgery exact sequence.

Indeed, one of the key consequences of transversality and the existence of handle decompositions
in the topological category is making the s-cobordism theorem and surgery available.

An inane comment is that working purely in the topological category makes some things
easier and some things harder. More specifically, major theorems like the Poincaré conjecture
and the Schoenflies theorem are now known in the topological category, since it is comparatively
easier to detect a topological ball or sphere, compared to a smooth one. The other side of the
coin is that basic tools such as transversality and handlebody decompositions are harder to
achieve in the topological category, since we do not impose so much structure to get these via
the usual methods. Consequently, “standard” facts like the well-definedness of the connected
sum operation become highly nontrivial to prove.

Along with the drastic contrast between categories, there is also a sharp distinction in the
behaviour of low- and high-dimensional manifolds. A slogan here is that dimension 4 is a sort of
phase transition. This is exemplified by the following facts:

− the topological manifold Rn has a unique smooth structure if n ̸= 4 and uncountably
many smooth structures if n = 4; and

− a topological manifold M admits a topological handlebody decomposition precisely if
M is not a non-smoothable 4-manifold.

0.1. Conventions

We will use the following notation for equivalence relations:
− ≃ for homotopy equivalences;
− ∼= for homeomorphism;
− ∼=C∞ for diffeomorphisms.
− ∼=PL for PL homeomorphisms.
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CHAPTER 1

Definitions of topological manifolds

Robion Kirby, James Kister, Christian Kremer, Mark Powell, and Benjamin Matthias
Ruppik

Let us discuss the definition of a topological manifold in more detail. We will present a series
of alternative definitions. First we recall some terms.
Definition 1.1. A topological space X is Hausdorff if for every x, y ∈ X, with x ≠ y, there
exist disjoint open sets U ∋ x and V ∋ y.
Definition 1.2. A subset U ⊆ X of a topological space X is a neighbourhood of x ∈ U if there
is an open set V ⊆ U with x ∈ V and V ⊆ U .
Definition 1.3. A collection of subsets {Vα} of X is locally finite if for every x ∈ X there is a
neighbourhood U ∋ x with U ∩ Vα ̸= ∅ for finitely many α.
Definition 1.4. A topological space X is paracompact if every open cover {Uα} of X has a
locally finite refinement. Here a refinement is another cover {Vβ} such that for each β, Vβ ⊆ Uα
for some α.

Now we recall the definition of a topological manifold from above.
Definition 1.5 (Topological manifold). A topological space M is an n-dimensional topological
manifold (often from now on, a manifold) if it is

(i) Hausdorff;
(ii) locally n-Euclidean; and
(iii) paracompact.

Here a space M is said to be locally n-Euclidean if for every x ∈ M there is an open neighbourhood
U ∋ x that is homeomorphic to either Rn or

Rn+ := {y⃗ ∈ Rn | y1 ≥ 0}.
We refer to such a U as a coordinate neighbourhood.

The interior IntM of the manifold M is the union of all the points that have an open
neighbourhood homeomorphic to Rn. The boundary of M is defined as the complement of the
interior

∂M := M∖ IntM.

A manifold is closed if it is compact and ∂M = ∅. A manifold is open if it is noncompact and
∂M = ∅.
Example 1.6. The line R is a topological manifold. It is straightforward to see that R is locally
1-Euclidean and Hausdorff. It is second countable because open intervals with rational centre
and rational length form a countable basis for the topology. We will show below that connected,
second countable, locally Euclidean, Hausdorff spaces are paracompact.
Example 1.7. The line with two origins, namely the quotient space of R ⊔ R where x in the
first R is identified with x in the second R for all x ≠ 0, is locally Euclidean and paracompact,
but is not Hausdorff.

3
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Example 1.8. Let Ω be the first uncountable ordinal. Take one copy of [0, 1) for each ordinal
less than Ω. The long line is formed from stacking these half open intervals: define an order on
the union of all [0, 1)ω, ω < Ω, as follows. If x, y ∈ [0, 1)ω then define x ≤ y if and only if x ≤ y.
If x ∈ [0, 1)ω and y ∈ [0, 1)ω′ , with ω ̸= ω′ then define x < y if and only if ω < ω′.

Theorem 1.9. Let M be a Hausdorff, locally n-Euclidean topological space. Then the
following are equivalent.

(i) M is paracompact;
(ii) Every component Mα of M admits an exhaustion by compact sets. That is there is a

countable sequence {Ci}∞
i=1 of compact sets Ci with Ci ⊆ IntCi+1 and

⋃∞
i=1Ci = Mα.

(iii) Every component of M is second countable.
(iv) M is metrisable.

We remark that for many readers, an alternative and still satisfactory definition of a
topological manifold would replace paracompact with second countable. We would then include
the proviso that M has countably many connected components in (i) and (iv), remove “Every
component of” from (iii), and remove “ Every component Mα of” from (ii) i.e. take Mα = M . It
is perhaps a question of taste whether spaces with uncountably many connected components
should be manifolds.

Proof. We will only give the argument for the case of empty boundary.
(iv)⇒(i) Here we quote a result that every metric space is paracompact [Mun00a, The-

orem 41.4].
(iii) ⇒ (iv). We start by showing that every Hausdorff and locally Euclidean space M is

regular.
To do this, first we claim that for every x ∈ M and open U ∋ x, there exists W ∋ x open

with x ∈ W ⊆ W ⊆ U . To prove the claim, let V be an open set containing x from the locally
Euclidean hypothesis, and let φ : V → Rn be a homeomorphism. Then φ(U ∩ V ) ⊆ Rn is open.
It follows that there exists ε > 0 such that

Z := Bε/2(φ(x)) ⊆ Bε(φ(x)) ⊆ φ(U ∩ V ),

where Bδ(y) is the ball of radius δ and centre y. Now Z is closed and bounded and therefore
is compact in Rn by the Heine-Borel theorem. It follows that φ−1(Z) is compact, and then
since M is Hausdorff, φ−1(Z) is closed. Now take W to be the point-set interior of Z, Z̊. Then
x ∈ W ⊆ W ⊆ U ∩ V ⊆ U , as desired.

Figure 1.1. A regular topological space is the one in which for every point x
and a closed set A there exist open sets U and V separating them.

Using the claim, we show that M is regular, meaning that for any closed set C and point x
not in C, there exist open sets V,W with x ∈ W , C ⊆ V , and V ∩W = ∅. So fix C and x as
above, and let U := M∖ C, which is open. Then by the previous claim there exists and open set
W with x ∈ W ⊆ W ⊆ U . Define V := M∖W , which contains C. Indeed V ∩W = ∅, so M is
regular as asserted.



1. DEFINITIONS OF TOPOLOGICAL MANIFOLDS 5

Now, the Urysohn metrisation theorem says that every Hausdorff, regular, second countable
space is metrisable. This gives a metric on each connected component of M . Make each
component diameter at most 1 by replacing the metric d with d′, where d′(x, y) := min{d(x, y), 1}.
Then set the distance between any two points in distinct connected components to be 2. This
gives a metric on all of M , which completes the proof that ((iii)) ⇒ ((iv)).

((ii)) ⇒ ((iii)) Cover each Ci by finitely many coordinate neighbourhoods. It follows that
each component of M has a countable cover by coordinate neighbourhoods. Each of these is
open and second countable, so the entire component of M is also second countable.

((i))⇒((ii)) Let C denote a component of M . Since C is locally Euclidean, there exists an
open cover {Uα} where each Uα is compact. Let {Vβ} be a locally finite refinement. Then V β is
a closed subset of a compact set so is compact.

We claim that each Vβ intersects finitely many other sets Vβ′ , since Vβ is compact. To see
this, suppose it is false and choose xα ∈ Vα ∩ Vβ for infinitely many α. Since the Vβ came from
coordinate neighbourhoods, they are also sequentially compact (since Rn is a metric space).
Therefore the set {xα} has a limit point y in Vβ. Any neighbourhood of y intersects infinitely
many of the xα, and therefore intersects infinitely many of the subsets Vα. This contradicts local
finiteness, so completes the proof of the claim that Vβ intersects finitely many other Vβ′ .

Now define Γ to be a graph with a vertex for each set Vβ and an edge whenever Vβ ∩ Vβ′ ≠ ∅.
The graph Γ is connected since C is, and it is locally finite, meaning that each vertex is connected
to finitely many edges.

We claim that a locally finite connected graph Γ is countable i.e. has countably many vertices.
To see this, fix a vertex γ and let Γn ⊆ Γ be the full subgraph consisting of all the vertices that
can be reached from γ by a path intersecting at most n edges. Local finiteness implies that Γn
is finite. Since Γ is locally connected it is path connected, and since a path intersects finitely
many edges by compactness, every vertex is contained in Γn for some n. Therefore Γ = ⋃∞

i=0 Γn
is countable as claimed.

We deduce that {Vβ} is countable, so equals {V1, V2, . . . } after relabelling. Define C1 := V 1.
Note that C1 is contained in a union of finitely many Vi. Call them Vi1 , . . . , Vik . Then define

C2 := V 2 ∪
k⋃
j=1

V ij .

Iterate this idea to define C3, C4, and so on. This completes the proof of ((i))⇒((ii)). □

Exercise 1.1. Give an example of a locally n-Euclidean, paracompact space that is not
Hausdorff.

Exercise 1.2. Give an example of a locally n-Euclidean, Hausdorff space that is not
paracompact.

Exercise 1.3. Every compact topological manifold embeds in RN for some N .





CHAPTER 2

Invariance of domain and applications

Christian Kremer, Mark Powell, and Benjamin Ruppik

2.1. Invariance of domain

We study the invariance of domain theorem, following Casson’s notes [Cas71]. This theorem
has a simple and innocuous looking statement, but it is foundational to the theory of manifolds.
The word domain is an old-fashioned word for an open set in Rn, used frequently in complex
analysis. The next theorem was one of the early triumphs of homology theory.

Theorem 2.1 (Brouwer, 1910). Let U ⊆ Rn be open and let f : U → Rn be continuous
and injective. Then f(U) ⊆ Rn is open and f : U → f(U) is a homeomorphism, i.e. f is an
embedding.

Definition 2.2. A map f : X → Y is called an embedding if f is injective and is a homeomorphism
onto its image.

Note that in the smooth category, an embedding is also required to be an immersion, meaning
that at each point the derivative is an injective linear map on tangent spaces. By the inverse
function theorem this implies that an immersion is a local diffeomorphism. The condition for an
embedding to be an immersion is equivalent to an embedding being a diffeomorphism onto its
image.

Corollary 2.3. Let V ⊆ Rn such that V ∼= U with U ⊆ Rn open. Then V is open in Rn.

Proof. Let f : U → V be the homeomorphism given in the statement. Apply invariance of
domain to deduce that f(U) = V is open. □

An important consequence of invariance of domain is that the notion of dimension is well-
defined for manifolds. Note that a topological manifold is locally path-connected, so it is
connected if and only if it is path connected.

Proposition 2.4. There is a well-defined dimension for nonempty connected topological
manifolds. That is, a nonempty Hausdorff, paracompact topological space that is locally n-
Euclidean cannot be locally m-Euclidean for m ̸= n.

As a consequence, we will drop the n prefix from n-Euclidean from now on.

Proof. We will only argue for the case of empty boundary. Let M be an n-dimensional manifold
and let A and B neighbourhoods of a point p in M together with homeomorphisms φ : A

∼=−→
Rn and ψ : B

∼=−→ Rm. Suppose without loss of generality that m < n. Then we have a
homeomorphism

ψ ◦ φ−1 : U := φ(A ∩B) → V := ψ(A ∩B) ⊆ Rm ⊆ Rn.
Here we include Rm ⊆ Rn using the standard inclusion. Then U ⊆ Rn is open and U ∼= V . So
by Corollary 2.3 we see that V is open in Rn. But any open ball around a point in V is not
contained in Rm, so is certainly not contained in V . It follows that V cannot be open in Rn.
This contradiction implies that the initial set up cannot exist, which proves the proposition. □

7



8 2. INVARIANCE OF DOMAIN

Corollary 2.5. Let M be an n-manifold. Then ∂M = M∖ IntM is an (n− 1)-manifold
without boundary.

Proof. Let x ∈ M and let f : Rn+ → M be a map that is a homeomorphism onto its image, which
is an open neighbourhood of x.

Claim. We have that x ∈ ∂M if and only if x ∈ f(Rn−1), where we consider Rn−1 ⊆ Rn via
x⃗ 7→ (0, x⃗).

Note that the claim in particular says that the boundary can potentially be nonempty. It
could have been, a priori, that every point with an Rn+ neighbourhood also secretly lives in the
interior by virtue of a different Rn neighbourhood. This is not the case.

Let us prove the claim. We will prove the contrapositive of each inclusion. So suppose that
x /∈ f(Rn−1). Then x ∈ f(Rn+∖ Rn−1) ∼= Rn, so x ∈ IntM . Therefore x /∈ ∂M .

Now suppose that x /∈ ∂M . Then x ∈ IntM . So there exists U ∋ x open in M with
U ∼= Rn. Therefore there is a neighbourhood V of x with V ⊆ U and V ⊆ f(Rn−1) ⊆ M , with
V homeomorphic to an open subset of Rn. Therefore

f−1(V ) ⊆ Rn+ ⊆ Rn.

By invariance of domain, f−1(V ) is open in Rn.
Now suppose for a contradiction that x ∈ f(Rn−1) then f−1(x) ∈ Rn−1. But f−1(V ) cannot

simultaneously be open in Rn and be an open neighbourhood of f−1(x) ∈ Rn−1. Therefore
x /∈ f(Rn−1). This completes the proof of the claim that x ∈ ∂M if and only if x ∈ f(Rn−1).

Now we prove the corollary. Let y ∈ ∂M . Let g : Rn+
∼=−→ M be a coordinate neighbourhood.

Then g(Rn+) ∩ ∂M = g(Rn+) ∩ g(Rn−1) = g(Rn−1) is an open set in ∂M homeomorphic to Rn−1,
so ∂M is locally (n − 1)-Euclidean, as required. Note that ∂M is certainly Hausdorff and
paracompact. □

Corollary 2.6. Let Mm, Nn be manifolds. Then M ×N is an (m+ n)-manifold with

∂(M ×N) = M × ∂N ∪∂M×∂N ∂M ×N

Proof. Each point in M × N has an open neighbourhood homeomorphic to one of Rm × Rm,
Rm×Rn+, Rm+ ×Rn+, or Rm×Rn+. Apart from the first one, the other three are all homeomorphic
to Rm+n

+ . As we showed in the proof of the previous corollary, the boundary ∂(M × N) is
precisely the points which have one of the neighbourhoods of the latter three types. □

The boundary of a smooth product has corners, but we do not have to worry about corner
points in the topological category. A helpful example to consider is that the disc and the square
are homeomorphic. What is the smooth structure on a square? Is it equivalent to the smooth
structure on a disc?

Having explained some important consequences of invariance of domain, now we begin to
prove it. We will need the following two manifolds:

Sn = {x⃗ ∈ Rn+1 | ∥x⃗∥ = 1}
Dn = {x⃗ ∈ Rn+1 | ∥x⃗∥ ≤ 1}.

Lemma 2.7. Let X ⊆ Sn be a subset of the n-sphere which is homeomorphic to a disc,
X ∼= Dk. Then for all degrees r ∈ N0, the reduced homology groups of the complement vanish,
H̃r(Sn∖X) = 0.

Proof. The proof is by induction on k. For k = 0, Sn∖ {pt} ∼= Rn so is contractible.
Now assume that the lemma holds for k. Choose a homeomorphism

f : Dk × I ∼= Dk+1 ∼= X
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Let t ∈ I = [0, 1]. Note that for every t ∈ I we have
H̃∗(Sn∖ f(Dk × {t})) = 0

by the inductive hypothesis. Let [α] ∈ H̃r(Sn∖ X) be a class in reduced homology for some
r ≥ 0; we want to show that α is the trivial class. We can write α = ∂ct for some chain ct in
Cr+1(Sn∖Dk × {t}). Since ct is a sum of finitely many singular simplices, its image is compact.
Therefore there exists an open interval Jt of t in I such that ct lies in Sn∖ f(Dk × Jt). Since I
is compact, we can find a finite partition

0 = t0 < t1 < t2 < · · · < tℓ = 1
such that [ti, ti+1] ⊆ Jτ for some τ ∈ Jτ . For 0 ≤ p ≤ q ≤ ℓ, we consider the inclusion induced
homomorphisms

ϕp,q : H̃r(Sn∖X) → H̃r(Sn∖ f(Dk × [tp, tq])).
We know that ϕp−1,p(α) = 0 for every p because α bounds cτ in Cr+1(Sn∖ f(Dk × [tp−1, tp]))
for some τ ∈ I.

We want to show that ϕ0,ℓ(α) = 0. Then since ϕ0,ℓ = Id: H̃r(Sn∖X) → H̃r(Sn∖X), it will
follow that α = 0 as desired. We show by induction that ϕ0,i(α) = 0. For i = 1, this holds as
the case p = 1 of ϕp−1,p(α) = 0.

The sets Sn∖ f(Dk × [tp, tp+1]) are open. We apply Mayer-Vietoris for
Sn∖ f(Dk × {ti}) = Sn∖ f(Dk × [0, ti]) ∪Sn∖f(Dk×[0,ti+1]) S

n∖ f(Dk × [ti, ti+1]).

Since we know that H̃s(Sn∖ f(Dk × {ti})) = 0, we obtain a commutative diagram

0 H̃r(Sn∖ f(Dk × [0, ti+1]]) H̃r(Sn∖ f(Dk × [0, ti])) ⊕ H̃r(Sn∖ f(Dk × [ti, ti+1])) 0

H̃r(Sn∖X)

∼=

ϕ0,i+1
ϕ0,i⊕ϕi,i+1

The diagonal map sends α to 0, so we deduce that ϕ0,i+1(α) = 0. Then by induction ϕ0,ℓ(α) = 0,
so α = 0 as desired. □

Lemma 2.8. If X ⊆ Sn is homeomorphic to Sk, then

H̃r(Sn∖X) ∼= H̃r(Sn−k−1) ∼=
{
Z r = n− k − 1
0 else.

Proof. The proof is by induction on k. For k = 0, for any two points p, q in Sn, we have that
Sn∖ {p, q} is homeomorphic to Rn∖ {0}, which is homotopy equivalent to Sn−1. Now assume the
lemma holds for k − 1. Let f : Sk

∼=−→ X be a homeomorphism. Let D+ and D− be hemispheres
of Sk, with Sk = D+ ∪ D− and D+ ∩ D− ∼= Sk−1. Write X± := f(D± and Xe = X+ ∩ X−.
Then note that Sn∖X = (Sn∖X+) ∩ (Sn∖X−). Furthermore Sn∖X+ ∪ Sn∖X− = Sn∖Xe.
In addition Sn∖ X± and Sn∖ Xe are open. Now Lemma 2.7 yields H̃r(Sn∖ X±) so that the
Mayer-Vietoris sequence yields:

0 → H̃r+1(Sn∖Xe)
∼=−→ H̃r(Sn∖X) → 0.

By the inductive hypothesis

H̃r+1(Sn∖Xe) ∼=
{
Z r + 1 = n− (k − 1) − 1
0 else

∼=
{
Z r = n− k − 1
0 else.

□

Corollary 2.9 (Jordan-Brouwer separation). Let f : Sn−1 → Sn be an injective, continuous
map. Then f is an embedding and Sn∖ f(Sn−1) has two connected components, both of which
are open in Sn.
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We will use the following closed map lemma, also sometimes known as the compact-Hausdorff
lemma.

Lemma 2.10. Let f : X → Y be a continuous injective map from a compact space X to a
Hausdorff space Y . Then f is a homeomorphism onto its image and a closed map.

Proof. Let U be a closed set in X. Then U is compact since X is compact. Therefore f(U) is
compact. So f(U) is closed because Y is Hausdorff. It follows that f−1 : f(X) → X is continuous,
so that f : X → f(X) is a homeomorphism. □

Proof of Corollary 2.9. By the closed map lemma f : Sn−1 → Sn is an embedding and has closed
image, so in particular Sn∖ f(Sn−1) is open. Since Sn∖ f(Sn−1) is locally path-connected,
and since Sn is a manifold, the number of components equals the number of path components.
By Lemma 2.8, H̃0(Sn∖ f(Sn−1)) ∼= Z, which shows that there are two path components.
Components are always closed, and since there are finitely many components, both are open as
well. They are open in Sn∖ f(Sn−1), and therefore they are also open in Sn since Sn∖ f(Sn−1

is open. □

Corollary 2.11. Let f : Dn → Sn be injective and continuous. Then f(IntDn) is open in
Sn.

Proof. By Lemma 2.7, H̃0(Sn∖ f(Dn)) = 0, so Sn∖ f(Dn) is connected. Now
Sn∖ f(Sn−1) = f(IntDn) ∪ Sn∖ f(Dn).

The left hand space is not connected by Corollary 2.9: it has exactly two connected components.
The two spaces on the right hand side are connected.

We deduce that f(IntDn) is precisely one of the two open components in Sn∖ f(Sn−1), so
is open by Corollary 2.9. □

Now we have finally assembled the ingredients necessary to prove invariance of domain.
Proof of Invariance of Domain Theorem 2.1. Postcompose f : U → Rn with the inclusion into
Sn. For a point x ∈ U , there exists a small closed metric ball B still contained in U . The
map f |B : B → Sn fulfills the conditions of Corollary 2.11 so that f(IntB) is open in Sn, hence
an open neighbourhood of f(x). We have shown that every point in the image of f has a
neighbourhood inside the image of f , hence f has open image. Furthermore, since interiors of
closed balls constitute a basis for the topology of U , this argument also shows that f is an open
map. □

Exercise 2.1. (PS6.1) Every connected topological manifold with empty boundary is
homogeneous. That is, for any two points a, b ∈ M , there exists a homeomorphism h : M → M
with h(a) = b.

Hint: show that for any two points a, b in IntDn, there is a homeomorphism of Dn mapping
a to b and fixed on the boundary. Next show that the orbit of any given point in M under the
action of Homeo(M) is both open and closed in M .



CHAPTER 3

Embedding in Euclidean space

Raphael Floris, Robion Kirby, James Kister

Here are some further properties of topological manifolds..
Theorem 3.1. Every m-dimensional topological manifold has covering dimension m.

That is, every open cover has an order m refinement, so there are at most m+ 1 sets in the
refinement in any nonempty intersection. That is, ⋂ki=1 Vβi

̸= ∅ implies that k ≤ m+ 1.

Theorem 3.2. Every component of an m-dimensional topological manifold embeds in RN
for some N . In fact N = 2m+ 1 suffices.

Theorem 3.3. Every topological manifold is an ANR and an ENR.

These notions will be defined below.
Theorem 3.4. Every topological manifold admits a partition of unity.

That is, there exist functions {ϕα : X → I} such that (i) {ϕ−1
α ((0, 1])} is locally finite, and

(ii) ∑α ϕα(x) = 1 for all x ∈ X.
Theorem 3.5. Every topological manifold is homotopy equivalent to a cell complex.

3.1. Embedding smooth manifolds

For smooth manifolds the following well-known result holds.
Theorem 3.6 (Whitney Embedding Theorem). Every smooth n-manifold M admits a closed

smooth embedding ι : M ↪→ R2n+1.

Furthermore, it can be shown that every embedded smooth manifold M ⊆ RN has a tubular
neighbourhood.

Theorem 3.7 (Tubular neighbourhood Theorem). Let M ⊆ RN be an embedded smooth
manifold. Then M possesses a tubular neighbourhood, i.e. there exists an open neighbourhood
U ⊆ RN of M that is diffeomorphic to a set V ⊆ NM of the type

V = {(x, v) ∈ NM | |v| < δ(x)},
where δ : M → (0,∞) is continuous and NM denotes the normal bundle of M , via the map

θ : NM → RN , (x, v) 7→ x+ v.

Let us recall the definition of ENRs.
Definition 3.8. A topological space X is a Euclidean Neighbourhood Retract (ENR) if there
exists a closed embedding ι : X ↪→ RN for some N ∈ N and an open neighbourhood U ⊆ RN of
ι(X) such that U is a retraction of U , i.e. there exists a continuous map r : U → ι(X) satisfying
r|ι(X) = idι(X).

It can be shown that any embedded smooth manifold M ⊆ RN is a retract of every tubular
neighbourhood of M , hence we have the following.

11
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Corollary 3.9. Every smooth manifold is an ENR.

A detailed account is given in [Lee13a, Chapter 6].

In this talk, we want to prove the following corresponding results for toplogical manifolds.

Theorem 3.10. Let X be a second-countable locally compact Hausdorff space such that every
compact subspace of X has dimension at most n ∈ N. Then X admits a closed embedding
ι : X ↪→ R2n+1.

Theorem 3.11. Every topological manifold is an ENR.

This is essentially due to Hanner [Han51a]. We mainly follow indications by Munkres
[Mun00b] and unpublished notes by Kirby and Kister [KK] adding many details.

Remark 3.12. Throughout these notes, we denote by N := {1, 2, . . .} the set of positive integers
and by N0 := {0, 1, 2, . . .} the set of non-negative integers.

3.2. Dimension Theory

Definition 3.13. Let X be a topological space and let U be an open covering of X. A refinement
of U is an open cover V of X such that every V ∈ V is contained in some U ∈ U, i.e. V ⊆ U .

Definition 3.14. Let X be a topological space.
(1) A collection A of subsets of X has order m ∈ N0 if m is the largest integer such that

there are m+ 1 elements of A having a non-empty intersection.
(2) X is called finite-dimensional if there exists some m ∈ N0 such that every open cover

of X possesses a refinement of order at most m.
The smallest such m is called the (topological) dimension of X, denoted by dim X.

If X is a topological space and A is a collection of subsets of X, then A has order m if and
only if there exists some x ∈ X that lies in m+ 1 elements of A and no point of X lies in more
than m+ 1 elements of A.

Let us illuminate the notion of topological dimension with an example.

Example 3.15. Let I := [0, 1] denote the closed unit interval. We want to show that dim I = 1.
Let U be an open cover of I. Since I is a compact metric space, U has a positive Lebesgue
number λ > 0, i.e. every subset of I having diameter less than λ is contained in an element of U.
For k ∈ N0, let Jk :=

(
(k − 1) · λ4 , (k + 1) · λ4

)
. Since diam Jk = λ

2 < λ, we can conclude that
V := {Jk ∩ I}k∈N0 is a refinement of U. Since V has order 1, this shows dim I ≤ 1.
In order to show that dim I ≥ 1, we consider the open over U := {[0, 1), (0, 1]}. If dim I = 0, U
would have a refinement V of order 0. Since V refines U, we get card (V) ≥ 2 (note that 0 ∈ V1
and 1 ∈ V2 for some V1, V2 ∈ V and because V refines U, we get V1 ⊆ [0, 1) and V2 ⊆ (0, 1] and
thus V1 ̸= V2). Let V be any element of V and let W be the union of all V ′ ∈ V \ V . Then
both V and W are open and V ∪ W = I and V ∩ W = ∅, because V has order 0, which is a
contradiction since I is connected.
Thus, dim I ≥ 1 and therefore dim I = 1.

We can use Lebesgue numbers to show a more general result that will be needed throughout
this section.

Theorem 3.16. Let n ∈ N. Every compact subspace of Rn has topological dimension at most
n.
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Proof. Let us first divide Rn into unit cubes. Let

J := {(k, k + 1)}k∈Z

K := {{k}}k∈Z.

If 0 ≤ d ≤ n, we define Cd to be the set of all products

A1 × · · · ×An ⊆ Rn,

where precisely d of the sets A1, . . . , An are an element of J and the remaining n− d ones are
an element of K.
Set C := C0 ∪ · · · ∪ Cn. Then for every x ∈ Rn there exists a unique C ∈ C such that x ∈ C.

Claim. Let 0 ≤ d ≤ n. For every C ∈ Cd, there exists an open neighbourhood U(C) of C
satisfying:

(1) diam U(C) ≤ 3
2

(2) U(C) ∩ U(D) = ∅ whenever D ∈ Cd \ {C}.

Proof of claim. Let x = (x1, . . . , xn) ∈ C. We will show that there exists a number 0 < ε(x) ≤ 1
2

such that the open cube centered at x with radius ε(x), i.e. the set

Wε(x)(x) = (x1 − ε(x), x1 + ε(x)) × · · · × (xn − ε(x), xn + ε(x)),

intersects no other element of Cd. If d = 0, choose ε(x) := 1
2 . If d > 0, exactly d of the numbers

x1, . . . , xn are not integers. Choose 0 < ε(x) ≤ 1
2 such that for each 1 ≤ i ≤ n that satisfies

xi /∈ Z, the interval (xi − ε(x), xi + ε(x)) contains no integer. If y = (y1, . . . , yn) ∈ Wε(x)(x), we
have yi /∈ Z whenever xi /∈ Z. Thus, either y ∈ C or y ∈ C ′ for some C ′ ∈ Cd′ where d′ > d. In
conclusion, Wε(x)(x) intersects no other element of Cd.
Now let U(C) be the union of all W ε(x)

2
where x ∈ C. Then obviously U(C)∩U(D) = ∅ whenever

D ∈ Cd \ {C}. This proves (2).
If x, y ∈ U(C), we have x ∈ W ε(x′)

2
(x′) and y ∈ W ε(y′)

2
(y′) for some x′, y′ ∈ C. By the triangle

inequality

∥x− y∥∞ ≤ ∥x− x′∥∞ + ∥x′ − y′∥∞ + ∥y′ − y∥∞ ≤ 1
4 + 1 + 1

4 = 3
2 ,

hence establishing (1). □

Now let A := {U(C) | C ∈ C}. Then A is an open cover of Rn of order n by (2). Let
K ⊆ Rn be compact and let U be an open cover of K. Since K is compact metric, U has a
positive Lebesgue number λ > 0.
Consider the homeomorphism f : Rn → Rn, x 7→ λ

3 · x. Since A is an open cover of order n,
so is A′ := {f(U(C)) | C ∈ C}. Since diam f(U(C)) ≤ λ

2 < λ for all C ∈ C, we get that
{f(U(C)) ∩K}C∈C is an open cover of K that refines U and has order at most n.
Thus, dim K ≤ n, as desired. □

We need some more elementary properties of the topological dimension before we can proceed
to manifolds.

Lemma 3.17. Let X be a finite-dimensional topological space and let Y be a closed subspace
of X. Then Y is also finite-dimensional and dim Y ≤ dim X.

Proof. Let d := dim X. Let U be an open cover of Y . For every U ∈ U there exists some open
U ′ ⊆ X such that U = U ′ ∩ Y . Let A := {U ′}U∈U ∪ {X \ Y }. Then A is an open cover of X
and thus possesses a refinement B of order at most d. Therefore, V := {B ∩ Y }B∈B is an open
cover of Y of order at most d that refines U. This proves dim Y ≤ d. □
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Theorem 3.18. Let X be a topological space and assume X = X1 ∪ X2 for some closed
finite-dimensional subspaces X1, X2 ⊆ X. Then X is also finite-dimensional and

dim X = max{dim X1, dim X2}.

Let us fix a notion for the proof of this theorem. If U is an open cover of X and Y ⊆ X is a
subspace of X, we say that U has order m ∈ N0 in Y if there exists some point y ∈ Y that is
contained in m+ 1 distinct elements of U and no point of Y is contained in more than m+ 1
distinct elements of U.

Proof. By Lemma 1.5, it suffices to prove dim X ≤ max{dim X1, dim X2}.

Claim. Let U be an open cover of X and let Y be a closed subspace of X such that
dim Y ≤ d < ∞. Then U possesses a refinement that has order at most d in Y .

Proof of claim. Let A := {U ∩ Y }U∈U. Since A is an open cover of Y and dim Y ≤ d, there
exists a refinement B of A of order at most d. For every B ∈ B, there exists some open set
UB ⊆ X such that B = UB ∩ Y . Furthermore, there exists some AB ∈ U such that B ⊆ AB ∩ Y .
Then, {UB ∩AB}B∈B ∪ {U \ Y }U∈U is an open cover of X that refines U and has order at most
d in Y . □

Now, let d := max{dim X1,dim X2} and let U be an open cover of X. We need to show
that U has a refinement V of order at most d.
Let A1 be a refinement of U of order at most d in X1 and let A2 be a refinement of A1 of order
at most d in X2. We can define a map f : A2 → A1 as follows. For every U ∈ A2 choose an
element f(U) ∈ A1 such that U ⊆ f(U).
For all S ∈ A1, let V (S) be the union of all U ∈ A2 that satisfy f(U) = S and finally let
V := {V (S)}S∈A1 . Then, V is an open cover of X: For if x ∈ X, then x ∈ U for some U ∈ A2
and because U ⊆ V (f(U)), we can deduce x ∈ V (f(U)). Furthermore, V refines A1, because
V (S) ⊆ S for every S ∈ A1. Since A1 refines U, the cover V must refine U.
Finally, we need to show that V has order at most d. Suppose x ∈ V (S1)∩· · ·∩V (Sk), where the
sets V (S1), . . . , V (Sk) are distinct. Thus, the sets S1, . . . , Sk are distinct. For all 1 ≤ i ≤ k, we
can find a set Ui ∈ A2 such that x ∈ Ui and f(Ui) = Si, because x ∈ V (Si). Because S1, . . . , Sk
are distinct, so are U1, . . . , Uk. Thus, we have the following situation:

x ∈ U1 ∩ · · · ∩ Uk ⊆ V (S1) ∩ · · · ∩ V (Sk) ⊆ S1 ∩ · · · ∩ Sk

Because X = X1 ∪X2, we have x ∈ X1 or x ∈ X2. If x ∈ X1, then k ≤ d+ 1, because A1 has
order at most d in X1. If x ∈ X2, we can also conclude k ≤ d+ 1, because A2 has order at most
d in X2.
Thus, k ≤ d+ 1, proving that V has order at most d, as desired. □

A simple induction argument then yields the following corollary.

Corollary 3.19. Let X be a topological space and let X1, . . . , Xr ⊆ X be closed finite-
dimensional subspaces of X such that

X =
r⋃
i=1

Xi.

Then X is also finite-dimensional and

dim X = max{dim X1, . . . ,dim Xn}.

We can now apply these results to manifolds.

Corollary 3.20. Let M be a topological n-manifold. If C ⊆ X is compact, then dim C ≤ n.
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Proof. Since M is locally Euclidean, C can be covered by finitely many compact n-balls
B1, . . . , Bk ⊆ M . By Theorem 1.4 and Lemma 1.5

dim (Bj ∩ C) ≤ dim Bj ≤ n

(note that Bj is homeomorphic to a compact subset of Rn) for all 1 ≤ j ≤ k.
Since C = ⋃k

j=1(Bj ∩ C), Corollary 1.7 yields dim C ≤ n. □

As a special case, we can note that every compact n-manifold is finite-dimensional and its
topological dimension is at most n. In fact, this result can be extended to general n-manifolds.
For this, we need a technical lemma.

Lemma 3.21. Let X be a topological space and assume X = ⋃∞
i=0Ci, where every Ci is closed,

C0 = ∅, Ci ⊆ ˚Ci+1 and there exists some d ∈ N0 such that dim Ci+1 \ Ci ≤ d for all i ∈ N0.
Then X is finite-dimensional and dim X ≤ d.
Proof. We will construct a sequence of covers (Vi)i∈N0 of X such that Vi+1 refines Vi and Vi has
order at most d in Ci and V0 := U. Under these hypotheses,

V := {V ⊆ X | ∃i ∈ N : V ∈ Vi and V ∩ Ci−1 ̸= ∅}
is a refinement of U of order at most d: Let x ∈ X. Then x ∈ Ci−1 for some i ∈ N. Since Vi is
an open cover of X, we get x ∈ V for some V ∈ Vi. But this means V ∩ Ci−1 ̸= ∅ and hence
V ∈ V, proving that V is an open cover of X. Suppose now that U1, . . . , Uk are distinct elements
of V having nonempty intersection and let x be an element of their intersection. Then, there
exists some i0 ∈ N such that x ∈ Ci0−1. For each 1 ≤ j ≤ k, there exists some ij ∈ N such that
Uj ∈ Vij and Uj ∩ Cij−1 ̸= ∅. Letting i := max{i0, i1, . . . , ik}, we get U1, . . . , Uk ∈ Vi and

x ∈
k⋂
j=1

Uj ∩ Ci.

Since Vi has order at most d in Ci, we get k ≤ d+ 1, i.e. V has order at most d, as desired.
All that is left now is constructing the sequence (Vi)i∈N. Set V0 = U and suppose V1, . . . ,Vi have
already been constructed. Just as in the proof of Theorem 1.6 we can find a refinement W of Vn
that has order at most d in Ci+1 \ Ci. Define a map f : W → Vi by choosing f(W ) such that
W ⊆ f(W ) for all W ∈ W. For U ∈ Vi, we define V (U) to be the union of all W ∈ W such that
f(W ) = U . We define Vi+1 to consist of three types of set: Vi+1 contains all U ∈ Vi such that
U ∩ Ci−1 ̸= ∅. Furthermore, Vi+1 contains all V (U) where U ∈ Vi such that U ∩ Ci−1 = ∅ and
U ∩ Ci ̸= ∅. Finally, Vi+1 contains all W ∈ W such that W ∩ Ci ̸= ∅.

Claim. Vi+1 is a refinement of Vi that has order at most d in Ci+1.
Proof. Let x ∈ X. We need to show the existence of some U ∈ Vi+1 satisfying x ∈ U .
Suppose x ∈ Ci−1. Since Vi is an open cover of X, we have x ∈ U for some U ∈ Vi. Because of
U ∩ Ci−1 ̸= ∅, we can conclude U ∈ Vi+1. If x /∈ Cn−1, we can find W ∈ W satisfying x ∈ W . If
W ∩Ci = ∅, then W ∈ Vi+1. Otherwise, f(W ) ⊆ W . If f(W )∩Ci−1 ̸= ∅, then x ∈ f(W ) ∈ Vn+1.
If f(W ) ∩ Ci−1 = ∅, then x ∈ V (f(W ))) and V (f(W )) ∈ Vi+1, because f(W ) ∩ Ci−1 = ∅ and
∅ ≠ W ∩ Ci ⊆ f(W ) ∩ Ci.
In conclusion, Vi+1 is an open cover of X. It is obvious that Vi+1 refines Vi.
Now let U1, . . . , Uk ∈ Vi+1 be k distinct subsets of Vi+1 and suppose x ∈ Ci+1 such that
x ∈

⋂k
j=1 Uj . If x ∈ Ci−1, then necessarily U1, . . . , Uk ∈ Vi by the definition of Vi+1 and thus

k ≤ d+ 1, because Vi has order at most d in Ci.
If x ∈ Ci \ Ci−1, then U1 = V (S1), . . . , Uk = V (Sk) for some distinct S1, . . . , Sk ∈ Vi satisfying
Sj ∩ Ci−1 = ∅ and S ∩ Ci ̸= ∅ (1 ≤ j ≤ k). Thus,

x ∈
k⋂
j=1

V (Sj) ⊆
k⋂
j=1

Sj ,
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implying that k ≤ d+ 1, because Vi has order at most d in Ci.
Finally if x ∈ Ci+1 \ Ci, then U1, . . . , Uk ∈ W, hence k ≤ d+ 1, because W has order at most d
in Ci+1 \ Ci. In conclusion, Vi+1 has order at most d in Ci+1. □

This completes the proof of Lemma 1.9. □

If X is a second-countable locally compact Hausdorff space, then we can decompose X as in
the statement of Lemma 1.9.

Lemma 3.22. Every second-countable locally compact Hausdorff space X can be exhausted by
compact subsets, i.e. there exist compact subsets (Ci)i∈N such that Ci ⊆ ˚Ci+1 and X = ⋃∞

i=1Ci.

Proof. Let B be a countable basis of the topology of X and let
B′ := {V ∈ B | V is compact}.

Since X is locally compact, B′ is again a basis of X. Let us now write B′ = {Vi}i∈N. Let
C1 := V1. Assume now, that compact subsets C1, . . . , Ck satisfying Vj ⊆ Cj and Cj−1 ⊆ C̊j for
all 1 ≤ j ≤ k (where C0 := ∅) have already been constructed. Because Ck is compact, there
exists some mk ≤ k + 1 satisfying Ck ⊆

⋃mk
j=1 Vj . Letting Ck+1 := ⋃mk

j=1 Vj , we see that Ck+1

is compact and Ck ⊆ ˚Ck+1 as well as Vk+1 ⊆ Ck+1. Thus (Ci)i∈N is an exhaustion of X by
compact subsets. □

Now, we can finally prove that all topological manifolds are finite-dimensional.
Theorem 3.23. Let M be a topological n-manifold. Then M is finite-dimensional and

dim M ≤ n.

Proof. Since M is a second-countable locally compact Hausdorff space, M can be exhausted
by compact subsets (Ci)i∈N. Each Ci is closed and furthermore each Ci+1 \ Ci is compact
since Ci+1 \ Ci ⊆ Ci+1. Thus, dim Ci+1 \ Ci ≤ n by Corollary 1.8. Lemma 1.9 now yields
dim M ≤ n. □

3.3. The embedding theorem

We want to make use of the fact that manifolds are finite-dimensional. The aim of this
section is the proof of the following statement.

Theorem 3.24. Let X be a second-countable locally compact Hausdorff space such that every
compact subspace of X has dimension at most n ∈ N. Then X admits a closed embedding
ι : X ↪→ R2n+1.

Since every n-manifold M is a second-countable locally compact Hausdorff space such that
dim C ≤ n for all compact C ⊆ M , we can thus conclude that M admits a closed embedding
M ↪→ R2n+1.

If X is a topological space, we denote by C(X,RN ) the set of all continuous maps X → RN .
We shall equip RN with the metric

δ(x, y) := min{1, ∥x− y∥∞},

where x, y ∈ RN . Then δ induces the same topology on RN as ∥·∥∞ and (RN , δ) is a complete
metric space. We equip C(X,RN ) with the metric

ρ(f, g) := sup
x∈X

δ(f(x), g(x)),

where f, g ∈ C(X,RN ). Since (RN , δ) is complete, so is (C(X,RN ), ρ).

Our proof of Theorem 2.1 is based on [Mun00b, p. 315, Exercise 6].
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Definition 3.25. Let X be a topological space and let f ∈ C(X,RN ). We write f(x) x→∞−−−→ ∞,
if for all R > 0 there exists some compact subset C ⊆ X such that ∥f(x)∥∞ > R for all x ∈ X \C.

Remark 3.26. Note that f(x) x→∞−−−→ ∞ whenever X is compact.

Lemma 3.27. Let X be a topological space and let f, g ∈ C(X,RN ) such that ρ(f, g) < 1 and
f(x) x→∞−−−→ ∞. Then also g(x) x→∞−−−→ ∞.

Proof. Let R > 0. There exists some compact subset C ⊆ X such that ∥f(x)∥∞ > R + 1
whenever x ∈ X \ C. The triangle inequality yields

∥f(x)∥∞ ≤ ∥g(x)∥∞ + ∥f(x) − g(x)∥∞ < ∥g(x)∥∞ + 1

and hence ∥g(x)∥∞ > R whenever x ∈ X \ C. This proves g(x) x→∞−−−→ ∞. □

Lemma 3.28. Let f ∈ C(X,RN ) such that f(x) x→∞−−−→ ∞. Then f is proper, i.e. f−1(K)
is compact whenever K ⊆ RN is compact. If f is injective as well, then f is also a closed
embedding.

Proof. Let K ⊆ RN be compact. Thus, K ⊆ [−R,R]N for some R > 0. We can find a
compact subset C ⊆ X such that ∥f(x)∥∞ > R whenever x ∈ X \ C. Therefore, f−1(K) ⊆
f−1

(
[−R,R]N

)
⊆ C. This shows that f−1(K) is compact as a closed subset of the compact

space C. Therefore, f is proper.
Since f is proper and RN is locally compact Hausdorff, f must also be closed. Thus, if f is
injective, then it will be a closed embedding. □

Suppose X is a second-countable locally compact Hausdorff space. We can choose a metric
d on X that induces the topology of X (see [Bre97, Chapter I, Theorem 12.12]). For every
f ∈ C(X,RN ) and C ⊆ X compact, we let

∆(f, C) := sup
z∈f(C)

diam f−1({z}).

Lemma 3.29. Given ε > 0 and C ⊆ X compact, we let

Uε(C) := {f ∈ C(X,RN ) | ∆(f, C) < ε}.

Then Uε(C) is open in C(X,RN ).

Proof. Let f ∈ Uε(C) and let b > 0 such that ∆(f, C) < b < ε. Furthermore, let

A := {(x, y) ∈ C × C | d(x, y) ≥ b}.

Since A is closed in the compact space C × C, A is also compact. The continuous map

X ×X → R, (x, y) 7→ δ(f(x), f(y))

is strictly positive on A and thus r := 1
2 · min(x,y)∈A δ(f(x), f(y)) satisfies r > 0. We will show

that Bρ(f, r) ⊆ Uε(C): Let g ∈ Bρ(f, r), i.e. ρ(f, g) < r. If (x, y) ∈ A, then δ(f(x), f(y)) ≥ 2r.
Since δ(f(x), g(x)) < r and δ(f(y), g(y)) < r, we get g(x) ̸= g(y). Thus, by contraposition, if
g(x) = g(y) for some x, y ∈ C, then (x, y) /∈ A and thus d(x, y) < b.
This shows ∆(g, C) ≤ b < ε. □

We recall the notion of affine independence.
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Definition 3.30. A set of points S ⊆ RN is affinely independent if for all distinct p0, . . . , pk ∈ S
and α0, . . . , αk ∈ R, the equations

k∑
i=0

αi · pi = 0 and
k∑
i=0

αi = 0

imply that α0 = · · · = αk = 0.
Geometrically speaking, if S ⊆ RN is affinely independent and card(S) = k, then the points

of S uniquely determine a k-plane in RN .
Lemma 3.31. Let x1, . . . , xn ∈ RN be distinct points and let r > 0. Then, there exist distinct

points y1, . . . , yn ⊆ RN such that:
(1) ∥xi − yi∥∞ < r for all 1 ≤ i ≤ n.
(2) {y1, . . . , yn} is in general position, i.e. every subset S ⊆ {y1, . . . , yn} such that

card(S) ≤ N + 1 is affinely independent.
Proof. We construct the points y1, . . . , yn inductively. Let y1 := x1. Now, suppose y1, . . . , yk
have already been constructed and are in general position as well as ∥xi − yi∥∞ < r for all
1 ≤ i ≤ k. Consider the union P of all the affine subspaces that are generated by subsets
A ⊆ {y1, . . . , yk} such that card(A) ≤ N . Since every l-plane in RN is closed and has empty
interior whenever l < N , we can deduce P̊ = ∅, because RN is a Baire space as a complete
metric space (see [Bre97, Chapter I, Theorem 17.1]). Choose any yk+1 ∈ RN \ P satisfying
∥xk+1 − yk+1∥∞ < r. This process yields the sought points y1, . . . , yn. □

Another fact from point-set topology that we need are partitions of unity. We shall only
state the result here and omit the proof.

Theorem 3.32. Let X be a paracompact space and let U = {Ui}i∈I be an open cover of X.
Then there exists a partition of unity {ϕi}i∈I subordinate to U, i.e.

(1) Each ϕi : X → [0, 1] is a continuous map.
(2) supp ϕi ⊆ Ui for all i ∈ I.
(3) {supp ϕi}i∈I is locally finite, i.e. each point x ∈ X has a neighbourhood that intersects

only finitely many of the {supp ϕi}i∈I .
(4)

∑
i∈I ϕi(x) = 1 for all x ∈ X.

For a proof see [Mun00b, Theorem 41.7]. Recall that second-countable locally compact
Hausdorff spaces are paracompact.

Lemma 3.33. Suppose, X is a second-countable locally compact Hausdorff space such that
every compact subspace of X has topological dimension at most n ∈ N. If ∅ ≠ C ⊆ X is compact,
then Uε(C) is dense in C(X,RN ) for every ε > 0.
Proof. Choose a metric d on X and let f ∈ C(X,R2n+1) and let 1 > r > 0. We need to find
a g ∈ Uε(C) satisfying ρ(f, g) ≤ r. Since C is compact, we can cover C by finitely many open
(open in C) sets U1, . . . , Um ⊆ C such that

(1) diam Ui <
ε
2 for all 1 ≤ i ≤ m,

(2) diamf(Ui) ≤ r
2 for all 1 ≤ i ≤ m,

(3) {U1, ·, Um} has order at most n.
Let {ϕ1, . . . , ϕm} be a partition of unity subordinate to {U1, . . . , Um}. For each 1 ≤ i ≤ m
choose a point xi ∈ Ui. Then choose z1, . . . , zm ∈ R2n+1 such that ∥f(xi) − zi∥∞ < r

2 and
{z1, . . . , zm} is in general position (Lemma 2.7). Finally, let

g̃ : C → R2n+1, x 7→
m∑
i=1

ϕi(x) · zi.
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Claim. ∥g̃(x) − f(x)∥∞ < r for all x ∈ C.
Proof of claim. For all x ∈ C, we have

g̃(x) − f(x) =
m∑
i=1

ϕi(x) · (zi − f(xi)) +
m∑
i=1

ϕi(x) · (f(xi) − f(x)),

where we have used ∑m
i=1 ϕi(x) = 1. We have ∥zi − f(xi)∥∞ < r

2 for all 1 ≤ i ≤ m. Also if
ϕi(x) ̸= 0, then x ∈ Ui and since diam f(Ui) < r

2 , we can conclude ∥f(xi) − f(x)∥∞ < r
2 . Thus,

∥g̃(x) − f(x)∥∞ <
m∑
i=1

ϕi(x) · r2 +
m∑
i=1

ϕi(x) · r2 = r.

□

Claim. If x, y ∈ C satisfy g̃(x) = g̃(y), then d(x, y) < ε
2 .

Proof of claim. We will prove that g̃(x) = g̃(y) implies x, y ∈ Ui for some 1 ≤ i ≤ m. Since
diam Ui <

ε
2 , the claim follows.

g̃(x) = g̃(y) implies ∑m
i=1(ϕi(x) − ϕi(y)) · zi = 0. Because the cover {U1, . . . , Um} has order

at most n, at most n+ 1 of the numbers ϕ1(x), . . . , ϕm(x) and at most n+ 1 of the numbers
ϕ1(y), . . . , ϕm(y) are non zero. Letting

S := {zi | 1 ≤ i ≤ m and ϕi(x) − ϕi(y) ̸= 0},
we can deduce card(S) ≤ 2n+ 2. Note that ∑m

i=1(ϕi(x) − ϕi(y)) = 0 and since {z1, . . . , zm} ⊆
R2n+1 are in general position and card(S) ≤ 2n+ 1 + 1, we can conclude ϕi(x) −ϕi(y) = 0 for all
1 ≤ i ≤ m. Since ϕi(x) > 0 for some 1 ≤ i ≤ m, we get ϕi(x) = ϕi(y) > 0 and thus x, y ∈ Ui. □

In conclusion,
h : C → [−r, r]2n+1, x 7→ f(x) − g̃(x)

is a well-defined continuous map. As a locally compact Hausdorff space, X is also normal. Thus,
we can apply the Tietze extension theorem (see [Mun00b, Theorem 35.1]): h can be extended
to a continuous map H : X → [−r, r]2n+1. Letting

g : X → R2n+1, x 7→ f(x) −H(x),
we have g|C = g̃ and thus ∆(g, C) ≤ ε

2 < ε and ρ(f, g) ≤ r. □

Let X be as in Theorem 2.1 or Lemma 2.9 and choose a metric d on X. Since (C(X,R2n+1, ρ)
is a Baire space, every intersection of countably many open dense subsets of C(X,R2n+1) is
again dense in C(X,R2n+1). Consider an exhaustion of X by compact subsets (Ck)k∈N (Lemma
1.10). Then the set ⋂∞

k=1 U1/k(Ck) is dense in C(X,R2n+1).
Lemma 3.34. Every f ∈

⋂∞
k=1 U1/k(Ck) is injective.

Proof. Let x, y ∈ X such that f(x) = f(y). There exists some k0 ∈ N such that x, y ∈ Ck
whenever k ≥ k0. Because f ∈ U1/k(Ck), we get d(x, y) ≤ 1

k for all k ≥ k0. Hence, d(x, y) = 0
and therefore x = y. □

Lemma 3.35. If X is a second-countable locally compact Hausdorff space, then there exists a
map f ∈ C(X,RN ) such that f(x) x→∞−−−→ ∞.
Proof. It suffices to consider the case N = 1. Let {Uk}k∈N be cover of X by open sets such that
Uk is compact for each k ∈ N. Since X is second-countable locally compact Hausdorff, X is
paracompact and we can find a partition of unity {ϕk}k∈N subordinate to {Uk}k∈N. Letting

f : X → R, x 7→
∞∑
k=1

k · ϕk(x),



20 3. EMBEDDING IN EUCLIDEAN SPACE

we see that f(x) x→∞−−−→ ∞. □

We can now proceed to the proof of Theorem 2.1.

Proof. Begin with a continuous map f : X → R2n+1 such that f(x) x→∞−−−→ ∞ from Lemma 2.11.
Consider an exhaustion of X by compact subsets (Ck)k∈N (Lemma 1.10). Since ⋂∞

k=1 U1/k(Ck)
is dense in C(X,R2n+1), we can find ι ∈

⋂∞
k=1 U1/k(Ck) such that ρ(f, ι) < 1. Then ι is injective

by Lemma 2.10 and ι(x) x→∞−−−→ ∞ by Lemma 2.3. Then, ι : M ↪→ R2n+1 is a closed embedding
by Lemma 2.4, as desired. □

3.4. ANRs and ENRs

Definition 3.36. A topological space X is called an Absolute Neighbourhood Retract (ANR) if
for every paracompact space P and every continuous map f : A → X, where A ⊆ P is closed,
there exists an extension f : W → X of f where W is an open neighbourhood of A.

Why are we interested in ANRs? In this section, we want to prove the following.

Theorem 3.37. Every topological manifold is an ANR.

Why do we want to prove this? Here is the reason.

Theorem 3.38. Every topological manifold is an ENR.

Proof. Let M be a topological n-manifold and let ι : M ↪→ R2n+1 be a closed embedding. Because
M is an ANR by Theorem 3.2, so is ι(M). Since ι(M) ⊆ R2n+1 and R2n+1 is paracompact, the
map f : ι(M) → ι(M), x 7→ x can be extended to a map r : U → ι(M) where U is an open
neighbourhood of ι(M). This r is a retraction. □

We will prove Theorem 3.2 by a series of lemmas and we will follow [KK].

Lemma 3.39. Every open subset of an ANR is again an ANR.

Proof. Let X be an ANR and let U ⊆ X be open. Let f : A → U be continuous where A ⊆ P is
closed, P is paracompact. Letting f̃ := i ◦ f , where i : U ↪→ X is the standard embedding, f̃ can
be extended to a map f : W → X, where W is an open neighbourhood of A. Then, f |

f
−1(U) is

the sought extension. □

Lemma 3.40. Let X be paracompact and assume further dim X ≤ n. If U is an open cover
of X, there exist n+ 1 collections of open subsets V0, . . . ,Vn such that V := ⋃n

k=0 Vk is a locally
finite refinement of U.

Proof. Since dim X ≤ n, we can assume that U = {Ui}i∈I has order at most n. Let {ϕi} be a
partition of unity subordinate to U. For each i ∈ I, we let

Vi := {x ∈ X | ∀j ∈ I \ {i} : ϕi(x) > ϕj(x)}.
Then Vi ⊆ supp ϕi ⊆ Ui and Vi ∩ Vj = ∅ whenever i ̸= j. Let V0 := {Vi}i∈I .
Now let 0 ≤ k ≤ n and let i0, . . . , ik ∈ I be distinct indices. Let

Vi0,...,ik := {x ∈ X | ϕi(x) > ϕj(x) whenever i ∈ {i0, . . . , ik} and j /∈ {i0, . . . , ik}}
Note that Vi0,...,ik ∩Vj0,...,jk = ∅ whenever {i0, . . . , ik} ≠ {j0, . . . , jk}, because for i ∈ {i0, . . . , ik}\
{j0, . . . , jk} and j ∈ {j0, . . . , jk} \ {i0, . . . , ik} we have ϕi(x) > ϕj(x) for all x ∈ Vi0,...,ik and
ϕj(y) > ϕi(y) for all y ∈ Vj0,...,jk .
Define Vk be the set of all such Vi0,...,ik and let V := ⋃n

k=0 Vk.
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We need to show that V covers X. Let x ∈ X and let J := {i ∈ I | ϕi(x) > 0}. Then,
card(J) ≤ n + 1 since U has order at most n. Writing J = {j0, . . . , jk}, we get x ∈ Vj0,...,jk .
Obviously, V is a refinement of U. It only remains to show that V is locally finite. Let x ∈ X.
There exists a neighbourhood N of x that intersects only finitely many of the {supp ϕi}i∈I . Let
J := {i ∈ I | supp ϕi ∩ N ≠ ∅}. Then card(J) < ∞. Assume Vj0,...,jk ∈ V intersects N . Let
y ∈ N ∩ Vj0,...,jk . Then ϕjl(y) > 0 for all 1 ≤ l ≤ k. Thus {j0, . . . , jk} ⊆ J . But there are only
finitely many subsets of J and hence only finitely many elements of V intersect N . □

Lemma 3.41. Let X be paracompact space and let U := {Ui}i∈I be an open cover of X. Then
there exista a locally finite cover V = {Vi}i∈I of X satisfying Vi ⊆ Ui for all i ∈ I.

For a proof see [Mun00b, Lemma 41.6].

The following lemma is needed for local-to-global results.

Lemma 3.42. Let X be a paracompact space and suppose dim X ≤ n. Let U be an open
cover of X satisfying the following.

(1) If V ⊆ X is open and V ⊆ U for some U ∈ U, then V ∈ U.
(2) If V ⊆ U and V1 ∩ V2 = ∅ for any V1, V2 ∈ V such that V1 ̸= V2, then

⋃
V ∈V V ∈ U.

(3) If U1, U2 ∈ U and V1, V2 ⊆ X are open and V 1 ⊆ U1, V 2 ⊆ U2, then V1 ∪ V2 ∈ U.
Then X ∈ U.

Proof. Let V := ⋃n
k=0 Vk as in Lemma 3.5. Since V is a refinement of U, we have V ⊆ U by

(1). Thus, by (2), we have Vk := ⋃
V ∈Vk

V ∈ U for all 0 ≤ k ≤ n. Then {Vk}0≤k≤n is an open
cover of X by n+ 1 elements of U. By Lemma 3.6, there exists an open cover {Wk}0≤k≤n of
X satisfying W k ⊆ Vk for all 0 ≤ k ≤ n. Then W0 ∪ W1 ∈ U by (3). By using (1), we see
that {W0 ∪W1, . . . ,Wn} is an open cover of X by n elements of U. Repeat this process with
{W0 ∪W1, . . . ,Wn} instead of {Wk}0≤k≤n to get a covering of X by n− 1 elements of U and so
on until X is covered by one element of U, which eventually yields X ∈ U. □

Before we proceed to the proof of Theorem 3.2, we should notice that the closed unit interval
I is an ANR as a consequence of the Tietze extension theorem and hence so is In for any n ∈ N0.
We now come to the proof of Theorem 3.2.

Proof of Theorem 3.2. Let M be a topological n-manifold and let U be the collection of all open
subsets of M which are ANRs. Then, U is an open cover of M since every point p ∈ M lies in a
neighbourhood that is homeomorphic to an open subset of In and is thus an ANR by Lemma
3.4.
We will be done, once we show that U satisfies the conditions (1) - (3) in Lemma 3.7. Condition
(1) ia met since every open subset of an ANR is again an ANR.
For condition (2) consider a subset V := {Vi}i∈I of U that consists of disjoint sets and let
f : A → V := ⋃

i∈I Vi be a continuous map where A is a closed subset of a paracompact space P .
Each Vi is clopen in V since the {Vi}i∈I are disjoint. Thus, Ai := f−1(Vi) is closed in P for each
i ∈ I as is ⋃i∈J Ai for all J ⊆ I.
If we can find a disjoint collection of open sets {Wi}i∈I of P such that Ai ⊆ Wi for all i ∈ I, we
will be done: Then we can extend f |Ai : Ai → Vi to f i : W ′

i → Vi, where W ′
i is open in P (because

Vi is an ANR) and define W := ⋃
i∈I(Wi ∩W ′

i ) as well as f : W → V by f |Wi∩W ′
i

:= f i|Wi∩W ′
i
.

Claim. If P is paracompact and {Ai}i∈I is a disjoint collection of closed sets such that⋃
i∈J Ai is closed for any J ⊆ I, then there exists a disjoint collection {Wi}i∈I of open sets such

that Ai ⊆ Wi for all i ∈ I.

Proof of the claim. P is normal as a paracompact space und thus we can find open sets {Yi}i∈I
such that Ai ⊆ Yi and Y i ∩

⋃
j∈I\{i}Ai = ∅. Let A := ⋃

i∈I Ai. Then {Yi}i∈I ∪ {P \ A} is an



22 3. EMBEDDING IN EUCLIDEAN SPACE

open cover of P . By Lemma 3.6, there is a locally finite open cover {Zi}i∈I ∪ {Z} such that
Zi ⊆ Yi for all i ∈ I and Z ⊆ P \A. By local finiteness, the equality ⋃j∈J Zj = ⋃

j∈J Zj holds
for any J ⊆ I, hence ⋃j∈J Zj is closed. Thus, Wi := Zi \

⋃
j∈I\{i} Zj is an open set such that

Ai ⊆ Wi and the {Wi}i∈I are disjoint. □

This proves condition (2). All that is left is proving condition (3). Let U1, U2 ∈ U and let
V1, V2 ⊆ M be open such that V 1 ⊆ U1 and V 2 ⊆ U2. We need to show that V1 ∪ V2 ∈ U, i.e.
V1 ∪ V2 is an ANR.
Let f : A → V1 ∪ V2 be continuous, where A is a closed subset of a paracompact space P . Let
B0 := f−1(V 1 ∩V 2), B1 := f−1(V 1), B2 := f−1(V 2). Then, B0, B1 and B2 are closed subsets of
P . Let A0 := f−1(U1 ∪U2). Then A0 is open in A, hence there exists some open subset X0 ⊆ P
such that A0 = X0 ∩ P . Because P is normal as a paracompact space, we can find an open
subset Y0 ⊆ P such that B0 ⊆ Y0 ⊆ Y 0 ⊆ X0.
Since f(Y 0 ∩ A) ⊆ U1 ∪ U2 and U1 ∩ U2 is an ANR, we can extend f |Y 0

∩ A to a map
f0 : Z0 → U1 ∩ U2 where Z0 is an open neighbourhood of Y 0 ∩A. Use normality again to find
an open set W0 ⊆ P such that B0 ⊆ W0 ⊆ W 0 ⊆ Y0 ∩ Z0.
Thus f0 is defined on W 0 and extends f |W 0∩A. For i ∈ {1, 2}, let fi : Bi∪W 0 → Ui be defined by
fi(x) := f(x) for all x ∈ Bi and f(x) := f0(x) for all x ∈ W 0. We can extend fi to f i : Zi → Ui
where Zi is an open neighbourhood of Bi ∪W 0, because Ui is an ANR.
Since

(B1 \W0) ∩ (B2 \W0) = (B1 ∩B2) \W0 = B0 \W0 = ∅,
and both B1 \W0 and B2 \W0 are closed, we can once again use normality to find disjoint open
sets W1,W2 ⊆ P such that Bi \W0 ⊆ Wi ⊆ Zi for each i ∈ {1, 2}.
Finally, let f : W0 ∪W1 ∪W2 → U1 ∪U2 be defined by f |Wi := f i|Wi where i ∈ {0, 1, 2}. By letting
W := f

−1(V1 ∪ V2), we can conclude that f |W is an extension of f to an open neighbourhood
W of A. This proves (3) and therefore, M is an ANR. □



CHAPTER 4

Collars and bicollars

Gopal Ananthakrishna and Mark Powell

The goal of this chapter is to show that the boundary of every manifold admits a collar.

Definition 4.1. A manifold M is said to have a collared boundary if there exists a closed
embedding C : ∂M × [0, 1] ↪→ M such that (x, 0) 7→ x.

Figure 4.1. The red region indicates the collar.

Definition 4.2. A submanifold of X is a subset that is the image of a locally flat embedding.

Definition 4.3. A submanifold Y of X is said to be two-sided if there exists a connected
neighbourhood N of X that is separated by Y . i.e. N∖ Y has two components (see Fig. 4.2a.

Definition 4.4. A submanifold Y of X is said to be bicollared if f : Y ↪→ X can be extended to
an embedding f : Y × [−1, 1] ↪→ X with (y, 0) 7→ f(y).

Now that we know what a collar is, we look at a result by Morton Brown [Bro62a] which
shows that boundaries of manifolds admit collars. We will present the proof of this result by
Robert Connelly [Con71], which is simpler than Brown’s proof.

Theorem 4.5 (The Collaring Theorem). Every manifold has a collared boundary.

If ∂M = ∅, then this theorem is vacuous but still true.

Corollary 4.6. Let Y be a locally flat, two-sided, without boundary, codimension one
connected submanifold of Xm. Then Y is bicollared.

(a) Submanifold with two sides, blue and red. (b) Bicollaring a two-sided submanifold.

23
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Proof. Consider a connected neighbourhood N of X cut along Y . Let N∖ Y = L ∪ R. Now
because Y is locally flat, L ∪ Y and R ∪ Y are manifolds with boundary and thus have collars.

Y × [0, 1] ↪→ R ∪ Y

Y × [−1, 0] ↪→ L ∪ Y

Hence, we can glue these collars to get a topological bicollar. □

Note that the argument given does not work in the smooth category: more work would be
required to glue together two smooth collars and obtain a smooth bicollar.

Now that we have seen the collaring theorem and one of its corollaries, it is time to prove
the collaring theorem. First we look at an outline of the proof in the smooth category.

Outline of proof in the smooth case.
− Consider an inward pointing nonvanishing vector field on ∂M , and extend it to a vector

field on M that is nonvanishing on a neighbourhood of ∂M .
− Integrate the vector field to obtain a flow. By considering a suitably small time period,

the flow is defined.
− Propagating the boundary along the flow gives rise to a collar. □

Now we prove the collaring theorem. We will consider the compact case only. The idea
of the proof extends to the non-compact case, but we will not give the details here to avoid a
too-lengthy side discussion of open covers.

Proof of Theorem 4.5 in the compact case. Let M be an n-dimensional compact manifold. We
outline the proof.

− Add an exterior collar ∂M × [−1, 0] to M to obtain
M+ := M ∪ ∂M × [−1, 0]

by gluing along the boundary, i.e. x ∈ ∂M (x, 0) ∈ ∂M × {0}.
− Construct a homeomorphism G : M → M+, by an induction over charts covering ∂M ,

gradually stretching more of a neighbourhood of ∂M in M over the exterior collar.
− The inverse image G−1(∂M × [−1, 0]) gives us the desired collar.

Since ∂M is compact, there is a finite collection U1, . . . , Um ⊆ ∂M forming an open cover of ∂M
by coordinate neighbourhoods, such that for each i = 1, . . . ,m we can find local collars for the
closures of the Ui, U i. Let us call these local embeddings

hi : Ui × [0, 1] ↪→ M.

We may suppose in addition that they satisfy
− h−1

i (∂M) = Ui × {0};
− hi(x, 0) = x;
− hi(U i × [0, 1)) is open in M .

Let {Vi}ni=1 be another cover with
Vi ⊆ V i ⊆ Ui.

To find such a collection of Ui, Vi and hi, take an arbitrary collection of pairs (Ui, Vi) with the
Vi covering ∂M , and with the Ui subsets of coordinate neighbourhoods so that they give local
collars on U i. Then apply compactness to find a finite subcollection.

We will use the embeddings Hi defined as follows:
Hi : Ui × [−1, 1] → M+

(x, t) 7→
{
hi(x, t) t ≥ 0
(x, t) t < 0.
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Figure 4.3. A local collar.

This is well-defined and continuous since hi(x, 0) = x. We will build a homeomorphism M → M+

mapping ∂M to ∂M × {−1}. Our goal is to inductively define maps fi : ∂M → [−1, 0] and
embeddings gi : M → M+ for i = 0, 1 . . . ,m satisfying:

(1) fi(x) = −1 for all x ∈
⋃
j≤i

V j

(2) gi(x) = (x, fi(x)) for all x ∈ ∂M
(3) gi(M) = M ∪ {(x, t) | t ≥ fi(x)}.

Once this is completed, since ⋃
i
Vj = ∂M , we will have that fm(x) = −1 for all x ∈ ∂M . Therefore

gm(M) = M+, so G := gm will be our desired homeomorphism, and g−1
m (∂M × [−1, 0]) ⊆ M

will be a collar. Here note that g−1
m being a homeomorphism implies it is a closed map, so

g−1
m (∂M × [−1, 0]) will be closed. Also g−1

m (x,−1) = x by (2) for all x ∈ ∂M .
In the case i = 0 define f0 ≡ 0 and define g0 : M → M+ to be the inclusion map. Now

suppose for the inductive step that fi−1 and gi−1 have been defined. We will construct
ϕi : H−1

i gi−1(M) → U i × [−1, 1],

embeddings that “push Vi down,” taking H−1
i gi−1(M) ⊆ U i × [−1, 1] and reimbedding it in

U i × [−1, 1] in such a way that Vi is also pushed down into the exterior collar ∂M × [−1, 0]. We
will require that:

ϕiH
−1
i gi−1(V i) = V i × {−1}

ϕi|U i
∖Ui×[−1,1]∪U i×{1} = Id .

Find a Urysohn function λi : U i → [0, 1] such that λi is 0 on U i∖ Ui and is 1 on V i. Since ∂M
is paracompact and Hausdorff it is normal [Mun00a, Theorem 41.1], so the Urysohn lemma
applies to find such a continuous function.

Write
b(x) := (1 − λi(x))fi−1(x) − λi(x).

For each x let Sx : [fi−1(x), 1] → [b(x), 1] be the linear map sending fi−1(x) 7→ b(x) and 1 7→ 1.
Define ϕi : H−1

i gi−1(M) → U i × [−1, 1] to be the map sending (x, t) 7→ (x, Sx(t)). Then using

Figure 4.4. The local collars and pushing down into the exterior collar.

ϕi we can define the map
Φi(x) : gi−1(M) → M+
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x 7→
{
HiϕiH

−1
i (x) x ∈ Hi(Ui × [−1, 1])

x else.

The function H−1
i pulls back into the local collar union the local exterior collar U i× [−1, 1], then

ϕi stretches the local collar in V i over all of V i × [−1, 0], before Hi pushes everything forward
into M+ again. This conjugation method will be used again in the proof of the Schoenflies
theorem, and is a powerful way to define global functions that have a desired effect or can be
easily defined only in local coordinates.

Then the map
gi := Φi ◦ gi−1 : M → M+

is the required map for the inductive step. One must check that conditions (1) and (3) are
satisfied by the above construction. Use (2) to define fi from gi. This completes the induction
step. Hence g−1

m (∂M × [−1, 0]) gives us the required collar. □

In fact we have a relative version of collaring: if one already has a collar on an open subset
of ∂M , then the given collar can be extended to a collar on all of ∂M , restricting to the given
collar on a specified closed subset of that open set. Collars are also essentially unique, due to
Armstrong [Arm70], in the following sense. Given two collars C1, C2 : ∂M × [0, 2] → M , there
is an ambient isotopy taking C1|[0,1] to C2|[0,1]. We will not prove this here.
Remark 4.7. Uniqueness would not hold if we asked for an isotopy between the entire collars. To
see this, one needs to know that the Alexander gored ball AGB (the closure of the complement
of the Alexander horned sphere embedded in S3) is (a) not homeomorphic to D3, and (b)
becomes homeomorphic to D3 after adding an exterior collar S2 × [0, 1] to its boundary the
Alexander horned sphere (which is homeomorphic to S2). So there is a homeomorphism
f : AGB ∪ S2 × [0, 1] → D3. If collars were unique without passing first to a subcollar, then
there would be an isotopy from f(S2 × [0, 1]) to the standard collar, which would imply that
the complement D3∖ f(S2 × (0, 1]) is again homeomorphic to D3. But this complement is also
homeomorphic to the AGB, so we obtain a contradiction.

Exercise 4.1. (PS2.3) Let M be an n-dimensional manifold with nonempty boundary. Let
U be an open subset of ∂M that is collared, that is there exists an embedding U × [0, 1] ↪→ M
with (u, 0) 7→ u for all u ∈ U . Let C ⊆ U be a closed subset. Then there exists a collaring of
∂M extending the given collaring on C.
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CHAPTER 5

Wild embeddings

Danica Kosanović, Franca Lippert, and Arunima Ray

One of our goals is to give an answer to the following problem.

Question 5.1 (Schoenflies problem). Is every embedding f : Sn−1 ↪→ Sn equivalent to the
equator Sn−1 ⊆ Sn? That is, is there a homeomorphism of pairs H : (Sn, f(Sn−1)) → (Sn, Sn−1)?

In order to get a feeling for this problem, we study some wild embeddings. We will see that
some fascinating pathologies can occur.

Recall from Definition 2.2 that an embedding is a continuous injective map which is a
homeomorphism onto its image. Also recall that we denote Rn+ := R1

+ × Rn−1. For m ≤ n let
Rm+ ⊆ Rn+ be the product of R1

+ with the inclusion Rm−1 ⊆ Rn−1.

Definition 5.2. Let e : Mm ↪→ Nn be an embedding. We say that e is locally flat at x ∈ M (or
at e(x) ∈ N) if there exists a neighbourhood U of e(x) in N and a homeomorphism:

h : U → Rn such that h(U ∩ e(M)) = Rm ⊆ Rn, if x ∈ IntM, e(x) ∈ IntN,
h : U → Rn such that h(U ∩ e(M)) = Rm+ ⊆ Rn, if x ∈ ∂M, e(x) ∈ IntN,
h : U → Rn+ such that h(U ∩ e(M)) = Rm+ ⊆ Rn+, if x ∈ ∂M, e(x) ∈ ∂N.

We say that e is locally flat if it is locally flat at each point; it is wild at x ∈ M if it is not locally
flat at x. We say e is proper if for each x ∈ IntM the first condition holds and for each x ∈ ∂M
the last condition holds.

(a) (b) (c)

Figure 5.1. Examples of locally flat embeddings (in red).

Remark 5.3. With our definition, the boundary of a manifold M is not locally flat in M . More on
boundaries in the next section. We will see that the boundary is collared. There is an opposing
school of thought that holds that the definition of locally flat ought to be such that a boundary
is locally flat, but this is an inconvenient choice for a number of reasons. For example, we will
want to understand when locally flat embeddings have normal bundles, or at least well-behaved
regular neighbourhoods.

Note that local flatness is preserved under homeomorphism of pairs. We will identify some
nice properties of locally flat embeddings, giving us a tool to detect those which are wild.

Definition 5.4. Let A ⊆ X be a closed subset of a topological space.
29
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Figure 5.2. Examples of non locally flat embeddings (in red) in D2.

(1) We say that A is k-locally co-connected at a ∈ A, written k-LCC at a, if for every
neighbourhood U of a there exists an open neighbourhood V with a ∈ V ⊆ U such
that any Sk → V ∖ A extends as

Sk V ∖ A

Dk+1 U∖ A

In other words, πk(V∖A) → πk(U∖A) is trivial for every choice of basepoints for which
this makes sense.

(2) We say that A has a 1-abelian local group at a ∈ A, written 1-alg, if for every neigh-
bourhood U of a there exists an open neighbourhood V with a ∈ V ⊆ U such that the
inclusion induced homomorphism π1(V ∖ A) → π1(U∖ A) has abelian image.

(3) We say that A is locally homotopically unknotted in X at a ∈ A if A is both 1-alg and
k-LCC at a for every k ̸= 1.

Remark 5.5. The notion of 1-alg above has some equivalent formulations. We may instead ask
that each loop which is null-homologous in V ∖ A is null-homotopic in U∖ A. Alternatively, we
may require that the image of π1(V ∖ A) in π1(U∖ A) is isomorphic to Z. The interested reader
should check that these are indeed equivalent.
Remark 5.6. The use of co-connected should not be confused with the use of this word, in other
contexts, to describe vanishing of relative homotopy groups in a range.

Example 5.7. Suppose Mm ⊆ Nn is locally flat. If U is as in the first case of Definition 5.2
we have (U,M ∩ U) ∼= (Rn,Rm), so U∖M ∩ U ∼= Rn∖ Rm ∼= Rm × (Rn−m∖ {0}) ≃ Sn−m−1.
Therefore,

− If n−m = 1, then IntM is k-LCC for all k ≥ 1 except k = 0.
− If n−m = 2, then IntM is locally homotopically unknotted in N at every point.
− If n−m > 2, then IntM is k-LCC for all k ≤ n−m− 2.

If U is as in the second case of Definition 5.2, we have

U∖M ∩ U ∼= Rn∖ Rm+ ∼= (Rn−m+1∖ R1
+) × Rm−1,

which is contractible, so ∂M is k-LCC in IntM for all k in this case. If U is as in the third case
of Definition 5.2, we have

U∖M ∩ U ∼= (R1
+ × Rn−1)∖ (R1

+ × Rm−1) ∼= R1
+ × (Rn−1∖ Rm−1)

∼= R1
+ × Rm−1 × (Rn−m∖ {0}) ≃ Sn−m−1,

so ∂M is k-LCC in ∂N for all k ≤ n−m− 2 in this case.

Remark 5.8. The converse in the second case is also true: if e : M ↪→ N is an embedding,
n−m = 2, and IntM is locally homotopically unknotted in N at every point, then e is locally
flat. This is due to Chapman for dimension ≥ 5 [Cha79] and Quinn for dimension 4 [Qui82a]
(see also [FQ90]).
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There are converses in the other codimensions as well, such as in [Č73]. Indeed, these may
be applied to certain generalisations of manifolds. See [FQ90, Sec. 9.3] and [DV09b, Chap. 7,
Chap. 8] for further details.
Remark 5.9. In the topological literature “flat” sometimes means equivalent to the standard
embedding, i.e. the only ‘flat’ knot in S3 is the unknot. In low-dimensional topology ‘flat’
usually means ‘has a trivial normal bundle’, so any smooth knot in S3 is flat. In the topological
terminology, the Schoenflies problem is asking whether any codimension one embedding of a
sphere is ‘flat’. We will try to avoid this controversy by just specifying what we mean.

5.1. Fox-Artin arcs and spheres

One could naively ask the following question.
Question 5.10. Are all embeddings locally flat?

The answer is of course no. Let us give an example, due to Artin and Fox [FA48]. We will
embed the building block C from Fig. 5.3a into each of the balls Dn for n ∈ Z, which are the
slices of D3 depicted in Fig. 5.3b.

(a) Our building block is the ball C := D2 × [0, 1]
containing properly embedded arcs K = K0 ∪K− ∪K+. (b) The slices of D3.

Figure 5.3. Construction of Fox-Artin examples.

The (double) Fox-Artin arc is the image of all arcs K, together with the limiting points:

α := {p} ∪
n=∞⋃
n=−∞

fn(K) ∪ {q}

Figure 5.4. Fox-Artin arc α

Proposition 5.11. The fundamental group π1(R3∖ α) is non-trivial. Thus, (R3, α) is not
equivalent to (R3, [0, 1]).
Proof. Let us consider the nested sequence subspaces of R3 given by

Xm := R3∖
( ⋃

|n|≥m
Dn ∪ α

)
In other words, as m increases we are “carving out” more and more material from R3. Thus, we
want to compute the fundamental group of X := R3∖ α = ⋃

m≥1Xm.
The hypothesis of Seifert-van Kampen theorem are satisfied (check), so

π1X ∼= lim−→π1(Xm),
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Figure 5.5. Proof that the Fox-Artin arc is wild.

Figure 5.6. Proof that the Fox-Artin arc is wild.

the direct limit of the sequence of homomorphisms π1Xm → π1Xm+1 induced by inclusions. To
compute π1Xm we see Xm as the complement of (here with m = 3):

where we use the standard method to compute the fundamental group of a complement of a
graph (cf. Wirtinger presentation of the knot group), using the convention Thus, we obtain

π1Xm =
〈

{an, bn, cn}−m≤n<m−1 :



ancn = cncn−1,

bn−1cn = cnan−1,

bn−1bn = cnbn−1

 −m ≤ n < m− 1,

b−1
−ma−mc−m = 1,
b−1
m−1am−1cm−1 = 1

〉

Note that under inclusion map an, bn, cn ∈ π1Xm each map to ai, bi, ci ∈ π1Xm+1.
Therefore, by the definition of direct limit we have

π1X =
〈

{an, bn, cn}n∈Z :

ancn = cncn−1,

bn−1cn = cnan−1,

bn−1bn = cnbn−1,

b−1
n ancn = 1

 for all n
〉

Now eliminating an = cncn−1c
−1
n by the first relation, and bn = ancn = cncn−1c

−1
n cn = cncn−1

by the last, the two remaining relations both reduce to one:

π1X =
〈

{cn}n∈Z : cn−1cn−2cncn−1 = cncn−1cn−2 for all n
〉

We claim that this is a nontrivial group. Indeed, there is a homomorphism π1X → S5 to the

symmetric group on five letters, given by cn 7→
{

(12345), n odd
(14235), n even

(check that the relation is

satisfied). □

Slightly modifying this example gives another wild arc but for which the argument using the
fundamental group will not work. Namely, we use the same building block from Fig. 5.3a but
now put it into the slices only of one half of the ball, see Fig. 5.7.

The resulting Fox-Artin arc β := ⋃
n≥0 fn(K) ∪ {q} is shown in Fig. 5.8. This has a simply

connected complement π1(R3∖ β) ∼= 1. Indeed, the computation is similar as in the previous
proof but now the loop cn is trivial. Actually, R3∖ β ∼= R3∖ {pt} (see [FA48]). However, we
show that β is nevertheless wild.
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Figure 5.7. The model half-ball for the arc β together with the open sets Vn
(in blue) from the proof of Proposition 5.12.

Figure 5.8. Fox-Artin arc β.

Proposition 5.12. β is not 1-LCC at q. Therefore, β is a wild embedding.

Proof. Let Vn be open sets as in Fig. 5.7. If β was 1-LCC at q, then there would exist N ≥ 0
such that π1(VN∖ β) → π1(V0∖ β) is trivial (since by definition of 1-LCC can find V ⊆ V0, but
then can find VN ⊆ V for some N).

Now π1(VN∖ β) is generated by cN , cN−1, . . . subject to cn−1cn−2 = cncn−1 for n ≥ N + 1
and cncn−1cn−2 = 1, and each cn maps to cn ∈ π1(V0∖ β) under the homomorphism induced
by the inclusion. However, each cn is nontrivial in π1(V0∖ β), which we can see using the same
homomorphism to S5 as in previous proof. □

5.1.1. Wild spheres. The examples so far have concerned arcs in R3, or equivalently in
S3 if we pass to the 1-point compactification, while our original question had been in terms of
embedded spheres. Such examples can also be generated from our arcs. For example, by taking
two parallel copies of each strand in the building block for the Fox-Artin arc, we can produce
(double and single) Fox-Artin 1-spheres, see Fig. 5.9.

Figure 5.9. Fox-Artin 1-sphere.

Alternatively, by replacing each strand in the building block by a tube, we produce (double
and single) Fox-Artin 2-spheres, see Fig. 5.10. Similar proofs as above show that these are not
locally flat. A more well-known example of a non-locally flat S2 in S3 is the Alexander horned
sphere, which we describe in the next section. The set of wild points of the Alexander horned
sphere form a Cantor set. We will soon also describe Bing’s hooked rug, another embedded S2

in R3, where every point is wild.
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Figure 5.10. Fox-Artin 2-sphere.

In terms of Question 5.1, which asks whether every embedding Sn−1 ↪→ Sn is equivalent to
the standard one (the equator), we see now that we must restrict to locally flat embeddings. We
will see later what the exact conditions will be, see Chapter 6.

5.2. The Alexander horned sphere

The Fox-Artin 2-sphere has precisely one wild point. In this section, we construct the
Alexander horned sphere, an embedded S2 in R3, whose wild points form a Cantor set, i.e.
there are embeddings C ↪→ [0, 1] ↪→ S2 ↪→ R3, such that the image of the last embedding is the
Alexander horned sphere, C is a Cantor set and the image of C under the composition of the
three embeddings is exactly the set of wild points in the Alexander horned sphere.

Figure 5.11. The Alexander horned sphere

Before starting the construction of the Alexander horned sphere, we need the following
definition.

Definition 5.13 (Pillbox [DV09a]). A pillbox is a copy C of D2 × [0, 1] containing linked solid
tori T1 and T2 as shown in Figure 5.12 such that T1 ∩ ∂C = τ and T2 ∩ ∂C = β, where we call
D1 × {1} the top disc τ and D2 × {0} the bottom disc β.

A pillbox is shown in Figure 5.12.

5.2.1. Construction. We begin with a solid ball B0 and attach a handle D2 × [0, 1] along
D2 × ({0} ∪ {1}). The result is a solid torus X0. Now we remove a pillbox from X0, i.e. we
remove a cylindrical 3-cell (containing two linked tori) and call the resulting manifold B1. A
picture of B1 is shown in Figure 5.13 and one can see that it is homeomorphic to a solid ball, so
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Figure 5.12. A pillbox. This picture is from [DV09a, p. 48].

in particular B1 ∼= B0. To B1 we now add the linked solid tori T1 and T2 which we removed
earlier and call the result X1 (Figure 5.13).

Figure 5.13. The step B0 to X1. Note that every space is solid here. Theneigh-
borhoods U1 and U2 are indicated in blue.

In the next step we remove a pillbox from each of the solid tori T1 and T2 to get a manifold
B2 ∼= B1 ∼= B0. Then we replace the pillboxes by the solid tori inside and call the resulting
manifold X2. We continue inductively. So in step n we remove 2n−1 pillboxes from Xn−1 and
call the result Bn. Then we attach 2n linked solid tori and call the resulting manifold Xn.

One can summarize thatXn arises fromXn−1 by removing something, namely the complement
of the linked solid tori in 2n−1 disjoint pillboxes.

Xn−1 Bn Xn
remove 2n−1 pillboxes attach 2n solid tori

remove C\(T1∪T2) 2n−1 times

In contrast to this, we attach 2n horns to obtain Bn from Bn−1, coming from 2n−1 attached
solid tori with pillboxes removed. These attached horns are the reason for the name of the
Alexander horned sphere.
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Figure 5.14. The Alexander horned sphere. Picture from [DV09a, p.50]

Bn−1 Xn−1 Bn
attach 2n−1 tori remove 2n−1 pillboxes

attach 2n horns

So in the end we constructed a nested sequence B0 ⊆ B1 ⊆ B2 ⊆ . . . of solid balls as well as
a nested sequence X0 ⊇ X1 ⊇ X2 ⊇ . . . of 3-manifolds with boundary. We can now define the
Alexander horned ball to be

B :=
∞⋂
i=0

Xi.

We define the Alexander horned sphere A := ∂B. Here we just mean the topological boundary
since we do not know yet that B is a manifold. But in the next paragraph we will prove that B
is homeomorphic to D3 and that A is therefore homeomorphic to a sphere.

The Alexander horned sphere is depicted in Figures 5.11, 5.14 and 5.15. The Alexander
gored ball is the complement of the Alexander horned ball. This space has nontrivial perfect
fundamental group. It is therefore not homeomorphic to a ball. It shows that the Schoenflies
theorem does not hold without the locally flat hypothesis. See also Remark 4.7.

5.2.2. The Alexander horned sphere is a sphere. To show that the Alexander horned
sphere is indeed a sphere, we first remark that B = ⋃∞

i=0Bi, which holds by construction. Now
note that there are homeomorphisms hi : Bi−1 → Bi that restrict to the identity on a neighbour-
hood of the bases of the attached horns because we can contract the horns homeomorphically
into neighbourhoods of their base. In particular, for every index n there is a neighborhood Un of
Bn∖ Bn−1 ⊆ Bn as indicated in Figure 5.13 such that hk|Un is the identity on Un ⊂ Bk∖ Bn−1
for any k ≥ n. Define fn : B0 → Bn to be the composition fn = hn ◦ . . . ◦ h1. The map f1 equals
h1 and moves nothing outside the horns and U1. The map f2 differs from f1 just on U2. We can
say that the horns get smaller in each step if we consider the Alexander horned sphere as subset
of R3 with its standard metric. So we can choose the neighborhoods Uk so that they get smaller
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Figure 5.15. Another picture of the Alexander horned sphere. The length of
the tubes needs to decrease to zero so that the limit points are reached. Picture
from [BKK+21, p.72]

and therefore the map fn differs from fn−1 on a very small neighborhood for larger n. Thus,
the maps {fn} converge uniformly to a continuous map f : B0 → B. We want to show that f is
bijective.

Define C := f−1(B∖ ⋃∞
i=0Bi) ⊆ B0. So C is the preimage of the set of points that form

the limit of the tubes in Figure 5.15. A point in f(C) is uniquely determined by the sequence
of choices one would make when choosing a path starting at a point in the left half of a torus
in Figure 5.15 and ending at the point in f(C). Whenever we are in an area of the Alexander
horned sphere where two horns are attached we have to decide whether to go along the upper
horn or along the lower horn. Two different horns will never lead to the same limit point since
two horns are never glued to each other. So f(C) forms a Cantor set.

For a point x ∈ B0∖ C there is an index N such that x ∈ UN , so f |UN
= fN |UN

, hence f is
bijective on B0∖ C. We will now show injectivity and surjectivity of f |C . Consider Figure 5.15.
Any two points in C will be separated by horns, that is there exists n such that fn(x) and fn(y)
lie in different horns, so that they cannot have the same image under f . This implies that f |C is
injective. Each point of B∖ ⋃∞

i=0Bi lies in the image of f since there is a (unique) sequence
that encodes the horns leading to that point and so this point is part of the Cantor set f(C). So
f |C is also surjective.

Now, f is a continuous and bijective map from a compact space to a Hausdorff space and is
therefore a homeomorphism. Since B0 ∼= D3 by definition, the Alexander horned ball is indeed a
ball, which implies that the Alexander horned sphere is a sphere.

5.2.3. Wildness of the Alexander horned sphere. We will prove with the help
of Lemma 5.14 below that the fundamental group of the complement of the Alexander horned
sphere is not trivial. It will follow by the Schoenflies theorem then, that the embedding A ↪→ R3

cannot be locally flat.

Lemma 5.14. ( [DV09a, lemma 2.1.9]) Let C be a pillbox and Y be a closed subset of R3

such that Y ∩ C = τ ∪ β, and let J be a 1-sphere in R3∖ (Y ∪ C) as shown in Figure 5.16. If
π1(J) → π1(R3∖ (Y ∪ C)) is injective, then π1(R3∖ (Y ∪ C)) → π1(R3∖ (Y ∪ T1 ∪ T2)) is also
injective.
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Figure 5.16. Parts of this picture are from [DV09a].

Proof. The proof follows Bing’s paper [Bin61]. Assume, that π1(J) → π1(R3∖ (Y ∪ C)) is
injective, so J is not null-homotopic in R3∖ (Y ∪ C). We now consider a loop K ⊆ R3∖ (Y ∪ C)
that is null-homotopic in R3∖(Y ∪ T1 ∪ T2) and show that it is also null-homotopic in R3∖(Y ∪ C).

Since K is null-homotopic in R3∖ (Y ∪ T1 ∪ T2), there is a map f : D2 → R3∖ (Y ∪ T1 ∪ T2)
that maps ∂D2 homeomorphically onto K. We will now consider the preimage of ∂C under
f . If it is empty, then f(D2) lies entirely inside R3∖ (Y ∪ C), so K would be null-homotopic
in R3∖ (Y ∪ C) and we are done. So we consider the case where f−1(∂C) is non-empty. By
transversality, f−1(∂C) is a finite union of closed submanifolds of dimension 1, so it is a finite
union of embedded S1 ↪→ D2. We will now use the so-called "innermost disc argument" to adjust
f so that the preimage of ∂C under this new f is non-empty.

Among all the embedded S1s in the preimage of ∂C under f , there will be at least one, call
it L1, that bounds an innermost disc. That is, it bounds a disc IntD1 such that f(IntD1) ∩ ∂C
is empty.

Claim. f(D1) can be shrunk to a point on ∂C∖ (τ ∪ β).

Assume, that the claim holds. Then we can shrink f(D1) to a point and push this point
slightly away from ∂C into R∖ (Y ∪ C). Like this, we got rid of one innermost disc. Since we
just have finitely many closed curves in the preimage of ∂C, we can repeat this process until
there are no curves in f−1(∂C) anymore, and we are done.

Proof of Claim. We have to check two cases, namely the case that IntD1 ⊆ IntC and the case
that D1 ∩ IntC = ∅.

Case 1: D1 ⊆ IntC.
Define M1 := C∖ (T1 ∪ T2). This is a manifold with boundary. Note that T1 and T2 are closed, so
that the manifold boundary of M1 is exactly ∂C∖ (τ ∪ β) which is homeomorphic to S1 × (0, 1).

We compute π1(M1). It is equivalent to the fundamental group of the complement of the
finite graph G shown in Figure 5.17.

We can easily compute the Wirtinger presentation of π1(R3∖ G) and see that
π1(R3∖ G) = ⟨a, b, c, d, e|a = ec, cb = dc, ab = bc, b = ed⟩ ∼= ⟨a, b⟩ where e = ab−1a−1b ̸= 1.

It is the free group on two generators and a loop corresponding to e is not trivial in π1(M1).
This latter loop L is given by one that circles ∂M1 ∼= S1 × (0, 1) once. So it corresponds to
the generator of π1(∂M1) ∼= Z. In particular, any loop circling ∂M1 k times for 0 ̸= k ∈ Z
is not null-homotopic since it corresponds to the element k · e ∈ π1(M1) which is not trivial.
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Figure 5.17. A finite graph with π1(R3∖ G) ∼= π1(M1). Picture from [Bin61].

We conclude that any loop α on the boundary of M1 that is null-homotopic in M1 is already
null-homotopic on the boundary of M1.

Since L1 bounds a disc inside C, it is null-homotopic inside M1 and therefore also on
∂M1 = ∂C∖ τ ∪ β which is what we had to show.

Case 2: f(IntD1) ∩ IntC = ∅.
Define M2 := R3∖ (Y ∪ IntC). It is a 3-dimensional manifold with boundary. Since we remove
Y entirely and keep the boundary of C, its manifold boundary is given by ∂M2 = ∂C∖ τ ∪ β ∼=
S1 × (0, 1).

We apply the loop theorem to M2: if there exists a closed curve γ on ∂M2 such that γ ≃ ∗
in M2 but γ ̸≃ ∗ on ∂M2, then there exists a simple closed curve with the same property.

The loop f(L1) is a simple closed curve on ∂M” that bounds a disc in M2. If f(L1) could
not be shrunk to a point on ∂M2, then by the loop theorem there is a simple closed curve with
the same property. A simple closed curve is an embedded S1. We will now consider simple
closed curves on ∂M2. Any simple closed curve γ on ∂M2 such that γ ̸≃ ∗ on ∂M2 is homotopic
to L which was the loop corresponding to the generator of π1(M1) = π1(∂C∖ (τ ∪ β)) = π1(M2).
If L ≃ ∗ in M2, then π1(∂M2) would be trivial in π1(M2). This means, π1(J) would be trivial in
π1(R3∖ (Y ∪ C)) which is not the case by assumption. We conclude that any loop on ∂M2 that
is not null-homotopic in M2 is already null-homotopic on ∂M2 and can finish the proof with the
same argument as in Case 1. □

The proof of the claim finishes the proof of Lemma 5.14. □

Now if we find an essential loop in R3∖X0, Lemma 5.14 tells us that the loop will also be
essential in R3∖ Xn for every n ≥ 0. The complements of the Xn form a nested sequence of
open sets R3∖X0 ⊆ R3∖X1 ⊆ . . . . Consider any null-homotopic loop in R3∖ A. The image of
the homotopy that contracts the loop to a point is compact in R3∖ A and lies therefore already
in R3∖Xn for some n. Thus, the loop is already null-homotopic in the complement of some Xn.
We conclude that every essential loop in R3∖Xn for some n is also essential in R3∖ A. So we
can derive from lemma Lemma 5.14 that π1(R3∖ A) is not trivial since J is one example of an
essential loop in X0 if we choose Y to be X0∖ C. By the Schoenflies theorem, the embedding is
therefore not locally flat, hence wild.
Remark 5.15. We have already seen an embedding of a Cantor set into the sphere and know
that the Alexander horned sphere is locally flat outside the image of the embedded Cantor set.
But we did not see why this Cantor set is exactly the set of wild points. One way to think
about this is to consider neighborhoods Ux of any point x in the embedded Cantor set on the
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Alexander horned sphere. Such a point lies in the intersection of an infinite sequence of solid tori
(Tk)1≤k∈Z lying inside pillboxes Pk ⊇ Tk and Ux contains a part of this sequence, say (Tk)k≥l for
some l ≥ 1. We find for any n a neighborhood Vx of x that looks exactly the same as Ux such
that Vx just contains (Tk)k≥n+l. But if π1(R3∖ Ux) is not trivial then π1(R3∖ Vx) cannot be
trivial as well. Since we can choose Ux to be A itself, we can find for every neighborhood V of x
a neighborhood Vx ⊆ V such that π1(R3∖ Vx) is not trivial. Therefore there is not neighborhood
W of x such that W∖ A is homeomorphic to R3∖R2 which implies that x is not embedded in a
locally flat way. More details on this can be found in [Hat02a].

5.3. Bing’s hooked rug

As already mentioned above, the set of wild points of the Alexander horned sphere A is a
Cantor set in the sense that there is an embedding of a Cantor set C ↪→ A such that the image of
C is exactly the set of wild points of A. We now construct an example of an embedded 2-sphere
in R3 such that the embedding is wild at every point of the sphere. This sphere was originally
constructed by R.H. Bing in [Bin61] in order to give an counterexample to the conjecture
that an embedding S2 ↪→ R3 is locally flat if each arc in the image of the sphere is locally flat.
However, we will not prove that each arc in Bing’s hooked rug is tame since we would have to
develop some tools that would go beyond the scope of this chapter. But we will see that Bing’s
hooked rug is somehow a ‘very’ wild sphere, in the sense that it is wild at every point.

For the construction of Bing’s hooked rug we need the definition of an eyebolt.

Definition 5.16 (Eyebolt [DV09a]). An eyebolt is the union of a tube with a solid torus. A
plug for the eyebolt is a copy of D2 × (0, 1) embedded into the solid torus part of the eyebolt.

Figure 5.18. A plug and an eyebolt.

Now we can start the construction.

5.3.1. Construction. We start with the standard solid ball F0 in R3.
Step 1. In the first step of the construction, we cover F0 with discs E1, . . . , En where n > 0

is an integer of our choice. The discs should satisfy the following two properties:
(1) IntEi ∩ IntEj = ∅ for any i ̸= j,
(2) the discs are arranged in a circular pattern, i.e. Ei ∩ Ei+1 is an arc in the boundary of

each for i ≤ n− 1. The same holds for En ∩ E1.
We attach an eyebolt gi on each of the discs Ei and "hook" gi to the base of gi+1 (and gn to the
base of g1), as indicated in Figure 5.19. We shrink the resulting 3-manifold slightly such that it
lies inside F0 and call it H1. Now, we remove a plug from each of the eyebolts to get a manifold
F1 that is homeomorphic to a solid ball, so F1 ∼= F0.

Step 2. Now, we cover F1 with closed discs E′
1, . . . , E

′
n that have the same boundaries as the

image of E1, . . . , En under a homeomorphism F0 ∼= F1. Afterwards, we cover each E′
i with discs

Ei1, . . . , E
i
k for a number k ≥ 2 that we can freely choose, that satisfy properties 1 and 2. Now,

we attach an eyebolt gij to each Eij and hook gij to the base of gij+1 for j ≤ n− 1, and gin to the
base of gi1. After shrinking the result slightly, we again obtain a 3-manifold with boundary which
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Figure 5.19. The first stage H1 of the construction of Bing’s hooked rug. This
picture is from [DV09a].

we call H2 ⊆ H1. We remove a plug from each eyebolt on H2 and call the resulting manifold
F2 ∼= F1 ∼= F0. Parts of H2 are shown in Figure 5.20.

Figure 5.20. Parts of the manifold H2. The picture is from [DV09a].

We continue inductively. Here is an instruction for step k, that shows how we obtain Hk

and Fk from Fk−1.
Step k. Fk−1 is covered with discs E1, . . . , En where on each disc there is an eyebolt with a

plug removed and which is not covered by the Ei. Here we take the same notation for the cover
as in earlier steps since another naming would be complicated and the name of the discs will not
be very important later. Cover Fk−1 with discs E′

1, . . . , E
′
n, that have the same boundaries as

E1, . . . , En and cover each of these discs with n discs that satisfy properties 1 and 2. Attach
an eyebolt to each disc and hook it to the base of the eyebolt on the next disc. Shrink the
result and call it Hk. Now remove a plug from each eyebolt and call the resulting space Fk. It is
homeomorphic to Fi for any i ≤ k.
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We constructed a nested sequence of 3-manifolds with boundary H1 ⊇ H2 ⊇ . . . and we
define

H :=
∞⋂
i=1

Hi.

Bing’s hooked rug is now defined as ∂H.
As for the Alexander horned sphere, our aim is now to prove that Bing’s hooked rug is

indeed homeomorphic to a sphere as well as that it is wildly embedded into R3. This will be
proven in the following two sections.

5.3.2. Bing’s hooked rug is an embedded sphere. As already mentioned, there are
homeomorphisms hi : Fi−1 → Fi that can be controlled in their size by the number and size of
the covering discs. This is the reason why we can choose the discs and the sequence (fn)n∈N such
that it converges uniformly, where fn := hn ◦ . . . ◦ h1. Thus the limit map f : F0 → H will be
continuous. Again, we just have to show bijectivity of f to conclude that f is a homeomorphism.

For the proof of bijectivity of f we can choose the shrinking applied in each step to be
the radial shrinking which is a homeomorphism. Therefore we will drop this step from now
on. In step k of the construction we subdivide the covering of Fk−1 such that the union of
all boundaries of the old discs form a subset of the union of the boundaries of all discs in the
subdivision. From Fk−1 to Fk we do not change anything on the boundary of the discs Ei so we
can choose hk such that it fixes the boundaries of the discs on Fk−1.

Two disjoint discs of the covering of Fn will be disjoint under f since we do not change their
boundary and the discs have disjoint interiors by construction. For two different points x, y ∈ F0
there will be an index k such that fk(x) and fk(y) lie on different discs of the covering of Fk. So
f(x) and f(y) will be distinct points and we can conclude that f is injective.

We have proved that f is a continuous and bijective map from a compact space to a Hausdorff
space. By the compact Hausdorff lemma f : F0 → H is a homeomorphism which shows that H
is homeomorphic to a solid ball. Thus B = ∂H is homeomorphic to a sphere.

5.3.3. Wildness of Bing’s hooked rug. We will prove that the embedding B ↪→ R3 is
wild at every point by showing that it is not 1-LCC at every point of the embedding.

Recall that a co-dimension one embedding A ↪→ X that is locally flat at a point a ∈ A is
k-LCC for k ≥ 1 at that point (Example 5.7).

We will prove a similar lemma to Lemma 5.14 and can conclude from it that the embedding
is not 1-LCC at every point by finding an index i and an essential loop in R3∖Hi circling the
base of an eyebolt in Hi and proving that it is essential in R3∖Hk for any k ≥ i. By construction,
the eyebolts will be spread densely over B in the end, so we can find such a loop in every
neighborhood of a point.

Lemma 5.17. Let C be a 3-cell in R3 and let B1, B2 and B3 be three disjoint discs on
∂C. Let T be a solid torus in C such that T ∩ ∂C = B1 and let S be a 3-cell in C such that
S ∩ ∂C = B1 ∪B2. Assume T and S are linked as indicated in Figure 5.21. Let Y be a closed
subset of R3 such that Y ∩ C = B1 ∪B2 ∪B3.

If π1(∂C∖ (B1 ∪B2 ∪B3)) → π1(R3∖ (Y ∪ IntC)) is injective, then π1(R2∖ (Y ∪ C)) →
π1(R3∖ (Y ∪ S ∪ T )) is injective.

Proof. The proof of this lemma is similar to the proof of Lemma 5.14. Assume, π1(∂C∖
(B1 ∪B2 ∪B3)) → π1(R3∖ (Y ∪ IntC)) is injective. Now choose a loop J ⊆ R3∖ (Y ∪ S ∪ T )
that is null-homotopic, i.e. that bounds a disc. We have a map f : D2 → R3∖ (Y ∪ S ∪ T ) such
that f(∂D2) ∼= J . We consider again f−1(∂C) and use transversality to see that it is a finite
union of simple closed curves. We choose an innermost disc bounded by L1 and will prove now
that L1 is nullhomotopic on ∂C∖ (B1 ∪B2 ∪B3). Again, we have to consider the two cases
where the disc bounded by L1 lies inside or outside C.
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Figure 5.21. The situation of Lemma 5.17. Picture from [DV09a, p.88]

Case 1: Define M1 to be C ∖ (T ∪ S). It is a 3-dimensional manifold with boundary
∂M1 = ∂C∖ (B1 ∪B2 ∪B3). We compute π1(M1) which is a fre group of two generators. Note
that the boundary of any of the three discs Bi is not null-homotopic in ∂M1 and that the three
boundaries of the discs even generate the fundamental group of ∂M1. Now assume there is
a closed curve γ on ∂M1 such that γ is null-homotopic in M1 but not on ∂M1. By the loop
theorem, there is a simple closed curve with the same property. This could, up to homotopy,
only be ∂Bi for some i = 1, 2, 3. But ∂Bi is not null-homotopic in M1. So there is no such closed
curve γ ⊆ ∂M1. Thus, any loop on ∂M1 that is null-homotopic in M1 is null-homotopic on ∂M1.
In particular, L1 is null-homotopic on ∂M1. Thus in this case, L1 is null-homotopic on ∂M1 as
we wanted to show.

Case 2: Define M2 := R3∖ (Y ∪ IntC). It is a 3-manifold with boundary ∂M2 = ∂C∖
(B1 ∪B2 ∪B3). By using the loop theorem, we see that every loop on ∂M2 that is null-homotopic
in M2 is also null-homotopic on ∂M2 since π1(∂M2) is generated by the boundaries of the three
discs that are not null-homotopic in M2. Thus L1 is null-homotopic on ∂M2.

As in Lemma 5.14 we can now conclude the statement of this lemma. □

To apply the lemma, we will consider the step Hi−1 → Hi in the construction of Bing’s
hooked rug again in more detail. In Figure 5.22 the step is divided into several substeps that we
explain next.

We start in Hi−1 on the top left. After removing the complement of two linked solid tori
inside a pillbox, we constructed H ′

i. Now, to get to H ′′
i , we need two substeps. First, we attach

a handle to each of the discs in the subdivision (H̃i). Then, we move one base of each handle
including the first two handles on H ′

i onto the disc with the next higher index (H̃ ′
i). So everything

is moved in a circular pattern around the surface. To obtain H ′′
i , we move the base of a handle,

that is now on the disc with higher index, onto the other handle that has a base on the same
disc and thicken up the moved base of the handle. Like this, we get such tubes on each disc,
that have a bulb at the end where the next tube goes through. Since everything is solid, these
intersections do not disturb the manifold property of H ′′

i . From H ′′
i to Hi we cut a hole into the

bulbs where the tubes can go through an see that we have constructed hooked eyebolts.
Now we can see what happens to an essential loop in the complement of Hi after passing

to Hi+1. The loop K shown in Figure 5.22 is essential in R3∖ H ′′
i since it circles an attached

handle. Lemma 5.17 implies that K will also be essential in R3∖ Hi. Now we can see that
by Lemma 5.14, K is essential in the complement of H ′

i+1. From H ′
i+1 to H ′′

i+1 we just add some
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Figure 5.22. The construction step Hi−1 → Hi in more detail. Parts of the
picture are from [DV09a]. Note that what is shown here is always just a part of
Hi or Hi−1.

handles that can not trivialize essential loops. So K is essential in R3∖H ′′
i+1. We continue again

inductively. As mentioned above, for any neighbourhood U ⊆ B of a point x ∈ B we will always
find N , such that one of the discs Ei covering FN in stage N lies entirely in U . Therefore, for
any neighbourhood U we will find an essential loop in U∖ B. This means that B is not 1-LCC
at any point as we wanted to show.

5.4. Exercises

Exercise 5.1. (PS2.1) Prove that the arc γ in Figure 5.23 is locally flat, and indeed there
is a homeomorphism f of pairs mapping (R3, γ) to (R3, [0, 1]).

Hint: Find a nested sequence of balls {Bi} so that ∩Bi is the compactification point and
each Bi intersects γ at a single point. For each i there is an isotopy that is the identity on
(S3∖ IntBi) ∪Bi+1 and that straightens out γ ∩ (Bi∖ IntBi+1). The desired homeomorphism f
is a limit of a composition of such homeomorphisms.

Exercise 5.2. (PS2.2) The arc δ is the union of γ and a standard interval [0, 1] (see
Figure 5.23). Prove that δ is not locally flat. The arc δ is an example of a ‘mildly wild’ arc, i.e.
it is a union of two locally flat arcs.
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Figure 5.23. Arcs γ and δ respectively.
Hint: use the Seifert-van Kampen theorem to prove that δ is not 1-alg at the “union point”.





CHAPTER 6

The Schoenflies theorem

Danica Kosanović, Mark Powell, and Arunima Ray

6.1. Overview of proof strategy

The goal is to prove that every locally flat embedding i : Sn−1 ↪→ Sn bounds a ball on both
sides. By Corollary 4.6, we may assume that the embedding is bicollared.

Figure 6.1. Idea of the proof of Schoenflies theorem: collapse the two compon-
ents of the complement of a bicollar. Between the second and third pictures, the
collar has been stretched out to cover most of the sphere, and the complementary
regions have been shrunk to the two poles.

The key point is that the result of crushing each boundary component of an annulus
Sn−1 × [−1, 1] to a (distinct) point is the sphere Sn, in other words, the sphere Sn is identified
with the unreduced suspension of the sphere Sn−1. By the Jordan-Brouwer separation theorem
(Corollary 2.9), we know that Sn∖ (i(Sn−1) × [−1, 1]) has two components, call them A and
B. (In fact, since we have a bicollared embedding, we can prove this much faster using the
Mayer-Vietoris sequence.) Our goal will be to crush each of A and B to a point. The result is then
seen to be the sphere Sn. This shows that there is a homeomorphism

(
i(Sn−1) × [0, 1]

)
⧸A → Dn

where the latter is a hemisphere of Sn. This does not seem like progress unless we know
something about the quotient space

(
i(Sn−1) × [0, 1]

)
⧸A. In fact, we will show that there is a

homeomorphism
A ∪

(
i(Sn−1) × [0, 1]

) ∼=−→
(
i(Sn−1) × [0, 1]

)
⧸A ∼= Dn.

This leads us to the following abstraction.

Question 6.1. Given X ⊆ Mn, when is M⧸X ∼= M?

Consider the three examples in Fig. 6.2. The first two are not hard to see, but how would
you prove the last one, that for the topologist’s (closed) sine curve X = S we have D

2
⧸S ∼= D2?

We explore answers to these questions in the following two sections.
47
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(a) D
2
⧸X ∼= D2 (b) D

2
⧸O ∼= D2 ∨ S2 (c) D

2
⧸S ∼= D2

Figure 6.2. Some quotients of D2.

6.2. Whitehead manifold

In this short interlude, we describe a famous example of a subset X ⊆ S3 where S
3
⧸X is not

homeomorphic to S3.
Let V0 ⊆ R3 be the unknotted solid torus S1 ×D2. Let V1 be the embedded solid torus in

V0 shown in Fig. 6.3. In other words, we have a homeomorphism h : V0 → S1 ×D2 = V1.

Figure 6.3. The building block for the Whitehead manifold.

Recursively define solid tori Vi := h(Vi−1). The infinite intersection X := ⋂
Vi is called the

Whitehead continuum, and its complement W := S3∖X is called the Whitehead manifold .

Exercise 6.1. (Non-HW) The Whitehead manifold is contractible. Hint: Use Theorem 3.5.

Exercise 6.2. (Non-HW) The quotient S
3
⧸X is not a manifold. Hint: show that the

quotient is not 1-LCC at the image of X. Prior knowledge of 3-manifold topology and knots
and links will be useful.
Definition 6.2. A noncompact space M is simply connected at infinity if for every compact set
C1 ⊆ W there exists a compact set C2 ⊇ C1 so that π1(W∖ C2) → π1(W∖ C1) is trivial.

The solution of the previous exercise in fact shows that the Whitehead manifold W is not
simply connected at infinity. Since R3 is simply connected at infinity, this shows that the
Whitehead manifold is not homeomorphic to R3.

The Whitehead manifold is historically significant. Whitehead wanted to prove the Poincaré
conjecture by showing that any punctured homotopy 3-sphere is homeomorphic to R3 (this suffices
by passing to 1-point compactifications). In this vein, he conjectured that any contractible, open
3-manifold is homeomorphic to R3, but soon found the Whitehead manifold as a counterexample.
Remark 6.3. While the quotient S

3
⧸X is not a manifold, it is known that S

3
⧸X × R is homeo-

morphic to R4! This can be proven using the techniques of the next section.
Remark 6.4. We have seen that simple connectivity at infinity is an obstruction to being
homeomorphic to Euclidean space. It turns out that it is the only siginificant one. In other
words, an open, contractible n-manifold is homeomorphic to Rn if and only if it is simply
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connected at infinity [Edw63, Wal65, Fre82b, Sta62a]. In dimension three this requires the
Poincaré conjecture [Per02, Per03b, Per03a] (see also [MT07, KL08]).

6.3. Shrinking cellular sets

We are working towards the proof of the Schoenflies theorem by Brown [Bro60]. This
material can also be found in [DV09b, Dav07, Bin83].

Definition 6.5. Let Mn be a manifold. A subset X ⊆ IntM is cellular if there exist embedded,
closed subsets Bi ⊆ M , i ≥ 1, such that

− Bi ∼= Dn for all i;
− Bi+1 ⊆ B̊i for all i; and
− X = ⋂∞

i=1Bi.
Equivalently, X is closed and for every open U ⊇ X there exists B ∼= Dn and X ⊆ B̊ ⊆ B ⊆ U .

The name cellular is because Dnin an n-cell. It does not mean the space is a CW complexes.

Example 6.6. The first and last example from Fig. 6.2 are cellular, as can be seen in Fig. 6.4.

Figure 6.4. Examples of cellular sets, with {Bi} in orange.

Proof of equivalence of definitions. Suppose that the first definition holds. Then X = ⋂∞
i=1Bi,

which is closed since each Bi is closed. Thus, X ⊆ B1 is a closed subset of a compact set so is
compact.

We claim that given U ⊇ X open, there is a natural number n such that Bn ⊆ U . Suppose
this is false. Then there exists a sequence {xi} with xi ∈ Bi ∩ (M∖ U) ̸= ∅ for each i. Since
{xi} ⊆ B1, which is sequentially compact, after passing to a convergent subsequence, we have a
limit point x. Then x ∈

⋂∞
i=1Bi = X ⊆ U , since each Bi is sequentially compact. But M∖ U is

closed, so contains all its limit points, so x ∈ M∖ U , which is a contradiction.
Suppose now the second definition holds. Since IntM is open, by hypothesis there exists

B1 ∼= Dn such that X ⊆ B̊1 ⊆ B1 ⊆ IntM . Since X is closed and B1 is compact, we have that
X is compact. Let us now recursively define Bi so that X ⊆ B̊i ⊆ Bi ⊆ B̊i−1. Fix some metric
d on M (recall that manifolds are metrisable, see Theorem 1.9)

Firstly, for i ∈ Z define the open set

Ui :=
{
y ∈ M | d(X, y) < 1

i

}
.

Since B̊i−1 ∩ Ui is open, by hypothesis we can pick Bi ⊆ B̊i−1 ∩ Ui such that Bi ∼= Dn and
X ⊆ B̊i. By construction X = ⋂

Bi, since the elements in the intersection must have zero
distance from X. This completes the proof. □

The following proposition is why we are interested in cellular sets.

Proposition 6.7. Let M be a manifold. If X ⊆ IntM is cellular, then M ∼= M⧸X.
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Remark 6.8. In fact, the above proposition can be strengthened to say that the quotient map
π : M → M⧸X can be “approximated by homeomorphisms”, that is we say that X shrinks. In
order to understand how to approximate functions we need to have a metric on the collection of
functions, which is what we recall in the next remark.
Remark 6.9 (Function spaces.). Let X and Y be compact metric spaces. The uniform metric is
defined as

d(f, g) := sup
x∈X

dY (f(x), g(x)),

for continuous maps f, g : X → Y . We write C(X,Y ) for the metric space of continuous functions
from X to Y equipped with this metric. By [Mun00a, Thm. 43.6 and 45.1], C(X,Y ) is complete.
For A ⊆ X, let

CA(X,X) := {f ∈ C(X,X) | f |A = IdA}.
Note that CA(X,X) ⊆ C(X,X) is closed, so CA(X,X) is complete with respect to the induced
metric.
Remark 6.10. Let M be a compact manifold and X ⊆ M . For X closed, the quotient space
M⧸X is metrisable. Then the quotient map π : M → M⧸X is said to be approximable by
homeomorphisms, that is the set X is said to shrink, if there is a sequence {hi : M

∼=−→ M⧸X} of
homeomorphisms converging to π.
Remark 6.11. While we will not prove it in this course, a closed subset X ⊆ IntM of a manifold
shrinks if and only if X is cellular (see e.g. [Dav07]). Observe that asking for the quotient map
to be approximable by homeomorphisms is stronger than merely requiring the quotient space to
be homeomorphic to the original manifold M . A natural question then is whether whenever we
have M⧸X ∼= M the set X must be cellular. We will see presently that Rn⧸X ∼= Rn implies that
X is cellular. However this is not true in general.

We will use the following notion in the proof.

Definition 6.12. For a continuous map f : X → Y and y ∈ Y we say f−1(y) is an inverse set
if |f−1(y)| > 1.

Proof of Proposition 6.7. We restrict to the case M is compact. The aim is to describe a
surjective continuous map f : M → M with f |∂M = Id, whose only inverse set is X. Then we
will obtain a well-defined continuous map f : M⧸X → M completing the diagram

M M

M⧸X

f

π
∃f

since f is constant on the fibres of π. Since f is bijective, and is a closed map by the closed map
lemma (Lemma 2.10) it will follow that it is a homeomorphism. Note that on ∂M we will have
f ◦ π = Id.

Since X is cellular, there exist embedded, closed subsets Bi ⊆ M , i ≥ 1, such that Bi ∼= Dn

for all i, Bi+1 ⊆ B̊i for all i, and X = ⋂∞
i=1Bi. Fix a metric on M (which is metrisable by

Theorem 1.9). We will define f as a limit of a sequence of homeomorphisms. First we define
maps fi : M → M recursively. Set f0 = IdM and assume for the inductive step that fi : M

∼=−→ M
has been defined. Let g′

i : Dn → Bi ⊆ M be a homeomorphism.

Claim. For each i ≥ 1 there exists a homeomorphism hi : M → M shrinking fi(Bi+1) in
fi(Bi) to diameter less than 1

i+1 and hi|M∖Int(fi(Bi)) = Id.
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Figure 6.5. Proof of Proposition 6.7: the map s shrinks the complement of the
collar to the round ball.

Proof of the claim. Consider the homeomorphism g := fi ◦ g′
i : Dn → fi(Bi). Let s be the

shrinking map as in Figure 6.5. More precisely, we choose a closed collar neighbourhood C of
∂Dn which is disjoint from g−1fi(Bi+1). This exists since the latter set is closed. Choose a
round ball U ⊆ Dn of diameter r so that g(U) ⊆ fi(Bi+1) and g(U) has diameter < 1

i+1 . The
map s shrinks Dn∖ C until it lies within U , while acting by the identity on ∂Dn, stretching out
the collar C to interpolate.. It is instructive to think of this as a radial shrink.

Then define hi : M → M by setting hi|M∖ ˚fi(Bi)
= Id and hi|fi(Bi) = g ◦ s ◦ g−1. □

Now we finish the inductive step by defining

fi+1 := hi ◦ fi : M
∼=−→ M

Note that diam(fi(Bi)) < 1
i for all i and fi+1 = fi on M∖ ˚fi(Bi). We also have that fi|∂M = Id.

We assert that {fi} is a Cauchy sequence in the complete metric space of functions C∂M (M,M)
(Remark 6.9), by showing that d(fm, fn) < 1/n for m > n. Indeed, these maps agree on
M∖ ˚fn(Bn), while for x ∈ Bn, both fm(x) and fn(x) lie in fn(Bn) (since fm(x) = hm−1 ◦hm−2 ◦
· · · ◦ fn(x)), and diam fn(Bn) < 1/n.

Finally, define f := lim{fi}. We have that f |∂M = Id since each fi restricts to the identity
on ∂M . It remains only to show that f has the desired inverse sets.

Firstly, we claim that f(X) = {y}. Otherwise, for x, x′ ∈ X with f(x) = y ̸= y′ = f(x′), we
can choose i ≥ 1 such that d(f, fi) < d(y,y′)

3 and 1
i <

d(y,y′)
3 , so

d(y, y′) = d(f(x), f(x′)) ≤ d(f(x), fi(x)) + d(fi(x), fi(x′)) + d(fi(x′), f(x′))

<
d(y, y′)

3 + 1
i

+ d(y, y′)
3 < d(y, y′)

which is a contradiction. Here we used the fact that diam fi(X) < 1/i.
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Secondly, observe that f |M∖X is injective. Namely, for any p, q ∈ M∖X there is i ≥ 1 such
that p, q /∈ Bi, so f(p) = fi(p) and f(q) = fi(q). If f(p) = f(q) then fi(p) = fi(q), but fi is a
homeomorphism, so p = q.

Finally, we claim that f(X) ∩ f(M∖ X) = ∅. Let x ∈ X. Again, for p ∈ M∖ X we have
f(p) = fi(p) for some i ≥ 1 such that p /∈ Bi, so f(p) = fi(p) if x ∈ X ⊆ Bi+1 then

d(f(p), f(x)) = d(fi(p), f(x)) ≥ d(fi(p), fi(Bi+1) > 0.

For the final inequality we used that d(p,Bi+1) > 0 (since Bi+1 ⊆ B̊i and p /∈ Bi) and fi is a
homeomorphism. Therefore, f(p) ̸= f(x), finishing the proof that the only inverse set of f is X,
as desired. □

From the sketch of the proof of the Schoenflies theorem at the beginning of this section, we
should remember that the goal was to quotient out the sphere by the complementary components
of the given embedding and conclude that the result is still a sphere. The above result indicates
that we will be able to do so if these complementary regions are cellular, and indeed they are, as
we will see in the following two propositions.

Proposition 6.13. Let f : Dn → Sn be a continuous map with X ⊆ IntDn the only inverse
set. Assume that f(IntDn) is open in Sn. Then X is cellular in Dn.

Remark 6.14. The assumption that f(IntDn) is open in Sn is in fact redundant, as we will see
in Lemma 6.17. However, the proof of Lemma 6.17 is somewhat involved so the reader may
prefer to skip it.

Proof. By invariance of domain we know that f(Dn) ̸= Sn. Specifically, if the map were
surjective, then for a boundary point of Dn we would get a neighbourhood homeomorphic to
Rn which is impossible. Choose a point z ∈ Sn∖ f(Dn) and identify Sn∖ {z} with Rn. Let
f(X) =: y ∈ Sn and let U be some open set with X ⊆ U ⊆ Dn. Then f(U)

We again have the diagram

Dn Sn

Dn
⧸X

f

π
∃f

where f is an embedding. Then since U ⊆ IntDn is a saturated open set, we know that π(U)
is open in Dn

⧸X by the definition of the quotient topology, and then since f is an embedding
f(U) = π ◦ f(U) is open in f(IntDn). Since f(IntDn) is open in Sn by hypothesis, we have
that f(U) is open in Sn.

We want to find an open ball in U containing X, implying that X is cellular (by the second
definition). Using that f(U) is an open neighbourhood of y and f(Dn) is compact, we choose

Figure 6.6. Proof of Proposition 6.13
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r,R > 0 such that Br(y) ⊆ f(U) ⊆ f(Dn) ⊆ BR(y) as in Fig. 6.6. Let s : Sn → Sn be a
‘shrinking’ map similar to before (cf. Fig. 6.5), such that s|Br/2(y) = Id and

s(f(Dn) ⊆ s(BR(y)) ⊆ Br(y) ⊆ f(U).

Then define a map σ : Dn → Dn by

x 7→
{
x, x ∈ X

f−1sf(x), x /∈ X.

Note that in the second case sf(x) ̸= y, so there is a unique preimage under f , implying that
σ is a well-defined map. It is continuous (since f is a closed map restricted to M∖ X) and a
homeomorphism onto its image (by the closed map lemma (Lemma 2.10). Therefore, σ(Dn) is
the desired ball, since X ⊆ ˚σ(Dn) ⊆ σ(Dn) ⊆ f−1sf(D) ⊆ f−1f(U) = U . □

Getting even closer to the situation of the Schoenflies theorem, we now generalise to a map
from a sphere with two inverse sets.

Proposition 6.15. Suppose f : Sn → Sn is surjective, continuous, and has precisely two
inverse sets A and B. Then each of A and B are cellular.

Proof. In an effort to prevent confusion, let S and T denote the domain and codomain respectively,
so f : S → T . Let a := f(A) and b := f(B). Since A and B are closed and disjoint, we can
pick a standard open disc U ⊆ S, disjoint from A and B. Then D := S∖ U ∼= Dn is a disc and
A ∪B ⊆ D̊.

Figure 6.7. Proof of Proposition 6.15

Choose an open set V ⊆ f(D̊) with a ∈ V and b /∈ V . We can find such a V because
f(D̊) = T∖ f(U) is open, since f(U) is closed (as f is a closed map by the closed map lemma
(Lemma 2.10)).

Now choose a homeomorphism h : T → T such that f(D) is mapped to V , fixing some set
W with a ∈ W ⊊ V . Similarly as in the proof of the previous proposition we have a well-defined
map ψ : D → S mapping

x 7→
{
x x ∈ f−1(W )
f−1hf(x) x ∈ D∖ A.

since f−1 is one-to-one on V ∖ {a}.
As before we see that ψ is continuous using the pasting lemma and the fact that f is a closed

map on S∖ (A ∪B).
Our goal is to apply Proposition 6.15 to ψ. We check that B ⊆ D̊ is the only inverse set.

This is the case since A is in the ‘identity’ part of the definition of ψ, and h is a homeomorphism
so f−1hf has same inverse set as f |D∖A (since h maps f(D) into V ), which is just B. Moreover,
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we check that ψ(D̊) = f−1hf(D̊) is open since f is continuous, h is a homeomorphism, and we
saw earlier that f(D̊) is open.

Therefore, by Proposition 6.13 applied to ψ the set B is cellular. By a similar argument A is
cellular as well. □

Remark 6.16. You might be wondering why we did not directly find a ball neighbourhood D of
A disjoint from B and apply Proposition 6.13 to it. A priori all we know about A and B is that
they are closed sets, as preimages of closed sets. Then finding such a ball neighbourhood of A
amounts precisely to showing that A has such a ball neighbourhood in the open set S∖B. With
little information about B, i.e. when this open neighbourhood is arbitrary, this is the same as
showing that A is cellular.

The proof of the following lemma can be safely skipped.
Lemma 6.17. Let f : Dn → Sn be a continuous map with finitely many inverse sets, all lying

within IntDn. Then f(IntDn) is open in Sn.
Proof. As before by invariance of domain we know that f(Dn) ̸= Sn. Choose a point P ∈
Sn∖ f(Dn). Let X denote the union of all the inverse sets. As a finite union of closed sets
it is closed. Define U := (IntDn)∖ X and observe it is open in Dn. It is nonempty since
otherwise X ∩ ∂Dn ̸= ∅. Then f |U is an injective continuous map from an open subset of Rn to
Rn = Sn∖ {P}, so by invariance of domain, f(U) is open in Sn and f |U is a homeomorphism.
Then for all z ∈ U , f(z) lies in the interior of f(IntDn). It remains only to show that the
singular points of f , that is, the images of the inverse sets, lie in the topological interior of
f(IntDn). Let Y denote the collection of singular points of f . By hypothesis Y is a finite
collection of isolated points.

Let y ∈ Y be a singular point of f . Choose a sequence {ai} ⊆ U such that {ai} → x for
some x ∈ X with f(x) = y. Then we know that the sequence {f(ai)} ⊆ f(U) converges to y by
the continuity of f . Suppose y is not in the topological interior of f(IntDn). Then, perhaps
after passing to a subsequence, choose open coordinate ball neighbourhoods {Bi} centred at
y and with strictly decreasing radii converging to 0, such that f(ai) ∈ Bi for all i and choose
wi ∈ Bi ∩ (Sn∖ f(IntDn)) ̸= ∅ so that {wi} → y. Within each Bi choose a path γi joining
wi and f(ai) with γi ∩ Y = ∅ and a parametrisation αi : [0, 1] → Sn with αi(0) = f(ai) and
αi([0, 1]) = γi. Such as path can be found since Y is a finite set. Then α−1

i (f(U)) is open
for each i since f(U) is open in Sn. For each i let [0, τi) denote the component of α−1

i (f(U))
containing 0. Then we have f−1αi([0, τi)) ⊆ U .

Fix i. Note that αi(τi) /∈ Y by construction and thus f−1αi(τi) is a single point vi. We
claim that vi ∈ ∂Dn. We know that vi /∈ U since then αi(τi) ∈ f(U) which is a contradiction. If
vi ∈ X, then f(vi) = αi(τi) ∈ Y which is a contradiction. Thus, vi ∈ ∂Dn.

We have seen that {vi} ⊆ ∂Dn where the latter is a compact space. Thus, we assume that
{vi} converges after passing to a convergent subsequence. Let u ∈ ∂Dn denote the limit of {vi}.
By continuity of f , {f(vi)} → f(u) ∈ f(∂Dn). On the other hand, by construction, {f(vi)} → y,
since each f(vi) ∈ Bi and {Bi} are centred at y with radii decreasing to 0. Since limits of
sequences are unique in Hausdorff spaces, we have that y = f(u) for u ∈ ∂Dn, which implies
that X ∩ ∂Dn ⊇ f−1(y) ∩ ∂Dn ̸= ∅, which is a contradiction. □

We are now in shape to prove the Schoenflies theorem, following Brown [Bro60].
Remark 6.18. Prior to Brown’s work, an alternative proof was given by Mazur in [Maz59] in the
case that the embedding has a “flat spot”. This hypothesis was removed by Morse in [Mor60],
just a few pages after Brown’s proof [Bro60] in the same journal. Mazur’s argument uses an
infinite stacking procedure, and the cancellation procedure known as the Mazur swindle. Both
approaches are worth knowing, in particular since the smooth Schoenflies conjecture for S3 ⊆ S4

remains open. Nonetheless we cite Brown for the theorem since he provided the first complete
argument.
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Theorem 6.19 (Generalised Schoenflies theorem). Let n ≥ 1 and let i : Sn−1 ↪→ Sn be a
locally flat embedding. Then there is a homeomorphism of pairs (Sn, i(Sn−1)) ∼= (Sn, Sn−1).
where the latter is the equatorial sphere Sn−1 in Sn.

In particular, the closure of each component of Sn∖ i(Sn−1) is homeomorphic to Dn.

Proof. By Corollary 4.6 we know i is bicollared: there is an embedding I : Sn−1 × [−1, 1] →
Sn such that I|Sn−1×{0} = i. Moreover, by Jordan-Brouwer Separation (Corollary 2.9), the
complement has two components; see Fig. 6.1. Observe that we could also have applied the
Mayer-Vietoris sequence directly, since we have a bicollar.

Now consider the composite

f : Sn π−→ Sn⧸{A,B}
∼=−→ Sn,

where the quotient map collapses each of A and B to a (distinct) point and the second map is
the homeomorphism identifying the unreduced suspension of Sn−1 with Sn. Note that f maps
i(Sn−1) to the equatorial sphere Sn−1 ⊆ Sn. Since f has precisely two inverse sets A and B, by
Proposition 6.15 we have that A and B are both cellular. Let

U := A ∪ I
(
Sn−1 × (0, 1]

)
,

namely the component of Sn∖ i(Sn−1) containing A. Then f |U : U → D ∼= Dn, the upper
hemisphere of Sn. We check that U is a manifold. As a subspace of Sn it is Hausdorff and
second countable. The interior U is an open set of Sn so the only potential problem is at the
boundary. But since we have the bicollar, the boundary points are also well behaved.

In the diagram below we have the function f as before, using the fact that f |U is constant
on the fibres of π. Then f ◦ π = f |U . Since A is cellular, by Proposition 6.7 there exists a
homeomorphism h with h|∂U = π|∂U .

U D ∼= Dn

U⧸A

f |
U

∼=∃h
π

∼=
∃f

Then we have the homeomorphism f ◦ h : U → Dn, and moreover, f ◦ h|∂U = f ◦ π|∂U = f |∂U .
A similar argument for B and V := B ∪ I

(
Sn−1 × (0, 1]

)
shows that V is homeomorphic to the

lower hemisphere of Sn. Moreover, since the induced maps on the boundary coincide, we can
glue the maps together to get a homeomorphism H : Sn → Sn mapping i(Sn−1) to the equatorial
Sn−1 ⊆ Sn as desired. □

6.4. Schoenflies in the smooth category

The proof given above only applies in the topological category. In particular, there is no
analogue of Proposition 6.7 in the smooth category. Nonetheless, the smooth Schoenflies theorem
in known in almost all dimensions, as we now sketch. See [Mil65, Sec. 9] for further details.

Theorem 6.20 (Schoenflies theorem, smooth version). Let Σ be a smooth embedded Sn−1 in
Sn. If n ≥ 5, then there exists a diffeomorphism of pairs (Sn,Σ) → (Sn, Sn−1).
Proof. The complement Sn∖ Σ has two components, by Corollary 2.9 or directly applying the
Mayer-Vietoris sequence. It is easy to check that the closure of each component of Sn∖ Σ is
a smooth simply connected n-manifold, with boundary diffeomorphic to Sn−1, and which has
integral homology of the n-ball (i.e. it is a Z-homology ball).

Claim. For n ≥ 5, every smooth, compact, simply connected integer homology balls with
boundary diffeomorphic to Sn−1 is diffeomorphic to Dn.
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We will also need the following theorem.

Theorem 6.21 (Palais [Pal60]). Any two smooth orientation-preserving smooth embeddings
of Dn in a connected oriented smooth n-manifold are smoothly equivalent (that is, there is an
orientation-preserving diffeomorphism of the ambient manifold taking one to the other).

Given the above two ingredients, we prove the theorem as follows. By Palais’s theorem we
can obtain a diffeomorphism of Sn taking one component of Sn∖ Σ to the standard hemisphere
of Sn. This diffeomorphism must then take the other component to the other hemisphere, and
their shared boundary Σ to the equator, giving the desired diffeomorphism of pairs. □

Proof of the claim. Let Wn be a smooth compact simply connected Z-homology n-ball with
∂W ∼=C∞ Sn−1.

Remove a small ball D0 ⊆ IntW . Then W∖ D̊0 is an h-cobordism, i.e. a smooth manifold
with precisely two boundary components, such that the inclusion of each boundary component
is a homotopy equivalence.

By the h-cobordism theorem of Smale [Sma62a] (see also [Mil65]), since n ≥ 6 and W∖ D̊0
is simply connected, we have that W∖ IntD0 ∼=C∞ Sn−1 × [0, 1]. Therefore, by putting the disc
D0 back in we have W ∼= Dn.

Figure 6.8. The proof of the Schoenflies theorem in the smooth category for
n = 5.

For n = 5 we need a bespoke argument. Let M = W ∪f D5 where f : ∂W
∼=C∞−−−→ S4 = ∂D5.

Then M is a ZHS5 (i.e. has the integral homology of S5). Then by [Ker69, KM63a, Wal62]
we know that M = ∂V for some smooth compact contractible 6-manifold V , see Fig. 6.8.

Now run the same argument as above: remove a small disc D0 from V to get V∖ IntD0 ∼=C∞

S5 × [0, 1]. Therefore, M ∼=C∞ S5 and we can again use Palais’s theorem to conclude that
W ∼=C∞ D5. □

Remark 6.22. The smooth Schoenflies theorem also holds in dimensions less than or equal to 3. In
dimension one it only requires that S1 is path connected, in dimension two the Riemann mapping
theorem gives a proof. In dimension 3, the result is known as Alexander’s theorem [Ale24] (see
Hatcher’s 3-manifolds notes for a more modern exposition.) In dimension four, the Schoenflies
problem remains open (and is equivalent to the version in the PL category).
Remark 6.23. We may wonder to what extent the techniques in this section apply to the
topological category. The h-cobordism theorem is an extremely powerful tool, but the proof
fundamentally uses handle decompositions. Handle decompositions exist in the smooth category.
Work of Kirby-Siebenmann can be used to find topological handle decompositions – explaining
this is one of the goals of our course. Characteristically, this will be harder than in the smooth
category. Every topological manifold, other than non-smoothable 4-manifolds, admit topological
handle decompositions. A fun fact: smooth, compact, simply connected 5-dimensional h-
cobordisms are not in general smoothly products (as shown by Donaldson [Don87]) but they
are topologically products, i.e. homeomorphic to products (as shown by Freedman [Fre82b]).
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Remark 6.24. Palais’ theorem ( Theorem 6.21) implies that connected sum of smooth manifolds
is well-defined. To show that connected sum of topological manifolds is well-defined, we will
need the topological Annulus Theorem. This is due to Kirby for n ≥ 5, and we will study its
proof later (Quinn proved it for n = 4).
Remark 6.25. Brown’s proof of the Schoenflies theorem belongs in the beautiful field of decom-
position space theory. Other notable applications include Freedman’s proof of the 4-dimensional
Poincaré conjecture [Fre82b] and Cannon’s proof of the double suspension theorem [Can79a].

Exercise 6.3. Show that the following weak version of the Schoenflies theorem holds for all
n in the smooth category: Let Σ denote a smoothly embedded Sn−1 in Sn. If one of the two
components of Sn∖ Σ is a smooth ball, then so is the other.

Exercise 6.4. Show that the smooth Poincaré conjecture implies the smooth Schoenflies
conjecture, in any dimension. Does the converse hold? (Why not?)

Exercise 6.5. (PS3.1) Is the double Fox-Artin arc in the interior of D3 cellular?
Note that the above exercise shows that cellularity is not a property of a space, but rather

of an embedding. That is, we have found a non-cellular embedding of an arc in D3. Of course
there also exist cellular embeddings of arcs in D3.

Exercise 6.6. (PS3.2) Let M be a compact n-manifold so that M = U1 ∪ U2 where each
Ui is homeomorphic to Rn.

(a) Prove that M is homeomorphic to Sn. You may use the Schoenflies theorem.

(b) Conclude that if a closed n-manifold M is an (unreduced) suspension SX for some
space X, then M is homeomorphic to the sphere Sn.

Note: (b) reduces the double suspension problem to showing that the double suspension is a
manifold, not specifically a sphere.

Remark 6.26. The above can be shown independently of the Schoenflies theorem, using a result
of Brown characterising Euclidean space [Bro61].

Exercise 6.7. (PS3.3) Let Σ ⊆ Sn be an embedded copy of Sn−1 and let U be one of
the two path components of Sn∖Σ. If the closure U is a manifold, then U is homeomorphic to Dn.

Exercise 6.8. (PS3.4) Let f : Dn → Dn be a locally collared embedding of a disc into the
interior of a disc. Prove that Dn∖ f(Dn) is homeomorphic to Sn−1 × (0, 1]. Hint: show that
f(Dn) is cellular.

Note, the result that Dn∖ Int(f(Dn)) is homeomorphic to Sn−1 × [0, 1], for n ≥ 4, is the
famous annulus theorem due to Kirby and Quinn. Why doesn’t the annulus theorem follow
easily from this exercise?





CHAPTER 7

Spaces of embeddings and homeomorphisms

Mark Powell

In the upcoming chapters, we will develop a topological analogue of the tangent bundle of
a smooth manifold. Essentially, this will lead to an Rn-fibre bundle over our manifold with
structure group Homeo0(Rn). Hence we will need some terminology and facts about fibre
bundles and groups of homeomorphisms, which is the content of this chapter. We also introduce
spaces of embeddings, which generalise homeomorphisms, since a surjective embedding is a
homeomorphism. Embedding spaces will be used often; the first instance is in the study of
topological tangent bundles.

Definition 7.1. A topological group is a group G that is also a topological space, such that the
group operation is a continuous map G×G → G and such that the inverse map g 7→ g−1 is also
a continuous map from G to itself.

Definition 7.2. A fibre bundle consists of a base space B, total space E and fibre F , together
with a map p : E → B, a topological group G with a continuous group action G× F → F on F ,
a maximal collection {Uα} of open subsets of B and homeomorphisms φα : Uα × F → p−1(Uα)
called charts, such that

(1) {Uα} covers B;
(2) for any V ⊆ Uα open, φα|V is a chart;
(3) the following diagrams commute:

p−1(Uα)

Uα

Uα × F

p|

pr

φα ∼=

(4) if φ,φ′ are charts over U ⊆ B, then there exists a continuous transition function
θφ,φ′ : U → G such that for all u ∈ U and f ∈ F we have

φ′(u, f) = φ(u, θφ,φ′(u) · f).

Vector bundles are the special case, with F = Rn and G = GLn(R) or O(n). There is a
chain of inclusions of topological groups

O(n) ⊆ GLn(R) ⊆ Diff(Rn) ⊆ Homeo(Rn)

where Diff(Rn) is the topological group of diffeomorphisms of Rn and Homeo(Rn) is the topo-
logical group of homeomorphisms of Rn; we discuss these spaces (and their topologies) in this
section. The first inclusion is a homotopy equivalence, which can be seen by performing the
Gram-Schmidt process in a parametrised fashion. The second is also homotopy equivalence. We
will not give details of these facts here as they belong in the world of differential topology.

59
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7.1. The compact-open topology on function spaces

Let Top(n) := Homeo0(Rn) be the group of homeomorphisms of Rn that fix the origin. This
can be made into a topological group with the compact-open topology. We will be talking about
such spaces frequently, so let us briefly explain the compact-open topology.

The compact-open topology is defined more generally, for C(X,Y ), the set of all continuous
functions from a space X to a space Y . By definition, it has a subbasis of open sets for C(X,Y )
of the form

V (K,U) = {f ∈ C(X,Y )|f(K) ⊆ U}
with K ⊆ X compact and U ⊆ Y open.

If a sequence of functions {fi} converges to f : X → Y in this topology, then the functions
get closer to f (corresponding to smaller U) on progressively larger compact sets (corresponding
to larger K). For details on the compact-open topology, we refer to [Hat02b, Appendix], for
example. A standard exercise is the following.

Proposition 7.3. If X is compact, Y a metric space, then compact-open topology coincides
with the uniform topology arising from dx(f, g) := supx∈X dy(f(x), g(x)).

Here are the key facts about the compact-open topology on continuous functions. Sometimes
C(X,Y ) is denoted Y X .

Proposition 7.4. Let X,Y, Z be locally compact, Hausdorff spaces (for example topological
manifolds).

(1) Composition
◦ : C(X,Y ) × C(Y, Z) → C(X,Z)

is a continuous map.
(2) f : X × Y → Z is continuous if and only if its adjoint

f̂ : Y → C(X,Z)
y 7→ (x 7→ f(x, y))

is continuous.
(3) The adjoint map from the previous item gives rise to a homeomorphism

C(Y,C(X,Z))
∼=−→ C(X × Y,Z).

This is sometimes called the exponential rule because it can be rephrased as ZX×Y ∼=
(ZX)Y .

(4) The map

C(X,Y ) × C(X,Z) → C(X,Y × Z)
(f, g) 7→ (x 7→ (f(x), g(x)))

is a homeomorphism. (This also has a nice exponential mnemonic Y X×ZX = (Y ×Z)X .)
(5) If M is a manifold, Homeo(M) → Homeo(M) with h 7→ h−1 is continuous.

Corollary 7.5. For X,Y as above, the map ev : X × C(X,Y ) → Y given by (x, f) 7→ f(x)
is continuous.

Proof. This follows from the exponential rule (3). Namely, it says that the adjoint map is
surjective, so in particular Id ∈ C(C(X,Y ),C(X,Y )) is an adjoint of some continuous map
θ ∈ C(X × C(X,Y ), Y ). By definition, this means that θ̂(f) = (x 7→ θ(x, f)) is equal to
Id(f) = (x 7→ f(x)), so θ(x, f) = f(x) and θ = ev. □
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Remark 7.6. Versions of these facts hold with the hypotheses on X, Y , and Z relaxed a little.
Since we mostly care about topological manifolds, we restrict to all spaces locally compact and
Hausdorff. References for the convenient category of topological spaces and k-ification include
Steenrod’s paper and May’s concise course.

The key consequence of Proposition 7.4 is that with the compact-open topology Homeo(M)
is a topological group.
Remark 7.7. Why do we define the compact-open topology by only controlling functions on
compact sets? Consider the space of homeomorphisms of Rn fixing the origin, Homeo0(Rn).
Suppose we required that for f to lie in an open set around g, it must satisfy |f(x) − g(x)| < ε
for all x ∈ Rn. Then for g = Id, no rotation f about 0 would satisfy this for any ε. So even the
simple operation of rotating around the origin would not constitute an isotopy.

On the other hand with the compact-open topology, rotating does give rise to an isotopy of
homeomorphisms.

7.2. Spaces of embeddings and isotopy

We can consider embeddings from X to Y , Emb(X,Y ) with the compact-open topology.
This is the subspace of the continuous maps C(X,Y ) consisting of all the injective continuous
maps that are homeomorphisms onto their images.

An isotopy of embeddings X ↪→ Y is a continuous map [0, 1] → Emb(X,Y ) or equivalently,
a continuous map ψ : X × [0, 1] → Y with ψ(−, t) an embedding for each t (the equivalence
follows from the exponential rule). We call this an isotopy between the embeddings ψ(−, 0) and
ψ(−, 1).
Remark 7.8. Beware: under this definition, the trefoil and the unknot are isotopic, because we
can pull the trefoil arbitrarily tight, until in the limit as t → 1, it becomes the unknot. In knot
theory, when people say colloquially that two knots are isotopic, they usually mean some other
equivalence relation, such as “ambiently isotopic” as in the next definition, or smoothly isotopic.
Definition 7.9. Two embeddings f, g : X → Y are said to be ambiently isotopic if there exists

Φ: [0, 1] → Homeo(Y )
with Φ(0) = Id and Φ(1) ◦ f = g.

Figure 7.1. The unknot and the trefoil.

As expected, the trefoil and the unknot (see Fig. 7.1) are not ambiently isotopic. The
following flowchart summarizes the relations between different notions of isotopy.

isotopic locally flat isotopic smoothly isotopic

ambiently isotopic smoothly ambiently isotopic
The upwards and the left implications are straightforward. The downwards implications use

the isotopy extension theorems. The smooth isotopy extension theorem says that smooth isotopy
and smooth ambient isotopy are equivalent. We used knots in S3 as a convenient example here,
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but these theorems apply to submanifolds more generally, although of course one needs smooth
submanifolds to make sense of the implications involving smoothly isotopic or smoothly ambient
isotopic. We will talk later about the topological isotopy extension theorem due to Edwards and
Kirby, and the definition of a locally flat isotopy in detail later. The proof uses the torus trick.

The trefoil and the unknot are isotopic only in a rather weak sense, since they are neither
locally flat isotopic, ambiently isotopic, smoothly isotopic, nor smoothly ambiently isotopic.

In the upcoming proof of Kister’s theorem, we will construct an isotopy of embeddings which
is not an ambient isotopy.

7.3. Immersions

Definition 7.10. A smooth map f : M → N between smooth manifolds is a smooth immersion
if for every x ∈ M the derivative df |x : TxM → Tf(x)N of f at x is injective. Equivalently, f is
locally a (smooth) embedding.

We can use the second description to define an analogous notion in the topological category.

Definition 7.11. A continuous map f : Mm → Nn between topological manifolds is an immer-
sion, denoted f : M ↬ N , if for every x ∈ M there is an open neighbourhood U ∋ x such that
f |U is an embedding.

Note that an injective immersion is not necessarily an embedding, since an embedding is
required to be a homeomorphism onto its image. For example, the exponential map induces
an injective and surjective immersion [0, 1) → S1 which is not an embedding, since it is not a
homeomorphism.

In the smooth category, spaces of immersions are well-understood thanks to the work of
Smale and Hirsch [Sma59, Hir59]. Their theory can be used to describe the homotopy type
of those spaces in terms of mapping spaces of vector bundles, which are more accessible to the
tools of algebraic topology. The following theorem is one consequence of that theory. Let Vk(Rn)
denote the Stiefel space of k-frames in Rn.

Theorem 7.12 (Hirsch [Hir59, Thm. 6.1]). A smooth k-manifold M smoothly immerses
into Rn with k < n if and only if there is a section of the bundle Vk(Rn) → E → M associated
to the Stiefel bundle Vk(Rk) → Vk(M) → M of k-frames in M .

Let us derive a consequence, which will be used in Section 15.2, and several times thereafter.
Recall that a manifold is said to be parallelisable if it has trivial tangent bundle, TM ∼= M ×Rn.

Corollary 7.13. Every smooth parallelisable n-manifold admits a smooth immersion into
Rn+1.

Proof. Since Tk(M) ∼= M × Vk(Rk) is the trivial bundle, any associated bundle has a section.
The minimal n allowed by the theorem is n = k + 1. □

This can be improved in case the manifold is open (i.e. each component is noncompact and
with empty boundary), or just requiring that each component is not closed (so either open or
with non-empty boundary). The crucial property of such manifolds is that they can be deformed
into a neighbourhood of their (n− 1)-skeleton.

Theorem 7.14 (Hirsch [Hir61]). Every smooth open parallelisable n-manifold admits a
smooth immersion into Rn.
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CHAPTER 8

Microbundles and topological tangent bundles

Gopal Ananthakrishna, Danica Kosanović, Isacco Nonino, Mark Powell, and Benjamin
Matthias Ruppik

We shall provide an answer to the question: what sort of tangent bundles do topological
manifolds have? The short answer is: a topological manifold M has a tangent microbundle.
Moreover, within the total space of a rank n microbundle, so in particular within the total space
of the tangent microbundle of M , there is an Rn-fibre bundle over M . The main references for
this material are Milnor’s paper on microbundles [Mil64] and Kister’s paper “Microbundles are
fibre bundles” [Kis64].

Every smooth manifold has a tangent vector bundle p : TM → M . However, the linear
vector bundle transition functions arise from the derivatives of the transition functions between
the charts in a smooth atlas, and this a priori does not work for topological manifolds. Our aim
is to get an analogue of tangent bundles for topological manifolds: a fibre bundle with structure
group G = Homeo(Rn), or in fact slightly better, the subgroup of those homeomorphisms of Rn
that fix the origin:

G = Homeo0(Rn) :=
{
f : Rn → Rn | f is a homeomorphism, f (⃗0) = 0⃗

}
.

8.1. Microbundles

To find topological tangent bundles, we need to use the notion of microbundles, which is due
to Milnor. Microbundles will also be a useful tool in other contexts.
Remark 8.1. For a vector bundle p : E → B there is a zero section z : B → E with p ◦ z = id.
Moreover, for every α we have a commutative diagram:

p−1(Uα)

Uα U

Uα × F

p|z

×0 pr
φα ∼=

Such a zero section is also defined also for any fibre bundle with fibre Rn and group G =
Homeo0(Rn). On the other hand for such fibre bundles the concept of a sphere or disc bundle is
not well-defined.

The idea behind microbundles is to see the fibre at x ∈ B as the germ of charts over Euclidean
neighbourhoods of that point.

Definition 8.2. A microbundle X of fibre dimension n consists of
(1) a base space B
(2) a total space E
(3) a pair of continuous maps

B
i−→ E

j−→ B
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such that j ◦ i = IdB (we call i “the injection” and j “the projection”), and which
satisfy local triviality: for all b ∈ B, there exist open sets U ∋ b and V ∋ i(b) and a
homeomorphism V

∼=−→ U × Rn, so that i(U) ⊆ V , j(V ) ⊆ U and the following diagram
commutes

V

U U

U × Rn

j|V

∼=

i|U

Id ×0 pr1

Example 8.3. The standard trivial microbundle enB of fibre dimension n over a space B. This
is given by

B
×0−−→ B × Rn pr1−−→ B

Taking U := B and V := B × Rn, we will satisfy the local triviality condition at any x ∈ B.

Example 8.4. We introduce the underlying microbundle of an Rn fibre bundle. If ξ is a fibre
bundle p : E → B with fibre F = Rn, group G = Homeo0(Rn), and zero section i : B → E, then
B

i−→ E
j=p−−→ B is a microbundle, denoted by |ξ|. Indeed, the local triviality is satisfied by charts

V := p−1(Uα)
∼=−→ Uα × Rn.

Remark 8.5. There exist non-isomorphic vector bundles with isomorphic underlying microbundles
(see Definition 8.7), see [Mil64, Lemma 9.1].

Example 8.6. The key example is the tangent microbundle of a topological manifold. If M be
a topological manifold, then

M
∆−→ M ×M

pr1−−→ M

is a microbundle, called the tangent microbundle of M and denoted by tM of M . Here ∆ is the
diagonal map m 7→ (m,m), so pr1 ◦∆ = IdM is immediate.

To check the local triviality at x ∈ M , let U ∋ x and f : U
∼=−→ Rn a chart of M . We define

h : U × U → U × Rn

(u, v) 7→ (u, f(v) − f(u))

Then h is a homeomorphism with inverse (a, b) 7→ (a, f−1(b + f(a)), and taking V := U × U ,
gives the desired commutative diagram

V

U U

U × Rn

pr1

∼= h

∆|U

×0 pr

This is a bit surprising, as the total space does not seem like a total space of a tangent bundle,
since it has too much topology (see Fig. 8.1 for an example). The idea is that we really only
have to look at small neighbourhoods of the zero section, not all of the total space M ×M .

For a smooth manifold M it is natural to ask about the relationship between the smooth
tangent bundle and the tangent microbundle. In order to address this, we introduce the notion
of equivalence for microbundles.

Definition 8.7. Two microbundles X1 and X2 over the same base space B are said to be
isomorphic, written X1 ∼= X2, if there exist neighbourhoods En ⊇ Vn ⊇ in(B) for n = 1, 2 and a
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Figure 8.1. Tangent microbundle for M = S1.

homeomorphism V1
∼=−→ V2 such that the following diagram commutes

V1

B B

V2

j1|V1

∼=

i1

i2 j2|V2

Definition 8.8. A microbundle over B will be called trivial if it is isomorphic to the standard
trivial microbundle enB (see Example 8.3).

In other words, the total space of a microbundle is not relevant up to isomorphism, only
neighbourhoods of i(B) in it. For example, in Fig. 8.1 the blue neighbourhood of ∆(S1) ⊆ S1×S1

forms a microbundle over S1 which is isomorphic to the tangent microbundle tS1 . More generally,
we have the following theorem.

Theorem 8.9. Let M be a smooth manifold with tangent bundle τM . Then the underlying
microbundle |τM | is isomorphic to the tangent microbundle tM .

Proof. Choose a Riemannian metric on M . The underlying microbundle |τM | of the tangent
bundle is by definition M

i−→ TM
p−→ M , where TM is the total space.

Recall that the exponential map sends (p, v⃗) ∈ TM to exp(p, v⃗) ∈ M defined as the endpoint
of the unique geodesic γ : [0, 1] → M with γ(0) = p and γ′(0) = v⃗. This map is defined in a
neighbourhood E′ ⊇ i(M) in TM . Then the map

h : E′ → M ×M, (p, v⃗) 7→ (p, exp(p, v⃗))
is a local diffeomorphism from a neighbourhood of (p, 0) in TM to neighbourhood of (p, p) ∈
M ×M , thanks to the inverse function theorem.

We claim that the restriction of h on a perhaps smaller neighbourhood i(M) ⊆ E′′ ⊆ E′ is a
homeomorphism onto some neighbourhood ∆(M) ⊆ V ⊆ M ×M . This follows from a point-set
topology argument, inductively covering i(M) by open sets on which h is injective. We skip the
argument and refer to [Whi61, Lemma 4.1].

Finally, the following diagram commutes by definition

E′′

M M

V

p

h

i

∆ pr1

so we have |τM | = tM . □
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8.2. Kister’s theorem

In this section we prove Kister’s theorem [Kis64], which shows that every microbundle on
a manifold is isomorphic to the underlying microbundle of an Rn-fibre bundle (with structure
group Homeo0(Rn), see Definition 7.2). In particular, a topological manifold M has the best
type of tangent bundle one could hope for: its tangent microbundle tM can be replaced with the
so-called topological tangent bundle. Throughout this section we fix an integer n ≥ 1.

Theorem 8.10 (Kister’s Theorem [Kis64]). Let B be a topological manifold or a locally
finite simplicial complex and let X = (B i

↪−→ E
j
↪−→ B) be a microbundle of rank n. Then there

exists F ⊆ E with i(B) ⊆ F such that F j|F−−→ B is an Rn fibre bundle with i : B → F a 0-section
and underlying microbundle X. Moreover, any two such Rn-bundles are isomorphic.

The main ingredient in the proof of this theorem is the following result. Let us denote
Embn0 := Emb0(Rn,Rn) for short and let i : Homeo0(Rn) ↪→ Embn0 be the natural inclusion.
Note that a point g ∈ Embn0 is in the subspace Homeo0(Rn) if and only if g is surjective.

Theorem 8.11 ([Kis64]). There is a continuous map F : Embn0 ×[0, 1] → Embn0 , F (g, t) =
Ft(g) such that

(1) F0 = IdEmbn
0
,

(2) Im(F1) ⊆ Homeo0(Rn),
(3) Im(Ft ◦ i) ⊆ Homeo0(Rn) for all t ∈ [0, 1].

Since F1◦i is not required to equal IdHomeo0(Rn), this is not a deformation retraction. However,
the map F does show that the inclusion i is a homotopy equivalence: Ft is a homotopy between
IdEmbn

0
and i ◦ F1, while the map Ft ◦ i is a homotopy between IdHomeo0(Rn) and F1 ◦ i.

Here is a warm up lemma before we start the proof of Theorem 8.11, demonstrating how
embeddings or homeomorphisms can be deformed in a canonical way, that is continuously.

Lemma 8.12. The inclusion i0 : Homeo0(Rn) ↪→ Homeo(Rn) is a homotopy equivalence.

Proof. For x ∈ Rn let tx : Rn → Rn be the translation tx(y) := y + x. Define the map
Θ: Homeo(Rn) × [0, 1] → Homeo(Rn), Θ(g, s) := t−sg(0) ◦ g.

It is continuous in both variables g and s (see Proposition 7.4). We have Θ0 = Id, Im(Θ1) ⊆
Homeo0(Rn), and Θs ◦ i0 = Id for all s ∈ [0, 1], so Θ is a (strong) deformation retraction. □

The proof of the Theorem 8.11 will be significantly harder, but the principle is the same; the
key will be the following lemma. Let Dr ⊆ Rn be the disc of radius r and centre 0.

Lemma 8.13 (Stretching lemma). Let 0 ≤ a < b and 0 < c < d and let g, h ∈ Embn0 be
such that h(Rn) ⊆ g(Rn) and h(Db) ⊆ g(Dc). Then there is an isotopy of homeomorphisms
φt(g, h, a, b, c, d) : Rn → Rn for t ∈ [0, 1], such that

(1) φ0 = IdRn,
(2) φ1(h(Db)) ⊇ g(Dc),
(3) φt fixes Rn∖ g(Dd) and h(Da) pointwise; and
(4) φ : Embn0 × Embn0 ×R5 → Homeo0(Rn) with (g, h, a, b, c, d, t) 7→ φt is continuous.

Proof. The idea is to expand h(Db) so it covers g(Dc) in a “canonical way”. The naive stretching
will be identity on Rn∖ g(Dd) but not on h(Da), so we will first “push” h(Da) into a “safe
region”, then do the stretching, and then pull it back out – this is an instance of what is known
as a push-pull argument.

We work in g-coordinates, which is possible since h(Rn) is contained in g(Rn). We will draw
g-balls as round and h-balls as crooked, see Fig. 8.2. Moreover, we define:

− b′ := the radius of g−1h(Db) (in g-coordinates: the radius of the largest disc in h(Db)),



8.2. KISTER’S THEOREM 69

− a′ := the radius of g−1h(Da) (in g-coordinates: the radius of the largest disc in h(Da)),
− a′′ := the radius of h−1g(Da′) (in h-coordinates: the radius of the largest disc contained

in g(Da′)).
Thus, we have 0 ≤ a′ ≤ b′ < c < d and 0 ≤ a′′ ≤ a < b. Note that these numbers are defined
canonically in terms of g, h and a, b, c, d.

Figure 8.2. Nested balls in the stretching lemma, shown in g-coordinates.

First let Θt(a, b, c, d) : Rn → Rn be a stretching isotopy of homeomorphisms of Rn, defined
on all rays from 0 as the piecewise linear function from Fig. 8.3. More precisely, Θt is the identity
on [0, a] and [d,∞), sends b to (1 − t)b + tc, and is extended linearly on [a, b] and [b, d]. In
particular, Θ0 = Id and Θ1 stretches Db over Dc and is fixed on Da and outside of Dd.

Figure 8.3. The stretching function on the positive real line [0,∞).

To transfer Θt to g coordinates we define ψt : Rn → Rn by

ψt :=
{
g ◦ Θt(a′, b′, c, d) ◦ g−1, on g(Dd),
Id, elsewhere.

Thus, ψt stretches g(Db′) over g(Dc) and h(Db) over g(Dc). However, ψt moves h(Da), so we
now modify it using the push-pull argument as mentioned above. Namely, consider the strecthing
homeomorphism Θ1(0, a, a′′, b), which actually look like a contraction since a′′ ≤ a, see Fig. 8.4.
Then let

σ :=
{
h ◦ Θ1(0, a, a′′, b) ◦ h−1, on h(Db),
Id, elsewhere.
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Figure 8.4. The map σ applies the depicted map Θ1(0, a, a′′, b) in h-coordinates.

Finally, for t ∈ [0, 1] define the desired map by

φt : = σ−1 ◦ ψt ◦ σ.

This first pushes using σ, then stretches using ψt, then pulls back using σ−1. The first three
properties in the statement of the lemma are straightforward to check.

It remains to check continuity of φt, which, although quite reasonable, requires some work.
We will state the following three key propositions, whose proofs can be found in [Kis64].

Proposition 8.14. Let g ∈ Embn0 and r, ε > 0. Then there is a δ > 0 so that if g1 ∈ Embn0
satisfies d(g1|Dr+ε , g|Dr+ε) < δ, then

(i) g1(Dr+ε) ⊇ g(Dr),
(ii) d(g−1

1 |g(Dr), g
−1|g(Dr)) ≤ ε.

Proposition 8.15. Let C a compact set, h : C → Rn an embedding, D ⊆ Rn a compact set
containing h(C) in its interior, and g : D → Rn another embedding. For every ε > 0 there is a
δ > 0 such that if g1 : D → Rn and h1 : C → Rn are embeddings whose distance from g and h
respectively is bounded above by δ, then g1 ◦ h1 is defined and at distance at most ε from g ◦ h.

Proposition 8.16. Let g, h ∈ Embn0 and a ≥ 0 such that h(Da) ⊆ g(Rn). Let r be the radius
of g−1h(Da). Then r = r(g, h, a) is continuous in the variables g, h and a.

Now we come back to the proof of continuity of φt. We first show that σ is continuous: by
Proposition 8.16 a′ depends continuously on g, h, a, and a′′ depends continuously on h, g, a′, so
Θ(0, a, a′′, b) depends continuously on g, h, a, b.

Now σ would be the same function if we slightly modify the domain on which it is possibly
not trivial, that is if we set σ = hΘ1(0, a, a′′, b)h−1 on h(Db+2). Since h(Db+1) ⊆ Inth(Db+2)
there is a neighbourhood N of h in Embn0 such that h1 ∈ N implies h1(Db+1) ⊆ h(Db+2).

Hence, if h1 ∈ N , b1 ∈ (0, b+ 1) and g1, a1 satisfy the hypotheses of the Lemma 8.13, then
σ1 = σ(g1, h1, a1, b1) can be defined as h1Θ(0, a1, a

′′
1, b1)h−1

1 on h(Db+2) and 1 everywhere else,
where a′′

1 = a′′a1.
We may assume, using Proposition 8.14, that N has been chosen such that h1(Db+3) ⊇

h(Db+2) for h1 ∈ N . Hence h−1
1 |h(Db+2) is defined. Proposition 8.14 also shows that this function

varies continuously with h1. Using Proposition 8.15, we conclude that θ(0, a1, a
′′
1, b1)h−1

1 |h(Db+2)
varies continuously with g1, h1, a1 and b1. Applying Proposition 8.15 one last time we see
that σ1|h(Db+2) = h1θ(0, a1, a

′′
1, b1)h−1

1 |h(Db+2) varies continuously with g1, h1, a1, b1. Hence,
σ(g, h, a, b) is continuous.

The proof that ψt is continuous is analogous. Since composing embeddings is continuous by
Proposition 7.4, we have that ϕt is continuous in g, h, a, b, c, d, and t. □

With Stretching Lemma 8.13 in our pocket, we are ready to prove Theorem 8.11. This will
then imply Kister’s Main Theorem 8.10.

Proof of Theorem 8.11. For g ∈ Embn0 we want to define an isotopy Ft(g) ∈ Embn0 from g =
IdEmbn

0
(g) and F1(g) ∈ Homeo0(Rn). Let Rg : [0,∞) → [0,∞) be the piecewise linear function
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such that Rg(0) = 0 and Rg(i) for i ∈ N is the radius of the largest disc inside g(Di). We apply
Rg on rays from the origin in Rn, that is:

hg : Rn → Rn, hg(r, θ) := (Rg(r), θ).

Note that hg(Rn) ⊆ g(Rn) is a round open disc, and hg(Di) ⊆ g(Di) for all i ∈ N0. Moreover, hg
is continuous in g, since it depends only on the radius function Rg, and this depends continuously
on g by Proposition 8.16.

The idea of the proof is to first isotope g to an embedding F1/2(g) whose image is hg(Rn),
and then expand this open disc in a uniform way to an embedding F1(g) whose image is all of
Rn.

Step 1. Perform an isotopy from g to an embedding whose image is the open disc hg(Rn).
To achieve this, we will define an isotopy αgt : Rn → g(Rn) such that

(1) αg0 = hg;
(2) αg1(Rn) = g(Rn);
(3) αgt is continuous in g and t.

We apply Lemma 8.13 for g, h = hg and a = 0, b = c = 1, d = 2, to obtain the stretching isotopy
φt. Then for t ∈ [0, 1/2] define

αgt := φ2t ◦ hg.
We see that αg0 = hg, g(D1) ⊆ αg1/2(D1), and αg1/2(D2) ⊆ g(D2).

Now we consider the interval [1/2, 3/4]. Again by Lemma 8.13 applied to g, h = αg1/2, and
a = 1, b = c = 2, d = 3, we obtain a new isotopy φt. Then for t ∈ [1/2, 3/4] define

αgt := φ4t−2 ◦ αg1/2.

We have αg1/2 same as above, g(D2) ⊆ αg3/4(D2), and αg3/4(D3) ⊆ g(D3). Moreover, αgt |D1 =
αg1/2|D1 for all t ∈ [1/2, 3/4].

Now continue this procedure, considering for each n ∈ N the interval [1 − 1/2n, 1 − 1/2n−1].
To make sure that the limit function α1 is defined, we need the following proposition; again, the
proof can be found in [Kis64].

Proposition 8.17. If α : Embn0 ×[0, 1) → Embn0 is continuous and for all t ∈ [1 − (1/2)n, 1)
and n ≥ 1 satisfies αt(g)|Dn = α1−(1/2)n(g)|Dn, then α can be extended to Embn0 ×I.

Applying Proposition 12.8 to our αgt gives αg1 such that αg1(Rn) = g(Rn). Then for t ∈ [0, 1/2]
we define

Ft(g) := αg1−2t ◦ (αg1)−1 ◦ g
Note that at F0(g) = g and F1/2(g) = h ◦ (αg1)−1 ◦ g has image F1/2(g)(Rn) = hg(Rn). We now
expand this open disc to the whole of Rn.

Step 2: Perform a concatenation of piecewise linear isotopies moving hg to IdRn . To do this,
we define an isotopy βgt : Rn → Rn such that

(1) βg0 = hg;
(2) βg1 = Id; and
(3) βgt is continuous in g and t.

This is quite similar to what we have done before, but easier since Lemma 8.13 is now not needed.
Define hg on rays from the origin as before. For time [0, 1/2] move Rg(1) to 1 by an isotopy of
piecewise linear functions, as in FIiure 8.5a.

That is, for s ∈ [0, 1] let θs(Rg(1)) = (1 − s)Rg(1) + s, and extend linearly in [0, Rg(1)] and
[Rg(1),∞). Then for t ∈ [0, 1/2] define

βgt = θ2t ◦ h.
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In [1/2, 3/4] move Rg(2) to 2 in a similar fashion, while fixing [0, 1], as in Fig. 8.5b. Then continue
in the same way for all positive integers, defining an isotopy βgt for all t ∈ [0, 1] analogously to
the definition of αgt above, so that βg1 = Id (again one must check that the isotopy is continuous
at t = 1).

(a) The first isotopy θs. (b) The second isotopy θs.

Figure 8.5

Now we can define the second half of F by

Ft(g) :=
{
αg1−2t ◦ (αg1)−1 ◦ g t ∈ [0, 1/2]
βg2t−1 ◦ (αg1)−1 ◦ g t ∈ [1/2, 1]

At t = 1/2, we have βg0 = h so that hg ◦ (αg1)−1 ◦ g = αg0 ◦ (αg1)−1 ◦ g, so the composite function
is continuous at 1/2. We also know that βg1 = Id so that at t = 1 we have (αg1)−1 ◦ g. Since
αg1(Rn) = g(Rn), (αg1)−1 ◦ g is a homeomorphism.

One needs to check that F is indeed continuous in g and t. We also note that if g is a
homeomorphism, then Ft(g) is a homeomorphism for every t, by inspecting the proof. □

Now we can use this result to prove Kister’s Theorem 8.10: microbundles contain Rn-fibre
bundles. More precisely, if B a locally finite simplicial complex or a topological manifold and
X = B

i−→ E
j−→ B is a microbundle, we want to prove there is an open set E1 ⊆ E containing

i(B) such that j|E1 : E1 → B is a fibre bundle with Homeo0(Rn) as structure group. We call
such a bundle an admissible bundle for X.

Proof of Theorem 8.10. The strategy of the proof is as follows.
(i) Prove the theorem for a locally finite simplicial complex B by induction on simplices.
(ii) Deduce for M = B a topological manifold.

For the second item, although M is in general not a simplicial complex, it is an Euclidean
neighbourhood retracts, i.e. there is an open neighbourhood M ⊆ V ⊆ RN with a retraction
r : V → M see Theorem 3.3. Then r∗X is a microbundle on V of the same rank, and since V is
an open subset of RN , it admits a smooth structure. In particular, V admits a locally finite
triangulation, so we can apply (i) to obtain an admissible fibre bundle ξ inside E(r∗X). The
restriction of ξ along the inclusion i : M ↪→ V gives the desired Rn-fibre bundle i∗ξ over M with

E(i∗ξ) ⊆ E(i∗r∗(X)) = E((r ◦ i)∗X) = E(Id∗ X) = E(X).
Now, to prove (i) we induct both on simplices and on the dimension m of the simplicial complex.
For each m we consider the following two statements, for microbundles of a fixed rank n.
Xm := “Every microbundle over a locally finite m-dim. simplicial complex admits a bundle.”
Um := “Any two such admissible bundles for such a microbundle are isomorphic.”

Both X0 and U0 hold since every microbundle over a point is trivial, and therefore the same
holds over a collection of 0-simplices with the discrete topology. For the induction step we prove
that Xm−1 and Um−1 together imply Xm, and that Xm implies Um.
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Let us show the first claim. Let K be a locally finite simplicial complex with a microbundle

X = K
i−→ E

j−→ K

Let K ′ denote the (m− 1)-skeleton of K and pick an m-simplex σ of K not in K ′.
Since σ is contractible, it admits a trivial admissible bundle ξσ, and homeomorphism hσ

fitting into the diagram:
σ

σ × Rn E(ξσ)

σ

i×0

pr1

hσ

∼=

j|

Let D be an open set in E such that i(K) ⊆ D and

j−1(σ) ∩D ⊆ E(ξσ).
Then consider the following restriction of X to K ′:

X′ = {K ′ i′−→ j−1(σ) ∩D
j′
−→ K ′}

By Xm−1 we know that X′ admits an Rn-bundle η over K ′. In order to now glue η and ξσ
we have to make them compatible along the collar of the boundary ∂σ. Note that since ξσ is
trivial, ξ|∂σ is a trivial fibre bundle. But now η|∂σ and ξ|∂σ are admissible bundles for the same
microbundle, so by Um−1 they are isomorphic. In particular, η|∂σ is also trivial and we have a
homeomorphism hη fitting into the diagram:

∂σ

∂σ × Rn E(η|∂σ)

∂σ

i×0

pr1

hη

∼=

j|

Thus, over ∂σ we have two trivialisastions hσ and hη, and we can consider h−1
σ hη, which us a

fibrewise embedding of a fibre of η into a fibre of ξ over ∂σ. For every p ∈ ∂σ we thus define
gp : Rn → Rn with gp ∈ Embn0 by the formula

h−1
σ ◦ hη(p, q) = (p, gp(q)).

Now, let σ1 be a smaller m-simplex in σ, and as in Fig. 8.6 identify σ∖ Intσ1 ∼= ∂σ × [0, 1] so
that ∂σ = ∂σ × {0} and ∂σ1 = ∂σ × {1}.

We now use the map F : Embn0 ×I → Embn0 constructed in Theorem 8.11. For brevity, for
each (p, t) ∈ ∂σ × I, we write gpt := F (gp, t) : Rn → Rn. At t = 0 this is the embedding gp0 = gp,
while at t = 1 it is a homeomorphism.

Consider the space

E1 := E(η) ∪
{
hσ
(
(p, t), gpt (q)

)
| (p, t) ∈ ∂σ × I ∼= σ∖ Intσ1, q ∈ Rn

}
∪ E(ξσ|σ1)

To complete the proof of Xm it remains to show that the projection
j|E1 : E1 → K ′ ∪ σ
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Figure 8.6. A parametrisation ∂σ × [0, 1] of the grey region σ∖ σ1 between the
two simplices.

Figure 8.7. We define the bundle E1 by gluing the two bundles over simplices
σ and σ1, together with a transition in the region σ∖ σ1 given by Kister’s isotopy.

is indeed a fibre bundle (so that it is an admissible bundle for X|K′∪σ). The idea is that as
t ∈ [0, 1] increases, the image of hσ((p, t), gpt (q)) expands. Since gp1 is a homeomorphism, for each
p ∈ ∂σ the image fills up the entire fibre ξσ|∂σ×{1} = ξσ|∂σ1 .

We define a trivialisation over σ∖ Intσ1 by
f : (σ∖ Intσ1) × Rn → E1

((p, t), q) 7→ hσ((p, t), gpt (q)).
On the other hand, for (p, 1) ∈ ∂σ × {1} = ∂σ1 we have ep ∈ Homeo0(Rn) given by

ep(q) = pr2 ◦f−1hσ((p, 1), q).
Then we can let

e : σ × Rn → j−1(σ) ∩ E1

e((p, t), q) =
{
hσ((p, t), q), (p, t) ∈ σ1,

f((p, t), ep(q)), (p, t) ∈ σ∖ Intσ1.

Since f−1hσ((p, 1), q) = ((p, 1), ep(q)), we have for all p ∈ ∂σ and q ∈ Rn that
hσ((p, 1), q) = f((p, 1), ep(q)).

Therefore, e is a well-defined homeomorphism, and a local trivialisation of j|E1 over Intσ.
We also need to show that j|E1 is locally trivial over ∂σ, and also that Xm implies Um.

These are rather similar in spirit to the proofs we have just done, so we omit them, referring to
[Kis64] for details. □

Exercise 8.1. (PS4.1) Every microbundle over a paracompact contractible space B is
isomorphic to the trivial microbundle over B.

Exercise 8.2. (PS4.3) For X compact and Y a metric space, the compact-open topology
on C(X,Y ) := {f : X → Y | f continuous} coincides with the uniform topology coming from

d(f, g) := sup
x∈X

dY (f(x), g(x)).
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Exercise 8.3. (PS5.1) Let X and Y be compact metric spaces with X × R homeomorphic
to Y × R. Then X × S1 is homeomorphic to Y × S1.

Hint: let h : X × R → Y × R be a homeomorphism, and consider the two product structures
on Y × R, the intrinsic one and the one coming from h(X × R). Use a push-pull construction
(repeated infinitely many times) to create a periodic homeomorphism H : X × R → Y × R, i.e.
for some p ∈ R, H(x, t) = H(x, t+ p) for all t ∈ R, x ∈ X.





CHAPTER 9

Normal microbundles and smoothing of a manifold crossed with
Euclidean space

Mark Powell

We want to prove the following theorem, which is the start of smoothing theory. It gives a
criterion in terms of microbundles under which, for a topological manifold M , there is a smooth
structure on M × Rq for some q ≥ 0.

Theorem 9.1. Let M be a topological manifold. Then M × Rq admits a smooth structure
for some q if and only if tM is stably isomorphic to |ξ| for some vector bundle ξ over M .

In order to prove this, we will need some more of the theory of microbundles, especially the
notion of a normal microbundle to a locally flat embedding. Note that a locally flat embedding
need not admit a normal microbundle.

9.1. Constructions of microbundles

Let X = {B i−→ E
j−→ B} be a microbundle.

Definition 9.2 (Restriction). Define the restricted microbundle for a subset A ⊆ B, by

X|A = {A i|A−−→ j−1(A)
j|j−1(A)−−−−−→ A}.

Restricted microbundle is a special case of the following construction (when f is an inclusion).

Definition 9.3 (Pullback). Given a map f : A → B we define the pullback microbundle

f∗X := {A i′−→ E′ pr1−−→ A}

where E′ = {(a, e) ∈ A× E | f(a) = j(e)} is the pullback and the map i′ : A → E′ is given by
i′(a) = (a, i ◦ f(a)).

In other words, the following diagram commutes

A

E′ E

A B.

i◦f

Id

i′

pr2

pr1 j

f

Theorem 9.4. If A is paracompact, X = {B → E → B} a microbundle, and f, g : A → B
are homotopic, f ≃ g, then the two pullbacks f∗X ∼= g∗X are isomorphic.

We refer the reader to Milnor’s paper [Mil64, Theorem 3.1 & Section 6] for the proof. This
theorem is important, as we shall use it several times, in particular to see (via an exercise on the
problem sheets) that a microbundle over a contractible space is trivial.
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Definition 9.5 (Whitney sums). Given two microbundles X1,X2 over the same base B, their
Whitney sum is the microbundle X1 ⊕ X2 := {B i1×i2−−−→ E(X1 ⊕ X2) p−→ B}, using the pullback

B

E(X1 ⊕ X2) E(X2)

E(X1) B

i2

i1

i1×i2

j2

j1

where the two dotted maps are canonical maps i1 × i2 = (i1(b), i2(b)) and p(e1, e2) = j1(e1) =
j2(e2).

Definition 9.6 (Cartesian product). Given two microbundles X1,X2 over possibly distinct base
spaces B(X1) and B(X2), we define the product microbundle X1 × X2 by

B(X1) ×B(X2) i1×i2−−−→ E(X1) × E(X2) j1×j2−−−→ B(X1) ×B(X2)

Remark 9.7. With these definitions, the Whitney sum of two microbundles over the same base
is the same as the pullback ∆∗(X1 × X2) of the product, along the diagonal ∆: B → B ×B.

Lemma 9.8. The tangent microbundle of a product tM×N is isomorphic to the product of
tangent microbundles tM × tN .

Proof. In the following diagram, the outside vertical maps are the identity maps, and the middle
vertical map permutes the coordinates as appropriate to make the diagram commute.

M ×N M ×N ×M ×N M ×N

M ×N M ×M ×N ×N M ×N

∆M×N pr1,2

∆M ×∆N

Id
pr1,3

Id

The top row describes tM×N , while the bottom row describes tM × tN . Since the middle map is
a homeomorphism, the two microbundles are isomorphic. □

Recall that enB denotes the standard trivial microbundle of fibre dimension n over B.

Definition 9.9. Two microbundles X,X′ over B are stably isomorphic if

X ⊕ eqB
∼= X′ ⊕ erB

for some q, r ≥ 0. We denote the stable isomorphism class of X by [X] and define the operation

[X] + [X′] := [X ⊕ X′].

Since Whitney sum is commutative and associative, this operation makes the set of stable
isomorphism classes of microbundles over B into a commutative monoid, with [enB] as the unit.
Thanks to the following theorem, if B is a manifold then all elements have inverses.

Theorem 9.10. Let B be a manifold or finite CW complex. Let X be a microbundle over B.
Then there exists a microbundle η over B such that X ⊕ η is trivial.

For the proof see [Mil64, Theorem 4.1].

Definition 9.11. Denote the abelian group of microbundles with base B a manifold or finite
CW complex, up to stable isomorphism, with Whitney sum as the group operation, by kTOP(B).
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9.2. Normal microbundles

Definition 9.12 (Normal microbundle). Let Mm ⊆ Nn be a submanifold. We say that M
has a microbundle neighbourhood in N if there exists a neighbourhood U ⊇ M and a retraction
j : U → M such that

M
incl−−→ U

j−→ M

is a microbundle. We call it a normal microbundle nM↪→N of M in N .

Remark 9.13. If M has a normal microbundle, then M is locally flat. This is superfluous, since
we actually defined a submanifold as being locally flat. However, it is worth emphasising, since
the converse is false in general, i.e. locally flat submanifolds need not have normal microbundles.
This is somewhat unfortunate, but will turn out to be manageable.

Note that the situation is special in codimensions 1 and 2, where it is known that locally
flat embeddings admit normal microbundles. In fact they admit normal bundles in these
codimensions.

Milnor [Mil64, Theorem 5.8] proved that for every embedding M ⊆ N , there is an integer q
such that the composition M → N → N × Rq admits a normal microbundle. Stern improved
this later with quantitative bounds as follows. Intermediate results were also proven by Hirsch,
but Stern’s bounds seem to be the best known.

Theorem 9.14 (Stern, [Ste75, Theorem 4.5]). Let Mm ⊆ Nn be a submanifold of codimen-
sion q = n−m and pick j ∈ {0, 1, 2}.

(1) If m ≤ q + 1 + j and q ≥ 5 + j, then there exists a normal microbundle.
(2) Any two normal microbundles n and n′ for M are isomorphic if m ≤ q + j.

In particular, for all submanifolds M ⊆ N , M ⊆ N × {0} ⊆ N ×Rq admits an essentially unique
normal microbundle for some q ≫ 0.

Our short term goal is to use microbundles to give a description of when for a given manifold
M , the product M × Rq admits a smooth structure for some q. For this we need to develop
more theory of normal microbundles.

Lemma 9.15. Every trivial microbundle is isomorphic to the trivial Rn-fibre bundle. More
precisely, if X = {B → E → B} is isomorphic to the trivial microbundle over B of rank n,
over a paracompact space B, then there exists U ⊆ E with U ∼= B × Rn such that the following
diagram commutes

B × Rn ∼= U

B E B.

pr1×0

To prove this one observes that E can be assumed to be an open subset of B × Rn and then
rescales this, see [Mil64, Lemma 2.3]. We apply this to the case when a normal microbundle is
trivial, obtaining a criterion under which we can find an actual product neighbourhood.

Corollary 9.16. Suppose Mm ⊆ Nn admits a trivial normal microbundle. Then M is flat,
that is there exists an embedding M × Rn−m ↪−→ N with (x, 0) 7→ x for all x ∈ M .

One can ask to what extent is a normal microbundle unique.

Theorem 9.17. Assume Mm ⊆ Nn is a submanifold which has a normal microbundle. Then
tM ⊕ nM↪→N

∼= tN |M
Recall that Theorem 9.10 states that kTOP (M) is a group, namely that any microbundle

over a finite CW complex B has a stable inverse. We can now show this for manifolds.
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Proof of Theorem 9.10 for B a manifold. Consider an embedding M ⊆ Rd for some d. By
Theorem 9.14, by possibly increasing d, M has a normal microbundle nM↪→Rd . By Theorem 9.17
we have

tM ⊕ nM↪→Rd
∼= tRd |M ∼= edM ,

so [tM ] has a stable inverse. □

Corollary 9.18. Let M ⊆ N be a submanifold. Then [tM ] = [i∗tN ] if and only if there
exists q > 0 such that M = M × {0} ⊆ N × Rq has a product neighbourhood M × Rq.

Proof. By Theorem 9.17, we have [tM ]+[nM↪→N ] ∼= [tN |M ] ∼= [i∗tN ] ∼= [tM ]. Now we can
subtract these classes to obtain [nM↪→N ] ∼= [eM ]. Hence, by Corollary 9.16 the submanifold
M × {0} ⊆ N × Rq has a product neighbourhood for some large q. □

Normal microbundles will also be useful in connection with topological transversality for
submanifolds.

9.3. Precursor to smoothing theory

The following theorem is a preliminary step towards answering the question of when topolo-
gical manifolds admit smooth structures.

Theorem 9.19. Let M be a topological manifold. Then M × Rq admits a smooth structure
for some q if and only if tM is stably isomorphic to |ξ| for some vector bundle ξ over M .

Proof. Suppose that M × Rq admits a smooth structure for some q. We have the following
sequence of isomorphisms of microbundles

|τM×Rq | ∼= tM×Rq ∼= tM × tRq ∼= tM × eqRq .

For the first isomorphism we used Theorem 8.9, while the second is by Lemma 9.8. The third
holds because the tangent microbundle of Rn is trivial. Restricting to M × {0} we have

|τM×Rq ||M×{0} ∼= (tM × eqRq )|M×{0} ∼= tM ⊕ eqM ,

where the final isomorphism follows from the commutative diagram

M × Rq M ×M × Rq × Rq M × Rq

M M ×M × Rq M

∆M ×∆Rd pr1,3

∆M ×0
Id ×0

pr1

Id × Id ×0×Id Id ×0

Namely, the top row describes the product tM × eqRq , and by definition its restriction to M × {0}
is obtained by precomposing with Id ×0 and restricting p1,3 to the image of Id ×0. But this
agrees with the bottom row, which is precisely the microbundle tM ⊕ eqM over M .

Therefore, tM is stably isomorphic to the underlying microbundle of the smooth bundle
τM×Rq |M×{0} (since restriction commutes with taking underlying microbundles). This completes
the proof of the forwards direction.

Now for the converse, assume that [tM ] = [|ξ|] for some smooth vector bundle ξ over M .
Since topological manifolds are Euclidean Neighbourhood Retracts, there is an embedding
M ⊆ V ⊆ Rk and a retraction r : V → M where V is open.

Therefore, ξ extends to a vector bundle ξ′ = r∗ξ over V . Since V is a smooth manifold
and BO(k) is an infinite union of finite dimensional smooth manifolds given by Grassmannians
Grk(Rq), by finite dimensionality of V we can approximate the classifying map V → BO(k) of
ξ′ by a map into a smooth manifold Grk(Rq) for some q. In other words, we can assume ξ′ is a
smooth vector bundle, so that the total space E(ξ′) is a smooth manifold. Now V ↪→ E(ξ′) and

τV ⊕ ξ′ ∼= τE |V .
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Since V ⊆ Rk is open and a restriction of a trivial bundle τRk
∼= Ek is also trivial, we have that

τV ∼= Ek. Hence, restricting to M gives
Ek ⊕ ξ ∼= τE |M

and therefore for the underlying microbundles
|Ek| ⊕ |ξ| ∼= tE |M .

By assumption |ξ| is stably isomorphic to tM , so tE |M is also stably isomorphic to tM .
From Corollary 9.18 it follows that M × {0} ⊆ E × Rs has a product neighbourhood, that is

M × Rq ⊆ E × Rs is an open subset of a smooth manifold. Therefore it has a smooth structure
obtained from pulling back the smooth structure on E × Rs as in Proposition 9.20 below. □

Proposition 9.20. Let U ⊆ M be a topological manifold embedded as an open subset of a
smooth manifold. Then U admits a smooth structure.

Proof. Choose a collection of charts for M that cover U , {Vα}. Refine the cover so that all the
intersections {Vα ∩ U} are again charts, homeomorphic to Rn. This is possible as we can choose
small open balls around every point contained in U , and restrictions of homeomorphisms are
homeomorphisms. Note that since U is open this is a collection of open subsets.

Then the transition functions of {Vα ∩ U} are restrictions of the transition functions for
the Vα, so they are again smooth. The maximal smooth atlas containing {Vα ∩ U} is a smooth
structure on U . □

Remark 9.21. If we can show that tM is stably isomorphic to |ξ| for some smooth vector bundle
ξ over M , can we get a smooth structure on M? We could ask a similar question in the PL
category, assuming we had a good definition of a PL bundle. There is such a definition, but
we will not introduce it here. We now know from Theorem 9.19 that one can find a smooth
structure for M × Rq for some q ≥ 0.

The work of Kirby and Siebenmann, which we will study soon, shows that, for manifolds of
dimension at least 5, one can improve a smooth or PL structure on M ×R to a smooth structure
on M . So in fact the result we have just proven will be extremely useful, since it is the starting
point for actually finding a smooth or PL structure on M itself.

Kirby and Siebenmann’s results, when combined with the results of surgery theory, will
also allow us to compute the number of distinct smooth or PL structures on a given underlying
topological manifold of dimension at least 5. The theorem just proven gives the first hint that
such a procedure might be possible.

Exercise 9.1. (PS4.2) Let Mm ⊆ Nn be a submanifold with a normal microbundle nM .
Then

tM ⊕ nM ∼= tN |M .
Look in Milnor [Mil64] for the idea, but fill in the details.





CHAPTER 10

Homotopy invariance for microbundles

Cara Hobohm

The content of this section very closely follows [Mil64, Section 6]. Our goal is to prove the
following.

Theorem 10.1. Let X be a microbundle with base space B, and let B′ be a paracompact
space. Let f ≃ g : B′ → B be homotopic maps. Then the induced microbundles are isomorphic,
i.e.

f∗(X) ∼= g∗(X)

This has a well-known equivalent for fibre bundles. We’ll start by introducing a few notions
about map germs. Those will be put to use on microbundles to define bundle map germs. It
turns out that the proofs (e.g. Lemma 10.14) look a lot like their fiber bundle analogues once
we use those definitions.

10.1. Bundle germs

Definition 10.2. A map-germ from (X,A) to (Y,B) is an equivalence class of the elements of
the following set

{(f, U) | X ⊃ U ⊃ A a neighborhood and a map of pairs f : (U,A) → (Y,B)}
with the equivalence relation (f, U) ∼ (g, V ) if and only if there is a neighborhood N ⊃ A with
f |V .

We denote map germs as capital letters F : (X,A) ⇒ (Y,B).

Remember that we introduced microbundles with the goal to construct tangent bundles of
topological manifolds. One can think of those map-germs as a work around for derivatives.

First, observe that we can compose two map germs (X,A) F=⇒ (Y,B) G=⇒ (Z,C), by taking
representatives (f, U) and (g, V ) and defining a map g ◦ f |f−1(V ) : f−1(V ) → V → g(V ). Since
f−1(V ) is a neighborhood of A we can set F ◦G = [(f ◦ g|f−1(V ), f

−1(V ))].
Secondly, we observe that there is a standard identity map germ Id : (X,A) ⇒ (X,A). This

enables us to make another definition:

Definition 10.3. A homeomorphism-germ (or homeo-germ) is a map germ with a two-sided
inverse, i.e. F : (X,A) ⇒ (Y,B) is a homeo-germ if there is G : (Y,B) ⇒ (X,A) such that
F ◦G = Id(Y,B) and G ◦ F = Id(X,A).

The following is a helpful observation to keep control of the definitions introduced so far.

Proposition 10.4. A map-germ F is a homeo-germ if and only if there is a representative
(f, U) ∈ F that maps U homeomorphically onto its image, and f(U) is a neighborhood of B.

Proof. " ⇐= ": We take the inverse f−1 defined on f(U) as a representative for the map-germ
inverse G.

" =⇒ ": Let G be the map-germ inverse and take representatives (f, U), (g, V ) with U open,
such that f(U) ⊂ V and g ◦ f = IdU . We know there is an open subset V ′ ⊂ V such that
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g(V ′) ⊂ U and f ◦ g|V ′ = IdV ′ . In particular g|V ′ and f |U are injective. Take U ′ := (f |U )−1(V ′),
which is open with U ′ ⊂ U . From injectivity follows f(U ′) = V ′, which is open and has the
continuous inverse g|V ′ . □

Now let’s bring those map germs into the context of microbundles. Consider a microbundle
X consisting of

B
i−→ E

j−→ B.

Definition 10.5. The map germ J : (E, i(B)) ⇒ (B,B) induced by j is called the projection
germ.

To make our notation a little easier, we will write B instead of (B,B). Furthermore, we
identify i(B) with B, for example we just denote the projection germ as J : (E,B) ⇒ B.

Now let’s introduce another microbundle X′ : B′ i′−→ E′ j′
−→ B′. After all, we are interested in

maps between microbundles. This X′ has the projection germ J ′ : (E′, B′) ⇒ B′.
Definition 10.6. Suppose B = B′. An isomorphism germ (or iso-germ) from X to X′ is a
homeo-germ F : (E,B) ⇒ (E′, B) that is fibre preserving, i.e. J ′ ◦ F = J .

Indeed, this definition translates isomorphisms of microbundles into germ-language:
Proposition 10.7. An iso-germ exists from X to X′ exists if and only if X ∼= X′ as mi-

crobundles.
Proof. " =⇒ ": Take a representative (f, V ), which we choose with f : V

∼=−→ f(V ) using
Proposition 10.4 This means f(V ) is an open neighborhood of B in E′. Fiber preservation
implies j′ ◦ f |V = j|V . We get the diagram for microbundle isomorphisms:

V

B B

f(V )

∼=f

ji

i′ j′

.
" ⇐= ": Given such a diagram, we take (f, V ) to represent the iso-germ. □

More generally, we want to consider maps between microbundles on different base spaces
B ̸= B′ but with the same fiber dimension.
Definition 10.8. Let F : (E,B) ⇒ (E′, B′) be a map germ, with some representative f : U → E′.
We say F is a bundle map germ from X to X′ if there is a neighborhood V ⊃ B with V ⊂ U
such that for every b ∈ B exists b′ ∈ B′ so that f maps V ∩ j−1(b) injectively to j′−1(b′).

f |V ∩j−1(b) : V ∩ j−1(b)↣ j′−1(b′)
We denote such a bundle map germ by F : X ⇒ X′.
Let’s look at this definition for a moment. We should ensure that the existence of such a V

does not depend on the choice of representative (f, U). Well, any other representative (f ′, U ′)
can be restricted to some W ⊃ B so that f ′|W = f |W . Now V ∩ W fulfills the definition for
(f ′, U ′).

Given a bundle map germ F : X ⇒ X′, the definition above ensures that the following diagram
commutes:

(E,B) (E′, B′)

B B′

F

J J ′

F |B
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Figure 10.1. Visualization of a bundle map germ

We say that F |B is covered by a bundle map germ F . But be aware that the condition
f : V ∩ j−1(b)↣ j′−1(b′) is stronger than J ′ ◦ F = F |B ◦ J .

10.2. Proof of Homotopy Invariance

Remember that we are trying to prove Homotopy Invariance for microbundles.
Theorem 10.1. Let X be a microbundle with base space B, and let B′ be a paracompact space.
Let f ≃ g : B′ → B be homotopic maps. Then the induced microbundles are isomorphic, i.e.

f∗(X) ∼= g∗(X)
With the definitions above we have developed sufficient language to give a proof. We will

need two more ingredients.
Lemma 10.9. Suppose X and X′ are microbundles over the same base space B = B′, and suppose
F : X ⇒ X′ is a bundle map germ covering IdB. Then F is an iso-germ.
Lemma 10.14. Let X be a microbundle over B × [0, 1], where B is paracompact. Then the
standard retraction

r : B × [0, 1] → B × [1]
is covered by a bundle map germ R : X → X|B×[1].

For now we assume those two lemmas hold and prove them later.

Proof of Theorem 10.1. Let X be a microbundle with base space B, and let B′ be a paracompact
space. Let H : B′×[0, 1] → B be a homotopy from H0 = f to H1 = g. Let R : H∗X ⇒ H∗X|B′×[1]
be the bundle map germ covering the standard retraction from Lemma 10.14. Look at the
following diagram:

f∗X H∗X H∗X|B×[1] g∗X

B′ B′ × [0, 1] B′ × [1] B′

J

R

J

IdB ×(0)

IdB

r

Here the left and right bundle map germs are the obvious ones. Observe that the composition of
the bottom maps is IdB′ . Taking the composition of the bundle map germs on top therefore leads
to a bundle map germ f∗X ⇒ g∗X that covers the identity. Lemma 10.9 finishes the proof. □
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10.3. Proof of Ingredients

Lemma 10.9. Suppose X and X′ are microbundles over the same base space B = B′, and
suppose F : X ⇒ X′ is a bundle map germ covering IdB. Then F is an iso-germ.

Proof. It is clear from the definition (see diagram 10.1), that a bundle map germ covering
the identity is fiber preserving. We have to concern ourselves with showing that F is a
homeomorphism germ.

We start by proving a special case before we move on to the general case. Assume X and X′

are trivial, i.e. E = E′ = B × Rn. For x ∈ Rn and ε > 0 we will denote the open ball of radius
ε at x as Dε(x). We want to show any bundle map germ F : E → E′ covering the identity is
a homeo germ. Take a representative g : U → E′ with B ⊂ U ⊂ B × Rn open. The definition
of bundle map germ combined with the information that F covers IdB tells us that g maps
U ∩ j−1(b) injectively to j′−1(b). (W.l.o.g. we have chosen U small enough.) Hence g is injective
and fiber preserving.

Claim: Every map g : U → B × Rn that is injective and fiber preserving is an open mapping.
Observe first, that g can be expressed as g(b, x) = (b, gb(x)) for b ∈ B, with gb : Ub → Rn

defined on the open set Ub := j−1(b) ∩ U . By definition of the bundle map germ, gb is injective,
thus Invariance of domain implies that every gb is an open mapping. Now given some point
p0 := (x0, b0) ∈ B × Rn, we write gb0(x0) =: x1 and g(p0) = g(b0, x0) = (b0, x1) =: p1. In order
to show that g is open, we have to show that for any open neighborhood U0 of p0 there is an
open neighborhood U1 of p1 such that g(U0) ⊃ U1.

Given U0 we start by choosing ε > 0 so that Dε(x0) ⊂ projRn(U0). Since gb0 is an open map,
there is δ > 0 so that D2δ(x1) ⊂ gb0(Dε(x0)). There exists a neighborhood V of b0 in B such
that

|gb(x) − gb(x0)| < δ ∀b ∈ V, x ∈ Dε(x0)

Hence for each b ∈ V holds Dδ(x1) ⊂ gb(Dε(x0)), thus g(V ×Dε(x0)) ⊃ V ×Dδ(x1) =: U1.
A consequence of the Claim is that g is an embedding. It maps U homeomorphically onto

g(U) (which is open in E′) and we can apply Proposition 10.4 to see that F is a homeo-germ.

Now the general case. Let X and X′ be microbundles over B and let F : X ⇒ X′ be a bundle
map germ covering IdB. Take a representative f : U → E′ of F , where we choose U small enough
to assume f is injective and fiber preserving.

For any b ∈ B exists a neighborhood Wb of i(b) in U such that X|Wb
is trivial. Set Cb := j(Wb).

Clearly the restriction F |X|Cb
covers the identity on Cb. We can choose Wb small enough that

X′|Cb
is trivial as well, and then we can apply the first case. This means f |Wb

is a homeomorphism
onto its image, with f(Wb) ⊂ E′ open.

Now we define W := ⋃
b∈BWb and obtain f : W

∼=−→ f(W ), where f(W ) is open in E′.
Proposition 10.4 asserts that we get a homeo-germ. □

Corollary 10.10. If a map g : B → B′ is covered by a bundle map germ G : X ⇒ X′, then
X ∼= g∗X′.

Proof. The gist is that G induces a bundle map germ F : X ⇒ g∗X′ that covers the identity IdB.
Then we can apply Lemma 10.9 above.

Let’s spell out how we get this F . Start with a representative g : V → E′ of G, such that for
any b ∈ B exists b′ ∈ B′ with g : j−1(b) ∩ V ↣ j′−1(b′) injective. Remember that the induced
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bundle g∗X′ is the pullback in the following diagram:

V

g∗E′ E′

B B′

g

f

j|V g∗j′ j′

g

The universal property of pullbacks induces the dotted map f . Since j|V = g∗j′ ◦ f , we
immediately get that f |B is the identity. Also f represents a bundle map germ, because the
diagram reduces to the following when we start with {b′} ⊂ B′:

V ∩ j−1(b)

g∗j′−1(b) j′−1(b′)

{b} {b′}

g

f

j g∗j′ j′

g

In the diagram restrictions are left out for improved readability. Since the restriction of g is
injective, so is f . In conclusion is (f, V ) a representative for our bundle map germ F . □

For the second ingredient we have to make some observations about how to piece bundle
maps together before we can build one that covers the standard retraction.

Lemma 10.11. Let X be a microbundle over B, and let {Bα}α∈A be a locally finite collection
of closed sets that cover B. Suppose for all α ∈ A we have bundle map germs to some microbundle
N:

Fα : X|Bα ⇒ N

such that for any α, β ∈ A the restrictions of Fα and Fβ agree, i.e.:
Fα|X|Bα∩Bβ

= Fβ|X|Bα∩Bβ

Then there is a bundle map germ F : X ⇒ N extending the Fα, i.e. F |X|Bα
= Fα for all

α ∈ A.

Proof. Take fα : Uα → E′ some representative for Fα. By definition there are open neighborhoods
Uαβ of Bα ∩Bβ inside Uα ∩ Uβ such that fα|Uαβ

= fβ|Uαβ
. Define the following set:

U =
{

e ∈ E

∣∣∣∣∣ j(e) ∈ Bα =⇒ e ∈ Uα

j(e) ∈ Bα ∩Bβ =⇒ e ∈ Uαβ

}
.

Claim: This set U is open.
Take some e0 ∈ U . As {Bα} is a locally finite cover of B, we have some neighborhood V0 of

j(e0) that intersects only finitely many, let’s say Bα1 , . . . , Bαk
. Look at W := ⋂

1≤i<j≤k Uαiαj .
Since we only intersect finitely many sets W is open. Define V1 := j−1(V0) ∩ W . This fulfills
e0 ∈ V1 ⊂ U and V1 is open.

We can define f : U → E′ that extends the fα. This is the representative for F . □

Proposition 10.12. Let X be a microbundle over B × [0, 1] such that both X|B×[0, 1
2 ] and

X|B×[ 1
2 ,1] are trivial. Then X is trivial.
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Figure 10.2. Visualization of the Uαβ

Proof. Look at the "obvious" restriction map f : B × [0, 1] → B × [1
2 ]. Since X|B×[0, 1

2 ] and
X|B×[ 1

2 ,1] are trivial, we can cover the maps f1 : B × [0, 1
2 ] and f2 : B × [1

2 , 1] with bundle map
germs:

F1 : X|B×[0, 1
2 ] ⇒ X|B×[ 1

2 ]

F2 : X|B×[ 1
2 ,1] ⇒ X|B×[ 1

2 ]

Now we can apply Lemma 10.11 to the locally finite covering B × [0, 1
2 ], B × [1

2 , 1] to obtain a
bundle map germ F : X ⇒ X|B×[ 1

2 ] which covers the restriction f : B× [0, 1] → B× [1
2 ]. Corollary

10.10 tells us X ∼= f∗X|B×[ 1
2 ]. Since X|B×[ 1

2 ] is trivial, we see that f∗X|B×[ 1
2 ] is trivial, and finally

deduce that X is trivial. □

The next lemma is important for finding the neighborhoods on which we can start building.

Lemma 10.13. Let X be a microbundle over B × [0, 1]. Then for every b ∈ B exists a
neighborhood V of b such that X|V×[0,1] is trivial.

Proof. Fix b ∈ B. For any t ∈ [0, 1] we choose an open neighborhood Vt × (t − εt, t + εt) of
(b, t) so that X is trivial on there. The compact set b× [0, 1] can now be covered with finitely
many of the sets (t − εt, t + εt). Let those sets be centered at 0 = t0 < t1 < · · · < tn = 1,
and define V = ⋂n

i=0 Vi. V ⊂ B is open because all Vti are open. Now we make a refinement
0 = t′0 < t′1 < · · · < t′m = 1 so that |t′j−1 − t′j | < mini=0,...,n εti for all 1 ≤ j ≤ m. This ensures
that X|V×[t′j−1,t

′
j ] is trivial for all j. Now we (repeatedly) apply Proposition 10.12 to see that

X|V×[0,1] is trivial. □

Finally we can prove the last ingredient.

Lemma 10.14. Let X be a microbundle over B × [0, 1], where B is paracompact. Then the
standard retraction

r : B × [0, 1] → B × [1]
is covered by a bundle map germ R : X → X|B×[1].

Proof. Lemma 10.13 gives us a covering {Vb}b∈B of B with every X|Vb×[0,1] trivial. Paracompact-
ness of B gives us a locally finite refinement {Vα}α∈A. Now we choose functions λα : B → [0, 1]
so that suppλα ⊂ Vα for all α ∈ A and maxα∈A λα(b) = 1 for all b ∈ B.

Define the retractions rα : B × [0, 1] → B × [0, 1] by

rα(b, t) = (b,max{t, λα(b)}).



10.4. COROLLARIES TO HOMOTOPY INVARIANCE 89

If we assign some ordering to A and were to define r as the composition of all rα in that order, it
is well defined because locally we only have finitely many λα(b). In particular r is the standard
retraction:

r(b, t) = (b,max
α∈A

{t, λα(b)}) = (b, 1).

This gives us an idea of what our next steps for the construction of R are:
(1) Cover each rα with a bundle map germ Rα : X ⇒ X.
(2) Choose an ordering of A and let the desired bundle map germ R : X ⇒ X|B×[1] be the

composition of the Rα in that order.
Step (1): We can write B × [0, 1] as the union of the following closed sets:

Cα := (suppλα) × [0, 1]
Dα := {(b, t) | t ≥ λα(b)}

Since Cα ⊂ Vα × [0, 1] we have that X|Cα is trivial. Hence the identity map germ of X|Cα∩Dα

extends to a bundle map germ X|Cα ⇒ X|Cα∩Dα that covers rα|Cα . Piece this germ together
with the identity map germ on X|Dα by Lemma 10.11 to obtain Rα.

Step (2): We have to argue that taking an "infinite" composition makes sense. We use that
locally all but finitely many Rα are the identity.

More precisely, we define R on {Bβ}, some locally finite covering of B by closed sets,
and then glue. Each Bβ intersects only finitely many Vα, let’s say Vα1 , Vα2 , . . . , Vαk

with
α1 < α2 < · · · < αk in our order. The bundle map germ Rαk

· · ·Rα2Rα1 restricts to
R(β) := X|Bβ×[0,1] ⇒ X|Bβ×[1]

Lastly, we piece together these R(β) with the help of Lemma 10.11. □

10.4. Corollaries to Homotopy Invariance

The most important corollary is the most obvious:

Corollary 10.15. Every microbundle over a paracompact, contractible base space is trivial.

Another interesting result is the following:

Corollary 10.16. Assume we have a map f : A → B with A paracompact. Denote the
mapping cone as Cf = B∪f CA. Then a microbundle X over B can be extended to a microbundle
over Cf if and only if the induced microbundle f∗X is trivial.

Proof. " =⇒ ": The composition A
f−→ B

incl
↪−−→ Cf is always nullhomotopic since the image

lies in CA ≃ {∗}. If X extends to a microbundle X′ over Cf , then clearly X′|B ∼= X. Thus
f∗X ∼= (incl ◦f)∗X′, which must be trivial by Theorem 10.1.

" ⇐= ": Consider the mapping cylinder Zf = B ∪f (A× [0, 1]), where we glue (a, 1) ∼= f(a)
for all a ∈ A. Because B is a retract of Zf we can extend X to a microbundle X′′ over Zf . Now
suppose that f∗X is trivial. This implies that X′′|A× [0] is trivial and thus X′′|A×[0, 1

2 ] is trivial as
well. This means we have some open set U ⊂ E(X′′|A×[0, 1

2 ]) such that U ∼= A× [0, 1
2 ]×Rn. Hence

we can remove a closed subset from E(X′′) and then assume E(X′′|A×[0, 1
2 ])

h−→ ∼=A× [0, 1
2 ] × Rn.

This homeomorphism h is compatible with the projections and inclusions.
Collapsing A × [0] in Zf to a single point yields Cf . We can create E(X′) by collapsing

h−1(A× [0] × {x}) for each x ∈ Rn in E(X′′). The microbundle structure of X′′ now induces a
microbundle structure on X′ over the basespace Cf . □

The application of this that comes to mind is taking A = Sn the sphere to extend microbundles
along a CW-structure. This corollary is essential for proving that stable isomorphism classes
form a group over finite CW-complexes (with the Whitney sum as operation).
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10.5. Proof using Kister’s Theorem

While one can use Kister’s Theorem to prove the Homotopy Invariance for the cases that
interest us most, it is unwise to do so. More specifically Corollary 10.15 is used in the proof of
Kister’s Theorem when we work over simplicial complexes, because it implies that a microbundle
over a single simplex is trivial. Still, it is a fun exercise.

Corollary 10.17. Assume Kister’s Theorem holds, and that Homotopy Invariance holds for
fiber bundles. Let X be a microbundle with base space B. Assume B is a topological manifold or
a finite simplicial complex and that B′ is paracompact. Let f ≃ g : B′ → B be homotopic maps.
Then the induced microbundles are isomorphic, i.e.

f∗(X) ∼= g∗(X)

Proof. Let E1 ⊂ E be so that E1 → B is a fiber bundle ξ (with Homeo0(Rn) as the structure
group). Clearly |ξ| ∼= X. Homotopy Invariance for fiber bundles tells us f∗ξ ∼= g∗ξ. That
means the underlying microbundles are isomorphic as well: |f∗ξ| ∼= |g∗ξ|. The rest is showing
that the underlying microbundles are isomorphic to the original induced microbundles, i.e.
|f∗ξ| ∼= f∗|ξ| ∼= f∗X. □

I can not claim with absolute certainty that triviality over simplices is the only instance of
Homotopy Invariance used in the proof of Kister’s Theorem, but this simpler statement can be
proven faster than our general statement.

Proposition 10.18. Let X be a microbundle over the standard n-simplex σ. Then X is
trivial.

Proof. By definition, there are local trivialisations, i.e. we have open sets {Bα} covering σ such
that all X|Bα are trivial. Since σ is compact we can take a finite subcover B1, . . . , Bm. Now take
a barycentric refinement of σ so that any subsimplex σα is contained in some Brα . In particular,
we have bundle map germs X|σα ⇒ enσα

that cover the identity. Now Lemma 10.11 tells us that
we get a bundle map germ X ⇒ enσ covering the identity. Lemma 10.9 and Proposition 10.7
complete the proof. □
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CHAPTER 11

Smale’s h-cobordism theorem

Arunima Ray

In this chapter we define h-cobordisms and prove Smale’s high-dimensional h-cobordism
theorem.
Definition 11.1. Let Mn

0 and Mn
1 be smooth, compact, oriented n-manifolds. A smooth,

compact, oriented (n+ 1)-manifold with ∂W = −Mn
0 ⊔Mn

1 is said to be an h-cobordism from
Mn

0 to Mn
1 if the inclusion maps ιi : Mi → W are homotopy equivalences.

You should think of this as saying that, up to homotopy, h-cobordisms are products, i.e. of
the form Mn

0 × [0, 1]. The following is a fundamental result in high-dimensional topology.
Theorem 11.2 (Smale [Sma61][Sma62a]). Let n ≥ 5, and Wn+1 a smooth, compact,

oriented, simply connected h-cobordism from Mn
0 to Mn

1 . Then W ∼=C∞ M0 × [0, 1].
More specifically, there exists a diffeomorphism φ : W → M0 × [0, 1], where the restriction

φ|M0 : M0 → M0 is the identity map. Note that the restriction φ|M1 is a diffeomorphim from
M1 to M0.

As a straightforward corollary of the above, Smale proved the (category losing) high-
dimensional Poincaré conjecture, for which we won the Fields medal.

Corollary 11.3. Let n ≥ 6. Every smooth homotopy n-sphere is homeomorphic to Sn.

We now sketch a proof of Theorem 11.2. See also [Sco05, Chapter 1][Mil65, Sma60]. For
more on the high-dimensional Poincaré conjectures, see [Sta60, Zee62, New66].
Proof of Theorem 11.2. First we note that, as a smooth, compact manifold, W admits a handle
decomposition relative to M0, i.e. there is an identification of W with the smooth manifold
obtained by iteratively attaching finitely many handles to M0 × [0, 1] along M0 × {1} via smooth
handle attaching maps, followed by smoothing corners.

For more on the existence of handle decompositions, see [GS99, Sco05, Mil65, Mil63].
Briefly, we begin with a continuous map W → [0, 1], approximate it by a smooth function, then
in turn by a Morse function. Critical points of Morse functions correspond precisely to handles.
Remark 11.4. There are analogous notions of PL and topological handle decompositions, both
in the absolute and relative settings, where handles are attached along PL and topological
embeddings, respectively.

The main idea of the proof is to manipulate the handle decomposition of W until all the
handles cancel out. A handle decomposition relative to M0 with no handles is, by definition,
diffeomorphic to the product M0 × [0, 1]. We will modify the handle decomposition by isotopies
of the handle attaching maps, including handles slides, and handle cancellation (more on these
moves in the Piccirillo lectures (ttss.math.gatech.edu/piccirillo-mini-course)). We will also need
the following indispensable tool from differential topology.

Theorem 11.5 (Submanifold transversality in the smooth category). Given smooth subman-
ifolds P p and Qq in an ambient manifold Wm, we may smoothly isotope P so that P and Q
intersect transversely, i.e. the dimension of P ⋔ Q is p+ q −m.
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In particular, if p+ q < m, we may isotope P so that P ∩Q = ∅.
We now begin manipulating the handle decomposition of W relative to M0.
Step 1. Arrange that handles are attached in increasing order of index.
It is relatively straightforward to see that if the handle h′ is attached after the handle h,

such that the attaching sphere of h′ misses the belt sphere of h, then one may reorder the handle
attachment so that h is attached after h′. This follows since the attaching sphere for h′ can be
isotoped away from all of h, for example, by transporting radially away from the belt sphere.
Assume that h is a k-handle and h′ is an l-handle. Then the dimension of the belt sphere of
h is n − k (recall that we are working with (n + 1)-dimensional handles). The dimension of
the attaching sphere for h′ is l − 1. The manifold after attaching h is n-dimensional. So, up to
isotopy, we may assume that the intersection between the belt sphere of h and the attaching
sphere of h′ has dimension (n−k)+(l−1)−n = l−k−1. In particular, if k ≥ l, the intersection
can be assumed to be empty, and so we can reorder h and h′.

Step 2. Cancel all 0-handles (using 1-handles).
Recall that W is connected. Further, 0-handles are attached along their (empty) attaching

region, and the only handles with nonempty, disconnected attaching region are index 1. Hence,
at least one of the (finitely many) 0-handles must be attached to M0 × {1} by a 1-handle, i.e.
there is a 1-handle h1 with one connected component of its attaching region in M×{1} and the
other in the belt sphere (∼=C∞ Sn) of the 0-handle h0. In particular, the attaching sphere of
h1 intersects the belt sphere of h0 precisely once, and the pair may be cancelled and removed
from the handle decomposition. This process reduces the number of 0-handles in the handle
decomposition by one, and by induction, we may assume that there are no 0-handles in the
decomposition moving forward.

Step 3. Trade 1-handles for 3-handles.
Let W2 ⊆ W denote the union of M0 × [0, 1] and the 1- and 2-handles of W . Let M2 denote

the new boundary, so ∂W2 = −M0 ⊔M2.
Consider the chain of inclusion induced maps π1(M0) → π1(W2) → π1(W ). Since W is built

from W2 by attaching handles of index strictly greater than 2, the second map is an isomorphism.
The composition is an isomorphism by hypothesis. Thus the first map is an isomorphism.

Fix a 1-handle h1 in W2, with core arc α. We claim that there is an arc β ⊆ M0 such that
γ := α ∪ β is a null-homotopic loop in W2. To see this, first choose any arc β′ with the same
endpoints as α. Then there is some loop δ ⊆ M0 with the same image in π1(W2) as α∪ β′, since
the inclusion induced map π1(M0) → π2(W2) is surjective. The connected sum of β′ and δ−1 is
the desired β. By transversality, we assume that γ is disjoint from the attaching circles of all
the 1- and 2-handles of W2 and then we push γ to the boundary M2.

By turning handles upside down, we see that the inclusion induced map π1(M2) → π1(W2)
is an isomorphism. Thus γ bounds an immersed disc in M2, since it is null-homotopic in W2.
Since W2 has dimension ≥ 5 we can assume that γ bounds an embedded disc in M2. (This
argument also works in ambient dimension four, see Exercise 11.1).

Thicken this disc to produce a cancelling 2-/3-handle pair. More precisely, insert a collar of
M2 × [0, 1] into the handle decomposition and thicken by pushing the interior of the disc into
this collar. The result is the addition of a single cancelling 2-/3-handle pair compatible with the
old handle decomposition. By the choice of γ the 2-handle cancels the 1-handle h1, leaving the
3-handle behind. Iterating this process allows us to trade all the 1-handles in W for 3-handles.

Step 4. Use the Whitney trick to cancel all the other handles.
This is the most important step in the argument. (We will describe the Whitney trick

in more detail in a subsequent section, with a focus on dimension four.) Let M2 denote the
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n-manifold obtained from M0 after attaching all the 2-handles in W . Consider the chain complex
C∗(W,M0;Z) given by the (latest) handle decomposition:

C4 C3 C2 0∂4 ∂3

Since C2 is free and H∗(W,M0;Z) = 0, the matrix for ∂3 has the form ∂3 =
[
Ip×p
0p′×p

]
for some

p, p′, where Ip×p is the p× p identity matrix, and 0p′×p is the p′ × p matrix containing only zeros.
On the other hand, basis changes can be effected by handle slides (corresponding to elementary
row and column operations) and sign changes (corresponding to changing the orientation on
individual handles). Therefore, we may assume that for each 2-handle h2, there exists a unique
3-handle h3 so that the belt sphere of h2 and the attaching sphere of h3, both contained in M2,
intersect algebraically once. If these intersected precisely once geometrically, we would be able
to cancel the handles. The Whitney trick will tell us precisely why we may assume that these
submanifolds do in fact intersect geometrically once, up to isotopy.

Let P k and Qn−k be transversely intersecting, smooth, compact, connected, oriented sub-
manifolds of Mn

2 , where M2 is simply connected, oriented, and n ≥ 5. Assume further that
π1(M2∖ (P ∪ Q)) = 1. We skip the proof of this final assumption for the moment, but rest
assured this can be arranged in all the cases needed in the proof of Theorem 11.2. By our
assumptions, we know that the intersections between P and Q are isolated double points, each
equipped with a sign. Choose two intersection points of opposite sign. Choose arcs in P and
Q joining the two double points. The union of these two arcs is called a Whitney circle. A
disc bounded by a Whitney circle is called a Whitney disc. Since π1(M2∖ (P ∪Q)) = 1, there
exists a Whitney disc D in the complement of P ∪ Q, which may be further assumed to be
embedded since n ≥ 5. Under a condition on the normal bundle of D in M2 described in the
next paragraph, we can push P along D and over, as indicated in Figure 11.1, to geometrically
cancel the two algebraically cancelling intersection points. This process is called the Whitney
trick.

Figure 11.1. The Whitney move. Left: A Whitney disc D is shown in light
green. Right: The Whitney move across D removes two intersection points.

We now describe the necessary condition on the normal bundle of D. Any embedded disc
D with boundary a circle C pairing double points of P ⋔ Q determines a (k − 1)-dimensional
sub-bundle of the normal bundle νD⊆M2 |C of D restricted to C, by requiring that the sub-bundle
be tangent to P and normal to Q. In order to perform the Whitney trick we need this sub-bundle
over the circle C to extend over the entire disc D. Standard bundle theory implies that the
sub-bundle extends if and only if it determines the trivial element in π1(Grk−1(Rn−2)), where
the Grassmannian Grk−1(Rn−2) is the space of (k − 1)-dimensional subspaces in Rn−2. For
n− k ≥ 3, it is known that π1(Grk−1(Rn−2)) ∼= Z/2, and the nontrivial element corresponds to
circles pairing intersection points with the same sign. In our current situation, we have n ≥ 5
and k ≥ 2, so at lease one of k or k′ = n− k will satisfy the codimension condition above. Since
Whitney circles by definition pair intersection points of opposite sign, the sub-bundle in question
extends, and we can perform the Whitney move.
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To summarise, we previously knew that for each 2-handle h2 in W , there exists a unique
3-handle h3 so that the belt sphere of h2 and the attaching sphere of h3, both contained in M2,
intersect algebraically once. By the Whitney trick, we can assume, that the belt sphere of h2
and the attaching sphere of h3 intersect geometrically once, and therefore, all the 2-handles
may be cancelled (using a subset of the 3-handles). But now the process can be iterated, by
cancelling every k-handle using a subset of the (k + 1)-handles. At the end of this process, there
will be no remaining handles, showing that our original cobordism W is diffeomorphic to the
product M0 × [0, 1], as desired. □

Exercise 11.1. Let γ be an embedded circle in the interior of a smooth manifold Wm,
with m ≥ 4 and π1(W ) = 1. Then γ bounds an embedded disc in the interior of W .



CHAPTER 12

Finding a boundary for an open manifold

Alice Merz

12.1. The result

This chapter is based on a paper by W. Browder, J. Levine and G.R. Livesay [BLL65]. The
aim is to (partially) answer the following question:

When is an open manifold the interior of a compact manifold with boundary?
In this chapter all manifolds are PL or smooth. Therefore by isomorphism we will mean an

isomorphism in the appropriate category.

Definition 12.1. A topological space X is said to be simply connected at ∞ if for any compact
C ⊆ X there exists a compact D, C ⊆ D ⊆ X such that X∖D is simply connected.

Theorem 12.2. Let W be a connected, orientable, non-compact n-manifold without boundary,
with n ≥ 6. Then there exists a compact manifold U with simply connected boundary such that
W = IntU if and only if H∗(W ) is finitely generated and W is simply connected at ∞. Moreover
such a U is unique up to isomorphism.

Remark 12.3. Notice that if W is the interior of a compact manifold with boundary U then
H∗(W ) is finitely generated. Moreover if the boundary ∂U is simply connected then of course W
is simply connected at ∞ as a consequence of the collaring theorem. In fact for every compact
C ⊆ W , one can always find an open collar V of the boundary of U which does not intersect C.
Let V ′ ⊊ V be a subcollar of V such that V ′ corresponds to ∂U × (1

2 , 1] inside of V ∼= ∂U × (0, 1].
Notice that that there is an isomorphism U

∼−→ U∖ V ′ that is the identity on U∖ V and shrinks
the collar V inside V ′. Then U∖ V ′ is compact and is contained in W . Set D = U∖ V ′, then
C ⊂ D and W∖D ∼= ∂U × (0,+∞) is simply connected, hence W is simply connected at ∞.

12.2. Proof of uniqueness

Theorem 12.4. Let U1 and U2 be compact oriented n-manifolds with simply connected
boundaries. Suppose that U1 is embedded in IntU2 and the inclusion is a homology isomorphism.
Suppose as well that V := U2∖ IntU1 is simply connected. Then V is a h-cobordism between ∂U1
and ∂U2.

Proof. By excision H∗(V, ∂U1) ∼= H∗(U2, U1) and both are trivial since H∗(U1) ∼−→ H∗(U2) by
hypothesis. Since π1(V, ∂U1) = 0 and ∂U1 is simply connected, Hurewicz theorem in the relative
form implies that πi(V, ∂U1) ∼= Hi(V, ∂U1) = 0 for all i. Hence By Whitehead’s theorem it
follows that the inclusion of ∂U1 in V is a homotopy equivalence. By relative Poincaré duality

Hj(V, ∂U2) ∼= Hn−j(V, ∂U1) = 0

and therefore with a similar process we obtain that the inclusion of ∂U2 in V is a homotopy
equivalence. □
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Figure 12.1. The manifolds U1, U2 and V in Theorem 14.28.

Corollary 12.5. If W ∼= IntU1 ∼= IntU2, where U1 and U2 are compact manifolds of
dimension n ≥ 6, with simply connected boundaries, then U1 and U2 are isomorphic.

Proof. We can embed U1 in its interior using a collar of the boundary A ∼= ∂U1 × [0, 1]. Let A′

be the subcollar corresponding to ∂U1 × [1
2 , 1] inside A. Then there is an embedding U1 → IntU1

that is the identity on U1∖ A and that shrinks the collar A inside A′. Moreover notice that this
embedding is homotopic to the identity. Since IntU1 ∼= W , we obtain an embedding U1 ↪→ W .
Then U1 ↪→ W ↪→ U2, where the second map is the embedding induced by W ∼= IntU2 ⊆ U2.
Notice that both maps are homotopy equivalences. If we identify U1 with its image in U2, it
follows that V := U2∖ IntU1 is homotopy equivalent to a collar of ∂U1 and hence is simply
connected. Hence by Theorem 14.28, V is an h-cobordism and therefore V ∼= ∂U1 × [0, 1] and
U1 ∼= U2 by the h-cobordism theorem [Sma62b]. □

12.3. Proof of Theorem 12.2

Theorem 12.2 is a direct consequence of the following proposition:

Proposition 12.6. Let W be an oriented open n-manifold, with n ≥ 6. Suppose H∗(W )
is finitely generated and W is simply connected at ∞. Then given a compact set C there is a
connected compact n-manifold U , with simply connected boundary, such that U ⊆ W , C ⊆ IntU
and the inclusion induced map

H∗(U) → H∗(W )

is an isomorphism.

Proof of Theorem 12.2. Let C1 ⊊ C2 ⊊ . . . ⊊ W be a sequence of compact sets such that

W =
∞⋃
i=1

Ci. Since W is simply connected at ∞ we may suppose that W ∖ Ci is simply

connected. By Proposition 12.6 for every i we can find a manifold with boundary Ui such that
Ui−1 ∪ Ci ⊆ IntUi, ∂Ui is simply connected and the inclusion induced map in homology is an
isomorphism.
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Figure 12.2. The compact sets Ci and the compact manifolds Ui in the proof
of Theorem 12.2.

Then

W =
∞⋃
i=1

Ci ⊆
∞⋃
i=1

Ui = W.

Set Vi = Ui+1∖ Ui. Since ∂Vi consists of ∂Ui and ∂Ui+1 which are simply connected, by the
Seifert-van Kampen theorem

π1(W∖ Ci) ∼= π1(Ui∖ Ci) ∗ π1(Vi) ∗ π1(W∖ Ui+1)
for each i.

 

Figure 12.3. The compact manifold Vi.

Since W∖ Ci is simply connected, it follows that π1(Vi) is trivial. In fact the free product
of non-trivial groups is always non-trivial. By Theorem 14.28, Vi is an h-cobordism between
∂Ui and ∂Ui+1, which are simply connected and of dimension bigger or equal to 5. By the
h-cobordism theorem [Sma62b] there are isomorphisms fi : Vi ∼−→ ∂Ui × [0, 1] that are the
identity on ∂Ui. Call

φi : ∂Ui+1
∼−→ ∂Ui

the isomorphism induced by fi(_, 1) and let
Fi : ∂Ui+1 × [0, 1] → ∂Ui × [1, 2]

send (x, t) in (φi(x), t+1). By uniqueness up to isotopy of collars, we can suppose that fi∪Fi+1 is
an isomorphism between Ui+1∖ Ui−1 and ∂Ui−1 × [0, 2]. Hence for every i there are isomorphisms

Ui
∼−→ U1 ∪ ∂U1 × [0, i− 1]
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obtained by gluing the at each step the maps as shown above. Therefore

W =
∞⋃
i=1

Ui =
∞⋃
i=1

U1 ∪ ∂U1 × [0, i− 1] = U1 ∪ ∂U1 × [0,+∞)

and W is isomorphic to the interior of U1. □

12.4. Proof of Proposition 12.6

The following lemma allows us to find a compact n-manifold U ⊆ W with simply connected
boundary and such that W∖ U is simply connected as well.

Lemma 12.7. Let W be a connected manifold of dimension n ≥ 5, simply connected at ∞
and such that H∗(W ) is finitely generated. Then for C ⊆ W a compact subset there exists a
compact n-manifold U with simply connected boundary such that C ⊆ IntU and W∖ U is simply
connected and the inclusion induced map in homology

H∗(U) → H∗(W )

is surjective.

Proof. Since H∗(W ) is finitely generated we can always find a compact set K ⊆ W such that

H∗(K) → H∗(W )

is onto. In fact, we just need to take a representative for each element of a finite set of generators
of H∗(W ). Therefore if O is any subset of W such that K ⊆ O ⊆ W , the following diagram
commutes:

H∗(K) H∗(W )

H∗(O)

and hence H∗(O) → H∗(W ) is surjective too.
Let D be compact so that C∪K ⊆ D ⊆ W and W∖D is simply connected. Such a D always

exists because W is simply connected at ∞. We can find a compact manifold with boundary U1

with D ⊆ IntU1:
− In the smooth case by choosing a proper smooth function f : D → R such that f|D ≡ 0.

We can pick a regular value ε and fix U1 := f−1([0, ε]);
− In the PL case D lies in a finite subcomplex of W : we take U1 to be a regular

neighbourhood of K in W .
We can assume U1 to be connected by taking ambient connected sums along the boundary: in
fact we can join the connected components by arcs and then add to U1 a regular neighbourhood
for each arc.

Figure 12.4. Ambient connected sum along the boundary.
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By the fact that W is connected at ∞ it follows that all but one of the connected components
of W∖ U1 are compact. Let U2 be the union of U1 and the compact components of W∖ U1, so
that both U2 and W∖ U2 are connected.

Since W ∖ U2 is a connected manifold, then it is path connected and we can join the
components of ∂U2 by disjoint arcs with their interiors contained in W∖ U2. We define U3 to
be the union of U2 and closed regular neighbourhoods of these arcs. Notice that U3 and ∂U3

are connected. Observe that W∖ U3 is connected as well: in fact W∖ U2, which is connected,
can be obtained by gluing back the regular neighbourhoods of the arcs, which are isomorphic to
Dn−1 ×D1 along a piece of the boundary isomorphic to ∂Dn−1 ×D1 which is also connected
because n is strictly bigger than 2 and this easily implies by a Mayer-Vietoris argument that
W∖ U3 is connected.

Now we want to do surgery on the boundary of U3 to make it simply connected. Let γ be
a generator of π1(∂U3). We can suppose that γ is a simple closed curve and that it is smooth
(respectively PL) if we are in the smooth case (respectively PL) since dim(∂U3) ≥ 3.

Since W∖D is simply connected, there is a map f : D2 → W∖D that restricts to γ on the
boundary. Since the dimension n ≥ 5 we can approximate this map relative to the boundary
with a smooth embedding and we can also suppose it is transverse to ∂U3. Consider the inverse
image of f(D2) ∩ ∂U3 in D2: this is a collection of simple closed curves in the interior of D2.
Take an innermost one δ; this curve bounds a disc ∆ ⊆ D2 whose image is either contained in
U3 or in W∖ U3. If it is contained in U3 we carve a regular neighbourhood of f(∆) out of U3,
otherwise, when the image of the disc ∆ is contained in W∖ U3 we add a regular neighbourhood
N ∼= D2 ×Dn−2 of f(∆) to U3. Call the new manifold U4. Suppose now f(∆) ⊆ U3, the other
case being analogous. Observe that U3∖ IntU4 is homotopy equivalent to ∂U3 ∪ f(∆) and
therefore

π1(U3∖ IntU4) ∼= π1(∂U3)/⟨δ⟩.
Call B = {0} ×Dn−2 ⊂ N the cocore of the regular neighbourhood and notice that U3∖ IntU4

is homotopy equivalent to
∂U4 ∪B.

Since n ≥ 5, the boundary of this disc is simply connected and Seifert-van Kampen theorem
implies

π1(∂U4) ∼= π1(∂U4 ∪B) ∼= π1(U3∖ IntU4) ∼= π1(∂U3)/⟨δ⟩
We can keep on carving out or adding a regular neighbourhood of the disc bounded by the

innermost curve until we reach and kill γ. Repeating the same process for a finite set of generators
of π1(∂U3), which exists because ∂U3 is compact, we obtain a compact manifold U with simply
connected boundary. Notice that

π1(W∖ U) ∗ π1(U∖D) = π1(W∖D) = 1
and therefore W ∖ U is simply connected as well. Since K ⊆ U , then H∗(U) → H∗(W ) is
onto. □

We now prove a weaker version of Proposition 12.6.

Proposition 12.8. Let W be a connected and orientable open n-manifold, with n ≥ 6.
Suppose H∗(W ) is finitely generated and W is simply connected at ∞. Then given a compact
C ⊆ W and k ≤ n− 3, there is a compact n-manifold with boundary U , with C ⊆ IntU , such
that ∂U and W∖ U are simply connected and such that the inclusion induced homomorphisms

Hi(U) → Hi(W )
are isomorphisms when i < k and are onto for all i.

We will prove Proposition 12.8 by induction and we shall show now the base case of the
induction.
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Figure 12.5. The procedure described in the proof of Theorem 29.7: at first
there is a curve γ which is non-trivial in π1(∂U3), in the second step we carved
out a regular neighbourhood of f(∆). At last, after applying repeatedly the
described procedure, we obtain U with simply connected boundary.

Proof of Proposition 12.8.

Base case: i = 0,1,2
Thanks to Lemma 29.7 we may find a compact manifold U1 ⊆ W with simply connected

boundary, such that C ⊆ IntU1, the manifold W∖U1 is simply connected and H∗(U1) → H∗(W )
is onto. Notice that by construction both U1 and W are connected and that π1(U1) ∼= π1(W ),
hence

Hi(U1) ∼−→ Hi(W ) for i=0,1.
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Let V1 := W∖ U1 and consider the following commutative diagram with exact rows:

· · · Hk+1(V1) Hk+1(V1, ∂U1) Hk(∂U1) Hk(V1) · · ·

· · · Hk+1(W ) Hk+1(W,U1) Hk(U1) Hk(W ) · · ·

j′
∂′

∼=

i′

j ∂ i

The second vertical arrow is an isomorphism for all k due to excision. Therefore, since i is onto
for all k, the map j is trivial and also j′ needs to be trivial for all k. Similarly if i′ is injective
then ∂′ is trivial and ∂ must be trivial too, hence i is injective for all k. Therefore we just need
to kill the kernel of i′, and this will kill the kernel of i. Let x ∈ H2(∂U1) be a generator of ker(i′).

Note that, since ∂U1 is simply connected, the Hurewicz theorem implies that an element
x ∈ H2(∂U1) can be represented by a map f : S2 → ∂U1.
Moreover, since V1 is simply connected too, if i′x = 0 in H2(V1) then f is homotopic to a
constant in V1.
In the smooth case, since the dimension of ∂U1 is n − 1 ≥ 5, by a general position argument
f is homotopic to an embedding g : S2 → ∂U1. If n > 6, since i′x = 0 this map extends to
an embedding g : D3 → V1 which meets ∂U1 transversally in ∂D3 = S2 only. When n = 6 we
can suppose g is an immersion with only transverse double points: these intersections can be
removed by applications of the Whitney trick and therefore we can suppose g is an embedding.
The PL case can be handled similarly using analogous results of Irwin [Irw62].

Define U ′
1 as U1 ∪ N, where N ∼= D3 ×Dn−3 is a regular neighbourhood of gD3. Notice that

the intersection of V1∖ gD3 and the regular neighbourhood N is homotopy equivalent to Sn−4.
Since n ≥ 6

1 ∼= π1(V1) ∼= π1(V1∖ gD3) ∗ π1(N).
Notice that W∖U ′

1 and V1∖ gD3 are homotopy equivalent and hence W∖U ′
1 is simply connected.

Similarly ∂U ′
1 is homotopy equivalent to ∂U1 ∪ N∖ gD3 and

1 ∼= π1(∂U1) ∗ π1(N) ∼= π1(∂U1 ∪ N) ∼= π1(∂U1 ∪ N∖ gD3) ∗ π1(N).

Therefore ∂U ′
1 is simply connected as well. Let V ′

1 = W∖ U ′
1 and k′ : H∗(∂U ′

1) → H∗(V ′
1) be the

inclusion induced homomorphism. Notice that

Hj(∂U ′
1) ∼= Hj(∂U1)

for j ̸= 2, n− 3 and
H2(∂U ′

1) ∼= H2(U1)/(x)
and by Poincaré duality a similar result holds for j = n− 3.

Then ker(k′)2 ∼= ker(i′)2/(x) and we did not increase the number of generators of ker(i′)j
for j ̸= 2. Iterating this procedure we arrive at U2 ⊃ U1 such that H2(U2) → H2(W ) is an
isomorphism, and both ∂U2 and V2 := W∖ U2 are simply connected, proving the statement of
Proposition 12.8 for k = 2.

Inductive step: k =⇒ k + 1
We will need the following:

Lemma 12.9. Let X be an n-manifold with boundary with n ≥ 6, ∂X = M ⊔N , where M ,
N and X are simply connected. Suppose πj(X,M) = 0 for 2 ≤ j < k − 1 < n− 4. Then any
element w ∈ Hk+1(X,M) can be represented by a properly embedded disc Dk+1 ⊆ X.

Proof. We will just prove the theorem in the smooth case, using the handlebody theory of Smale
[Sma62b]; the PL case follows from analogous facts proven by Stallings [Sta62b].
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Figure 12.6. Two discs Dα1 and Dα2 connected by a tube Dk × I.

By a theorem of Smale [Sma62b] we can say that X has a handle decomposition relative to
M

X =
n⋃

i=k−1
Xi

where Xk−1 = M × I and Xj is obtained from Xj−1 attaching j-handles on ∂Xj−1∖M × {0}.
Since Xj has the homotopy type of Xj−1 with some j-discs attached, it follows that

Hi(Xj ,M) → Hi(X,M)
is an isomorphism for i < j and surjective for i = j. Therefore there exists w′ ∈ Hk+1(Xk+1,M)
such that w′ is sent to w in Hk+1(X,M). Consider the long exact sequence in homology of the
triple (Xk+1, Xk,M):

· · · → Hk+1(Xk+1,M) k∗−→ Hk+1(Xk+1, Xk)
∂−→ Hk(Xk,M) → · · ·

Let y = k∗w
′. Notice that Hk+1(Xk+1, Xk) ∼= Zp where p is the number of (k + 1)-handles and

it is freely generated by the cores of the (k + 1)-handles.
Recall that our goal is to represent w by a properly embedded disc Dk+1. We start by

representing y as an embedded disc. It is a theorem of Smale [Sma62b] (see also Wallace
[Wal61]) that if we are given any basis for Hk+1(Xk+1, Xk) we may find some handles H1, . . . ,Hr

in Xk+1 attached to Xk so that Xk+1 = Xk ∪
⋃r
i=1Hi and the cores of the Hi’s yield the given

basis of Hk+1(Xk+1, Xk).
Hence we may assume that y = mz, z being the core of one of the handles of Xk+1. Since
the codimension is strictly bigger than one, y can also be represented as a properly embedded
disc. In fact, let z be the core of a handle Hi

∼= Dk+1 × Dn−k−1. Pick m different points
pα ∈ Dn−k−1, and let Dα = Dk+1 × {pα} ⊆ Hi. Since n − k − 1 > 1 the boundaries of the
Dα’s do not separate ∂Dk+1 × Dn−k−1. Hence we can join Skα = ∂Dα by tubes Sk−1 × I in
Sk ×Dn−k−1 to form the connected sum of the Skα’s and the Dα’s can be connected by tubes
Dk × I in Hi

∼= Dk+1 ×Dn−k−1 to form the connected sum along the boundaries of the Dα with
the proper orientation and we can call the resulting disc D.

Then D has the homology class of y in Hk+1(Xk+1, Xk). This disc is attached to ∂Xk rather
than M × {1} so it remains to show that it can be chosen to miss the handles of Xk.

If the boundary on the disc does not meet the belt sphere of any k-handle in ∂Xk by
handle sliding it can be moved off these handles by an isotopy. Suppose now that the algebraic
intersection of ∂D with one belt sphere is zero. Then, taken two intersection points with opposite
sign we can apply the Whitney trick to lower the number of intersection points: iterating this
procedure we obtain that ∂D does not intersect the belt spheres of the k-handles.
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Figure 12.7. If the algebraic intersection of boundary of the disc D and the
belt sphere of a k-handle is zero we can find a Whitney disc ∆.

In fact, take a loop γ that goes to one intersection point to the other inside ∂D and then
goes back to the first intersection point inside the belt sphere. Notice that π1(∂Xk) = 1, in
fact M was simply connected and we attached handles of order bigger than 2. Then we can
find a disc ∆ in ∂Xk that is bounded by γ. Since the dimension of ∂Xk is at least 5 we can
approximate ∆ relative to the boundary with a smooth embedded disc. Since the codimensions
of ∂D and the belt sphere in ∂Xk are both strictly bigger than 2, by a general position argument
we can suppose that ∆ does not intersect them and is a Whitney disc, therefore we can use the
disc ∆ to move the belt sphere by an isotopy to remove the two intersection points.

To conclude, just notice that ∂y = ∑
αjhj ∈ Hk(Xk,M), where hj is the homology class of

the core of the k-handles which freely generate Hk(Xk,M) and αj is the intersection number of
∂D and the belt sphere of the j-th k-handle. Therefore, since ∂y = 0, we deduce that αj = 0 for
all j, which concludes the proof. □

Recall that we want to prove Proposition 12.8 by induction and we are left to prove the
inductive step.

Assume now that Proposition 12.8 holds for some k < n − 3, that is for any compact C
one can find U ⊆ W , U compact manifold with boundary, with ∂U and V = W∖ U simply
connected such that C ⊆ IntU and

i∗ : Hj(U) → Hj(W )

is an isomorphism for j < k and surjective for all j. Suppose x ∈ ker(i∗)k. Then there is a
compact set D ⊃ U such that, if j : U ↪→ D is the inclusion, j∗x = 0. By assumption, we can
find U ′ with all the required properties and such that D ⊆ IntU ′. Notice that the image of x in
Hk(U ′) must be zero by functoriality. Consider the following commutative diagram:

Hk+1(X, ∂U)

Hk(∂U) Hk+1(V, ∂U) Hk+1(W,U) Hk(U)

Hk(X) Hk+1(V,X) Hk+1(W,U ′) Hk(U ′)

h∗

∼=
∂

∂

∼=
∂′

∂′

where X = U ′∖ U and the isomorphisms are given by excision. Since x ∈ ker(i∗)k, there is
y ∈ Hk+1(W,U) such that ∂y = x. Notice that both ∂ and ∂′ are injective. Therefore, since the
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inclusion of x in Hk(U ′) is zero, it follows that y goes to zero via the map

Hk+1(W,U) → Hk+1(W,U ′).

Call z the image of y in Hk(U). Note that h∗z = 0, hence there is an element w ∈ Hk+1(X, ∂U)
that maps to z via the boundary map.

By Lemma 12.9, applied to X with M = ∂U , we can find a properly embedded disc in X
attached to ∂U which represents w, and we can add a regular neighbourhood N of this disc to
U . Therefore z maps to 0 in the homology of U := ∂U ∪ N. Notice that since both k + 1 and
n− k + 1 are strictly bigger than 2 both ∂U and W∖ U are still simply connected. Then

ker iUk ∼= ker iUk /(x).

We can apply this procedure to a finite set of generators of ker iUk and obtain a manifold Ũ which
satisfies the inductive hypothesis for i = k + 1. □

Proof of Proposition 12.6. By Proposition 12.8 we can suppose that given a compact C ⊆ W
we can find a compact manifold U ⊆ W with simply connected boundary and such that V ∖ U
is simply connected as well, C ⊆ IntU and

i∗ : Hi(U) → Hi(W )

is an isomorphism for i < n− 3 and surjective for all i.
Consider the following diagram with exact rows. Recall that ik onto implies jk onto.

0 Hk+1(V, ∂U) Hk(∂U) Hk(V ) 0

0 Hk+1(W,U) Hk(U) Hk(W ) 0

∂′

∼=

jk

∂ ik

We see that ker ik ∼= ker jk. Notice that Hk+1(W,U) = Hk+1(V, ∂U) = 0 for k < n− 3 since we
know ik is an isomorphism in this case. Since ∂U is simply connected,

Hn−2(∂U) ∼= H1(∂U) = Hom(H1(∂U),Z) = 0.

Therefore Hk+1(W,U) = Hk+1(V, ∂U) = 0 for k = n − 2 too. Since V is a non compact
n-manifold and ∂V = ∂U , we also get Hn(W,U) ∼= Hn(V, ∂U) = 0.

Hence the only potentially nontrivial one is for k = n− 3. Since

Hn−3(∂U) = H2(∂U) ∼= Hom(H2(∂U,Z))

by the universal coefficient theorem, thanks to the fact ∂U is simply connected, we deduce that
Hn−2(V, ∂U) is free. There is a compact set D, such that U ⊆ D ⊆ W and (iD)∗(ker in−3) = 0
where iD is the inclusion of U in D. Let U ′ be a manifold as in Proposition 12.8 such that
D ⊆ IntU ′. Then if h is the inclusion of U in U ′, h∗(ker in−3) = 0. It follows from the following
diagram:

0 Hn−2(W,U) Hn−3(U) Hn−3(W ) 0

0 Hn−2(W,U ′) Hn−3(U ′) Hn−3(W ) 0

h∗ Id

that the first vertical map is the trivial map. Define V ′ = W∖ U ′, M = ∂U , N = ∂U ′ and
X = U ′∖ U , so that ∂X = M ⊔N .
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Figure 12.8. The manifold X in W .

Call lM : M → X and lN : N → X the inclusions. Then

Hn−2(V,M) Hn−2(W,U)

Hn−2(V,X) Hn−2(W,U ′)

∼=

∼=

shows that the first vertical map is trivial too. Since as before Hi(V,X) and Hi(V,M) are either
free (when i = n− 2) or trivial (otherwise), this implies that Hn−2(V,X) ∼= Hom(Hn−2(V,X),Z)
and Hn−2(V,M) ∼= Hom(Hn−2(V,M),Z) and therefore

h
∗ : Hn−2(V,X) → Hn−2(V,M)

is trivial too. The short exact sequence

0 → Hn−3(V ) → Hn−3(X) δ−→ Hn−2(V,X) → 0

splits since Hn−2(V,X) is free. Call α : Hn−2(V,X) → Hn−3(X) the splitting morphism. Notice
that l∗M ◦ α = 0. The inclusion h′ : (V ′, N) → (V,X) is an excision, and therefore

β := l∗N ◦ α ◦ (h′∗)−1 : Hn−2(V ′, N) → Hn−3(N)

is defined. Call δ′ : Hn−3(N) → Hn−2(V ′, N) the boundary morphism. Then by construction
δ′ ◦ β = Id, i.e. β is a section for the following short exact sequence:

0 → Hn−3(V ′) → Hn−3(N) δ′
−→ Hn−2(V ′, N) → 0.

Moreover the image of β is contained in l∗N (ker l∗M ) since the image of α is in the kernel of l∗M .

Lemma 12.10. Capping with the fundamental class:

− ⌢ [N ] : Hn−k−1(N) → Hk(N)

sends l∗N (ker(l∗M )n−k−1) isomorphically onto ker((lN )∗)k.
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Proof. Consider the following commutative diagram with exact rows:

Hn−k−1(X) Hn−k−1(∂X) Hn−k(X, ∂X)

Hk+1(X, ∂X) Hk(∂X) Hk(X)

l∗

⌢ν

δ

⌢µ

∂ l∗

where ν ∈ Hn(X, ∂X), µ ∈ Hn−1(∂X) are the respective the fundamental classes. Notice that
H∗(∂X) = H∗(N) ⊕H∗(M),

the fundamental classes µ and ν are related by:
µ = ∂ν = [N ] − [M ]

and
l∗ = (lN )∗ − (lM )∗

l∗ = (lN )∗ − (lM )∗.

Since − ⌢ ν is an isomorphism,
l∗(Hn−k−1(X)) ⌢ µ = ker(l∗).

Since the restriction of − ⌢ µ to N equals − ⌢ [N ], it follows that l∗(Hn−k−1(X)) ∩Hn−k−1(N)
is mapped isomorphically by − ⌢ [N ] onto ker(l∗) ∩Hk(N). But

l∗(Hn−k−1(X)) ∩Hn−k−1(N) = l∗N (ker l∗M )
and similarly

ker l∗ ∩Hk(N) = ker((lN )∗)k.
□

Since Im β is a free direct summand in Hn−3(N), it follows that B = Im β ⌢ [N ] is a free
direct summand of H2(N) contained in ker((lN )∗)2. Recall that V = V ′ ∪X, X ∩ V ′ = N and
that V, V ′, N are simply connected. Then Seifert-Van Kampen theorem implies that X is simply
conneted as well. By the Hurewicz theorem

π2(N) ∼−→ H2(N)
and

π2(X) ∼−→ H2(X).
Since (lN )∗B = 0 this means that an element in B is represented by a map f : S2 → N which is
nullhomotopic in X. If n > 6 by a general position argument we can suppose there is a disc D3

smoothly embedded in X such that the boundary of the disc is a representative for f in π2(N),
while if n = 6 we need to use once again the Whitney trick. Taking a regular neighbourhood of
the disc in X we find a 3-handle D3 ×Dn−3. We can apply this procedure to a basis {bj}hj=1
for B. If we add these handles {Hj}hj=1 to V ′ we obtain new manifolds X = X∖ ⋃h

j=1 Int(Hj),
V = V ′ ∪

⋃h
j=1Hj and N = X ∩ V .

Recall that Hk(N) ∼= Hk(V ′) for k < n− 3 and that B is a free direct summand of H2(N),
then it is possible to show that Hk(V ) ∼= Hk(V ′) for k ̸= 2, 3 and

0 → H3(V ′) → H3(V ) →
h⊕
j=1

Zhj
∂̃−→ H2(V ′) → H2(V ) → 0

where hj is the attaching sphere of the handle Hj , hence ∂ is injective. Therefore Hk(V ′) ∼= Hk(V )
for k ̸= 2 and

H2(V ) ∼= H2(V ′)/r∗(B) ∼= H2(N)/B,
where r∗ : H2(N) → H2(V ′). Recall that r∗ is an isomorphism.
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Notice that N ∪ {cocores of Hj} is homotopically equivalent to N with some D3 attached,
which are the cores of the Hj ’s. By the Mayer-Vietoris sequence and the fact that B is free,

Hk(N) ∼= Hk(N ∪ {cores of the handles})

for k ̸= 2 and
H2(N ∪ {cores of the handles}) ∼= H2(N)/B.

Since attaching the cocores of the Hj ’s to N can only modify the homology groups of N in
dimension n− 3 and n− 4, when n > 6 it is a consequence of Poincaré duality and the universal
coefficient theorem that Hj(N) ∼= Hj(N) for j ̸= 2, n − 3, and H2(N) ∼= H2(N)/B. The case
n = 6 follows from Lemma 5.6 in [KM63b]. By the same arguments we applied to (V, ∂U), it
follows that Hi(V ,N) = 0 for i ̸= 2 and Hn−2(V ,N) is free and we have the following short
exact sequence:

0 → Hn−3(V ) → Hn−3(N) → Hn−2(V ,N) → 0.

Notice that the image of B via the Poincaré duality isomorphism H2(N) → Hn−3(N) is indeed
the image of β. Hence

Hn−3(N) ∼= Hn−3(N)/ Im β.

Recall that Hn−3(V ′) ∼= Hn−3(N)/ Im β too, and

Hn−3(V ) ∼= Hn−3(V ′).

Therefore Hn−3(V ) and Hn−3(N) are isomorphic groups. Since they are finitely generated and
we know that Hn−2(V ,N) is free, it follows that Hn−2(V ,N) = 0. By the universal coefficient
theorem Hi(V ,N) = 0 for all i and it follows that U = U ∪X is a compact manifold with simply
connected boundary and

H∗(U) → H∗(W )

is an isomorphism. Since the compact set C was contained in IntU it will be also contained in
IntU . This proves Proposition 12.6. □

12.5. The h-cobordism theorem

As an interesting consequence of Theorem 12.2 we obtain an h-cobordism theorem for open
manifolds.

Definition 12.11. Two oriented connected open manifolds M1 and M2 are called h-cobordant
if there exists a manifold with boundary V with ∂V = M1 ⊔ (−M2) such that the inclusions
Mi ↪→ V are homotopy equivalences.

Theorem 12.12. Let M1,M2 satisfy the hypothesis of Theorem 12.2 and let V be a h-
cobordism between them which is simply connected at ∞. If N1 and N2 are the manifolds given
by Theorem 12.2 for M1 and M2 respectively then they are h-cobordant.

Proof. N1 and N2 are compact manifolds with boundary. Using a collar of the boundary of Ni

we can embed Ni into Mi. Using now a collar C of the boundary of V we get embeddings of
Ni × I ⊆ V , with Ni × I ∩ ∂V = Ni × {0}. We can join N1 × {1} to N2 × {1} by an arc in the
interior of V ∖ C and thickening the arc we get a compact manifold U , ∂U = N1 ∪W ∪N2 and
∂W = ∂N1 ⊔ ∂N2.
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Figure 12.9. The manifold V .

Then, similarly to what we did for the proof of Theorem 12.2 we can enlarge U to get
V ⊆ V , V ∼= IntV just by adding handles far from N1 and N2. Therefore ∂V = N1 ∪W ∪N2,
∂W = ∂N1 ⊔ ∂N2. From the diagram:

Ni V

Mi V

it follows that Ni → V is a homotopy equivalence since all other three maps are. We are only
left with showing that W is a h-cobordism between N1 and N2. Now Poincaré-Lefschetz duality
gives

H∗(V ,N1) ∼= H∗(V ,N2 ∪W )
and similarly exchanging N1 and N2. Since Ni → V is a homotopy equivalence the left-hand
side must be trivial. Notice that in

H∗(Ni)
i∗−→ H∗(Ni ∪W ) j∗−→ H∗(V )

both j∗i∗ and j∗ are isomorphisms, hence i∗ is as well. Therefore 0 = H∗(Ni ∪ W,Ni) ∼=
H∗(W,∂Ni) by excision. Since both W and ∂Ni are simply connected it follows by the Hurewicz
theorem that ∂Ni → W is a homotopy equivalence and therefore W is an h-cobordism. □

The following is a direct corollary of the above using the h-cobordism theorem [Sma62b].

Corollary 12.13. Let M1, M2, V as in Theorem 12.12 and suppose M1 and M2 are simply
connected. Then M1 and M2 are isomorphic.
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CHAPTER 13

Piecewise linear manifolds

Arunima Ray

In the next section we will state and prove the stable homeomorphism theorem and the
annulus theorem. One remarkable aspect of these proofs is that they require the use of piecewise-
linear (PL) structures, as well as some deep theorems from the theory of PL manifolds.

13.1. Definitions

In this section we introduce PL manifolds. Similar to how we define smooth structures on
manifolds, we first establish a notion of piecewise-linear maps between subsets of Euclidean
space (with its standard structure).
Definition 13.1. An r-simplex in Rn is the convex hull of r + 1 linearly independent points.
Let K ⊆ Rn be a compact subset. An injective map f : K ↪→ Rn is said to be piecewise-linear if
K can be written as a finite union of simplices with each mapped affinely by f .

Next we apply Definition 13.1 to define piecewise-linear structures on general topological
manifolds.
Definition 13.2. Let M be an n-manifold. A piecewise-linear (PL) structure on M is a family
F = {ϕ : ∆n ↪→ M | ∆n ⊆ Rn a standard simplex} such that

(1) every point p ∈ M has a neighbourhood of the form ϕ(∆n) for some ϕ ∈ F, called a
PL chart;

(2) for ϕ, ψ ∈ F, the composition ψ−1ϕ| : ϕ−1ψ(∆n) → Rn is piecewise-linear;
(3) F is maximal with respect to the above two properties.

In the first item, by invariance of domain, if p is in the interior of M , then p ∈ ϕ(∆̊n), while
if p ∈ ∂M , then p ∈ ϕ(∂∆n).
Definition 13.3. For m ≤ n, let Mm and Nn be topological manifolds with PL structures F

and G respectively. An embedding h : M ↪→ N is said to be piecewise-linear if for all p ∈ M ,
there exists a PL chart ϕ : ∆m ↪→ M with p ∈ ϕ(∆m) and ψ : ∆n ↪→ N with h(p) ∈ ψ(∆n) such
that

ψ−1hϕ| : ϕ−1(h−1(ψ(∆m))) → Rn

is PL in the sense of Definition 13.1. Here note that ϕ−1(h−1(ψ(∆m))) ⊆ Rn is compact.
For m = n, the above definition says that h : M ↪→ N is a piecewise-linear embedding if

whenever ϕ ∈ F, we have that hϕ ∈ G.
A homeomorphism h : M → N is said to be a PL-homeomorphism if h is a PL embedding.

This implies that h−1 is a PL embedding. For a proof of this, see Hudson [Hud69].
Here are some properties of PL manifolds. For a vertex v we define the star St(v) as the

union of all simplices which have v as a vertex, and the link Lk(v) as all the faces of St(v) not
containing v.

(1) A compact n-manifold M has a PL-structure if and only if M has a triangulation such
that the link of every vertex v is equivalent to a PL sphere Sn−1 (if v ∈ IntM) or a
PL disc Dn−1 (if v ∈ ∂M). Here equivalent means that there exists a subdivision such

113
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that the result is simplicially homeomorphic. This is due to Dedecker [Ded62] and
also appears in Hudson’s book [Hud69].

(2) The Cairns-Whitehead theorem says that every smooth manifold has a PL structure,
unique up to PL homeomorphism. Further, every diffeomorphism of smooth manifolds
determines a PL homeomorphism of the corresponding PL manifolds.

(3) The compositions of PL embeddings are PL. This implies that PL-homeomorphism is
an equivalence relation.

(4) A PL structure F on M induces a PL structure ∂F on ∂M .
(5) Two PL manifolds with PL homeomorphic boundaries glue together to give a PL

manifold.

13.2. Theorems from PL topology

We will need to make use of the following deep theorems on PL manifolds. We will not be
going into the proofs at this stage.

Theorem 13.4 (PL Poincaré conjecture). Let n ≥ 5. If Mn is a closed PL manifold
homotopy equivalent to Sn, then M is PL-homeomorphic to Sn.

The PL Poincaré conjecture for dimensions at least 5 is due to Smale. Initially there was
a category losing version, i.e. PL input, topological output, due to Stallings. Stallings also
excluded dimensions 5 and 6. But these defects were soon rectified. Zeeman extended Stallings’
techniques to dimension 6, but dimension 5 came from Smale, at the same time as he proved
the stronger PL input, PL output version in all dimensions at least five. Smale also proved the
smooth input, PL output version.

The purely topological Poincaré conjecture, with topological input and output, in all
dimensions at least five, is due to Newman. His proof used engulfing, as did Stallings and
Zeeman’s initial PL proofs. Kirby-Siebenmann’s technology gave an alternative proof of the
purely topological version in dimension at least 6.

Theorem 13.5 (Structures on Sn × R). Let n ≥ 4. There is a unique PL structure on
Sn × R. That is, if M is a PL manifold homeomorphic to Sn × R, then M is PL homeomorphic
to Sn × R.

This is due to Browder [Bro65] for n ≥ 5 and to Wall [Wal67] for n = 4. The proofs use
Siebenmann’s thesis [Sie65], results of Wall [Wal64], and Stallings [Sta62a], and notably the
PL Poincaré conjecture mentioned above.

The last deep theorem we will need from PL topology is due to Hsiang-Shaneson [HS69]
and Wall [Wal69].

Theorem 13.6 (Homotopy tori). Let n ≥ 5. Let Mn be a closed PL manifold, and let
f : Tn → M be a homotopy equivalence. Then there is a finite cover of both such that the lift
f̃ : T̃n → M̃ is homotopic to a PL homeomorphism.

The finite cover of the torus in the domain is also PL-homeomorphic to the torus. We will
explain this theorem in a later chapter.

13.3. Handle decompositions

We shall later need the notion of handle decompositions of manifolds. An n-dimensional,
index k handle is a copy of Bk × Bm−k, and its attaching region is the part ∂Bk × Bm−k of
its boundary, see Fig. 13.1. The core of a handle is Bk × {0}. Given a manifold Mm and a
topological embedding ψ : ∂Bk ×Bm−k ↪→ ∂M we consider M ∪ψ (Bk ×Bm−k), the manifold
obtained by attaching a k-handle to M along ψ.

A (topological) handle decomposition of a manifold M is a decomposition M = ⋃
hki
i into

union of handles attached along their attaching regions via topological embeddings as described
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Figure 13.1. The 2-dimensional 1-handle B1 × B1 attaches along the yellow
S0 × B1, and the 3-dimensional 2-handle B2 × B1 along the yellow S1 × B1.
Their cores are shown in red.

above. It is said to be piecewise linear or smooth if the attaching maps are PL or smooth
embeddings respectively. In the latter case, we must also smooth the corners to obtain a smooth
manifold after attaching a handle, but this can be done in an essentially unique way.
Remark 13.7. Every closed topological manifold has a topological handle decomposition, unless
it is non-smoothable and has dimension m = 4. For m > 6 we will show how to do this later,
following [KS77b, Essay III]. For m = 5, this is due to Quinn [Qui82a]. Smooth manifolds
have smooth handle decompositions. This suffices for the existence of handle decompositions in
dimension ≤ 3 and for smooth 4-manifolds. To see that nonsmoothable 4-manifolds do not have
topological handle decompositions, observe that the handle attaching maps are all 3-dimensional
and can be isotoped to be smooth embeddings. Consequently a topological handle decomposition
would yield a smooth handle decomposition, and thereby a contradiction.

There are also relative handle decompositions, but we will not go into this for the moment.
Triangulations yield handle decompositions. Explicitly, for a k-simplex σ in a triangulation

T of a manifold M , we obtain a handle of index k given by
St(σ̂) ⊆ T ′′

where T ′′ is the second barycentric subdivision of T , σ̂ is the barycentre of σ, and St denotes
the star. See Fig. 13.2 for an example and [Hud69, p. 233] for further details.

(a) Circle (b) 2-simplex

Figure 13.2. Construction of a handlebody decomposition from a triangulation.
0-handles are coloured orange, 1-handles are purple, and the 2-handle is yellow.





CHAPTER 14

The Engulfing Theorem and uniqueness of PL structures on Rn

for n ≥ 5

Diego Santoro

14.1. Introduction

In these notes we prove that for n ≥ 5 there exists a unique PL structure on Rn up to
PL isomorphism. The proof will be mostly based on the so called Engulfing Theorem, that is
presented in the second section. In the first section we recall some basic notions and results of
PL theory.
Conventions. We will usually omit the prefix PL: so for example manifold stands for PL
manifold, isomorphism for PL isomorphism and so on. We will explicitly state the category in
which we are working when it is necessary. When not explicitly stated, manifolds are supposed
to be without boundary, and they can be compact or not.

14.2. Basic notions and useful theorems in PL theory

In this section we recall some definitions and results regarding PL theory that will be needed
later. This section will contain no proof. We refer to [RS72], [Zee63] and [Buo] for details and
proofs.
Definition 14.1. Let n ≥ 0,m ≥ 0 be two natural numbers. An n-simplex A in some Euclidean
space Em is the convex hull of n linearly independent points, called vertices. A simplex B
spanned by a subset of vertices of A is called a face of A, and we write B < A. The number n is
called the dimension of A.
Definition 14.2. A (locally finite) simplicial complex K is a collection of simplices in some
Euclidean space E, such that:

− if A ∈ K and B is a face of A then B ∈ K.
− If A,B ∈ K then A ∩B is a common face, possibly empty, of both A and B.
− Each simplex of K has a neighbourhood in E which intersects only a finite number of

simplices of K.
We define the dimension of K to be the maximal dimension of a simplex in K.

Given a simplicial complex K we denote
|K| =

⋃
A∈K

A

its underlying topological space, and we call it a Euclidean polyhedron.
We say that K ′ is a subdivision of K if |K ′| = |K| and each simplex of K ′ is contained in

some simplex of K.
Definition 14.3. Let K,L be two simplicial complexes. We say that a map f : K → L is
simplicial if for each simplex A ∈ K its image f(A) is a simplex in L and the restriction of f on
A is linear. We say that f is piecewise linear, abbreviated PL, if there exists a subdivision K ′ of
K such that f maps each simplex of K ′ linearly into some simplex of L.
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Remark 14.4. Notice that the map f in the previous definition is defined on the Euclidean
polyhedron |K| and |L|, but we write f : K → L as an abuse of notation to stress the dependence
on the simplicial complexes.

Remark 14.5. Notice also that in the definition of PL map we do not ask for the map f : |K ′| → |L|
to be simplicial. However it is true that if K and L are finite complexes and f : |K| → |L| is a
PL map, then there exists subdivision K ′ of K and L′ of L such that f : K ′ → L′ is simplicial.

Definition 14.6. A triangulation of a topological space X is a simplicial complex K and a
homeomorphism t : |K| → X. A polyhedron is a pair (P,F), where P is a topological space and
F is a maximal collection of PL compatible triangulations; that is to say, given t1 : |K1| → P
and t2 : |K2| → P in F we have that t1 ◦ t−1

2 : K2 → K1 is a PL isomorphism.

Given X1, X2 two polyhedra, we say that f : X1 → X2 is a PL map if there exists triangula-
tions of X1 and X2 such that f is PL with respect to these triangulations.

Fact: A theorem of Runge ensures that an open set U of a simplicial complex K, or more
precisely of |K|, can be triangulated, i.e. underlies a locally finite simplicial complex, in such
a way that the inclusion map is PL. Furthermore such a triangulation is unique up to a PL
isomorphism. For a proof see [AH35].

By virtue of the previous fact, it makes sense to give the following definition.

Definition 14.7. A (PL) manifold M of dimension n is a polyhedron such that every point
x ∈ M has a neighbourhood (PL) isomorphic to an open set in Rn≥0 = {x ∈ Rn|xn ≥ 0}.

Remark 14.8. In the previous definition the open sets in M and the open sets in Rn≥0 are endowed
with the PL structure induced by the given PL structure on M and the standard PL structure
on Rn≥0 respectively.

We denote with ∂M the set of points that are mapped to the boundary of Rn≥0 by some (and
hence all) such local isomorphisms, and call it the boundary of M . We denote its complement
with Int(M) and call it the interior of M .

Recall that, unless explicitly stated, in these notes we will suppose that our manifolds are
without boundary.

14.2.1. Regular neighbourhoods.

Definition 14.9. Let P be a polyhedron. A subset P0 ⊆ P is a subpolyhedron if there exists a
triangulation of P which restricts to a triangulation of P0.

Definition 14.10. Let K be a simplicial complex, and let K0 ⊆ K a subcomplex. Suppose
that there exists a simplex A = v ∗B ∈ K (i.e. A is the cone with vertex v and base the face
B) where v ∈ A is a vertex such that K = K0 ∪ A and K0 ∩ A = v ∗ ∂B. In this case we say
that there is a elementary simplicial collapse from K to K0, and we denote it by K

e.s.
↘ K0. A

simplicial collapse is a finite number of elementary simplicial collapses, and if K has a simplicial
collapse to K0 we denote this by K

s
↘ K0.
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Figure 14.1

Figure 14.2. A sequence of elementary simplicial collapses.

Definition 14.11. Let P be a polyhedron, and let P0 ⊆ P a subpolyhedron. Suppose that there
exists, for some natural number m, a (PL) m-ball B ⊆ P such that P = P0 ∪B and K0 ∩B is a
(PL) (m− 1)-ball in ∂B. In this case we say that there is an elementary collapse from K to K0,
and we denote it by K

e
↘ K0. A collapse is a finite number of elementary collapses, and if K

collapses to K0 we denote this by K ↘ K0.

Figure 14.3
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Figure 14.4. A sequence of elementary collapses.

Remark 14.12. The difference between the definition of collapse and simplicial collapse lies in the
fact that a polyhedron does not have a “canonical” triangulation. It is obvious that a simplicial
collapse is a collapse, but it is not true that if P ↘ P0 then for any triangulation (K,K0) of the
pair (P, P0) we have a simplicial collapse K

s
↘ K0. It is however true that it is possible to find

a subdivision (K ′,K ′
0) of (K,K0) such that K ′

s
↘ K ′

0.

Definition 14.13. Let M be a closed (PL) n-manifold and let X be a subpolyhedron in M . A
regular neighbourhood of X in M is any subpolyhedron N in M such that:

− N is an n-manifold with boundary,
− N is a topological neighbourhood of X in M ,
− N ↘ X

For proofs of the following results we refer to [RS72].

Theorem 14.14. Any second derived neighbourhood of X in M is a regular neighbourhood
of X in M . Moreover any two regular neighbourhoods N1, N2 of X in M are ambiently isotopic
in M , keeping fixed any arbitrary regular neighbourhood N ⊆ N1 ∩N2 and the complement of
any arbitrary open set U ⊇ N1 ∪N2.

Lemma 14.15. Suppose X,Y are two subpolyhedra in a manifold M , and suppose that X ↘ Y .
Then any regular neighbourhood of X is a regular neighbourhood of Y .

As a corollary of the previous theorem and lemma we have the following.

Corollary 14.16. Suppose X,Y are subpolyhedra in a manifold M , and suppose that
X ↘ Y . Then any two regular neighbourhoods NX and NY of X and Y are ambiently isotopic
in M , via an isotopy keeping fixed any arbitrary regular neighbourhood of Y in NX ∩NY and
the complement of any arbitrary open set U ⊇ NX ∪NY .

One way to construct regular neighbourhood is the following. Suppose that X is a subpoly-
hedron of a closed manifold M and consider a triangulation (T, T0) of the pair (M,X).

Define fX : T → [0, 1] to be the unique simplicial map defined by mapping each vertex of T0
to 0 and the other vertices to 1. We say that T0 is full in T if f−1

X (0) = T0. If T0 is full in M

then for any t ∈ (0, 1) the preimage f−1
X ([0, t]) is a regular neighbourhood of X in M .

Remark 14.17. It can happen that T0 is not full in T , but it is always possible to find a subdivision
(T ′, T ′

0) of (T, T0) such that T ′
0 is full in T ′. Also notice that f−1

X (1) is always full in T .
Since we will work also with non compact manifolds and non compact polyhedra it is

important to mention that regular neighbourhoods can be defined also in this setting and
analogous results hold. The main difference is that also infinite sequences of elementary collapses
are allowed. We refer to the paper [Sco67] for details.

Of course, in case of infinite regular neighbourhoods it is not possible in general to have
uniqueness up to ambient isotopy with compact support. In any case the following lemma will
be enough for our purposes.
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Lemma 14.18. Suppose that X,Y are subpolyhedra of M and suppose that X ↘ Y (finite
collapse). If Y ⊆ U , where U is an open set in M , then there exists an ambient isotopy of M
with compact support that maps X in U .

We end this subsection stating a lemma that we will play a key role in the following section.

Lemma 14.19. Suppose that P0 ⊆ P are compact polyhedra and that P ↘ P0. Also suppose
that S ⊆ P is a subpolyhedron. Then there exists a subpolyhedron S+ ⊇ S such that P ↘ P0 ∪S+

and dim S+ ≤ dim S + 1.

14.2.2. General position. We need the following theorem, which roughly states that it is
possible, with a slight perturbation, to promote a continuous map to a PL map that is “generic”,
in the sense that the image of this map has transverse self-intersections. Moreover it is possible
to keep the map unchanged on a subpolyhedron on which it is already PL and generic.

To quantify the amount of perturbation, we will fix any metric compatible with the topology
of our polyhedron. If (Z, d) is a metric space, we say that a map f : Y × I → Z is an ε-homotopy
if d(f(y, 0), f(y, t)) < ε for all y ∈ Y and t ∈ I.

Theorem 14.20. Let P0 ⊆ P p be a subpolyhedron with cl(P∖ P0) compact. Let f : P → Mm

be a closed and continuous map with p ≤ m such that f is a PL embedding when restricted
to P0, and let ε > 0 be given. Then there is an ε-homotopy rel P0 from f to a map g and a
triangulation T of P such that:

− for every simplex A ∈ T the restriction g|A is a PL embedding;
− for every A,B ∈ T , we have that g−1(g(B)) ∩A = (A ∩B) ∪ S(A,B), where S(A,B)

is a subpolyhedron of A of dimension

dim(S(A,B)) ≤ dimA+ dimB −m.

Here are some comments to clarify the second condition in Theorem 14.20. The set g−1g(B)∩
A is by definition the set of points in A that share their image with some point in B. Since g is
an embedding when restricted to any simplex, this set parametrises the intersection between
g(A) and g(B) in M . The second condition then asks that this intersection (apart from the
obvious set g(A ∩ B)) is a polyhedron and is generic. The following figures should help the
comprehension of this request.
Remark 14.21. In general it is false that A∩B and S(A,B) are disjoint, since we require S(A,B)
to be a subpolyhedron. For instance, in the case depicted in Figure 14.6 the set S(A,B) contains
also two points in A ∩B.

Figure 14.6

If we let A,B vary we can define the singular set of g:
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Figure 14.5

S(g) =
⋃

A,B∈T
S(A,B).

It is not difficult to prove that S(g) is a subpolyhedron of dimension at most 2p−m and that
S(g) = cl{p ∈ P |g−1g(p) ̸= p}. In particular g is injective on P∖ S(g).

Details about general position arguments can be found in [Zee63] and [RS72].
In the following section we will need to use some collapses in the domain of a PL map to

induce collapses on the image. If we have a PL embedding of course it is possible to mirror such
a collapse on the image of the map. In general we are able to do so if the collapse takes place
away from the singular set of the map.

Lemma 14.22. Let P,Q be two polyhedra. Let g : P → Q be a PL map and suppose that
S ⊇ S(g) is a subpolyhedron of P that contains the singular set of g. Then if P ↘ S also
g(P ) ↘ g(S).

For a proof of the previous lemma we refer to [Zee63].

14.3. The Engulfing Theorem

In this section we will state and prove the main theorem of these notes, the Engulfing Theorem.
The sense of this theorem is to promote an homotopical, and hence algebraic, statement into a
geometric one. As an example, consider the following question.

Question 14.23. Suppose that C is a compact set in a manifold Mn such that the inclusion
C ↪→ M is nullhomotopic. Is C contained in an n-ball?
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Of course if a set is contained in a ball then its inclusion is nullhomotopic, but at a first
sight it is very difficult to give an answer to Question 14.23. As a consequence of the Engulfing
Theorem we will improve our understanding of this problem and have a satisfying partial answer
to this question.

There are several versions of the Engulfing Theorem, which is a technique more than a
theorem in itself. We will present here the Stallings’ version of the theorem [Sta62b], which is
the one that suits our needs.

Theorem 14.24 (Stallings’ Engulfing Theorem). Let Mn be a PL manifold, U an open
subset of M , P a subpolyhedron of M of dimension p. Suppose that:

− (M,U) is p-connected;
− P ∩ (M∖ U) is compact;
− p ≤ n− 3.

Then there is a compact E ⊆ M , and there is an isomorphism h : M → M , such that
P ⊆ h(U) and h|M∖E = Id|M∖E .

Recall that (M,U) is said to be p-connected if the relative homotopy groups πi(M,U) all
vanish for i ≤ p. Notice that, since the polyhedron P has dimension p, the hypothesis of
p-connectedness is the sufficient algebraic condition to deduce that it is possible to homotope
the remaining part of P inside the open subset U , as the following lemma proves.

Lemma 14.25. Suppose that P is a subpolyhedron of dimension p of a manifold M . Suppose
that P0 ⊆ P is a subpolyhedron of P and that U is an open set in M such that P0 ⊆ U and (M,U)
is p-connected. Then there exists a homotopy f : P × I → M rel P0 such that f(P × {1}) ⊆ U .

Proof. The hypothesis that πk(M,U) = 0 means that each map of pairs (Dk, ∂Dk) → (M,U)
can be homotoped, relative to the boundary, to a map Dk → U .

Assume inductively that the (k − 1)-skeleton of P is already contained in U and consider
the k-skeleton P (k) of P . Each simplex A in the k-skeleton can be homotoped into U rel ∂A,
since k ≤ p and (M,U) is p-connected. In this way we can define an homotopy on P0 ∪ P (k)

that is constant on P0 and that takes P0 ∪P (k) into U . Since the pair (P, P0 ∪P (k)) satisfies the
homotopy extension property, we are able to extend this homotopy on the whole P , completing
the inductive step. □

The Engulfing Theorem improves the previous lemma in the much stronger result that the
open set U can be enlarged to “engulf” the whole polyhedron P .

We will not start by proving the complete statement of the Engulfing Theorem, but we will
first give some proofs of it when the codimension of P is big enough and when P is compact for
the following reasons:

− the basic ideas of the final proof are already present in these simpler cases;
− the problems that one encounters when trying to generalise these simpler proofs to the

general case give enough motivation to endure some technicalities of the final proof.
Step 1: P compact, 2(p + 1) − n < 0.
Denote with P0 the biggest subcomplex of P contained in U . It follows from the hypotheses

and Lemma 14.25 that there exists a continuous homotopy f : P × I → M relative to P0 such
that f(P × {1}) ⊆ U . We can apply Theorem 14.20 to obtain a new map g : P × I → M that is
a PL map, that coincides with f on P × {0} and such that g(P × 1) ⊆ U .

Moreover the singular set S(g) has dimension at most 2(p+ 1) − n < 0 and therefore g is an
embedding. Since P × I ↘ P × 1 and g is a PL embedding, we have that g(P × I) ↘ g(P × 1)
and therefore by Corollary 14.16 (or also Lemma 14.18) there exists an ambient isotopy of M
with compact support mapping P inside U . If we call h−1 the isomorphism at the end of this
isotopy, we have that P ⊆ h(U).
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Step 2: P compact, p ≤ n − 4.
We try now to improve the hypothesis on the codimension. In this case it is not true a priori

that g is an embedding, because the dimension of its singular set can be positive. This is a
problem, because the collapse P × I ↘ P × {1} does not induce a collapse on the image. We
want to get rid of the singular set.

First good idea: We can suppose that by induction we are able to engulf subpolyhedra of
dimension p′ < p. If we are able to show that the dimension of S(g) is strictly smaller than p we
can engulf its image by induction. We have

dim(S(g)) = 2p+ 2 − n < p ⇐⇒ p < n− 2
Therefore, if p ≤ n− 3 we can engulf the image of the singular set by inductive hypothesis.

Problem: It is not true in general that P × I ↘ P × {1} ∪ S(g).

Second good idea: Using Lemma 14.19 we can find S+(g), such that S(g) ⊆ S+(g) and
P × I ↘ P × {1} ∪ S+(g). Since dim S+(g) ≤ dim S(g) + 1 we need

2p+ 3 − n < p ⇐⇒ p < n− 3.
Since by hypothesis we have p ≤ n− 4 we can suppose that also the image of S+(g) is contained
in U .

At this point, since the collapse P × I ↘ P × {1} ∪S+(g) takes place away from singular set,
we can use Lemma 14.22 to mirror this collapse on the image. Since the image of P ×{1}∪S+(g)
has been engulfed from U , we can conclude as in Step 1.

As a result of the previous discussion, we have that the Engulfing Theorem holds for compact
polyhedron P of codimension ≤ n− 4. We will now present the proof of the more general result,
that allows P to be non compact and of codimension ≤ n− 3.

We assert that it is not difficult to drop the compactness hypothesis, due to the hypothesis of
compactness of the set P ∩ (M∖ U). What needs a more clever idea is to allow for codimension
n− 3. The key observation is that, in order to engulf P we only need to engulf g(P × {0}) and
not the whole image of P × I; if we pay attention to this and manage U to carefully select what
portion of g(P × I) to engulf, we will be able to prove the case p = n− 3.

Figure 14.7



14.3. THE ENGULFING THEOREM 125

Proof of Theorem 14.24. It is clear that we can suppose that P∖ P0 has only one simplex ∆,
by using an induction argument on the number of simplices in P∖ P0. We denote with q the
dimension of ∆, and we notice that by hypothesis q ≤ p ≤ n− 3. The hypotheses of the theorem
yield a continuous map F : ∆ × I → M such that F|∆×{0} is the inclusion of ∆ in M and
F (∆ × {1}) ⊆ U . Now we consider the polyhedron K = ∆ × I ∪∆×{0} P and we can glue the
inclusion of P with the map F to obtain a map f : K → M . We can apply Theorem 14.20 to
obtain a map g that is PL and a triangulation T of K such that

− g is an embedding restricted to any simplex of T ;
− given simplices A and B, A ∩ g−1(g(B)) = (A ∩ B) ∪ S(A,B) where S(A,B) is a

compact subpolyhedron of A of dimension ≤ dimA+ dimB − n.
Moreover, up to passing to a subdivision, we can also suppose that T simplicially collapses
to K0 = P0 ∪ (∂∆ × I) ∪ (∆ × {1}). This follows from the fact that ∆ × I collapses to
(∂∆ × I) ∪ (∆ × {1}).

In other words we have a finite number of simplices A1, . . . , As such that:
− K = K0 ∪A1 ∪ · · · ∪As,
− each Ai has a vertex vi and a face Bi such that Ai = vi ∗Bi and

(K0 ∪A1 ∪ · · · ∪Ai−1) ∩Ai = vi ∗ ∂Bi.
We denote with Ki the union (K0 ∪ A1 ∪ · · · ∪ Ai) and with Di its p-skeleton. Our aim is to
engulf g(Di). Notice that Di = Ki except when the simplex ∆ has dimension q = p, and that in
any case P ⊆ Ds, the p-skeleton of K.

We can suppose by induction that the statement of the Engulfing Theorem holds for q′ < q,
i.e. that the statement of the theorem holds for subpolyhedra of M of dimension q′ < q. Also
suppose by induction that g(Di−1) has already been engulfed. We now prove that it is possible
to engulf g(Di).

Exactly as in Step 2 we have the problem that the collapse of Di−1 ∪Ai to Di−1 does not
induce a collapse of the images, since g is a priori not injective on Di−1 ∪ Ai. But exactly as
before we can consider the set

Σi = ∪{S(Ai, B)|B is a simplex in Di−1}.
The set Σi is the singular set of the map g restricted to Di−1 ∪ Ai and Σi is a compact
subpolyhedron of Ai of dimension

dimΣi ≤ dimAi + p− n ≤ q + 1 + (n− 3) − n ≤ q − 2.
Since dimΣi ≤ q−2, when we consider the set Σ+

i from Lemma 14.19 we have that dimΣ+
i ≤ q−1

and so we can apply the inductive hypothesis and obtain a compactly supported isomorphism
h : M → M such that U engulfs g(Di ∪ Σ+

i ). Since now Ai ↘ (vi ∗ ∂Bi) ∪ Σ+
i we can use

Lemma 14.22 to mirror this collapse on the image and deduce that there exists an isomorphism
h′ : M → M with compact support such that h(U) contains g(Ai ∪ Di−1). The composition
h′ ◦ h gives the engulfing of g(Di) from U .

Since P ⊆ Ds, we have proved the Engulfing Theorem. □

Remark 14.26. Notice that in the proof of the inductive step we actually managed to engulf the
whole image of the simplex Ai, so it could seem that at the end the open set U engulfed the
whole image of K. The important point is that when trying to engulf the image of the next
simplex Ai+1 we cannot impose that the open set keeps containing g(Ai) during the isotopy, but
only its p-skeleton.

So what happens is that at each step the open set U loses some pieces of what it has already
engulfed. This is not a problem as long as none of these pieces belongs to the p-skeleton of the
image of K and this is something we can control. The next figure is a schematic picture of what
can happen.



126 14. THE ENGULFING THEOREM

Figure 14.8

As a corollary of the Engulfing Theorem we have

Corollary 14.27. Suppose that Mn is a contractible PL manifold and that C ⊆ M is a
compact subpolyhedron in M of dimension ≤ n− 3. Then C is contained in an n-ball.

Proof. Take U to be any n-ball in M . Since both M and U are contractible, as a consequence
of the long exact sequence of homotopy groups of the pair we have that (M,U) is p-connected
for all p. Since C is compact, the set C ∩ (M∖ U) is compact. Moreover the dimension of C is
≤ n− 3 by hypothesis and therefore we can apply the Engulfing Theorem to find an isomorphism
h : M → M such that C is contained in the n-ball h(U). □

14.4. Uniqueness of PL structures on Rn

In this last section we will use the Engulfing Theorem to prove

Theorem 14.28 (Uniqueness of PL structure). Let n ≥ 5. Then there exists a unique PL
structure on Rn up to isomorphism.

Remark 14.29. It is proved with other techniques that Rn has a unique PL structure if n ≤ 3
[Moi52a]. On the other hand, it can be showed that R4 has uncountably many different PL
structures [Tau87].

We recall the following definition.

Definition 14.30. A topological space X is said to be simply connected at infinity if for any
compact set C ⊆ X there exists a compact D such that C ⊆ D ⊆ X and X∖ D is simply
connected.

Theorem 14.31. Let Mn be a connected and oriented manifold with possibly empty boundary.
Then any two cooriented embeddings of n-balls in Int(M) are ambiently isotopic.

Theorem 14.28 will be a corollary of the following proposition.

Proposition 14.32. Suppose that Mn, n ≥ 5, is a contractible manifold that is simply
connected at infinity. Then any compact subset of M is contained in an n-ball.

Proof of Theorem 14.28. Let Mn be contractible and simply connected at infinity. Then the
existence of a countable compact exhaustion of M and Proposition 14.32 imply that M is the
union of {Fi}i∈N, where each Fi is a n-ball, and Fi ⊆ IntFi+1. We now prove that all the
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manifolds obtained in this way are isomorphic, and since Rn can be obtained in this way the
theorem follows.

Suppose that we have Fi ⊆ IntFi+1 and Gi ⊆ IntGi+1 two pair of nested n-balls and fix any
isomorphism fi : Fi → Gi. If we are able to show that there exists an isomorphism fi+1 : Fi+1 →
Gi+1 that extends fi we have finished, since we can iterate this process countably many times,
starting with a fixed isomorphism f1 : F1 → G1, to obtain an isomorphism ⋃

i∈N{Fi} →
⋃
i∈N{Gi}.

Suppose that we have fixed fi and consider any isomorphism f ′
i+1 : Fi+1 → Gi+1 with the

property that its restriction to Fi is cooriented with fi. Then by Theorem 14.31 we know
that there exists an isomorphism H : Gi+1 → Gi+1 such that (H ◦ f ′

i+1)|Fi
= fi. Simply define

fi+1 = H ◦ f ′
i+1. □

Our aim now is to prove Proposition 14.32. We start with some simple lemmas.

Lemma 14.33. Suppose Mn is a manifold that is contractible and simply connected at infinity.
Then for any compact set C ⊆ M there exists a compact set D such that C ⊆ D ⊆ M and
(M,M∖D) is 2-connected.

Proof. Consider D such that M∖D is simply connected. Consider the long exact sequence of
homotopy groups of the pair

· · · → π2(M) → π2(M,M∖D) → π1(D) → π1(M) → π1(M,M∖D) → . . .

Since M is contractible and M ∖ D is simply connected, we deduce that (M,M ∖ D) is 2-
connected. □

Lemma 14.34. Suppose Mn, n ≥ 5, is a manifold that is contractible and simply connected at
infinity. Let T (2) denote the 2-skeleton of a triangulation T of M and let C ⊆ M be a compact
subset. Then there exists an isomorphism h : M → M whose support is compact and contains C
and such that M∖ C engulfs T (2), i.e. T (2) ⊆ h(M∖ C).

Proof. Consider a compact set D such that C ⊆ D ⊆ M and (M,M∖D) is 2-connected. Since
T (2) is a 2-dimensional polyhedron, n ≥ 5, and T (2) ∩D is compact, being D compact, we can
apply the Engulfing Theorem and find a compactly supported isomorphism h : M → M such
that T (2) ⊆ h(M∖ D) ⊆ h(M∖ C). If the support of h does not contain C we can simply
consider its union with C, that is still compact. □

Proof of Proposition 14.32. Consider C ⊆ M a compact subset and consider T (2) the 2-skeleton
of some triangulation of M . We know that, up to isomorphism of M , we can suppose that
C ∩ T (2) = ∅. Define K as the polyhedron obtained by adding to T (2) all the closed simplices of
T that are contained in M∖ C. Consider C(K), the complement of K. C(K) is defined in the
following way:

− consider the first barycentric subdivision of T and denote it by T̃ ;
− consider the unique simplicial map fK : T̃ → [0, 1] defined by mapping the vertices of T̃

that are in K to 0 and the other vertices in 1;
− define C(K) = f−1

K (1).

Claim. The subpolyhedron C(K) is compact and has dimension ≤ n− 3.

We postpone the proof of the claim to the end of the proof.
Since C(K) has dimension ≤ n − 3 and is compact, by virtue of Corollary 14.27 we can

suppose that C(K) is contained in an n-ball A.
To conclude the proof of the proposition it is sufficient to observe that since C(K) is compact

there exists t1 ∈ (0, 1) such that C(K) ⊆ f−1
K ([t1, 1]) ⊆ A. Moreover since C is compact and

contained in M∖K there exists t2 ∈ (0, 1) such that C ⊆ f−1
K ([t2, 1]).
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Since both f−1
K ([t1, 1]) and f−1

K ([t2, 1]) are regular neighbourhoods of C(K) in M , by virtue
of Theorem 14.14, it is possibile to find an isomorphism h : M → M such that C ⊆ h(A), which
is an n-ball. □

Proof of the claim. It is easy to prove that C(K) contains only a finite number of vertices. In
fact its vertices are contained in the simplices of T that intersect the compact C, and therefore
are contained in a finite number of simplices. This implies the compactness of T .

The bound on the dimension of C(K) follows from the fact that any k-simplex of T̃ intersects
a (n− k)-simplex of T . In fact the operation of first barycentric subdivision can be described in
the following way:

− Step 0: Do nothing. Rename the 0-skeleton of T by T (0)
0

− Step 1: Add to each edge of T its barycenter and subdivide T (1) by taking the cones
with vertices these barycenters and base T (0)

0 . In this way we obtain a new triangulation
of the 1-skeleton of T . Denote the new 0-skeleton with T

(0)
1 and the new 1-skeleton

with T
(1)
1 .

− Step 2: Add the barycenters of the 2-simplices of T and take the cones with vertices
these barycenters and base T (1)

1 . In this way we obtain a new triangulation of the
2-skeleton of T . Denote the new 0-skeleton, 1-skeleton and 2-skeleton with T

(0)
2 , T (1)

2
and T

(2)
2 .

− Iterate this process up to the n-skeleton. By construction T
(n)
n is the barycentric

subdivision T̃ .

Using this description it is easy to prove that:

− each simplex in T
(1)
1 contains a vertex of T (0)

0 = T (0);
− each simplex of T (2)

2 contains an edge of T (1)
1 ;

− each 3-simplex of T (3)
3 contains a 2-simplex of T (2)

2 . Analogously each 2-simplex of T (2)
3

contains a 1-simplex of T (1)
2 and each 1-simplex of T (1)

3 contains a vertex of T (0)
2 ;

− by induction, each k-simplex of T (k)
m , with k ≤ m, contains a (k − h)-simplex of T (k−h)

m−h ,
with h ≤ k.

The schematic picture of Figure 14.9 should help to visualise this “cascade” situation.
In particular, each simplex of dimension ≥ n− 2 in T̃ = T

(n)
n must contain a simplex in T (2)

2 .
Since |T (2)

2 | = |T (2)| and K contains the 2-skeleton of T , it follows that any such simplex must
intersect K. This implies that any simplex of C(K) has dimension at most n− 3. □
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Figure 14.9

Remark 14.35. Notice that even if to prove the uniqueness of PL structures on Rn when n ≥ 5
it was crucial to engulf compact sets, we actually needed the full strength of Stallings’ version of
the Engulfing Theorem, since in Lemma 14.34 we needed to engulf T (2) that is a non compact
polyhedron.
Remark 14.36. Consider an exotic R4, i.e. a PL structure on R4 that is non isomorphic to the
standard one. In such a PL manifold there must exist a compact set C that is not contained in
any PL 4-ball, otherwise from the proof of Theorem 14.28 we would find an isomorphism with
the standard R4.

As a further corollary of what we have proven so far we have a proof of the so called weak
Poincaré conjecture in dimension ≥ 5.

Corollary 14.37 (High dimensional weak Poincaré conjecture). Suppose that Mn is a
closed PL manifold homotopy equivalent to Sn, with n ≥ 5. Then M ∼=Top S

n.

Proof. Consider a point p ∈ M . We can use Proposition 14.38 (which is proved later) to deduce
that M∖ {p} is contractible and simply connected at infinity. By virtue of Theorem 14.28
M∖ {p} ∼=PL Rn. Therefore M is the one-point compactification of Rn, and hence a topological
sphere. □

Proposition 14.38. Let n ≥ 3. Suppose that Mn is a closed topological manifold homotopy
equivalent to Sn and consider a point p ∈ M . Then M∖ {p} is simply connected at infinity and
contractible.

Proof. We divide the proof in two parts.

Part 1: By definition there exist continuous f : M → Sn and g : Sn → M such that gf ∼ IdM
and fg ∼ IdSn . Consider the north pole N = (0, . . . , 0, 1) ∈ Sn and without loss of generality we
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can suppose that p = g(N). Since any rotation of Sn is isotopic to the identity, we can compose
f with a rotation of Sn and suppose that g(p) = N . We now prove that it is possible to find
g′ : Sn → M and homotopies g′f ∼ IdM and fg′ ∼ IdSn that fix respectively p and N .

First consider an arbitrary homotopy Φ: M × I → M between gf and IdM . The image of
{p} × I via this homotopy is a continuous loop γ : I → M . We want to compose this homotopy
with an isotopy of M that at each time brings back the point γ(t) to p. To do this we consider
an ambient isotopy of M extending the curve γ, i.e. an isotopy χ : M × I → M such that
χt(p) = γ(t) and χ1 = IdM . The homotopy χ−1Φ: M × I → M defined by

(x, t) 7→ χ−1
t (Φt(x))

satisfies:
− (χ−1Φ)t(p) = χ−1

t (γ(t)) = p.
− (χ−1Φ)1(x) = χ−1

1 (Φ1(x)) = x for all x ∈ M .
− (χ−1Φ)0(x) = χ−1

0 (Φ0(x)) = χ−1
0 (g(f(x)).

Since χ−1
0 (p) = p we can replace g with g′ = χ−1

0 g. Now g′ : Sn → M is such that g′f ∼ IdM
fixing p.

We now want to proceed analogously with f .
First of all, notice that since χ−1

0 is isotopic to the identity of M , it is still true that
fg′ ∼ IdSn . Consider an arbitrary homotopy Ψ: Sn × I → Sn between fg′ and IdSn . Also in
this case the image of {N} × I is a continuous loop δ in Sn. In the same way as before, we want
to find an isotopy of Sn that at each time brings back the point δ(t) to N , but we can do this in
a smarter way. In fact there is a fibration π : SO(n+ 1) → Sn defined by

A 7→ A(N).
Since the fibrations have the path lifting property, we can lift the path δ : I → Sn to a path
δ̃ : I → SO(n+ 1) such that δ̃(1) = Id.

We can now define a homotopy δ̃−1Ψ: Sn × I → Sn by
(y, t) 7→ δ̃−1

t (Ψt(y)).
This homotopy satisfies:

− (δ̃−1Ψ)t(N) = δ̃−1
t (δ(t)) = N

− (δ̃−1Ψ)1(y) = δ̃−1
1 (Ψ1(y)) = y for all y ∈ Sn.

− (δ̃−1Ψ)0(y) = δ̃−1
0 (Ψ0(y)) = δ̃−1

0 (f(g′(x))) for all y ∈ Sn.
So we have proven that there is a homotopy between IdSn and δ̃−1

0 fg′ keeping N fixed. Since
δ̃0 is a rotation of Sn that fixes N (it is a lifting via the fibration π of δ(0) = 0), of course we
deduce that there is also such a homotopy between IdSn and fg′, that is what we wanted to prove.

Part 2: It follows from Part 1 that M∖ {p} is homotopy equivalent to Rn. This of course
implies that M∖ {p} is contractible.

Notice that simply connectedness at infinity is not a homotopical invariant, since for example
R2 is not simply connected at infinity but is homotopy equivalent to R3, which is. However our
situation is way simpler. In fact consider a compact C ⊆ M∖ {p} and consider a small open
n-ball in M containing p and not intersecting C. The complement of this ball in M∖ {p} is
a compact D that contains C. By construction the complement of D is homeomorphic to a
punctured n-ball, which is simply connected if n ≥ 3. □
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CHAPTER 15

Homeomorphisms of Rn and the torus trick

Anthony Conway, Danica Kosanović, and Arunima Ray

The torus trick was developed by Kirby [Kir69] to prove the annulus theorem in dimension
≥ 5. Since that proof uses some nontrivial input from PL topology, we prefer to introduce it
using another application, namely to show the local contractibility of Homeo(Rn), which is one
of the main results of this section (see Corollary 15.11) and was first proved by Černavskǐı [Č73].
This use of the torus trick requires much less input from outside the topological category.

The torus trick turned out to be a very useful method of proof, in many different contexts.
Its key applications include topological transversality, isotopy extension, existence of topological
handle decompositions, topological invariance of simple homotopy type, and smoothing theory –
these are all major advances in the understanding of topological manifolds. We will discuss some
of these applications later. The torus trick can also be applied in low dimensional manifolds of
dimension 2 and 3 to show that they admit unique smooth structures [Ham76a, Hat13a].

15.1. Homeomorphisms bounded distance from the identity and Alexander
isotopies

We begin our study of Homeo(Rn) with an elementary but extremely useful observation.

Definition 15.1. A homeomorphism h ∈ Homeo(Rn) is bounded distance from Id if there exists
K > 0 such that |h(x) − x| < K for all x ∈ Rn.

In the literature such homeomorphisms are often called ‘bounded’. We prefer the longer
descriptor to avoid a non-traditional and potentially confusing use of that term.

Proposition 15.2. If h ∈ Homeo(Rn) is bounded distance from Id, then h is isotopic to
IdRn.

Proof. Define the map

H(x, t) :=
{
t · h(xt ), t ̸= 0,
x, t = 0.

Note that H(−, 0) = IdRn , H(−, 1) = h and each H(−, t) is a homeomorphism of Rn. Moreover,
H is clearly continuous on Rn × (0, 1]. For x0 ∈ Rn, we check continuity at (x0, 0) directly next.

Given ε > 0 we choose δ = min{ ε2 ,
ε

2K }. Then for any (x, t) with |(x, t) − (x0, 0)| < δ, we in
particular have |x− x0| < δ and t < δ, so

|H(x, t)−H(x0, 0)| =
{∣∣t · h(xt ) − x0

∣∣ ≤
∣∣t · h(xt ) − x

∣∣+ |x− x0| < tK + δ < δK + δ < ε t ̸= 0
|x− x0| < δ < ε t = 0

where for the second inequality in the first case we used the fact that h is bounded distance
from Id, namely

|t · h
(
x

t

)
− x| = t|h

(
x

t

)
− x

t
| < tK. □

133
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We next derive a few consequences, all of which go under the name “Alexander trick” or
“Alexander isotopy”. The first of the cases below does not use Proposition 15.2 and has a
somewhat easier proof.

Proposition 15.3 (Alexander isotopies). Let n be a positive integer.
(0) Every f ∈ Homeo(Sn−1) extends to F ∈ Homeo(Dn).
(i) For any h ∈ Homeo(Dn), if h|∂Dn = Id then h is isotopic to IdDn.

(ii) For any f, g ∈ Homeo(Dn) if f |∂Dn = g|∂Dn then f and g are isotopic.
(iii) For any h ∈ Homeo(Rn) if h|Dn = Id then h is isotopic to IdRn.
(iv) For any f, g ∈ Homeo(Rn), if f |Dn = g|Dn then f and g are isotopic.
(v) For any f, g ∈ Homeo(Rn), if f |U = g|U for an open U ⊆ Rn then f and g are isotopic.

Proof. For (15.3.0), we use that the disc Dn is homeomorphic to the cone on the sphere Sn−1, so
we can define the extension F the cone of the map f , by setting F (t, z) = t · f(z) for (t, z) ∈ Dn

corresponding to z ∈ Sn−1.
For (15.3.i) we extend h by the identity map to a homeomorphism of Rn, which is clearly

bounded distance from Id. By Proposition 15.2 this extension is isotopic to IdRn via a 1-parameter
family of maps H(−, t), each of which restricts to the identity on the complement of the open
unit disc, so their restrictions give the desired isotopy from h to IdDn . This isotopy rescales a
given point “outwards”, applies h and then pulls it back in. For each x there is a small enough t
so that x

t is outside the unit disc, where we apply the identity. In other words, the region where
the identity is applied expands inwards as t decreases.

Now (15.3.ii) follows directly from (15.3.i): we apply it to h := g−1f to get an isotopy H,
and then observe that gH is an isotopy from f to g.

To prove (15.3.iii) we define an isotopy H : Rn × [0, 1] → Rn from IdRn to h given by

H(x, t) :=
{

1
th(tx) t ̸= 0
x t = 0.

(Here the identity expands “outwards” as t decreases.) We may check continuity as in the proof
of Proposition 15.2. Namely, continuity away from t = 0 is again immediate, and given x0 ∈ Rn
and ε > 0, we choose δ = min{ 1

1+|x0| , 1, ε}. Then if |(x, t) − (x0, 0)| < δ, we have t < δ and
|x|−|x0| ≤ |x−x0| < δ ≤ 1. In particular, |x| < 1+|x0| and |tx| = t|x| < δ(1+|x0|) ≤ 1+|x0|

1+|x0| = 1,
so tx is contained in Dn. Therefore, h(tx) = tx by hypothesis, and we have

|H(x, t) −H(x0, 0)| =


∣∣∣1th(tx) − x0

∣∣∣ =
∣∣∣1t (tx) − x0

∣∣∣ = |x− x0| < δ < ε, t ̸= 0,
|x− x0| < δ < ε, t = 0.

For (15.3.iv), apply (15.3.iii) to g−1f .
For (15.3.v) choose a disc within U and rescale it to a unit disc Dn, then apply (15.3.iv). □

The local contractibility of Homeo(Rn) will be a consequence of the following theorem.

Theorem 15.4 (Černavskǐı [Č73], Kirby [Kir69]). For any n ≥ 0 there exists ε > 0 such
that every homeomorphism h : Rn → Rn satisfying |h(x) − x| < ε for all x ∈ Dn is isotopic to
IdRn.

In other words, if h ∈ Homeo(Rn) and IdRn are close on the unit disc Dn, then they are
isotopic. Contrast this with Proposition 15.2, where we require that they are close everywhere
to reach the same conclusion. Observe also that ε does not depend on h, but only on n.
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15.2. Torus trick – the proof of the Černavskǐı-Kirby theorem

The proof of Theorem 15.4 given by Černavskǐı [Č73] is explicit and similar in spirit to
the proof of Kister’s theorem (Theorem 8.10). We will instead present Kirby’s proof [Kir69]
using the torus trick. Given h ∈ Homeo(Rn) the strategy is to construct a homeomorphism
h̃ ∈ Homeo(Rn) with the following key properties:

(1) h̃ and h agree on an open set, and are therefore isotopic (Proposition 15.3.v);
(2) h̃ is bounded distance from Id, and therefore isotopic to the identity (Proposition 15.2).

How can we build the map h̃? The next lemma shows that a homeomorphism of the n-torus
Tn := S1 × · · · × S1,

that is homotopic to the identity, induces a homeomorphism of Rn which is bounded distance
from Id. This will be a key step in the proof and indicates why the n-torus is such a key player.

Lemma 15.5. Given f ∈ Homeo(Tn) there exists f̃ ∈ Homeo(Rn) so that

Rn Rn

Tn Tn

f̃
∼=

e e

f
∼=

commutes, where e : Rn → Tn is the universal covering map. Moreover, if f is homotopic to IdTn ,
then f̃ is bounded distance from IdRn.

Proof. Fix x0 ∈ Tn and y0 ∈ e−1(x0). There exists a lift f̃ of fe since {0} = (fe)∗(π1(Rn)) ≤
e∗(π1(Rn)) = {0}. Similarly, there exists a g̃ lifting ge for g := f−1 so that g̃f̃(y0) = y0, and the
diagram below commutes.

(Rn, y0) (Rn, f̃(y0)) (Rn, g̃f̃(y0) = y0)

(Tn, x0) (Tn, f(x0)) (Tn, x0)

f̃

e

IdRn

g̃

e e

f
∼=

IdT n

g
∼=

Note that both g̃ ◦ f̃ and Id : Rn → Rn are lifts of g ◦ f ◦ e = Id ◦e = e, and they agree on y0 so
by the uniqueness of lifting, we have that g̃ ◦ f̃ = Id. The same argument with the rôles of f
and g switched shows that f̃ ◦ g̃ = Id, so f̃ is the desired homeomorphism.

To prove the last statement, we use the following claim.

Claim. If f is homotopic to IdTn, then f̃ commutes with the deck transformations.

Recall that the deck transformations of the cover e : Rn → Tn are translations τa : Rn → Rn,
given by x 7→ x+ a for a ∈ Zn.

Proof of the claim. Fix some a ∈ Zn. We will prove that f̃ ◦ τa = τa ◦ f̃ . Observe that we have
fe = ef̃ since f̃ is a lift of fe. For any m ∈ Zn, the deck transformation τm is by definition a
lift of e so we have e = eτm.

By assumption, there is a homotopy F : Tn × [0, 1] → Tn from F0 = f to F1 = IdTn , and we
consider the map

F ◦ (e× Id) : Rn × [0, 1] e×Id−−−→ Tn × [0, 1] F−→ Tn
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where
F ◦ (e× Id)|Rn×0 = f ◦ e = e ◦ f̃

and
F ◦ (e× Id)|Rn×1 = e.

The map F is in particular a homotopy, so by the homotopy lifting property we can find
F̃ : Rn × [0, 1] → Rn with

− F̃0 = f̃ , namely a lift of F ◦ (e× Id)|Rn×0;
− eF̃ = F ◦ (e× Id); and
− F̃1 a lift of F ◦ (e× Id)|Rn×1 = e.

Since F̃1 is a lift of e, there exists c ∈ Zn such that F̃1 = τc.
Define G := τ−a ◦ F̃ ◦ (τa × Id) : Rn × [0, 1] → Rn and note that for t ∈ [0, 1] we have

e ◦G(x, t) = e ◦ τ−a ◦ F̃ (τa(x), t) by definition of G,
= e ◦ F̃ (τa(x), t) since e = e ◦ τm for any m ∈ Zn,
= F (e ◦ τa(x), t) by definition of F̃ ,
= F (e(x), t) since e = e ◦ τm for any m ∈ Zn.

Therefore, both G and F̃ are lifts of F ◦ (e × Id) ending in G1 = F̃1 = τc. By the uniqueness
of lifting G := τ−aF̃ (τa × Id) = F̃ . In particular, τ−af̃ τa(x) = τ−aF̃ (τa(x), 0) = F̃ (x, 0) = f̃(x),
finishing the proof of the claim. □

Let us now complete the proof of the lemma. Given x ∈ Rn, we can write x = x0 +a = τa(x0),
for some x0 ∈ In the unit cube and a ∈ Zn. Then

|f̃(x) − x| = |f̃(τa(x0)) − τa(x0)| = |τa(f̃(x0)) − τa(x0)| = |f̃(x0) − x0|

Therefore, f̃ is indeed bounded distance from IdRn since

sup
x∈Rn

|f̃(x) − x| = sup
x0∈In

|f̃(x0) − x0| < ∞. □

Returning to Theorem 15.4, we would like to leverage the above fact about homeomorphisms
of tori, and the induced maps on Rn. To do so, we need to first find a torus – and for this we
will use smooth manifold topology, namely Smale-Hirsch theory. Recall the notions of smooth
and topological immersions from Section 7.3.

Corollary 15.6 (of Theorem 7.14). For all n there is a smooth immersion α : Tn∖ {pt}↬
Rn.

Proof. The circle S1 is parallelisable, and the product of parallelisable manifolds is parallelisable.
An open subset of a parallelisable manifold is parallelisable, so Theorem 7.14 gives the result. □

Let us point out that one need not rely on this machinery – there are explicit constructions
of immersed punctured n-tori in Rn, for example by Ferry [Fer74a], Milnor [KS77b, p. 43],
and Barden [Rus73b, p. 290].

As a final ingredient in the upcoming proof of Theorem 15.4 we will need the following
application of the Schoenflies theorem.

Proposition 15.7. Let Σ be a bicollared Sn−1 in Tn for n ≥ 3. Then Σ bounds a ball in Tn.

Proof. First we prove that Σ is separating. This can be seen using the following portion of the
Mayer-Vietoris sequence for Tn = Tn∖ Σ ∪ νΣ, where νΣ is the image of the bicollar of Σ.

H1(Tn) H0(Σ ⊔ Σ) H0(Tn∖ Σ) ⊕H0(Σ) H0(Tn) 00
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where the first map is trivial since Σ is null-homologous in Tn for n ≥ 3 (recall that Tn is an
Eilenberg-Maclane space).

Let A and B denote the closures of the two components of Tn∖ Σ. Then

Zn ∼= π1(Tn) ∼= π1(A) ∗ π1(B).

Since an abelian group cannot be represented as a nontrivial free product, one of the two pieces,
say A, has trivial fundamental group. Then A lifts to the universal cover Rn. In other words,
the restriction of e to each component of the preimage of A is a homeomorphism. On the other
hand, the boundary of each such component is a bicollared sphere in Rn and by the Schoenflies
theorem each component is a ball. Therefore A is a ball, completing the proof. □

Remark 15.8. An alternative proof of this would be to notice that if Σ were non-separating, there
would be an arc connecting one side of Σ to the other. Taking a tubular neighbourhood of this
arc along with the bicollar of Σ we see that Tn is represented as a connected sum M#S1 ×Sn−1,
indicating that π1(Tn) ∼= π1(M) ∗ Z for some closed n-manifold M . Since n ≥ 3, and an abelian
group cannot be represented as a nontrivial free product, we have a contradiction.

We are now ready to see our first application of the torus trick. We begin with a sketch, and
encourage the reader to consult Fig. 15.2, which summarises all the steps.

Sketch of the proof of Theorem 15.4. We are given a homeomorphism h : Rn → Rn which is
ε-close to IdRn on the unit disc, for some ε we will need to choose with care.

We will first use Corollary 15.6 to define an immersion α : Tn∖ ˚2Dn ⊆ Tn∖ D̊n ↬ Rn,
where Dn ⊆ 2Dn ⊆ Tn are some carefully chosen discs. Next we will define another embedding
ĥ : Tn∖ ˚2Dn ↪→ Tn∖ D̊n such that the lower square of the following diagram commutes.

(15.1)

Rn Rn

Tn Tn

Tn∖ ˚2Dn Tn∖ D̊n

Rn Rn

h̃

e e

h
∼=

↫→ α

ĥ

emb.
↫→α

h
∼=

We will then use the Schoenflies theorem on the torus (Proposition 15.7) to lift ĥ to a homeo-
morphism h : Tn → Tn. Let us warn the reader that the middle square in the diagram does
not quite commute – see the full proof for details. In order to have that h̃ is isotopic to h,
we will ensure in each of the these steps that h̃ and h agree on an open set, and then use
Proposition (15.3.v).

The final step consists of showing that h is isotopic to IdRn . As before, the choice of ε
will be important here. Since h is homotopic to the identity, the induced homeomorphism
h̃ : Rn → Rn is bounded distance from Id by Lemma 15.5, and is consequently isotopic to the
identity (Proposition 15.2). Therefore, h is also isotopic to the identity, as desired. □

With the sketch out of the way, here are the details in the proof of Theorem 15.4.

Proof of Theorem 15.4. Let us identify S1 with [0, 1]⧸0 ∼ 1, so that [0, 1
2 ] is viewed as a subset

of S1, and we have the closed ball

B := [0, 1
2]n ⊆ Tn∖ {pt}
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for a suitably chosen point pt ∈ Tn. Moreover, we choose closed concentric balls A ⊊ 2A ⊊ 3A
centred at pt ∈ Tn and disjoint from B. Abusing notation we also write B := [0, 1

2 ]n ⊆ Rn. The
proof consists of building the maps in the following diagram.

(15.2)

Rn Rn

Tn Tn

Tn∖ 3Å ĥ(Tn∖ 3Å)

Tn∖ 2Å Tn∖ Å

Rn Rn

h̃

e e

h
∼=

ĥ|

↫→ α

ĥ

↫→ α
h
∼=

Our original homeomorphism h appears in the bottom row, and we start building the diagram
from there upwards. We present the proof in a collection of steps and lemmas, so that the many
details do not obscure the bigger picture and the structure of the proof is clear.

Figure 15.1. The key players in the proof of Theorem 15.4.

Step 5. Construct an immersion α : Tn∖ {pt} ↬ Rn such that α(Tn∖ 2Å) ⊆ Dn and
α|B = Id.

We will obtain α by modifying an immersion β : Tn∖ {pt}↬ Rn from Corollary 15.6. We
begin with a smooth immersion, but the smoothness will not be important for the proof. Recall
that an immersion is by definition a local embedding, and that β is an open map by invariance
of domain. Therefore, we can find a closed ball B′ ⊆ B such that β|B′ is a homeomorphism and
β(∂B′) is a bicollared (n− 1)-sphere in Rn.

We then choose homeomorphisms j : Tn∖ {pt} → Tn∖ {pt} and k : Rn → Rn such that j
takes B′ to B, and k takes B′′ := β(B′) to B. In more detail, to construct j, we may choose
B′ to be an n-cube within B, so that j consists of a (cubical) contraction within B and the
identity elsewhere. To construct k, we observe that B and B′′ are homeomorphic, and such a
homeomorphism may be extended to all of Rn by extending over the complements, which are
punctured discs by the Schoenflies theorem.

Then the composition k ◦ β ◦ j−1 : Tn∖ {pt}↬ Rn is still an immersion, which now takes B
to itself. By modifying the construction above, we further assume that α|B = Id. Compose this
immersion with a radial squeeze R fixing B so that the resulting immersion

α := R ◦ k ◦ β ◦ j−1 : Tn∖ {pt}↬ Rn
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has α(Tn∖ 2Å) ⊆ Dn. Here we are using that Tn∖ 2Å is compact and therefore has bounded
image under k ◦ β ◦ j−1.

Step 6. Choose ε > 0 as required in the statement of the theorem.

Let us denote Dθ(x) := {y | d(x, y) < θ}. We will choose ε in several steps.
(1) Choose ε1 > 0 such that α|D2ε1 (x) is a homeomorphism for every x ∈ Tn∖ Å.

Namely, choose for every x ∈ Tn∖ Å an open neighborhood Ux ∼= Rn such that α|Ux

is a homeomorphism; this is an open cover of the compact space Tn∖ Å, so has a
finite Lebesgue number 2ε1 (meaning that any D2ε1(x) is contained in a member of the
cover).

(2) Choose ε2 > 0 so that Dε2(α(x)) ⊆ α(Dε1(x)) for every x ∈ Tn∖ Å.
Namely, consider the map

Tn∖ Å → R>0

x 7→ εx := d
(
α(x), Rn∖ α(Dε1(x))

)
.

Above εx is positive for each x since Dε1(x) and hence α(Dε1(x)) is open, so Rn∖
α(Dε1(x)) is closed.

Lemma 15.9. The above map is continuous.

We defer the proof of the lemma to the end of this step. Since Tn∖ Å is compact, we
may choose z ∈ Tn∖ Å that realises the minimum of the above function. In particular,
this minimum is nonzero and we define ε2 := εz > 0.

(3) Choose ε3 > 0 with ε3 < ε2 and so that if y ∈ Rn satisfies |y − α(x)| < ε3 for
some x ∈ Tn∖ 2Å , then y ∈ α(Tn∖ Å).

This is achieved by taking

ε3 < min
{
ε2, d

(
α(Tn∖ 2Å),Rn∖ α(Tn∖ Å)

)}
.

Since α(Tn∖ 2Å) is compact and Rn∖ α(Tn∖ Å) is closed, their mutual distance is
positive so ε3 > 0.

(4) Finally, define the required ε > 0 by setting ε := ε3
2 . Observe that the only input in

the definition of ε is the map α.

Proof of Lemma 15.9. Fix η > 0 and x ∈ Tn∖ Å. The map α|
D2ε1 (x) is uniformly continuous by

the Heine-Cantor theorem since D2ε1(x) is compact. So there exists δ > 0 such that d(p, q) < δ
for p, q ∈ D2ε1(x) implies that d(α(p), α(q)) < η

2 . Assume that 0 < δ < ε1.

Claim. If d(p, q) < δ < ε1 for p, q ∈ Tn∖ Å then for all z ∈ ∂Dε1(p) there exists z′ ∈ ∂Dε1(q)
so that d(z, z′) < δ.

We defer the proof of the claim to the end of this step. Given y ∈ Tn∖ Å with d(x, y) < δ,
we want to show |εx − εy| < η. Since εx := d(α(x),Rn∖ αDε1(x)), there exists z ∈ ∂Dε1(x) with
εx = d(α(x), α(z)). Choose, using the subclaim, some z′ ∈ ∂Dε1(y) with d(z, z′) < δ. Then

εy := d
(
α(y),Rn∖ αDε1(y)

)
≤ d(α(y), α(z′))
≤ d(α(y), α(x)) + d(α(x), α(z)) + d(α(z), α(z′))

<
η

2 + εx + η

2 = η + εx

Here we have used the fact that z, z′ ∈ D2ε1(x), since z ∈ ∂Dε1(x) and z′ ∈ ∂Dε1(y), along with
d(x, z′) ≤ d(x, y) + d(y, z′) < δ + ε1 < 2ε1.

A similar proof shows that εx < εy + η. This completes the proof of the lemma. □
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Proof of the claim. Since δ < ε, by the definition of ε1 we know that α|Dε1 (p)∪Dε1 (q) is a homeo-
morphism onto its image, since Dε1(p) ∪ Dε1(q) ⊆ D2ε1(p). In the upcoming proof, we will
therefore assume that we are working in Rn.

In case z ∈ ∂Dε1(q), we just choose z′ = z.
The next possibility is that z ∈ D̊ε1(q). Let z′ be the intersection point of the ray starting

at q and passing through z, with ∂Dε1(q) (so q < z < z′). Then
d(z, p) = ε1 ≤ d(p, q) + d(q, z) < δ + d(q, z)

so ε1 − δ < d(q, z). Then
ε1 − δ + d(z, z′) < d(q, z) + d(z, z′) = d(q, z′) = ε1

so d(z, z′) < δ.
The final possibility is that z ∈ Rn∖Dε1(q). Then let z′ be the point of intersection of the

ray from p to z, with ∂Dε1(q). Then
ε1 = d(z′, q) ≤ d(z′, p) + d(p, q) < d(z′, p) + δ

so ε1 − δ < d(z′, p). So
ε1 − δ + d(z, z′) < d(z′, p) + d(z, z′) = d(p, z) = ε1

so d(z, z′) < δ, as needed. □

Step 7. Define the embedding ĥ : Tn∖ 2Å ↪→ Tn∖ Å that fits into the bottom square of the
diagram in (15.2).

Recall from the hypothesis that we are given a homeomorphism h : Rn → Rn such that
|h(x) − x| < ε for every x ∈ Dn. Define

ĥ : Tn∖ 2Å ↪→ Tn∖ Å

x 7→ α|−1
Bε1 (x) ◦ h ◦ α|Bε1 (x)(x).

Claim. The function ĥ is well-defined.

Proof of claim. By definition of the immersion α, we know that α(Tn∖ 2Å) ⊆ Dn. As a con-
sequence, by our assumption on h, we know that for every x ∈ Tn∖2Å, we have |h(α(x))−α(x)| <
ε < ε3. By definition of ε3, this implies that h(α(x)) ∈ α(Tn∖ Å). But now since, |h(α(x)) −
α(x)| < ε3 < ε2 and using the definition of ε2, we deduce that h(α(x)) ∈ Bε2(α(x)) ⊆ α(Bε1(x)).
As, by construction, α is a homeomorphism onBε1(x), it makes sense to write α|−1

Bε1 (x)(hα(x)). □

Claim. The function ĥ is continuous.

Proof of claim. It suffices to prove that for all x ∈ Tn∖ 2Å, there exists an open neighborhood U
of x such that ĥ|U is continuous.

Fix x ∈ Tn∖ 2Å. Since α is continuous, there exists δ > 0 such that d(x, y) < δ implies
d(α(x), α(y)) < ε3

2 . Let y ∈ U := Bε1(x) ∩Bδ(x). Note that Bε1(x) ∪Bε1(y) ⊆ B2ε1(x) and so
α|Bε1 (x)∪Bε1 (y) is a homeomorphism.

We have that hα|Bε1 (y)(y) = hα|Bε1 (x)(y) = hα(y). Further

|hα(y) − α(x)| ≤ |hα(y) − α(y)| + |α(y) − α(x)| ≤ ε3
2 + ε3

2 = ε3 < ε2,

so hα(y) ∈ Bε2(α(x)) ⊆ αBε1(x). As before, we know that hα(y) ∈ αBε1(y).
By definition, ĥ(y) = α|−1

Bε1 (y)hα(y). Consider y′ := α|−1
Bε1 (x)hα(y). We assert that y′ = ĥ(y)

since y′ ∈ Bε1(x) with α(y′) = hα(y), and ĥ(y) ∈ Bε1(y) with α(ĥ(y)) = hα(y), where
α|Bε1 (x)∪Bε1 (y) is a homeomorphism.
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In other words, ĥ|U = α|−1
Bε1 (x) ◦ h ◦ α|U where the latter is continuous as a restriction of a

continuous map. This completes the proof of the claim. □

Claim. The function ĥ is an embedding.

Proof of claim. First we prove that ĥ is injective. Assume by way of contradiction that ĥ(x) =
ĥ(y) for some x ̸= y. Note that for every z ∈ Tn∖ 2Å, we have ĥ(z) ∈ Bε1(z). In particular,
we have d(ĥ(x), x) < ε1 and d(ĥ(y), y) < ε1, or put differently, x, y ∈ Bε1(ĥ(x)) because we
assumed that ĥ(x) = ĥ(y). Since α|

Bε1 (̂h(x)) is a homeomorphism (by definition of ε1) and x ̸= y,
we deduce that α(x) ̸= α(y). Since h is a homeomorphism, this implies that h(α(x)) ̸= h(α(y)).
Using the definition of ĥ, this can be written as α(ĥ(x)) ̸= α(ĥ(y)). This contradicts the fact
that ĥ(x) = ĥ(y), and therefore shows that ĥ is injective.

As a continuous, injective map from a compact space to a Hausdorff space ĥ is further a
closed map, and therefore by the closed map lemma it is an embedding. □

Finally, we note that ĥ and h agree on B̃ := [ε3,
1
2 − ε3]n ⊆ B ⊆ Tn∖ 2Å. To see this

observe that α is fixed on B, and thus for x ∈ B̃, we have that h(x) ∈ B since |hα(x) − α(x)| =
|h(x) − x| < ε3

2 . Since α is fixed on B, α|B(h(x)) = h(x) so ĥ(x) = α|−1
B (h(x)) = h(x) for x ∈ B̃.

Step 8. Extend the embedding ĥ : Tn∖ 2Å ↪→ Tn∖ Å to a homeomorphism h : Tn
∼=−→ Tn, as

in the middle two squares of the diagram in (15.2).

Note that ĥ(∂3A) is a bicollared (n−1)-sphere in Tn. By Schoenflies theorem for the n-torus
for n ≥ 3 (Proposition 15.7), this sphere bounds an embedded ball in Tn; since ĥ(Tn∖ 3Å) is
clearly not a ball, the other component of Tn∖ ĥ(∂3A), call it C, must be homeomorphic to a ball.
We can now use the Alexander coning trick (Proposition 15.3.0) to extend the homeomorphism
ĥ|Tn∖3Å of Sn−1 to a homeomorphism h : Tn

∼=−→ Tn of Dn, as required (that is, over 3A in the
domain and C in the codomain). We leave it to the reader to consider the cases n ≤ 2.

Step 9. Show that h is isotopic to the identity IdTn.

Since the universal cover of Tn is contractible, πi(Tn) = 0 for i > 1 and thus Tn is a K(Zn, 1).
Now, homotopy classes of maps between Eilenberg-MacLane spaces correspond to the induced
maps on the homotopy groups. Since h may not preserve basepoints, we must consider the
induced map on the outer automorphism group of the fundamental group (since changing the
basepoint corresponds to an inner automorphism). Now, as π1(Tn) is abelian, it suffices to show
that h is homotopic to IdTn it suffices to prove that h preserves free homotopy classes of loops.

To this end, consider a copy γ of S1 × {∗} × . . . {∗} ⊆ Tn∖ 3Å and let us show that h(γ) is
freely homotopic to γ. Since we have α(h(γ)) = h(α(γ)) it will suffice to check the following.

Claim. There is a homotopy Γ: S1 × [0, 1] → Rn from Γ0 = h(α(γ)) to Γ1 = α(γ) such that
Γt is at most distance ε for all t ∈ [0, 1].

Indeed, such a homotopy can be lifted to a free homotopy from ĥ(γ) (and thus also from
h(γ)) to γ, as desired.

Proof of claim. For all y ∈ S1 we have d(hα(y), α(γ)) ≤ d(hα(y), α(y)) < ε, for our chosen
constant ε := ε3

2 from Step 6. Therefore, h(α(γ)) ⊆ Nε(α(γ)) ⊆ α(Tn∖ Å). We define Γ as the
straight line homotopy

(y, t) 7→ th(α(y)) + (1 − t)α(y),
and observe that Γt ⊆ Nε(α(γ)) ⊆ α(Tn∖ Å) for all t ∈ [0, 1]. Indeed, for all y ∈ γ we have

d(Ft(y), α(γ)) ≤ d(Ft(y), α(y)) = t|hα(y) − α(y)| < ε. □
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Step 10. Conclude the proof.

Define h̃ : Rn → Rn to be the map on universal covering spaces induced by h : Tn → Tn,
also ensuring that B ⊆ Rn is mapped onto B ⊆ Tn by the “identity”. Indeed, recall that the
universal covering map e : Rn → Tn denotes the exponential map, so this is in a way automatic
by our identification of S1 with [0, 1]⧸0 ∼ 1.

Since h is isotopic to the identity, by Lemma 15.5 the induced homeomorphism h̃ : Rn → Rn
on the universal covers is bounded distance from the identity. By Proposition 15.2 we deduce
that h̃ is isotopic to IdRn .

On the other hand, we claim that h and h̃ agree on the ball

B̃ := [2ε, 1
2 − 2ε] ⊆ B := [0, 1

2]n ⊆ Tn∖ 3Å.

Indeed, let x ∈ B̃. Then h(x) ∈ B because |h(x) − x| < ε and α(x) = x and α|B(h(x)) = h(x),
as α fixes B. Now the definition of ĥ now gives

ĥ(x) = α|−1
B hα(x) = α|−1

B h(x) = h(x).

implying also h̃(x) = h(x). Consequently, h̃ and h are isotopic by Proposition 15.3.v, and so h is
also isotopic to the identity. This concludes the proof of Černavskǐı-Kirby Theorem 15.4. □

15.2.1. Recap of the torus trick. Since the proof in the previous section contained many
details, we recap its salient features. See Fig. 15.2.

We began with an immersion α into Rn of the punctured torus Tn∖ pt, which has specified
regions B and A ⊆ 2A ⊆ 3A. We chose ε so that the image of Tn∖ 2Å under h lies within the
unit disc Dn, for any h ∈ Homeo(Rn) satisfying |h(x) − x| < ε for all x ∈ Dn. This enabled us
to define the lift ĥ : Tn∖ 2̊A → Tn∖ Å, see the middle row in Fig. 15.2.

Then by the Schoenflies theorem and the Alexander trick we extended ĥ|Tn∖3̊A to a homeo-
morphism of the whole torus, h : Tn → Tn. We checked that h is homotopic to IdTn , as Tn is a
K(Zn, 1) and, roughly speaking, h does not move generators of π1(Tn) too much.

Finally, h induces a homeomorphism h̃ of Rn which only moves fundamental domains by a
small amount, so it is bounded distance from the identity, and therefore is isotopic to the IdRn .
On the other hand, we arranged that h̃ and h agree on an open subset of B, so by an Alexander
isotopy h and h̃ are isotopic. Therefore, we conclude that h is isotopic to IdRn , as desired.

15.3. Local contractibility

As mentioned at the beginning of this section, the key use of Theorem 15.4 is in proving
that Homeo(Rn) is locally contractible.

Definition 15.10. A space X is locally contractible at x ∈ X if for every neighbourhood U ∋ x
there is a neighbourhood x ∈ V ⊆ U and a map H : V × [0, 1] → U such that H(y, 0) = y and
H(y, 1) = x for all y ∈ V . We say X is locally contractible if the previous is true at every x ∈ X.

Corollary 15.11 ([Č73],[Kir69]). Homeo(Rn) is locally contractible.

Proof. For ε, δ > 0, let Dn
δ be the closed disc of radius δ at the origin and define

V (Dn
δ , ε) := {f ∈ Homeo(Rn) | d(f(x), x) < ε for every x ∈ Dn

δ }.

This is a neighbourhood of IdRn ∈ Homeo(Rn) under compact open topology – actually, such
sets comprise a basis for the compact open topology on C(M,N), see Exercise 15.2 below.

Given U ∋ x choose ε, δ such that V (Dn
δ , ε) ⊆ U . Our goal is to produce a homotopy

H : V (Dn
δ , ε) × [0, 1] → V (Dn

δ , ε) ⊆ U



15.3. LOCAL CONTRACTIBILITY 143

Figure 15.2. Recap of the proof of Theorem 15.4.



144 15. HOMEOMORPHISMS OF RN AND THE TORUS TRICK

such that H0 = Id and H1 = {IdRn}. In other words, for h ∈ V (Dn
δ , ε) the path Ht(h) is an

isotopy from h to IdRn . Note that Theorem 15.4 provides such paths, but it remains to see that
they glue together into a continuous map H, i.e. we need to make sure that all constructions in
the proof of Theorem 15.4 were canonical in terms of h.

This can be done, see ? for details. In particular, the application of Schoenflies theorem in
Step 4 is also canonical, meaning that the map

Embbicoll(Sn−1, Sn) → Emb(Dn−1, Sn)
given by the Schoenflies theorem is continuous. For Brown’s proof of that theorem, this was
shown carefully by Gauld [Gau71].

Therefore, Homeo(Rn) is locally contractible at IdRn . The rest of the proof is completed by
the next exercise. □

Exercise 15.1. (PS7.2) Let M be a manifold. Show that Homeo(M) is locally contractible
at each f ∈ Homeo(M) if and only if it is locally contractible at IdM .

Exercise 15.2. (PS7.1) Let M and N be manifolds. Let d be a metric on N . Show that
the collection of sets of the form

W (f,K, ε) := {f ∈ C(M,N) | d(f(x), g(x)) < ε for all x ∈ K}
where K ⊆ M is compact and ε > 0 is a basis for the compact open topology on C(M,N).

Let us point out that Homeo(Rn) is not globally contractible.

Exercise 15.3. (PS6.2)
(i) The space of homeomorphisms of R2 is not contractible.
(ii) The space of orientation preserving homeomorphisms of R2 is not contractible.

Hint: recall from Corollary 7.5 that ev : M×Homeo(M) → M , ev(x, f) = f(x) is continuous, and
from Lemma 8.12 that Homeo0(R2) ↪→ Homeo(R2) is a homotopy equivalence; then construct a
loop of homeomorphisms that does not contract to a point.
Remark 15.12. Kneser [Kne26] (see also [Fri73]) showed that Homeo(R2) ≃ O(2). Further, we
know that O(2) ∼= S1 ⊔ S1.

Later in the course we will sketch the proof that Homeo(M) for every compact manifold M is
locally contractible [Č73, EK71a]. However, the corresponding fact for noncompact manifolds
is not true, as demonstrated by the following exercise.

Exercise 15.4. (PS7.3) For i ∈ N, let Bi denote the ball of radius 1
3 centred at (i, 0) ∈ R2.

Define M := R2∖ ⋃
iBi.

Let hi ∈ Homeo(M) be a homeomorphism which is the identity outside the disc of radius 1
centred at (i+ 1

2 , 0), and which maps Bi to Bi+1 and vice versa. Why does such a homeomorphism
exist?

Show that hi is not homotopic to the identity for any i, but {hi} converges to the identity
in the compact open topology on Homeo(M).

Conclude that Homeo(M) is not locally contractible, nor locally path connected.



CHAPTER 16

The torus trick in low dimensions

Daniel Galvin, Weizhe Niu, and Benjamin Matthias Ruppik

Structure of the chapter. The goal of Section 16.1 is to give an exposition of three explicit
constructions of immersions of punctured tori that appeared in the literature. We start by
visualizing such an immersion in dimensions 2 and 3 in Section 16.1.1. Then we look at Milnor’s
inductive argument in Section 16.1.2, continue with Ferry’s explicit version in Section 16.1.3 and
finish with Barden-Siebenmann’s construction Section 16.1.4 as presented in Rushing’s work.

Hatcher’s application to smooth structures on surfaces is taken up in Section 16.2. PL
structures on 3-manifolds following Hamilton are treated in Section 16.3.

16.1. Explicit immersions of the n-torus into Rn

An important ingredient for the torus trick, is an immersion of a punctured n-torus into
Rn. For this section, we work in the smooth category, where a smooth immersion is a smooth
map f : M → N between the smooth manifolds M , N such that its differential Tx(f) : Tx(M) →
Tf(x)(N) is injective at every point x ∈ M . An equivalent condition would be to require that
the map f is locally a smooth embedding. Note that an injective immersion is not necessarily a
(global) embedding, because an embedding is required to be a homeomorphism onto its image.
Wrapping a half-open interval onto a circle, [0, 1) → S1 is an example of this (an injective
immersion which is not a homeomorphism onto its image).

There is a notion of a topological immersion between topological manifolds, where the
defining property is that every point in the source has a neighborhood on which the map restricts
to an embedding.
Remark 16.1. A smooth submersion s : M → N between the smooth manifolds M , N is
a smooth map f : M → N between the smooth manifolds M , N such that its differential
Tx(f) : Tx(M) → Tf(x)(N) is surjective at every point x ∈ M . For a map between manifolds
of the same dimension, the notions of immersion and submersion coincide. In particular, our
immersions Tn − {pt} ↬ Rn are in this codimension 0 setting. In his letter Milnor uses the
’submersion’ terminology, but here we plan to stick with ’immersion’.

The existence of an immersion Tn − {pt}↬ Rn can be concluded from Smale-Hirsch theory,
which is a tool to study the homotopy type of embedding spaces. In particular, a theorem of
Hirsch claims that a smooth, open, parallelizable n-manifold (for example, a punctured n-torus)
can be smoothly immersed into Rn.

16.1.1. Pictures in dimensions 2 and 3. We write Tn0 for the n-torus where an n-call
has been removed. Observe that it does not make a difference whether we remove a point or a
closed n-cell.

The 2-torus T2 has a handle decomposition with one 0-handle, two 1-handles and one
2-handle. An immersion of the 0-handle D2 × D0 together with the two 1-handles (D1 × D1

attached along S0 ×D1) into the plane is shown in Figure 16.1. Since the images of the 1-handles
cross, this map is not injective. We can also describe the image of this immersion as the union
of two annuli S1 × [0, 1] ∪ S1 × [0, 1], where one of the overlapping squares takes the role of the
0-handle, while the other square is the region of intersection of the 1-handles.

145



146 16. THE TORUS TRICK IN LOW DIMENSIONS

Figure 16.1. Two pictures of an immersion of a punctured 2-torus into the
plane.

Figure 16.2. Embedding the 1-skeleton of the 3-torus into 3-space.

The 3-torus T3 has a handle decomposition with one 0-handle, three 1-handles, three 2-
handles (which are attached along pairwise commutators of the 1-handles) and a single 3-handle.
We would like to immerse everything except the top-dimensional handle into 3-space. The
1-skeleton

h0 ∪ h1
a ∪ h1

b ∪ h1
c = D3

3⋃
S0×D2

D1 ×D2

homeomorphic to a 3-dimensional handlebody ♮3S1 ×D2 can be embedded into R3 as for example
in Figure 16.2. Attaching the 2-handles D2 ×D1 along S1 ×D1 so that the attaching spheres
S1 × {0} read off the words aba−1b−1, bcb−1c−1 and cac−1a−1 will introduce (self-)intersections.

The following indication of an immersion T3 − 3-handle↬ R3 is inspired by Ryan Budney’s
answer [Bud]. We would like to describe the image of the immersion as the union

S1 × S1 × [0, 1] ∪ S1 × [0, 1] × S1 ∪ [0, 1] × S1 × S1

of thickened tori (the interval factor [0, 1] corresponding to the thickening), where we have to
arrange the overlaps so that we can suitably interpret them as handles and double or triple point
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Figure 16.3. Thickened 2-torus with boundary of tubular neighborhood around
longitude. This looks like the spin of the immersion in Figure 16.1.

Figure 16.4. Seeing part of the handle decomposition of the 3-torus in the
overlaps of the immersion in Figure 16.3.

regions. For example Figure 16.3, shows an immersion of the union S1 ×S1 ×[0, 1]∪S1 ×[0, 1]×S1

with overlaps compatible to the handle decomposition of the 3-torus, see also Fig. 16.4. We would
still have to add another 2-handle to the picture to complete the immersion of the punctured
3-torus, but we will stop here and move on to the proofs giving general constructions.

16.1.2. Milnor’s inductive argument.
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Figure 16.5. The circle S1 satisfies Milnor’s property I.

Main idea: Milnor’s letter printed in [KS77b, Essay I, Appendix B]
− Suppose Mk can be embedded in Euclidean space so that projection onto a hyperplane

defines an immersion Mk − disk↬ Rk
− Will show that then also Mk+1 = Mk × S1 has this condition
− Starting with M1 = S1 inductively get immersions of punctured torus

Slogan: Spin and perturb (now can immerse by projecting), or keep going to spin and perturb
(and project), ...

Definition 16.2 (Property I). Let Mk−1 be a smooth manifold. We say that M satisfies
Property I if it has a codimension 1 embedding into Euclidean space Mk−1 ↪→ Rk so that for
some smooth closed disk D ⊂ M there exists a k − 1-dimensional hyperplane P ⊂ Rk so that
the orthogonal projection prP : M − D → P is an immersion.

Proposition 16.3. The circle S1 satisfies property I.

Proof. The proof is by picture in Figure 16.5. □

Theorem 16.4. If M satisfies Property I, then so does the product with a circle M × S1.

Let us assume the inductive Theorem 16.4 for now, then the immersion of the punctured
torus can be built as follows. Inductively, the n-dimensional torus Tn = (S1)×n−1 × S1 satisfies
Property I, so that the orthogonal projection

Tn0 ∼= Tn − D → Rn+1 prP−−→ P ∼= Rn

gives the immersion of the punctured torus.
Proof of Theorem 16.4. Let us make some simplifying assumptions on the embedding of Mk−1 ⊂
Rk: We will arrange it so that we can pick the hyperplane P = {x1 = 0} for the immersion of
M − D and that the image of M lies in the open “slab” {0 < xk < β} of Rk.

Think of Rk+1 with its open book decomposition with binding Rk−1 and pages the half-spaces
Rk+, as in Figure 16.6. We can “spin” the subset M ⊂ Rk to obtain an embedding

M × S1 ↪→ Rk+1

((x1, . . . , xk−1, xk), θ) 7→ (x1, . . . , xk−1, xk · cos θ, xk · sin θ)
Here θ ∈ [0, 2π]/0 ∼ 2π ∼= S1 is the coordinate on the circle.

We still need a slight deformation of this embedding to check property I, and find the
hyperplane into which we want to immerse.
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Figure 16.6. Spinning the embedding Mk−1 ↪→ Rk (assuming it lies in the
half-space {xk > 0}) to obtain an embedding Mk−1 × S1 ↪→ Rk+1.

Figure 16.7. Checking that the projection to a hyperplane is an immersion of
a submanifold by looking at the normal vector.

Let us set up the notation to describe projections to hyperplanes: A normal vector v ∈ Rk+1

determines the hyperplane v⊥ = {x ∈ Rk+1 | ⟨v, x⟩ = 0}. Orthogonal projection to v⊥ will give
an immersion of a submanifold W ⊂ Rk+1 as long as the normal vector pw to W at w ∈ W is
not orthogonal to the vector v describing the hyperplane v⊥, see Figure 16.7. In other words,
in our perturbation attempts we want to chose an orthogonal projection direction v so that
⟨pw, v⟩ > 0 at all points w ∈ W .

As an Ansatz, look in the direction of the first unit vector e1 = (1, 0, . . . , 0) ∈ Rk+1, and
then tilt your head slightly away from the last unit vector ek+1 = (0, . . . , 0, 1) ∈ Rk+1. We will
try to project to the plane orthogonal to

v = e1 − αek+1
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Figure 16.8. Embedding a neighborhood Mk−1 × (−ε, ε) into Rk.

Figure 16.9. An example for the function t : S1 → (−ε, ε). (© Milnor’s letter
in [KS77b])

Figure 16.10. Schematic of Milnor’s perturbation of the spin. (© Milnor’s
letter in [KS77b])
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where the amount of tilting α ∈ R+ will be determined momentarily.
To parameterize the perturbation of the spin, we use the following equation, whose compon-

ents will be described in the following enumeration. Also see Figure 16.10 for a schematic.
Mk−1 × S1 ↪→ Rk+1

(x, θ) 7→ rotθ(x+ t(θ) · n(x))

(1) The coordinates x = (x1, . . . , xk) ∈ M come from the embedding M ↪→ Rk
(2) n(x) = (n1(x), . . . ,nk(x)) is the unit normal vector to x ∈ Mk−1 in Rk.
(3) Since M is compact we can choose an ε > 0 so that (potentially after a translation) the

map
M × (−ε, ε) ↪→ Rk

(x, t) 7→ x+ t · n(x)
is an embedding with image in {0 < xk < β}, see Figure 16.8.

(4) The amount by how much we wiggle in the normal direction will vary when we go around
the spinning circle, and we specify it with a smooth function t : S1 → (−ε, ε), θ 7→ t(θ).
We require two further properties of this function t, the graph of an example is shown
in Figure 16.9.

− cos θ d t
dθ ≥ 0 for all θ ∈ S1.

− At θ = 0, d t
dθ ≥ 2β

α . Remember that β > 0 was an upper bound on the xk-
coordinate of the embedding of Mk−1 × (−ε, ε) into Rk. Now we want to specify
α > 0 which is also the amount by how much we tilt our projection axis away
from the ek+1-direction: 2α is supposed to be a positive lower bound for the first
component n1(x) of the normal vector for x ∈ M − D. Such a lower bound exists,
since by assumption projecting to {x1 = 0} was an immersion on M − D, so the
normal vector cannot be orthogonal to e1 on (the closure) of this set.

(5) The rotation of the spinning can be encoded in matrix form as

rotθ : Rk+1 → Rk+1

rotθ =


1

. . .
1

cos θ − sin θ
sin θ cos θ


We will now check that projecting to the hyperplane v⊥, e1 − αek+1, gives an immersion of

the perturbed (M × S1) − disk. For this, we check the condition ⟨p(x, θ), v⟩ > 0, where

p(x, θ) = p((x1, . . . , xk), θ) = (xk + t(θ) · nk(x)) · rotθ(n(x)) − d t(θ)
dθ

is the normal vector to the perturbed embedding of M ×S1. We can compute the scalar product
as

⟨p(x, θ), v⟩ = (xk + t(θ) · nk(x)) · (n1(x) − α · sin θ · nk(x))︸ ︷︷ ︸
A

+α · cos θ · d t(θ)
dθ︸ ︷︷ ︸

B≥0

Bounding this from below splits up into two cases:
− For x ∈ M−D, arbitrary θ: Remember that α was a lower bound for the first component

of the normal vector on this set, so we conclude for the first summand in the scalar
product that

A ≥ (xk + t(θ) · nk(x)) · (2α− α) > 0
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The second summand B is non-negative by our construction of the function t. So on
this set, ⟨p(x, θ), v⟩ > 0

− For all x ∈ M , but θ = 0: Here A ≥ −β and B ≥ α2β
α . This shows ⟨p(x, 0), v⟩ > 0 and

by continuity ⟨p(x, θ), v⟩ > 0 for all θ which are sufficiently close to 0, say for |θ| ≤ η,
η > 0.

In conclusion, projecting to the hyperplane v⊥ is an immersion on
(M × S1) − (D × [η, 2π − η])↬ v⊥

which is M × S1 without a disk. This concludes the proof that M × S1 satisfies property I. □

Remark 16.5. Milnor cites the paper [Gra74] which contains another explicit construction of an
immersion, but unfortunately we were not able to track down this reference.

16.1.3. Ferry’s explicit version.
Main idea: [Fer74b]

− Define a “standard embedding” Tn × (0, 1) ↪→ Rn+1 via explicit coordinates
− Perturb the image of Tn × {0} in its normal bundle
− projection to Rn is an immersion in a neighborhood of the (n− 1)-skeleton of Tn (which

is a punctured torus)
Slogan: Spin iteratively until we embedded the torus, then after one perturbation at the end
we can project to the first coordinates

We will use the coordinates
θ⃗ = (θ1, . . . , θn) ∈ Tn = (S1)×n

with θi ∈ S1 ∼= [0, 2π]/0 ∼ 2π to describe points on the n-torus, where we usually pick the
representative to lie in the interval θi ∈ [0, 2π).

We will now describe the standard embedding of Tn × (−1, 1) into Rn+1 via an iterated
spinning construction. The idea of the spinning is the same as appeared in Milnor’s construction,
but the difference here is that we will perturb the image only once at the end, and not after
each spinning step. The advantage of this is that we can write down the spinning in explicit
coordinates.

Start with the standard embedding of the thickened 1-torus
S1×(−1, 1) ↪→ R2

(θ1, t) 7→ ((1 + t)· cos θ1, (1 + t)· sin θ1+2)
Nos suppose we have constructed an embedding

Tn×(−1, 1) ↪→ Rn+1

(θ⃗, t) 7→ (f1(θ⃗, t), . . . , fn(θ⃗, t), fn+1(θ⃗, t))

where we assume that we have shifted the last coordinate so that fn+1(θ⃗, t) > 0. This assumption
on the last coordinate is the reason for the +2 in the standard embedding of the 1-torus. Then
by spinning we can construct a new embedding

Tn+1×(−1, 1) ↪→ Rn+2

(θ⃗, t) 7→ (f1(θ⃗, t), . . . , fn(θ⃗, t), fn+1(θ⃗, t) · cos θn+1, fn+1(θ⃗, t) · sin θn+1, )
where after each spinning stage, add 2n to the last coordinate to force the last coordinate to be
> 0. Here are the first steps in this construction:

T1×(−1, 1) ↪→R2

(θ⃗ = (θ1), t) 7→((1 + t)· cos θ1, (1 + t)· sin θ1+2)
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Figure 16.11. The 1-skeleton of the 2-torus T2
(1) and the 2-skeleton of the

3-torus T3
(2).

T2×(−1, 1) ↪→R3

(θ⃗ = (θ1, θ2), t) 7→((1 + t)· cos θ1, ((1 + t)· sin θ1+2) · cos θ2, ((1 + t)· sin θ1+2) · sin θ2+4)
T3×(−1, 1) ↪→R4

(θ⃗ = (θ1, θ2, θ3), t) 7→((1 + t)· cos θ1, ((1 + t)· sin θ1+2) · cos θ2,

(((1 + t)· sin θ1+2) · sin θ2+4) · cos θ3, (((1 + t)· sin θ1+2) · sin θ2+4) · sin θ3+8)
In the circle coordinates, we can explicitly describe the (n− 1)-skeleton of the n-torus as

Tn(n−1) = {(θ1, . . . , θn) ∈ Tn | θi = 0 for some i ∈ {1, . . . , n}}
Observe that an open neighborhood of Tn(n−1) ⊂ Tn is everything except a closed disk in the
n-cell of Tn. See also Figure 16.11 for an illustration in low dimensions.

Our goal now will be to perturb Tn × {0} in the normal t-direction so that projecting to the
first n coordinates, i.e. to Rn × {0} ⊂ Rn+1, is an immersion on an open tubular neighborhood
of Tn(n−1). See Figure 16.12 for a schematic illustration. Here the perturbation contains ε > 0 as
a small positive parameter, and we pick the function

φ : Tn → R

θ⃗ 7→ sin θ1 · sin θ2 · . . . · sin θn
2n + sin θ2 · . . . · sin θn

2n−1 + . . .+ sin θn−1 · sin θn
22 + sin θn

2
to determine by how much we wiggle in the normal direction. Putting this together, we have
the following:

Tn × (−1, 1) → Rn+1

(θ⃗, t) 7→ (f1(θ⃗, t), . . . , fn(θ⃗, t), fn+1(θ⃗, t))
⇝ pert : Tn → Rn+1

θ⃗ 7→ (f1(θ⃗, ε · φ(θ⃗)), . . . , fn(θ⃗, ε · φ(θ⃗)), fn+1(θ⃗, ε · φ(θ⃗)))
⇝ pr ◦ pert : Tn → Rn
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Figure 16.12. Schematic of the projection of the perturbed torus in Ferry’s
proof

θ⃗ 7→ (f1(θ⃗, ε · φ(θ⃗)), . . . , fn(θ⃗, ε · φ(θ⃗)))
Showing that this composition of the perturbation with the projection has injective differential in
a neighborhood of the (n− 1)-skeleton would prove that is restricts to an immersion of Tn −Dn

into Rn as desired.
We will skip the calculation, but now it is possible to compute that the differential of the

map pr ◦ pert at points θ⃗ ∈ Tn(n−1) and t = ε · φ(θ⃗) = 0 is given by
−ε
2n · det(Df)

where Df is the determinant of the Jacobian of the standard embedding of the n-torus into
Rn. For details of the computation see Barden’s paper [Fer74b]. Here we will be content with
observing that this Jacobian of the standard embedding is non-singular, and so by continuity
of the differential the determinant of D(pr ◦ pert) is non-zero in a small open neighborhood of
Tn(n−1) and for small parameters ε. This concludes our exposition of Ferry’s construction.

16.1.4. Barden’s inductive proof.
Main idea: [Rus73a, Immersion Lemma 5.6.1]

− Inductively build immersions Tn × [0, 1]↬ Rn × [0, 1]
− they restrict to a product map on (Tn − n-cell) × [0, 1]
− the first factor of the product map gives the desired immersion

Slogan: Add an extra dimension useful for the induction, then restrict to the first factor

This section closely follows Chapter 5 in Rushing’s book [Rus73a]. The proof originates
from Barden, with contributions to the exposition by Edwards and Siebenmann.

We write Tn0 for the n-torus where an n-cell has been removed.

Proposition 16.6 ((Bardn) = Inductive statement in dimension n). There exists an im-
mersion

f : Tn × [−1, 1]↬ Rn × [−1, 1]
such that the restriction to Tn0 × [−1, 1] is a product map, that is

f |Tn
0 ×[−1,1] = α× Id[−1,1] : Tn0 × [−1, 1]↬ Rn × [−1, 1]
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Figure 16.13. Setting up the notation for the subsets of the n-torus, where the
circle factors are S1 = I ∪∂ J . Also pictures is an embedding Rn × S1 ↪→ Rn+1.
where the I-fibres {pt.}×I ⊂ Rn×I ⊂ Rn×S1 are straight and vertical in Rn+1.

Figure 16.14. Base case: An immersion f : T1 × [−1, 1] ↬ R1 × [−1, 1] such
that the restriction to T1

0 × [−1, 1] = I × [−1, 1] is a product map. (© [Rus73a])

We will prove Proposition 16.6 inductively. Then α : Tn0 ↬ Rn is the immersion of the
punctured torus that we are looking for.

Proposition 16.7 ((Bard1) = Base case). There exists an immersion

f : T1 × [−1, 1]↬ R1 × [−1, 1]
such that the restriction to T1

0 × [−1, 1] is a product map, that is

f |T1
0×[−1,1] = α× Id[−1,1] : T1

0 × [−1, 1]↬ R1 × [−1, 1]

We will use this opportunity to set up some notation for the inductive step, also see
Figure 16.13. We will write the circle S1 = I ∪∂ J as the endpoint-union of two interval segments
I = [−1, 1] = J . Then, we can use Jn as the n-cell of the product Tn = (S1)×n, and identify
Tn0 = Tn − Jn. Figure 16.13 also shows an embedding Rn × S1 ↪→ Rn+1 where the I-fibres
{pt.} × I ⊂ Rn × I ⊂ Rn × S1 are straight and vertical in Rn+1.

Proof of base case (Bard1) in Proposition 16.7. The immersion which is a product on the punc-
tured 1-torus is pictured in Figure 16.14. □

Proof sketch of the inductive step (Bardn) ⇒ (Bardn+1) for Proposition 16.6. Assume f : Tn ×
[−1, 1] ↬ Rn × [−1, 1] is given so that f |T1

0×[−1,1] = α × Id[−1,1] : T1
0 × [−1, 1] ↬ R1 × [−1, 1]
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Figure 16.15. Inductive step. (© [Rus73a])

Figure 16.16. The homeomorphism λ : [−1, 1]2 → [−1, 1]2 which is the identity
on the boundary ∂([−1, 1]2), and a π

2 -rotation on the smaller square [−2
3 ,

2
3 ]2. On

the right is a picture of extending the map via the identity to a homeomorphism
λ : S1 × [−1, 1] → S1 × [−1, 1]. (© [Rus73a])

is a product map. By crossing with another circle factor and composing with the embedding
Rn × S1 ↪→ Rn+1 from Figure 16.13 we can construct an immersion

f̃ : Tn × S1 × [−1, 1]
f×IdS1−−−−−→ Rn × S1 × [−1, 1] ↪→ Rn+1 × [−1, 1]

For an illustration of the inductive step, see Figure 16.15. Check that f̃ is a product on
Tn0 × S1 × [−1, 1]. We want to construct an immersion which is a product on Tn+1

0 × [0, 1], so
we have to correct for this on the missing piece

(Tn+1
0 × [0, 1]) − Tn0 × S1 × [−1, 1] = Int Jn × I × [−1, 1]

We will do this by conjugating with a 90 degree rotation on the I × [−1, 1] factor, which is
possible because f̃ |Tn

0 ×I×[−1,1] is a product on the I × [−1, 1] factor.
For convenience, assume that the map f : Tn × [−1, 1] ↬ Rn × [−1, 1] satisfies f(Tn ×

[−1
2 ,

1
2 ]) ⊂ Rn× [−2

3 ,
2
3 ]. Now see Figure 16.16 for a description of the “rotation homeomorphism”

λ : S1 × [−1, 1] → S1 × [−1, 1] by which we will conjugate. With this setup, we consider the
following immersion

h : Tn × S1 × [−1, 1]↬ Rn+1 × [−1, 1]

h = (IdRn ×λ−1) ◦ f̃ ◦ (IdTn ×λ)
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Figure 16.17. Conjugation with λ applied to several squares. (© [Rus73a])

Figure 16.18. The global situation in the final construction. (© [Rus73a])

The remaining ideas are contained in Figure 16.17 and Figure 16.18, see the reference [Rus73a]
for the concluding arguments. □

16.2. Torus trick for surfaces

A slogan that is often heard in manifold theory is that ’the categories are the same’ in
dimension ≤ 3. That is to say there is no difference between smooth, PL, or topological manifolds
in these low dimensions. The aim of this section is to elucidate this idea in dimension 2, i.e. for
surfaces. This will be achieved via proving the following two theorems, the proofs of which will
use the torus trick. The discussion will follow [Hat13b].
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Theorem 16.8. Every topological surface can be given a smooth structure.

Theorem 16.9. Every homeomorphism of smooth surfaces is isotopic to a diffeomorphism.

Putting these two theorems together, we get the immediate corollary:
Corollary 16.10. Every topological surface can be given a smooth structure, which is unique

up to diffeomorphism.

This result is the precise statement hiding behind the slogan ‘the categories are the same’.
We can also use this result to classify topological surfaces, since it means that the topological
classification immediately follows from the smooth classification of surfaces. The proofs of these
theorems will use the handle smoothing theorem which we will state and use in Section 16.2.1.

16.2.1. Handle smoothing. Here we will state the handle smoothing theorem and use
it to prove Theorem 16.8 and Theorem 16.9. We will prove the handle smoothing theorem in
Section 16.2.3.

Theorem 16.11. Let n and k be non-negative integers such that n+ k = 2 and let h : Bk ×
Rn → R2 be a topological embedding which is smooth in a neighbourhood of ∂(Bk × Rn). Then h
may be (topologically) isotoped to a smooth embedding on Bk ×Bn, staying fixed near ∂(Bk ×Rn)
and outside a larger neighbourhood of Bk × {0}.

Figure 16.19. Smoothing a handle Bk × Rn which is already smooth near
∂Bk × Rn, staying fixed in the red region.

Lemma 16.12. An open set W ⊂ R2 admits a triangulation such that the size of the simplices
approaches 0 on the (topological) boundary of W .

Proof. We prove this by simply constructing such a triangulation. Divide R2 into unit squares
by drawing lines parallel to the x and y-axis.

− Step 1: Throw away all squares that lie entirely outside of W .
− Step 2: Divide squares that lie partially inside W into four 1

2 × 1
2 squares each.

Repeat these steps indefinitely (see Fig. 16.20). The union of the remaining squares is now W
and the size of these squares approaches 0 on the (topological) boundary of W . We then turn
this into a triangulation by adding a single vertex at the centre of every square and adding in a
new edge connecting this central vertex to each other vertex on the square. □

We now prove the existence of smooth structures on surfaces. Note that we always have local
smooth structures on surfaces, induced by the standard Euclidean neighbourhoods about points.
The difficulty is in piecing together all of these local structures into a single global structure.
Proof of Theorem 16.8. We first consider the closed case. Let S be a closed surface, and
hi : R2 → S be (topological) embeddings such that hi(R2), i = 0, 1, 2, . . . form an open cover of
S. We now proceed via induction, our base case being covered by the existence of local smooth
structures. Assume there exists a smooth structure on Un−1 = ⋃n−1

i=1 hi(R2), and we want to
extend this to a smooth structure on Un = ⋃n

i=1 hi(R2). Let W : = h−1
n (Un−1). Since hn is

continuous and Un−1 is open, W is an open set and we can use Lemma 16.12 to construct a
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Figure 16.20. Four iterations of steps 1-2 shown for an open set in R2 (shown
in blue). The squares that have not been thrown away are shaded in red.

Figure 16.21. Pair of trousers (left) and twisted pair of trousers (right).

triangulation of W with the size of simplices approaching 0 on the (topological) boundary. This
triangulation gives us an induced handle decomposition for W , and we can apply the handle
smoothing theorem in turn on each handle to smooth hn on W . This gives us an isotopy htn such
that h0

n = hn |W and h1
n is smooth on W and we need to extend this isotopy onto all of R2. This

is possible since the size of the simplices of our triangulation approaches 0 on the (topological)
boundary of W , which means that the isotopy approaches the constant isotopy, and thus can be
extended onto all of R2 via the constant isotopy. Now we have extended the smooth structure
onto Un, and this completes the induction.

The case with boundary is similar, but starts with the existence of a collar neighbourhood
of the boundary. This collar is of the form ∂M × I, where ∂M is a closed 1-manifold. Since
all 1-manifolds are smoothable (see Section 16.2.4), we know that we can give ∂M a smooth
structure and can extend this onto the whole collar. At this point the proof proceeds identically
to the closed case, where we start by setting U1 := ∂M × I. □

We now move to proving the uniqueness of smooth structures on surfaces, but first we state
and prove another lemma.

Lemma 16.13. A smooth surface S admits a smooth triangulation.

By a smooth triangulation we mean there exists a simplicial complex S, such that S is
homeomorphic to X and the inclusion map ∆ → X is a smooth embedding for every simplex
∆ ∈ S. We say that a map ∆ → X is smooth if there exists a smooth extension of the map to
an open set U ⊃ X in R2.

Proof. The idea of this proof is to construct a smooth cellulation which we then turn into a
smooth triangulation. We start by picking a Morse function on our surface S. We can then cut
along non-critical levels of our Morse function to cut our surface into smaller pieces. If we only
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Figure 16.22. Twisted pair of trousers cut along a circle to give a Möbius band
(green) and a normal pair of trousers (red).

allow a maximum of one critical point to lie between our cuts, then the pieces we can obtain are
as follows: if no critical point lies between our cuts, we obtain an annulus; if one index 0 or 2
critical point lies between our cuts, we obtain a disc; if one index 1 critical point lies between
our cuts, we obtain either a pair of trousers or a twisted pair of trousers, depending on whether
the 1-handle was twisted when attached (see Figure 16.21). A twisted pair of trousers can be
thought of as a punctured Möbius band, and so we can further cut a twisted pair of trousers
into a regular pair of trousers and a Möbius band by cutting along a circle that winds twice
around the band, avoiding the puncture (see Figure 16.22).

We now have a decomposition on S into discs, annuli, pairs of trousers, and Möbius bands.
This can be turned into a smooth cellulation by adding in one vertex to each boundary circle
on every piece, and then adding in edges depending on the type of piece. For discs, we add no
edges; for annuli, we add a single edge connected the two vertices directly; for pairs of trousers,
we add in two edges connecting two of the boundary circles to the third; for a Möbius band, we
add in a single edge connecting the sole vertex to itself, winding all the way along the band.
This cuts all of our pieces into polygons, giving us a smooth cellulation. We can then further
cut these polygons into triangles by adding an extra vertex in the interior of each piece and
connecting it to all other vertices by edges (this step isn’t necessary for the Möbius band, which
has already been cut into a triangle). This gives us the required smooth triangulation of S. □

Proof of Theorem 16.9. Let f : S → S′ be a homeomorphism of smooth surfaces. We want
to show that f is isotopic to a diffeomorphism. We start by considering the closed case
∂S = ∅. Lemma 16.13 gives us a smooth triangulation of S. We can then apply Theorem 16.11
successively. First, we smooth f near the vertices of our triangulation. Every vertex in S has a
B2 neighbourhood which f (topologically) embeds inside a copy of R2 ⊂ S′ and hence we can
use the Theorem 16.11 to smooth f on this neighbourhood. Next we smooth f near the edges of
our triangulation in the analogous manner. Since f is already smooth near the vertices at the
ends of each edge, we can isotop f to be smooth on a B1 ×B1 neighbourhood of the edge and
the isotopy stays fixed near the vertices, hence keeping the smoothness of f that we have already
achieved. The final step is to smooth f on the faces of our triangulation, and again we can
do this precisely because we have already smoothed f near all of the edges and vertices of our
triangulation. f is now locally a smooth embedding, and hence a local diffeomorphism. f is also
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still injective by its construction and so is a global (topological) embedding of homeomorphic
surfaces, and hence must be surjective. Therefore we have isotoped f to a global diffeomorphism.

Now assume ∂S is non-empty. Pick a smooth collar for S, and then glue on another smooth
collar ∂S × I, extending f onto it via the identity. We now have a smooth collar such that f
is constant with respect to the collar parameter on a smaller sub-collar. Now f restricted to
∂S is a homeomorphism of smooth 1-manifolds and hence is isotopic to a diffeomorphism (see
Section 16.2.4). We can then extend this isotopy onto the subcollar such that it is constant on
the internal boundary of the subcollar, allowing us to extend the isotopy onto the rest of S as
the constant isotopy. We now have that f is already smooth on a collar of S, and we can then
proceed with exactly the same method for the empty boundary case to smooth f on the rest of
S, provided that we ensure our smooth triangulation of S restricts to a smooth triangulation of
the collar. □

16.2.2. Studying surfaces using graphs. To prove the handle smoothing theorem, we
will need to employ a number of techniques for dealing with smooth surfaces. In this section we
will describe the general scheme in which this will be done, which develops the ideas used in the
proof of Lemma 16.13.

Let S be a smooth surface, possibly with boundary and choose a Morse function f for S. As
in the proof of Lemma 16.13, we cut along non-critical levels of f to obtain pieces Pi, which are
discs, annuli, pairs of trousers or Möbius bands. Note that if we allow for non-compact surfaces,
then we can get more types of pieces: open-discs, half-open discs (D1 × R) etc., but the general
idea is the same. We now have a decomposition of our surface into pieces Pi, which are joined
together by circles which we will denote by Cj .

We now construct a graph from our surface. Let ΓS be the graph such that ΓS has one
vertex for every piece Pi and two vertices are connected by an edge for each boundary circle Cj
that they share. We then have a natural map p : S → ΓS that maps product neighbourhoods
of Cj to their corresponding edges and collapses the remaining portions of the Pj to their
corresponding vertices (see Figure 16.23). Consider the induced map on fundamental groups
p∗ : π1(S) → π1(ΓS). Since the pieces Pi are path-connected, we can construct well-defined loops
in S (up to homotopy) mapping to any loops in ΓS , so this map must be split surjective. Note
that when choosing the segment of the loop in each piece Pi, if the piece is not simply-connected
the segment should be chosen such that it is trivial in π1(Pi). Hence, we can conclude that there
exists of subgroup of π1(S) which is isomorphic to π1(ΓS).

The strength of this viewpoint is that we can simplify our graphs homotopically and have
the simplifications pull back to simplifications of our surface. If we have an index-1 vertex on
ΓS , we can remove it and its corresponding edge, leaving a homotopy equivalent graph. Now
we see how this change can be pulled back to S. At each Cj , the pieces are glued together
via a diffeomorphism of S1, which up to isotopy are either the identity or the inverse map
z 7→ z−1 = z∗. When one of the pieces corresponds to an index-1 vertex, this piece must be a
disc and this diffeomorphism makes no difference to the diffeomorphism type of the resulting
surface. This means that we can alter our Morse function to remove this disc piece, provided
that the other piece was not also a disc. If the disc was attached to an annulus, we simply
decrease the level at which the index-2 critical point occurs, whereas if the disc was attached to
a pair of trousers, we cancel out the index-2 critical point with the index-1 critical point in the
pair of trousers. The upshot of this is that we can always simplify finite sub-trees in ΓS , with
the result representing a diffeomorphic surface to S. We illustrate this technique, and end this
subsection, with an example.

Example 16.14. Consider a topological torus with some smooth structure S, denoted TS. We
want to show that TS is diffeomorphic to the standard torus T , and we will do this using the
graph ΓTS . Since π1(TS) ∼= Z ⊕ Z is abelian, and π1(ΓTS) is a free subgroup, we know that
π1(ΓTS) is isomorphic to either Z or the zero group. If it is the zero group, then ΓTS is a tree
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Figure 16.23. Constructing a graph from a torus, cut along four circles into
four pieces.

and we can cancel sub-trees until we end up with the graph with two vertices connected by a
single edge. This must correspond to TS being diffeomorphic to a sphere, which cannot be true
as the fundamental group of TS is non-trivial. So, the group must be Z, which implies that ΓTS
is a circle with finitely many sub-trees attached. Again, we can cancel these sub-trees to obtain
a circular graph, which corresponds to TS being made of finitely many annuli glued together
in a circle, corresponding to either a standard Klein bottle or the standard torus (depending
on the type of the glueing diffeomorphisms on the Cj). Since π1(TS) does not match that of a
Klein bottle, we must conclude that TS is diffeomorphic to the standard torus.

16.2.3. Proof of the handle smoothing theorem. We will now prove Theorem 16.11,
using the techniques we have just developed along with the torus trick. We will take the cases
k = 0, 1, 2 separately, as their proofs are very different.
Proof of Theorem 16.11.
k = 0 case, or 0-handle smoothing: It may be useful to refer to Fig. 16.24 throughout this
proof to visualise the sequence of steps. We begin at the bottom of the diagram, and work
our way up to the top. Let h : B0 × R2 = R2 → S be the embedding that we wish to smooth
and suppose we are given a fixed (topological) immersion T 2 \ ∗↬ R2. Such immersions were
explicitly constructed in the previous section. We can pull back the smooth structure on S to
give a smooth manifold structure on T 2 \ ∗ that we will denote as (T 2 \ ∗)S. We want to be able
to extend this to a smooth structure on the whole torus, but to do so we need to prove that it is
standard near the puncture.

First, we create the graph Γ for (T 2 \ ∗)S as in Section 16.2.2. Since π1((T 2 \ ∗)S) is finitely
generated, π1(Γ) must be also, which means that there exists a finite subgraph Γ0 such that the
closure of Γ \ Γ0 is a disjoint union of finitely many trees. The key here is that since (T 2 \ ∗)S has
only one end, one and only one of these trees must be infinite. Simplify the graph by removing the
finite trees and simplify the infinite tree by removing any finite subtrees. These simplifications
are simultaneously realised on the surface, which means that there exists a compact set whose
complement is diffeomorphic to S1 × R, i.e. an infinite number of annuli glued together. This
proves that the smooth structure was standard near the puncture, and hence we can extend our
smooth structure onto T 2 to give T 2

S.
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g

↫→

h

Figure 16.24. Torus trick diagram for the 0-handle case

From Example 16.14 we know that all smooth structures on a torus are diffeomorphic,
so there exists a diffeomorphism g : T 2

S → T 2. We want to lift this diffeomorphism up to a
diffeomorphism g̃ : R2

S → R2 of the universal covers, but we first need to normalise g so that it
induces the identity map on the fundamental groups. Firstly, we may assume that g maps the
basepoint to the basepoint, by rotating the S1 factors in either the domain or the codomain.
Then, note that g being a diffeomorphism implies that the induced map on fundamental groups
π1(g) is an isomorphism. π1(g)−1 ∈ GL2(Z) corresponds naturally to diffeomorphism on T 2

given by the action of GL2(Z) on T 2 = R2/Z2. Post-composing g with this diffeomorphism
allows us to assume that g induces the identity map on fundamental groups.

We now have lifted our diffeomorphism g to a diffeomorphism g̃ : R2
S → R2. We would

like to extend this to a homeomorphism G : B2 → B2 that is the identity on the boundary.
One way to prove that this is possible is to show that g̃ is bounded, i.e. to show that the set
{|g̃(x) − x| | x ∈ R2} is bounded above. But this is easy, since we know that g̃ is bounded on
[0, 1] × [0, 1] by compactness, and thus is bounded on R2 by periodicity.

If we consider B2 as the unit disc in R2, we can then extend G onto R2 by extending via the
identity to construct a map G̃ : R2 → R2. By the Alexander trick, we know this is (topologically)
isotopic to the identity, so there exists an isotopy G̃t where G̃1 = G̃ and G̃0 = Id. We now claim
that ht = G−1

t ◦ h is the required isotopy that we wanted to construct originally. Clearly h0 = h,
so it suffices to show that h1 is smooth near 0 and that ht = h far away from 0. Since G̃t is
the identity outside of B2, this second condition is obviously satisfied. To see why the first is
satisfied, note that G̃1 is a diffeomorphism from the smooth structure S to the standard smooth
structure near 0, and that h is (by definition) smooth on the S smooth structure. This implies
that h1 is smooth near 0, completing the proof.

k = 1 case, or 1-handle smoothing: Let h : B1 × R → S be a topological embedding
that is already smooth near ∂B1 × R. We want to smooth this embedding near B1 × {0} with
an isotopy that stays fixed near ∂B1 × R and outside some larger neighbourhood of B1 × {0}.
We can pull the smooth structure on S back to B1 × R to give it a smooth structure which is
standard near the boundary. Denote this smooth manifold by (B1 × R)S.

We now construct a diffeomorphism f : (B1 × R)S → B1 × R. Consider the projection
π : B1 × R → R. We can perturb this to a Morse function h on (B1 × R)S with h = π near
∂B1 × R, since π was already smooth there. Note that all of the critical points of h lie in
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Figure 16.25. The diffeomorphism f : (B1 × R)S → B1 × R fixing a neighbour-
hood of ∂B1 × R and sending flow lines of h to flow lines of π.

the interior of the smooth manifold by construction. We then construct the graph Γ as in
Section 16.2.2. Since π1(B1 ×R) = 0, our graph must be a tree. Since B1 ×R has two ends, this
must be a infinite tree in two directions, with finite sub-trees attached. We can cancel out these
finite sub-trees to leave Γ being homeomorphic to R. Our Morse function h is correspondingly
altered (staying fixed near ∂B1 × R, to remove all critical points. We then use the flow lines of
h to construct our required diffeomorphism. Any point x ∈ B1 × R lies on a unique flow line lx
which passes throught a point px on B1 × {0}. We then define f(x) : = (px, h(x), which is the
identity near ∂B1 × R since the flow lines of h are standard there.

This means we can extend our smooth structure onto B1 × S1 such that there exists a
diffeomorphism g : (B1 ×S1)S → B1 ×S1 which is the identity near ∂B1 ×S1. We then proceed
in a similar manner to the k = 0 case by normalising g such that it induces the identity on
fundamental groups and then lifting to a diffeomorphism g̃ : (B1 × R)S → B1 × R. By the same
argument for the k = 0 case, g̃ must be bounded and hence we can radially reparameterise on
the second factor and extend by the identity to receive a map G : B1 ×B1 → B1 ×B1 which is
the identity near ∂B1 ×B1 and matches g near B1 × {0}.

The final step is to then extend G by the identity to a diffeomorphism G̃ : B1 ×R → B1 ×R.
Then apply the Alexander trick to B1 ×B1 to construct an isotopy G̃t from G̃1 = G̃ to G̃0 = Id.
Since G̃ is already the identity outside of B1 ×B1 and near ∂B1 ×R, we may assume the isotopy
fixes both of these regions. Thus, ht = h ◦ G̃−1

t is the desired smoothing isotopy, completing the
proof.

k = 2 case, or 2-handle smoothing: Let h : B2 → S be a topological embedding that is
already smooth near ∂B2. We want to smooth this embedding completely with an isotopy that
stays fixed near ∂B2. First, pull the smooth structure on S back onto B2 to form B2

S which has
the standard smooth structure near ∂B2. We do not have any form of torus trick available to us
so we will have to construct a diffeomorphism that satisfies our requirements on our own.

Let r : B2 → [0, 1] be the radial function on B2. If we consider the restriction of r to a
neighbourhood of ∂B2 we can extend this to a Morse function r̃ : B2

S → [0, 1] since the smooth
structure is standard near ∂B2. Since we understand the behaviour of r̃ near the boundary, we
know that all the critical points of r̃ must lie in the interior of the disc. We can then construct
Γ for B2

S as before. Since π1(B2) = 0, we know that Γ is a tree and hence we can simplify it
down to a single point. This means that r̃ can be simplified to have only a single critical point
of index 0. We then construct a diffeomorphism g : B2

S → B2. Every point x in B2
S aside from
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Figure 16.26. The diffeomorphism g : B2
S → B2 fixing a neighbourhood of ∂B2

and sending flow lines for r̃ to flow lines of r.

the critical point of r̃ lies on a unique flow line lpx ending at a point px ∈ ∂B2 and g maps x to
g(x) where g(x) lies on the unique flow line ending at the point px for the radial function on B2

such that r(g(x)) = r̃(x). Finally, the critical point of r̃ is mapped to 0 ∈ B2. By construction,
this map must a diffeomorphism that fixes a neighbourhood of the boundary.

Now the Alexander trick gives us an isotopy Gt of g to the identity which we may assume to
be fixed near ∂B2, i.e. G0 = Id, G1 = g. Our required isotopy is then given by h ◦G−1

t . This
finishes the k = 2 case and hence finishes the whole proof. □

16.2.4. Smoothing and classifying one-dimensional topological manifolds. In our
proofs of Theorem 16.8 and Theorem 16.9 we used that analogous results hold for 1-manifolds.
Here we give the outline of how to prove these results. It is much easier than the surfaces case
and so the treatment will be less detailed (so as to not labour the point). We will discuss how
to prove a 1-dimensional handle smoothing theorem, leaving it to the reader to apply it to
obtain existence and uniqueness of smooth structures for topological 1-manifolds. We will use
the smooth classification of 1-manifolds to do this (for a proof of this, see [Mil97a, appendix]).

0-handle smoothing: Let h : R ↪→ O be a topological embedding into a smooth 1-manifold
O. We can pull the smooth structure on O back onto R. Now consider a topological ‘immersion’
S1 \ ∗↬ R, which must in fact be a topological embedding of an open interval. We can then
pull the smooth structure induced by h onto this open interval to form (S1 \ ∗)O, which by
the classification of smooth 1-manifolds must be diffeomorphic to the standard interval. Hence
we can extend this smooth structure onto the circle to form a smooth manifold S1

O. Again
by the classification of smooth 1-manifolds, there exists a diffeomorphism f : S1

O → S1. We
then normalise f so that it maps 1 ∈ S1 to itself, and since f already must induce the identity
homomorphism on π1, this means that f lifts to a map on the universal covers f̃ : RO → R.

It is not hard to see now, following the proof of 0-handle smoothing for surfaces, how we
can construct a diffeomorphism F̃ : R → R isotopic to the identity, such that F̃ is the identity
outside of D1 and h ◦ F̃−1 is a smooth embedding.

1-handle smoothing: Let h : I ↪→ O be a topological embedding that is smooth near ∂I.
We can pull the smooth structure on O back onto I, to form a smooth manifold IO which will
have the standard structure near ∂I. We can then decompose IO as I∪ Ĩ∪I, two standard smooth
intervals glued to either end of a possibly non-standard interval. But by the classification of
smooth 1-manifolds, Ĩ is diffeomorphic to the standard interval, and so, possibly after smoothing
glueing points, we have a diffeomorphism f : IO → I which is the identity near the boundary.
By the Alexander trick, f is topologically isotopic to the identity, and this isotopy gives the
required smoothing.
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Using this handle smoothing to obtain existence and uniqueness results for smooth structures
on topological 1-manifolds, this allows us to now classify topological 1-manifolds. Since the
smooth classification of 1-manifolds says that there are only four such manifolds: the circle,
the open interval, the closed interval and the half-open interval, these must also be the only
topological 1-manifolds.

16.3. Torus trick for 3-manifolds

In this section we present a version of the torus trick for 3-manifolds due to Hamilton
[Ham76b]. In particular, we will describe an alternative proof of the theorem that every
topological 3-manifold admits a unique PL structure up to isotopy using the torus trick. As
we will see, this follows from a 3-dimensional version of the handle straightening theorem. By
default, we assume that a manifold is second-countable.

16.3.1. The 3-dimensional handle straightening theorem. Recall that in lectures
we discussed a CAT handle straightening theorem where CAT is PL or DIFF for manifolds of
dimension 5 or higher (see Theorem 19.1 in the lecture notes). In Section 16.2 we describe a
similar result for surfaces for CAT=DIFF. In this section, we prove a PL-handle straightening
theorem for 3-manifolds.

We call an PL n-manifold irreducible if every PL (n− 1)-sphere bounds a PL n-ball. The
following Alexander’s theorem says that R3 is irreducible.

Theorem 16.15 (Alexander’s theorem). Every PL-embedded 2-sphere in R3 bounds a PL
3-ball.

Theorem 16.16. Let h : Bk × Rn → R3 be a topological embedding where n + k = 3 such
that h is PL in a neighbourhood of the boundary ∂(Bk × Rn), then there exists a (topological)
isotopy ht from h to an embedding h1 such that

(1) h1 is PL on Bk ×Bn ⊂ Bk × Rn
(2) ht = h on ∂(Bk × Rn) and Bk × (Rn \ 2Bn) for all t.

As we shall see later, Bk × Rn will be viewed as an open k-handle lies in a chart of an
ambient manifold. The proof of the theorem relies on a number of lemmas, most of which are
specific to 3-manifolds. First recall that a PL-immersion is a local PL-embedding. The next
result is proved by Whitehead in 1961.

Lemma 16.17. Every PL n-manifold (n ≤ 3) with no compact, unbounded components admits
PL immersions in Rn.

Indeed, we will only apply Lemma 16.17 to Tn \ ∗ for n ≤ 3 so one can also just quote
results from Section 16.1 which gives explicit smooth immersions of the n-torus for all n hence
PL-immersions. The proof of Lemma 16.17 is fairly combinatorial and relies on properties of
simplicial complexes, so is very different in flavour compared to the explicit immersions of the
tori in Section 16.1.

A 3-manifold is 1-connected at infinity if every compact subset is contained in another with
1-connected complement.

Lemma 16.18. Let M be a PL 3-manifold which is 1-connected at infinity and has compact
boundary. Let K be a compact subset of the interior of M , then M contains a compact PL-
submanifold A with ∂A = ∂M ⊔ S2 ⊂ M such that K is contained in the interior of A.

Proof sketch. Without loss of generality we assume that M \K is simply-connected. Let N be
a regular neighbourhood of K which is contained in finitely many simplices and W = M \ intN
connected. Label the components of ∂N = ∂W by Q1, . . . , Qr. Each component of N \ K
contains just one Qi, for suppose Q1 and Q2 are in the same component, we can join then by
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two arcs, one in N and one in W , and this gives a non-trivial loop in M \ K. We label the
component containing Qi by Ci. We would like to do some modifications such that all induced
maps αi : π1(Qi) → π1(Ci) and βi : π1(Qi) → π1(W ) become injective. Once we have done this,
we can apply Van-kampen and conclude that all Qi’s are simply connected hence spheres. Once
we’ve done this, we can tubing them together and add the tubes to N to make it into one single
sphere and the theorem is proved.

To do this, let gi denotes the genus of Qi and define non-negative integers c1 = ∑
gi

and c2 = ∑Max(gi − 1, 0). Suppose α1(β1) is not injective, then Dehn’s lemma(see below,
lemma16.23) provides an embedded disk in C1(respectively W ) meeting Q1 at the boundary
circle which is an non-trival element of π1(Q1). Thicken D2 up to a 3-cell meeting Q1 at S1 × I,
then we replace N by N −D2 × intI(respectively by N ∪D2 × intI. Now ∂N = Q′

1 ∪ · · · ∪Qr
with Q′

1 = Q1 − (S1 × I) ∪ (D2 × ∂I).
There are two cases: if S1 is a separating curve, then c2 decreases by 1; if S1 is not separating,

then c1 decreases by 1. In any case, we can continue this procedure until all αi and βi’s are
injective. □

We remark that the result clearly also holds in the smooth case.

Definition 16.19. A properly embedded connected surface S in a 3 manifold is called in-
compressible if it is not S2 and has trivial normal bundle, and for each 2-disk D in M with
D ∩ S = ∂D, there exists a 2-disk D′ in S with ∂D = ∂D′. The disk D is sometimes called a
compressing disk.

Notice that some authors also exclude D2 such that surgery on an incompressible surface
only splits off a copy of S2. But we will allow D2 for our purpose.

Definition 16.20. A PL 3-manifold M is called sufficiently large if it contains an incompressible
surface.

A useful criteria of determining incompressible surface is the following: given a surface S
other than S2 with trivial normal bundle, if the induced map π1(S) → π1(M) on fundamental
groups is injective, then S is incompressible. This is because every nullhomotopic circle in a
surface bounds a disk. In fact, the converse is also true: suppose the induced map is not injective,
let f be a null-homotopy of a non-trivial loop in S. We can deform f such that it is tranverse
to S. The preimage f−1(S) consists of some circles which we can assume all non-trivial by
redefine f if necessary. Then the restriction to the disk bounded by the inner most circle gives a
null-homotopy of a non-trivial circle in S. Now Dehn’s lemma(Lemma 16.23) gives a disk D in
M with D ∩ S = ∂D and ∂D non-trivial in S. So S cannot be incompressible.

If we further require irreducibility then the manifold is called Haken. It is easy to see that
Bk × Tn is sufficiently large for k = 0, 1, 2 (for k = 0, 1, take the obvious embedded torus; for
k = 2, take a properly embedded non-separating disk, for example, any standard disk bounded
by a meridian in the solid torus).

Lemma 16.21. Let M and N be orientable, compact, irreducible PL 3-manifolds with N
sufficiently large and let ϕ : M → N be a proper PL homotopy equivalence such that ϕ|∂M is a
PL homeomorphism, then ϕ is homotopic relative boundary to a PL homeomorphism.

The proof of this lemma is non-trival and involves the properties of incompressible surfaces
in 3-manifolds and also properties of Haken manifolds, namely they have a hierarchy. Therefore,
we will not go into the proof but just note that it can be generalised to the smooth case without
much difficulty.

Lemma 16.22 (Alexander’s isotopy: PL-version). (1) If h0 and h1 are two PL-homeomorphisms
of Bn that agree on the boundary Sn−1, then there exists a PL-isotopy ht between them
that fixes Sn−1.
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(a) Triple point (b) Double curve

Figure 16.27. Two possible singularities

(2) Every PL-homeomorphism of Sn−1 extends to a PL-homeomorphism of Bn.

Proof sketch. The second statement follows directly by coning. For the first one, notice that
Bn × [−1, 1] ∼= v ∗ (Sn−1 × [−1, 1] ∪ Bn × {−1, 1}) where ∗ denotes the join operation. Let
H : Sn−1×[−1, 1]∪Bn×{−1, 1} → Sn−1×[−1, 1]∪Bn×{−1, 1} by H|Sn−1×[−1, 1]∪Bn×{−1}
and H|Bn × {1} = h1h

−1
0 . Then apply coning. □

As a remark, in fact, this statement do hold in the smooth case for n = 3 but it’s non-trivial.
Indeed, we have Diff(Sn) ≃ O(n + 1) × Diff(Dn, ∂) and Smale and Cerf proved that actually
Diff(D3, ∂) ≃ Diff(S2) ≃ O(3). This is called the Smale conjecture. See Hatcher’s survey
[Hat12].

Lemma 16.23 (Generalised Dehn’s lemma). Let M be a connected orientable 3-manifold and
f : S → M be a map from a sphere with n punctures with boundary circles (C1, . . . , Cn) to M
such that S is PL-embedded near its boundary. Then a non-vacuous subset of T = {C1, . . . , Cn},
say (C1, . . . , Cr), r ≤ n constitute the boundary of an embedded surface S′ agrees with S near T .

Proof. (Sketch) We will only indicate a few ideas but not go into all details. First we claim
without proof that under good conditions, f(S) can be isotoped to be ‘canonical’, i.e., only have
the following types of singularities: double curves and triple points. See Figure 16.27. For a
proof, see lemma 3.2 of [Pap57].

For simplicity, we only show the case n = 1. First not that we can assume that M is compact
and deformation retracts to f(S). If not, take a subcomplex of M containing f(S) and by
subdivision if necessary and taking the union of the derived complexes containing all vertices in
the boundary of f(S), we can find a compact submanifold deformation retracts to f(S).

Next, we show that the lemma is true if V has no 2-sheeted cover. By assumption, H1(V ) is
finite, otherwise we will have an induced surjective homomorphism from π1(v) to Z2 with an
index 2 kernel. It follows from the universal coefficient theorem and Poincare duality that ∂V is
a union of spheres so we are done.

Now suppose V has a 2-sheeted cover p : V1 → V and let τ be the non-trivial deck transform-
ation. Then p−1(C) = C1 ∪ τ(C1) where C1 is a curve in V1. It turns out that if C1 satisfies the
lemma for V1, then C satisfies the lemma for V . To see this, let D1 be an embedded disk in
V1 with boundary C1 and let D = P (D1). We claim(without proof) that in this case D can be
assumed to be canonical. Then since our cover is 2-sheeted, D can’t have triple either so the
only singularity we need to consider is double curve and one can avoid this but cutting along
the double curves and analyse locally(again, details are in [Pap57]).

Now, let d((f(S)) denote the number of double curves and induct on d by taking double
covers repeatedly, we have the result.

The proof of the general case is similar but more complicated and involves a calculation of
the Euler characteristic and we omit here.([SW58]). □

Note that when r = 1 this reduces to the usual Dehn’s lemma. Also, we remark that the
proof works equally well in the smooth case.
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Recall that a 3-manifold is called prime if it can not be written as a connected sum of two
manifolds with neither of them is S3. The next result is standard:

Lemma 16.24 (Prime decomposition theorem). Every PL compact, orientable 3-manifold is
a unique finite connected sum of prime 3-manifolds up to insertion or deletion of S3’s.

Lemma 16.25. For (Bk ×Tn)Σ (k = 0, 1, 2) where Σ is some PL structure coincides with the
standard structure on Bk × Bn, there exists a PL structure Σ′ with Σ′ = Σ on Bk × Bn such
that (Bk × Tn)Σ′ is irreducible.

Proof. By the prime decomposition theorem, (Bk × Tn)Σ is a connected sum of PL irreducible
manifolds. But every PL 2-sphere in Bk × Tn bounds a topological 3-ball (to see this, lift
to the universal cover) so all but one prime factors are topological 3-spheres. Therefore,
(Bk ×Tn)Σ = A∪Q where Q is a topological 3-ball with A∩Q = ∂Q ∼= S2. Extend the identity
map of A by coning gives a homeomorphism of Bk × Tn and induces a PL structure Σ′ with
(Bk × Tn)Σ′ irreducible and Σ′ = Σ on A. We will show that Bk × Bn can be assumed to be
contained in A.

For k = 0, (T3 \B3)Σ is 1-connected at infinity so apply Lemma 16.18 to T3 \B3 gives a PL
2-sphere bounding a PL 3-ball containing B3 in T3. Now choose the prime decomposition such
that D is contained in A.

For k = 1, 2, the generalised Dehn’s lemma provides k surfaces of type (0, n) in (Bk × (2Bn \
Bn))Σ with boundary (∂Bk × ∂1.5Bn)Σ. The union of the surface(s) and (∂Bk × 1.5Bn)Σ is a
PL 2-sphere in (Bk × 2Bn)Σ bounding a PL 3-ball D containing (Bk × Bn)Σ. Now choose a
prime decomposition of (Bk × Tn)Σ \D and reattach D to the corresponding summand, we get
a desired decomposition. □

We are now ready to prove the handle straightening theorem.
Proof of Theorem 16.16. Let Tn \ ∗ be a punctured torus. Let Σ = h−1(standard structure on
Bk × Rn). For k = 3, h : (B3)Σ → R3 is PL and by coning the identity map of ∂B3 we get a PL
homeomorphism g : (B3)σ → B3 that is identity near the boundary. Here we used the fact that
h is PL near ∂B3 so (B3)Σ is standard near ∂B3. By Lemma 16.22, we get an isotopy gt from
the identity to g. Then one checks that hgt−1 is the desired ambient isotopy.

For k = 0, 1, 2, we constructed a torus trick diagram as follows:
(1) Take an immersion ϕ1 of Tn \ ∗ in R3. Let α : Bk × (Tn \ ∗) → Bk ×Rn be the product

of ϕ1 and identity. By choosing our immersion carefully, we can assume that the bottom
triangle of Figure 16.28 commutes. Define Σ1 = α−1(Σ). By construction, Σ1 coincides
with the standard structure on Bk ×Bn.

(2) Extend Σ1 to ∂Bk × Tn by letting it be the standard structure near an open collar
N(∂Bk × Tn). Now (Bk × (Tn \ ∗) ∪N(∂Bk × Tn))Σ1 is 1-connected at infinity, so by
Lemma 16.18, it contains a compact PL submanifold K with boundary (∂Bk × Tn)Σ1

and a 2-sphere S such that Bk × 2Bn is contained in its interior. By lifting to universal
covers and apply the Schoenflies theorem, S bounds a topological 3-ball in Bk × Tn.
Extend the identity map of K by coning over S gives a homeomorphism of Bk × Tn
which induces a PL structure Σ2 on Bk×Tn. Note that since K is compact, coning must
fill up all of Bk ×Tn. By Lemma 16.25, we may assume that (Bk ×Tn)Σ2 is irreducible.
By applying simplicial approximation to the identity map (Bk × Tn)Σ2 → Bk × Tn
and apply Lemma 16.21, the identity map is homotopic relative to boundary to a PL
homeomorphism g as in Figure 16.28.

(3) Pull Σ2 back to a PL structure Σ3 on Bk × Rn via the universal covering map. By
arranging the inclusion Bk × 2Bn appropriately we can make sure every thing still
commutes. Lift g to a Pl homeomorphism g̃ which is identity on the boundary. By
lemma 10.5 in the lecture notes, g̃ has bounded distance from identity.
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(Bk × Rn)Σ4 Bk × Rn

(Bk × Rn)Σ3 Bk × Rn

(Bk × Tn)Σ2 Bk × Tn

(Bk × Tn − ∗)Σ1

(Bk × 2Bn) + Σ (Bk × Rn)Σ R3

G

e

γ

g̃

g

α

h

Figure 16.28. Torus trick diagram

(4) Let γ : Bk×Rn → Bk×Rn be a PL embedding that maps onto (Bk×2Bn)\{0}×∂2Bn

and restricts to identity on Bk × Bn.(This is very similar to what Hatcher did for
surfaces). Let G = γg̃γ−1 defined on (Bk × 2Bn) \ {0} ×∂2Bn and extend it by identity
to a homeomorphism of Bk ×Bn that is identity on the boundary.(Similar to the proof
of theorem 19.1 of lecture notes). Extend G further by identity gives a homeomorphism
of Bk × Rn. Define Σ4 = G−1(Standard structure). By construction, Σ4 = Σ3 on
Bk ×Bn.

Now define an isotopy

Gt =
{

Alexander isotopy from the identity to G on Bk × 2Bn

Id Otherwise

One checks that hG−1
0 = h, hG−1

1 is PL on Bk ×Bn and hG−1
t = h on (Bk ×Rn \Bk × 2Bn) ∪

∂Bk × Rn(recall that g̃ is identity on the boundary. Thus hG−1
t is the desired isotopy. □

Note that if we replace the simplicial approximation theorem by a version of the smooth
approximation theorem and apply all the smooth versions of our lemmas, we can prove a handle
smoothing theorem as we did in part 2 for surfaces.

16.3.2. Triangulation of 3-manifolds.

Theorem 16.26. (1) Every topological 3-manifold M admits a PL-structure hence a
triangulation.

(2) If Σ1 and Σ2 are two PL-structures on M , there exists an ambient isotopy of M from
identity to a PL-homeomorphism between MΣ1 and MΣ2.

We will need a general fact from point-set topology.Recall that a topological space is called
normal if every two disjoint closed sets of have disjoint open neighborhoods. Note that
topological manifolds are normal(for example, one can check this by noticing that they are
metrizable).
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Lemma 16.27 (Shrinking lemma). Let X be a normal space and U = {Ui} be a locally
finite open cover, then there exists another open cover W = {Wi} such that the closure of Wi is
contained in Ui for all i.

By the classification of surfaces(instead, one can also quote the results from Section 16.2),
every topological 3-manifold with boundary admits a PL structure on a collar of its boundary.
Moreover, if Σ1 and Σ2 are two PL-structures on M , then every homeomorphism f : MΣ1 → MΣ2
is isotopic to one that is PL on a collar of ∂M(for example, by applying the isotopy extension
theorem)
Proof of Theorem 16.26. We prove existence first. The idea is to build up a PL structure
inductively by patching up the local PL structures in each chart. Let U = {Ui} be a locally
finite(hence countable, since we assume that M is second countable hence Lindelöf, which gives
us countability) cover. By the paragraph before this proof, the subset U0 of boundary charts
can be assumed to be PL compatible. Relabel the elements of U0 as . . . U−2, U−1, U0 and the
rest charts by U1, U2, . . . .

We proceed by induction. Suppose a PL structure has been constructed on Vr = ⋃i=r
i=−∞ Ui

and let V = Ur+1 ∩ Vr with the PL structure inherited from Ur+1. Ur+1 intersects finitely many
charts {Ui}i∈I where I is some indexing set. Apply Lemma 16.27, we can replace Ui by an open
subset of Ui whose closure is contained in Ui for all i ∈ I and get a refined cover W = {Wi}.
By triangulating V we get a handle decomposition of Vr. Let K be the union of all closed
3-simplices with non-empty intersection with ⋃

i∈I∩{−∞,...,r+1}Wi. Apply Theorem 16.16 to
handles corresponding to K in the order of 0,1,2 and 3-handles, we get a homeomorphism h of V
that is PL on K and identity out side a compact neighbourhood N(K) of K. Then ⋃i=r+1

i=−∞Wi

has a well-defined PL-structure inherited from Vr on ⋃i=ri=−∞Wi, from Ur+1 on Vr+1 \N(K), and
from h on Wr+1 ∩ V .

For uniqueness, first isotope the identity map to a homeomorphism that is PL on some
collar c of ∂M . Triangulate M \ ∂M and subdivide such that every simplex is contained in
some Σ2-chart of M . This gives a handle decomposition such that each handle lies in a Σ2-chart.
Apply Theorem 16.16 to all 0-handles with non-empty intersection with M \ c and we get an
ambient isotopy that is identity on a smaller collar. Now do the same thing successively for
higher dimensional handles and this gives the desired isotopy. □

As we explained along the way, we could have done the whole proof in the smooth case:
Lemma 16.21, Lemma 16.22, Lemma 16.23, Lemma 16.24 hold in the smooth category. Fur-
thermore, Lemma 16.12 can be easily generalised to dimension 3 with a similar proof, so our
proof of Theorem 16.26 can be easily modified to a smooth version. However, Lemma 16.22
is a relatively deep result in the smooth case so this approach is not necessarily an easy one.
Instead, one can construct directly a smooth structure for a PL 3-manifold by defining a version
of tangent space for PL manifolds called wieldings. In summary, we now have an understanding
of the sentence: for dimension lower or equal than 3, PL, smooth and topological categories are
equivalent. Note that in dimension 4, this version of the handle straightening theorem must not
true because of the known exotic phenomenons.
Remark 16.28. In dimensions ≤ 7, every PL-structure can be upgraded to a smooth structure,
and for dimension ≤ 6 this associated smooth structure is unique up to isotopy, [Mil11, Thm.
2].

Further reading

− Andrew Ranicki’s slides: ’High dimensional manifold topology, then and now’ (2005)
− Lurie’s lecture notes on Whitehead’s theorem that smooth manifolds admit PL triangu-

lations

https://www.maths.ed.ac.uk/~v1ranick/slides/orsay.pdf
https://www.math.ias.edu/~lurie/937notes/937Lecture3.pdf
https://www.math.ias.edu/~lurie/937notes/937Lecture3.pdf




CHAPTER 17

Stable homeomorphisms and the annulus theorem

Danica Kosanović, Mark Powell, and Arunima Ray

We now turn our attention to the following fundamental result.

Theorem 17.1 (Annulus Theorem (ACn)). If h : Dn ↪→ IntDn ⊆ Dn is a locally collared
embedding, then

Dn∖ h(IntDn) ∼= Sn−1 × [0, 1].

As before, by Brown’s theorem (Corollary 4.6), locally bicollared codimension one embeddings
are globally bicollared, so nothing is lost by considering collared embeddings of Dn in IntDn,
see Fig. 17.1. Note that this is not true if we omit locally bicollared condition – a counterexample
is the Alexander gored ball mentioned in Remark 4.7.

Figure 17.1. The Annulus Theorem asserts that Dn∖ h(IntDn), the closed
grey region in the picture, is homeomorphic to an annulus.

For the smooth and PL versions of this theorem see ??. For n = 2, 3 the above result follows
from the classical fact that surfaces and 3-manifolds have canonical triangulations/smoothings,
as shown by Radó [Rad24] and Moise [Moi52b] respectively. Kirby [Kir69] proved the case
n ≥ 5 using the torus trick, and we will explain this proof shortly. The case n = 4 is due to
Quinn [Qui82a], and uses very different techniques.

After the Schoenflies problem, which shows that a locally bicollared codimension one sphere
Σ in Sn separates Sn into two balls, the following problem is a natural extension.

Question 17.2. Let Σ,Σ′ be locally bicollared disjoint codimension one spheres in Sn. By the
Jordan Brouwer separation theorem (Corollary 2.9), the space Sn∖ (Σ∪Σ′) has three components,
two of which are homeomorphic to an open ball by the Schoenflies theorem. Is the third region,
i.e. the the region “between” Σ and Σ′, homeomorphic to an annulus?

Using the Schoenflies theorem (twice), we can see that this question is indeed equivalent to
the annulus problem.

Let us extend the given bicollared embedding h : Dn ↪→ IntDn ⊆ Dn to a homeomorphism
h : Rn → Rn which agrees with it on Dn ⊆ Rn. Namely, we may include the codomain in Rn

173
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to get h : Dn ↪→ Rn, and then extend to a homeomorphism h : Rn → Rn using the Schoenflies
theorem and the Alexander trick (Proposition 15.3.0). More specifically, the Schoenflies theorem
implies that the complement of h(Dn) in Rn is a punctured disc, so we extend h over Rn∖ IntDn,
seen as the unit disc minus the center, by coning off h|∂Dn and forgetting the cone points.

Lemma 17.3. For h ∈ Homeo(Rn) with h(Dn) ⊆ IntDn we have that Dn∖ h(IntDn) is
homeomorphic to an annulus if and only if for some K ≥ 1 we have KDn∖ h(IntDn) is
homeomorphic to an annulus, where KDn is the closed disc of radius K.

Proof. Adding KDn∖ Dn to Dn∖ h(IntDn) just adds a collar to the boundary of the latter
manifold. The following remark shows that this cannot change its homeomorphism type. □

Remark 17.4. Adding or subtracting a boundary collar does not change the homeomorphism
type of manifolds with boundary. More precisely, if M is a manifold with boundary and

M ′ := M ∪
m 7→(m,0)
m∈∂1M

(∂1M) × [0, 1].

where ∂1M ⊆ ∂M is a component of the boundary of M , then M ′ ∼= M . This follows from the
fact that manifold boundaries have collars (Theorem 4.5).

Conversely, if M ′ is a manifold with boundary with a collar ϕ : ∂1M
′ × [0, 1] ↪→ M ′ and

M := M ′∖ ϕ(∂1M
′ × [0, 1)), where ∂1M

′ ⊆ ∂M ′ is a component of the boundary of M ′, then
assuming that M is a manifold with boundary we have M ′ ∼= M . This can be seen similarly to
the previous paragraph, since M ′ is the result of adding a collar to M . It is imperative that
M be a manifold for this assertion to be true. For a counterexample, see the discussion of the
Alexander gored ball from Remark 4.7.

Definition 17.5. Given h ∈ Homeo(Rn) we say that ACn holds for h if KDn∖ h(IntDn) is an
annulus for some K > 0.

From the preceding discussion we see that ACn would be true if ACn holds for each
h : Rn → Rn satisfying h(Dn) ⊆ IntDn.

Before describing our proof strategy, we discuss some situations where we may directly spot
an annulus in Rn. Firstly, for 0 < r < R ∈ R, the region BR(0)∖Br(0) = {(θ, t) | θ ∈ [0, 2π), t ∈
[r,R]} is explicitly homeomorphic to an annulus using polar coordinates, see Fig. 17.2a. By
translation the same is true for concentric round spheres centred at any point in Rn. Similarly,
the region between any two nested round spheres as in Fig. 17.2b is an annulus. The subtlety
in the annulus problem is that the ‘inner’ sphere is not necessarily round. Since topological
embeddings, even bicollared ones, can be quite complicated, it is no longer obvious how to find
the coordinates to see that the region between the two spheres is an annulus.

(a) Concentric discs. (b) Nested discs.

Figure 17.2. Examples of annuli in Rn (for n = 2).
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It is instructive to see how far the Schoenflies theorem can take us. Given a homeomorphim
h : Rn → Rn we saw earlier that the complementary region Rn∖ h(IntDn) is a punctured disc,
namely an annulus (open at one end). By truncating, we find many many closed annuli with one
of the two desired boundary components. But the second boundary component is not ‘round’.
Indeed our goal is to see that some KDn∖ h(IntDn) is an annulus, so we precisely require the
second boundary component to be round.

17.1. Stable homeomorphisms

Both Kirby’s proof of ACn for n ≥ 5 and Quinn’s for n = 4 proceed via proving the stable
homeomorphism theorem and then using results of Brown and Gluck, as we now explain.

Definition 17.6. A homeomorphism h of Rn is stable if it can be written as a composition
h = hk ◦ · · · ◦ h1 of homeomorphisms hi ∈ Homeo(Rn) such that for all 1 ≤ i ≤ k there exists an
open set Ui ̸= ∅ with hi|Ui = IdUi .

Remark 17.7. We do not need to restrict ourselves to Rn here. Given any homeomorphism
h : M → M of a manifold M , we say h is stable if it can be written as a composition h = hk◦· · ·◦h1
of homeomorphisms hi ∈ Homeo(M) such that for all 1 ≤ i ≤ k there exists an open set Ui ̸= ∅
with hi|Ui = IdUi . See [BG64b, Section 4] for more details. For now we focus on the case of
homeomorphisms of Rn, since those are most relevant to us.

It is a standard result that any orientation preserving diffeomorphism of Rn is stable, as well
as any PL-homeomorphism (see Proposition 17.15). In contrast, the following is harder to prove.

Theorem 17.8 (Stable homeomorphism theorem (SHn)). Every orientation preserving
homeomorphism of Rn is stable.

As mentioned, this was proven by Kirby [Kir69] for n ≥ 5, and by Quinn [Qui82a] for
n = 4. Stable homeomorphisms were defined and systematically studied by Brown and Gluck
in a sequence of papers in 1964 [BG63, BG64c, BG64b, BG64a], explicitly as a means of
attacking the Annulus Theorem 17.1 (then conjecture, ACn). In particular, they establish the
following key relationship.

Theorem 17.9. For any n ≥ 1 the following implications hold.

SHn =⇒ ACn(17.1) ⋃
k≤n

ACk =⇒ SHn(17.2)

Proof of SHn =⇒ ACn. It will suffice to show that ACn holds for every stable homeomorphism
h ∈ Homeo(Rn) (we are using the reformulation of ACn from Lemma 17.3). First we consider
the case when h|U = Id for some open set U . The goal is to find L > 0 so that LDn∖ h(IntDn)
is (homemorphic to) an annulus.

We will choose L large enough so that Int(LDn) ⊇ h(Dn) and LDn ∩ U ̸= ∅. In order to do
this, note that h(Dn) is bounded, so it is contained in some large enough round ball centred at
the origin. If U is also bounded, choose L large enough so that LDn contains both h(Dn) and
U . Otherwise, if U is unbounded, choose a bounded subset of U and apply the same reasoning.

Let us show that for this choice of L the space LDn∖ h(IntDn) is an annulus. We will use
to auxiliary discs B and h(KDn), see Figure 17.3. Namely, since Int(LDn) ∩ U is open we can
pick B ⊆ Int(LDn) ∩ U a standard round closed ball in Rn. Moreover, choose K > 0 large
enough such that Int(h(KDn)) ⊇ LDn. This is possible since LDn is bounded and the sequence
{h(iDn)}i≥1 is a compact exhaustion of Rn.

First let us show that h(KDn)∖ IntB is an annulus (yellow region in the first picture in
Fig. 17.4a). We have h(KDn)∖ IntB = h(KDn∖ IntB), since h is the identity on U ⊇ B by
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Figure 17.3. The setup in the proof of SHn =⇒ ACn from Theorem 17.9.

hypothesis. Moreover, KDn∖ IntB is an annulus, being the region between two nested round
spheres, and h is a homeomorphism, so h(KDn∖ IntB) is also an annulus.

Secondly, LDn∖ IntB is also an annulus, again as the region between two nested round
spheres (yellow region in the second picture in Fig. 17.4a).

From this and Remark 17.4 it follows that h(KDn)∖ Int(LDn) is an annulus, since it is a
manifold with boundary obtained by subtracting a boundary collar, namely LDn∖ IntB, from
h(KDn)∖B (the first row of Fig. 17.4a). That h(KDn)∖ Int(LDn) is a manifold with boundary
follows from the fact that ∂LDn is bicollared in Int(h(KDn)).

Next, h(KDn)∖ Int(h(Dn)) = h(KDn∖ IntDn) is the homeomorphic image of an annulus,
thus an annulus itself. Now another application of Remark 17.4 shows that LDn∖ h(IntDn) is
an annulus, see Fig. 17.4b. Namely, it is the manifold with boundary obtained by subtraction of
a boundary collar, namely h(KDn)∖ Int(LDn), from the annulus h(KDn)∖ Inth(Dn).

We have thus shown that LDn∖ h(IntDn) is an annulus, proving ACn for h. The case of a
general stable homeomorphism follow immediately from the following claim. □

Claim. If ACn holds for homeomorphisms h, k : Rn → Rn, then it holds for h ◦ k.

Proof. By hypothesis, there exists K > 0 large enough so that KDn∖ k(IntDn) is an annulus.
Then

Y := h(KDn)∖ h ◦ k(IntDn) = h(KDn∖ k(IntDn)
is also an annulus since h is a homeomorphism.

Again by hypothesis, there exists L > 0 large enough so that LDn∖ h(IntDn) is an annulus.
By choosing a larger L if necessary, we assume further that Int(LDn) contains h(KDn). Then
we claim that

Z := LDn∖ h(IntKDn)
is also an annulus by Remark 17.4. To see this, observe that

Z ∪
(
h(KDn)∖ h(IntDn)

)
= LDn∖ h(IntDn)

is an annulus, so Z is a manifold with boundary obtained by removing a boundary collar from an
annulus. Here we used the fact that h(KDn∖ IntDn) is an annulus, since it is the homeomorphic
image of the region between concentric round spheres, see Fig. 17.2a.

Now
LDn∖ h ◦ k(IntDn) = LDn∖ h(IntKDn) ∪ h(KDn)∖ h ◦ k(IntDn) = Z ∪ Y

is obtained by gluing two annuli together along a common boundary component, so is also an
annulus, showing that ACn holds for h ◦ k. □
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(a) As h(KDn)∖ IntB and LDn∖ IntB are annuli, their difference h(KDn)∖ Int(LDn) is as well.

(b) As h(KDn)∖ h(IntDn) and h(KDn)∖ Int(LDn) are annuli, their difference LDn∖ h(IntDn) is as
well.

Figure 17.4. Arguments in the proof of SHn =⇒ ACn.

17.1.1. Properties of stable homeomorphisms. Before giving Kirby’s proof of SHn for
n ≥ 5 we gather together the relevant facts about stable homeomorphisms, starting with the
following pleasant property of stable homeomorphisms.

Proposition 17.10. Every stable h ∈ Homeo(Rn) is isotopic to Id.

Proof. Write h = hk ◦ · · · ◦ h1 : Rn → Rn as in the definition. Since each hi agrees with IdRn

on some open set, it is isotopic to it by Proposition (15.3.v). Therefore, the composite map
h = hk ◦ · · · ◦ h1 is isotopic to IdRn as well. □

We now show that stability is a ‘local’ property of homeomorphisms, namely, that if a
homeomorphism agrees with a stable homeomorphism on an open set, it must itself be stable.

Lemma 17.11. Let h, k ∈ Homeo(Rn) be such that there exists a nonempty open set U with
h|U = k|U . Then h and k are either both stable or both unstable.

Proof. We can write k = h ◦ (h−1 ◦k), where (h−1 ◦k)|U = Id, so h−1 ◦k is stable. Then h stable
implies that k is stable, since the composition of stable maps is stable. A similar argument
shows that k stable implies h stable. □

Since stability is a ‘local’ property, the following is a natural notion of stability for maps
between subsets of Rn.

Definition 17.12. Let U, V ⊆ Rn be open. A homeomorphism h : U → V is stable if every
x ∈ U has a neighbourhood Wx ⊆ U such that h|Wx extends to a stable homeomorphism of Rn.
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In particular, the restriction of a stable homeomorphism of Rn is stable in the above sense.
Since we will use the torus trick in the upcoming proof of SHn the following result is reassuring.

Proposition 17.13 ([Con63, Lem. 5, p. 335]). If h ∈ Homeo(Rn) is bounded distance from
the identity, then h is stable.

We begin with a helpful lemma.

Lemma 17.14. Translations of Rn are stable.

Proof. Consider a translation t : Rn → Rn and a strip S1 := R × [−1, 1]n−1 aligned with the
direction of the translation, and another strip S2 := R × [−2, 2]n−1 containing it. Construct
two homeomorphisms, the first that fixes S1 and moves Rn∖ S2 by the translation. The second
homeomorphism fixes Rn∖ S2 and applies the translation to S1. In the difference S2∖ S1, we
interpolate, so that the composition of the two homeomorphisms is the given translation. □

Proof of Proposition 17.13. By Lemma 17.14, since compositions of stable maps are stable, we
may assume, without loss of generality, that h(0) = 0. Let ρ : [0,∞) → [0, 2) be a homeomorphism
with ρ|[0,1] = Id. Then we define the homeomorphism

γ : Rn
∼=−→ Int(2Dn)

x⃗ 7→ ρ(|x⃗|) x⃗
|x⃗|

Observe that by construction, γ|Dn = Id. Next we define a homeomorphism

H : Rn
∼=−→ Rn

x 7→
{
γhγ−1(x) x ∈ Int 2Dn

x x ∈ Rn∖ Int 2Dn.

We leave it to the reader to verify that H is continuous and a homeomorphism. The continuity
uses that h is bounded distance from the identity.

We assert that h and H agree in a neighbourhood of 0. Specifically, h and H agree on the
nonempty open set U := h−1(IntDn) ∩ IntDn, as we now show. First we know that 0 ∈ U
since h(0) = 0, so U ̸= ∅. Let x ∈ U . Then γ−1(x) = x since γ|Dn = Id. Next we know that
hγ−1(x) = h(x) ∈ IntDn since U ⊆ h−1(IntDn). Finally we use again that γ|Dn = Id to we see
that H(x) := γhγ−1(x) = γh(x) = h(x).

By definition, we have that H|Rn∖2Dn = Id, so H is stable. Then by Lemma 17.11, the
homeomorphism h must also be stable. □

17.2. Stable homeomorphism in the smooth and PL categories

Recall that our present goal is to prove that every homeomorphism of Rn is stable. The next
proposition shows this is only interesting in the topological category.

Proposition 17.15. Every orientation preserving diffeomorphism of Rn is stable. Every
orientation preserving PL homeomorphism is stable.

We will use the smooth isotopy extension theorem, see e.g. [Hir94, Chap. 8] or [Lee13b].

Theorem 17.16 ((Smooth) isotopy extension theorem). Let U ⊆ M be an open subset of a
smooth manifold, and let A ⊆ U compact. Let F : U × [0, 1] → M be a smooth isotopy such that
the track of the isotopy

F̂ : U × [0, 1] → M × [0, 1]
(x, t) 7→ (F (x, t), t)



17.2. STABLE HOMEOMORPHISM IN THE SMOOTH AND PL CATEGORIES 179

has open image. Then there is an isotopy H : M × [0, 1] Ĥ−→ M × [0, 1] proj−−→ M with Ht a
diffeomorphism for all t, H has compact support (i.e. Ht = Id outside some compact set for each
t) and there exists a neighbourhood V ⊇ A× [0, 1] such that Ĥ|V = F̂ |V .

Sketch proof. Use tangent vectors to the curves F̂ (x× [0, 1]) ⊆ M × [0, 1] to get a vector field on
F̂ (U× [0, 1]). Extend the latter to all of M× [0, 1], with compact support, and then integrate. □

There is also a PL isotopy extension theorem (see, e.g. [RS82]).

Proof of Proposition 17.15. First we address the smooth case. Recalling that translations are
stable (Lemma 17.14), it suffices to consider h : Rn → Rn a diffeomorphism with h(0) = 0. Define
a smooth isotopy {

1
th(tx) 0 < t ≤ 1
dh|x=0 t = 0

from h to a linear map. Recall that GLn(R) has two path components detected by det > 0 (if
orientation preserving) or det < 0 (if orientation reversing). Choose a smooth path in GLn(R)
from the linear map to Id. Putting the last two steps together, we have produced a smooth
isotopy H : Rn × [0, 1] → Rn, satisfying H0 = Id and H1 = h, where Ht diffeomorphism for all t.

Let U ∋ 0 be open. Apply the smooth isotopy extension theorem to H|U×[0,1] to get Ĥ.
Here H|U×[0,1] has open image since it is the restriction of an ambient isotopy,

Rn × [0, 1]

U × [0, 1] Rn

Rn × [0, 1]

Hincl.
H|U×[0,1]

incl.
Ĥ

In the above diagram, the top triangle commutes, and there exists a neighbourhood V of 0× [0, 1],
such that the bottom triangle commutes on V , i.e. Ĥ|V = (H|U×[0,1])|V = H|V . Since the isotopy
extension theorem provides an isotopy with compact support, we know in particular that Ĥ1
restricts to the identity outside some compact set.

Since Ĥ1 agrees with Id on some nonempty open set, we see that Ĥ1 is stable by definition.
Moreover, h = H1 agrees with Ĥ1 on proj(V ), so h is also stable by Lemma 17.11. This
completes the proof of the first statement.

For the PL statement, we will use a similar argument. First we know that every orientation
preserving PL embedding of Dn in Rn is isotopic to the identity [RS82]. The PL isotopy
extension theorem then shows that a germ near 0 can be extended to a homeomorphism which
is the identity outside some compact set, as in the previous argument. □

We need a definition of stability for PL homeomorphisms.

Definition 17.17. A homeomorphism h : M → N between oriented, PL manifolds is stable at
x ∈ IntM if there are PL coordinate charts ϕ : ∆n → M , with x ∈ ϕ(∆̊n) and ψ : ∆n → N , with
h(x) ∈ ψ(∆̊n), with h(ϕ(∆̊n)) ∩ ψ(∆̊n) ̸= ∅ such that the composition

ψ−1hϕ| : ϕ−1h−1ψ(∆n) → Rn

extends to a stable homeomorphism of Rn.

Observe that h is only assumed to be a homeomorphism in the above definition. We know
already from Proposition 17.15 that orientation preserving PL homeomorphisms are stable.
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Similar to above, we may define a notion of stability for diffeomorphisms of connected, oriented,
smooth manifolds, but we omit this, since we will not need it.
Remark 17.18. We have restricted ourselves to defining stability of PL homeomorphisms.
However, we may also define a notion of stable manifolds. Similar to how PL and smooth
manifolds are defined by describing the allowed transition maps, a stable manifold is one where
the transition maps are stable, in the sense of Definition 17.12. See [BG63, BG64c, BG64b,
BG64a] for further details. In particular, every orientable smooth or PL manifold admits a
stable structure [BG64b, Theorem 10.4]. The above definition indicates the correct notion of
stability for a homeomorphism of a manifold with a stable structure.

Next we show that whether a given homeomorphism is stable is a local property, namely we
need only check for stability at a single (arbitrary) point. For this we first need a lemma.

Lemma 17.19. Let M be a connected PL manifold. For any given pair x, y ∈ IntM there
exists a PL coordinate chart with image containing both x and y.

More precisely, for x, y ∈ IntM and a PL coordinate chart ϕ : ∆n → M giving a neighbour-
hood of x, there exists an orientation preserving PL homeomorphism f : M → M such that
f−1ϕ is a PL coordinate chart giving a neighbourhood of both x and y.

Proof. Let ϕ : ∆n → M be a PL coordinate chart with x ∈ ϕ(∆̊n). Choose b ∈ ϕ(∆̊n) with
b ̸= x. Choose an open set W ∋ x, y with x /∈ W .

There exists an orientation preserving PL homeomorphism f : M → M with y 7→ b and
f |M∖W = Id. Since x /∈ W , we know that f(x) = x. Then f−1(ϕ(∆n)) ∋ y, x and f−1 ◦ϕ : ∆n →
M is a PL coordinate chart with x, y ∈ f−1 ◦ ϕ(∆̊n), as claimed. □

Proposition 17.20 ([BG64b, Theorem 7.1]). Let M and N be connected, oriented, PL
manifolds. A homeomorphism h : M → N is stable at some x ∈ IntM if and only if it is stable
at every x ∈ IntM .

Proof. Assume that h is stable at x ∈ IntM with respect to PL coordinate charts ϕ at x and ψ
at h(x). In other words, the composition

ψ−1hϕ| : ϕ−1h−1ψ(∆n) → Rn

extends to a PL homeomorphism of Rn. Choose y ∈ IntM with y ̸= x. We will show that h is
stable at y, which will complete the proof.

We claim that h is stable at x with respect to f−1ϕ and ψ at h(x), for f as in the lemma. To
see this, we must consider the composition ψ−1hf−1ϕ = ψ−1hϕ ◦ ϕ−1fϕ, when both functions
are defined. Here we know by hypothesis that ψ−1hϕ is stable, and also that ϕ−1fϕ is since f is
an orientation preserving PL homeomorphism. The composition of stable homeomorphisms is
stable, and therefore, h is stable at x with respect to f−1ϕ and ψ at h(x).

But then h is stable at every point in f−1ϕ(∆̊n), and so h is also stable at y ∈ M . □

Lest the reader be concerned that we have two distinct notions of stability for a homeo-
morphism, the following proposition should lay the mind at ease.

Proposition 17.21 ([BG64b, Theorem 13.1]). For homeomorphisms of Rn, Definition 17.6
and Definition 17.17 agree. For the second definition, we fix some PL structure on Rn. In
particular, the statement shows that the choice is irrelevant, assuming one exists.

Indeed, the two definitions agree in general (see Remark 17.7), assuming a PL structure
exists on the given manifold. This shows that for a given manifold M , a given homeomorphism
is stable regardless of the PL structure on M . However, we must still choose the same PL
structure on both domain and codomain (in this case, both are M). Specifically, given two
distinct PL structures Σ and Σ′ on a manifold M , denoting the corresponding PL manifolds as
MΣ and MΣ′ respectively, even the identity map Id : MΣ → MΣ′ need not be stable.
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Proof of Proposition 17.21. It is clear that Definition 17.6 implies Definition 17.17 by the defini-
tion of a PL structure.

Suppose a homeomorphism h : Rn → Rn is stable under Definition 17.17 at some x ∈ Rn
with respect to some PL structure on Rn. Let ϕ : ∆n → Rn be a PL coordinate chart with
x, h(x) ∈ ϕ(∆̊n). Such a chart exists by Lemma 17.19. By hypothesis, ϕ−1hϕ is stable at
ϕ−1(x) ∈ Rn. It is shown in [BG64b] that ϕ−1hϕ| restricted to some neighbourhood of ϕ−1(x)
extends to a homeomorphism h′ of Rn such that h′|∂∆n = Id. Then ϕh′ϕ−1 : ϕ(∆n)

∼=−→ ϕ(∆n)
agrees with h on a neighbourhood of x, since on such a neighbourhood, h′ = ϕ−1hϕ and so
ϕh′ϕ−1 = ϕϕ−1hϕϕ−1 = h. Moreover, on ϕ(∂∆n), we have that ϕh′ϕ−1 = ϕϕ−1 = Id. Extend
by the identity to get a homeomorphism h1 : Rn → Rn.

Then observe that h1 agrees with the identity on an open set and thus h1 is stable in the
sense of Definition 17.6. We also know that h1 agrees with h on a neighbourhood of x, and so
h1 is stable in the sense of Definition 17.6 by Lemma 17.11. □

We need one final property of stable homeomorphisms for use in the proof of the stable
homeomorphism theorem.

Proposition 17.22. Let M,N, M̃, Ñ be connected oriented PL manifolds. If in a commut-
ative diagram

M̃ Ñ

M N

f̃
∼=

α β

f
∼=

the vertical arrows α and β are local PL homeomorphisms, then the homeomorphism f̃ is stable
if and only if the homeomorphism f is stable.

Note that codimension zero PL immersions and PL covering maps are local PL homeo-
morphisms.

Proof. Suppose that f̃ is stable. Let ϕ and ψ be coordinate charts for M̃ and Ñ respectively,
so that the composition ψ−1 ◦ f̃ ◦ ϕ| extends to a stable homeomorphism of Rn. Observe that
suitable small restrictions of αϕ and βψ are PL coordinate charts for M and N respectively.
Then a suitably small restriction of ψ−1β−1fαϕ extends to a stable homeomorphism of Rn,
since ψ−1β−1fαϕ agrees with ψ−1 ◦ f̃ ◦ ϕ| on a small enough neighbourhood. In light of
Proposition 17.20, this finishes the proof of one direction. The other direction is similar. □

17.3. Proof of the stable homeomorphism theorem

We now have the ingredients to prove the stable homeomorphism theorem for n ≥ 5, that
every orientation preserving homeomorphism of Rn is stable [Kir69].

Proof. We begin with an orientation preserving homeomorphism f : Rn → Rn. As before, the
proof consists of building from the bottom up the maps in the following diagram, where all
manifolds are endowed with PL structures – those without subscripts have their standard PL
structure, while nonstandard PL structures are denoted by subscripts and will be defined shortly.

We begin with a PL immersion α : Tn∖x → Rn for some x ∈ Tn, as provided by Corollary 15.6.
Here we are using the fact that a smooth map induces a PL map as described in Chapter 13.
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Since f is a homeomorphism, the composition f ◦ α is a topological immersion.

(17.3)

Rn Rn

Tn T̃nΣ Tn

Tn TnΣ

Tn∖ B̊ (Tn∖ B̊)Σ

Tn∖ A (Tn∖ A)Σ

Tn∖ x (Tn∖ x)Σ

Rn Rn

h̃

e e

h
∼=

g−1

∼=P L

ĥ
∼=

h|

h|

↫→ α

h

↫→ fα
f
∼=

Let (Tn∖ x)Σ denote the topological manifold Tn∖ x endowed with a PL structure Σ induced
by the immersion f ◦ α. In other words, with respect to this induced PL structure, the map
f ◦ α : (Tn∖ x)Σ ↬ Rn is a PL immersion. The map h completes the square. On the level of
topological manifolds h is the identity map. We use a different symbol here in an attempt to
avoid confusion – Since Σ is not equivalent to the standard PL structure on Tn∖ x, the map h
is not a priori a stable map. Observe that by Proposition 17.22 the map h is stable if and only
if f is stable.

Let A be an open ball around x ∈ Tn. Then A∖ x is an open submanifold of (Tn∖ x)Σ and
therefore inherits a PL structure; we denote the corresponding manifold by (A∖ x)Σ. Observe
that A∖ x is homeomorphic to Sn−1 × R. By Theorem 13.5, we know that (A∖ x)Σ is PL
homeomorphic to Sn−1 ×R, the latter with its standard PL structure. Choose one of those radial
copies of Sn−1 in (A∖ x)Σ and call it S. There sphere S is bicollared in Tn and therefore by the
Schoenflies theorem on the n-torus (Proposition 15.7), since n ≥ 3, bounds a closed ball B in Tn.
The sphere S = ∂B ⊆ (Tn∖ x)Σ carries the standard PL structure on Sn−1 and therefore we
can glue together (Tn∖ B̊)Σ and Dn carrying its standard PL structure (inducing the standard
PL structure on its boundary, to produce a PL structure on Tn. We still call this Σ. The torus
Tn endowed with this PL structure, that is the PL manifold TnΣ occurs in the second and third
line of the diagram. He we used the Alexander trick (Proposition Proposition 15.3) to extend
the map h| : Tn∖ B̊ → (Tn∖ B̊)Σ to a homeomorphism ĥ : Tn → TnΣ . In particular, while the
map h was only the identity map under an alias, the map ĥ may not be the identity everywhere
(of course it agrees with h on Tn∖ B̊).

Next we need another tool from PL topology. Specifically, we know from Theorem 13.6
that we can lift both Tn and TnΣ along finite-sheeted PL covering maps so that the induced
map h : Tn → T̃nΣ is homotopic to a PL homeomorphism g : Tn → T̃nΣ . Here we have used the
fact that every finite sheeted cover of Tn is also Tn. The inverse of the PL homeomorphism g
appears in the second line of the diagram.
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Figure 17.5. The proof of the stable homeomorphism theorem.

Since h and g are homotopic, we know that g−1 ◦ h is homotopic to the identity. By
Lemma 15.5 the map h̃ : Rn → Rn, induced by the universal covering map e : Rn → Tn, is
bounded distance from Id. Then by Proposition 17.13 it follows that h̃ is stable.

Having reached the top of the diagram, now we climb back down. Since h̃ is stable, we know
that g−1◦h is stable by Proposition 17.22. Next, we know that the map g is a PL homeomorphism,
which we may further assume to be orientation preserving by . The composition of stable maps
is stable so h = g ◦ (g−1h) is stable. Then ĥ is stable by Proposition 17.22. A restriction of a
stable map is stable, so h is stable, and then finally f is stable. This completes the proof. □

Remark 17.23. In Kirby’s paper proving the stable homeomorphism theorem [Kir69], he initially
only reduced it to the Hauptvermutung for tori, that is to a conjecture regarding the number of
PL structures on the n-torus. The key insight that one could pass to finite sheeted covers is
credited to Siebenmann. Indeed, as we will soon see there do exist nonstandard PL structures on
the n-torus for n ≥ 5, so the step cannot be bypassed. Therefore perhaps Siebenmann deserves
some nontrivial credit for the result.
Remark 17.24. Why can we not use the proof above in dimension four? For one thing, the input
from PL manifold theory depended on the powerful machinery of surgery theory, which does not
work in dimension four. However, as mentioned before, ACn as well as SHn is indeed true in
dimension four, as proved by Quinn [Qui82a].
Remark 17.25. Why do we need to resort to PL technology in the above proof? Is it possible to
use just smooth technology? The key difference between the smooth and PL categories that we
exploit in the proof is that the PL Poincaré conjecture is true in all dimensions (recall this was
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used in the proofs of the results of Wall [Wal67] and Browder [Bro65]), but in many dimensions
is known to be false in the smooth category.

17.4. Consequences of SHn and ACn

We present a couple of important consequences of these theorems, namely that orientation
preserving homeomorphisms of both Rn and Sn are isotopic to the identity, for n ≥ 5, and that
for dimension at least six, connected sum of manifolds is well-defined in the same sense as this
holds in the PL and smooth categories.

Theorem 17.26. For n ≥ 5 every orientation preserving homeomorphism of Rn is isotopic
to the identity.

Proof. Every orientation preserving homeomorphism is stable and stable homeomorphisms are
isotopic to the identity. Use the Alexander trick for each homeomorphism in the composite, each
of which is the identity on an open subset. □

Theorem 17.27. For n ≥ 5 every orientation preserving homeomorphism of Sn is isotopic
to the identity.

Proof. Consider an orientation preserving homeomorphism f : Rn∪{∞} = Sn
∼=−→ Sn = Rn∪{∞}.

Isotope f so that f(∞) = ∞ (for example, via a rotation). The restriction f |Rn is an orientation
preserving homeomorphism, so f |Rn is stable and thus f : Sn → Sn is stable. So f = f1 ◦ · ◦ fk
with fi|Ui = Id, where Ui ⊆ Sn open. Now use Alexander trick to isotope fi to Id and conclude
that f isotopic to Id. □

Remark 17.28. There exist orientation preserving diffeomorphisms of Sn that are not smoothly
isotopic to the identity. For example, Milnor’s exotic spheres can be built by gluing together
two copies of D7 along an orientation preserving diffeomorphism of S6. It is an open question
whether every orientation preserving diffeomorphism of S4 is smoothly isotopic to the identity.

Theorem 17.29. Let n ≥ 6.
(1) Connected sum of a pair of oriented, connected topological n-manifolds is well-defined.
(2) Connected sum of connected topological n-manifolds is well-defined provided at least

one of the two manifolds is nonorientable.

Example 17.30. The choices of orientation are important, since CP2n#CP2n and CP2n#CP2n

are not even homotopy equivalent.

We restrict to n ≥ 6 in Theorem 17.29 because we will use Theorem 17.27 for Sn−1 in the
proof. In fact Theorem 17.27 holds for all n, but since we are focusing on the high dimensional
development here, we only state and prove the theorem in dimension at least six.

To make sense of Theorem 17.29, we need to define connected sum. Since the most subtleties
occur in the oriented case, we work in that case from now on.

Definition 17.31. Let M1 and M2 be connected, oriented n-manifolds. Let ϕ : Dn → M1 be
a orientation preserving locally collared embedding, and let ψ : Dn → M2 be an orientation
reversing locally collared embedding. Then we define

M1#M2 := M1∖ Intϕ(Dn) ⊔ M2∖ Intψ(Dn)
ϕ(θ) ∼ ψ(θ), θ ∈ Sn−1 .

So the content of Theorem 17.29 is the following proposition.

Proposition 17.32. For n ≥ 6 the manifold M1#M2 is independent of the choice of ϕ and
ψ.



17.4. CONSEQUENCES OF SHN AND ACN 185

Proof. It suffices to prove that the connected sum is independent of the choice of ϕ. So let
ϕ′ : Dn → M1 be another orientation preserving locally collared embedding. We aim first to
construct a homeomorphism h : M1 → M1 such that h ◦ ϕ′ and ϕ have the same image.

Step 1: There is an orientation preserving homeomorphism h1 : M1 → M1 sending ϕ′(0)
to ϕ(0). Namely, manifolds are homogeneous: for any two points in the interior of a manifold,
there is an orientation preserving homeomorphism sending one point to the other. See exercise.

Step 2: There is an orientation preserving homeomorphism h2 : M1 → M1 such that
h2 ◦ h1(ϕ′(Dn)) ⊆ Intϕ(Dn).

To see this, use that h1ϕ
′(Dn) is locally collared, hence globally collared since the boundary is

codimension one. Then one can stretch the collar out while radially shrinking h1ϕ
′(Dn) until it

lies within the desired interior, see Fig. 17.6.

Figure 17.6. Step 2 of the proof: shrink h1ϕ
′(Dn) into Intϕ(Dn).

Step 3: There is an orientation preserving homeomorphism h3 : M1 → M1 such that
h3 ◦ h2 ◦ h1(ϕ′(Dn)) = ϕ(Dn).

To see this we apply the Annulus Theorem 17.1. The region ϕ(Dn)∖ Int(h2 ◦ h1 ◦ ϕ′(Dn) is
homeomorphic to Sn−1 × [0, 1], and a choice of such a homeomorphism may be used, together
with the outside collar on ϕ(Dn), to stretch out h2 ◦ h1 ◦ ϕ′(Dn) until it covers all of ϕ(Dn).

We write h = h3 ◦ h2 ◦ h1 and
ϕ′′ := h3 ◦ h2 ◦ h1 ◦ ϕ′.

Our aim is now to show that ϕ′′ and ϕ determine homeomorphic connected sums. Since h
is a homeomorphism, ϕ′ and ϕ′′ certainly produce homeomorphic connected sums M1#ϕ,ψM2
and M1#ϕ′′,ψM2. So it suffices to show that ϕ and ϕ′′ produce homeomorphic connected sums.
Although ϕ(Dn) = ϕ′′(Dn) ⊆ M1 coincide, there is still the problem that the gluing maps that
they determine, of ϕ(∂Dn) and ϕ′′(∂Dn) respectively with ψ(∂Dn) ⊆ M2∖ Intψ(Dn) differ.

However, we observe that the map
ϕ−1 ◦ ϕ′′ : Sn−1 = ∂Dn → ∂Dn = Sn−1

is an orientation preserving homeomorphism , so it is isotopic to the identity by Theorem 17.27,
i.e. there is a family of homeomorphisms Ft : ∂Dn → ∂Dn with F0 = ϕ−1 ◦ϕ′′ and F1 = Id. Now
consider a homeomorphism

H : ϕ(∂Dn) × I → ϕ(∂Dn) × I

(ϕ(x), t) 7→ (ϕ ◦ Ft(x), t).

Note that H(ϕ(x), 0) = (ϕ′′(x), 0) and H(ϕ(x), 1) = (ϕ(x), 1). We will use H to define a
homeomorphism of a collar of ϕ(∂Dn) = ϕ′′(Dn), which exists by Brown’s collaring Theorem 4.5
since ϕ(Dn) is locally collared by assumption. Fix a choice of such a collar

G : ϕ(∂Dn) × I → M1∖ Intϕ(Dn),
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with G(ϕ(∂Dn)×{0}) = ϕ(∂Dn). As ϕ(Dn) = ϕ′′(Dn) we have M1∖Intϕ′′(Dn) = M1∖Intϕ(Dn),
and we can view G also as a collar for ϕ′′(∂Dn) in M1∖ Intϕ′′(Dn). We define a homeomorphism
K : M1#ϕ,ψM2 → M1#ϕ′′,ψM2 as in Fig. 17.7, namely

K(x) :=

Id, x ∈ M2∖ Intψ(Dn) ∪M1∖
(
ϕ(Dn) ∪G(ϕ(∂Dn) × I)

)
,

G(H(ϕ(x), t)), x = G(ϕ(y), t) for y ∈ ∂Dn.

Since H(ϕ(x), 1) = (ϕ(x), 1) the map K is continuous at G(ϕ(x), 1) for all x ∈ ∂Dn. Since

Figure 17.7. The final homeomorphism K.

H(ϕ(x), 0) = (ϕ′′(x), 1), and (ϕ(x), 0) ∼ ψ(x) in the domain of K, whereas (ϕ′′(x), 0) ∼ ψ(x) in
the codomain, the map is well-defined and continuous at ϕ(∂Dn) = ψ(∂Dn). This completes the
proof that connected sum is well-defined for manifolds of dimension at least 6. □

Exercise 17.1. (PS8.1) Prove that every homeomorphism h : Tn → Tn is stable, where
Tn denotes the n-torus S1 × · · · × S1. Hints:

− Easy mode: Apply SHn.
− Expert mode: The result can be proved independently of SHn, and was the key step

in Kirby’s proof of SHn. (We sidestepped it by using a slightly stronger result about
PL homotopy tori.) First prove the case where the induced map on fundamental
groups is the identity. Then show that for any n× n matrix A with integer entries and
determinant one, there exists a diffeomorphism h : Tn → Tn such that h∗ = A where
h∗ : π1(Tn, x) → π1(Tn, x). Prove that diffeomorphisms of Tn are stable.

Exercise 17.2. (PS8.2) Use the torus trick to show that a homeomorphism of Rn is stable
if and only if it is isotopic to the identity. Hints:

(1) It suffices to show that the space of stable homeomorphisms of Rn, denoted SHomeo(Rn),
is both open and closed in Homeo(Rn).

(2) Use the torus trick from our proof of local contractibility of Homeo(Rn) to show that an
open neighbourhood of the identity in Homeo(Rn) consists of stable homeomorphisms.
Conclude that every stable homeomorphism of Rn has an open neighbourhood consisting
of stable homeomorphisms.
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(3) Every coset of SHomeo(Rn) in Homeo(Rn) is open since Homeo(Rn) is a topological
group. Conclude that SHomeo(Rn) is closed in Homeo(Rn).

Exercise 17.3. (PS9.1) Prove the “topological weak Palais theorem”. That is, let n ≥ 6, let
M be a connected n-manifold, and let ϕ, ψ : Dn → IntM be locally collared embeddings. Then
there exists a homeomorphism h : M → M with h ◦ ϕ = ψ : Dn → M .





CHAPTER 18

PL homotopy tori

Mark Powell

We give an outline of the surgery theoretic classification of closed n-manifolds homotopy
equivalent to the torus Tn, for n ≥ 5. This classification played a key rôle in the proof of the
stable homeomorphism theorem.

This chapter will not contain proofs. It is intended to be understandable to those who do not
have a background in surgery theory. Along the way we will try to point out where some key tools
of PL manifold theory are being used, in the hope that this acts as motivation for our attempt to
establish the same tools for topological manifolds. That is, given transversality, handle structures,
and immersion theory, we will be able to apply surgery theory in the topological category to
obtain similarly strong results on classification of topological manifolds within a homotopy type.

18.1. Classification theorems

The aim is to prove the following two theorems, due to Hsiang-Shaneson [HS69] and
Wall [Wal69].
Remark 18.1. The most complete proof was given by Hsiang and Shaneson, although it seems that
Wall knew the same result, and was in the middle of writing his extensive book on non-simply
connected surgery theory when Kirby announced his proof of SHn modulo the homotopy tori
question. Kirby’s proof still needed input from surgery theory, but the theory was so well
developed by that point that this was a problem the experts could quickly solve. Wall produced
a short announcement of the answer, promising details in his book. Hsiang-Shaneson announced
the result at the same time, and using ideas of Farrell, were able to give their own account prior
to Wall’s book being completed. Perhaps due to this, Wall’s book contains fewer details, so the
more comprehensive account seems to be Hsiang-Shaneson [HS69].

Theorem 18.2. Let n ≥ 5. There is a bijection between the set of closed PL n-manifolds
M ≃ Tn, up to PL homeomorphism, and

(∧n−3Zn) ⊗ Z/2
GLn(Z) .

Here ∧n−3Zn denotes the exterior algebra. The 0 element corresponds to Tn.

Example 18.3. For n = 5 we have that (∧2Z5) ⊗ Z/2 ∼= (Z/2)10, and the quotient by GL5(Z)
contains 3 elements, represented by 0, e1 ∧ e2 and e1 ∧ e2 + e3 ∧ e4. The key to checking this is
to note that by change of bases

e1 ∧ e2 + e2 ∧ e3 ∼ e1 ∧ e2 + e2 ∧ (e3 + e1) = e2 ∧ e3 ∼ e1 ∧ e2.

Thus even in dimension 5, where there are no exotic spheres, there are two fake PL-tori. That
is, they are homotopy equivalent but not PL homeomorphic.

The proof of SHn used the following result, which is stronger than just enumerating the
homotopy tori.

189
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Theorem 18.4. Let n ≥ 5. Every closed PL n-manifold M ≃ Tn has a finite cover PL-
homeomorphic to Tn.

Actually, the proof used a further refinement of this, namely that a lift of any homotopy
equivalence is homotopic to a homeomorphism. This will be immediate from the fact that we
work with the structure set.
Remark 18.5. The analogue of Theorem 18.2 in the smooth category does not hold, since one may
connect sum on an exotic sphere, to produce new fake tori. On the other hand, this phenomenon
disappears when we pass to finite covers, and the analogue of Theorem 18.4 is also true in the
smooth category. In the topological category, there are no fake homotopy tori, but we will need
to develop tools such as topological transversality in order to see this.

We will give an introduction to surgery theory in the specific case of the torus Tn. Perhaps
this will help readers understand the general theory.

18.2. The structure set

Our primary aim will be to compute the structure set of Tn, the set of pairs:

SPL(Tn) :=
{

(Mn closed PL manifold, f : M ≃−→ Tn)
}
/s-cobordism over Tn.

Here, for the equivalence relation, (M,f) and (N, g) are s-cobordant over Tn if there is an
(n+ 1)-dimensional cobordism W with ∂W = M ⊔ −N with a map F : W → Tn extending f
and g, such that the inclusion maps M → W and N → W are simple homotopy equivalences.
This means that W can be obtained from either M or N by a sequence of elementary expansions
and collapses. See e.g. [Coh73], [DK01, final chapter], or Crowley-Lueck-Macko for more on
simple homotopy type. Recall that if the same holds without the simple requirement, then W is
called an h-cobordism over Tn.

Here are two simplifications of the structure set. First, it turns out that whether a homotopy
equivalence is simple can be decided by an algebraic obstruction in the Whitehead group. For a
group π, let Z[π] be the group ring, that is sums ∑g∈π ngg, with ng ∈ Z, and finitely many of
the ng nonzero.

Theorem 18.6 (Bass-Heller-Swan [BHS64]). For n ≥ 0, the Whitehead group Wh(Z[Zn]) =
0.

This means that every matrix in GLk(Z[Zn]) can be converted into a diagonal matrix with
entries ±g by a sequence of operations: taking a block sum with an identity matrix, reversing
this operation, or elementary row and column operations. That Wh(Z) = 0 is a straightforward
consequence of the Euclidean algorithm. That Wh(Z[Zn]) = 0 is a much harder theorem.

The algebraic moves in the Whitehead group mirror geometric handle moves that can be
performed to a handle decomposition of an h-cobordism. In fact the vanishing of the Whitehead
group implies that these moves can be done in order to cancel all handles.

Theorem 18.7 (The s-cobordism theorem; Smale [Sma62a], Barden-Mazur-Stallings [Bar63,
Sta67, Maz63]). For n ≥ 5, let (Wn+1;Mn, Nn) be a PL s-cobordism. Then

W ∼=PL M × I ∼=PL N × I.

In particular M ∼=PL N .
Remark 18.8. This is also true in the smooth category [Mil65]. It also holds in the topological
category, although that needs the results of Kirby-Siebenmann [KS77b] that we are currently
learning. In the topological category it also holds for n = 4, by work of Freedman and
Quinn [FQ90] that we will not cover.
Remark 18.9. The proof of the s-cobordism theorem uses handle structures and transversality,
so being able to establish versions of these tools for topological manifolds is a prerequisite for
proving the topological s-cobordism theorem.
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The outcome of these two theorems is that:

SPL(Tn) = {f : M ≃−→ Tn}
h-cobordism over Tn

∼=
{f : M ≃−→ Tn}

s-cobordism over Tn
∼=

{f : M ≃−→ Tn}
PL homeomorphism over Tn

for n ≥ 5. So we see that computing the structure set is extremely relevant for the aim of
classifying manifolds homotopy equivalent to Tn.

18.3. Normal bordism and the surgery obstruction

The idea of manifold classification via surgery theory is to invoke the power of bordism
theory, and to introduce auxiliary stable normal bundle data. This is hard to motivate at first,
but it turns out that introducing this extra data is what enables the whole machine to run. Here
is an attempt at motivation. Homotopy equivalences are in particular degree one normal maps.
Also h-cobordisms are in particular normal bordisms. The powerful machinery of bordism theory
allows us to compute the set of degree normal maps up to normal bordism. In addition the
normal bundle data provides just the right amount of extra control to enable the definition of
an algebraic obstruction to a normal bordism class containing a homotopy equivalence.

The initial goal is to compute normal bordism classes of degree one normal maps. Here a
degree one normal map is a bundle map

νM ξ

M Tn.

F

f

Here we assume that M ⊆ Rq for some large q and νM is the stable normal bundle, while ξ is
some stable bundle. We will not discuss the correct notion of a PL bundle theory here. We
require that f has degree one, that is both M and Tn are equipped with fundamental classes
and f∗ : Hn(M) → Hn(Tn) sends [M ] to [Tn].

We consider degree one normal maps up to degree one normal bordism. That is a cobordism
(Wn+1;M,N) with data

νW Ξ

W Tn × I

G

g

restricting to the given degree one normal maps M → Tn × {0} and N → Tn × {1}, and such
that g∗ : Hn(W,∂W ) → Hn(Tn × I, Tn × {0, 1}) preserves the relative fundamental classes.

Let NPL(Tn) be the set of normal bordism classes of normal maps with target the PL
manifold Tn.

Theorem 18.10. Let n ≥ 5. A normal bordism class [(M,f, F, ξ)] contains a homotopy
equivalence M → Tn if and only if the surgery obstruction σ(M,f, F, ξ) = 0 ∈ Ln(Z[Zn]).

Let us explain this theorem. The idea is to try to perform surgery (to be defined presently)
on M to convert f into a homotopy equivalence. There is an algebraic obstruction to this in
the L-group, which we will define. If the algebraic obstruction vanishes, then the sequence of
surgeries exists as desired.

A surgery on an n-manifold consists of cutting out an embedding of Sr ×Dn−r, for some r,
and gluing in Dr+1 × Sn−r−1 instead:

M ′ := M∖ Sr × D̊n−r ∪Sr×Sn−r−1 Dr+1 × Sn−r−1.

Associated with a surgery is a cobordism, called the trace of the surgery, given by
M × I ∪Dr+1 ×Dn−r,
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where Dr+1 ×Dn−r is attached along the given embedding Sr ×Dn−r in M × {1}.
Using Smale-Hirsch immersion theory (due to Haefliger-Poenaru [HP64] in the PL category),

one can perform surgeries “below the middle dimension” to obtain f ′ : M ′ → Tn with f ′ ⌊n/2⌋-
connected. That is, f ′ is an isomorphism on πi for 0 ≤ i < ⌊n/2⌋ and is a surjection on
π⌊n/2⌋(M ′) → π⌊n/2⌋(Tn). (In our case, the latter is automatic since π⌊n/2⌋(Tn) = 0.)

We want to kill ker(π⌊n/2⌋(M ′) → π⌊n/2⌋(Tn)) = π⌊n/2⌋(M ′). We can do this by surgery if
and only if f ′ : M ′ → Tn is normally bordant to a homotopy equivalence, in which case we have
a candidate for a fake torus. The fact that making a map an isomorphism on homotopy groups
only up to the middle dimension suffices to achieve a homotopy equivalence follows from Poincaré
duality, universal coefficients, and the Hurewicz and the Whitehead theorems. These last set of
surgeries are possible if and only if an algebraic obstruction in the L-group Ln(Z[Zn]), which we
will soon define, vanishes. This obstruction is well-defined, meaning that it only depends on
the original normal bordism class. In particular it is independent of the choices we made in the
initial surgeries below the middle dimension, although this is not at all obvious. The L-groups
are the obstructions to finding a collection of disjoint embeddings of S⌊n/2⌋ ×Dn−⌊n/2⌋, framed
embedded spheres, such that surgery on them gives a homotopy equivalence f ′′ : M ′′ → Tn. We
next define the L groups. Note that a group ring Z[π] has an involution defined by sending
g 7→ g−1 and extending linearly.

Definition 18.11. In even degrees, L2k(Z[Zn]) is the group of nonsingular, (−1)k-Hermitian,
sesquilinear forms on finitely generated, free Z[Zn]-modules, given by some φ : P → P ∗ =
HomZ[Zn](P,Z[Zn]), and further equipped with a quadratic enhancement. We will not define
quadratic enhancements in detail, but in particular note that a form with a quadratic enhancement
is even. We impose the equivalence relation of stable isometry, where by definition φ and φ′ are
Witt equivalent if

φ⊕
( 0 1

(−1)k 0

)a
∼= φ′ ⊕

( 0 1
(−1)k 0

)b
.

The form
( 0 1

(−1)k 0

)
on Zπ ⊕ Zπ is called the standard (−1)k-hyperbolic form.

In odd degrees, L2k+1(Z[Zn]) is the group of nonsingular formations. These are (−1)k
hyperbolic forms with two lagrangians, that is half-rank summands on which the form vanishes.
We shall not describe the equivalence relation on formations.

The data of a formation is rather like the algebraic data one can obtain from a Heegaard
splitting of a 3-manifold.

We have now seen that the following is an exact sequence of sets:
SPL(Tn) → NPL(Tn) σ−→ Ln(Z[Zn]).

Here the first map is to consider normal bordism classes, and the second is the surgery obstruction
map. Exactness encodes the theorem above that the surgery obstruction of a degree one normal
map vanishes if and only if that normal bordism class contains a homotopy equivalence.

Proposition 18.12. For [(M,f, F, ξ)] ∈ NPL(Tn), σ(M,f, F, ξ) = 0 if and only if (M,f, F, ξ)
is normally bordant to (Tn, Id, Id, νTn). That is, there is a unique normal bordism class containing
a homotopy equivalence.

We will explain more about the computation of σ later, but first more on the overall strategy.

18.4. Wall realisation and the size of each normal bordism class

Once we know which normal bordism classes contain at least one homotopy equivalence, we
can ask how many are there in each normal bordism class, and how many distinct PL manifolds
does this give rise to. The first question amounts to completing the computation of the structure
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set. We saw that every manifold homotopy equivalent to Tn is normally bordant to Tn. It helps
to ask the following question.

Question 18.13. Given a normal bordism from M to Tn, is that normal bordism itself bordant
(via a bordism of bordisms) to a homotopy equivalence, and hence to an h-cobordism?

If the answer is yes, then (M,f) = (Tn, Id) in SPL(Tn) and M ∼=PL T
n. What about if we

are allowed to first change the given normal bordism, and then ask this question? If the answer
is no for all choices of initial normal bordism, then indeed the pairs (M,f) and (Tn, Id) must be
distinct.

Proposition 18.14 (Browder [Bro72], Novikov [Nov64], Wall). A normal bordism (W, g,G,Ξ)
over Tn × I is normally bordant to an h-cobordism if and only if its surgery obstruction
σ(W, g,G,Ξ) = 0 ∈ Ln+1(Z[Zn]).

In fact, all possible surgery obstructions can be realised for normal bordisms, fixing one end
of the normal bordism but not the other.

Theorem 18.15 (Wall). The group Ln+1(Z[Zn]) acts on SPL(Tn) with stabiliser

Im(σ : NPL(Tn × I, Tn × {0, 1}) → Ln+1(Z[Zn]).

The action produces a normal bordism starting with (Tn, Id) with any given surgery obstruction.
The output of the action is the homotopy equivalence obtained by restricting to the other end of
the constructed normal bordism.

We deduce that

SPL(Tn) ↔ Ln+1(Z[Zn])
Im σ

.

Wall realisation extends the sequence above to the surgery exact sequence:

NPL(Tn × I, Tn × {0, 1}) σ−→ Ln+1(Z[Zn]) → SPL(Tn) → NPL(Tn) σ−→ Ln(Z[Zn]).

Proposition 18.16. We have
Ln+1(Z[Zn])

Im σ
∼= (∧n−3Zn) ⊗ Z/2.

Thus |SPL(Tn)| = 2(n
3), all in the normal bordism class of the identity.

Now, how many distinct manifolds does this entail? We have to factor out by the choice of
homotopy equivalence to Tn. Note that Tn ≃ K(Zn, 1), since the universal cover is Rn, which
is contractible. Thus homotopy self-equivalences of Tn up to homotopy are in bijection with
isomorphisms of π1(Tn) ∼= Zn, in other words with GLn(Z). Therefore the manifold set is given
by:

MPL(Tn) = {Mn | M ≃ Tn}
PL-homeomorphism

∼=
SPL(Tn)

self-homotopy equivalences
∼=

(∧n−3Zn) ⊗ Z/2
GLn(Z) .

This completes our sketch of the proof of Theorem 18.2. We could leave Proposition 18.12 and
Proposition 18.16 as black boxes. But we also want to understand Theorem 18.4, and for that
we will need to understand the proofs of these propositions.

18.5. Computations of the surgery obstruction maps

We want to know that for any homotopy torus M ≃ Tn, the 2n-fold cover corresponding to
the kernel of Zn → (Z/2)n, sending ei 7→ ei, satisfies M̃ ∼=PL T

n.
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18.5.1. The L-groups. First, the L-groups of Z[Zn] are known.
Theorem 18.17 (Shaneson). Let G be a finitely presented group and suppose that Wh(Z[G]) =

0. Then
Lm(Z[Z ×G]) ∼= Lm(Z[G]) ⊕ Lm−1(Z[G]).

This proof is a geometric proof of an algebraic fact, and uses transversality. It is the algebraic
analogue of the geometric splitting in bordism groups

Ωm(X × S1) ∼= Ωm(X) ⊕ Ωm−1(X).
Corollary 18.18.

Lm(Z[Zn]) ∼=
⊕

0≤i≤n

⊕ (
n

i

)
Lm−i(Z).

The L-groups of Z are given as follows. They are 4-periodic for j ≥ 0.

Lj(Z) ∼=


Z j ≡ 0 mod 4
0 j ≡ 1 mod 4
Z/2 j ≡ 2 mod 4
0 j ≡ 3 mod 4.

For j ≡ 2, the nontrivial element is detected by an Arf invariant, which depends on the quadratic
enhancement. For j ≡ 0, the isomorphism is given by taking the signature of the form, and
dividing by 8. It is an algebraic fact that every symmetric, even, nonsingular form has signature
divisible by 8.

18.5.2. Normal invariants. Next we bring in Sullivan’s work, to compute NPL(Tn). The
general fact, for a manifold or more generally for a Poincaré complex X with NPL(X) ̸= ∅ is
that

NPL(X) ∼= [X,G/PL].
Here square brackets indicate homotopy classes of maps. This translates a bordism question
into a homotopy theory question. It is particularly useful because, as we shall see, the homotopy
groups of G/PL can be determined, as a consequence of the PL Poincaré conjecture. Let us
introduce the notation.

− Gn is the monoid of homotopy self-equivalences of Sn−1.
− PLn is the PL-homeomorphisms of Rn fixing 0. (In fact to define this space carefully

uses semi-simplicial spaces, which will be too much of a distraction for now. So we
shall conveniently lie about it, and we will return to the proper definition later when
we study smoothing theory.)

− G := colim−−−→n
Gn is the colimit. Here given f : Sn−1 → Sn−1 we can take its reduced

suspension Σf : ΣSn−1 ∼= Sn → ΣSn−1 ∼= Sn, which gives the maps in the directed
system needed for the colimit.

− PL = colim−−−→n
PLn. Here a PL-homeomorphism of Rn induces one of Rn+1 by taking

the product with IdR.
Using these, BG and BPL are the associated classifying spaces. Similarly BGn and BPLn

are the versions prior to taking colimits. In particular BGn is the classifying space for fibrations
with fibre Sn−1, BPLn is the classifying space for Rn fibre bundles with PLn structure group,
BG is the classifying space for stable spherical fibrations, and BPL is the classifying space
for stable classes of PL bundles. A classifying space can be constructed using semi-simplicial
techniques. Again we will postpone the precise definitions. At this point, what we need to
know is that for a CW complex X, homotopy classes of maps, for examples [X,BGn], are in
bijective correspondence with fibre homotopy equivalence classes of fibrations with fibre homotopy
equivalent to Sn−1, and [X,BPLn] is in bijective correspondence with isomorphism classes of
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Rn fibre bundles with PLn structure group. Similarly [X,BG] and [X,BPL] correspond to
equivalence classes of stable fibrations and fibre bundles respectively.

The forgetful map BPL → BG has homotopy fibre G/PL, so there is a fibration sequence

G/PL → BPL
ψ−→ BG

with
G/PL = {(x, γ) | x ∈ BPL, γ : [0, 1] → BG, γ(0) = ψ(x), γ(1) = basepoint of BG}.

The bijection NPL(X) ∼= [X,G/PL] works as follows. Let X be a compact n-manifold for
simplicity. Then X has a spherical normal fibration coming from embedding X in Euclidean
space. Fixing one PL normal bundle, the different lifts of the spherical normal fibration are in
bijective correspondence with [X,G/PL]. Each such lift corresponds to a PL bundle over X
embedding in SN for some N . There is an associated collapse map from SN to the Thom space
of the PL normal bundle. Make this map transverse to the zero section and take the inverse
image. This yields a manifold M ⊆ SN with a degree one map to the zero section X. Pulling
back the bundle which equals the normal bundle of X in the Thom space gives a bundle over
M , with a bundle map. So we obtain a degree one normal map. It turns out that this method
gives rise to the claimed bijection.

One key fact about G/PL is that it can be delooped. That is, for some space Y we have
G/PL ≃ ΩY . This is due to Boardman-Vogt [BV68]. Using this we can specialise to X = Tn

and compute:

[Tn, G/PL] = [Tn,ΩY ] = [ΣTn, Y ] = [
∨
Sk+1, Y ] = [

∨
Sk,ΩY ] = [

∨
Sk, G/PL].

Here we use that in a CW decomposition of Tn, all the attaching maps become null-homotopic
after suspension. This reduces ΣTn to a wedge of spheres. We have been imprecise with which
spheres are involved. There is one wedge summand Sk+1 for each k-cell of Tn, with k ≥ 1.

Let us consider the surgery exact sequence for Sn. We have
[ΣSn, G/PL] → Ln+1(Z) → SPL(Sn) → [Sn, G/PL] → Ln(Z) → · · ·

By the PL Poincaré conjecture, SPL(Sn) ∼= {[Sn]} for n ≥ 5. Therefore for n ≥ 6 we have:

πn(G/PL) ∼= Ln(Z) ∼=


Z j ≡ 0 mod 4
0 j ≡ 1 mod 4
Z/2 j ≡ 2 mod 4
0 j ≡ 3 mod 4.

In particular πn(G/PL) is 4-periodic. We can compute what happens in the low dimensions
using knowledge of the homotopy groups of G and O = colim−−−→n

O(n). Here is a summary, which
relies on a certain amount of background knowledge. We will quote the relevant facts, to at
least give some indication of what is needed. It is all independent of the theory of topological
manifolds. There is a fibration

PL/O → BO → BPL

where PL/O is by definition the homotopy fibre.

Theorem 18.19. The space PL/O is 6-connected.

This follows from classical, deep theorems on smoothing PL manifolds in low dimensions.
The long exact sequence in homotopy groups

πn(PL/O) → πn(G/O) → πn(G/PL) → πn−1(PL/O)
for n ≤ 6 implies that πn(G/PL) ∼= πn(G/O) for n ≤ 6. The homotopy groups of BG are related
to the stable homotopy groups of spheres by a shift. The homotopy groups of BO are known by
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Bott periodicity. The homotopy groups are connected by the J homomorphism. We have a long
exact sequence

· · · → π2(G/O) → π2(BO) J−→ π2(BG) → π1(G/O) → π1(BO) J−→ π1(BG)
We also know the following information on the groups and the maps in this sequence

π1(BO) π1(BG)

Z/2 Z/2

J

∼= ∼=
∼=

π2(BO) π2(BG)

Z/2 Z/2

J

∼= ∼=
∼=

π3(BO) π3(BG)

0 Z/2

J

∼= ∼=

π4(BO) π4(BG)

Z Z/24.

J

∼= ∼=

In addition π5(BG) = π5(BO) = π6(BG) = 0. It is then straightforward to compute that the
4-periodicity persists into the low dimensions, namely for n ∈ {1, 2, 3, 4, 5} we have:

πn(G/PL) ∼=


0 n = 1, 3, 5
Z/2 n = 2
Z n = 0, 4.

So in fact πn(G/PL) ∼= Ln(Z) for all n ≥ 0. Moreover,

[Tn, G/PL] ∼= NPL(Tn) ∼=∼=
⊕

0≤i<n

⊕ (
n

i

)
Ln−i(Z)

and

Ln(Z[Zn]) ∼=
⊕

0≤i≤n

⊕ (
n

i

)
Ln−i(Z)

are almost isomorphic, the only difference being the extra copy of L0(Z) ∼= Z when i = n that
appears in Ln(Z[Zn]).

18.5.3. The surgery obstruction map is injective.

Proposition 18.20. The surgery obstruction map σ : [Tn, G/PL] → Ln(Z[Zn]) is injective.

Proof. Here is a sketch of the proof. Suppose that ξ ∈ [Tn, G/PL] (we use the notation for a
bundle since the set [Tn, G/PL] indexes PL fibre bundles lifting the normal spherical fibration).
Suppose that σ(ξ) = 0. We induct on n. Since π1(G/PL) = 0, the base case holds.

We are going to ignore issues with low dimensions for this sketch. Really at the start of
the induction we should cross with CP2 to get into sufficiently high dimensions, and use that
crossing with CP2 realises the 4-periodicity of the surgery obstruction. To avoid the details of
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this, let us assume we have already done the induction as far as n = 5. Recall the computation
above that gives the first equality:

[Tn, G/PL] = [
∨
Sk+1, Y ] =

∏
[Sk+1, Y ] =

∏
[Sk, G/PL].

The maps in the product are sent under σ to the surgery obstructions of sub-tori T k ⊆ Tn. They
are null-homotopic by the inductive hypothesis, except for on the top cell. To understand the
obstruction on the top cell we have the following diagram.

[Tn, G/PL] Ln(Z[Zn])

[Sn, G/PL] Ln(Z)
∼=

Here the left vertical arrow is given by collapsing the (n− 1)-skeleton. That the right vertical
arrow is injective follows easily from the definitions: a stable isometry over Z[Zn] augments to
one over Z. Since the right-then-up route is an injection, it follows that ξ = 0 as desired. □

This shows that indeed there is a unique normal bordism class in NPL(Tn) that contains a
homotopy equivalence.

18.5.4. Constructing normal maps producing given elements of Ln+1(Z[Zn]). We
are left with the question: what is the image of σ? On the left of the surgery exact sequence,
this image in Ln+1(Z[Zn]) equals the stabiliser of IdTn ∈ SPL(Tn), and the orbit of this element
is what we want to compute.

We construct the degree one normal maps that give elements of Ln+1(Z[Zn]), as suggested
by the title of this section. Let J ⊆ {1, . . . , n} and write

H := {1, . . . , n}∖ J.

These subsets correspond to sub-tori TJ , TH ⊆ Tn. For example if J = {1, 2, 4} ⊆ {1, . . . , 5}
then TJ = S1 × S1 × {∗} × S1 × {∗}. Write

m = |J |.
Let

νM ξ

M Dm+1

F

f

be a degree one normal map, restricting to a PL homeomorphism on the boundary ∂M → Sm,
realising the generator of

Lm+1(Z) ∼=


Z m+ 1 ≡ 0 mod 4
0 m+ 1 ≡ 1 mod 4
Z/2 m+ 1 ≡ 2 mod 4
0 m+ 1 ≡ 3 mod 4.

if m+ 1 ̸= 4. If m+ 1 = 4, then we instead realise twice the generator of L4(Z) ∼= Z. Such a
degree one normal map exists by Kervaire and Milnor’s plumbing construction, which is a special
case of Wall realisation. This gives such an element for n ̸= m+ 1. Part of this construction is
the fact that an m-dimensional homology sphere bounds a contractible (m+ 1)-dimensional PL
manifold. This is true by surgery methods for m+ 1 ≥ 5, but it is not true for m = 3 in general.
For example the Poincaré homology sphere does not bound a contractible PL 4-manifold. More
generally, we have Rochlin’s important theorem. This theorem will be the underlying source of
the main differences between the PL and topological categories in high dimensions.
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Theorem 18.21 (Rochlin [Roc52]). Let X be a smooth or PL, closed, spin 4-manifold.
Then 16 divides the signature of X.

Therefore it is not possible to realise the generator of L4(Z) by a degree one normal map
M → D4. Here the signature of X is the signature of the middle dimensional intersection form
on H2(X;R), which is nonsingular.

Spin 4-manifolds have even intersection forms, by the Wu formula w2(X) ∩ x = x · x ∈ Z/2
for all x ∈ H2(X;Z). Then it is an algebraic fact that 8 divides the signature. The converse, that
even intersection form implies spin, is also true if H1(X;Z) has no 2-torsion. That 16 divides
the signature uses the existence of a smooth or PL structure. In fact Freedman showed that
there is a simply-connected topological 4-manifold with even intersection form and signature 8,
so Rochlin’s theorem does not hold for topological 4-manifolds.

It is perhaps rather remarkable that this theorem on 4-manifolds will have so many con-
sequences for high dimensional manifolds.

Now we construct the normal maps desired. We use the boundary connected sum ♮ in the
construction, which means choosing a copy of Dm in TJ × {1} and in ∂M , and identifying them.
Take N → Tm × I to be the normal bordism over Tm × I given by:

N ((TJ × I)♮M) × TH

Tn × I ((TJ × I)♮Dm+1) × TH

=

=

These can be concatenated, and sums of them realised every element of Ln+1(Z[Zn]) except for
the summand ⊕( n

n−3) L4(Z) ∼=
⊕( n

n−3) Z ∼= ∧n−3Zn.
Note that (n+ 1) − (n− 3) = 4. In this summand, only the even elements are realised.

So to get nontrivial manifolds τn homotopy equivalent to Tn, apply Wall realisation to
Id : Tn → Tn with an element of ⊕( n

n−3) L4(Z) with a nonzero number of odd entries. The
manifold on the far end of the resulting normal bordism will be a homotopy torus that is not
PL homeomorphic to Tn.

18.5.5. Detecting homotopy tori. Suppose that we have an n-manifold N ≃ Tn that
we wish to show is not homeomorphic to Tn. We describe an obstruction for doing this. We
will see that the obstruction vanishes in the 2n-fold cover, which will complete our sketch of the
proof of Theorem 18.4.

Let N be a closed PL n-manifold, n ≥ 5, and let f : N ≃−→ Tn be a homotopy equivalence.
Let ((W ;N,Tn) be a normal bordism over Tn × I with F : W → Tn × I, and F |Tn = Id: Tn →
Tn × {1} and F |N = f : N → Tn × {0}. Let J ⊆ {1, . . . , n} be a subset with |J | = 3, and
consider the corresponding subtorus TJ ⊆ Tn. Also let H := {1, . . . , n}∖ J . Consider

F × Id : W × CP2 → Tn × I × CP2.

This raises the dimensions sufficiently to be able to apply high dimensional surgery theory
and the Whitney trick when we need it. Make F × Id transverse, using PL-transversality, to
TJ × I × CP2. This is codimension n − 3 in Tn × I × CP2 and therefore the inverse image of
TJ × I ×CP2 is dimension n+ 1 + 4 − (n− 3) = 8. By a result called the Farrell-Hsiang splitting
theorem, and the fact that Wh(Z[Zn]) = 0, we can assume that the inverse image is a homotopy
equivalence on the boundary. We take the surgery obstruction of

(F × Id)−1(TJ × I × CP2) → TJ × I × CP2

in
L8(Z) ∼= Z
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(P,φ) 7→ sign(φ⊗ R)/8,
that is we take the signature of the intersection form and divide it by 8. Then we consider
this modulo 2 in Z/2. It turns out that this is independent of the choice of bordism W . This
procedure gives a function

Υ: {J ⊆ {1, . . . , n} | |J | = 3} → Z/2.
This can be translated to an element of (∧n−3Zn) ⊗ Z/2. This gives the bijection we claimed

SPL(Tn) ∼= (∧n−3Zn) ⊗ Z/2.
Hsiang-Shaneson also show that the action of GLn(Z) is equivariant with respect to this bijection,
so that the classification of PL homotopy tori is as claimed.

Finally, we see from the description of the obstruction that passing to the 2n fold cover Ñ of
N , and therefore to the corresponding cover of W , will have the effect of replacing each inverse
image of TJ × I × CP2 by an even number of copies of itself. Therefore the associated map Υ
will be identically zero, so that Ñ ∼=PL T

n, as desired for Theorem 18.4.
Remark 18.22. Throughout the chapter, we have used simple homotopy type for PL manifolds,
PL transversality, PL immersion theory, and we have mentioned smooth handlebody theory.
These tools are essential for developing and using surgery theory. Having seen these tools be
so important in the remarkable classification theorem for homotopy tori that we have just
discussed, the reader of this chapter will now hopefully be motivated to learn these methods in
the topological category. With their help, we will be able to apply similar methods to classify
topological manifolds. These will be conseqeunces of the Product Structure Theorem, which we
will study soon.

We also remark that in the calculations, we used a number of deep results from algebraic
topology, in particular on the J homomorphism, on stable homotopy groups of spheres, and on
the homotopy groups of BO, as well as Rochlin’s theorem.

Exercise 18.1. (PS9.2) Up to PL-homeomorphism, how many closed PL manifolds
homotopy equivalent to T 6 are there?





CHAPTER 19

Local contractibility for manifolds and isotopy extension

Arunima Ray

The goal of this section is to review the main results of Edwards and Kirby [EK71a]. This
paper builds on the ideas of Kirby from [Kir69], and in particular, we will see another torus
trick. This will be similar in flavour to the proof of Theorem 15.4, and we will work purely in the
topological category (other than the initial input of an immersed torus) – no further input from
PL topology will be necessary. In particular, there are no dimension restrictions in this section.

We will highlight two results. The following was first proved by Černavskǐı using push-pull
methods. We will give the torus trick proof from [EK71a].

Theorem 19.1 ([Č73, EK71a]). If M is a compact manifold, then Homeo(M) is locally
contractible.

For the next result, we need some preliminary definitions, see Fig. 19.1.
Definition 19.2. Let M be a manifold and U ⊆ M a subset, with the inclusion denoted by
g : U ↪→ M . An embedding h : U ↪→ M is proper if h−1(∂M) = g−1(U). An isotopy ht : U → M
is proper if each ht is proper.
Definition 19.3. A proper isotopy ht : N → M is locally flat if for each (x, t) ∈ N × [0, 1] there
exists a neighbourhood [t0, t1] of t ∈ [0, 1] and level preserving embeddings α : Dn × [t0, t1] →
N × [0, 1] and β : Dn ×Dm−n × [t0, t1] → M × [0, 1] onto neighbourhoods of (x, t) such that the
following diagram commutes:

Dn × 0 × [t0, t1] Dn ×Dm−n × [t0, t1]

N × [0, 1] M × [0, 1]

α β

(x,t)7→(ht(x),t)

Recall that the bottom map is called the track of the isotopy.

(a) Red inclusion B1 ⊆ B1 ×B1

and a green proper embedding.
(b) Locally flat isotopy and its track.

Figure 19.1

The definition of a locally flat isotopy says that the track is a locally flat submanifold in a
level preserving way. Since the track is in particular locally flat, we infer that, for example, the
naïve isotopy taking the trefoil to the unknot is not locally flat. This can be seen using local
fundamental groups.

201
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Theorem 19.4 (Isotopy extension theorem [EK71a, Corollary 1.2, Corollary 1.4], [Lee69]).

(1) Let ht : C → M , t ∈ [0, 1] be a proper isotopy of a compact set C ⊆ M , such that
ht extends to a proper isotopy of a neighborhood U ⊇ C. Then ht can be covered by
an (ambient) isotopy, that is, there exists Ht : M → M , satisfying H0 = IdM and
ht = Ht ◦ h0 for all t ∈ [0, 1].

(2) For manifolds M and N with N compact, any locally flat proper isotopy ht : N → M is
covered by an ambient isotopy. If ht = h0 for all t on a neighbourhood of ∂N , then we
may assume that Ht|∂M = Id∂M .

In both cases, we may assume that H has compact support, that is, Ht = IdM outside some
compact set, for each t.

Remark 19.5. Part (a) of the theorem above was proved independently in both [EK71a]
and [Lee69]. Both papers use techniques of Kirby from [Kir69].

19.1. Handle straightening

We will consider the following spaces of embeddings.

Definition 19.6. For a manifold M and subsets C ⊆ U ⊆ M we define

EmbC(U,M) := {f : U ↪→ M | f is proper, f |C = incl},

equipped with the compact open topology. If C = ∅ we write Emb(U,M).

The following lemma is the key ingredient in [EK71a]. The proof will use the torus trick.
Throughout this section, the notation rBi refers to the i-dimensional closed ball of radius r
centred at the origin in Ri.

Lemma 19.7 (Handle straightening). There exists a neighbourhood Q ⊆ Emb∂Bk×4Bn(Bk ×
4Bn, Bk × Rn) of the inclusion η : Bk × 4Bn ↪→ Bk × Rn, and a deformation of Q into the
subspace Emb∂Bk×4Bn∪Bk×Bn(Bk × 4Bn, Bk × Rn), modulo ∂(Bk × 4Bn), and fixing η.

In more detail, such a deformation of Q is a map

Ψ: Q× [0, 1] → Emb∂Bk×4Bn(Bk × 4Bn, Bk × Rn)

for which
(1) Ψ(Q× 1) ⊆ Emb∂Bk×4Bn∪Bk×Bn(Bk × 4Bn, Bk × Rn).
(2) Ψ(h, t)|∂(Bk×4Bn) = h|∂(Bk×4Bn) for all h ∈ Q and t ∈ [0, 1], and
(3) Ψ(η, t) = η for all t ∈ [0, 1].

The proof of this lemma is analogous to the proof of the Černavskǐı-Kirby theorem we saw
in Section 15.2. The goal will be to construct h̃ ∈ Homeo(Bk × Rn) for an h suitably close to η,
such that

h̃|Bk×Bn = h|Bk×Bn and h̃|∂Bk×Bn∪Bk×(Rn∖Int 3Bn) = Id .

We will then use an Alexander isotopy H̃t of the target space Bk × Rn from Id to h̃ to define
the desired deformation:

Ψ(h, t) := H̃−1
t ◦ h.

Indeed, Ψ(h, 0) = h and the restriction of Ψ(h, 1) = h̃−1 ◦ h to the core region is the standard
inclusion, since h̃ and h agree there. We will arrange to have Ψ constant on ∂(Bk × 4Bn). Our
construction will be “canonical”, so the different isotopies can be sewn together to produce the
desired map Ψ: Q× [0, 1] → Emb∂Bk×4Bn(Bk × 4Bn, Bk × Rn).
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Proof. Let C1 denote a collar of ∂Bk in Bk and let C denote C1 × 3Bn. It suffices to consider
h ∈ Emb∂Bk×4Bn∪C(Bk × 4Bn, Bk × Rn) by [EK71a, Proposition 3.2]. Roughly speaking, by
using the collar C, the proposition gives an explicit deformation from a neighbourhood of η in
Emb∂Bk×4Bn(Bk × 4Bn, Bk × Rn) to Emb∂Bk×4Bn∪C(Bk × 4Bn, Bk × Rn).

Figure 19.2. The setup of the Handle Straightening Lemma 19.7.

Thus, we begin with a setup as in Fig. 19.2. Our goal is to build h̃ ∈ Homeo(Bk × Rn) such
that

h̃|∂Bk×Rn∪Bk×(Rn∖Int(3Bn)) = Id and h̃|Bk×Bn = h|Bk×Bn .

Let S1 := [−4, 4]⧸∼, so that Tn ⊇ aBn for a < 4. Define Bn := [−1, 1]n. Choose closed, nested
balls Dk

1 ⊆ Dk
2 ⊆ Dk

3 ⊆ B̊k, such that Dk
i ⊆ D̊k

i+1 for each i and Bk∖Dk
1 ⊆ C1. Choose closed,

nested balls Dn
1 ⊆ Dn

2 ⊆ Dn
3 ⊆ Tn∖ 2Bn,

As in the proof of Theorem 15.4 in Section 15.2 we will construct the following tower of
maps.

Bk × Rn Bk × Rn

3Bk × 3Bn Rk × Rn

Bk × Rn Bk × Rn

Bk × Tn Bk × Tn

(Bk × Tn)∖ (Dk
3 ×Dn

3 ) (Bk × Tn)∖ (Dk
1 ×Dn

1 )

(Bk × Tn)∖ (Dk
2 ×Dn

2 ) (Bk × Tn)∖ (Dk
1 ×Dn

1 )

Bk × (Tn∖Dn
2 ) Bk × (Tn∖Dn

1 )

Bk × 4Bn Bk × Rn

h̃
∼=

h̃

γ γ

h̆
∼=

Id ×e Id ×e

h
∼=

ĥ|

ĥ

ĥ

↫→Id ×α0 ↫→ Id ×α0

h
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Figure 19.3. The torus trick for handle straightening.

See Fig. 19.3 for a schematic version.
We start with an immersed torus α0 : Tn∖Dn

1 ↬ Int(3Bn) with α0|2Bn = Id. Then define
the map α := Id ×α0 : Bk × (Tn∖ Dn

2 ) → Bk × 4Bn. We choose Q so that it is possible to
construct the lift ĥ. This is quite similar to the proof of Theorem 15.4 so we skip the details.
Briefly, the map ĥ is defined to agree with α−1 ◦ h ◦ α on small neighbourhoods. The set Q is
chosen small enough so that the image of Bk × (Tn∖Dn

2 ) under ĥ lies within Bk × (Tn∖Dn
1 ).

Observe that ĥ|(Bk∖Dk)×(Tn∖Dn
2 ) = Id, since h agrees with the inclusion map on C := C1×3Bn,

and by construction we have α(Tn∖ Dn
2 ) ⊆ Int 3Bn and Bk∖ Dk ⊆ C1. Thus we can extend

ĥ by the identity to obtain the map in the third row of the diagram from the bottom. In
Proposition 15.7, we showed a version of the Schoenflies theorem for the torus. There is also a
version for Bk × Tn, which can be made canonical. Applying this, followed by the Alexander
coning trick, we obtain the homeomorphism h in the next row in the diagram. More precisely,
we first consider the restriction of ĥ to (Bk × Tn)∖ (Dk

3 ×Dn
3 ), and observe that the image of

∂(Dk
3 ×Dn

3 ) is a bicollared sphere in Bk×Tn, and therefore bounds a ball in Bk×Tn. Extending
the map over this ball in the codomain and the ball Dk

3 × Dn
3 in the domain produces the
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homeomorphism
h : Bk × Tn

∼=−→ Bk × Tn.

By choosing Q to be small enough, we may assume that h is homotopic to IdBk×Tn (see
Step 9 of Section 15.2), so that its lift h̆ to universal covers is bounded distance from Id (see
Proposition 15.2). As in the proof of Theorem 15.4, we choose the covering map e so that
Bk × 2Bn is mapped by the identity.

Recall that our goal is to define a homeomorphism h̃ : Bk × Rn → Bk × Rn which restricts
to the identity outside a compact set. While h̆ is a homeomorphism of Bk × Rn, it cannot
be our desired map, since being obtained as a lift to a covering space, if it were to restrict to
the identity outside a compact set, it would equal the identity map everywhere. In the next
(and final) step of the construction of h̃ we will modify h̆ to arrange for the desired behaviour.
Roughly speaking, we will rescale so that all the nontrivial behaviour of h̆ is concentrated in a
compact region in such a way that we can extend by the identity everywhere else. The strategy
is similar to the proof of Proposition 17.13.

Observe that h̆|∂Bk×Rn = Id since h|C coincides with the inclusion map and α0(Tn∖Dn
1 ) ⊆

3Bn. So we can extend h̆ by the identity to get a map h̆ : Rk × Rn → Rk × Rn.
Define γ : Int(3Bk × 3Bn)

∼=−→ Rn as a radial expansion fixed on 2Bk × 2Bn. Then define

h̃ : Bk × Rn → Bk × Rn as
{
γ−1h̆γ, on Bk × 3Bn,

Id, on Bk × (Rn∖ Int(3Bn)).

The above map is continuous since h̆ is bounded distance from the identity. The homeo-
morphism h̃ agrees with h on Bk × Bn, by our definition of γ and α. It also satisfies
h̃|∂Bk×Rn∪Bk×(Rn∖Int(3Bn)) = Id. To see this, first we note that h̃|Bk×(Rn∖Int(3Bn)) by explicit
construction. We know that h̃|∂Bk×Rn = Id since h̆|∂Bk×Rn = Id. Each step in the construction
has been canonical, so h̃ depends continuously on h, and from our construction we note that for
h = η we have h̃ = Id. This finishes the construction of h̃.

To finish off the proof of the lemma, extend h̃ by the identity map to get h̃ : Bk×Rn → Bk×Rn,
which depends continuously on h (see Step 7 of Section 15.2).

Define the isotopy

H̃t : Bk × Rn → Bk × Rn by
{
th̃(1

tx) t > 0
x t = 0

(compare Proposition 15.3) taking the identity to h̃. Define

Ψ(h, t) := H̃−1
t ◦ h : Bk × 4Bn → Bk × Rn

so that Ψ(h, 0) = H̃−1
0 h = Id−1 h = h and Ψ(h, 1) = H̃−1

1 h = h̃−1h, as desired.
We finally check that this isotopy has all the desired properties. By choosing Q small

enough we arrange that h(Bk × ∂4Bn) ∩ Bk × 3Bn = ∅. Then since Ht restricts to the
identity on Bk × (Rn∖ Int(3Bn)), we see that Ψ is modulo ∂(Bk × 4Bn). Since h and h̃ agree
on Bk × Bn, we see that Ψ(h, 1)|Bk×Bn = h̃−1h|Bk×Bn is the inclusion, so indeed Ψ gives a
deformation of Q into Emb∂Bk×4Bn∪Bk×Bn(Bk × 4Bn, Bk × Rn). The map Ψ: Q × [0, 1] →
Emb∂Bk×4Bn(Bk × 4Bn, Bk × Rn) is continuous since our construction has been canonical
throughout. Finally, one should check that Ψ(η, t) − η for all t. □

19.2. Applying handle straightening

The following theorem generalises the last lemma to “straightening a compact set” in a
manifold.
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Theorem 19.8 ([EK71a, Theorem 5.1]). Let M be a manifold and C ⊆ U ⊆ M where U
is an open neighbourhood of the compact set C. Then there exists a neighbourhood P of the
inclusion η : U ↪→ M and a deformation

ϕ : P × [0, 1] → Emb(U,M)
into EmbC(U,M) modulo the complement of a compact neighbourhood of C in U , and fixing η.

Using this we easily prove Theorem 19.1, i.e. that Homeo(M) for a compact manifold M is
locally contractible.

Proof of Theorem 19.1. Set C := U := M , and note Emb(M,M) = Homeo(M) (as embeddings
are always proper in this section) and EmbM (M,M) = {IdM}. Then apply Theorem 19.8. □

Sketch proof of Theorem 19.8. Assume ∂M = ∅ for simplicity. (The case of nonempty boundary
can be reduced to this case by using a boundary collar. See [EK71a] for more details.) Let
{hi : Wi

∼=−→ Rn}1≤i≤r be a finite cover of C by Euclidean neighbourhoods, with Wi ⊆ U for each
i. Such a cover exists since C is compact and M is a manifold. Write C = ⋃r

i=1Ci where each
Ci ⊆ Wi is compact, and define Di := ⋃

j≤iCi for 1 ≤ i ≤ r (see Fig. 19.4).

Figure 19.4. Proof of Theorem 19.8

We will induct on i ≥ 0 and prove that for every i ≥ 0, there exists a neighbourhood Pi of
η : U ↪→ M in Emb(U,M) and a deformation ϕi : Pi × [0, 1] → Emb(U,M) into EmbU∩Vi(U,M)
where Vi is some neighbourhood of Di. (We are focussing on building the deformation rather
than the “modulo” or “fixing” portions of the conclusion.)

For the base case i = 0, we just take P0 = Emb(U,M) and ϕ0 = Id. Now assume the
inductive hypothesis for some i ≥ 0. To prove the i+ 1 case, identity Wi+1 with Rm (using the
map hi+1) for convenience. That is, we have Ci+1 ⊆ Rm compact, and Vi∩Rm is a neighbourhood
in Rm of the closed set Di ∩ Rm.

Let N be a compact neighbourhood of Ci+1 ∩Di in Int(Vi ∩ Rm). Choose a (small) trian-
gulation of Rm(= Wi+1). Define K to be the subcomplex of this triangulation consisting of all
the simplices that intersect Ci+1 ∪N . Let L be the subcomplex consisting of all the simplices
that intersect N . Then we obtain a handle decomposition of K relative to L as explained in
Section 13.3. Observe that we have the following properties:

(1) Di ∩ Ci+1 ⊆ L ⊆ Int(Vi ∩ Rm)
(2) Ci+1 ⊆ K

(3) K∖ L ∩Di = ∅
(4) IfA is a handle ofK∖L with index k, there exists an embedding µ : Bk×Rn ↪→ Rm, where

m = k+n, such that µ(Bk×Bn) = A and µ(Bk×Rn)∩(Di∪L∪Kk∖ A) = µ(∂Bk×Bn)
where Kk is the k-skeleton of K.

Let A1, . . . , Aj , . . . , As be the handles of K∖ L of non-decreasing index. Now we will induct
on j. This will finally enable us to apply handle straightening (Lemma 19.7) to each Aj .
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Specifically, for each j ≥ 0, define D′
j := Di ∪ L ∪

⋃
ℓ≤j Aj . We will prove that for each j ≥ 1

there exists a neighbourhood P ′
j of the inclusion η : U ↪→ M in Emb(U,M) and a deformation

ϕ′
j : P ′

j × [0, 1] → Emb(U,M) into EmbU∩V ′
j
(U,M) where V ′

J is some neighbourhood of D′
j in M .

The base case j = 0 is satisfied the hypothesis in the bigger induction proof. Now assuming the
case for some j, we prove the j + 1 case.

We know that for Aj+1 there is a corresponding map µ : Bk × Rn ↪→ Rm. Reparametrise in
the Rn coordinate, fixing Bn so that µ(Bk × 4Bn) ⊆ Int(V ′

j ).
Now by handle straightening (Lemma 19.7), we know that there is some neightbourhood Q of

the inclusion η0 : Bk × 4Bn ↪→ Bk ×Rn in Emb∂Bk×4Bn(Bk × 4Bn, Bk ×Rn) and a deformation
ψ of Q into Emb∂Bk×4Bn∪Bk×2Bn(Bk × 4Bn, Bk × Rn), modulo ∂(Bk × 4Bn) and fixing η0. Let
Q′ be a neighbourhood of the inclusion η : U ↪→ M in EmbU∩V ′

j
(U,M) such that if h ∈ Q′ then

h ◦ µ(Bk × 4Bn) ⊆ µ(Bk × Rn) and µ−1hµ|Bk×4Bn ∈ Q.
Next we will use ψ to define V ′

j+1 and deform Q′. For h ∈ Q′, define

ht :=
{
h on U∖ µ(Bk × 4Bn)
µψ(µ−1hµ, t)µ−1) on µ(Bk × 4Bn)

Define V ′
j+1 := (V ′

j ∪µ(Bk × 2Bn))∖ µ(Bk × [2, 4]Bn). Then h0 = h and h1 ∈ EmbU∩V ′
j+1

(U,M).
Define ψ′(h, t) := ht, a deformation a of Q′. By the continuity of ϕ′

j , there exists a neighbourhood
P ′
j+1 of η in Emb(U,M) so that P ′

j+1 ⊆ P ′
j and ϕ′

j(P ′
j+1 × 1) ⊆ Q′. Define the deformation ϕ′

j+1
to be the result of performing the deformations ψ′ and ϕ′

j |P ′
j+1×[0,1] in order. This completes

the induction on j, which completes in turn the induction on i. This completes the proof
(sketch). □

19.3. Proof of the isotopy extension theorem

We recall the statement of the isotopy extension theorem.

Theorem 19.9 (Isotopy extension theorem [EK71a, Corollary 1.2, Corollary 1.4]).
(1) Let ht : C → M , t ∈ [0, 1] be a proper isotopy of a compact set C ⊆ M , such that

ht extends to a proper isotopy of a neighborhood U ⊇ C. Then ht can be covered by
an (ambient) isotopy, that is, there exists Ht : M → M , satisfying H0 = IdM and
ht = Ht ◦ h0 for all t ∈ [0, 1].

(2) For manifolds M and N with N compact, any locally flat proper isotopy ht : N → M is
covered by an ambient isotopy. If ht = h0 for all t on a neighbourhood of ∂N , then we
may assume that Ht|∂M = Id∂M .

In both cases, we may assume that H has compact support, that is, Ht = IdM outside some
compact set, for each t.

Proof. We prove the first part of the theorem. The plan is to construct Ht in small steps. Choose
a compact neighbourhood V of C satisfying C ⊆ V ⊊ U . Let ht denote the extended isotopy
ht : U ↪→ M . Such an extension exists by hypothesis.

Fix T ∈ [0, 1]. By Theorem 19.8 we know there exists a neighbourhood P of the inclusion
η : hT (U) ↪→ M and a deformation ϕ : P × [0, 1] → Emb(hT (U),M into EmbhT (C)(hT (U,M)
modulo hT (U∖ V ).

Let N(T ) ⊆ [0, 1] denote a neighbourhood of T ∈ [0, 1] such that the composite

hT (U) U M
h−1

T ht

is in P for all t ∈ N(T ). Observe that ht ◦ h−1
T ∈ Emb(hT (U),M). Define

(HT )t : M
∼=−→ M
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x 7→

ht ◦ h−1
T

(
Φ(ht ◦ h−1

T , 1)
)−1

(x), x ∈ hT (U),
x, x ∈ M∖ hT (U).

We need to check that the above is a continuous function. Recall that ϕ is modulo hT (U∖ V ),
so for x ∈ hT (U∖ V ) we have ϕ(ht ◦ h−1

T , 1)(x) = ht ◦ h−1
T (x), so (HT )t(x) = x, showing that

the two definitions match up. For continuity we also need to observe that Φ is continuous with
respect to t, since the argument changes as t changes.

Next we check that HT covers hT locally. Since ϕ(ht ◦ h−1
T , 1) ∈ EmbhT (C)(hT (U),M), we

know that for x ∈ hT (C) we get ϕ(ht◦h−1
T , 1)−1(x) = x. Thus, (HT )t◦hT (y) = ht◦h−1

T ◦hT (y) =
ht(y), that is, (HT )t ◦ hT |C = ht|C for t ∈ N(T ).

We now use compactness of the interval [0, 1] to choose a finite partition 0 = t0 < t1 < · · · <
tn = 1. By the above argument, we have ambient isotopies Hi,t : M → M with t ∈ [ti, ti+1] such
that ht|C = Hi,t ◦ hti |C for all t ∈ [ti, ti+1].

In order to build the desired ambient isotopy Ht out of these local isotopies, we induct on
i ≥ 0. For i = 0 we have H0 = IdM . Assume inductively that we have constructed Ht : M

∼=−→ M
with t ∈ [0, ti] such that Ht ◦ h0|C = ht|C for all t ∈ [0, ti] and H0 = IdM .

We define Ht on [ti, ti+1] by setting
Ht(x) = Hi,t ◦H−1

i,ti
◦Hti for [ti, ti+1]

At t = ti, we see that Hi,ti ◦H−1
i,ti

◦Hti = Hti , so we have a well-defined map on M × [0, ti+1].
Additionally, we see that for x ∈ C and t ∈ [ti, ti+1],

Ht ◦ h0(x) = Hi,t ◦H−1
i,ti

◦Hti ◦ h0(x)
= Hi,t ◦H−1

i,ti
◦ hti(x)

= Hi,t ◦ hti(x)
= ht(x)

where we have used that ht|C = Hi,t ◦ hti |C for t ∈ [ti, ti+1] and Hti ◦ h0|C = hti |C .
For part b) of Theorem 19.4, we only have locally flat neighbourhoods (instead of a global

neighbourhood U from part a)). The proof consists of applying part(a) in each local neighbour-
hood, and then gluing together these local isotopies, as above, to produce the desired ambient
isotopy. For more details, we refer the reader to [EK71a, Proof of Corollary 1.4]. □

Exercise 19.1. (PS10.1) Prove the "strong Palais theorem". That is, let n ≥ 6, let M be a
connected oriented n-manifold and let ϕ, ψ : Dn → M be locally collared embeddings with the
same orientation-behaviour. Then there exists an isotopy Ht : M → M satisfying H0 = Id, and
H1 ◦ ϕ = ψ.

Exercise 19.2. (PS10.2) Let M be a compact manifold. Prove that Homeo(Int(M)) is
locally contractible. Recall that we saw earlier that the homeomorphism group of a noncompact
manifold need not be locally contractible. The above gives an alternative proof that Homeo(Rn)
is locally contractible.

Hint: Let C be the compact manifold formed by removing an open collar of the boundary of
M . Argue that a neighbourhood of the identity map in Homeo(Int(M)) can be deformed into
HomeoC(M), consisting of the homeomorphisms of M which restrict to the identity on C. Now
deform HomeoC(M) to {Id} using the collar.

Fix an orientation on Sm for every m. Let f : Sn → Sn+2 be a locally flat embedding. We
call K := f(Sn) an n-knot. If Sn and Sn+2 have their standard smooth structures, and if f is a
smooth embedding, then we call K a smooth n-knot.
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Exercise 19.3. (PS11.1) For n ≥ 5, show that the embeddings f and g defining two n-knots
K = f(Sn) and J = g(Sn) are locally-flat isotopic if and only if there is an orientation preserving
homeomorphism F : Sn+2 → Sn+2 such that F (K) = J , and F |K : K → J is orientation
preserving, with respect to the orientations induced by f and g.

Hint: You may use the isotopy extension theorem, as well as SHm and its consequences.
(The same holds for all n ≥ 1, but we do not have the tools to prove it from the course.)

Exercise 19.4. (PS11.2) For n ≥ 1, show that the embeddings f and g defining two smooth
n-knots K = f(Sn) and J = g(Sn) are smoothly isotopic if and only if there is an orientation
preserving diffeomorphism F : Sn+2 → Sn+2 such that F (K) = J and g−1 ◦ F ◦ f : Sn → Sn is
smoothly isotopic to the identity.

You may use the smooth version of the isotopy extension theorem. The theorems from the
course may not be very helpful.





CHAPTER 20

Counting topological manifolds

Magdalina von Wunsch

Introduction

The goal of this text is to prove a theorem by Cheeger and Kister stating that there are
countably many compact topological manifolds. We will first look at precise classification
theorems of compact manifolds in low dimensions, then at special cases of the statement for
smooth and high-dimensional manifolds, and finally show the proof given by Cheeger and Kister
in [CK70]. At the end, we will present an application to topological Morse theory discussed in
that same paper.

20.1. Classifications of compact manifolds

It is sufficient to classify all compact connected manifolds of a given dimension to classify the
compact manifolds. As a compact manifold can only have finitely many components, countability
of the set of compact connected manifolds then automatically implies countability of the set of
all compact manifolds, as those are exactly the finite disjoint unions of the connected compact
manifolds.

• 0-manifolds. There is only one compact connected 0-manifold, namely the point, and
a 0-manifold cannot have nonempty boundary.
So the set of all compact 0-manifolds up to homeomorphism is countable.

• 1-manifolds. There is, up to homeomorphism, exactly one compact connected 1-
manifold without boundary, namely the circle S1, and one compact connected 1-manifold
with nonempty boundary, namely the closed unit interval I = [0, 1]. A proof can be
found in [FR84].
Thus the set of all compact 1-manifolds up to homeomorphism is countable.

• 2-manifolds. Orientable connected compact 2-manifolds with empty boundary can be
obtained as finite connected sums of 2-tori, the number of tori being referred to as the
genus of the manifold. The empty connected sum is defined as the sphere S2.
Non-orientable connected compact 2-manifolds with empty boundary are finite connected
sums of RP 2 and the number of RP 2s in the connected sum is called the genus.
As any compact 1-manifold without boundary is homeomorphic to a finite union of
circles, compact 2-manifolds with nonempty boundary are obtained from compact
2-manifolds with empty boundary by removing finitely many disjoint disks. A detailed
proof can be found in [Moi77, Chapter 22].
So, up to homeomorphism, compact connected 2-manifolds can be classified by orient-
ability, genus and number of boundary components, the last two being integers, and
thus the set of all compact 2-manifolds up to homeomorphism is countable.

For higher dimension, classification results are far more difficult and not as complete. There
has been a lot of progress in the classification of compact 3-manifolds, especially around the
Thurston geometrization conjecture first stated in 1982 in [Thu82]. The conjecture was proved
in 2003 using Ricci flow by Perelman in [Per03c] (a brief discussion of these developments can
be found in [Mil03]).

211
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20.2. Smooth case

Theorem 20.1. There are only countably many compact smooth manifolds, up to homeo-
morphism.
Proof. As all compact smooth manifolds have a finite triangulation (as shown in [Cai61]), there
can only be countably many compact smooth manifolds up to homeomorphism: every compact
smooth manifold M can be constructed inductively in k steps by gluing a simplex to the existing
structure in each step, where k is the number of simplices in the finite triangulation of M . In
each step, there are only finitely many possible edges of simplices the new simplex can be glued
to, so there are only countably many possibilities to construct a compact smooth manifold. □

We know that topological manifolds that admit smooth structures can have multiple smooth
structures that are not diffeomorphic to each other, one well-known example being Milnor’s
exotic sphere (see [Mil56]). Thus, this proof can only classify compact smooth manifolds up to
homeomorphism, as the simplices can have multiple non-diffeomorphic smooth structures, and
the gluing maps need not preserve the smooth structure. So the question can be extended to
ask whether there are countably many diffeomorphism types of smooth manifolds.

In dimensions up to three, topological and smooth manifolds coincide, i.e. every topological
3-manifold has exactly one smooth structure (up to diffeomorphism). A proof of this for
dimension one can be found in the appendix of Milnor’s book on differentiable topology ([Mil97b,
Appendix]), a proof for dimension two is given by Radó in [Rad24] and a proof for dimension
three can be found in [Moi52a].

Compact manifolds of dimension strictly greater than four only admit finitely many pairwise
non-diffeomorphic structures on the same manifold. This follows from the facts that PL-able
compact topological manifolds of dimension n ≥ 5 only admit finitely many PL structures (this
is a result by Kirby and Siebenmann that can be found in the lecture notes as Remark 17.12),
and compact PL manifolds only admit a finite number of smoothings (see chapter 18 in the
lecture notes).

This leaves only dimension four to be considered, which as usual behaves a bit differently
than other dimensions. There are non-compact 4-manifolds that admit uncountably many
pairwise non-diffeomorphic smooth structures (the most famous example being R4, as shown
in [DMF92]). However, compact 4-manifolds thankfully only admit countably infinitely many
pairwise non-diffeomorphic smooth structures because the PL and DIFF categories coincide for
dimension four, i.e. every PL 4-manifold has exactly one smooth structure up to diffeomorphism
(see Theorem 18.3 in the lecture notes). By a combinatorial argument, there can only be countably
many PL structures on a compact manifold. We know concrete examples of 4-manifolds that
admit countably infinitely many non-isomorphic smooth structures, for example the K3-surface
that was discussed in a previous talk. The proof that there are infinitely many exotic smooth
structures on the K3-surface is due to work by Donaldson, Gompf and Mrowka in [Don90] and
[GM93].

Still, as there are only countably many compact smooth 4-manifolds up to homeomorphism,
and each of these manifolds can only have countably many pairwise non-diffeomorphic smooth
structures, there are also only countably many compact smooth 4-manifolds up to diffeomorphism.

20.3. High-dimensional case

Theorem 20.2. There are only countably many closed topological manifolds of dimension
n ≥ 6 up to homeomorphism.

We will only give an idea for a proof of this theorem. Using the handlebody theory
for topological manifolds developed by Kirby and Siebenmann discussed in the lecture notes
(Theorem 21.4), we know that closed topological manifolds of dimension n ≥ 6 have a handle
decomposition. This handle decomposition must be finite, as the manifold is compact: since the
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handles are compact, we can choose a covering of M by covering every handle with finitely many
sets, and choose this covering in such a way that every open set in the covering covers at most
one handle. As the manifold is compact, this covering has a finite subcovering, so there can
only be finitely many handles. Similarly to Theorem 20.1 we can then construct every closed
topological manifold of dimension n ≥ 6 inductively in finitely many steps by gluing handles
together. Up to homeomorphism, there are only countably many options of gluing a handle on,
so there are only countably many possibilities to construct a closed manifold of dimension n ≥ 6.

This proof can be extended to 5-manifolds using the work of Quinn, who showed in [Qui82b]
that 5-manifolds have topological handle decompositions.

20.4. Cheeger-Kister’s proof

The main result of this part is the following theorem proved by Cheeger and Kister in
[CK70].

Theorem 20.3. Up to homeomorphism, there are only countably many compact topological
manifolds (with possibly nonempty boundary).

Although the statement of the theorem can be proven for many special cases (low dimen-
sions, high dimensions, PL-able topological manifolds) as we discussed above, the statement of
Theorem 20.3 is still an improvement, as we have seen that non-PL-able manifolds exist. A big
advantage of the proof we will present is also that it works the same way for all dimensions.

To prepare for the proof, we state and prove the following useful facts about separable spaces.

Definition 20.4. A space X is called separable if there is a countable subset S of X that is
dense in X.

Lemma 20.5. Subspaces of separable metric spaces are separable.

Proof. Let X be a separable metric space with a countable dense subset S and Y ⊆ X, and let
d be the metric on X. We consider the distance d(s, Y ) := inf{d(s, y) | y ∈ Y } for all s ∈ S. For
every s ∈ S, find a sequence of points asn in Y with d(s, asn) < d(s, Y ) + 1

n .
We define the set A := {asn ∈ Y | s ∈ S, n ∈ N}. This set is a countable subset of Y because S

is countable. It is also dense in Y because for any y ∈ Y and ε > 0, we can find some s ∈ S with
d(s, y) < ε

3 , because S is dense in X, and this implies d(s, Y ) ≤ ε
3 . So there is some asn ∈ A with

d(s, asn) < d(s, Y ) + 1
n < d(s, Y ) + ε

3 ≤ 2ε
3 , by choosing n big enough so that 1

n <
ε
3 , and thus for

this asn we get d(y, asn) ≤ d(s, y) + d(s, asn) < ε, so A is dense in Y and so Y is separable. □

Lemma 20.6. If X is an uncountable separable metric space, there exists some x ∈ X that is
the limit point of a sequence x1, x2, · · · ∈ X with xi ̸= x for all i ∈ N.

Proof. Let X be an uncountable separable metric space. Assume there is no such point in X.
Then we can find, for every x ∈ X, an open ball Bεx(x) ⊆ X that contains only x. As X is
uncountable, we can choose some ε > 0 such that there are uncountably many x ∈ X with
εx > ε by observing the sets Xn := {x ∈ X | εx > 1

n}. As X is uncountable and N is countable,
there must be some n ∈ N with Xn uncountable, and we set ε = 1

n .
We set X ′ := Xn = {x ∈ X | εx > ε} and consider the smaller open balls Bε(x) for x ∈ X ′.

These are disjoint, as Bε(x) contains only x and there are uncountably many of them since X ′

is uncountable. But this is a contradiction to the separability of X, as all dense subsets of X
must contain at least one element in each Bε(x). □

For the proof of Theorem 20.3 we first restrict to the case of manifolds with empty boundary.

Theorem 20.7. Up to homeomorphism, there are only countably many compact topological
manifolds with empty boundary.
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Proof. The proof of the theorem will be by contradiction, so we first assume that there are
uncountably many compact manifolds with empty boundary that are pairwise non-homeomorphic.
Then, there must be some dimension n such that there are uncountably many n-manifolds (as
there are only countably many options for n). We choose such an n and fix it for the rest of the
proof. Throughout the rest of the text, Br(x) will denote the closed ball of radius r centered at x
in Rn. For this n, we denote the collection of all homeomorphism types of compact n-manifolds
by M = {Mα}α∈A , where A is uncountable.

For each manifold Mα in M, choose finitely many embeddings of B2(0) into M such that Mα

is covered by the images of the restrictions to B1(0), i.e. we choose embeddings hαj : B2(0) → Mα

so that {hαj |B1(0)}kα
j=1 covers Mα. Such a covering can be constructed by covering Mα with open

balls hαx( ˚B2(0)) around each point x in Mα, as the manifold is locally euclidean, and restricting
to the images of ˚B1(0). Since M is a compact manifold, there exists a finite subcovering of this
collection that still covers Mα, and the embeddings of this subcovering, extended to the closed
balls of radius 2, meet the condition.

We then choose a k such that there are uncountably many n-manifolds in M with kα = k.
This choice is possible by the same argument as for the choice of n. By an abuse of notation, we
also denote this new uncountable collection of manifolds with kα = k by M. We then modify
the maps hαj by fixing them on B1(0) and reparametrizing such that hαj |B1(0) is extended to
an embedding of Bk+1(0) with the same image as hαj , and continue referring to this modified
embedding as hαj , i.e. we now have embeddings hαj : Bk+1(0) → Mα for 1 ≤ j ≤ k and Mα ∈ M.

Every n-manifold Mα can be embedded in R2n+1, as we have seen in a previous talk (the
result is due to Hanner [Han51b]). We set l := 2n+ 1 and fix an embedding of Mα into Rl for
all α ∈ A. We assume henceforth that Mα ⊆ Rl for all Mα ∈ M.

Let d be the standard metric in Rl and define
εα,j,m := d(hαj (Bm(0)),Mα \ hαj

˚(Bm+1(0))) ∀α ∈ A, j,m ∈ {1, . . . , k}.

Figure 20.1. This figure shows the intuition behind the definition of εα,j,m.

We then define εα := minj,m{εα,j,m}. This minimum is well-defined because j ∈ {1, . . . , k}
and m ≤ k.

We then choose an uncountable subcollection of M so that there exists some ε > 0 such that
εα > ε for all manifolds in this subcollection. This new subcollection, which we will continue
denoting by M, can be chosen by defining Mn := {M ∈ M | εα > 1

n} and noting that if Mn were
countable for every n ∈ N, then M would be countable. As it is not, we can find an n so that
the collection of manifolds Mn is uncountable and set ε := 1

n and Mn to be our new M. This ε
will be used later in the proof.

It will be useful to think about j as counting the embedding and m as describing the size of
the ball, and to remember that M is already covered with j = k and m = 1.

Each manifold Mα determines an embedding gα : Bk+1(0) → Rkl by
gα(x) = (hα1(x), . . . , hαk

(x)).
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Figure 20.2. This is an example of a covering of a 1-manifold Mα
∼= S1 with

k = 3.

We set G := {gα |α ∈ A} to be the uncountable set of all such embeddings.

Claim. The set G is separable and metrizable.

Proof. We define the uniform metric on G by
d(gα, gβ) := maxx∈Bk+1(0)d(gα(x), gβ(x)),

which is well-defined since Bk+1(0) is compact, and equip G with the induced topology.
As G ⊆ C(Bk+1(0),Rkl) and we previously showed that subsets of separable metric spaces

are separable, we now only need to prove that C(Bk+1(0),Rkl) with the uniform metric is
separable, as G then has the subspace topology and is thus also separable. This is a consequence
of the theorem of Stone-Weierstrass (a general version and proof can be found in [Rud91,
Chapter 5]), which states that every real-valued function from a compact Hausdorff space can
be approximated by polynomials. The polynomials can then be approximated by polynomials
with rational coefficients, of which there are countably many. To obtain the statement about
functions into Rkl instead of real-valued functions, we apply Stone-Weierstrass in each variable
separately.

Thus, the set of functions from a compact subset of Rn into Rkl is separable, and the
polynomials with rational coefficients form a countable dense subset. So G is separable. □

Claim. There exists some gα0 ∈ G that is the limit point of a sequence of embeddings
gα1 , gα2 , . . . in G with gαi ̸= gα0 for all i ∈ N \ {0}.

Proof. We know that G is an uncountable separable metric space and can thus apply Lemma 20.6.
□

We will now produce a contradiction by constructing a homeomorphism from Mα0 to Mαi for
i sufficiently large. This homeomorphism will be arbitrarily close to the identity as measured by
the metric d. Thus, as we had assumed that all elements in M are pairwise non-homeomorphic
and that gαi ̸= gα0 for all i ∈ N, we will obtain a contradiction.

To simplify the notation, we will denote Mαi for some fixed but arbitrarily large i by M ′.
Then define the sets

Vj(m) := hα0,j(Bm(0)) ⊆ M andV ′
j (m) := hαi,j(Bm(0)) ⊆ M ′

with j = 1, . . . , k and m = 1, . . . , k + 1, and let
Uj(m) := ∪jp=1Vp(m) ⊆ M andU ′

j(m) := ∪jp=1V
′
p(m) ⊆ M ′.

We observe a few properties of these sets:
− Uk(1) = M and U ′

k(1) = M ′ hold.
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− Also, Uj(m) ⊆ Uj+1(m) and Uj(m) ⊆ Uj(m + 1) hold, and so do the analogous
statements for U ′

j(m).
We define the map fj := hαi,j ◦ h−1

α0,j
: Vj(k + 1) → V ′

j (k + 1).

Vj(k + 1) V ′
j (k + 1)

Bk+1(0)
h−1

α0,j

fj

hαi,j

This map can be arbitrarily close to the identity as measured by the metric d, because
the embeddings hαi,j and hα0,j can be arbitrarily close by choosing i big enough, and is a
homeomorphism.

To construct the homeomorphism from M to M ′, we will proceed inductively. The induction
starts with the embedding g1 = f1|V1(k) : U1(k) = V1(k) ↪→ V ′

1(k+1) ⊆ M ′. We already know that
this embedding can be arbitrarily close to the identity. Given an embedding gj : Uj(m) ↪→ M ′ that
is close to the identity, we will use theorem [EK71b, Theorem 5.1] to construct an embedding
gj+1 : Uj+1(m− 1) ↪→ M ′ that is also close to the identity. Thus, by setting k = m in the first
step, we obtain an embedding gk : M = Uk(1) ↪→ M ′ in k − 1 steps, which we will then show is
surjective.

Claim. If gj is close to the identity relative to the ε defined above and i is big enough,

gj(Uj(m) ∩ Vj+1(m)) ⊆ V ′
j+1(m+ 1)

holds.

Proof. Let the embedding gj : Uj(m) ↪→ M ′ be close to the identity relative to ϵ, which was
chosen so that

ε < εα := minj,m{d(hαj (Bm(0)),Mα \ hαj
˚(Bm+1(0)))}

for all α ∈ A. So

gj(Uj(m) ∩ Vj+1(m)) = gj((∪jp=1Vp(m)) ∩ hα0,j(Bm(0))) ⊆ hαi,j+1(Bm+1(0)) = V ′
j+1(m+ 1)

must hold, because gj was close enough to the identity relative to ε, which measured the distance
of hαj (Bm(0) and Mα \ hαj

˚(Bm+1(0)) over all j ∈ {1, . . . , k}. □

The composition
F = f−1

j+1 ◦ gj : Uj(m) ∩ Vj+1(m) → Vj+1(m)
is then well-defined and close to the identity, as both fj+1 and gj were close to the identity.

We apply the following theorem, [EK71b, Theorem 5.1], a proof of which is given in the
lecture notes, Theorem 14.8, to extend F to Vj+1(m) while it stays fixed on an open set N ⊆ M
with

Uj(m− 1) ∩ Vj+1(m− 1) ⊆ N ⊆ Uj(m) ∩ Vj+1(m).
This is similar to the application of the theorem in the proof of the isotopy extension theorem
([EK71b, Corollary 1.2, Corollary 1.4], Theorem 14.9 in the lecture notes).

Theorem 20.8. Let M be a manifold and C ⊆ U ⊆ M where U is an open neighbourhood
of the compact set C. Then there exists a neighbourhood P of the inclusion η : U → M and a
deformation

ϕ : P × [0, 1] → Emb(U,M)
into EmbC(U,M) modulo the complement of a compact neighbourhood of C in U , and fixing η.
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The manifold M can have nonempty boundary, the proof in this case is similar to the case
with empty boundary sketched in the lecture notes, but uses a boundary collar. Details can be
found in [EK71b].

We want to obtain a homeomorphism F̃ : Vj+1(m) → Vj+1(m) that is equal to F on N . So,
for the application of the theorem, we set M = Vj+1(m), U = ˚(Uj(m) ∩ Vj+1(m)) and C some
compact set with

Uj(m− 1) ∩ Vj+1(m− 1) ⊆ N := C̊ ⊆ C ⊆ U ⊆ Uj(m) ∩ Vj+1(m).
This C exists because we can find open disjoint neighbourhoods of Uj(m − 1) ∩ Vj+1(m − 1)
and of M \ Uj(m) ∩ Vj+1(m) and choose C as the closure of the open neighbourhood of
Uj(m− 1) ∩ Vj+1(m− 1).

The theorem provides a neighbourhood P of the inclusion and a continuous deformation
ϕ : P × [0, 1] → Emb(U,M)

into EmbC(U,M) modulo the complement of some compact neighbourhood C ⊆ W ⊆ U , i.e.
ϕ(P × {1}) ⊆ EmbC(U,M) and ϕ(h, t)|U\W = h|U\W for all h ∈ P and t ∈ [0, 1].

As F : U → Vj+1(m) can be obtained to be as close to the inclusion as wished, we can set i
to be large enough so that F ∈ P . Applied to F , the theorem gives an isotopy from ϕ(F, 0) = F
to G := ϕ(F, 1) ∈ EmbC(U,M) with ϕ(F, t)|U\W = F |U\W for all t ∈ [0, 1].

We define a map F̃ : Vj+1(m) → Vj+1(m) by

F̃ =
{
FG−1(x) x ∈ G(U)
x x ∈ M \G(W ).

Claim. The map F̃ is well-defined, continuous, a homeomorphism onto Vj+1(m) and coin-
cides with F on C, and thus extends F as we wished.

Proof.
− F̃ is well-defined:

We know that G(U) ∩ (M \G(W )) = G(U \W ). For x ∈ G(U \W ), choose z ∈ G−1(x).
As the deformation was modulo U \ W , the relation x = G(z) = ϕ(F, 1)(z) = F (z)
holds. We then have

FG−1(x) = ϕ(F, 0)ϕ(F, 1)−1(x) = x.

− F̃ is continuous:
The map is continuous as the maps F and G−1 are continuous.

− F̃ is a homeomorphism:
Both F and G are embeddings, so FG−1 maps G(U) homeomorphically onto F (U).
On M \G(U) we have F̃ (x) = x, so F̃ is a homeomorphism.

− F̃ (x) = F (x) on C

On the set C, the maps F and F̃ coincide because C ⊆ G(U) as G can be made close
enough to the identity and U is a neighbourhood of C, and thus

F̃ (x) = FG−1(x) = F (x)
because G ∈ EmbC(U,M).

□

So we have extended F to F̃ .
We now define the map gj+1 : Uj+1(m− 1) → M ′ as

gj+1(x) =
{
gj(x) x ∈ Uj(m− 1)
fj+1F̃ (x) x ∈ Vj+1(m− 1).
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Claim. The map gj+1 is well-defined, continuous and an embedding, more precisely a
homeomorphism onto U ′

j+1(m− j).
Proof.

− gj+1 is well-defined:
On Uj(m− 1) ∩ Vj+1(m− 1), the relation

fj+1F̃ (x) = fj+1FG
−1(x) = fj+1F (x) = fj+1f

−1
j+1gj(x) = gj(x)

holds, because Uj(m− 1) ∩ Vj+1(m− 1) ⊆ C, so gj+1 is well-defined.
− gj+1 is continuous:

The map is continuous as the maps F̃ , fj+1 and gj are continuous.
− gj+1 is an embedding and a homeomorphism onto U ′

j+1(m+ 1 − j):
All the maps F , fj+1 and gj are embeddings and can be arbitrarily close to the identity.
By induction, we know that gj is a homeomorphism onto U ′

j(m+ 2 − j). The map gj+1
is injective on Uj(m− 1) \N (which is a compact set with an open set removed) and
Vj+1(m− 1) \N by definition. The distance between those sets is strictly greater than
zero, and on N , the map is injective too. Thus, gj+1 is injective if i is big enough, as
that means that it is close enough to the identity.
The fact that gj+1 is a homeomorphism follows from the fact that F̃ is.

□

Thus, the embedding gk(1) : Uk(1) = M → M ′ = U ′
k(1) is a homeomorphism, and it is

arbitrarily close to the identity. This means that the manifolds M and M ′ are homeomorphic,
which is a contradiction to the statement that the elements of the sequence were distinct. So our
assumption must be false, thus we have proven that there are only countably many manifolds
without boundary up to homeomorphism. □

We now give the proof of Theorem 20.3.
Proof of Theorem 20.3. The argument for manifolds with non-empty boundary is similar to
the case with empty boundary: we first assume that there are uncountably many compact
topological manifolds with boundary and fix some n so that there are uncountably many n-
manifolds with boundary. As before, Br(x) denotes the closed ball of radius r centered at x in
Rn. We then choose an (n−1)-manifold B without boundary such that the set of all n-manifolds
whose boundary is homeomorphic to this manifold is uncountable, and restrict to this case.
As we have proven above that there are only countably many closed (n− 1)-manifolds, such a
manifold B must exist, and this restriction is no loss of generality. So we get an uncountable set
M = {Mα}α∈A of n-manifolds, each with boundary B.

Figure 20.3. This is an example of a covering of a 2-manifold with boundary
Mα

∼= D2 with k = 4.

We choose finite covers for the manifolds in M analogously to the case with empty boundary
and an integer k such that there are uncountably many compact manifolds covered by k
embedded closed balls in the same way. By the collaring theorem (first shown in [Bro62b],
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Theorem 6.5 in the lecture notes), each manifold in this set has a collared boundary, so for
Mα there exists an embedding hα1 : B × [0, k + 1] → Mα with hα1(b, 0) = b for all b ∈ B.
The finite cover of Mα gives us embeddings hαj : Bk+1(0) → Mα such that Mα is covered by
{hα1(B × [0, 1]), hα2(B(1)), . . . , hαk

(B(1))}. We embed Mα in R2n+1 = Rl as in the first part of
the proof of Theorem 20.7 and define an embedding gα : B × [0, k + 1] ×Bk+1(0) → Rkl by

gα(x, t, y) = (hα1(x, t), hα2(y), . . . , hαk
(y))

for every manifold Mα in M. We denote the set of all such embeddings for α ∈ A by G.
By the same arguments as before, there is an embedding gα0 ∈ G that is the limit point of

a sequence gα1 , gα2 , . . . in G with gα0 ̸= gαi for all i ∈ N. As in the proof for manifolds with
empty boundary, we set M ′ = Mαi for some i that is fixed, but arbitrarily large. We define
V1(m) := hα0,1(B × [0,m]) and V ′

1(m) := hαi,1(B × [0,m]) with m = 1, . . . , k + 1. The sets
Vj(m) and V ′

j (m) for j = 2, . . . , k as well as Uj(m) and U ′
j(m) are defined as before, and the

rest of the proof constructs a homeomorphism from M to M ′ in the same way as the proof for
manifolds with empty boundary, as all statements used can also be applied to manifolds with
boundary. □

20.5. Application to Morse theory

In their paper [CK70], Cheeger and Kister also present a topological submersion theorem
that is an application of their results and useful in topological Morse theory. We will now state
these results and sketch a proof.

Definition 20.9. A map f : X → Y is called proper if the preimages of compact sets are
compact, i.e. for all compact C ⊆ Y , the set f−1(C) is compact. We call a continuous map
f : X → Y monotone if the inverse image of any point in f(X) is a connected subset of X.

Let Y be an m-manifold and X be an n-manifold, and thus metrisable. Let d be a metric
on X. Let f : X → Y be a proper monotone map satisfying the following condition:

for everyx ∈ X there are closed neighbourhoods f(x) ∈ U ⊆ Y andx ∈ V ⊆ X

and a homeomorphismh : B2(0) × U → V such that f ◦ h is the projection map onto U.

(⋆)

We define My := f−1(y) for y ∈ Y .

Proposition 20.10. For every y ∈ Y , My is a compact connected topological (m − n)-
manifold.

Proof. We know that My is compact and connected because the map f is proper and monotone.
It is also Hausdorff as a subset of a Hausdorff space.

To show it is locally (m− n)-euclidean, take any x ∈ My ⊆ X. By the condition mentioned
above, there is some neighbourhood V of x that is homeomorphic to B2(0) × U . As Y is an
n-manifold, there is some neighbourhood of f(x) in U that is isomorphic to Rn. We can now
restrict h to B2(0) cross this neighbourhood and obtain that My is locally (m− n)-euclidean
and thus a compact topological (m− n)-manifold.

As My is compact and locally (m− n)-euclidean, it can be covered by finitely many open
balls. We know that Rm−n is second-countable, so we can find a countable basis of the topology
of My by considering the images of the bases of the balls that we embedded. □

We fix y0 ∈ Y and can find a collection of embeddings
{hyj : B2(0) → My | y ∈ U, j = 1, 2, . . . , k}

where U is a closed neighbourhood of y0 in Y , and {hyj (B1(0))}kj=1 covers My. For fixed j, the
embeddings hyj vary continuously in y as embeddings of B2(0) into X. We apply the method
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from the proof of Theorem 20.7 to construct a homeomorphism g : My0 → My for y in a small
enough neighbourhood U ′ of y0. This is canonical and continuous in y because the result from
[EK71b] was too.

Then the map g : My0 × U ′ → X that we define as g(x, y) = gy(x) is a local trivialization of
f .

This result can be applied to topological Morse theory. For this purpose, we first want to
define some very basic concepts from topological Morse theory, as they can be found in [SS99].

Definition 20.11. Let X be a connected topological n-manifold and f : X → R+ a continuous
function. Then x ∈ X is an ordinary point of f if there exists an open neighbourhood V of x
in X and a homeomorphic parametrization of V by n parameters such that one of them is f .
Otherwise, x is a critical point of f .

A critical point x of f is called non-degenerate if there exists an open neighbourhood V of x
in X, a homeomorphic parametrization of V by parameters y1, . . . , yn and an integer 0 ≤ j ≤ n
such that, for all u ∈ U ,

f(u) − f(x) =
j∑
i=1

y2
i −

n∑
i=j+1

y2
i

holds.
Such a function f is called a topological Morse function if all critical points of f are non-

degenerate.

Applying the previous consideration to this case results in the following statement:

Proposition 20.12. Let X be a compact connected topological (n+ 1)-manifold, Y = [0, 1]
and f : X → Y be a topological Morse function without critical points, i.e. all point x ∈ X are
ordinary points. Then f is a trivial bundle map with fiber a compact manifold.

Proof. The map f , which is a topological Morse function without critical points, is proper and
monotone. To prove that f is proper, let C ⊆ [0, 1] be a compact set, and thus in particular
closed, as [0, 1] is a Hausdorff space. Then f−1(C) ⊆ X is also compact because it is a closed
subset of a compact manifold.

Let t ∈ [0, 1] be any point. The preimage of t under f cannot be empty. We can see this as
the image is nonempty, connected, closed, because X is compact, and open, because we can find
an open neighbourhood around any point using the condition that any point of X is an ordinary
point of f . Thus, the image must be all of Y . Similarly to the proof of Proposition 20.10, we
can see that f−1(t) is a compact manifold. If we assume that the preimage of t is not connected,
we can find two points x, y ∈ X with f(x) = f(y) = t that are in different path components
of f−1(t), but that can be connected by a path γ ⊆ X in X, as X is a connected, and thus
path-connected manifold. Then there must be a point in f(γ) that is not an ordinary point of f ,
which is a contradiction to our first assumption that f has no critical points.

The map f meets the condition ⋆ by definition by setting V to be the closure of the
open neighbourhood in the definition of a Morse function and U = f(V ). The homeomorphic
parametrization yields exactly the necessary homeomorphism such that f ◦ h is the projection.

We can then analogously define Mt as f−1(t) and construct a homeomorphism g : Mt0 → Mt

for t in a small enough neighbourhood of t0, and the map g : Mt0 × U ′ → X, defined as
g(x, y) = gy(x) is a local trivialization of f . As these homeomorphisms change continuously
and all points of f are ordinary points, the map f is a trivial bundle map with fiber a compact
n-manifold. □
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CHAPTER 21

Classifying spaces

Mark Powell

We will now study classifying spaces B TOP(n), B PL(n) and BO(n) for the corresponding
three types of Rn fibre bundles, and their stable analogues B TOP, B PL and BO.

The relationship between these objects is that we will define the limiting classifying spaces,
for CAT = TOP,PL, or O, as

BCAT :=
⋃
n

BCAT(n)

using the inclusions BCAT(n) ↪→ BCAT(n+ 1) induced by crossing with the identity map on R.
The stable classifying spaces in particular will play a key rôle in smoothing and PL-ing

theory, which we are going to discuss in the next section. This theory enables us to decide
whether one can put the extra corresponding extra structure, smooth or PL respectively, on a
topological manifold, and can decide how many such structures exist.

The theory of classifying spaces gives rise to universal spaces whose homotopy types measure
the difference between the categories. These spaces, quite amazingly, allow us to convert
geometric computations for specific manifolds into global statements for all manifolds.

The key property of classifying spaces that we will use is that homotopy classes of maps to
them correspond to isomorphism classes of the related bundles. For example, [X,BO(n)] is in
bijection with the isomorphism classes of n-dimensional vector bundles over the CW complex X,
and [X,BO] is in bijection with the collection of stable isomorphism classes of vector bundles
over X.

To connect with the previous section, there is a forgetful map f : BO → B TOP and for
a topological manifold M there is a classifying map tM : M → B TOP of the stable tangent
microbundle. The tangent microbundle is, stably, the underlying microbundle of a smooth vector
bundle if and only if there is a lift τM : M → BO with tM = f ◦ τM : M → BO → B TOP. The
analogous statement holds for PL instead of O. So in particular classifying spaces can decide
whether there exists a smooth or PL structure on M × Rq for some q. We will also see that
they can quantify these structures.

The classifying spaces BO(n) may be already familiar to you; they are given by the Grass-
mannian of n-planes in R∞. See e.g. [MS74]. The others take a bit more work to describe. To
do so we briefly recall the notion of a semi-simplicial set.

21.1. Semi-simplicial sets

Definition 21.1. Define the category ∆• to have objects{
{0, 1, . . . , n} | n ∈ N0

}
and morphisms the injective order-preserving maps

{0, 1, . . . ,m} → {0, 1, . . . , n}
for m ≤ n.

We write [n] := {0, 1, . . . , n}. There are n injective order preserving maps
[n− 1] := {0, 1, . . . , n− 1} → [n] := {0, 1, . . . , n}.

223
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Definition 21.2. A semi-simplicial set/group/space is a functor

S• : ∆op
• →


Set
Group
Space

from the opposite category of ∆• to the appropriate category of sets, groups, or spaces.

For a comprehensive source on semi-simplicial sets and spaces, we refer to [ER19]. This
definition is quick to make, but not so easy to parse, so we unwind it a little. A semi-simplicial
set consists of the following.

(i) For each p ∈ N0, a set, the set of p-simplices, Xp := X•([p]).
(ii) A collection of maps ∂pi : Xp → Xp−1, for i = 0, . . . , p, such that

∂p−1
i ◦ ∂pj = ∂p−1

j−1 ◦ ∂pi : Xp → Xp−2 i < j.

These are called the face maps.

Example 21.3. As an example, a simplicial complex determines a semi-simplicial set, where
the p simplices are the p-simplices, and the face maps give rise to the ∂pi .

Here is another famous example. For any space Y , the singular semi-simplicial set Y• of
Y is the semi-simplicial set with p-simplices Yp given by the singular p-simplices, that is the
continuous maps of the geometric simplex ∆p to Y . Precomposing with the inclusion of the ith
face ∆p−1 → ∆p gives the map ∂pi : Yp → Yp−1.

Remark 21.4. You may have heard of the notion of simplicial sets. These have extra structure,
the so-called degeneracy maps. In some contexts, having this extra structure is very important.
Our aim is to pass to geometric realisations, and the geometric realisation of a simplicial set and
its underlying semi-simplicial set are homotopy equivalent, so there is no need to

Here is our main example.

Example 21.5. Let Γ be a monoid, e.g. Γ = TOP(n). We define the semi-simplicial set BΓ•

as the following collection of data. BΓ0 is a singleton, and for each p > 0 we have the set of
p-simplices:

BΓp :=
{

(g1, . . . , gp) | gi ∈ Γ
}

and for every 0 ≤ i ≤ p a boundary map

∂pi : BΓp → BΓp−1 (g1, . . . , gp) 7→


(g2, . . . , gp), i = 0
(g1, . . . , gi · gi+1, gi+2, . . . , gp), 1 ≤ i ≤ p− 1
(g1, . . . , gp−1), i = p.

Then we have that ∂p−1
i ◦ ∂pj = ∂p−1

j−1 ◦ ∂pi for i < j, fulfilling the definition of a semi-simplicial set.
This is easy to generalise to any small category, with the 0-simplices the objects, and with

p-tuples of composable morphisms as the p-simplices.
In another direction, if Γ is a topological monoid or group then BΓp is a space, and BΓ• is a

semi-simplicial space.

Note that this definition of a semi-simpicial space also encapsulates any monoid Γ, since we
can give a monoid Γ the discrete topology, in order to make it into a topological monoid, albeit
in a somewhat uninteresting way. When we apply this machinery with Γ = O(n) or TOP(n),
the topology on these spaces is not the discrete topology, it will be the usual topology on O(n)
as a subset of Rn2 , and the compact-open topology on TOP(n).
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Definition 21.6 (Geometric realisation). Let X• be a semi-simplicial set/space. The geometric
realisation ∥X•∥ of X• is defined as the quotient

∥X•∥ :=
⊔
p≥0

Xp × ∆p
⧸∼.

Here we consider Xp as a space using the discrete topology, in the case that X· is a semi-simplicial
set, and we use the given topology on Xp in the case that X• is a semi-simplicial space. ∆p is a
space, with the subspace topology from Rp+1:

∆p :=
{
(x0, . . . , xp) ∈ Rp+1 |

p∑
j=0

xj = 1, xj ≥ 0 for all j
}
.

Let ιp−1
i : ∆p−1 ↪→ ∆p be the inclusion of ith face, for i = 0, . . . , p. The equivalence relation is

given by:
(x, ιp−1

i (y)) ∼ (∂pi x, y)
for x ∈ Xp, y ∈ ∆p−1 and 0 ≤ i ≤ p.
Definition 21.7. Given a (topological) monoid Γ, for the semi-simplicial set (space) from
Example 21.5, define BΓ := ∥BΓ•∥, the geometric realisation of this semi-simplicial set (space).

This concludes our short introduction to semi-simplicial sets. We have just included enough
information in order to be able to describe the constructions of the classifying spaces we will
need. The properties of classifying spaces will be assumed without proof, since this theory is not
special to the world of topological manifolds. To understand these properties in more detail, we
would need to expand on the theory of semi-simplicial sets and spaces as well.

21.2. Defining classifying spaces

Definition 21.8. Apply Example 21.5 and Definition 21.7 to the topological groups (and
therefore monoids) TOP(n) and O(n) to obtain semi-simplicial spaces B TOP(n)• and BO(n)•.
Similarly this construction applied to the topological monoid G(n) of homotopy self-equivalences
of Sn−1 yields the semi-simplicial space BG(n)•. Then we have:

B TOP(n) := ∥B TOP(n)•∥
BO(n)′ := ∥BO(n)•∥.

Theorem 21.9. We have a homotopy equivalence BO(n)′ ≃ BO(n) := Grn(R∞).
It can be useful to have both models for the same homotopy type. The former can be more

easily compared with B TOP(n), while the latter can be useful for computations, and the fact
that it is a limit of smooth manifolds was used when we found a smooth structure on M ×Rq in
Section 9.3.

For the piecewise linear case we need a slightly more involved construction.
Example 21.10. We define a semi-simplicial set PL(n)•. Define PL(n)p to be the set of PL
homeomorphisms ∆p × Rn → ∆p × Rn such that

∆p × Rn ∆p × Rn

∆p

commutes, where the downwards arrows are projection onto the first factor. Define a map
PL(n)p → PL(n)p−1 by sending f : ∆p × Rn → ∆p × Rn to the restriction

f |
ιp−1
i (∆p−1)×Rn : ∆p−1) × Rn → ∆p−1) × Rn.
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This determines a semi-simplicial set PL(n)•. Note that we do not have a natural topology on
the sets here. We will use the geometric realisation to obtain a topology. That is, we define:

PL(n) := ∥ PL(n)•∥.

Example 21.11. Now we define B PL(n). For each p ≥ 0, note that PL(n)p, the PL-
homeomorphisms of ∆p × Rn over ∆p, is a group (not a topological group). Form the semi-
simplicial set B(PL(n)p)• via the procedure in Example 21.5.

Then we define a semi-simplicial space Y• by
Yp := ∥B(PL(n)p)•∥

Now each Yp is a space. The face maps ∂qi (Y ) : Yq → Yq−1 of Y• are induced by the face maps of
PL(n)•:

Id ×(∂pi )q : ∆q × (PL(n)p)q → ∆q × (PL(n)p−1)q.
Finally we define

B PL(n) := ∥Y•∥
as the geometric realisation of the semi-simplicial space Y•. We performed a level-wise B
construction, and then we combined the levels into a semi-simplicial space Y•, and then realising
that gave the classifying space B PL(n).

Ultimately, for our intended applications to smoothing and PLing of topological manifolds,
we will need the stable classifying spaces. For each of CAT = TOP,PL, O, define

CAT(n) ↪→ CAT(n+ 1)
inclusions induced by crossing with the identity map on R. These in turn induce maps
BCAT(n) ↪→ BCAT(n + 1). If necessary replace these by cofibrations using mapping cyl-
inders, and define

BCAT :=
⋃
n

BCAT(n)

to be the infinite union. This defines stable classifying spaces
BO, B PL, and B TOP .

The key fact about all of these classifying space is the following theorem.

Theorem 21.12. If X be a paracompact space. For n ∈ N there is a universal CAT bundle
γnCAT → BCAT(n) such that the correspondence

[f : X → BCAT(n)] 7→ f∗(γnCAT)
induces a 1−1 correspondence between homotopy classes of maps [X,BCAT(n)] and isomorphism
classes of CAT Rn-bundles.

Similarly stable isomorphism classes of such bundles are in 1 − 1 correspondence with
homotopy classes of maps [X,BCAT].

Taking the classifying map of the underlying TOP(n) bundle of the universal CAT Rn bundle
γnCAT induces a homotopy class of maps

pCAT(n) : BCAT(n) → B TOP(n)
. This respects the stabilisations, so that

· · · BCAT(n) BCAT(n+ 1) · · ·

· · · B TOP(n) B TOP(n+ 1) · · ·

pCAT(n) pCAT(n+1)
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commutes. In the limit we obtain a map

pCAT : BCAT → B TOP .

Studying the failure of this map to be a homotopy equivalence measures the difference between
topological and CAT manifolds. We will start this process in the next section.

21.3. Comparing stable classifying spaces.

Let CAT stand for PL or DIFF. Since many facts and proofs will work equally well for both
PL and DIFF categories, it will be convenient to have the notation CAT that refers to either of
them.

We define the spaces

TOP⧸CAT := hofib
(
BCAT pCAT−−−→ B TOP

)
:= {(x, γ) | x ∈ BCAT, γ : [0, 1] → B TOP, γ(0) = x, γ(1) = pCAT(x)}

as the homotopy fibre of the map pCAT : BCAT → B TOP. This is the same as replacing this
map by a fibration, changing BCAT by a homotopy equivalence to a path space, and then taking
the fibre at the basepoint. So there is a homotopy fibre sequence

TOP⧸CAT BCAT B TOP .j pCAT

Similarly there are fibre sequences

TOP(n)⧸CAT(n) BCAT(n) B TOP(n)

PL⧸O BO B PL

PL(n)⧸O(n) BO(n) B PL(n).

In each case the left-most space is by definition the homotopy fibre of the right hand map. We
will restrict attention to the stable versions from now on, since it is these that are relevant for
smoothing and PL-ing theory in the next section.

Theorem 21.13 (Boardman-Vogt [BV68]). The space TOP⧸CAT has the homotopy type of
a loop space, that is there exists a space BTOP⧸CAT such that

TOP⧸CAT ≃ ΩBTOP⧸CAT.

In fact, the stable classifying spaces and their homotopy fibres TOP⧸CAT, BCAT, B TOP, B PL,
BO, and PL⧸O are infinite loop spaces.

An elementary consequence is that

πi
(TOP⧸CAT

)
∼= πi

(
ΩBTOP⧸CAT

)
∼= πi+1

(
BTOP⧸CAT

)
.

Now we relate CAT bundle structures to lifts of classifying maps. A CAT structure Σ on a
manifold M determines a CAT tangent bundle, and therefore a lift of the stable classifying map
tM : M → B TOP to BCAT.
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Let M be a topological manifold with ∂M equipped with a CAT structure. Then we have
the diagram:

(21.1)
∂M M

TOP⧸CAT BCAT B TOP BTOP⧸CAT.

incl

ρ tM
θ

j F G

The bottom row is a fibration sequence, and the first three entries form a principal fibration.
Therefore, questions about existence and uniqueness of CAT structures on tM , extending the
given CAT structure on the topological tangent bundle of ∂M , are equivalent to the existence
and uniqueness respectively of a lift of the map θ. This leads to the following theorem. To state
it we need the notion of concordant bundle structures.

Definition 21.14. Let ξ be a TOP Rn bundle over a CAT manifold X. Consider stable
CAT-bundles ξ0 and ξ1 over X with |ξ0| ∼=s ξ ∼=s |ξ1|, i.e. ξ0 and ξ1 are stable CAT bundles
lifting ξ. A (stable) concordance between ξ0 and ξ1 is a CAT bundle γ over X × I extending ξi
on X × {i}, for i = 0, 1, and with a stable isomorphism |γ| ∼=s ξ × tI to the product of ξ with
the topological tangent bundle of the interval I.

A concordance between CAT lifts of a topological Rn fibre bundle over X is a CAT lift of
the product bundle on X × I.

Theorem 21.15. Let M be a topological manifold with dimension at least 5 and ∂M given a
fixed CAT structure.

(i) The stable tangent microbundle tM is stably isomorphic to |ξ| for some CAT bundle ξ
if and only if there exists a lift θ : M → BCAT with tM ≃ F ◦ θ, if and only if the map
G ◦ tM : M → BTOP⧸CAT is null homotopic.

(ii) Moreover, the set [(M,∂M), (TOP⧸CAT, ∗)] acts freely and transitively on the concord-
ance classes of stable CAT bundles θ : M → BCAT lifting tM and extending ρ. So after
fixing one such lift θ, assuming one exists, there is a one to one correspondence between
concordance classes of stable CAT bundles lifting tM and [(M,∂M), (TOP⧸CAT, ∗)].

So we have two tasks. On the one hand, we need to understand the homotopy type of the
spaces TOP /CAT, so we can understand when a bundle’s classifying map lifts from B TOP to
BCAT. On the other hand, given such a suitable lift, we need to make use of it to actually produce
a CAT structure, or an equivalence of CAT structures. This is the topic of smoothing/PLing
theory, which we discuss next.



CHAPTER 22

Introduction to the product structure theorem, and smoothing
and PL-ing theory

Danica Kosanović and Mark Powell

As before, we let CAT stand for PL or DIFF.
Definition 22.1. A CAT structure Γ on a topological manifold M is a maximal CAT atlas, that
is the transition functions are CAT; we shall write MΓ to indicate M with the CAT structure Γ.

We use the term CAT isomorphism for a PL homeomorphism or a diffeomorphism, as
appropriate.
Definition 22.2. Two CAT structures Γ, Γ′ on M are CAT-isomorphic if there is a homeo-
morphism h : M → M with h−1(Γ′) = Γ.

If h is homotopic to IdM rel. ∂M , then (M,h) and (M, Id) represent the same element of
the structure set SCAT(M,∂M).
Definition 22.3. An isotopy between CAT structures Σ and Σ′ on a manifold M is a path of
(TOP) homeomorphisms ht : M → M from h0 = IdM to a CAT isomorphism h1 : MΣ → MΣ′ .

Each ht can be used to pullback Σ′, so an isotopy gives a continuous family of CAT structures
on M , starting with Σ′ and ending with Σ.
Definition 22.4. A concordance of CAT structures on M is a CAT structure Γ on M × I,
where I = [0, 1]. We say that Γ is a concordance from Σ0 to Σ1, with Σi := Γ|M×{i}.

Note that isotopic CAT structures are concordant and CAT-isomorphic. We will discuss the
other possible implications below.

For both of CAT equals PL or DIFF, we shall discuss the following two important theorems,
and their consequences.

(1) Concordance implies Isotopy.
(2) The Product Structure Theorem.

We will start with statements of these results and their applications to the questions of
whether a topological manifold admits a smooth or PL structure. We will give the proofs later on.
We are going to start with the simplest statements, and gradually introduce more complications
in relative versions as we go on.

The results will again rely on PL or smooth results associated with the s-cobordism theorem
and surgery theory. In particular the proof of the product structure theorem relies on the stable
homeomorphism theorem. As such dimension restrictions will again appear, and in fact the
results will in general be false if one tries to extend them to include 4-manifolds. We will state
the precise dimension restrictions at each stage. Dimension at least six is always safe. For some
results about 5-manifolds, such as in the well-definedness of connected sum (Theorem 17.29),
results about codimension one 4-manifolds will appear, meaning that we have to be careful.

We should note that many of the problems with dimension 4 were fixed by Quinn, but
at the moment we are presenting the state of topological manifolds in 1978, that is after
Kirby-Siebenmann’s book appeared but before Quinn’s work.

229
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Theorem 22.5 (Concordance implies Isotopy for CAT structures). Assume ∂M = ∅ and
dimM ≥ 5 and let Γ be a CAT structure on M × I, that is, a concordance from Σ0 to Σ1.

Then there exists an isotopy ht : M × I → M × I with
(1) h0 = IdM×I ,
(2) h1 : (M × I)Σ×I → (M × I)Γ is a CAT isomorphism,
(3) ht|M×{0} = IdM×{0} for all t ∈ [0, 1].

We say that ht|M×{1} is an isotopy of CAT structures from Σ1 to Σ0.

Example 22.6. The cardinality of the set of smooth structures on S7 up to diffeomorphism is
15. Up to concordance, or up to orientation preserving diffeomorphism, there are 28 of them, and
indeed the smooth structures on Sn considered up to concordance forms an abelian group θn, the
group of homotopy spheres, with addition by connected sum and the standard smooth S7 as the
identity element. This group was computed in many cases by Kervaire and Milnor [KM63a].

Remark 22.7. Note that for CAT structures isotopy implies both concordance and diffeomorphism.
The above result shows that concordance implies isotopy for closed manifolds of dimension ≥ 5.
However, diffeomorphism does not imply concordance (nor isotopy) as the above example shows.

Theorem 22.8 (Product Structure Theorem). Assume ∂M = ∅ and dimM ≥ 5, and let Θ
be a CAT structure on M × Rq for some q ≥ 1. Then there is a concordance (M × Rq × I)Γ
from Θ to (M × Rq)Σ×Rq , where the latter CAT structure is the product of a structure Σ on M
and the standard structure on Rq.

In particular, M admits a CAT structure, which is moreover unique up to concordance.

Corollary 22.9. Assume ∂M = ∅ and dimM ≥ 5. Suppose that the stable tangent
microbundle satisfies tM ∼= |ξ|, where |ξ| is the underlying microbundle of a CAT bundle ξ → M .
Then M admits a CAT structure.

Proof. By the ‘precursor to smoothing’ Theorem 9.19 we know that there exists a CAT structure
on M × Rq for some q ≥ 1. By Theorem 22.8 we obtain a CAT structure on M . □

Here if CAT = DIFF bundle then a CAT bundle is a vector bundle. A CAT = PL bundle is
an Rn fibre bundle, where n = dimM , with structure group PL(n), the PL homeomorphisms
of Rn that fix the origin. There is a theory of PL-microbundles, and there is an analogue to
Kister’s theorem, due to Kuiper-Lashof [KL66], which says that every PL microbundle contains
a PL fibre bundle. We are unfortunately omitting to develop the theory of PL bundles, with the
assurance that it is analogous to the smooth theory of vector bundles in so far as we will need it.
Remark 22.10. Strictly speaking, we only considered smooth structures in Section 9.3, but
the same proofs work in PL category. Namely, we obtained the smooth structure on M × Rq
by realising M × Rq as an open subset in a large dimensional Euclidean space, and we then
pulled back the smooth structure from the Euclidean space. We can do the same with the
PL structure. For now we will take it on faith, and refer to [KS77b, Essay IV, Theorem 3.1
and Proposition 5.1].

Recall that Theorem 9.19 relied on Theorem 9.14 on the stable existence of normal mi-
crobundles for topological submanifolds. There are different proofs for this by Milnor, Hirsch,
and Stern.

Now we upgrade our statement of the product structure theorem to a relative form, that
will be useful for questions about the uniqueness of structures.

Theorem 22.11 (Relative Product Structure Theorem). Let M be a manifold and fix an
open subset U ⊆ M . Assume dimM ≥ 6, or dimM = 5 with ∂M ⊆ U . Let Θ be a CAT
structure on M × Rq for some q ≥ 1, and suppose there exists a CAT structure ρ on U with
Θ|U×Rq = ρ× Rq.
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Then ρ extends to a CAT structure Σ, and there is a concordance (M × Rq × I)Γ from Θ to
(M × Rq)Σ×Rq relative to U × Rq.

Corollary 22.12. Let Σ0,Σ1 be CAT structures on M with dimM ≥ 4 and ∂M = ∅. The
CAT structures induce CAT tangent bundles with microbundle isomorphisms |TMΣi | → tM for
i = 0, 1. Suppose that there exists a concordance between the CAT bundle structures TMΣ0 and
TMΣ1 . That is, there is a CAT bundle ξ → M × I restricting to TMΣi on M × {i}, and a stable
microbundle isomorphism |ξ|

∼=s−−→ tM×I .
Then Σ0 and Σ1 are concordant. Moreover if dimM ≥ 5 then they are isotopic.

Proof. Let U be the union of open collars on M × {i} for i = 0, 1, and put product structures
Σi × [0, ε) on each of these collars. By a relative version of Milnor’s Theorem 9.19, there
exists q ≥ 1 and a CAT structure on M × I × Rq restricting to Σi × Rq on U × Rq. Then by
Theorem 22.11 we obtain a CAT structure on M × I. That is, Σ0 and Σ1 are concordant.

If dimM ≥ 5 then we have that they are also isotopic by Theorem 22.5. □

Remark 22.13. The requirement that ∂M = ∅ is not necessary, but was added to make the
notation in the statement and the proof easier. More care is needed to state a relative version,
in which one assumes that in a closed set C ⊆ M containing the boundary we already have a
fixed concordance.
Remark 22.14. We also did not prove a relative version of Theorem 9.19. The proof proceeds
analogously, but with more care required.
Remark 22.15. Note that this implies that each of the uncountably many exotic structures on
R4 are concordant to one another, while they are not diffeomorphic to each other and therefore
are not isotopic. So concordance implies isotopy is false for 4-manifolds.

To compare to [KS77b], we have shown that the smoothing rule σ, which in [KS77b,
Essay IV, Proposition 3.4] is defined by exactly the procedure we have used to obtain CAT
structures, is a well-defined map from stable concordance classes of stable CAT bundle structures
on tM to concordance classes of CAT structures on M .

That is, the smoothing rule is to apply the method of Theorem 9.19 to obtain a CAT
structure on M × Rq, for some q, from a CAT bundle whose underlying microbundle is the
tangent microbundle of M , and then apply the product structure theorem to obtain a CAT
structure on M . We have shown that concordant stable CAT structures on tM give rise to
concordant CAT structures on M × Rq, and the product structure theorem gives uniqueness of
the resulting smooth structure on M up to concordance.

In fact, [KS77b, Essay IV, Theorem 4.1] shows that σ is a bijection from stable concordance
classes of stable CAT bundle structures on tM to concordance classes of CAT structures on M .
We also now include the possibility that the boundary is nonempty, but we assume that the
structures are already equal on the boundary.

Theorem 22.16 ([KS77b, Essay IV, Theorem 4.1]). Let M be a topological manifold with
dimM ≥ 5 and ∂M given a fixed CAT structure. Then the smoothing rule gives rise to a
bijection between stable concordance classes of stable CAT bundle structures on tM and the set
of concordance classes of CAT structures on M .

Next we will refine the smoothing rule using classifying spaces. By combining Theorem 22.16
with Theorem 21.15, we obtain the following theorem. We use the fact from Theorem 21.15 that
the CAT bundle structures on the topological tangent bundle of M are controlled by lifts of the
classifying map, and therefore are controlled by maps to BTOP⧸CAT and TOP⧸CAT.

Theorem 22.17. Let M be a topological manifold with dimension at least 5 and ∂M given a
fixed CAT structure.

The map G ◦ tM : M → BTOP⧸CAT is null homotopic if and only if M admits a CAT
structure extending the structure on ∂M .
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Moreover, the set [(M,∂M), (TOP⧸CAT, ∗)] acts freely and transitively on the concordance
classes of CAT structures fixing the structure on ∂M . So after fixing one such CAT structure,
assuming one exists, there is a one to one correspondence between concordance classes of CAT
structures extending the structure on ∂M and [(M,∂M), (TOP⧸CAT, ∗)].

Corollary 22.18 ([Sta62a]). For n ≥ 5, Rn has a unique CAT structure.

Proof. Assuming Theorem 22.17, since Rn is contractible we have that [Rn,TOP⧸CAT] = {∗}.
Therefore there is a unique CAT structure on Rn, n ≥ 5, as claimed. □

This corollary was first proved by Stallings in [Sta62a]. Actually we will need this statement
for n ≥ 6 in the proof of the product structure theorem. So we had better give an independent
argument, and indeed we shall do so later (our argument will be different from Stallings’
argument). Nevertheless for a user of the theory, it is often easier to remember the one central
theorem, and deduce everything else from it, which is why we have also pointed it out as a
corollary.

For Theorem 22.17 to be useful for non-contractible spaces we need to understand something
about the homotopy type of the spaces TOP⧸CAT and BTOP⧸CAT. This is the topic of the
next section, but for the piecewise-linear case, the homotopy type is easy to describe.

Theorem 22.19 (Kirby-Siebenmann). We have a homotopy equivalence TOP⧸PL ≃ K(Z/2, 3).

We will prove this soon. Let us observe some consequences now, however. It follows that the
obstruction for existence of a lift θ as in (21.1) lies in the group

[(M,∂M), (BTOP⧸PL, ∗)] ∼= H4(M,∂M ;Z/2),
This obstruction is called the Kirby-Siebenmann invariant of (M,∂M). If this obstruction
vanishes, all such lifts are classified by the group

[(M,∂M), (TOP⧸PL, ∗)] ∼= H3(M,∂M ;Z/2).
In particular Theorem 22.17 and Theorem 22.19 imply the following remarkable theorem.

Theorem 22.20. Let M be a topological manifold with dimension at least 5 and ∂M given a
fixed PL structure.

(1) Suppose H4(M,∂M ;Z/2) = 0. Then the PL structure on ∂M extends to M .
(2) Suppose that H3(M,∂M ;Z/2) = 0. Then any two PL structures Σ0 and Σ1 on M

satisfying Σ0|∂M = Σ1|∂M are isotopic.

Remark 22.21. Note the corollary that a compact topological manifold with dimension at least 5
has finitely many PL structures rel. boundary, up to isotopy (it may of course have zero such
structures).
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The homotopy groups of TOP / PL and TOP /O

Danica Kosanović and Mark Powell

We have seen that it would be extremely useful to know about the homotopy groups of
TOP /PL and TOP /O. This section explains how to compute them. To start, the homotopy
groups πk(TOP⧸PL) and πk(TOP⧸O) for k ≥ 5 are easy to compute.

Lemma 23.1. For k ≥ 5 we have

πk
(TOP⧸PL

)
= 0, and πk

(TOP⧸O
)

∼= Θk

where Θk is the group of homotopy spheres, that is h-cobordism classes of smooth, closed, oriented
k-manifolds homotopy equivalent to Sk.

Proof. For k ≥ 5, the set [Sk,TOP⧸CAT] is in one-to-one correspondence with concordance
classes of CAT structures on Sk, which, via the CAT h-cobordism theorem, equals {∗} for
CAT = PL and equals Θk for CAT = DIFF. □

Recall, for example, that famously Θ7 ∼= Z/28. Unlike the PL Poincaré conjecture, the
smooth Poincaré conjecture is not true in many dimensions. It is true in dimensions 5, 6, 12, 56,
and 61. It is open in infinitely many dimensions. The groups of homotopy spheres are related to
the homotopy groups of spheres, more precisely to the cokernel of the J-homomorphism. So
difficulties computing the latter translate into difficulties computing the former. It is known
that Θk is finite for all k ≥ 5.

23.1. Smoothing of piecewise-linear manifolds and the homotopy groups of PL⧸O
There is an analogous theory for the smoothing of piecewise-linear manifolds. There is a

fibration sequence
PL⧸O → BO → B PL

with PL⧸O by definition the homotopy fibre. Also PL⧸O is an infinite loop space, so admits a
delooping BPL⧸O.

Theorem 23.2 (Cairns-Hirsch, Hirsch-Mazur). Given a closed PL manifold M , the map

M B PL BPL⧸O
tM

is null homotopic if and only if M is smoothable. Moreover concordance classes of smooth
structures on M are in 1-1 correspondence with [M,PL⧸O]

We can describe the homotopy groups πk(PL⧸O). By the Poincaré conjecture, and its smooth
failure (Smale, Stallings, Zeeman, Kervaire-Milnor),

πk(PL⧸O) ∼= Θk

for k ≥ 5. Note that Kervaire-Milnor computed that Θ5 = Θ6 = 0 and Θ7 ∼= Z/28.
233
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In addition, πk(PL⧸O) = 0 for k ≤ 4. This follows from direct geometric proofs that PL
manifolds of dimension k ≤ 4 admit smooth structures, due to Munkres, Smale, and Cerf. We
therefore have the following fact.

Theorem 23.3. The space PL⧸O is 6-connected.

To summarise, in general a PL manifold may admit no smooth structures, or multiple
smooth structures. Since Θk is finite, a given compact PL manifold admits finitely many smooth
structures, up to concordance. These are detected via maps to PL⧸O. In dimensions at most
5, every PL manifold admits a unique smooth structure. This is not to be confused with the
fact that a given topological 4-manifold may admit infinitely many PL (and therefore smooth)
structures.

23.2. Homotopy groups of TOP⧸O
We will focus on the question of putting a PL structure on a topological manifold, since

this has a particularly clean answer. This can be seen, e.g. from Lemma 23.1. In contrast, for
CAT = DIFF, we have to account for nontrivial smooth homotopy spheres. We now show that
there are no additional sources of trouble.

Theorem 23.4.
πk
(TOP⧸O

)
∼= πk

(TOP⧸PL
)

for 0 ≤ i ≤ 4, while
πk
(TOP⧸O

)
∼= πk

(PL⧸O
)

for i ≥ 5.

Proof. Apply Theorem 22.19, Theorem 23.3, and the long exact seqeunce in homtopy groups
associated to the fibre sequence

PL⧸O TOP⧸O TOP⧸PL,

to see that we have

πk
(TOP⧸O

)
∼=

πk
(TOP⧸PL

)
∼= πk(K(Z/2, 3)) 0 ≤ k ≤ 4

πk
(PL⧸O

)
∼= Θk k ≥ 5.

□

Corollary 23.5. Every compact topological manifold of dimension at least 6 admits finitely
many smooth/PL structures (including possibly zero).

Proof. This follows from obstruction theory and the theorem of Kervaire-Milnor that |Θk| < ∞,
together with Theorem 22.19 that πk(TOP /PL) is finite for k ≤ 4. □

The corollary holds for compact 5-manifolds as well, provided we fix a CAT structure on the
4-dimensional boundary.

23.3. The homotopy groups of TOP /PL

In this section we give the proof of Theorem 22.19. Here is the statement again.

Theorem 23.6. TOP⧸PL ≃ K(Z/2, 3).
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This means, remarkably, that the difference between the topological and piecewise-linear
categories, is rather small. From the point of view of obstruction theory, there is just a single
Z/2 obstruction. The proof we are going to present is from [KS77b, Essay IV chapter 10 and
Essay V Theorem 5.3].

By Lemma 23.1 it remains to compute πk
(TOP⧸PL

)
for 0 ≤ k ≤ 4. First of all we will

show that πk
(TOP⧸PL

)
= 0 for i = 0, 1, 2, and 4, and that π3

(TOP⧸PL
)

≤ Z/2. To do this
we shall define, for each 0 ≤ k ≤ 4, a map

ψk : πk
(TOP⧸PL

)
→ S∗

PL(Dk × T 6−k, ∂)

We will define S∗
PL(Dk × T 6−k, ∂) in detail below.

Our overall aims for this computation are as follows. We will show that ψk is injective and
that the right hand side is zero for k = 0, 1, 2, 4 and is Z/2 for k = 3. Once we have shown all of
this we will show separately that π3(TOP /PL) is nontrivial.

The set S∗
PL(Dk × T 6−k, ∂) is by definition the subset of the structure set

SPL(Dk × T 6−k, ∂) :=


M Dk × T 6−k

∂M Sk−1 × T 6−k

≃

∼=PL

 / PL homeo over Dk × T 6−k

consisting of those elements which are invariant under passing to λ6−k covers for all λ ∈ N. That
is, passing to a λ6−k cover

M̃ Dk × T̃ 6−k

∂̃M Sk−1 × T̃ 6−k

≃

∼=PL

yields an equivalent element in SPL(Dk×T 6−k, ∂). We are considering the rel. boundary structure
set. The equivalence relation stipulates that

M Dk × T 6−k

∂M Sk−1 × T 6−k

≃
F

∼=PL

∂F

and
M ′ Dk × T 6−k

∂M ′ Sk−1 × T 6−k

≃
F ′

∼=PL

∂F ′

are equivalent if there are PL homeomorphisms

M M ′

∂M ∂M ′

∼=P L

G

∼=PL

∂G

such that ∂F ′ ◦ ∂G = ∂F and F ′ ◦G ∼ F . So the commutativity of the triangles

M M ′

Dk × T 6−k

G

F F ′
and

∂M M ′

Sk−1 × T 6−k

∂G

∂F ∂F ′

is up to homotopy for the first triangle and precise commutativity for the second triangle.
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23.3.1. Definition of ψk. To define

ψk : πk
(TOP⧸PL

)
→ S∗

PL(Dk × T 6−k, ∂),

fix a basepoint ∗ ∈ TOP /PL and represent x ∈ πk(TOP /PL, ∗) by a diagram:

Dk TOP⧸PL

Sk−1 ∗

Combining these maps with the projection maps pr1 onto the first factor, we obtain a diagram

Dk × T 6−k Dk TOP⧸PL

Sk−1 × T 6−k Sk−1 ∗

pr1

pr1

Write x for the resulting map of pairs

x : (Dk × T 6−k, Sk−1 × T 6−k) → (TOP⧸PL, ∗).

We know from Theorem 22.17 that the set of homotopy classes of such maps acts freely and
transitively on the concordance classes of PL structures on (Dk × T 6−k, Sk−1 × T 6−k).

Let (M,∂M) denote (Dk × T 6−k, Sk−1 × T 6−k) with the PL structure obtained by acting
on the standard structure by x. It does not change the PL structure on the boundary. This
maps by the identity to Dk × T 6−k. Thus we obtain

(F, ∂F ) : (M,∂M) ≃,∼=P L−−−−→ (Dk × T 6−k, Sk−1 × T 6−k)

since the identity map on the underlying topological manifolds is in particular a homotopy
equivalence.

The induced structure on a λ6−k cover is that induced by

Dk × T 6−k Id ×λ6−k

−−−−−−→ Dk × T 6−k pr1−−→ Dk x−→ TOP /PL

Since this map equals the original map x : Dk × T 6−k → TOP /PL, we see that element of the
structure set (F, ∂F ) : (M,∂M) → (Dk × T 6−k, Sk−1 × T 6−k) is invariant under passing to finite
covers and therefore determines an element of S∗

PL(Dk × T 6−k, ∂).

23.3.2. Injectivity of ψk. Having defined the map ψk, we now show that it is injective.
It will be useful to recall the definition of an isotopy of PL-structures from Definition 22.3.

Definition 23.7. An isotopy between PL structures Σ and Σ′ on a manifold M is a path of
homeomorphisms ht : M → M from h0 = IdM to a PL homeomorphism h1 : MΣ → MΣ′ .

Each ht can be used to pullback Σ′, so an isotopy gives a continuous family of PL structures
on M , starting with Σ′ and ending with Σ.

Lemma 23.8. For k = 0, 1, 2, 3, 4, the map ψk : πk
(TOP⧸PL

)
→ S∗

PL(Dk × T 6−k, ∂) is
injective.

Remark 23.9. In Kirby-Siebenmann, it is only shown that the inverse image of the trivial element
is the trivial element. It is implicitly assumed that the structure set is a group, and that ψk is
a homomorphism, but this is not discussed, although it seems to be true. We will avoid this
question by showing that the map is injective as a map of sets.
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Proof. Suppose that ψk(x) = ψk(y) in the structure set. That is, ψk(x) and ψk(y) give rise to
PL structure Σ and Σ′ on Dk × T 6−k, and there exists a PL homeomorphism

h : [Dk × T 6−k]Σ′
∼=P L−−−→ [Dk × T 6−k]Σ

which the identity near the boundary, and moreover h ∼ Id rel. boundary. We want to show
that x = y ∈ πk(TOP /PL).

Lifting to a λ6−k cover, for some λ ∈ N, gives structures [Dk × T 6−k]Σλ
and [Dk × T 6−k]Σ′

λ

defined to make Id ×λ6−k a PL map. We obtain a diagram of PL maps:

(Dk × T 6−k)Σ′
λ

(Dk × T 6−k)Σλ

(Dk × T 6−k)Σ′ (Dk × T 6−k)Σ

hλ

∼=

Id ×λ6−k Id ×λ6−k

h
∼=

Observe that for λ sufficiently large, we can make hλ arbitrarily close to the identity on
T 6−k. In addition, extend hλ by the identity to

hλ : Rk × T 6−k → Rk × T 6−k.

Let Ht : Rk → Rk be an isotopy shrinking Dk to be very small, with H0 the identity, and H1
the result of this shrink. Define

Gt := (Ht × Id) ◦ hλ ◦ (Ht × Id)−1 : [Dk × T 6−k]Σ′
λ

→ [Dk × T 6−k]Σλ
.

This is an isotopy on Dk × T 6−k with G0 the identity and with G1 arbitrarily close to the
identity.

Now by the local path connectedness of Homeo∂(Dk × T 6−k) (Theorem 19.1), G1 is isotopic
to the identity, which implies that hλ is isotopic to the identity. Therefore we have an isotopy of
homeomorphisms from a PL homeomorphism

hλ : [Dk × T 6−k]Σ′
λ

→ [Dk × T 6−k]Σλ

to the identity map. Therefore Σλ and Σ′
λ are isotopic PL structures, which means that the

maps Dk × T 6−k → TOP /PL which produced them are homotopic. Now consider the diagram:

Dk × T 6−k

Dk × {pt} Dk × T 6−k TOP⧸PL

Dk

Σλ,Σ′
λ

λ6−k

Id

x,y

pr1 x,y

Here the maps with codomain TOP /PL indicate two maps. We label the maps that determine
the structures Σλ and Σ′

λ by the structure. The diagram commutes by definition of the maps
involved. We have seen that there is a homotopy between the maps Σλ and Σ′

λ. This induces a
homotopy between the two maps Dk × {pt} → TOP⧸PL via the top route. By commutativity
of the diagram this induces a homotopy between the two maps via the bottom route. Hence x is
homotopic to y as desired. □

23.3.3. Computation of S∗
PL(D3 × Tn, ∂). So far we did not apply any surgery theory

computations. Now we need to appeal to them. Recall we discussed the surgery classification
of PL homotopy tori in Chapter 18. The results discussed there generalise to the following.
Before, we focused on the case k = 0 that we needed for the proof of the stable homeomorphism
theorem.
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Theorem 23.10 ([HS69, Wal69]). There is an isomorphism

SPL(Dk × Tn, Sk−1 × Tn) ∼= H3−k(Tn,Z/2)
with n+ k ≥ 5 and this bijection is natural under finite covers. In particular, if k = 0, we have
H3(Tn;Z/2) = (∧n−3 Zn) ⊗ Z/2 from before.

Corollary 23.11. The subset of the structure set SPL(Dk×Tn, Sk−1 ×Tn) that is invariant
under finite covers is trivial unless k = 3. For k = 3 we have

S∗
PL(D3 × Tn, ∂) ∼= H0(Tn;Z/2) ∼= Z/2.

So we have that
ψk : πk

(TOP⧸PL
)
↪→ S∗

PL(Dk × T 6−k, ∂)

has trivial right hand side for k = 0, 1, 2, 4. We see that πk
(TOP⧸PL

)
∼= πk

(TOP⧸O
)

= 1 for
k = 0, 1, 2, 4 and we have an injective map ψ3 : π3

(TOP⧸PL
)

→ Z/2. It therefore just remains
to show that π3

(TOP⧸PL
)

is nontrivial.
To do this, first we construct an element of S∗

PL(D3 × Tn, ∂) and show it is nontrivial.
For k + n ≥ 6, a fake Dk × Tn, i.e. a manifold homotopy equivalent to Dk × Tn, with

PL-homeomorphic boundary but not PL homeomorphic to Dk × Tn, arises from elements of
Ln+k+1(Z[Zn])⧸

N(Dk × Tn × I,Dk × Tn × {0, 1}).

To create a fake Dk × Tn, for k + n ≥ 6, choose y ∈ Ln+k+1(Z[Zn]) such that y does not lie in
the image of N(Dk ×Tn × I,Dk ×Tn × {0, 1}), and realise y, using Wall realisation, by a normal
bordism starting with the identity of Dk × Tn, and ending with a new homotopy equivalence
F : M → Dk × Tn. See Fig. 23.1a. The new pair (M,F ) is a degree one normal map with F a
homotopy equivalence, but F is not homotopic rel. boundary to a PL homeomorphism.

(a) A normal bordism produces a pair (M,F ). (b) A normal bordism for M ≃ D3 × T 3.

Figure 23.1

We now consider an invariant that can be used to detect if M is PL homeomorphic to
Dk × Tn. Let us focus on the case of interest: k = n = 3. Given a PL manifold M and
F : M6 ≃−→ D3 × T 3, we choose a PL normal bordism

(G,F, Id) : (W 7;M6, D3 × T 3) → D3 × T 3 × (I; {0}, {1}).
We then cross this bordism with CP2, so that we can apply results from the high dimensional
theory, avoiding 4-manifolds. We obtain a map

G× Id : W × CP2 → D3 × T 3 × I × CP2
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between 11-manifolds. By PL transversality, the inverse image
W ′ := (G× Id)−1(D3 × {pt} × I × CP2)

is a PL 8-manifold with boundary, over D4 ×CP2, such that the map of its boundary to S3 ×CP2

is a PL homeomorphism. Take its (simply-connected) surgery obstruction in L8(Z). We know
that L8(Z) ∼= Z where the map takes the signature divided by 8, and we take the modulo 2:

L8(Z) Z Z/2
∼=

We claim that this is a well-defined obstruction to the original map G being normally bordant
to a homotopy equivalence. This follows from Farrell’s fibering theorem, which implies that if G
were bordant to a homotopy equivalence, then the surgery obstruction of

W ′ → D4 × CP2

would be trivial. Finally, note that σ(X) = σ(X × CP2) for a 4-manifold X, since signature
multiplies under products and σ(CP2) = 1.

Theorem 23.12 (Rochlin). If X a PL spin closed 4-manifold, then σ(X) is divisible by 16.

The obstruction σ(W ′)⧸8 mod 2 cannot be killed by a change in normal bordism, because
that would change the inverse image by a closed, spin 4-manifold crossed with CP2, and by the
Rochlin theorem this changes the signature obstruction in L8(Z) by a multiple of 16.

23.3.4. Nontriviality of π3(TOP /PL). We showed πk(TOP⧸PL) = 0 for k ≠ 3, and that

π3(TOP⧸PL) ⊆ S∗
3 (D3 × T 3, ∂) ∼= Z/2.

Now we show that this inclusion is equality, i.e. that π3(TOP⧸PL) is nontrivial.
Remark 23.13. If we knew that all the fake tori in dimensions at least 5 are homeomorphic to
one another, instead of just homotopy equivalent, then we would be done. However while this is
true, it is harder to establish, and the proof might even use this result by comparing with the
PL case. The method we are about to explain has the advantage that it uses machinery that we
have already proven, or are assuming from the DIFF/PL development.
Definition 23.14. Let PL(D3 × T 3, ∂) be the set of PL structures on D3 × T 3, restricting to
standard structure on S2 × T 3, considered up to isotopy.

Lemma 23.15. There is an isomorphism ϕ : π3
(TOP⧸PL

) ∼=−→ PL(D3 × T 3, ∂).

Proof. By the Product Structure Theorem (Theorem 22.8) we have

PL(D3 × T 3, ∂) ∼= [(D3 × T 3, ∂),
(TOP⧸PL, ∗

)
]

∼= H3
(
D3 × T 3;π3

(TOP⧸PL
))
.

We do not yet know whether π3
(TOP⧸PL

)
is trivial or Z/2, but we do not mind. Now by

Poincare-Lefschetz duality this is

H3
(
D3 × T 3;π3

(TOP⧸PL
))

∼= H3
(
T 3;π3

(TOP⧸PL
))

∼= 2π3
(TOP⧸PL

)
.

We denote the inverse of this chain of isomorphisms by ϕ. □

We have maps

π3(TOP⧸PL) PL(D3 × T 3, ∂) S∗
3 (D3 × T 3, ∂)ϕ

∼=
θ

where by definition θ((D3 ×T 3)Σ) = Id: (D3 ×T 3)Σ
∼=−→ D3 ×T 3. We have to show that θ is onto.

This means that we take the nontrivial element of the codomain, which might be represented by
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some other manifold M that is homotopy equivalent to D3 × T 3, rel. boundary and we try to
show that the M is in fact in the image of PL(D3 × T 3, ∂), so it is homeomorphic to D3 × T 3,
but is perhaps not PL-homeomorphic.

Proposition 23.16. The map θ : PL(D3 × T 3, ∂) → S∗
3 (D3 × T 3, ∂) is onto.

Proof. Consider the nontrivial element of the structure set S∗
3 (D3 × T 3, ∂)

f : (M,∂M) ≃,∼=PL−−−−→ (D3 × T 3, ∂)
We will construct a topological homeomorphism h : M → D3 ×T 3 and show that f is homotopic
to h rel. boundary. This will show that f is in the image of θ.

For the rest of proof let us identify D3 ∼= I3 = [0, 1]3. Consider the triple
(M ; f−1({0} × I2 × T 3), f−1({1} × I2 × T 3).

By the rel. boundary s-cobordism theorem, there is a PL homeomorphism f ′ : M
∼=PL−−−→ I3 × T 3

with f ′ = f on f−1({1} × I2 ∪ I × ∂I2) × T 3. Next we investigate the failure of f ′ to equal f on
the remaining part of the boundary, {0} × I2 × T 3. Namely, consider the PL homeomorphism

g := f ′ ◦ f |−1 : {0} × I2 × T 3 → {0} × I2 × T 3

Lemma 23.17. g is TOP isotopic to the identity IdI2×T 3.

Assuming for a moment such an isotopy exists, we can glue it in a collar neighbourhood of
{0}×I2×T 3 to alter f ′, see Fig. 23.2. This produces the desired homeomorphism h : M → I3×T 3

which is equal to f near ∂M , and it remains to check that h is homotopic to f .

Figure 23.2. Modifying the PL homeomorphism f ′ by attaching into the collar
of {0} × I2 × T 3 an isotopy of g to the identity.

Lemma 23.18. If two homeomorphisms h and f from M to I3 × T 3 agree near ∂M , then
they are homotopic rel. boundary.

Proof. The obstructions to extending
h ∪ h× IdI ∪f : M × {0} ∪ ∂M × I ∪M × {1} → I × I3 × T 3

to the homotopy M × I → I3 × T 3 lie in Hj+1(I4 × T 3, ∂;πj(I3,×T 3)) ∼= H7−j−1(T 3;πj(T 3)).
This is always zero, since πj(T 3) ̸= 0 implies that j = 0, 1, so that 7 − j − 1 is 5 or 6. But the
cohomology of T 3 is trivial above degree 3. □

This finishes the proof of the proposition, modulo the proof of Lemma 23.17. □
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Proof of Lemma 23.17. We use a similar method to that used in the injectivity of ψk proof: we
note that M can be replaced by a large finite λ3-fold cover Mλ, and similarly f by fλ. We have
that

[(M,f)] = [(Mλ, fλ)] ∈ S∗
PL(I3 ×D3, ∂)

by invariance under finite covers. By the procedure above, we obtain analogous maps
f ′
λ : Mλ → I × I2 × T 3

λ and gλ : I2 × T 3
λ → I2 × T 3

λ .

Lemma 23.19. There is a finite λ3 cover such that the map gλ is TOP isotopic to IdI2×T 3
λ
.

Proof. Passing to a large λ3 finite cover, and squeezing in the I2 coordinate, we may obtain a
map that is as close to the identity as we please, which is therefore isotopic to the identity by
local contractibility. More details follow.

Observe that for λ sufficiently large, gλ is arbitrarily close to the identity on T 3
λ . In addition,

extend gλ by the identity to
gλ : R2 × T 3

λ → R2 × T 3
λ .

Let Ht : R2 → R2 be an isotopy shrinking D2 to be very small, with H0 the identity, and H1 the
result of this shrink. Define

Gt := (Ht × Id) ◦ gλ ◦ (Ht × Id)−1 : D2 × T 3
λ → D2 × T 3

λ .

This is an isotopy on D2 × T 3
λ with G0 the identity and with G1 arbitrarily close to the identity.

Now by the local path connectedness of Homeo∂(D2 × T 3
λ ) (Theorem 19.1), G1 is isotopic to

the identity, which implies that gλ is isotopic to the identity. □

The argument from above then allows us, for λ coming from Lemma 23.19, to improve f ′
λ to

hλ : Mλ
∼=−→ I3 × T 3, a homeomorphism (not a PL homeomorphism), with

fλ|∂ = hλ|∂ : ∂Mλ → ∂I3 × T 3
λ .

Also fλ is homotopic to hλ by Lemma 23.18. Therefore indeed
[(M,f)] = [(Mλ, fλ)] ∈ S∗

PL(I3 ×D3, ∂)
is in the image of θ : PL(D3 × T 3, ∂) → S∗

3 (D3 × T 3, ∂), as desired. □

This concludes our computation of the homotopy type of TOP /PL, and of the homotopy
groups of TOP /O.





CHAPTER 24

Concordance implies isotopy

Mark Powell

First we will prove CAT handle straightening, then we will apply it to prove the concordance
implies isotopy theorem. Most of the work is in proving the handle straightening theorem.

24.1. CAT handle straightening

Consider a topological embedding h : Bk × Rn ↪→ V k+n
CAT which is a CAT embedding near

(∂Bk) ×Rn. Then we say handle h can be (PL-)straightened/smoothed if there exists an isotopy
ht : Bk × Rn ↪→ V k+n such that

(1) h0 = h;
(2) h1 is a CAT embedding near Bk ×Bn;
(3) ht = h for t ∈ [0, 1] outside a compact set and near (∂Bk) × Rn.

We will show that handles can be straightened assuming that a handle problem is concordant
to a solution, and in fact this will imply that an entire concordance can be straightened.

Recall that for M a manifold with boundary, the symbol ⊐ (I ×M), sometimes just called
⊐, denotes the edges I × ∂M ∪ {1} × M . The next theorem and its proof are from [KS77b,
Essay I.3].

Theorem 24.1. Let X be a CAT manifold and h : I×Bk×Rn → X a (TOP) homeomorphism,
and a CAT embedding near ⊐. Suppose m := k + n ≥ 5. Then there is an isotopy

ht : I ×Bk × Rn → X, t ∈ [0, 1]

such that h0 = h, and h1 a CAT embedding near I ×Bk ×Bn, and there is r > 0 such that for
all t ∈ [0, 1] we have ht = h near ⊐ and outside I ×Bk × rBn.

Figure 24.1. The given h is already a CAT embedding on the green region.
After an isotopy we obtain h1 which is also CAT near the blue region I×Bk×Bn.

Recall that we did handle straightening for TOP, where the condition was that a handle was
“close” to a straightened one. Now we have PL/DIFF structures and the condition is given by a
concordance instead.

243
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Proof. Let us fix some notation, similarly as for the previous torus trick. Let ρ : Rn → Tn be
the standard covering and define

e : Rn → Tn

y 7→ ρ(y/8).

Let p := e(1/2, · · · , 1/2) and pick a CAT immersion α′ : Tn∖ {p} ↬ Rn. As before, we can
arrange that α′ ◦ e|2Bn = Id2Bn . Let i, i1 be such that the diagram in Fig. 24.2 commutes. We

Figure 24.2. An immersion of the n-torus.

can choose α′ carefully so that the immersion

α := IdI×Bk ×α′ : I ×Bk × Tn∖ {p}↬ I ×Bk × Rn

is one-to-one on the preimage of i(I ×Bk × 2B̊). This will imply that i3 in the diagram below is
a CAT embedding. Finally, define e := IdI×Bk ×e : I ×Bk × Rn → I ×Bk × Rn.

The aim is to construct the following diagram.

[I ×Bk × Rn]Σ4
[I ×Bk × Rn]std

[I ×Bk × Rn]Σ3
[I ×Bk × Rn]std

[I ×Bk × Tn]Σ2
[I ×Bk × Tn]std

[I ×Bk × 2B̊n]Σ [I ×Bk × Tn∖ {p}]Σ1

[I ×Bk × Rn]Σ X

H
∼=CAT,Idnear ⊐,∞

I×Bk×Bn⊆H(I×Bk×2B̊n)

G
∼=CAT,Idnear ⊐

bded dist. from Id

eCAT cover

jCAT emb.
on Im(i3)

e

j radial
compression

g

∼=CAT,Idnear ⊐

i1

i

i3

i4

↫

→ αCAT immersion

CAT emb.
on Im(i1)

h
∼=CAT

(1) Let Σ be the CAT structure on I×Bk×Rn obtained by pulling back the CAT structure
on X via h. This induces a CAT structure on I × Bk × 2B̊n, which we also label Σ.
The map i is the inclusion map.
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(2) Define a CAT structure Σ1 on I ×Bk × Tn∖ {p} so that α is a CAT immersion with
respect to Σ. Since we use Σ to obtain Σ1, in a sense it was not important that α was
originally a CAT map with respect to the standard structures. We now choose the
CAT structure on the domain to make α a CAT immersion.

(3) The CAT structure Σ2 comes from extending Σ1 on a subset away from the missing
point in Tn. As before we have to use the Schoenflies theorem, and the non-compact
h-cobordism theorem. This uses the dimension restriction that k+n ≥ 5. We postpone
the details of this until later in the proof.

(4) The cobordism
[(I; {0}, {1}) ×Bk × Tn]Σ2

is topologically a product, but a priori we do not know that it is a CAT product.
But the CAT s-cobordism theorem (recall Wh(Z[Zn]) = 0) shows that there is a CAT
isomorphism g, which is the identity near ⊐. This again used the dimension restriction
k + n ≥ 5.

This is where the I coordinate helps. Recall that at the analogous stage in the
proof of the stable homeomorphism theorem, we had to lift to a finite cover and apply
the classification of homotopy tori. That will not work here, since we want to also be
able to straighten 3-handles. But we have the extra hypothesis of a concordance to a
straightened handle, and we use it crucially here.

(5) Define G to be the lift of g along e. Define Σ3 so that G is a CAT isomorphism. Since
Ge = eg and g, G, and the right hand e are all CAT maps, so is the left hand e. Note
that since g is homotopic to the identity, G is bounded distance from the identity.

(6) The maps i3 and i4 are the natural inclusion maps. The fact that α′ ◦ e|2Bn = Id2Bn

implies that i3 is a CAT embedding.
(7) Define the map j to be a radial compression fixing I ×Bk × 2Bn pointwise, a homeo-

morphism onto its image I × Bk × rBn for some r > 0. Since j does not change
I ×Bk × 2Bn, it follows that i4 is a CAT embedding.

(8) Choose a map
β : [I ×Bk × Rn]Σ3 → [I ×Bk × Rn]Σ3

such that G ◦ β(I × Bk × 2Bn) ⊇ I × Bk × Bn fixing ⊐ and near ∞. So G′ := G ◦ β
equals G near ∞ and equals Id near ⊐. Also G′(I ×Bk × 2B̊n) ⊇ I ×Bk ×Bn.

(9) Define

H :=
{
jG′j−1 on j(I ×Bk × Rn) = I ×Bk × rB̊n,

Id else.

We use that G is bounded distance from the identity to see that jG′j−1 limits to Id on
I ×Bk × rSn, and we may therefore extend it by the identity.

(10) Choose Σ4 to make H a CAT isomorphism.
This finishes the construction of the diagram, apart from the construction of Σ2. We give some
details on this now. Recall that we have a structure Σ1 on I ×Bk × (Tn∖ {p}). Our aim is to
construct a CAT structure Σ2 on I ×Bk × Tn that is standard near ⊐, and such that

[I ×Bk × (Tn∖ {p})]Σ1 → [I ×Bk × Tn]Σ2

is a CAT embedding near i1(I ×Bk × 2Bn).
First, for some λ < 1, extend Σ1 from I×Bk × (Tn∖ {p}) to (I×Bk ×Tn)∖ (I×λBk × {p}).

The structure is already standard near I × ∂Bk × {p}, so we can extend in this way. We also
call the extension also Σ1. Choose an embedding

ψ : (I ×Bk × Tn)∖ (I × {0} × {p}) ↪→ (I ×Bk × Tn)∖ (I × λBk × {p})
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that is the identity outside a neighbourhood of I × λBk × {p}. Note that Bk∖ λBk ∼= Bk∖ {0},
so such an embedding exists. Define

Σ′
1 := ψ−1(Σ1).

This CAT structure has changed nothing on i1(I ×Bk × 2Bn), nor near ⊐. So we just need to
extend it to some compatible CAT structure on all of I ×Bk × Tn.

Figure 24.3. Construction of Σ2.

Recall that m := k + n, and consider I × Bk × Tn as (Bk × Tn) × I. Consider an Rm
neighbourhood of (0, p) in Bk × Tn. Then (Rm∖ {0}) × I inherits a CAT structure from Σ′

1,
which we also call Σ′

1, and it suffices to extend this over all of Rm × I. Now

[Rm × I∖ ({0} × I)]Σ1

is a CAT non-compact proper h-cobordism. (Here proper means that the inverse image of each
compact set is compact). The proper h-cobordism theorem gives a proper CAT isomorphism

ϕ : [Rm × I∖ ({0} × I)]Σ1

∼=CAT−−−→ [Rm × I∖ ({0} × I)]Σstd

that restricts to the identity on (Rm∖ {0}) × {1}, where Σ′
1 was already standard. Let

C := I × 1
2B

m.

Extend ϕ by (0, 0) 7→ (0, 0) and (0, 1) 7→ (1, 1). The resulting ϕ is then a homeomorphism and
ϕ(∂C) is a sphere Sm. By the Schoenflies Theorem 6.19, ϕ(∂C) bounds a topological ball Bm+1

in Rm × I. Extend ϕ over that ball by coning. Then we obtain a homeomorphism

Φ: Rm × I → Rm × I

that is a CAT embedding outside sBm × I, where s > 0 is large enough to encompass both C
and ϕ(C). Then

σ := Φ−1(Σstd)
gives a CAT structure on Rm × I that agrees with Σ′

1 outside sBm × I. Patching together Σ′
1

and σ, which we can do since they agree on the open set (Rm × I)∖ (sBm × I) of Rm × I, we
obtain the desired structure Σ2 on all of I ×Bk × Tn. As promised we have that Σ2 is standard
near ⊐, and the inclusion

[I ×Bk × (Tn∖ {p})]Σ1 → [I ×Bk × Tn]Σ2

is a CAT embedding near i1(I ×Bk × 2Bn). This completes the construction of Σ2, which was
the only part missing in the construction of the main diagram in the enumerated list above.

Now we use the diagram to complete the proof. We use the existence of the CAT -isomorphism
H with the properties shown in the diagram, namely that it is Id near ⊐ and near ∞, and that
I ×Bk ×Bn ⊆ H(I ×Bk × 2B̊n). We also use that Σ = Σ4 on I ×Bk × 2B̊n.
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Extend H by Id to homeomorphism of [0,∞)×Rn+k. Then let Ht : I×Bk×Rn → I×Bk×Rn
be an Alexander isotopy of homeomorphisms defined by

Ht(x) :=
{
tH(xt ) 0 < t ≤ 1,
H0(x) = x

Finally, define
ht := h ·H−1

t

We have h0 = h and h1 = hH−1, and

ht : I ×Bk × Rn [I ×Bk × Rn]Σ4
[I ×Bk × Rn]Σ XH−1 Id h

Since H−1(I × Bk × Bn) ⊆ [I × Bk × 2B̊n]Σ4 and Σ = Σ4 on I × Bk × 2B̊n, we have that h1
is a CAT embedding on I ×Bk ×Bn. Note that the map h from the hypotheses was used to
define the various CAT structures, starting with Σ, as well as in the final step of the proof. □

24.2. Proof of concordance implies isotopy

Next, as promised we shall prove that concordance implies isotopy for CAT structures
Theorem 22.5. Here is the technical relative version we will prove, see Fig. 24.4.

Theorem 24.2 (Concordance implies isotopy, relative version). Let Mm be a topological
manifold with a CAT structure Σ, and pick closed subsets C ⊆ M and D ⊆ M , and open
neighbourhoods U ⊇ C and V ⊇ D∖ C. We need m ≥ 6 or m = 5 and ∂M ⊆ U .

Let Γ be a CAT structure on M × I such that Γ = Σ × [0, δ) near M × {0} and Γ = Σ × I|
on U × I. Fix a continuous function ε : M × I → (0,∞].

Then there exists an isotopy

ht : M × I → M × I, t ∈ [0, 1]
such that

(1) h0 = IdM×I ,
(2) h1 : MΣ × I → (M × I)Γ is a CAT embedding near (C ∪D) × I,
(3) ht fixes a neighbourhood of (M∖ V ) × I ∪M × {0} ∪ C × I,
(4) d(ht(x), x) < ε(x) for all x ∈ M × I and t ∈ [0, 1].

This is known as a “CUDV” theorem, which is a colloquialism for a relative statement. The
roles of C, U , D, and V are as follows. There is a solution on C that we want to maintain. If
the solution can be extended to U , we can solve the problem on D whilst keeping the given
solution on C, and not changing anything outside V . This version with precise control, in terms
of CUDV and ε is what we will use in the proof of the product structure theorem. The fact
that handle straightening allows us to work handle by handle means that achieving the control
we desire is fairly straightforward.

Taking C = U = ∅, D = V = M , and ε ≡ ∞ yields the special case with ∂M = ∅ that was
stated before as Theorem 22.5.

Proof. We have already done the hard work in proving Theorem 24.1. Relabel I → I by sending
t 7→ 1 − t, so it will be easier to apply handle straightening, as shown in Fig. 24.4.

First we triangulate V using the CAT structure. Convert to a handle structure – remember
that triangulations give PL handle decompositions. If CAT=DIFF we can use Morse theory
directly, and need not first obtain a triangulation. Make the handle structure fine enough so
that every handle that touches C is contained in U . This might require subdividing.

Let
K := {handles of K contained in U}



248 24. CONCORDANCE IMPLIES ISOTOPY

Figure 24.4. The setup of the relative version of concordance implies isotopy.

and let
L := {handles of V that meet D∖ C}.

Note that
K ∪ L ⊇ (C ∪D) ∩ V.

Induct on handles in L. Start with handles whose attaching region is contained in U , and
straighten handles in the order in which they are attached. As we isotope a handle, we shall also
move subsequent handles that we have not yet straightened, which are attached to the handle
we are straightening.

Extend each handle Bk × Bn with n = m − k to Bk × Rn ⊆ V , and apply the handle
straightening Theorem 24.1 to the identity map

Id : I ×Bk × Rnstd → [I ×Bk × Rn]Γ.
The structure Γ agrees with Σ on M × {1}, and we fix it by isotopy to agree with Σ × I

on I × Bk × Bn. If necessary first subdivide the decomposition further to make the handle
decomposition fine enough, with respect to ε, to arrange that d(ht(x), x) < ε(x) for all x, t. □



CHAPTER 25

The product structure theorem

Mark Powell

We now prove the product structure theorem. This will use the technical relative version of
concordance implies isotopy. Before we begin, we also need one more ingredient, about CAT
structures on Euclidean space. This uses a result of Browder-Levine-Livesay on CAT-manifolds,
and the stable homeomorphism theorem.

25.1. CAT structures on Euclidean spaces

Theorem 25.1 (Stallings [Sta62a]). Any two CAT structures on Rn are isotopic for n ≥ 6.

We have already stated this result as a corollary of the Product Structure Theorem 22.8,
but we will actually use it in its proof, so certainly we need an independent argument. The
original proof due to Stallings uses engulfing for a PL proof, which works for n ≥ 5. Then the
deduction from PL to smooth goes via the PL-to-smooth smoothing theory. But we present a
different proof, which works only for n ≥ 6 (but this will be enough). The proof we will give has
the advantage that if one wants the smooth version, there is a more directly smooth proof. It
uses the following ingredient.

Theorem 25.2 (Browder-Levine-Livesay [BLL65]). Let X be an open CAT (PL or DIFF)
n-manifold with n ≥ 6, which is simply connected at infinity and H∗X are finitely generated.

Then X is CAT isomorphic to the interior of a compact manifold Y with simply connected
boundary. Moreover, such Y is unique.

Proof of Theorem 25.1. Let Σ be a CAT structure on Rn. By Theorem 25.2, we have that
RnΣ ∼= IntW for some compact manifold W with π1(∂W ) trivial.

Recall that a manifold is homotopy equivalent to its interior. Then a homology computation
implies that ∂W ≃ Sn−1. To see this, we have an exact sequence of homology with Z coefficients

Hk+1(W,∂W ) → Hk(∂W ) → Hk(W ).
For k ≥ 1, Hk(W ) = 0. Also Hk+1(W,∂W ) ∼= Hn−k−1(W ) = 0 for n − k − 1 > 0, that is
k < n − 1. Therefore Hk(∂W ) = 0 for 1 ≤ k ≤ n. For k = n − 1 we have Hn−1(∂W ) ∼=
Hn(W,∂W ) ∼= H0(W ) ∼= Z. The Hurewicz theorem and Whitehead’s theorem then imply that
∂W ≃ Sn−1 as claimed.

Also, W∖ D̊n, for a small ball Dn in the interior, is an h-cobordism from ∂W to Sn−1. Thus,
we have that they are CAT isomorphic by the h-cobordism theorem (this uses n ≥ 6).

We can glue a disc Dm to W in such a way that W ∪∂W Dm is CAT isomorphic to Sn. In
the smooth category this needs some care, since gluing two discs together can also produce
exotic spheres. But we make the choice that yields the standard sphere. We view Sn = ∂Dn+1,
and this gives an h-cobordism from W to Dm. Therefore, by the CAT h-cobordism theorem
there is a CAT isomorphism Dm → W , which on the interior restricts to a CAT isomorphism

Θ: Rnstd → RnΣ.
By the Stable Homeomorphism Theorem, or more precisely Theorem 17.27, Θ is TOP isotopic
to Id, therefore Σ is isotopic to the standard structure. □

249
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25.2. The proof of the product structure theorem

First we recall the statement of concordance implies isotopy, since we will need it here a
couple of times.

Theorem 25.3 (Concordance implies isotopy, relative version). Let Mm be a topological
manifold with a CAT structure Σ, and pick closed subsets C ⊆ M and D ⊆ M , and open
neighbourhoods U ⊇ C and V ⊇ D∖ C. We need m ≥ 6 or m = 5 and ∂M ⊆ U .

Let Γ be a CAT structure on M × I such that Γ = Σ × [0, δ) near M × {0} and Γ = Σ × I
on U × I. Moreover, fix a continuous function ε : M × I → (0,∞].

Then there exists an isotopy

ht : M × I → M × I, t ∈ [0, 1]

such that
(1) h0 = IdM×I ,
(2) h1 : MΣ × I → (M × I)Γ is a CAT embedding near (C ∪D) × I,
(3) ht fixes a neighbourhood of (M∖ V ) × I ∪M × {0} ∪ C × I,
(4) d(ht(x), x) < ε(x) for all x ∈ M × I and t ∈ [0, 1].

Here is the version of the product structure theorem we are going to prove. Where notation
overlaps between the statement of this theorem and the statement of the previous theorem,
ignore it. In the course of the proof of the product structure theorem we will apply Concordance
implies Isotopy twice, with different subsets playing the role of C,U,D, and V .

Theorem 25.4 (Relative Product Structure Theorem). Let M be a manifold and fix an open
subset U ⊆ M . Assume dimM ≥ 6, or dimM = 5 with ∂M ⊆ U . Let Σ be a CAT structure on
M ×Rq for some q ≥ 1, and suppose there exists a CAT structure ρ on U with Σ|U×Rq = ρ×Rq.

Then ρ extends to a CAT structure σ, and there is a concordance (M × Rq × I)Γ from Σ to
(M × Rq)σ×Rq relative to U × Rq. Moreover, any two such structures σ on M are unique up to
concordance.

We will use the stable homeomorphism theorem, the uniqueness of CAT structures on Rm
for m ≥ 6 up to isotopy, Theorem 25.3 that concordance implies isotopy, and a new lemma
called the Windowblind Lemma, which we will explain when the time comes.

Proof. First we observe that it suffices to prove the case of q = 1, by induction. Also we can
work chart by chart, since we have a relative theorem. We will also ignore the boundary for
brevity. So we can assume that M = Rm. Then for the general case this will play the role of a
single chart in the induction.

Since m ≥ 5, we have that dim(M ×R) ≥ 6. Then we know that Σ is isotopic (and therefore
concordant) to the standard structure on Rm+1 (recall we are assuming that M = Rm). However,
this is not relative to U ×R, so we still have work to do. The first step is to apply Theorem 25.3
with U = C = ∅, D = M × [1,∞), V = M × (1

2 ,∞). Then we obtain an isotopy from Σ to a
structure Σ1, where Σ1 equals the standard structure on M × [1,∞), so is a product structure
there, and equals Σ on M × (−∞, 0].

For the next step, on U × [0, 1], we have a CAT structure Σ1|U×[0,1]. Let ε : M × [0, 1] →
[0,∞) be a continuous function with ε−1((0,∞)) = U × [0, 1] (this is potentially confusing, in
Theorem 25.3 the codomain of ε was (0,∞), but this is not a problem, since we will only apply
it to U × [0, 1]). Next apply Theorem 25.3 to U × [0, 1]|Σ1|, setting C = U = ∅ (where the U
comes from Theorem 25.3), and V = D = U (where U comes from the current statement). We
obtain an isotopy ht : U × [0, 1] from Id to h1 where h1 : U × [0, 1]ρ×[0,1] → U × [0, 1]Σ1 .
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Figure 25.1. Proof of the product structure theorem. Each square depicts
M = Rm as the horizontal axis, with U ⊆ M a subset of it, while the R
coordinate corresponds to the vertical axis. In each square, vertical lines indicate
that the structure there is a product structure. Shaded yellow indicates that the
structure coincides with Σ on that region. The top left square shows Σ, where we
start. The top right shows Σ1. The bottom left square depicts Σ2. The bottom
right shows the goal, σ × R, which agrees with Σ on U × R.

Extend h1 to a homeomorphism h : M × R → M × R by setting

(x, r) 7→


(x, r) r ≤ 0
h1(x, r) (x, r) ∈ U × [0, 1]
(pr1(h1(x, 1)), r) x ∈ U, r ≥ 1
(x, r) x /∈ U

where pr1 is the projection U × {1} → U . Then define Σ2 such that h : [M × R]Σ2 → [M × R]Σ1
is a CAT isomorphism. The structure Σ2 now has the property that it is still a product on
M × [1,∞), and equals Σ on M × (−∞, 0], but now it also equals Σ on U × R, and is therefore
also a product structure ρ× R on U × R.

To finish off the proof, we need the next lemma.

Lemma 25.5 (Windowblind lemma). Let Σ′ and Σ′′ be CAT structures on M × R. Suppose
that Σ′ = Σ′′ on M × (a, b) for some −∞ ≤ a < b ≤ ∞ and both Σ′ and Σ′′ are products on
U × R. Then there exists a concordance from Σ′ to Σ′′ relative to U × R.

Proof. Choose an isotopy of embeddings ht : R → R with h0 = IdR and h1 : R → (a, b) an onto
embedding. Define

H : I ×M × R → I ×M × R
(t, x, r) 7→ (t, x, ht(r)) =: Ht(x, r).

Then H−1(I×Σ′) is a structure on I×M×R so that H : [I×M×R]H−1(I×Σ′) → [I×M×R]I×Σ′

is a CAT embedding.
Then [I × M × R]H−1(I×Σ′) is a concordance from Σ′ to H−1

1 (Σ′) relative to U × R, since
Σ′ is already a product on U × R. Similarly, there exists a concordance from Σ′′ to H−1

1 (Σ′′).
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But Σ′ = Σ′′ on M × (a, b), so we know that H−1
1 (Σ′) = H−1

1 (Σ′′) as structures on M × R, and
therefore Σ′ is concordant to Σ′′ relative to U × R. □

Returning to the proof of the product structure theorem, choose some r ∈ (1,∞) and let σ
be the CAT structure on M × {r}, with (a, b) ⊆ (1,∞). Apply the Windowblind lemma to Σ2
and σ × R to get a concordance form Σ2 to σ × R.

Next apply the lemma to Σ and Σ2 with (a, b) ⊆ (−∞, 0) to get a concordance from Σ to
Σ2 relative to U × R.

Putting these together we get the desired concordance from Σ to σ × R. This completes the
proof in the case that M = Rm and q = 1. As stated at the start of the proof, this is sufficient
by an inductions over charts and over q.

The product structure theorem also included the statement that any two such CAT structures
σ and σ′ on M arising in this way are unique up to concordance. We did not prove this yet, so
let us do so now. We have concordances

σ × Rq ∼ Σ ∼ σ′ × Rq

relative to U × Rq. Gluing them together gives a CAT structure Γ on I × M × Rq, between
σ×Rq and σ′ ×Rq, and we extend it to a CAT structure, also called Γ, on R×M ×Rq. We may
assume that the concordance is conditioned, i.e. it is a product near {i} ×M × Rq for i = 0, 1,
so that it can be extended over R ×M × Rq. Let

U ′ × Rq := ((R \ [1/4, 3/4]) ×M × Rq) ∪ (R × U × Rq).

Since Γ is conditioned, we may isotope Γ to a CAT structure that is a product R × θ × Rq on
U ′ × Rq.

Apply the product structure theorem with U ′ ⊆ R × M , the CAT structure Γ|U ′×Rq =
R × θ × Rq on U ′, and the CAT structure Γ on R ×M × Rq. It yields a product CAT structure
γ×Rq on R×M ×Rq which agrees with the CAT structure R× θ×Rq on U ′ ×Rq. In particular
γ × {0} is a CAT structure on R×M that extends R× θ on U ′. Restricting to I ×M , γ gives a
concordance between σ and σ′, as desired. □

25.3. Recap of PL-ing and Smoothing theory

Now that we have proven the product structure theorem, it might help to recap its place in
PL-ing and smoothing theory. Recall that one of the main questions we studied was whether a
topological manifold M admits a CAT structure, where CAT stands for either PL or DIFF. We
will discuss the case of ∂M = ∅ in this recap for simplicity.

The first observation was that smooth manifolds admit a tangent vector bundle. This
motivated us to study the question of whether something analogous exists for purely topological
manifolds. Back in Chapter 8 we learnt about the topological tangent microbundle tM = (M →
M × M → M). By Kister’s Theorem (Theorem 8.10) we know that tM is equivalent to a
TOP(n)-bundle, where TOP(n) := Homeo0(Rn) is the group of homeomorphisms of Rn fixing
the origin. There is an analogous version for the PL category, which we did not cover.

We saw in Chapter 21 that TOP(n)-bundles are stably classified by homotopy classes of
maps M → B TOP. We then studied the obstruction theory to lifting this map to BCAT , that
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is, finding a map M → BCAT, in the diagram
B PL

M B TOP

B(TOP /CAT ).

Denote the lower map by δ : B TOP → B(TOP /PL), where the latter space is defined by
Theorem 21.13. Kirby-Siebenman proved (Theorem 22.19) that TOP /PL ≃ K(Z/2, 3). Since
B(TOP /PL) is a delooping of TOP /PL, we know that B(TOP /PL) ≃ K(Z/2, 4) so that
[M,B(TOP /PL)] ∼= H4(M ;Z/2) via a canonical map. The image of δ ◦ tM in H4(M ;Z/2) is
by definition the Kirby-Siebenmann invariant. By obstruction theory, we know that it is the
only obstruction to lifting tM to B PL.

There are further obstructions to lifting tM to BDIFF. The next potentially nontrivial
obstruction lies in H8(M ;Z/28) corresponding to Θ7 ∼= Z/28. In order to see this, one should
know the homotopy type of B(TOP /O), which we described in Section 23.2.

Now, from the Precursor to smoothing theory (Section 9.3) we saw that having a lift
M → BCAT implies that there is q ≥ 0 such that M × Rq admits a CAT structure. As
before, we only showed this in the case of CAT = DIFF but there is an analogue in the case of
CAT = PL.

Finally, the Product Structure theorem (Theorem 22.8) tells us that if n ≥ 5 and ∂M = ∅
then a CAT structure on M × Rq can be used to equip M with a CAT structure. Observe that
this is the first time we have had to restrict the dimension of M .

To summarise, via the product structure theorem, we know that the Kirby-Siebenmann
invariant is the only obstruction to the existence of a PL structure on a closed topological
manifold M with dimension ≥ 5. There are further obstructions to the existence of a smooth
structure, with the next potentially nontrivial obstruction lying in H8(M,Z/28), and more
generally in Hk+1(M ; Θk) for k ≥ 7.
Remark 25.6. Since we only needed to restrict dimensions in the final step where we applied the
product structure theorem, there is still something we can say in the case of n = 4. Specifically,
given a closed topological 4-manifold M , ks(M) = 0 then M ×R has a smooth (and therefore PL
structure. However, there do exist nonsmoothable 4-manifolds with trivial Kirby-Siebenmann
invariant, as follows. Let E8 denote the E8 manifold, constructed by Freedman [Fre82b].
Then E8#E8 does not admit a smooth structure (by Donaldson’s theorem) but has trivial
Kirby-Siebenmann invariant.
Example 25.7. There exist non PL-able manifolds in each dimension at least 4. For example,
let E8 denote the E8 manifold. Then E8 × Sk for k ≥ 1 does not admit a PL structure.
Example 25.8. Siebenmann showed that every orientable closed topological 5-manifold is
triangulable. Consequently, E8 × S1 is triangulable but not PL-able.
Example 25.9. There exist nontriangulable manifolds in each dimension at least 4. This was
done by Freedman for n = 4 via the E8 manifold and for n ≥ 5 by Manolescu.
Example 25.10. There exist non-PL triangulations of PL manifolds. This follows since the
double suspension of the Mazur homology sphere is S5 as shown by Edwards and more generally
by the double suspension theorem of Cannon [Can79a].
Example 25.11. There exist PL manifolds with no smooth structure. This was first shown by
Kervaire in 1960 in dimension 10. The lowest possible dimension is 8, shown by Ells-Kuiper
(1961).





CHAPTER 26

A non-PL-able manifold

Ekin Ergen

26.1. Introduction and outline

The main goal of this document is to construct a topological manifold that admits no PL
structure. We present a construction due to Siebenmann [KS77a]. An important step will be
finding a PL automorphism α : D2 × Tn → D2 × Tn that fixes boundary and satisfies certain
properties. This automorphism will be used to create a TOP pseudoisotopy that Siebenmann
referred to as a catastrophe, referencing French mathematician René Thom’s catastrophe theory
in a broader context [Tho74]. Having this pseudoisotopy, it will be easy to show that a certain
manifold admits no PL structure.

Finding such an automorphism is not only nontrivial, but will yield constructions of some
exotic manifolds as a byproduct. In addition, we will mention another counterexample in Section
26.4 that followed almost a decade later, by an additional discovery due to Freedman.

26.2. Constructing an automorphism α

In this section, we follow [KS77b, Essay VI, Appendix B]. We will work in categories
PL and DIFF, both of which we refer to as CAT as usual. The first goal is to come up with
an explicit handle construction of an exotic manifold M that has analogous properties to α.
This will allow us to create α, using the s-cobordism theorem on M that is regarded as an
s-cobordism.

First, we want to recall some notions that define the ‘exoticity’ of a manifold. We shall start
with the structure set.
Definition 26.1. The structure set S(M) of a manifold Mn is defined as the set of equivalence
classes

(26.1) S(M) := {(Nn, f : N ≃−→ M)}⧸(h-cobordism)
As we shall consider maps that fix boundary throughout the section, we want to restrict

ourselves to manifolds that are homotopy equivalent to M relative to boundary. That is, we want
the boundary (and also a collar neighbourhood of it) to be fixed by the homotopy equivalence h.
Therefore it is natural to consider the notion
(26.2)

S(Mn rel ∂) := {(Nn, f : N ≃−→ M) : f |∂N×[0,1] : ∂N × [0, 1]
∼=−→ ∂M × [0, 1]}⧸(h-cobordism)

where ∂N × [0, 1] resp. ∂M × [0, 1] are to be understood as collar neighbourhoods of N resp. M .

The following is our main theorem, in which we construct a manifold M homotopy equivalent
to D3 × Tn.

Theorem 26.2. For 3 + n ≥ 5, there exists an element [M3+n, f ] of S(D3 × Tn rel ∂) that
is

(1) nontrivial, i.e. [M ] ̸= [D3 × Tn] ;
255
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(2) invariant under passage to standard finite coverings of D3 × Tn.
We first elaborate on the structure set itself as well as the exact meaning of the second claim.

Remark 26.3. Using previous knowledge from lectures we can conclude that Wh(π(D3 ×Tn)) =
Wh(Z[Zn]) = 0, so

S(D3 × Tn rel ∂) = {(M,f)}⧸(h-cobordism)
Wh=0= {(M,f)}⧸(s-cobordism)

s-cob.=
thm.

{(M,f)}⧸(∼=CAT)
meaning that the elements of the specific structure set S(D3 ×Tn) are CAT-isomorphism classes
of homotopy equivalent 3 + n-manifolds rel boundary.

If [(M,f)] = [(M ′, f ′)] ∈ S(D3 ×Tn rel ∂), this means that there exists a CAT isomorphism
φ : M → M ′ such that, restricting φ to ∂M , we obtain the commutative diagram

∂M ∂(D3 × Tn)

∂M ′ D3 × Tn

M D3 × Tn

M ′ D3 × Tn

f |∂M

φ|∂M

inc
inc′

Id

f ′|′∂M

inc′f

φ Id
f ′

inc

Remark 26.4. In the second part of the theorem, we need to consider the pullback p : M ′ → M
of a covering map p : D3 × Tn → D3 × Tn along the homotopy equivalence f : M → D3 × Tn

that comes from the tuple in the structure set, as shown in the next diagram.

M ′ D3 × Tn

M D3 × Tn

f ′

p p

f

The second part of the theorem claims that [(M,f)] = [(M ′, f ′)] ∈ S(D3 × Tn rel ∂). The
pullback of a covering map along any map is again a covering map, so the map p : M ′ → M is
indeed a covering map. Moreover, the pullback of a homotopy equivalence along a fibration
(e.g. a covering map) is again a homotopy equivalence, so f ′ : M ′ → D3 × Tn is also a homotopy
equivalence. As a result, (M ′, f ′) defines an element in the structure set S(Mn rel ∂).

The proof of Theorem 26.2 will be covered by the following three subsections. The construc-
tion is due to A. Casson.

26.2.1. Construction of M .
(1) Recall the Poincaré homology 3-sphere P 3: it is a closed manifold given by SO(3)/A5,

where A5 denotes the rotational symmetry group of an icosahedron. This group is
isomorphic to the alternating group on 5 elements. Therefore P can be interpreted as
the group of the positions of a unit icosahedron up to translation and symmetry. As
the name suggests, Hn(P ) = Hn(S3) for all n ∈ Z. The fundamental group π1(P ) of P
is isomorphic to the binary icosahedron group of order 120 given by the presentation

⟨a, b | (ab)2 = a3 = b5⟩.
We will denote π1(P ) by π. Note that, as an orientable 3-manifold, P is parallelisable.
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(2) Define P 3
0 := P 3#D3. This is homeomorphic to the Poincaré homology 3-sphere minus

an open ball, since the connected sum is created by removing a 3-ball from P 3 and
D3 each, the latter becoming an annulus S2 ×D1. This is glued onto P 3 \D3 along
S2 × {0}, which only adds another collar to P \ D̊3. The boundary of P0 is ∂P0 = S2

as P is closed.
(3) Take [0, 1]×P0 ×Dn. To 1×P0 ×Dn, we will attach handles that kill homotopy groups:

(a) We have π1(1 ×P0 ×Dn) ∼= π1(P0) ∼= π1(P 3) =: π. The latter isomorphism follows
by the Seifert-van Kampen Theorem for D3 ∪S2×(−ε,ε) P0. We can derive from the
fibration A5 → SO(3) → P (where A5 is a discrete Lie group) and its associated
long exact sequence
. . . → π1(A5)︸ ︷︷ ︸

0

→ π1(SO(3)) → π1(P ) → π0(A5) → π0(SO(3))︸ ︷︷ ︸
0

→ . . .

we obtain the short exact sequence

(26.3) 0 → π1(SO(3)) i−→ π
p−→ A5 → 0.

We know that π1(SO(3)) ∼= Z/2. Take an element γ of π that is not in the subgroup
i(Z/2) and consider the smallest normal subgroup ⟨⟨γ⟩⟩ that contains γ. We want to
show that ⟨⟨γ⟩⟩ = π. Note that p(⟨⟨γ⟩⟩) is a normal subgroup of A5. Because A5 is
simple, this image is either 0 or A5. Because γ /∈ i(Z/2), p(γ) ̸= 0 by exactness and
therefore i(⟨⟨γ⟩⟩) = A5.This implies that [π : ⟨⟨γ⟩⟩] ∈ {1, 2}. If [π : ⟨⟨γ⟩⟩] were 2,
then the sequence 26.3 would be split exact. This yields a map s : π → Z/2 such that
s ◦ i = IdZ/2. This induces maps between abelianisations Z/2 i−→ π/[π, π] s−→ Z/2
such that the composition is the identity. However, this is not possible: Using
Hurewicz’s Theorem, we see that π/[π, π] ∼= H1(P ) ∼= H1(S3) = 0. Therefore
[π : ⟨⟨γ⟩⟩] = 1 and π = ⟨⟨γ⟩⟩.
We want to attach a 2-handle h2 (∼= D2 × Dn+2) along this loop γ to make the
resulting space simply connected. Up to homotopy, we have |[S1, SO(n+ 2)]| = 2
choices for the attaching map S1 ×Dn+2 → S1 ×Dn+2, where the S1-component
of the target is the image of a loop representing γ. One of these choices indeed
kills the fundamental group and gives rise to another parallelisable manifold: P0 is
parallelisable, as is 1 ×P0 ×Dn, so it has a trivial tangent bundle. Identifying this
tangent bundle with the trivial tangent bundle of ∂(D2) ×Dn+2 in a compatible
way, we obtain another parallelisable manifold.
The resulting space is a simply connected CAT cobordism rel ∂ from 0 × P0 ×Dn

to a simply connected CAT manifold Q. The homology of Q is the same as the
homology of D3+n#(S2 × Sn+l), just as if P0 were D3.

(b) Now that one end of the cobordism is 1-connected, we want to achieve 2-connectivity.
By 1-connectivity and Hurewicz’s theorem,
π2(Q) ∼= H2(Q) ∼= H2(D3+n#(S2 × Sn+1)) ∼= H2(S2 × Sn+1) ∼= Z

so we can glue a 3-handle h3 along a 2-sphere in IntQ that represents a generator
δ of π2(Q) to make Q as well as the entire cobordism 2-connected. Here we use
that n+ 3 ≥ 5 to ensure that the attaching map can be embedded. Note that the
handles are added to the interior, so the boundary has not changed.

(c) After adding h2 and h3, the resulting space is a CAT cobordism rel ∂ from
0 × P0 ×Dn to an (n+ 3)-manifold that we denote (P0 ×Dn)#. A sketch of this
construction is given in Figure 26.1.

Claim. (P0 ×Dn)# is contractible.
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Figure 26.1. A visually inaccurate sketch of the construction of (P0 ×Dn)#.

Proof. We already know that (P0 ×Dn)# is 2-connected. Using

H∗(Q) = H∗(D3+n#(S2 × Sn+1))

we will apply Hurewicz’s Theorem to see that all homotopy groups vanish, which
implies that (P0 ×Dn)# is contractible by Whitehead’s Theorem.
For most of the homology groups, the vanishing is obvious. Only possible nontrivial
degrees could be 3 and n+ 1.

− To Q, we glue a 3-handle, i.e. a D3 × Dn+1 along the S2-factor of the
2-handle (this is because the 2-handle generates the nontrivial homotopy
group, as observed above). Doing so, no nontrivial third homology can be
created.

− For degree n + 1, we can use Poincare duality and universal coefficient
theorem to see that Hn+1((P0 ×Dn)#) ∼= H3((P0 ×Dn)#) ∼= Hom(H3((P0 ×
Dn)#),Z) = 0.

As a result, πi(P0 ×Dn) = 0 for all i ≤ 1 and therefore (P0 ×Dn)# ≃ {pt}. □
By an analogous argument, we can see that the CAT cobordism ([0, 1] ×P0 ×Dn) ∪

h2 ∪ h3 is also contractible.
(4) Identifying Dn = [1/4, 3/4]n and considering it as a subset of Tn by [1/4, 3/4]n ⊂

[0, 1]n/ ∼= Tn, we can include

(26.4) ([0, 1] × P0 ×Dn) ∪ h2 ∪ h3 ↪→ ([0, 1] × P0 × Tn) ∪ h2 ∪ h3 =: Xn+4

The attaching maps of the handles shall be the same as before. Again, Xn+4 is a
cobordism relative boundary from 0 × P0 × Tn to

(P0 × Tn)# := (P0 ×Dn)# ∪∂ (P0 × (Tn \ IntDn))

which gives us the (n+ 3)-manifold M that we claim fulfills the desired properties in
Theorem 26.2. In other words, we define Mn+3 := (P0 × Tn)#. Figure 26.2 illustrates
the inclusion (26.4).

Claim. M is homotopy equivalent to D3 × Tn rel ∂.

Proof. The boundaries of M and D3 ×Tn are homeomorphic because adding the handles has not
changed the boundary. It is therefore immediate that the diagram in Remark 26.3 commutes.
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Figure 26.2. A visually even more inaccurate sketch of the construction of
M = (P0 × Tn)#.

For the homotopy equivalence, consider the pushouts

P0 ×Dn (P0 ×Dn)# D3 ×Dn

P0 × Tn (P0 × Tn)# D3 × Tn

i1 i2

≃

i3

f

The top right homotopy equivalence can be defined as the composition (P0 × Dn)# → pt →
D3 × Dn. The inclusions i2 and i3 are cellular, and hence a cofibration. Therefore f is a
homotopy equivalence. □

26.2.2. Invariance under coverings. Now we want to verify that [M ′] = [M ] in the
pullback in Remark 26.4. In other words, we want to show that M and M ′ are s-cobordant
(which implies that they are isomorphic by the s-cobordism theorem).
Let c : Tn → Tn be a CAT covering map of degree d. We can consider the corresponding covering
map of Xn+4 = [0, 1] × P0 × Tn ∪ h2 ∪ h3, where the handles are glued onto 1 × P0 × Tn. That
means, the total space X̃4+n is a copy of [0, 1] × P0 × Tn with d 2-handles and d 3-handles
attached, all to 1 ×P0 ×Tn. Figure 26.3 provides a sketch of the construction of this total space.

Let us glue X to X̃ along their 0-ends (i.e. 0 × P0 × Tn) with the identity map to obtain Y n+4.
This is a CAT cobordism rel ∂ from M to M ′. Moreover, Y is an h-cobordism as the union of
two h-cobordisms. By applying Seifert-van Kampen’s theorem on X and X̃ at neighbourhoods
of h2 and copies of h2, respectively, we see that π1(Y ) is free abelian. Therefore τ(Y ) = 0.As a
result, Y is an s-cobordism and M ∼= M ′ as desired.

26.2.3. Interlude: Milnor’s E8 plumbing. We mention some concepts that will be key
to obtaining contradictions in the next subsection.

Definition 26.5. [Bro69, Chapter V] Let ζni be a rank n vector bundle over an n-dimensional
smooth manifold Mi for i = 1, 2. Let Ei be the total space of the associated disk bundle and
suppose ζi, Mi and Ei are oriented in a compatible way. If we pick x1 ∈ M1 and X2 ∈ M2, and
consider a ball neighbourhood of xi in Mi, the preimage of these will be Dn

i ×Dn
i , neighbourhoods

of the fiber over xi. Let h : Dn
1 → Dn

2 and k : Dn
2 → Dn

1 be two diffeomorphisms, either both
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Figure 26.3. The torus-component of the covering space.

orientation preserving or both orientation reversing. Then we can define the plumbimg of the
spaces E1 and E2 to be the quotient space P = E1 ∪(k,h) E2.

Remark 26.6. One can inductively plumb more than two total spaces, as well as two different
points in one space. In the first case, one can use graphs (in particular, trees) to determine the
pairs of spaces that will be plumbed.

Definition 26.7. The Dynkin diagram E8 looks like this:

Consider the disc bundle over S2 with Euler number 2. We can plumb 8 copies of this bundle
according to the Dynkin diagram given above to obtain Milnor’s E8 plumbing, which we denote
by PE8 . As a smooth 4-manifold, this can also be considered as a PL manifold.

Remark 26.8. The intersection form on PE8 is given by the matrix

2 1 0 0 0 0 0 0
1 2 1 0 0 0 0 0
0 1 2 1 0 0 0 0
0 0 1 2 1 0 0 0
0 0 0 1 2 0 0 1
0 0 0 0 1 2 1 0
0 0 0 0 0 1 2 0
0 0 0 0 1 0 0 2


Rows and columns are identified with the enumeration in the figure.

This matrix is positive definite, therefore the signature σ(PE8) of PE8 is 8. Moreover, it
is unimodular. It is well-known that the map H2(PE8) → H2(PE8 , ∂PE8) from the long exact
homology sequence can be identified with this intersection form because H1(PE8) is torsion-free.
As a result, H2(∂PE8) = 0 = H2(∂PE8). The boundary ∂PE8 is connected and oriented, therefore
it is a homology sphere. In fact, it is CAT isomorphic to the Poincaré homology sphere P 3.

26.2.4. Proof of nontriviality. Finally we show that [M ] ̸= [D3 ×Tn] ∈ S(D3 ×Tn rel ∂),
where the right hand side is represented by the canonical CAT structure on D3 × Tn. In other
words, we want to prove that M ≇ D3 × Tn rel ∂.
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For the sake of contradiction, we assume that M ∼= D3 × Tn rel ∂. Then we could glue M to
D3 × Tn along their common boundary to obtain M2 := M ∪S2×Tn D3 × Tn ∼= S3 × Tn.

Next, we consider PE8 ×Tn. Its boundary is ∂PE8 ×Tn ∼= P×Tn. To P×{pt} ⊂ ∂(PE8 ×Tn)
we can attach handles as in the construction in Section 26.2.1. This way, we obtain a new space
PE8 × Tn ∪∂ h2 ∪∂ h3 =: V .

Claim. ∂V ∼=CAT M2.

Proof. First, recall that P0 = P#D3 which is CAT homeomorphic to P minus a 3-ball. This
implies P = P0 ∪S2 D3 and hence ∂(PE8 ×Tn) ∼= P ×Tn ∼= (P0 ∪S2 D3) ×Tn ∼= P0 ×Tn ∪S2×Tn

D3 × Tn. The gluing of handles is identical as in the construction of M . Moreover, we may
assume that the handles are attached to P0 × Tn, so if we consider ∂V as a cobordism relative
boundary, this is equal M ∪S2×Tn D3 × Tn by definition of M . □

Assuming M2 ∼= S3 × Tn and using the CAT homeomorphism in the above claim as the
attaching map, we can glue a D4 × Tn, which yields a closed CAT manifold W . To express the
homotopy type of W , we introduce E := PE8⧸∂PE8

.

Claim. W ≃ E × Tn.

Proof. PE8 × Tn can include in both W = V ∪M2 D
4 × Tn and E × Tn. The remainder (i.e. the

space that is glued to Q× Tn to yield the respective space) in W is h2 ∪ h3 ∪D4 × Tn. Consider
the map f : W → E × Tn constructed as follows: We idenfify IntPE8 × Tn with (E \ {pt}) × Tn

by the inclusions of IntPE8 × Tn into both spaces as described above. The handles h2 and h3
are contracted to a point in S3 × Tn ⊆ D4 × Tn,which is then collapsed to {pt} × Tn ⊂ E × Tn

by the contraction of the D4 component. One can show that f induces isomorphisms under Hk

for all k using the Mayer-Vietoris exact sequence.
If W and E × Tn were simply connected, Hurewicz’s Theorem would directly imply that

f is a homotopy equivalence; however, this is evidently not the case. Therefore we consider
the lift f̃ : W̃ → Ẽ × Tn of f along universal coverings of both spaces. The identifications
of PE8 × Tn are again identifications when lifted, and the collapses mentioned above also lift
to nullhomologous maps. Using Mayer-Vietoris exact sequence, we can see that Hk(f) is an
isomorphism for all k ≥ 2. This implies πk(W̃ ) ∼= πk(Ẽ × Tn) ∼= πk(W ) ∼= Hk(E × Tn) for k ≥ 2
by Hurewucz’s Theorem. Therefore, f is a homotopy equivalence. □

Theorem 26.9 (Farrell). [Far67] Let f : Mm → S1 be a map of compact CAT manifolds
such that f |∂M is a CAT locally trivial fibration. Then f is homotopic rel f |∂M to a CAT locally
trivial fibration if the following hold:

(1) dimM ≥ 6.
(2) The covering M̃ from the pullback

M̃ R

M S1

f̄

p̄ p

f

where p : R → S1 denotes the standard universal covering, has finite homotopy type.
(3) π1(M) is free abelian.

Note that condition (2) is assured if M ≃ X × S1 for X homotopy equivalent to a finite
CW-complex. Using the proof of Claim 26.2.4 as well as the observation above, we observe that
conditions (2) and (3) are satisfied for W 4+n ≃−→ E8 × Tn

proj−−→ S1 so that we can use Farrell’s
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Theorem to promote this map to a CAT locally trivial fibration. Then we take a fiber Wn+3,
which should factor through E × Tn−1, again homotopy equivalent to Wn+3. Iterating this
process, we can create a chain of closed subsets

(26.5) W 4+n ⊇ W 3+n ⊇ · · · ⊇ W 5 ≃ E4 × S1.

Finally we need a 4-manifold X4 to finish our claim, but cannot use Farrell’s Theorem anymore,
so we just make the map W 5 ≃−→ E×S1 proj−−→ S1 transverse to 0 to obtain an orientable manifold
W 4 ⊂ W 5 which we assert contradicts the following theorem due to Rochlin.

Theorem 26.10 (Rochlin). Every closed, oriented, smooth or PL 4-manifold W 4 with second
Stiefel-Whitney class w2(W ) zero has signature σ(M) ∈ Z divisible by 16.

Next week’s talk will be about the proof of this theorem. We are rather interested in deriving
the following, which will lead to a contradiction:

Claim.
(1) w2(W 4) = 0.
(2) σ(W 4) = 8.

Proof. (1) Recall that parallelisable manifolds have trivial Stiefel-Whitney classes. PE8 is
parallelisable by construction and hence so is PE8 ×Tn. In particular, w2(PE8 ×Tn) = 0.

The map j∗ : H2(Wn+4,Z/2) → H2(PE8 × Tn,Z/2) is injective, since the map

j∗ : H2(PE8 × Tn,Z/2) → H2(Wn+4,Z/2)

induced by j : PE8 ↪→ Wn+4 is surjective. Therefore the preimage of w2(Q× Tn) is also
0. This is precisely w2(Wn+4) by the naturality of Stiefel-Whitney classes.

Inductively, we can argue that each W k has w2(W k) = 0 as follows: Consider
the map i∗ : H2(Wn+1,Z/2Z) → H2(Wn,Z/2) induced by inclusion i : Wn ↪→ Wn+1.
Since Wn is bicollared in Wn+1,

TWn ⊕ ε ∼= TWn+1|Wn

⇒ w2(TWn ⊕ ε) ∼= i∗(w2(TWn+1))
⇒ w2(TWn) ∼= i∗(w2(TWn+1))

As a result, w2(TWn+1) = 0 implies i∗(w2(TWn+1)) = w2(TWn) = 0, which yields the
induction step. After finitely many steps, we reach w2(W 4) = 0.

(2) Recall some properties of σ:
(a) Signature is cobordism invariant,
(b) σ(CP 2) = 1 and therefore σ(X × CP 2) = σ(X).

So first, σ(W 4) = σ(W 4×CP 2). The latter space is cobordant to a space V 8 ≃ CP 2×P∗.
We obtain V 8 by applying Farrell’s Theorem to the map CP 2 ×W 5 ≃−→ CP 2 ×P∗ ×S1 →
S1. The cobordism lies e.g. in the infinite cyclic covering of CP 2 ×W 5. Therefore

σ(W 4) = σ(W 4 × CP 2) = σ(V 8) = σ(CP 2 × E) = σ(E) = 8

The last equality follows because the intersection pairing of P∗ is the matrix E8. In
fact P∗ is an important example of why we use manifolds and not homology manifolds
in Rochlin’s Theorem.

□

The above claims imply that our assumption M ∼= D3 ×Tn rel ∂ cannot hold. We have found
a representative for a nontrivial element in S(D3 × Tn rel ∂)!
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26.2.5. Applications with the nontrivial element. After having found an exotic
homotopy D3 × Tn that we have called M3+n, we want to proceed to produce further exotic
spaces.

Theorem 26.11 (Exotic homotopy S3 × Tn). If we glue D3 × Tn to M along the common
boundary, we obtain a CAT manifold homotopy equivalent to S3 × Tn but not CAT isomorphic
to S3 × Tn.

Proof. The first assertion is clear with the canonical homotopy equivalence between the assembled
homotopy equivalent parts, i.e. M ∪∂D3 ×Tn ≃ D3 ×∪∂D3 ×Tn. The fact that M ∪∂D3 ×Tn ̸∼=
S3 × Tn follows by the above proof, as M ∪∂ D3 × Tn ∼= S3 × Tn was assumed from the second
step onwards, which has lead to a contradiction. □

The following application can be found in [KS77a].

Theorem 26.12 (Exotic homotopy torus). Identifying opposite ends of the three interval
factors D3 ∼= [0, 1]3, we derive from M a CAT exotic homotopy T 3+n.

Another interesting construction regarding Dk × Tn, k ≤ 3 is given in [Sie70b, Section 5].

26.2.6. Finding α at last. Recall that we are looking for α : D2 × Tn → D2 × Tn fixing
boundary such that

(1) identifying the opposite endpoints of D2 to obtain a torus T 2 induces a map ᾱ : Tn+2 →
Tn+2 that has a mapping torus T (ᾱ) := [0, 1] × Tn+2/((0 x) = (1 β(x))) not CAT
isomorphic to Tn+3, and

(2) for any 2n-fold standard covering map p : D2 ×Tn → D2 ×Tn, the covering automorph-
ism α′ that comes from the lifting

D2 × Tn D2 × Tn

D2 × Tn D2 × Tn

α′

p p

α

is PL pseudoisotopic to α rel boundary. That is, there exists a PL automorphism H
of ([0, 1], {0, 1}) ×D2 × Tn fixing [0, 1] × ∂D2 × Tn such that H0×D2×Tn = 0 × α and
H1×D2×Tn = 1 × α′.

By Claim 26.2.1, M = (P 3
0 × Tn)# is homotopy equivalent to D3 × Tn rel ∂, in particular,

∂M ∼= S2 × Tn, so M can be seen as an h-cobordism relative boundary from 0 ×D2 × Tn to
1 ×D2 × Tn. Moreover, the Whitehead torsion τ(M) vanishes, so that M is an s-cobordism. As
2 +n ≥ 5, the s-cobordism theorem gives rise to a PL homeomorphism h : [0, 1] ×D2 ×Tn

∼=−→ M .
Note that by choosing h|0×D2×Tn to be the identity by precomposition with (Id[0,1] ×h|0×D2×Tn),

we induce another automorphism at the other end 1 ×D2 × Tn, which we name α : D2 × Tn →
D2 × Tn. Indeed, this map cannot have a mapping torus homeomorphic to T 3+n, which can be
seen by Theorem 26.12.

Finally we need to show the second property. But we have almost established this in Section
26.2.2 : We have constructed an s-cobordism Y between M and a covering space M ′ induced by
an arbitrary covering map of Tn. By s-cobordism theorem, this gives us a CAT isomorphism
k : M ′ → M . Following this construcion, the map α′ can be created just like α, i.e. if we
consider M ′ ∼= [0, 1] ×D2 × Tn as an s-cobordism, this yields an isotopy h′ from α′ to IdD2×Tn .
Concatenating h with h′, we obtain a pseudoisotopy from α to α′.

26.3. The catastrophe

The next goal is to construct a PL pseudoisotopy rel ∂ from α to IdD2×Tn . In Thom’s
terminology, this would be referred to as a catastrophe.
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Let p : D2 × Tn → D2 × Tn be derived from scalar multiplication by 2. Define α0 := α and
H0 := H as in the second property of α. Iteratively, pick αi to be the lift of αi−1 and Hi to be
the pseudoisotopy rel ∂ from αi to αi+1. Here it is worth noting that, as [M ] = [M ′], the covers
are always exotic and the maps αi with mapping tori not PL homeomorphic to the standard
T 3+n, by induction.
Next, define a PL automorphism H ′ of [0, 1) ×D2 × Tn as follows: for ak := 1 − 1

2k , consider the
oriented linear bijection lk : [ak, ak+1] → [0, 1]. Let H ′(x, d, t) = Hk(lk(x), d, t) for x ∈ [ak, ak+1].
As the Hk fix boundaries, this map is well defined for x = ak for some k.
Extend H ′ to [0, 1) × R2 × Tn by the identity (which is again possible because the boundaries
are fixed).
Define ϕ : [0, 1) × D2 × Tn → [0, 1) × D2 × Tn by ϕ(t, x, y) = (t, (1 − t)x, y) Define another
continuous bijection of [0, 1) ×D2 × Tn by H ′′ := ϕH ′ϕ−1.

Claim. H ′′ is a well-defined continuous bijection.
Proof. Contunuity as well as bijectivity are obvious. We should see that ϕ−1(t, x, y) = (t, 1

1−tx, y).
If |x| ≥ 1 − t, H ′ maps ϕ−1(t, x, y) to itself by construction, so such points are fixed by H ′′. If
x ≤ 1 − t, H ′ maps the second component to again something in D2, and so does ϕ afterwards.
This shows that the map is well-defined. □

The proof also shows that H ′′ fixes the boundary, setting x = 1 and t = 0.
The following figure from [Sie77] sketches the map H ′′ on [0, 1] ×D2 × Tn, each factor shown
by one dimension. Note that in the figure, the number of segments that are mapped via α, i.e.
the “squares” that are marked with α are doubled for each k. If the figure were dimensionally
accurate, they would be multiplied by 2n instead.

Figure 26.4. Schematic description of H ′′.

Finally, we extend H ′′ to a bijection H ′′ : [0, 1] ×D2 × Tn → [0, 1] ×D2 × Tn by H ′′|1×D2×Tn =
Id1×D2×Tn . It is immediate that bijectivity and well-definedness are preserved. Moreover, the
domain is compact and the codomain Hausdorff, so that by the compact-Hausdorff argument,
we only need to show that this map is continuous at 1 ×D2 × Tn in order to prove that it is a
TOP homeomorphism.

Claim. H ′′ is continuous at 1 ×D2 × Tn.
Proof. By construction, the part of the D2-component of [0, 1] ×D2 × Tn that is not fixed by
H ′′, which is [ak, ak+1] shrinks strictly for t → 1. Therefore, at t = 1, (t, x, y) is fixed everywhere
with x ̸= 0.
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Let (qi)i∈N be a sequence of points converging to q = (1, 0, y). Let pi denote the projec-
tion onto the i-th component (i = 1, 2, 3). Then pi(H ′′(qi)) → pi(H ′′(1, 0, y∗)), showing the
convergence in the first two factors.

To see the convergence in the third factor, let H̃k be the lift

[0, 1] ×D2 × Rn [0, 1] ×D3 × Rn

[0, 1] ×D2 × Tn [0, 1] ×D2 × Tn

H̃k

p p

Hk

of Hk that fixes [0, 1] × ∂D2 × Rn. For z ∈ [0, 1] ×D2 × Rn,

(26.6) sup |p3(z) − p3(H̃k(z))| =: dk
is finite. Moreover, H̃k can be expressed as θ−1

k ◦ H̃0 ◦ θk with θk(t, x, y) = (t, x, 2ky) by
construction of the Hk. Therefore

(26.7) |p3(z) − p3(H̃k(z))| = |p3(z) − p3(θ−1
k ◦ H̃0 ◦ θk)(z)| ≤ 1

2k d0

which can be seen by induction: k = 0 is obvious and conjugation by θk = θ1 ◦ · · · ◦ θ1︸ ︷︷ ︸
k times

means

that the image will be shrunk by a factor of 2. As a result, we see that dk → 0 as k → ∞.
Passing to Hk, we see that lim p3(H ′′(qi)) = p3(Hk(qi))

k→∞−−−→ p3(lim qi) = p3(q) = p3(H ′′(q)),
as desired. □

We see that H ′′|0×D2×Tn = 0 × α and H ′′|1×D2×Tn = IdD2×Tn . In particular, this gives the
pseudo-isotopy that we wanted at the beginning of the section. As a result of the s-cobordism
theorem, we conclude M2 ∼=TOP D

2 × Tn. However, this means that the construction of Wn+4

as in 26.2.4 carries through in the category TOP. In other words, the topological manifold Wn+4

exists, but its PL-ability is a contradiction to Rochlin’s theorem, so it is not PL-able.

26.4. Freedman’s work 10 years later

So far, we have been able to construct a manifold that does not admit a PL structure. The
key point to non-PL-ability was the contradiction to Rochlin’s Theorem, where we used the
homotopy type of the E8 plumbing modulo boundary, which we called E. Instead of this, one
might have been tempted to show analogous assertions for E. However, at the time Siebenmann
described the above counterexample, it was not known whether P∗ is indeed homotopy equivalent
to a manifold.

Theorem 26.13. [Fre82a] Every homology 3-sphere bounds a fake 4-ball, i.e.a 4-dimensional,
compact, contractible manifold.

Using the theorem above, we can start with Milnor’s plumbing P 4
E8

, which has boundary
the Poincare homology sphere P 3. To PE8 , we shall glue a fake 4-ball that also has P 3 as
its boundary, along the boundary with the identity map. This way, we obtain a manifold E′

homotopy equivalent to E. In particular, it is homotopy equivalent to a manifold. If this was
known in 1970, one could have avoided the construction above by directly showing analogous
claims to Claim 26.2.4 with E′, instead of W 4. In other words, we immediately see that X
has no CAT structure by Rochlin’s Theorem. On the other hand, the construction we have
presented is still considered the easiest, as proving Theorem 26.13 requires more technical work
and knowledge.
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An immediate consequence of the non-PL-ability of the manifold E′ is that Rochlin’s Theorem
does not hold for the category TOP, as then E′ is a spin topological manifold of dimension 4
that has signature 8. Again, it is worth noting that this was not known at the time [KS77a]
was published; indeed, it is noted in the aforementioned chapter that Rochlin’s Theorem is
undecided in the category TOP.

It is also worth noting that E′ is also non-triangulable even without requiring the triangulation
to be a PL triangulation, as shown in [Fre82a].



Part VIII

Fundamental tools in topological manifolds





CHAPTER 27

Handle decompositions and transversality

Danica Kosanović and Arunima Ray

A topological manifold is covered by charts, each of which is homeomorphic to Rn or Rn+.
These admit CAT structures, so locally we can apply results about CAT structures, such as the
existence of handle structures or transversality. The product structure theorem will enable us to
piece together the local solutions into global solutions. This is based on [KS77b, Essay III].

27.1. Handle decompositions

Definition 27.1. Let Wm be a CAT manifold, with CAT one of TOP,DIFF,PL, and M ⊆ W
a codimension zero closed submanifold. A CAT handle decomposition of W relative to M is a
filtration

M = M0 ⊆ M1 ⊆ . . .

such that
−
⋃
i≥0Mi = W ,

− for each i ≥ 0, Mi is a closed codimension zero submanifold of W ,
− for each i ≥ 0, the set Hi := Mi \Mi−1 is a compact submanifold such that

(Hi, Hi ∩Mi−1) ∼=CAT (Dk, ∂Dk) ×Dm−k

for some 0 ≤ k ≤ m,
− the collection {Hi} is locally finite.

For CAT = DIFF we also smooth corners. There is essentially unique smooth structure on
the result of attaching a handle. The following is obtained from Morse theory and the flow of a
gradient-like vector field (for a proof see Milnor or Thom?).

Theorem 27.2. (Relative) handle decompositions exist for smooth manifolds for all m.

The following result uses barycentric subdivisions instead, see [Hud69, p. 223].

Theorem 27.3. (Relative) handle decompositions exist for PL for all m.

We will prove the PL analogue as a consequence of the product structure theorem and
Theorem 27.2.

Theorem 27.4. (Relative) handle decompositions exist for TOP for m ≥ 6.

For m ≤ 3 by Rado and Moise all structures are equivalent. Handle decompositions exist
for m = 5 by the work of Quinn [Qui82a], [FQ90, Chapter 9]. However, for m = 4 a handle
decomposition exists on W 4 if and only if W 4 is smoothable (equivalently, PL-able). Since there
are non-smoothable 4-manifolds, this implies that handle decomposition do not exist for all
4-manifolds.

Sketch of proof of Theorem 27.4. The idea is to apply Product Structure theorem locally, work-
ing in charts. Assume for simplicity that ∂W = ∅ and that W is compact.

269
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Let us cover W by compact sets A1, . . . , Ak with Ai ⊆ Ui ∼= Rm. By pulling back a smooth
structure on Rm, each Ui has a smooth structure, and therefore has a handle decomposition
relative to any smooth codimension zero submanifold, by Theorem 27.2.

We will construct a filtration M = N0 ⊆ N1 ⊆ . . . Nk = W such that each Ni is a TOP
handlebody relative to Ni−1. This gives a handlebody decomposition of W , by taking the union
of respective handlebody filtrations for all Ni.

Assume we have inductively constructed a codimension zero submanifold Ni−1 for some
i ≥ 1, with M ∪A1 ∪A2 · · · ∪Ai−1 ⊆ Ni−1. Let us define

Pi := Ui ∩ ∂Ni−1 ⊆ Ui,

see Fig. 27.1. This is a codimension one submanifold of W with dim ≥ 5, so it has a bicollar
Pi × R with induced smooth structure from Ui. We have seen Product Structure Theorem 25.4,

Figure 27.1. The induction step in the proof of Theorem 27.4.

but there is also the following local version: one can isotope the smooth structure on Ui relative
to (Pi × R)∖ (Pi × (−1, 1)) to a new structure which is a product near Pi × {0}. This makes
Pi = Pi × {0} into a smooth submanifold of Ui. Thus with this new smooth structure, Ui ∩Ni−1
is a codimension zero smooth manifold in this new smooth structure from Ui.

Now choose a compact submanifold Ki with Ai ⊆ Ki ⊆ Ui. We apply Theorem 27.2 to obtain
a handle decomposition for (Ui ∩Ni−1) ∪Ki relative to Ui ∩Ni−1. Then define Ni := Ni−1 ∪Ki.
This completes the inductive step. □

A useful exercise is to consider why the previous proof does not produce a smooth structure
on M . The idea is that while the smooth structure is improved on Ui in a neighbourhood of Pi,
this does not respect a given smooth structure on Ni−1.

27.2. Transversality

There are two main versions of transversality. Map transversality perturbs a map between
manifolds by a homotopy so that the inverse image of a point, or indeed a submanifold N ,
is again a submanifold, and teh codimension of the inverse image in the domain equals the
codimension of N in the codomain.

There is also submanifold transversality, which is stronger. Given two submanifolds, it
enables us to perturb one of them by a locally flat isotopy, fixing the other submanifold, until
the intersections are transverse.

There is a subtlety that one needs normal microbundles to do both of these carefully. We
will not go into this here, and instead present the following warm up version of transversality,
which is all we have time for right now.

Theorem 27.5. Let f0 : Mm → Rn be a continuous map with M closed topological manifold
and m− n > 4. Then f0 is homotopic to f1 which is transverse to 0 ∈ Rn, that is, f−1

1 (0) is a
topological manifold L of dimension m− n and has a trivial normal bundle.
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Proof sketch. Cover M by compact sets Ai with Ai ⊆ Ui ∼= Rm. Assume for the inductive
hypothesis that f : M → Rn is transverse to 0 ∈ Rn on a neighbourhood Y of A1 ∪ · · · ∪Ai−1.
That is, (f |Y )−1(0) is an (m− n)-dimensional submanifold Li−1 ⊆ Y with trivial normal bundle.

Then Li−1 ∩ Ui =: L′ has trivial normal bundle L′ × Rn. By the Local Product Structure
Theorem we can isotope the smooth structure on Ui such that L′ is a smooth submanifold.
Assume that L′ × Rn is a smooth normal bundle of L′.

Now apply smooth transversality to f |Ui : we can homotope f to f ′ : M → Rn which is
transverse to 0 ∈ Rn on a neighbourhood of Ai, and such that f ′ = f near (Li−1 ∩ ∪i−1

j=1Aj) ×Rn

and near M∖ Ui. □

Here are some further consequences of the Product Structure Theorem.
− There exist TOP Morse functions.
− Simple homotopy type is well-defined. To do this we find a PL disc bundle over M

embedded as a PL submanifold of a high dimensional Euclidean space. The simple
homotopy type of this disc bundle turns out to be well-defined, and it gives the simple
homotopy type of the manifold M .

− High-dimensional manifolds are homeomorphic to CW complexes (open for 4-manifolds).
This follows from the existence of topological handle decompositions.

Theorem 27.6 (Topological high-dimensional Poincaré conjecture). If Mm is a compact
topological manifold of dimension m ≥ 5 and Mm ≃ Sm, then Mm is homeomorphic to Sm.

Sketch of proof using the work of Kirby and Siebenmann. For m = 5 smoothing theory applies
to smooth Mm, and then we can deduce the result using the smooth resolution of the Poincaré
conjecture in this dimension.

Assume now m ≥ 6. Take out two m-balls from M and prove by ome elementary algebraic
topology computations that what remains is a simply-connected h-cobordism. Then the result
follows from the topological h-cobordism theorem and the Alexander trick.

Figure 27.2. Reduction of the Poincaré conjecture to the h-cobordism theorem

To show the topological h-cobordism theorem one uses topological handle decomposition
and arrange handles are in increasing order. Then cancel or trade any additional handles of
index 0, 1, m and m− 1. This for example uses perturbing (i.e. transversality) a null-homotopy
of the circle that a 1-handle generates, to produce an embedded disc, then thickening this to a
cancelling pair of a 2 and a 3-handle.

Then cancel r- and (r+ 1)-handle pairs, using Whitney trick. This again requires perturbing
the pair into a general position. Once all handles have been cancelled, we must have a product,
which completes the outline of the proof of the topological h-cobordism theorem. □
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Surgery theory





CHAPTER 28

The surgery exact sequence

Mark Powell

Let n ≥ 4 and fix a category
CAT ∈ {TOP,PL,DIFF}.

If n = 4 then let CAT = TOP. For X an n-dimensional Poincaré complex, with π1(X) good in
the case that n = 4, we will explain the terms and the maps in the (simple) CAT surgery exact
sequence

NCAT(X × I,X × {0, 1}) σ−→ Lsn+1(Z[π1(X)]) → SsCAT(X) ρ−→ NCAT(X) σ−→ Lsn(Z[π1(X)])
of pointed-or-empty sets in more detail. Note that the L-groups are category independent, while
the other terms depend on the choice of CAT. This is not intended as a substitute for a textbook
on surgery theory, but rather the aim will be to explain where the tools we have developed
are used to define the maps and establish exactness of the sequence. In particular we will use
topological transversality and immersion theory in multiple places. A special case of the surgery
sequence, for X = Tn, n ≥ 5 and CAT = PL, was discussed in detail in Chapter 18.

The exactness of the surgery sequence refers to the following statements for n-dimensional
Poincaré complexes X. These statements will be made more precise in this section.

(i) Let (M,f, ξ, b) be a degree one normal map in NCAT(X). Then (M,f, ξ, b) is equivalent
(normally bordant) to a degree one normal map (M ′, f ′, ξ′, b′) with f ′ a simple homotopy
equivalence if and only if σ(M,f, ξ, b) = 0 ∈ Lsn(Z[π1(X)]). In particular, there exists
(M,f, ξ, b) with σ(M,f, ξ, b) = 0 if and only if SsCAT(X) ̸= ∅. We say that the sequence
is exact at NCAT(X) as a sequence of pointed-or-empty sets.

(ii) The arrow Lsn+1(Z[π1(X)]) → SsCAT(X) indicates an action of the group on the set,
rather than a function. In particular note that this means the surgery sequence
makes sense even if SsCAT(X) = ∅. Wall realisation determines an action of the group
Lsn+1(Z[π1(X)]) on SsCAT(X), the orbits of which coincide with the point preimages{

ρ−1([(M,f, ξ, b)]) | [(M,f, ξ, b)] ∈ NCAT(X)
}
.

We say that the surgery sequence is exact at the structure set SsCAT(X).
(iii) If SsCAT(X) is nonempty then the relative normal maps NCAT(X × I,X × {0, 1}) form

an abelian group under stacking, and with respect to this group structure the map
σ : NCAT(X × I,X × {0, 1}) −→ Lsn+1(Z[π1(X)]) is a homomorphism. The stabiliser
of each point of SsCAT(X) under the Wall realisation action of Lsn+1(Z[π1(X)]) on
SsCAT(X) is precisely the image of σ. We say that the surgery sequence is exact at
Lsn+1(Z[π1(X)]).

The reader who wants to learn more can consult for example [Wal99], [Ran02], or [L0̈2].
A key tool will be the following theorem, which passes from algebraic data to geometric data.

Theorem 28.1 (Sphere embedding theorem). Let n = 2m ≥ 4 be even. If n = 4 assume that
π1(M) is good and that CAT = TOP. Otherwise for n ≥ 5, fix a CAT. Let f1, . . . , fk : Sm ⊔
· · · ⊔Sm → M be a CAT immersion of framed spheres with λ(fi, fj) = 0 for i ̸= j, and µ(fi) = 0
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for every i. If n = 4, then in addition assume that there is a collection of algebraically dual,
framed immersed spheres {gi} for the {fi}.

Then there is a regular homotopy of the {fi} to a collection f ′
1, . . . , f

′
k : Sm ⊔ · · · ⊔ Sm ↪→ M

of disjointly embedded, framed spheres. Moreover these embedded spheres have geometrically
transverse spheres {g′

i} with g′
i homotopic to gi for each i.

This theorem is due to Wall for n ≥ 5, where the proof is to apply the Whitney trick. For
n ≥ 5 and CAT = TOP, this uses the topological Whitney trick due to Kirby-Siebenmann. For
n = 4, it is due to Freedman-Quinn.

28.1. Poincaré complexes and the structure set

In the surgery sequence, X will be an n-dimensional Poincaré complex, that is a finite CW
complex equipped with an orientation character w : π1(X) → Z/2 and a fundamental class
[X] ∈ Hn(X;Zw) such that cap product with [X] induces a simple chain equivalence

− ∩ [X] : Cn−∗(X;Z[π1(X)]w) ≃−→ C∗(X;Z[π1(X)]).
Observe that for a closed topological manifold M equipped with a nontrivial orientation character
there is a canonical choice of a fundamental class. For an oriented topological manifold, the
orientation character is of course trivial, and there are two choices of fundamental class per
connected component. When n = 4, we will assume that π1(X) is good, and we will point out
explicitly where this hypothesis is needed.

Every compact topological n-manifold M embeds in high dimensional Euclidean space (see,
for example, [Hat02b, Corollary A.9]). Indeed, it is shown in [KS77b, Essay III, Theorem 5.13]
that there exists an embedding with a tubular neighbourhood, which is a finite CW complex
homotopy equivalent to M , and moreover this process results in a Poincaré complex. Chapman’s
theorem [Cha74] states that any two CW structures on a compact topological space are simple
homotopy equivalent. Thus a compact topological manifold determines a Poincaré complex,
unique up to simple homotopy equivalence. For the rest of this chapter, we will assume every
compact topological manifold M comes with a choice of Poincaré complex structure. This
includes in particular a fundamental class.

Our aim is to describe the CAT surgery sequence, for CAT equal to TOP, PL, or DIFF.
Given a Poincaré complex X, the principal aim of the surgery sequence is to compute the
simple structure set SsCAT(X), which by definition consists of equivalence classes of pairs (M,f),
where M is a closed topological n-manifold and f : M → X is a simple homotopy equivalence,
respecting fundamental classes. The word simple is meaningful here since M is equipped with a
choice of Poincaré complex structure, which is unique up to simple homotopy equivalence.

The equivalence relation is defined by setting (M,f) ∼ (M ′, f ′) when there exists a cobordism
F : W → X×[0, 1] with boundary ∂(W,F ) = −(M,f)⊔(M ′, f ′) such that F is a simple homotopy
equivalence. In this case, we say that (M,f) and (M ′, f ′) are s-cobordant over X. Since such a
cobordism W is in particular an s-cobordism, the CAT (n+ 1)-dimensional s-cobordism theorem
implies that this equivalence relation is the same as that of CAT isomorphism over X. This
means that there is a CAT isomorphism g : M → M ′ with f : M → X and f ′ ◦ g : M → X
homotopic maps.

We argue that the two equivalence relations agree. First, if M and M ′ are CAT isomorphic
over X, with G : M × [0, 1] → X a homotopy between f ′ ◦ g and f , then let W := M × [0, 1] and
identify M ′ with M ×{1} using g. Then define F : W → X× [0, 1] by (m, t) 7→ (G(m, t), t). This
gives an s-cobordism between M and M ′ over X× [0, 1], as desired. On the other hand, if M and
M ′ are s-cobordant over X, then we have a cobordism W with a map F → X × [0, 1] and the
s-cobordism theorem tells us that we have a CAT isomorphism M × [0, 1] → W restricting to the
identity of M on M × {0}. Restricting to M × {1}, this gives a CAT isomorphism g : M → M ′.
Composing with the projection X × I → X gives a map M × [0, 1] → W → X × [0, 1] → X,
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which restricts to f on M × {0} and to f ′ ◦ g on M × {1}. This is exactly the homotopy we
desire.

In the surgery programme for classifying closed (oriented) CAT manifolds up to homeo-
morphism within a fixed simple homotopy equivalence class, one computes the quotient of
SsCAT(X) by simple self-homotopy equivalences of X which respect the fundamental class. This
is sufficient since for a fixed closed, CAT n-manifold M , if we have simple homotopy equivalences
f, f ′ : M → X, the map f−1 ◦ f ′ : M → M is a simple self-homotopy equivalence and given any
simple self-homotopy equivalence ϕ : M → M and simple homotopy equivalence f : M → X, the
map f ◦ ϕ : M → X is a simple homotopy equivalence. To obtain the unoriented classification,
one then factors out by the choice of fundamental class. See [CM19] for more on the passage
from the structure set to the set of manifolds up to homeomorphism.

Note that for a given X, there might not be any CAT n-manifold simple homotopy equivalent
to X, in which case SsCAT(X) is empty. If SsCAT(X) is nonempty, then one must fix a choice of
CAT manifold M with a simple homotopy equivalence f : M → X as the distinguished point in
SsCAT(X). If X is itself a CAT manifold, (X, Id) is the distinguished point.

28.2. Normal maps

Define G(k) to be the monoid of self-homotopy equivalences of Sk−1. The space BG(k) is the
classifying space for fibrations with fibres homotopy equivalent to Sk−1 and fibre automorphisms
given by self-homotopy equivalences. Define BG to be the colimit of {BG(k)} over all k. As
before, define the space BCAT(k) to be the classifying space for Rk fibre bundles with structure
group the topological group of CAT isomorphisms of Rk that fix the origin (with the appropriate
topology, as discussed in Chapter 21), and define BCAT to be the colimit of {BCAT(k)} over all
k. There is a forgetful map BCAT → BG defined by restricting to Rk \ {0} on each BCAT(k).
Henceforth we refer to these Rk fibre bundles as CAT bundles.

A Poincaré complex X comes equipped with a canonical stable spherical fibration classified
by (the homotopy class of) a map X → BG, called the Spivak normal fibration [Spi67]. A
CAT manifold M comes equipped with a canonical stable CAT bundle classified by a map
M → BCAT, called the stable normal bundle of M , denoted by νM .

The set of normal maps NCAT(X) is the set of equivalence classes of quadruples (M,f, ξ, b)
where f : M → X is a degree one map from a closed, CAT n-manifold M to X mapping the
fundamental class [M ] to [X], together with a stable CAT bundle ξ → X and a bundle map
b : νM → ξ. In other words, we have the following diagram

νM ξ

M X.

b

f

Since normal maps are often the input to the surgery programme, we sometimes refer to a
normal map as a surgery problem. We remark that it is a consequence of the definitions that ξ
lifts the Spivak normal fibration, although this is not obvious.

Two such quadruples (M,f, ξ, b) and (M ′, f ′, ξ′, b′) are said to be equivalent if they are
cobordant over X, that is if there exists a quadruple (W,F,Ξ, B) consisting of a cobordism
F : W → X× [0, 1] with boundary ∂(W,F ) = −(M,f)⊔ (M ′, f ′) such that the fundamental class
[W ] maps to [X × [0, 1]] ∈ Hn+1(X × [0, 1], X × {0, 1};Zw), a stable CAT bundle Ξ → X × [0, 1],
and a stable bundle map B : νW → Ξ such that the bundle data extend the given bundle data
(ξ, b) and (ξ′, b′) on M and M ′ respectively.
Remark 28.2. If the Spivak normal fibration of a Poincaré complex X lifts to X → BCAT we say it
has a CAT bundle reduction. If a Poincaré complex X admits a CAT bundle reduction, then there
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exists a degree one normal map (M,f, ξ, b) to X, with respect to the given reduction [Ran02,
Theorem 9.42]. This uses transversality (see Section 27.2).

Now we define the map SsCAT(X) → NCAT(X). Let (M,f) represent an element of SsCAT(X).
Choose a homotopy inverse g : X → M for f : M → X, and define ξ := g∗(νM ) to be the
pullback of the stable CAT normal bundle of M . A stable bundle map b : νM → ξ is equivalent
to an isomorphism f∗(ξ) = f∗ ◦ g∗(νM ) = (g ◦ f)∗νM ∼= νM , which we obtain from a homotopy
h : g ◦ f ∼ Id : M → M . The image of (M,f) in NCAT(X) is defined to be (M,f, ξ, b) and
the distinguished point of NCAT(X) is by definition the image of the chosen distinguished
point of SsCAT(X). A different choice of homotopy h′ : g ◦ f ∼ Id determines a different stable
bundle map b′. However, since h, h′ : M × [0, 1] → M are both the identity on one end they
are each homotopic to the projection M × [0, 1] → M . Stacking these, there is a homotopy
h̄ : (M × [0, 1]) × [0, 1] → M from h to h′. This homotopy can be used to construct a degree
one normal bordism (M × [0, 1], f × Id, (g × Id)∗νM×[0,1], B) from (M,f, ξ, b) to (M,f, ξ, b′),
proving that the normal bordism class of (M,f, ξ, b) does not depend on the choice of h (and
thus of b). Moreover, if g′ is another choice of homotopy inverse for f , then there is a homotopy
g′ = Id ◦g′ ∼ g ◦ f ◦ g′ ∼ g ◦ Id = g, which can similarly be used to show that the normal bordism
class does not depend on the choice of g, and thus of ξ.

To complete the argument that the map is well defined one must also show that (M,f) and
(M ′, f ′), representing equal elements in SsCAT(X), are mapped to the same element in NCAT(X).

We also need the relative normal maps NCAT(X×[0, 1], X×{0, 1}). An element is represented
by a degree one normal bordism between two CAT isomorphisms. That is, a CAT manifold W
with boundary M ⊔N , together with a degree one map

F : (W ;M,N) → (X × [0, 1];X × {0}, X × {1})
such that the restrictions to M and N give CAT isomorphisms M → X× {0} and N → X× {1},
and bundle data (Ξ, B) just as in the definition of a degree one normal bordism. That is, a
stable CAT bundle Ξ → X × [0, 1], and a stable CAT bundle map B : νW → Ξ. We can add two
such normal bordisms (Wi, Fi,Ξi, Bi), i = 1, 2, together by stacking:

X × [0, 1] ∪X × [0, 1] ∼= X × [0, 2] ∼= X × [0, 1].
Then we glue W1 ∪W2 using N ∼= X × {1} ∼= X × {0} ∼= M . Then the map to X × [0, 2] extends,
and we obtain an addition.

28.3. L-groups

Let denote the involution on Z[π1(X)] generated by sending g 7→ w(g)g−1 for every
g ∈ π1(X), where as before w denotes the orientation character. Fix an integer m. Recall that a
form λ : P × P → Z[π1(X)] on a finitely generated, free, based Z[π1(X)]-module P is said to be

(1) sesquilinear if λ(ra, sb) = r · λ(a, b) · s, for all r, s ∈ Z[π1(X)] and a, b ∈ P ;
(2) (−1)m hermitian if λ(a, b) = (−1)mλ(b, a), for all a, b ∈ P ;
(3) nonsingular if the adjoint map λad : P → P ∗ sending a 7→ λ(a,−) is an isomorphism;

and
(4) simple if λad has vanishing Whitehead torsion with respect to the preferred basis of P .

A quadratic enhancement of λ is a function µ : P → Z[π1(X)]/g ∼ g so that
(1) µ(r · a) = rµ(a)r, for all r ∈ Z[π1(X)] and a ∈ P ;
(2) µ(a) + (−1)mµ(a) = λ(a, a), for all a ∈ P ; and
(3) µ(a+ b) − µ(a) − µ(b) = pr(λ(a, b)) for all a, b ∈ P , where pr is the projection map.

A triple (P, λ, µ) satisfying all the properties above is called a nonsingular (−1)m quadratic form.
For Q a finitely generated, free, based Z[π1(X)]-module, we have a form λ on Q⊕Q∗ given by( 0 ev

(−1)m ev 0

)
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where ev denotes either evaluation or the canonical identification Q ∼= Q∗∗ followed by evaluation.
In other words, for (p, f), (q, g) ∈ Q⊕Q∗, define λ((p, f), (q, g)) := f(q)+g(p). Use the quadratic
enhancement for λ given by setting µ(q) = 0 = µ(q∗) for every q ∈ Q, q∗ ∈ Q∗. The nonsingular
(−1)m quadratic form

H(−1)m(Q) := (Q⊕Q∗, λ, µ)
is called the standard (−1)m-hyperbolic form on Q.

The sum of two nonsingular quadratic forms is constructed by taking the direct sum of each
element of the triple. Two nonsingular quadratic forms (P, λ, µ) and (P ′, λ′, µ′) are said to be
isometric if there is an isomorphism P

∼=−→ P ′ inducing isometries of λ and λ′ as well as µ and µ′.

28.4. The L groups for n even

Suppose that n is even, and write n = 2m. The L-group Ls2m(Z[π1(X)]) is defined to be
the set of nonsingular (−1)m quadratic forms, modulo the equivalence relation generated by
declaring two nonsingular quadratic forms (P, λ, µ) and (P ′, λ′, µ′) to be equivalent if there are
finitely generated, free, based Z[π1(X)]-modules Q and Q′ and an isometry

(P, λ, µ) ⊕H(Q) ∼= (P ′, λ′, µ′) ⊕H(Q′)
such that the underlying isomorphism of based modules has vanishing Whitehead torsion. In
other words, Ls2m(Z[π1(X)]) consists of equivalence classes of sesquilinear, (−1)m-hermitian,
nonsingular simple forms λ : P × P → Z[π1(X)] on a finitely generated, free, based Z[π1(X)]-
module P , together with a quadratic enhancement µ : P → Z[π1(X)]/g ∼ g. In this group, the
inverse of (P, λ, µ) is (P,−λ,−µ) and the zero element is the class of the hyperbolic forms, which
is also the distinguished element of Ls2m(Z[π1(X)]) thought of as a pointed set.

A free, half-rank submodule iL : L → P of a nonsingular (−1)m-quadratic form (P, λ, µ) is
known as a lagrangian if both λ and µ vanish on L. A lagrangian determines a short exact
sequence

0 L P L∗ 0iL (iL)∗◦λad

and a based lagrangian is called simple when this sequence has vanishing Whitehead torsion. It
is known that a nonsingular (−1)m quadratic form is isomorphic to a hyperbolic form H(−1)m(L),
such that the underlying isomorphism of based modules has vanishing Whitehead torsion, if
and only if the form admits a simple lagrangian [Wal99]*Lemma 5.3. Thus a nonsingular
(−1)m-quadratic form vanishes in Ls2m(Z[π1(X)]) if and only if it admits a simple lagrangian
after stabilisation by a hyperbolic form H(−1)m(Q) for some finitely generated, free, based
Z[π1(X)]-module Q.

28.5. The L groups for n odd

Next, we start to give the background needed to define the surgery obstruction group
Lsn(Z[π1(X)]) in the case that n is odd. So write n = 2m+ 1.

A nonsingular (−1)m-quadratic formation consists of a nonsingular (−1)m-quadratic form
(P, λ, µ) together with two simple lagrangians F and G. That is, based, half-rank finitely
generated, free summands of P such that λ(F, F ) = λ(G,G) = µ(F ) = µ(G) = 0, and such that
the short exact sequences associated to the lagrangians have vanishing Whitehead torsion.

Addition of nonsingular quadratic formations is by direct sum on each of the entries in the
5-tuple. Two nonsingular (−1)m-quadratic formations (P, λ, µ, F,G) and (P ′, λ′, µ′, F ′, G′) are
isomorphic if there exists an isomorphism of modules θ : P

∼=−→ P ′ inducing both an isometry of
nonsingular (−1)m-quadratic forms and isomorphisms F ∼= F ′ and G ∼= G′, such that each of
these three module isomorphisms has vanishing Whitehead torsion.

Since every nonsingular quadratic form with a simple lagrangian is known to be isomorphic
to a hyperbolic form, every nonsingular quadratic formation is isomorphic to (H(P ), P,G) for
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some finitely generated, free, based Z[π1(X)]-module P and for some simple lagrangian G of
H(P ). Here we are using the fact that P is always a simple lagrangian for H(P ).

Equivalence of nonsingular (−1)m-quadratic formations is more difficult to define. We will
need the following definitions.

(1) We say that two nonsingular (−1)m-quadratic formations, given by (P, λ, µ, F,G) and
(P ′, λ′, µ′, F ′, G′), are stably isomorphic if there are finitely generated, free, based
Z[π1(X)]-modules Q,Q′ such that

(P, λ, µ, F,G) ⊕ (H(Q), Q,Q∗) ∼= (P ′, λ′, µ′, F ′, G′) ⊕ (H(Q′), Q′, (Q′)∗).

(2) Given a (−1)m+1-hermitian quadratic form (P, λ, µ), we define the boundary formation

∂(P, λ, µ) := (H(−1)m(P ), P,Γ(P,λ))

where Γ(P,λ) := {(p, λad(p)) | p ∈ P} ⊆ P ⊕ P ∗ is called the graph lagrangian of (P, λ);
it does not depend on µ.

We say that two nonsingular (−1)m-quadratic formations (P, λ, µ, F,G) and (P ′, λ′, µ′, F ′, G′)
are equivalent if there exist (−1)m+1-hermitian quadratic forms (Q,λ, µ) and (Q′, λ′, µ′) such
that (P, λ, µ, F,G) ⊕ ∂(Q,λ, µ) is stably isomorphic to (P ′, λ′, µ′, F ′, G′) ⊕ ∂(Q′, λ′, µ′).

The L-group Ls2m+1(Z[π1(X)]), also called the surgery obstruction group, consists of stable
isomorphism classes of nonsingular (−1)m-quadratic formations, modulo boundary formations.
The trivial element in the group is represented by formations (H(−1)m(F ), F, F ∗) where F is a
finitely generated, free, based Z[π1(X)]-module.

28.6. Decorations L groups

As indicated by the sub- and superscripts, there are versions of the L-groups with other
decorations. Since the definitions only depend on the parity of m, with a fixed superscript
the L-groups are 4-periodic in n. For other decorations, the symmetric theory, and negative
indices, the interested reader should consult [HT00] for an initial guide, with more details in,
for example, [Ran73], [Ran80, Section 9], [Ran81, Section 1.10], and [Ran92].

Related to the simple s decoration, we will need the following definitions.
(1) Two bases for a given finitely generated, free Z[π1(X)]-module are called simply equi-

valent if the change of basis matrix has vanishing Whitehead torsion.
(2) Two bases B1 and B2 for a given finitely generated, free Z[π1(X)]-module P are said

to be stably simply equivalent if B1 and B2 can be extended to bases B′
1 and B′

2 for a
stabilisation of P by a free Z[π1(X)]-module, such that B′

1 and B′
2 are simply equivalent.

(3) A basis for a stabilisation of a finitely generated, free Z[π1(X)]-module P is called a
stable basis for P .

28.7. The surgery obstruction map

Consider a quadruple (M,f, ξ, b) representing an element of NCAT(X). Since f is degree
one, M is connected and π1(f) : π1(M) → π1(X) is surjective. Perform surgery on classes in
ker(π1(f)) to alter (M,f) so that π1(f) is an isomorphism. More precisely, surgery produces a
normal bordism, by adding handles along embedded curves representing generators of ker(π1(f)),
from (M,f, ξ, b) to some (M ′, f ′, ξ′, f ′) where π1(f ′) is an isomorphism. But, as is customary,
we will abuse notation and keep using the same symbols. Continue this process up until the
middle dimension, to obtain f ′′ with πi(f ′′) = 0 for i < n/2. This process is called surgery below
the middle dimension. It uses immersion theory and transversality to represent homotopy classes
by framed embedded spheres, in order to perform surgery on them.
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28.8. The surgery obstruction map for n even

Let n = 2m ≥ 4 be even. We now have (M,f, ξ, b) such that f induces an isomorphism
on homotopy groups πi for i < m. By Whitehead’s theorem and Poincaré duality, since X is
n-dimensional, the sole obstruction to f being a homotopy equivalence is the module

ker(πm(f)) ∼= Km(f) := ker(Hm(f) : Hm(M ;Z[π1(X)]) → Hm(X;Z[π1(X)])).

The submodule Km(f) is called the surgery kernel of f . Above we used the Hurewicz theorem
to pass from homotopy groups to the homology groups of the universal covers. The intersection
form of M restricts to an even, nonsingular, sesquilinear, (−1)m)-hermitian form λ on the
finitely generated, stably free Z[π1(X)]-module Km(f), which is known to have a preferred
simple equivalence class of stable basis (see the following paragraph). Perform surgeries on
trivial (m − 1)-spheres in M to add a hyperbolic form to Km(f) and whence realise any
stabilisation. Again using the same notation after the surgeries, we have that P := Km(f)
is now a finitely generated, free Z[π1(X)]-module with a preferred simple equivalence class of
basis. If the orientation character w is trivial on order two elements of π1(M) and m is even,
then since the form λ is even, there is a unique quadratic enhancement µ, which equals the
self-intersection number of elements of Km(f), represented as immersed spheres in their preferred
regular homotopy classes. For m odd the quadratic refinement is crucial extra data. In general,
the normal data determine a unique regular homotopy class of immersions for each element
of Km(f), which gives rise to a quadratic enhancement µ : Km(f) → Z[π1(X)]/g ∼ g. Thus
we have obtained an element σ(M,f, ξ, b) = [(Km(f), λ, µ)] ∈ Ls2m(Z[π1(X)]) = Lsn(Z[π1(X)]),
which is called the surgery obstruction for (M,f, ξ, b). That is, we have defined the map

σ : NCAT(X) → Lsn(Z[π1(X)]).

So far we have discussed the procedure given in [Wal99]*Chapters 1, 2, and 5. Chapter 1
performs surgery below the middle dimension as above, while Chapter 2 shows that the surgery
kernel Km(f) is finitely generated and stably free with a preferred simple equivalence class
of stable basis, and that the intersection form restricts to a form on Km(f) with a quadratic
enhancement. Chapter 5 of [Wal99] constructs the surgery obstruction and shows that it only
depends on the normal bordism class of (M,f, ξ, b), so σ gives a well defined map from NCAT(X)
to Lsn(Z[π1(X)]). Briefly, suppose that (M,f, ξ, b) and (M ′, f ′, ξ′, b′) are equivalent in NCAT(X)
via (W,F,Ξ, B). Assume we have performed the surgery on trivial embeddings of Sm−1 in both
M and M ′ to stabilise Km(f) and Km(f ′) to a free modules. Now perform surgeries on the
interior of W to make πi(F ) an isomorphism for i < m. By handle cancellation as in the proof
of the s-cobordism theorem, there is now a handle decomposition of W relative to M consisting
only of k m-handles and ℓ (m+1)-handles, for some integers k and ℓ. In the topological category,
this uses that manifolds of dimension at least five admit topological handle decompositions (see
Section 13.3 for dimension at least 6). This is sufficient to determine an isomorphism

(Km(f), λ, µ) ⊕H(Z[π1(X)]k) ∼= (Km(f ′), λ′, µ′) ⊕H(Z[π1(X)]ℓ).

To see that there is a simple isomorphism between these forms requires more care, and for this
we refer the reader to [Wal99, Theorem 5.6].

28.9. The surgery obstruction map for n odd

Let n = 2m+ 1 ≥ 5 be odd. Again assume that we have a degree one normal map (M,f, ξ, b)
such that f induces an isomorphism on homotopy groups πi for i < m. By Whitehead’s theorem
and Poincaré duality, since X is n-dimensional, the sole obstruction to f being a homotopy
equivalence is the surgery kernel:

Km(f) := ker(Hm(f) : Hm(M ;Z[π1(X)]) → Hm(X;Z[π1(X)])).
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Using this we define a (−1)m-quadratic formation. By transversality we can represent generators
of Km(f) by framed, embedded m-spheres. Tube these spheres together, to obtain U ∼=
♮kSm × Dm+1 ⊆ M , for some k, with the generators of πm(U) generating P := Km(f). The
boundary is the 2m-manifold ∂U := #kSm × Sm. The quadratic intersection form of ∂U is
a (−1)m hyperbolic form H(−1)m(P ) on Km(∂U) ∼= P ⊕ P ∗. Consider the (−1)m-quadratic
formation (

H(−1)m(P ), P, Im(Km+1(M,∂U) → Km(∂U)
)
.

This determines an element of Ls2m+1(Z[π1(X)]), which turns out to be independent of the
choices of generating set for Km(f) and the choices of embedded, framed spheres representing the
generating set. It is the image of (M,f, ξ, b) under the surgery obstruction map σ : NCAT(X) →
Lsn(Z[π1(X)]), in the case that n is odd. One also needs to show that the simple equivalence
class of these formations only depends on the normal bordism class.

28.10. Exactness at the normal maps

We now show that the surgery sequence is exact at NCAT(X). Consider the image (M,f, ξ, b) ∈
NCAT(X) of an element (M,f) ∈ SsCAT(X), under the map in the surgery sequence. Since f is a
homotopy equivalence, no surgery below the middle dimension is necessary, and the surgery kernel
Km(f) is already trivial. Thus σ(M,f, ξ, b) = 0 ∈ Lsn(Z[π1(X)]). This shows half of the desired
exactness, namely that the image of SsCAT(X) lies in the kernel of σ : NCAT(X) → Lsn(Z[π1(X)].

28.11. Exactness at normal maps for n even

Let n = 2m ≥ 4 be even. Now suppose that (M,f, ξ, b) lies in the kernel of σ. We will
show that (M,f, ξ, b) is normally bordant to a simple homotopy equivalence. That is, after a
finite sequence of surgeries below the middle dimension, including on trivially embedded copies
of Sm−1 to realise stabilisation, we have that K2(f) ∼= ker(π2(f)) is a free, finitely generated
Z[π1(X)]-module and the intersection form is hyperbolic. Our aim is to perform surgery on
m-dimensional homotopy classes representing a lagrangian of this hyperbolic form. This means
representing a half basis of Km(f) by framed, embedded m-spheres, and for each such embedding
replacing a neighbourhood Sm × Dm with Dm+1 × Sm−1. This has the effect of killing the
homotopy class represented by the core Sm×{0}. If the embedding has a geometrically transverse
sphere, then a meridian {pt} × Sm−1 to the removed Sm is null-homotopic, via the transverse
sphere minus its intersection with Sm×Dm. Thus the surgery operation does not affect πm−1(f),
which therefore remains an isomorphism.

Thankfully, we are in exactly the situation of the sphere embedding Theorem 28.1. Choose
any simple lagrangian P for the quadratic form (Km(f), λ, µ). There is then an isomorphism
from (Km(f), λ, µ) to the hyperbolic form H(−1)m(P ), such that the isomorphism on modules
has vanishing Whitehead torsion. Consider classes {fi} generating P , and classes {gi} generating
P ∗. Then restricting to the preferred regular homotopy classes determined by the normal
data, the set {fi} and {gi} can be represented by framed, immersed spheres Sm ↬ M , such
that λ(fi, gj) = δij , λ(fi, fj) = 0, and µ(fi) = 0 for all i, j. By hypothesis, if n = 4 then
π1(M) ∼= π1(X) is good.

Then the sphere embedding Theorem 28.1 (due to Wall in high dimensions at least 5 and due
to Freedman-Quinn in dimension 4) says that the {fi} are regularly homotopic to a collection of
mutually disjoint, embedded spheres {f ′

i} with geometrically transverse spheres {g′
j}. The set

{f ′
i} is framed since the set {fi} was. Use {f ′

i} as the data for surgery to construct a normal
bordism from (M,f, ξ, b) to some (M ′, f ′, ξ′, b′) such that f ′ : M ′ → X induces an isomorphism
on πi for i = 0, 1, 2. Then, as mentioned earlier, by Poincaré duality and the Hurewicz theorem
f ′ induces an isomorphism on all homotopy groups and is therefore a homotopy equivalence by
Whitehead’s theorem. Moreover, the homotopy equivalence f ′ : M ′ → X is simple by [Wal99,
Theorem 5.6].
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28.12. Exactness at normal maps for n odd

Let n = 2m+ 1 ≥ 5 be odd. The procedure is the same as above: do surgeries on generators
of Km(f), after representing them by framed embedded spheres. This latter step uses immersion
theory and transversality as usual, but there is no Whitney trick required, so it is easier. The
algebraic vanishing of the (−1)m-quadratic formation guarantees, using a homology computation,
that surgery to kill Km(f) simultaneously kills Km+1(f), and leaves Ki(f) for i ̸= m,m+1 alone.
Thus the surgeries give rise to a degree one normal bordism to a simple homotopy equivalence,
again by Poincaré duality, and the Hurewicz and Whitehead theorems.

Note that the arguments of this section can also be used to show that a structure set is
nonempty, by showing that the kernel of σ is nonempty. Also, exactness at the normal maps
holds even if the structure set is empty: the preimage of 0 ∈ Lsn(Z[π1(X)]) is it this case empty.

28.13. Wall realisation

Suppose that the structure set of the Poincaré complex X is nonempty. We will define an
action of the surgery obstruction group Lsn+1(Z[π1(X)]) on SsCAT(X). The leftmost arrow in the
surgery sequence refers to this action. Exactness at the structure set means, by definition, that
two elements of the structure set are in the same orbit of this action if and only if they agree
when mapped to NCAT(X). The action will be defined using Wall realisation, a process we use
to geometrically realise given elements of Lsn+1(Z[π1(X)]). We describe the realisation separately
when n is even and when n is odd, corresponding to the different definitions of the L groups.

28.14. Wall realisation when n is even.

Let n = 2m ≥ 4, so that n + 1 = 2m + 1. The definition of Wall realisation uses the
sphere embedding Theorem 28.1, and therefore for n = 4 requires that π1(X) be a good group.
We start with a degree one normal map (M,f, ξ, b) to X, such that f is a simple homotopy
equivalence, together with a given nonsingular (−1)m-quadratic formation. As noted earlier,
every nonsingular (−1)m-quadratic formation is isomorphic to (H(−1)m(P ), P,G) for some finitely
generated, free, based Z[π1(X)]-module P and for some simple lagrangian G of H(−1)m(P ). Let
k be the rank of P . Perform k surgeries on trivial, embedded copies of Sm−1 in M . The trace
of these surgeries consists of M × [0, 1] with k (2m + 1)-dimensional m-handles Dm × Dm+1

attached to the trivial Sm−1s. Choose framings on the circles such that this builds a cobordism
W ′ over X × [0, 1/2] from f : M → X to f ′ : M ′ := M#kSm × Sm → X. The surgery kernel
Km(f) = 0 changes to (Km(f ′), λ, µ) ∼= H(−1)m(P ), the intersection form of #kSm × Sm. Here
the summand P is identified with the submodule generated by the spheres Sm × {pt}.

Now we use the sphere embedding Theorem 28.1, which uses immersion theory, transversality,
and in the case m = 2 that π1(X) is good. The lagrangian G ⊆ P ⊕ P ∗ ∼= Km(f ′ : M#kSm ×
Sm → X) is a finitely generated, free, based submodule of Km(f ′). Represent the basis of G by
framed, immersed spheres {f1, . . . , fk} in M#kSm × Sm with λ(fi, fj) = 0 for all i, j = 1, . . . , k
and µ(fi) = 0 for i = 1, . . . , l. Since the intersection form on M#kSm ×Sm is nonsingular, there
is a collection of dual spheres {g1, . . . , gk}, also framed and immersed, such that λ(fi, gj) = δi,j
for all i, j. This is necessary for applying the sphere embedding theorem in the case n = 4, but
is not important for n ≥ 5.

By the sphere embedding Theorem 28.1, the spheres {fi} are regularly homotopic to a
collection of mutually disjoint, locally flat embedded spheres {f ′

i} with geometrically transverse
spheres {gj}. The spheres {f ′

i} are framed since the spheres {fi} were. Use the spheres {f ′
i}

as the data for surgery on M#kSm × Sm. The trace of this surgery is a cobordism W ′′ over
X × [1/2, 1] from M#kSm × Sm to another closed, CAT (2m)-manifold M ′′. The map to X
extends because we perform surgery on classes that map to null-homotopic elements of X. The
second surgery kills Km(f ′), but in a different way than how surgery on the generators of P
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would kill it. The second surgery does not create new generators of πm−1(M ′′), again due to the
transverse spheres. Observe that the normal data (ξ, b) can be extended across the cobordism
W , since we performed surgery on compatibly framed spheres representing relative homotopy
classes. Thus we have produced a degree one normal bordism (W,F,Ξ, B) from (M,f, ξ, b) to
a new degree one normal map (M ′′, f ′′, ξ′′, b′′). The resulting map f ′′ : M ′′ → X is again a
homotopy equivalence and moreover, a simple homotopy equivalence. This latter fact is proved
in [Wal99, Theorem 6.5], but using an alternative definition of the groups Lsn+1(Z[π1(X)]) and
hence a slightly different, but equivalent, definition of the action on SsCAT(X).

By construction, the degree one normal map (W,F,Ξ, B) has surgery obstruction
σ(W,F,Ξ, B) = [(H(−1)m(P ), P,G)] ∈ Lsn+1(Z[π1(X)]).

28.15. Wall realisation when n is odd

Let n = 2m+ 1, so that n+ 1 = 2m+ 2 = 2(m+ 1). We start with a degree one normal map
(M,f, ξ, b) to X, such that f is a simple homotopy equivalence, together with a given nonsingular
simple (−1)m+1-quadratic form (P, λ, µ) ∈ Ls2(m+1)(Z[π1(X)]). We attach (m + 1)-handles
Dm+1 ×Dm+1 to M × {1} ⊆ M × [0, 1], with attaching maps carefully chosen using the data of
the form, λ and µ. This produces a degree one normal bordism from (M,f, ξ, b) to (M ′, f ′, ξ′, b′),
where the surgery obstruction of the normal bordism is the prescribed (−1)m+1-quadratic form.
For details see [Wal99, Theorem 5.8].

28.16. Exactness at the structure set

Using Wall realisation we define the action of the surgery obstruction group Lsn+1(Z[π1(X)])
on the structure set SsCAT(X). We start with an element of the structure set, a closed, CAT
n-manifold M with a simple homotopy equivalence f : M → X. We described in Section 28.2
how (M,f) determines a degree one normal map (M,f, ξ, b) to X. Apply Wall realisation to
this and a representative of a given class in Lsn+1(Z[π1(X)]) to obtain some (M ′′, f ′′, ξ′′, b′′). The
result of the action on (M,f) is defined to be (M ′′, f ′′) ∈ SsCAT(X).

This action is independent of the choice of realising (n + 1)-manifold. Indeed, suppose
(W,F,Ξ, B) and (W ′, F ′,Ξ′, B′) each realise x ∈ Lsn+1(Z[π1(X)]) and are cobordisms from
(M,f, ξ, b) to (N, g, θ, c) and (N ′, g′, θ′, c′) respectively. Construct

(V,G,Θ, C) := −(W,F,Ξ, B) ∪(M,f,ξ,b) (W ′, F ′,Ξ′, B; ),
a cobordism from N to N ′. The (n+ 1)-dimensional surgery obstruction of (V,G,Θ, C) vanishes,
since it is the difference of the (equal) surgery obstructions of (W,F,Ξ, B) and (W ′, F ′,Ξ′, B′).
By the main theorem of odd dimensional surgery [Wal99], (V,G,Θ, C) is bordant relative to the
boundary to a simple homotopy equivalence, proving that (N, g) and (N ′, g′) are equal in the
structure set SsCAT(X). A similar argument as above shows that equivalent forms/formations
induce the same action on SsCAT(X) and thus we have a well defined action of Lsn+1(Z[π1(X)])
on the structure set SsCAT(X).

Now we are ready to prove exactness at the structure set. This is stronger than exactness of
pointed sets. Precisely, it means that the orbits of the action coincide with the preimages of
singleton sets in NCAT(X).

First observe that (M,f) and (M ′′, f ′′) determine the same class in NCAT(X) because
the elements (M,f, ξ, b) and (M ′′, f ′′, ξ′′, b′′) are degree one normally bordant via (W,F,Ξ, B),
by construction. We also need to argue that normally bordant homotopy equivalences are
related by the action of Lsn+1(Z[π1(X)]). Let (M,f) and (N, g) represent elements of SsCAT(X)
and suppose that (W,F,Ξ, B) is a degree one normal bordism over X between the associated
degree one normal maps (M,f, ξ, b) and (N, g, θ, c). Let σ(W,F,Ξ, B) ∈ Lsn+1(Z[π1(X)]) be the
odd dimensional surgery obstruction of the cobordism. Realise σ(W,F,Ξ, B) by a cobordism
(W ′, F ′,Ξ′, B′) from (M,f, ξ, b) to some (M ′, f ′, ξ′, b′) using Wall realisation. We claim that
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(N, g) and (M ′, f ′) are equal in the structure set, so that [(N, g)] is in fact obtained from [(M,f)]
by the action of Lsn+1(Z[π1(X)]). To see this claim, construct

(V,G,Θ, C) := −(W,F,Ξ, B) ∪(M,f,ξ,b) (W ′, F ′,Ξ′, B; ),
a cobordism from N to M ′. The (n+1)-dimensional surgery obstruction of (V,G,Θ, C) vanishes,
since it is the difference of the (equal) surgery obstructions of (W,F,Ξ, B) and (W ′, F ′,Ξ′, B′),
so (V,G,Θ, C) is bordant relative to the boundary to a simple homotopy equivalence, proving
that (M ′, f ′) and (N, g) are equal in the structure set SsCAT(X).

In fact, by the (n+1)-dimensional CAT s-cobordism theorem , N and M ′ are CAT isomorphic,
but we do not need this.

28.17. Exactness at Lsn+1(Z[π1(X)])

Here is a quick sketch. If an element of the L group is in the image of NCAT(X×I,X×{0, 1}),
then its action on the structure set changes M by a CAT-isomorphism, over X, and so the
action is trivial. Note that the action is the same for any choice of normal bordism with surgery
obstruction a fixed element x of Lsn+1(Z[π1(X)]).

On the other hand, if the action is trivial, then the action on the identity produces a normal
bordism between the identity and a homeomorphism. This is an element of NCAT(X × I,X ×
{0, 1}). Thus the stabiliser of the identity is the image of NCAT(X × I,X × {0, 1}).

28.18. The surgery sequence for manifolds with boundary

In many situations, a generalisation of the material from the previous sections to manifolds
with nonempty boundary is required. Again fix a CAT, and let n ≥ 4. If n = 4 assume
CAT = TOP and π1(X) is good. We describe the necessary modifications for the case of
manifolds with boundary. For manifolds with boundary, the surgery sequence has the form
NCAT(X×[0, 1], h×Id[0,1] ∪X×{0, 1}) σ−→ Lsn+1(Z[π1(X)]) → SsCAT(X,h) → NCAT(X,h) σ−→ Lsn(Z[π1(X)]).
We will define the terms, including h, below. Firstly, a n-dimensional Poincaré pair (X, ∂X) is a

finite CW complex X together with a subcomplex ∂X, an orientation character w : π1(X) → Z/2,
and a fundamental class [X] ∈ Hn(X, ∂X;Zw), satisfying the following. Cap product induces
simple chain homotopy equivalences

− ∩ [X] : Cn−∗(X, ∂X;Z[π1(X)]w) ≃−→ C∗(X;Z[π1(X)]),
and

− ∩ [X] : Cn−∗(X;Z[π1(X)]w) ≃−→ C∗(X, ∂X;Z[π1(X)]),
each connected component ∂iX of ∂X inherits the structure of an (n− 1)-dimensional Poincaré
complex with respect to the orientation character induced by w, and a fundamental class
[∂iX] given by the image of [X] under the homomorphism Hn(X, ∂X;Z) → Hn−1(∂X;Z) ∼=⊕

iHn−1(∂iX;Z).
For any compact, CAT n-manifold M , oriented if orientable, the pair (M,∂M) can be given

the structure of a Poincaré pair in a unique way up to simple homotopy equivalence [KS77b,
Essay III, Theorem 5.13].

Fix an n-dimensional Poincaré pair (X, ∂X). Working ‘relative to the boundary’ means that
we fix an (n − 1)-dimensional CAT manifold N = ⊔

iNi with the same number of connected
components as ∂X, and a map h : N → ∂X that restricts to a degree one normal map on each
connected component. We moreover insist that h induces a simple chain homotopy equivalence
h∗ : C∗(Ni;Z[π1(X)]) → C∗(∂iX;Z[π1(X)]) for each connected component. The assumption that
h is a normal map is required to define a relative normal map set. The Z[π1(X)] coefficient
chain homotopy equivalence is required so that the intersection form on the surgery kernel is
nonsingular and the surgery obstruction map σ is well-defined.
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The relative structure set SsCAT(X,h) consists of equivalence classes of pairs (M,f), where
M is a compact, CAT n-manifold with boundary N , and f : M → X is a simple homotopy
equivalence such that h = f |∂M : ∂M → ∂X. The equivalence relation is defined by setting
(M,f) ∼ (M ′, f ′) when there exists a cobordism F : W → (X, ∂X) × [0, 1] with boundary
∂(W,F ) = −(M,f) ∪N×{0} ((N,h) × [0, 1]) ∪N×{1} (M ′, f ′) such that F is a simple homotopy
equivalence. We say that (M,f) and (M ′, f ′) are cobordant over X. Such a cobordism W is in
particular an s-cobordism relative to the boundary N .

Since h : N → ∂X is a degree one normal map, this includes the information of a choice of
lift of the Spivak normal fibration to BTOP for each connected component ∂iX of ∂X. The set
of relative normal maps NCAT(X,h) is the set of degree one normal bordism classes of degree
one normal maps over X relative to h. These are, by definition, quadruples (M,f, ξ, b), where
M is a compact, CAT n-manifold with boundary N , the map f : M → X has degree one and
restricts to h on the boundary, and (ξ, b) is stable normal data, covering f and restricting to the
given lifts of the Spivak normal fibration on ∂X.

With these modifications, the arguments, definitions, and descriptions of Section 28.1 apply
to the interior of M and the exact sequence given above may be constructed similarly.
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28.19. Topological manifolds are like high dimensional smooth and PL manifolds,
only more so.

The title of this section is a quote from slides of Andrew Ranicki. We think that what he
meant was that smooth manifolds, of dimension at least five, admit a remarkably close relation
to homotopy theory and algebra, via surgery theory. However there are complications in the
smooth category, principally arising from exotic spheres and from Rochlin’s theorem, that muddy
the waters. In the topological category, the correspondence between geometry and algebra is
crisper and more elegant, whence “only more so”. In this section we will try to explain the slogan
in a precise way.

In the topological category, the following are true. We will not explain what they mean here,
but they can be thought of as suggestions for further reading.

(1) The Poincaré conjecture holds in all dimensions.
(2) The Schoenflies conjecture holds in all dimensions.
(3) Orientation preserving homeomorphisms of Sn are isotopic to the identity.
(4) The Alexander trick works.
(5) The surgery obstruction map for the sphere is a bijection.
(6) The surgery exact sequence is a sequence of abelian groups.
(7) The simply-connected surgery exact sequence is a collection of short exact sequences.
(8) Knots Sn−k ⊂ Sn for k ≥ 3 are unknotted.
(9) Sullivan periodicity: Ω4(Z ×G/TOP) ≃ Z ×G/TOP.

(10) Siebenmann periodicity.
(11) Topological Rigidity: the Borel conjecture that every homotopy equivalence between

closed aspherical n-manifolds is homotopic to a homeomorphism holds in many cases.
(12) Topological surgery in dimension 4.
(13) The total surgery obstruction gives a criterion for a Poincar’e complex to be homotopy

equivalent to a topological manifold.
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CHAPTER 29

The double suspension of the Mazur homology sphere

Fadi Mezher

The main objects of this chapter are homology spheres, which are defined below.

Definition 29.1. A manifold M of dimension n is called a homology n-sphere if it has the same
homology groups as Sn; that is,

Hk(M) =
{
Z if k ∈ {0, n}
0 otherwise

A result of J.W. Cannon in [Can79b] establishes the following theorem

Theorem 29.2 (Double Suspension Theorem). The double suspension of any homology
n-sphere is homeomorphic to Sn+2.

This, however, is beyond the scope of this text. We will, instead, construct a homology
sphere, the Mazur homology 3-sphere, and show the double suspension theorem for this particular
manifold. However, before beginning with the proper content, let us study the following famous
example of a nontrivial homology sphere.

Example 29.3. . Let I be the group of (orientation preserving) symmetries of the icosahedron,
which we recall is a regular polyhedron with twenty faces, twelve vertices, and thirty edges. This
group, called the icosahedral group, is finite, with sixty elements, and is naturally a subgroup
of SO(3). It is a well-known fact that we have a 2-fold covering ξ : SU(2) → SO(3), where
SU(2) ∼= S3, and SO(3) ∼= RP 3. We then consider the following pullback diagram

S0 S0

Ĩ := ι∗(SU(2)) SU(2)

I SO(3)

ι∗ξ ξ

Then, Ĩ is also a group, where the multiplication is given by the lift of the map µ◦ (ι∗ξ× ι∗ξ),
where µ is the multiplication in I. Thus, Ĩ defines a subgroup of the compact Lie group SU(2),
called the binary (or extended) icosahedral group. Furthermore, it is clear that this group
consists of 120 elements; it can be further shown that Ĩ = ⟨s, t | (st)2 = s3 = t5⟩. We now form
the space P 3 = SU(2)⧸Ĩ, called the Pioncaré homology sphere, and note that it is itself a Lie
group, as being the quotient of a Lie group by a finite subgroup. By covering space theory (more
precisely, Proposition 1.40 from [Hat01]), one can show that π1P

3 ∼= Ĩ. Another way to see
this is via a theorem of Gleason (cf. Corollary 1.4 in [Coh]), which states that p : SU(2) → P 3

is a principal Ĩ-bundle. Since this principal bundle has discrete fibre, it is a covering space with
the structure group being isomorphic to the fundamental group. That is, π1(P 3) ∼= Ĩ.

291
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It is a well-known fact that the binary icosahedral group is a perfect group, i.e. Ĩ = [Ĩ , Ĩ]. From
this, it follows that H1(P 3) ∼= πab1 (P 3) = 0. Furthermore, since P 3 is a Lie group, Poincaré
duality holds, so that we get an isomorphism H2(P 3) ∼= H1(P 3); by the universal coefficient
theorem, it also follows that H1(P 3) ∼= Hom(H1(P 3),Z) = 0, so that H2(P 3) = 0. Furthermore,
P 3 is clearly connected, and hence H3(P 3) ∼= Z. Thus, it is a homology sphere.

Remark: There are at least eight different constructions of that manifold, as found in [KS79].
The above description is the most accessible one among them.

The upshot of the above example is that homology equivalence does not classify spaces up
to homotopy equivalence; indeed, P 3 and S3 are homology equivalent, even though S3 is simply
connected, while π1(P 3) ∼= Ĩ ̸= 0.

29.1. Some technical lemmata

We now prove some technical lemmata, the first of which serves as a preliminary reduction
of the double suspension theorem to proving that the double suspension is a manifold, while the
second gives a criterion for a manifold to be a homology n-sphere. The third one will be used to
show that the 4-manifold we construct in the next section is indeed contractible, so that the
conditions of Lemma 29.6 are met.

Lemma 29.4. If a compact manifold of dimension n can be written as M = U1 ∪ U2 where
U1 ∼= U2 ∼= Rn, then M ∼= Sn.

Proof. By invariance of domain, we note that any U1 and U2 as in the above are open in M .
Denote by φ the homeomorphism φ : U2 → Rn. Observe that M \ U1, being a closed set in the
compact manifold M , is itself compact. Then, φ(M \ U1) is a compact subset of Rn, so that,
in particular, it is bounded in Rn. Consider three closed, n-dimensional concentric balls in Rn,
containing φ(M \ U1) in their interiors, and let D be the middle ball. Then, φ−1(∂D) ⊆ U1
is a bicollared (n − 1)-dimensional sphere in U1. Thus, the Schoenflies theorem tells us that
M \ φ−1(int(D)) is itself homeomorphic to Dn. Consequently, we have shown that M can
be written as a union of two homeomorphic copies of the standard disc Dn, attached along
their boundaries. By the Alexander trick, we may extend the homeomorphism φ−1|∂D to
homeomorphisms of the discs themselves, and as such, M ∼= Sn. □

Corollary 29.5. If the suspension ΣX of any topological space X is a compact n-manifold,
then ΣX ∼= Sn.

Proof. Consider the coordinate neighborhoods U1 and U2 around the two suspension points
of ΣX, which exist since we assumed that ΣX is a manifold. Then, by stretching these two
neighborhoods along the [−1, 1] coordinate in ΣX = (X × [−1, 1])⧸∼ , we are reduced to the
setting of Lemma 29.4. Thus, ΣX ∼= Sn, as claimed. □

Lemma 29.6. The boundary of any compact, contractible n-manifold is an (n− 1)-homology
sphere.
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Proof. We first recall that any simply connected manifold is orientable. It follows that M is
a compact, orientable manifold with boundary, and thus Poincaré-Lefschetz duality holds, so
that we have isomorphisms Hk(M,∂M) ∼= Hn−k(M), for all k ∈ N. Furthermore, since M is
contractible, it follows that Hk(M) is trivial in all dimensions except 0, where it is infinite
cyclic. Inspecting the homology long exact sequence of the pair (M,∂M), we reach the following
conclusions:

− For all k > 1, the fact that Hk(M) = Hk−1(M) = 0 implies that the connecting
homomorphism ∂∗ : Hk(M,∂M) → Hk−1(∂M) is an isomorphism; thus, Hn−1(∂M) ∼=
Z, while Hk(∂M) = 0 for all k /∈ {0, n− 1}

− For k = 1, we have the following exact sequence:

0 = H1(M,∂M) ∂∗−→ H0(∂M) ι∗−→ H0(M) q∗−→ H0(M,∂M) = 0

Thus, ι∗ is an isomorphism between H0(∂M) and H0(M) ∼= Z.
□

Lemma 29.7. If a manifold M has a handle decomposition, then it is homotopy equivalent to
a CW-complex whose cells are in bijection with the handles of M .

Proof. The proof is rather straightforward: for every k-handle Dk × Dn−k, attached via φk :
(∂Dk) ×Dn−k → Mk−1, we contract Dn−k to its center 0; the resulting CW-complex will have,
as attaching maps, the restriction of the handle attachments, namely φk|Dk×{0}. It then follows
readily that the above two spaces are homotopy equivalent. □

29.2. Constructions

In light of Lemma 29.6, the Mazur homology 3-sphere will be defined as the boundary of a
compact, contractible 4-manifold. This 4-manifold will be described via a handle decomposition
using a 0-handle, a 1-handle, and a 2-handle. Let B1 and B2 be two disjoint 3-balls in ∂D4,
where D4 is the 0-handle, and let h1 and h2 denote the homeomorphisms hi : D3 → Bi. This
then yields a map f = h1 ⊔h2 : S0 ×D3 → B1 ⊔B2; we now form the manifold D4 ∪f (D1 ×D3),
which is readily seen to be the manifold S1 ×D3. This is represented in the following illustration:

To attach the 2-handle onto the above manifold, we first consider the following inclusions:

S1 ×D2 ↪→ S1 × S2 ↪→ S1 ×D3

The first inclusion is the result of viewing D2 as one of the hemispheres of S2, while the second
follows from the fact that ∂D3 = S2; both maps are the identity on the S1 factor. Thus, we may
view S1 ×D2 as a subspace of ∂(S1 ×D3). Let Γ0 be the standard circle S1 × {0} in S1 ×D2,
and let Γ1 be the knot embedded in S1 ×D2 ⊂ ∂(S1 ×D3) shown in the following figure, taken
from [Fer]

Let N be a thickened neighborhood of Γ1, which is clearly homeomorphic to S1 ×D2. On
the boundary of N , we have a pushoff β of Γ1, which has linking number lk(Γ1, β) = 0 with
Γ1. Consider the homeomorphism φ : S1 ×D2 → N , mapping Γ0 to Γ1, and mapping a circle
S1 × ∗ on the boundary of S1 × D2 to a knot of the above type, i.e. having linking number
0 with Γ1. Note that the attaching map of the 2-handle described above is an orientation
preserving homeomorphism, as shown in Lemma 29.8. We now form the 4-manifold W 4 :=
(S1 ×D3) ∪φ (D2 ×D2).

Lemma 29.8. φ : S1 ×D2 ∼=−→ N is an orientation preserving homeomorphism.
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Figure 29.1. Attaching of the 1-handle.

Figure 29.2. The Mazur link Γ1.

Proof. By the relative Künneth formula, we get isomorphisms

H3(S1 ×D2, ∂(S1 ×D2)) = H3(S1 ×D2, (∅ ×D2) ∪ (S1 × S1))
∼=

⊕
i+j=3

(H i(S1) ⊗Z H
j(D2, S1))

∼= H1(S1) ⊗Z H
2(S2)

Furthermore, we have that H1(S1) ⊗Z H
2(S2) ∼= H1(S1), via the map x 7→ x ⊗ 1. Thus,

the degree of the map φ is determined by its restriction onto Γ0; that is, we have the following
diagram.

H3(S1 ×D2, ∂(S1 ×D2)) H3(S1 ×D2, ∂(S1 ×D2))

H1(S1) H1(S1)

φ∗

∼= ∼=
(φ|Γ0 )∗
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A standard computation shows that the degree of the lower horizontal map is the identity; thus,
the upper map also has degree 1, and hence is orientation preserving. □

Lemma 29.9. W 4 is contractible.

Proof. By Lemma 29.7, W 4 is homotopy equivalent to a 2 dimensional CW-complex X; this
CW-complex is constructed using one 0-cell, one 1-cell, and one 2-cell. The 2-cell is attached to
the circle S1 via a degree one map φ̃ wrapping ∂D2 = S1 around the 1-skeleton twice in one
direction, and once in the opposite direction, courtesy of the fact that the knot Γ1 winds twice
in one direction, and once in the opposite direction. This CW-complex can be easily shown to
be contractible, as follows. All its reduced homology groups are trivial, since its cellular cochain
complex ends takes the following form

0 → Z id−→ Z ×0−−→ Z → 0
In the above, the second map is the identity as a result of the local degree formula, and the third
map is trivial since the space is connected. Furthermore, a presentation of the fundamental
group is given by π1(X) = ⟨a | a2a−1 = 1⟩, which is clearly the trivial group. Consequently, by
successive iterations of the Hurewicz theorem, it follows that πn(X) = 0, for all n ≥ 1. Thus, the
map X → ∗ is a weak homotopy equivalence, so that contractibility follows from the Whitehead
theorem. □

As a consequence of Lemma 29.6, it follows that H3 := ∂W 4 is a homology 3-sphere, called
the Mazur homolgy 3-sphere. We note that in the above, the precise choice of the attaching
map φ is irrelevant, as long as φ|Γ0 winds, homtopically, once around S1 ×D2.

It is noteworthy to mention that a presentation of π1H
3 is given by

π1H
3 = ⟨a, b | a7 = b5, b4 = a2ba2⟩

Mazur showed this group is nontrivial, as stated in [Dav07]. Thus, H3 is not homotopy
equivalent to S3.

29.3. The Giffen disc

In this section, we prove that W 4 contains a 2-cell B inside its interior, called the Giffen
disc, which will play a vital role in the proof of the double suspension theorem, in this setting.
Furthermore, we show that this 2-cell is a pseudo-spine, as defined below.

Definition 29.10. A compact subset X of a manifold with boundary M is called a pseudo-spine
if M \X ∼= ∂M × [0, 1).

We now construct the Giffen disc. Begin by cutting S1 ×D2 along the disc D indicated in
Figure 29.2, and let {B2

i }i∈N be a countable collection where each of the Bi’s is a cylinder resulting
from the above cutting. Form D2 × [0,∞) by attaching B2

i × [i− 1, i] to B2
i+1[i, i+ 1] in such a

way that the curves inside the cylinders align; finally, let C3 be the one point compactification
of the above space, as represented in the Figure 29.3, taken from [Dav07]

Let L = (⋃i∈N Li) ∪ {∞}, where Li are as in the above figure. Clearly, C3 is a 3-cell
(hence the notation), and L has two connected components; furthermore, the component of
∞ is a Fox-Artin arc, so that, as a consequence, the embedding L ↪→ R3, resulting from the
standard embedding C3 ↪→ R3, is wild. Let σ : C3 → C3 be the shift homeomorphism defined
as σ(b, t) = (b, t + 1), and σ(∞) = ∞. Form the mapping torus T (σ) = C3 × I⧸∼, where ∼
identifies points (x, 0) with (σ(x), 1); additionally, let Ω be the mapping torus of σ|L : L → L.
We first note that T (σ) is homeomorphic to D3 × S1; to see this, observe that C

3 × I⧸∼ only
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Figure 29.3. Cone containing a Fox-Artin arc.

skips B2
1 × [0, 1], which can be homeomorphically "flattened", whereby we get a homeomorphism

T (σ) ∼= C3 × I⧸(C3 × {0} ∼ C3 × {1}) ∼= C3 × S1 ∼= D3 × S1. We further claim that Ω is an
annulus S1 × I. This follows after straightening both components of L, since L ∼= I1 ⊔ I2, where
each Ii is an interval (however, it is of course not ambiently isotopic to it, since the Fox-Artin
arc is wild). Then, Ω is the quotient space represented in the following figure.

Figure 29.4. Quotient space homeomorphic to the mapping torus Ω.

In the figure, I2 is partitioned into countably infinitely many subintervals, where the partition
points lie on the intersetion of the middle part of the Fox-Artin arc with the discs B2

i × {i} in
the above cone. Then, I1 × {0} is identified with a (strict) subinterval of the first interval in this
partition; furthermore, due to the shift map, the subintervals [i − 1, i] × {0} ⊂ I2 × [0, 1] are
identified with the shifted ones, namely [i, i + 1] × {1} ⊂ I2 × [0, 1]; these are represented on
the above figure by shifted Latin letters. It then follows easoly that Ω is an annulus. Consider
the natural embedding Ω ↪→ T (σ), resulting from the fact that L ⊂ C3; this embedding is such
that Ω ∩ ∂T (σ) = ∂Ω. It is imperative to note that ∂Ω consists of a standard circle on one of
its connected components, and of a Mazur link Γ1 on the other; this can be seen geometrically
from the figure of the cone C3 above, where the standard circle results from the ∞ point. This
embedding (or more precisely a part thereof) is represented in Figure 29.5.

In W 4 = (S1 ×D3) ∪ h, where h is a 2-handle such that h ∩ (S1 ×D3) is a neighborhood
as occurring in the above construction, and where Γ1 = ∂D2 × {0} ⊂ D2 × D2 = h, let
B := Ω ∪ (D2 × {0}). By the Alexander trick, B is easily seen to be a 2-cell in int(W 4).

Theorem 29.11. B is a pseudo-spine of W 4.
Before attempting to prove Theorem 29.11, we will have a detour to see some results from

regular neighborhoods and piecewise-linear topology.
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Figure 29.5. Transversal cut of T (σ).

29.4. Regular Neighborhoods

In this section, we will list some definitions and results from PL-topology and regular
neighborhoods, without proofs.
Definition 29.12. A ∆-complex structure on a space X is a collection of maps {σα : ∆nα → X}
from standard simplices to X, where nα depends on α, that satisfy the following

(1) The restriction σα|int(∆nα ) is injective, and each point of X lies in the image of exactly
one such restriction σα|int(∆nα ).

(2) Each restriction of σα onto the faces of ∆n is one of the maps σβ : ∆n−1 → X, where
we identify ∆n−1 with a face of ∆n by a linear homeomorphism.

(3) A set A ⊂ X is open if and only if σ−1
α (A) is open in ∆n for all α.

We will, however, not need this generality; our study restricts to X ⊂ Rn. A finite collection
K of simplices in Rn is called a simplicial complex if for σ ∈ K, and τ < σ, where < means “is
a subface of", then τ ∈ K, and if σ, τ ∈ K, then σ ∩ τ < σ and σ ∩ τ < τ . In the above case, the
geometric realisation of K is by definition |K| = ⋃

σ∈K σ , and is called a polyhedron, while K is
a triangulation of |K|.
Definition 29.13. A locally finite simplicial complex is a (possibly infinite) collection K of
simplices σ ⊂ Rn such that:

(1) If σ ∈ K and τ < σ, then τ ∈ K.
(2) If σ, τ ∈ K, then σ ∩ τ < σ and σ ∩ τ < τ .
(3) Every point of K has an open cover that intersects only finitely many of the simplices

of K non trivially.
Two disjoint simplexes σ, τ ⊂ Rn are said to be joinable if there exists a simplex γ that is

spanned by their vertices. In this setting, σ and τ are said to be opposite faces of γ, and γ
is called the join of σ and τ , denoted γ = σ ∗ τ . We remark that we will later discuss a more
general operation on topological spaces, called join, not to be confused with the one here. Two
finite simplicial complexes K,L are said to be joinable if all σ ∈ K and τ ∈ L are joinable, and
if for σ, σ′ ∈ K and τ, τ ′ ∈ L, we have that σ ∗ τ ∩ σ′ ∗ τ ′ is a common face of σ ∗ τ and σ′ ∗ τ ′.
We now have reached the definition which was behind this entire excursion into PL-topology.
Definition 29.14. − Let K be a simplicial complex, and let L be a subcomplex. We say

that there is an elementary collapse of K onto L if K \ L consists of two simplexes
A and B such that A = a ∗ B, where a is a vertex of A. Thus, |K| = |L| ∪ A, and
|L| ∩A = a ∗ ∂B.
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− The complex K is said to collapse to the subcompex L if there is a finite sequence of
elementary collapses that eventually land in L.

− If P is a polyhedron in a PL manifold M , then N is a regular neighborhood of P if
(1) N is a closed neighborhood of P ;
(2) N is a PL manifold;
(3) N collapses to L.

We now quote the regular neighborhood theorem, as used in the proof of theorem 6.

Theorem 29.15 (Regular Neighborhood Theorem). Let P be a polyhedron in the PL man-
ifold M . Then, there exists a regular neighborhood N of P in M , that is unique up to PL
homeomorphism, rel. P .

29.5. Joins

The current section is devoted to a discussion on joins of topological spaces. This operation
is quite interesting in of its own, as it is used in the Milnor construction of universal G-bundles;
furthermore, it is quite relevant to our discussion here.

Definition 29.16. Let X and Y be two topological spaces. We define X ∗ Y as the space
(X × T × I)⧸∼ where ∼ identifies the following points:

− (x, y1, 0) ∼ (x, y2, 0), for all x ∈ X, and y1, y2 ∈ Y ;
− (x1, y, 1) ∼ (x2, y, 1), for all x1, x2 ∈ X and y ∈ Y .

The first result that we will prove is the fact that joins behave nicely for spheres, in the
following sense.

Lemma 29.17. Sn ∗ Sm ∼= Sn+m+1.

Proof. Define the map φ : Sn × Sm × I → Sn+m+1, mapping (x, y, t) 7→ x cos πt2 + y sin πt
2 ∈

Rn+1 × Rm+1 which has norm 1, i.e. φ(x, y, t) ∈ Sn+m+1. First, note that for y1, y2 ∈ Sm, we
have φ(x, y1, 0) = φ(x, y2, 0) = x, while for x1, x2 ∈ Sn, we also have φ(x1, y, 1) = φ(x2, y, 1).
Thus, φ respects the equivalence relation on Sn ∗Sm, so that φ descends to the quotient to a map
φ̃ : Sn ∗Sm → Sn+m+1, such that φ = φ̃ ◦ q, where q is the quotient map. We note that the map
φ is surjective. Indeed, let z ∈ Sn+m+1. We first distinguish two cases; if z has all coordinates
of one of the factors Rn+1 or Rm+1 equal to zero when z is seen as an element of Rn+m+2. Let
xz = projn+1(z), and yz = projm+1(z) be the projections in the product Rn+1 × Rm+1. Then,
we have that z = φ(xz, y, 0) (for arbitrary y) or z = φ(x, yz, 1) (for arbitrary x).
In the second case, both xz and yz are nonzero. Then, we have that |x|2 + |y|2 = 1, so that there
exists a unique t ∈ (0, 1) such that |x2| = cos πt2 and |y|2 = sin πt

2 , with both non zero. In that
setting, it is easy to see that φ( x

cos πt
2
, y

sin πt
2
, t) = z, and hence surjectivity of φ. Since φ = φ̃ ◦ q,

it follows that φ̃ is also surjective.
For injectivity, we note that the only points of z ∈ Sn+m+1 that have |φ−1(z)| > 1 are those
points such that xz = 0 or yz = 0, each having preimages {xz} × Sm × {0} and Sn × {yz} × {1}.
These are precisely those sets that ∼ identifies, and hence φ̃ is also injective, and thus a bijective
continuous map. Finally, note that Sn ∗ Sm is a compact space, as being image of a compact
space, while Sn+m+1 is compact. By the compact-Hausdorff lemma, this continuous bijective
map is actually a homeomorphism, and thus Sn ∗ Sm ∼= Sn+m+1. □

The following lemma is the main reason why we included this section in this text:
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Lemma 29.18. For any topological space X, ΣX ∼= S0 ∗ X. By associativity of the join
operator, it then follows that Σ2X ∼= (S0 ∗ S0) ∗X ∼= S1 ∗X.

Proof. Write S0 = {α, β}. The proof follows easily after unraveling what ∼ does in this particular
setting. First, S0 ×X × I is homeomorphic to a disjoint union of two cylinders X × I, which
we write as (X × I)α ⊔ (X × I)β. Then, ∼ first identifies all points (α, x, 0) ∼ (α, x′, 0) and
(β, x, 0) ∼ (β, x′, 0), so collapses the 0-th part of both cylinders to a point. Thus, we get a
disjoint union of two cones over X. Then, we identify the points (α, x, 1) ∼ (β, x, 1), i.e. we glue
the full part of the cone together via the identity. The resulting space is clearly the suspension
of X, as being homeomorphic to (X × [0, 2])⧸(X × {0}), (X × {2}). Below is an illustration of
the proof. □

Figure 29.6. Visual representation of the above proof

In our situation, we note that Σ2H3 = (H3 × I × I)⧸∼, where ∼ identifies the sets {H3 ×
{0} × {t}}t∈[0,1], {H3 × {1} × {t}}t∈[0,1], H3 × I × {0} and H3 × I × {1} each to a point. Define
Γ ⊂ Σ2H3 as being the following set, where q denotes the quotient map

Γ := q(
⋃

t∈[0,1]
H3 × {0} × {t}) ∪ (

⋃
t∈[0,1]

H3 × {1} × {t}) ∪ (H3 × I × {0}) ∪ (H3 × I × {1})

This set is called the suspension circle, for obvious reasons. Note that away from this set, the
topology of the set H3 × (0, 1) × (0, 1) is unaltered, as the quotient does not affect it, so that
on these points, we do have a manifold of dimension 5. By lemma 1, the proof of the double
suspension theorem for the Mazur homology 3-sphere would follow from showing that the points
in Γ are also manifold points, i.e. have neighborhoods homeomorphic to R5. This, however, is
not as simple as it may sound. It will use the following Proposition 29.19, Theorem 29.11 (which
is yet to proved), and a theorem by Bryant which we will be stated without proof.

Proposition 29.19. Γ is locally homeomorphic to cone(H3) × R, in the sense that for all
x ∈ Γ, there exists a neighborhood U of x in Σ2H3 such that U ∼= cone(H3) × R.

Proof. Let α ∈ Γ ⊂ Σ2H3, which is an element of the form [x, t, s], where [] denotes the
equivalence class under the relation ∼. In this setting, we need to distinguish two cases:
s /∈ {0, 1}, and s ∈ {0, 1}.

In the first case, we may assume t = 0, as the case t = 1 follows with the same proof. We view
X× I×{s} as a copy of ΣX, along the transversal cut at s. Let cone(x) be the cone p(X× [0, ε]),
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for 0 < ε < 1, where p is the quotient map p : X × I → ΣX, centered at that x, which is
clearly an open set containing (x, 0). Since we assumed that s /∈ {0, 1}, then the topology at
that point coincides with the topology of ΣX × I. Let δ < min(s, 1 − s), chosen so that the
following open neighborhood avoids the suspension points, namely the open neighborhood of α
given by cone(x) × (s− δ, s+ δ). This is clearly the required one, as cone(x) ∼= cone(H3) (by
construction), and (s− δ, s+ δ) ∼= R.

Let now s ∈ {0, 1}, i.e. α be one of the suspension points. Again, assume that s = 0, as
the proof works, mutatis mutandis, for s = 1. Again, in this setting, q(X × {1

2} × I) is a copy
of ΣX; let cone(x) be the cone in that copy of ΣX of the pole x. Then, cone(x) is an open
neighborhood covering the X and s factors in the product; taking U := cone(x) × (1

4 ,
3
4), the

result follows. We again include an illustration:

Figure 29.7. Local neighborhoods homeomorphic to cone(H3) × R

The green neighbourhood corresponds to the construction of the first case, while the blue
one is that of second case. □

29.6. Proof of the Double Suspension Theorem for H3

We again delay the proof of Theorem 29.11 above, which will be crucial in what follows. We
quote the following result by Bryant, established in [Bry68].

Theorem 29.20. If Mn is an n-manifold, and D ⊂ Int(Mn) is homeomorphic to Dk, for
k ≤ n, then Mn

⧸D × R ∼= Mn × R.
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The proof of the double suspension theorem for H3 follows easily from Proposition 29.19,
Theorems 29.11 and 29.20; indeed, we have a homeomorphism φ : W 4 \B

∼=−→ H3 × [0, 1), since the
Giffen disc B is a pseudo-spine of W 4 by Theorem 29.11. Then, it follows that W

4
⧸B ∼= cone(H3),

where the homeomorphism Φ : W
4
⧸D → cone(H3) is defined as being the map φ on W 4 \ B,

while mapping [B] (the point onto which B collapses) to the coning point [H3 ×{1}] in cone(H3).
Another way to see the above homeomorphism is to note that they are both the one point
compactification of H3 × [0, 1), and that one point compactification of Hausdorff locally compact
spaces is unique up to homeomorphism.

By Lemma 29.4, it is sufficient to show that Σ2H3 is a manifold, since it is clearly compact.
As mentioned above, all points in H3 \ Γ are clearly manifold points, i.e. have neighborhoods
homeomorphic to 5 dimensional Euclidean space. For points x ∈ Γ, Proposition 29.19 yields a
neighborhood x ∈ U ⊂ H3 such that U ∼= cone(H3) × R. From the above discussion, we note
that U ∼= W 4

⧸B×R. By Bryant’s Theorem, i.e. Theorem 29.20 above, we get that U ∼= W 4 ×R,
which is itself a manifold of dimension 5. Thus, Σ2H3 is locally 5-Euclidean. It is easy to
check that Σ2H3 is second countable and Hausdorff, and consequently, Σ2H3 is a 5 dimensional
compact topological manifold, and thus by Lemma 29.4, Σ2H3 ∼= S5.

29.7. Proof of Theorem 29.11

In this section, we give a sketch of the proof of Theorem 29.11. We begin by showing that
T (σ) collapses to Ω under an infinite sequence of collapses. To see this, consider [0, 1]×B2

1 × [0, 1],
where [0, 1] ×B2

1 is as in Figure 29.3. Then, we have the following collapse in the above set:

[0, 1] ×B2
1 × [0, 1] ↘ (L1 × [0, 1]) ∪ ([0, 1] ×B2

1 × {1}) ∪ ({1} ×B2
1 × [0, 1])

A very rough illustration is given in Figure 29.8.

Figure 29.8. Sketch of the above collapse.
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Then, taking the image of the above collapse in the mapping torus, this would be the first step
of the collapse T (σ) ↘ Ω. That is, for n ∈ N, where all the B2

i , for i ≤ n, have been collapsed
to their underlying subcylinder, we consider the collapse
[n, n+ 1] ×B2

n+1 × [0, 1] ↘ (Ln+1 × [0, 1]) ∪ ([n, n+ 1] ×B2
n+1 × {1}) ∪ ({n+ 1} ×B2

n+1 × [0, 1]).
Since W 4 = (S1 ×D3) ∪φ (D2 ×D2), we get, by the definition of collapses, that

W 4 ↘ (S1 ×D3) ∪ (D2 × {0}).
We thus get the following sequence of collapses:

W 4 ↘ (S1 ×D3) ∪φ D2 × {0} ∼= T (σ) ∪ (D2 × {0}) ↘ Ω ∪ (D2 × {0}) = B.

However, the last collapse here differs from our definition, as it is the composition of infinitely
many collapses, namely the ones defined inductively in the above. However, this can be resolved
via the regular neighborhood theorem. Indeed, we have written B as B = ⋂

i∈NKi, where
Ki are the sets above. Then, W 4 collapses to each Ki, as there are finitely many collapses
connecting them. For any small enough regular neighborhood Ni of Ki, which exists by the
regular neighborhood theorem, we have Ni\int(Ni+1) ∼= ∂Ni× [0, 1]. Then, we have the following
equalities

W 4 \B = W 4 \ (
⋂
i∈N

Ki) = W 4 \ (
⋂
i∈N

Ni) =
⋃
i∈N

(W 4 \Ni).

Since W 4 collapses to Ni, we have that W 4 \ Ni
∼= ∂W 4 × [0, 1); but since Ni \ int(Ni+1) ∼=

∂Ni × [0, 1], it follows that the above union is exactly ∂W 4 × [0,∞) = H3 × [0,∞); thus, B
is indeed a pseudo-spine, which concludes the proof of the double suspension theorem in the
setting of the Mazur homology 3-sphere.
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Solutions to the exercises

Ekin Ergen, Christian Kremer, Isacco Nonino, and Arunima Ray

Solution to Exercise 1.1. Solution by Ekin Ergen.
The line with two origins: let X = R⊔R/ ∼, where xi ∼ yj iff xi = yj ̸= 0, where i, j ∈ {1, 2}

denote the components of the disjoint sum the element is coming from. Let this space with the
quotient topology with respect to the standard topologies of R. In other words, we are gluing
the two lines at corresponding points except 0.

(1) This space is not Hausdorff at 0: there are two points that correspond to 0. These
points are not separable by open subsets of X, as any open neighbourhoods of 01 and
02 of X include some balls (−ε1, ε1) respectively (−ε2, ε2). However, these cannot be
disjoint by construction.

(2) Paracompact: by the quotient topology, every open cover of X can be pulled back to
an open cover of R ⊔ R by taking preimages of p : R ⊔ R → R ⊔ R/ ∼= X. This has a
locally finite open refinement since R and therefore R ⊔ R are paracompact. Again by
the quotient topology, the image of this refinement is locally finite.

(3) Pick p(−ε1, ε1) for some ε1 ∈ R. This is a Euclidean open neighbourhood in X due to
quotient topology.

Solution to Exercise 1.2. Solution by Christian Kremer.
Let Ω be the first uncountable ordinal. This is a well-ordered set which is not countable

with the property that for all i ∈ Ω, the set {j ∈ Ω|j ≤ i} is countable. Take a copy of [0, 1)
for each i ∈ Ω to define a set R. Elements are of the form (x, i) where i ∈ Ω and x lies in the
copy of [0, 1) corresponding to i. This set has a total order by [x, i) ≤ [y, j) if either i < j or
i = j and x ≤ y. Taking intervals to be open defines a topology on R. Also R has a smallest
element 0. Since the set {j ≤ i} is countable, we see that [0, (i, x)] is actually homeomorphic to
a compact interval in R. Define L = R

∐
0R. This is clearly a locally 1-Euclidean Hausdorff

space. It is also (path-)connected, so if it were paracompact, it would be second countable.
But L is not second countable, since L has a collection of uncountably many disjoint sets

open sets, namely the sets Ui = {x ∈ R ⊂ L | (0, i) < x < (1, i)}. If it were second-countable
there would have to exist countably many nonempty sets, each of which lies in some Ui, that
cover all the U ′

i . This would imply that Ω is countable.

Solution to Exercise 1.3. Solution by Ekin Ergen.
Let M be a compact topological manifold with charts {Ui}i∈I for some finite set I. Without

loss of generality, M is connected, otherwise we can embed each component of M in some RNi .
Since M is compact, there are finitely many components, which each have a compact image
on RNi , so we can take the largest of the Ni and embed the disjoint union via appropriate
translations (and extensions with respect to dimension of R) of each of the embeddings. In
particular, the dimension of M is well-defined; let us call it n. Choose embeddings ιi : Ui → Rn.
Choose a partition of unity {fi}i∈I subordinate to {Ui}, let Ai be the support of fi. Define

305
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hi : Ui → Rn with

(1.1) hi(x) :=
{
fi(x)ιi(x), x ∈ Ui

0, x ∈ X \Ai
This is a well-defined continuous map because {fi} is a partition of unity. Finally, for N =
|I|(n + 1) define F : X → RN by x 7→ (f1(x), f2(x), . . . , fn(x), h1(x), · · · , hn(x)). This map is
continuous as it is in continuous in each component. M is compact and RN is Hausdorff, so by
the compact-Hausdorff argument, it is also open. Finally, it is injective: let F (x) = F (y). Then
fi(x) = fi(y) and hi(x) = hi(y) for all i. Some fi(x) must be nonzero since for each x, these
add up to 1, which implies that ιi(x) = ι(y) for some i. But ιi is an embedding, so x = y.

Solution to Exercise 2.1. (PS6.1) Solution by Isacco Nonino. We want to show that every
connected topological manifold M with empty boundary is homogeneous.
Step 1: We show that for any two points a, b ∈ Int(Dn) there exist a homeomorphism of the
disc, fixed on the boundary, sending a to b.

− First we produce a radial shrink t in order to make the radius of a the same as the
radius of b (embed Dn in Rn). Without loss of generality, suppose that the radius of a
is at least the radius of b.

− Next, take the ball of radius b and rotate the boundary of the ball by a rotation r in
order to send the shrunken a (the image of a under the radial shrink just described) to
b. We can extend this to the b-ball with the Alexander Trick. Then we extend on the
other side of the boundary by making the rotation “die” in a continuous way:

(2.1) rt+(1−t)b · x = eϕ(t)πi · x

where ϕ(t) shrinks the angle continuously, ϕ(0) = θ0 is the original rotation angle, and
ϕ(1) = 0.

− Compose h = r · t to get the desired homeomorphism, h(a) = b and h|∂Dn = id.

Figure 2.1. The two steps
Step 2 We show that the orbit of each point under the action of Homeo(M) is both open and
closed. Since M is connected, this implies that the orbit is indeed M .

− First we show that the orbit is open. Take b in the orbit of x, so there is an h ∈
Homeo(M) such that h(x) = b. Take a euclidean open ball B around b. We will show
that this ball is contained in the orbit of x. Indeed, by composing with the chart
homeomorphism ϕ, this ball becomes the interior of a disc in Rn; we saw that given
ϕ(y), y ∈ B there is an homeomorphism H of this disc, fixed on the boundary, sending
ϕ(b) to ϕ(y). The composition ϕ−1Hϕ can be extended to the whole manifold M by
using the pasting lemma and taking the identity outside B (this is possible because the
homeomorphism on the disc fixes the boundary). The extended homeomorphism is an
element of Homeo(M) sending b to y. We compose this with h to send x to y. Hence y
lies in the orbit of x, and this works for each y in B. Thus, the orbit set is open.
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− Now we show that the orbit is closed. Take a point c lying outside the orbit of x. Again,
by considering a euclidean ball C around c and the chart homeomorphism ϕ, we can
construct homeomorphisms sending c to each point of C. So, if a point in C lies in
the orbit of x, then by composing with the inverse of the previous homeomorphism we
would get that c itself lies in the orbit, which is a contradiction. Hence, the complement
of the orbit set is open, so the orbit set is closed.

Solution to Exercise 4.1. (PS2.3)

Solution to Exercise 5.1. (PS2.1) Solution by Ekin Ergen.
It suffices to show the latter of the two statements, as [0, 1] ⊂ R3 is locally flat by definition.

Using the hint, we choose all of the balls Bi to be centered at the compactification point p
(granting ∩Bi ⊃ {x}), and their radii should be so that the ball Bi contains all but the i leftmost
knots in its interior, and its boundary crosses γ in exactly one point.

To find the isotopies, we have to unknot the partial arcs. When we were working with the
one-sided Fox-Artin arc, we moved thefree end to unknot all the knots one by one. This time,
however, we have to keep both ends of partial arcs γ ∩ (Bi \ IntBi+1) (that consist of one knot
each by construction) constant throughout the isotopy in order to maintain identity on the
complement. Therefore, the idea is to ’move the other end’. This is not allowed either, but we can
realize this as sliding the knot through Bi+1. Then we will only have moved γ ∩ (Bi \ IntBi+1).

Each of these unknottings yield ambient isotopies H i
t : Bi → Bi t ∈ [0, 1] that fix ∂Bi as well

as Bi+1 (e.g. by the isotopy extension theorem, after a slight thickening of γ ∩ (Bi \ Bi+1)).
Define

(5.1) h(x) =
{
H i

1(x), x ∈ Bi \ IntBi+1 for some i
x, elsewhere

Clearly, h is continuous in R3 \ {p}. In fact, it is also continuous in p: for any ε > 0, we can
pick δ = ε to fulfill the ε− δ-criterion as points do not move away from slices under h. Therefore
h is continuous. Passing from R3 to S3 by compactification and using the compact-Hausdorff
argument, we can also see that it is open. Bijectivity can be seen restricting to Bi \ IntBi+1, as
points do not move from one slice to another under any of the given homeomorphisms.

Solution to Exercise 5.2. (PS2.2)

Solution to Exercise 6.1. (Not assigned as homework)

Solution to Exercise 6.2. (Not assigned as homework)

Solution to Exercise 6.3. (Not assigned as homework) Let Σ ⊆ Sn be an embedded Sn−1 and
let Sn − Σ = A ∪B. If A is a smooth ball, then A is an embedded disc. By the smooth Palais’
Theorem, we are able to isotope this disc to the lower hemisphere, in which case the B will be
diffeomorphic to the (open) upper hemisphere. In particular, it will be a smooth ball.

Solution to Exercise 6.4. (Not assigned as homework)

Solution to Exercise 6.5. (PS3.1) Solution by Isacco Nonino. The double Fox-Artin arc is not
cellular in the interior of D3. Let α be the double Fox-Artin arc. Suppose that α is cellular.
Then we have that D3/α ∼= D3. Now D3/α∖ {pt} ∼= D3∖ α by Proposition 6.7 where {pt} is
the image of α in D3/α. By assumption, we have the following:

D3∖ {pt} ∼= D3/α∖ {pt} ∼= D3 − α



308 30. SOLUTIONS

So we see that if the double Fox-Artin arc were cellular, then the complement of the double
Fox-Artin arc in the disc would be homeomorphic to the complement of a point in D3. Now
this space is homeomorphic to S2 × (0, 1], which is homotopy equivalent to a sphere. Since
homeomorphism preserves this property, D3∖ α must be homotopy equivalent to a sphere.
However, we saw that the complement of the double Fox Artin arc has nontrivial fundamental
group, which leads to a contradiction. Therefore, the double Fox-Artin arc is not cellular in D3.

Solution to Exercise 6.6. (PS3.2) Solution typed up by Arunima Ray. Check out Bing’s book,
Geometric Topology of 3-manifolds, Theorem V.2.C as well.

The compact set M∖ U1 is contained in U2 and therefore is contained in (the image of) a
round collared ball B1 of large radius in U2 (the round balls of increasing radius give a compact
exhaustion of Rn). Then the boundary Σ = ∂B1 is a bicollared sphere in U2. By the Schoenflies
theorem, Σ bounds a ball B2 in U2 and we have M = B1 ∪B2 where the two balls are being glued
together along the boundary. By the Alexander trick, the result of gluing two balls together
along the boundary is homeomorphic to Sn.

For part (b), we know by hypothesis that each suspension point has a Euclidean neighbour-
hood. By the definition of a suspension, these neighbourhoods can be stretched out so that M is
the union of the two neighbourhoods, which are homeomorphic to Rn by definition. Now apply
part (a).

Solution to Exercise 6.7. (PS3.3) Since U is a manifold, the boundary is collared by Brown’s
theorem (Theorem 4.5). Then while Σ might not be bicollared, a push-off of Σ into the collar is.
Let Σ′ denote such a push-off. Then by the Schoenflies theorem, each component of Sn∖ Σ′ is a
ball. But then U is homeomorphic to a ball union a boundary collar, which is still a ball.

Solution to Exercise 6.8. (PS3.4) Solution by Isacco Nonino.
Let f : Dn → Dn be an embedding. We know that f(Dn) is locally collared. By Brown’s

result, given B ⊆ X, with B and X compact, then locally collared implies globally collared
(Theorem 4.5). So we have a global collar

h : f(Sn−1) × [0, 1] → Dn

for f(Sn−1). Now we will prove that f(Dn) is cellular in Dn. We define Bi to be f(Dn) ∪
h(f(Sn−1) × [0, 1/i]). These Bi are all homeomorphic to Dn since each is a ball with an added
boundary collar. Also IntBi ⊆ Bi−1 and the intersection of all Bi is precisely f(Dn) (the
sequence of 1/i converges to zero, corresponding exactly to f(Sn−1)). Hence f(Dn) is cellular.
We obtain:

Dn
⧸f(Dn) ∼= Dn

Dn∖ f(Dn) ∼= Dn
⧸f(Dn)∖ {pt} ∼= Dn∖ {pt} ∼= Sn−1 × (0, 1]

Solution to Exercise 8.1. (PS4.1) Solution by Isacco Nonino.
First key observation. Let r : B → {b} be the retraction to the point b. Then the

assumption that B is contractible tells us that r ∼= id.
Second key observation. Recall the following result. Given a paracompact space A, two

maps f, g : A → B such that f ∼= g, and a microbundle ξ over B, then f∗ξ is isomorphic to g∗ξ.
Now we can stare at the following diagram.

r∗E E E E

B B B B

j j

r id
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Combining our observations, we see that r ∗E ∼= E for each microbundle E over B. So it suffices
to show that r∗E is isomorphic to the trivial microbundle. The total space of r∗E is precisely
B × j−1({b}). Now by the local trivialization property, given U ∋ b an open neighbourhood of b,
there is a V ⊆ E such that V ∼= U × Rn.

V

U U

U × Rn

j|V

∼=

i

×0 pr1

We consider the microbundle (B ↪→ B× j|−1
V ({b}) −→ B), which is isomorphic to r∗E. Remember

that we just care about what happens locally around the ‘zero section’ x → (x, i(b)).
Consider now the microbundle E|{b}, the restriction of E at the point b. There is an homeo-

morphism h : j|−1
V ({b}) → {b} × Rn ∼= Rn coming from the local trivialization homeomorphism.

Now we conclude by the diagram

B × j|−1
V {b}

B B

B × Rn

pr

h

×0

i′

pr

that r∗E, and hence E itself, is isomorphic to the trivial microbundle.

Solution to Exercise 8.2. (PS4.3) Solution by Ekin Ergen.
Recall that the compact-open topology of C(X,Y ) is generated by a subbasis {f |f(K) ⊂

U}K,U , where K runs over compact subsets of X and U runs over open subsets of Y .
(1) The compact open topology is coarser than uniform topology. We want to see that all

open subsets with respect to the compact open topology is open with respect to the
uniform topology. To this end, it suffices to show this claim for the subbasis mentioned
above, as all open subsets of compact open topology are generated by finite intersections
of such sets. Let B(K,U) := {f | f(K) ⊂ U} be a such open set for a fixed K and
U as above. Let f ∈ B(K,U). If we can show B(f, ε) ⊂ B(K,U) for some ε, we are
done because then we can take the union over all f as B(K,U). Here, it suffices to
pick ε = d(f(K), U ′) where U ′ denotes the complement of U . Then any h ∈ B(f, ε)
satisfies d(f(x), h(x)) < d(f(K), U ′) ≤ d(f(x), U ′) for all x ∈ K ⇒ h(x) ∈ U . Note
that d(f(K), U ′) is well-defined because both are closed and f(K) is compact.

(2) The uniform topology is coarser than the compact open topology. Conversely, we want
to find f ∈ T ⊂ B(f, ε) for given f, ε, such that T is open with respect to the compact
open topology. For each x ∈ X, pick Nx such that f(Nx) lies in the ε′-neighbourhood of
f(x) for some ε′ < ε/3, which we call Ux to use later. In particular, f(Nx) has diameter
less than 2ε/3. Since X is compact, we can find a finite cover among Nx, say of the
points x1, . . . , xn. Finally define Ci := Nxi and Ui := Uxi that f(Ci) lies in. Then⋂n
i=1B(Ci, Ui) includes f and lies inB(f, ε). To see the latter, let g ∈

⋂n
i=1B(Ci, Ui). As

X = ⋃
Ci, x ∈ X means x ∈ Ci for some i, and hence g(x) ∈ Ui because g ∈ B(Ci, Ui).

Then d(f(x), g(x)) ≤ d(f(x), f(xi)) + d(f(xi), g(x)) ≤ ε′/3 + 2ε′/3 < ε.

Solution to Exercise 8.3. Solution by Isacco Nonino and Christian Kremer.
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The result is generally attributed to unpublished work of Brown. It is sketched in [EK71a,
p. 85]. Alternative proofs are given in [Sie68, p. 535] and [Sie70a, Corollary 5.4].

Let h : X × R → Y × R be a homeomorphism. The key point in this argument will be
that Y × R has two product structures, the intrinsic one and the one induced from X × R via h.

Let Xt denote X × {t} for t ∈ R and let X[t,u] denote X × [t, u] for [t, u] ⊆ R. Similarly, let
Ys denote Y × {s} for s ∈ R and let Y[r,s] denote Y × [r, s] for [r, s] ⊆ R. By compactness of X
and Y , there exist a < c < e and b < d such that

(1) Ya, Yc, Ye, h(Xb), and h(Xd) are pairwise disjoint in Y × R,
(2) h(Xb) ⊆ Y[a,c],
(3) Yc ⊆ h(X[b,d]), and
(4) h(Xd) ⊆ Y[c,e],

as illustrated in the leftmost panel in Figure 8.8. This may be achieved by first fixing a, and
then choosing as follows.

− Choose b so that (1) is satisfied for a and b.
− Choose c > a so that (1) and (2) are satisfied for a, b, and c.
− Choose d > b so that (1) and (3) are satisfied for a, b, c, and d.
− Choose e > c so that (1) and (4) are satisfied.

Figure 8.8. The push-pull construction. Each panel depicts the space Y × R.
The blue and yellow regions denote h(X[b,d]) and Y[a,c], respectively. Note that
the regions overlap.

Now we construct a self-homeomorphism χ of Y × R as the composition

χ = C−1 ◦ PY ◦ PX ◦ C,

where the steps are illustrated in Figure 8.8. The maps PX and PY will constitute the actual
pushing and pulling while C, which we might call cold storage, makes sure that nothing is pushed
or pulled unless it is supposed to be.

The maps are obtained as follows:
− The map C rescales the intrinsic R-coordinate of Y × R such that C(Y[a,c]) lies be-

low h(Xb) and leaves h(Xd) untouched. We require C to be the identity on Y[c+ε,∞)
and Y(−∞,a], for ε small enough so that Yc+ε ⊊ h(X[b,d]).

− The map PX pushes h(Xd) down to h(Xb) along the R-coordinate induced by h, that
is, the image of the product structure of X × R, without moving C(Y[a,c]).

− The map PY pulls h(Xb) = (PX ◦ C ◦ h)(Xd) up along the intrinsic R-coordinate of
Y × R so that it lies above the support of C−1, again without moving C(Y[a,c]). This
can be done in such a way that PY is supported below Ye.
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The map χ is the identity outside of Y[a,e]. Observe that χ leaves h(Xb) untouched and
that χ(h(Xd)) appears as a translate of h(Xb) in the intrinsic R-coordinate. In other words, for
each x ∈ X we have that χh(x, d) = τK(χh(x, b)), where τK is the translation in Y ×R by some
constant K.

Define H := χ ◦ h : X × R → Y × R, and consider the diagram

X × [b, d] Y × R

X × S1 Y × S1

H|

πb∼d et∼t+K

g

where the lower horizontal map g : X×S1 → Y ×S1 is by definition the composition e◦H| ◦π−1.
The map g is well defined since H(x, d) = τKH(x, b). Similarly g is injective since H is a
homeomorphism and e(y, t) = e(y, t′) implies, without loss of generality, that either (y, t) = (y, t′)
or (y, t) = H(x, b) and (y, t′) = H(x.d) for some x. It remains only to check that g is surjective.
It suffices to show that for each (y, t) ∈ Y × R there exists n ∈ Z such that τnK(y, t) ∈ H(X[b,d]).
Fix some (y, t). Observe that the complement of H(X[b,d]) in Y × R has two components. Let
N be the least integer such that p := τNK (y, t) lies strictly above H(X[b,d]). We now prove that
p′ := τN−1

K (y, t) ∈ H(X[b,d]). The line {y} × R ∋ p, p′ intersects H(X[b,d]) in a disjoint collection
of intervals, that is,

({y}×R)∩H(X[b,d]) = {y}×([t1, t2]∪[t3, t4] · · ·∪[tL, t1+K]∪[t2+K, t3+K]∪· · ·∪[tL−1+K, tL+K])

for some odd L. In particular, {(y, ti)} are the intersections of {y} × R with H(Xb) and
{(y, ti +K)} are those with H(Xd). (Depending on the shape of H(Xb) the intervals may not
have been listed in ascending order, i.e. it might be that, e.g., t1 +K < ti for some i). Nonetheless,
observe that, under the product metric, we have that d(p, (y, t1)) > K while d(p, p′) = K. So p′

lies above (y, t1) on the line {y} × R.
If p′ ∈ {y} × (t2i, t2i+1) for some i, then

K = d(p, p′) > d(p, (y, t2i+1)) > d((y, t2i+1 +K), (y, t2i+1)) = K,

which is a contradiction. If p′ lies in the component of (Y × R) \H(X[b,d]) above H(X[b,d]), it
would contradict the minimality of N . Then either p′ lies in one of the intervals of the form
{y} × [t2i−1, t2i] or {y} × [t2i +K, t2i+1 +K], which implies that p′ lies in H(X[b,d]) as desired.

Solution to Exercise 9.1. (PS4.2) Solution by Isacco Nonino.
Following Milnor’s idea, we start by defining the composition of two microbundles.
Step 1: composition of microbundles. Let ξ : B → E → B and ν : E → E′ → E be two

microbundles such that the total space of ξ is equal to the base space of ν. We define a new
microbundle over B with total space E′ as ξ · ν:

B
i′·i−−→ E′ j·j′

−−→ B,

where the inclusions and projections are the ones inherited from ξ and ν.
Step 2: the normal and tangent microbundle cases. Let tM : M ∆−→ M ×M

pr1−−→ M
be the tangent microbundle and let p∗

2n be the pullback of the normal microbundle via the
projection onto second coordinate
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M ×M

p∗
2(U) U

M ×M M

i′

pr1 r

pr2

where the total space is p∗
2(U) = {((m, m̄), u) | m̄ = r(u)}. Now define the composition tM · p∗

2n:

M p∗
2(U) Mi′·∆ pr1·pr1

(with some abuse of notation for the projections). Consider now tN |M :

M M ×N M∆ pr1

We want to show that they are isomorphic. i′ · ∆(M) : m 7→ ((m,m), i(m)) ∈ p∗
2U for i : M ↪→ U ,

while ∆(M) : m 7→ (m,m) ∈ M ×N . There is an open neighbourhood of i′ · ∆(M) (which we
can think of as a ‘cube diagonal’,in some sense) which can be mapped homeomorphically to an
open neighbourhood of ∆(M) in M ×N : take an open neighbourhood Um of each fibre r−1(m)
in U and then take the union on each m. This gives an open set ⋃m(m,m) × Um that can be
mapped to ⋃mm× Um, an open neighbourhood in M ×N . Hence the two microbundles are
isomorphic.

We do a similar procedure with pr∗
1n. In this case the isomorphism is much clearer: the

total space of the Whitney Sum is given exactly by E(tM ⊕ n) = {((m,m′), u) | m′ = r(u)},
while the total space of p∗

1n = {((m,m′), u) | m = r(u)}. Hence by the following diagram:

E(tM ⊕ n)

M M

E(pr∗
1n)

pr1·pr1

id

m→((m,m),i(m))

m→((m,m),i(m))

pr1·pr1

we see that the two microbundles tM ⊕ n and tM · pr∗
1n are indeed isomorphic.

Now we take D to be a neighbourhood of the diagonal in M×M such that the two projection
maps are homotopic. To do so, recall that M is an ENR. Let V be the euclidean neighborhood
that retracts on M . Now take D to be the set of all (m,m′) such that the segment joining m,m′

lies within V . Now we can construct a homotopy between the projections as H : M×M×I → M
by H((m,m′), t)) := (1 − t)m+ tm′, which is continuous and H0 = pr1, H1 = pr2.

By the property of the induced microbundle, we see that p∗
1n|D ∼= p∗

2n|D . Moreover:
− the microbundle t̄M , obtained by taking D as the total space instead of M ×M and

restricting the projection to D, is isomorphic to tM , since restricting the neighbourhood
of the zero section does not change the isomorphism type of the microbundle.

− the composed microbundle t̄M · p∗
1n|D : M → E(p∗

1n|D) → M is isomorphic to the
composed microbundle tM · p∗

1n : M → E(p∗
1n) → M . Again, we are just taking a

restricted neighbourhood of the zero section, the defining maps are just the restriction
of the others. The same holds for the projection on second coordinate.

Step 3: conclusion Now we have all the ingredients in our hands to obtain the result.

(9.1) tM · p∗
1n

∼= t̄M · p∗
1n|D ∼= t̄M · p∗

2n|D ∼= tM · p∗
2n

By (1) plus the results obtained in the previous two steps, we eventually obtain:

(9.2) tM ⊕ n ∼= tN |M
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Solution to Exercise 11.1. TBD

Solution to Exercise 15.1. (PS7.2) Solution by Christian Kremer. The "only if" part is clear.
Notice that for every f ∈ Homeo(M), the map given by postcomposition with f induces
an isomorphism f∗ : Homeo(M) → Homeo(M). It is continous being the restriction of the
composition Homeo(M) × Homeo(M) → Homeo(M) to the subspace {f} × Homeo(M) and
clearly has the inverse (f−1)∗. If U ⊆ Homeo(M) is a contractible neighbourhood of the identity,
then f∗(U) is a contractible neighbourhood of f : It contains f , is open and contractible since f∗
is a homeomorphism. As a side remark, it is not in general true that Homeo(M) is a topological
group since the inversion may not be continous.

Solution to Exercise 15.2. (PS7.1) Solution by Christian Kremer. First, we check that the
sets of the form W (f,K, ε) are actually open. Let g ∈ W (f,K, ε) be an element. Let m =
max{d(f(x), g(x))|x ∈ K}. Then g ∈ W (g,K, ε−m) ⊆ W (f,K, ε), so it actually suffices to find
an open neighbourhood of f in W (f,K, ε), which will make notation a little easier. Cover f(K)
with finitely balls Bi of radius 2/3 such that the compact sets Ki = f−1(1/2 ·Bi) ∩K cover K.
Then f ∈ V (Ki, Bi). Suppose g ∈

⋂
i V (Ki, Bi) and x ∈ K is a point. Pick i with x ∈ Ki and

let xi be the centre of the ball Bi. Then

d(g(x), f(x)) ≤ d(x0, f(x)) + d(g(x), x0) < ε

3 + 2ε
3 = ε.

Hence f ∈
⋂
i V (Ki, Bi) ⊆ W (f,K, ε).

Now we check that those sets consitute a basis of the topology. It suffices to show that for
all f ∈ U open, there is f ∈ W (g,K, ε ⊆ U). First, we can find a finite intersection of sets of the
form V (Ki,Wi) which is contained in U containing f , since those sets form a subbasis. Let εi
be the distance of f(Ki) and the complement of Ui. Then f ∈ W (f,Ki, εi) ⊆ V (Ki,Wi). Now
notice that

W (f,
⋃
i

Ki,min
i

{εi}) ⊆
⋂
i

V (Ki,Wi) ⊆ U.

This finishes the proof. Notice that if M is compact, f ∈ W (f,M, ε) ⊆ W (f,K, ε) for each K.
Since for any f in an open subset U we can find K and ε with f ∈ W (f,K, ε) ⊆ U , we see that
actually sets of the form W (f,M, ε) already form a basis of the topology. Of course, this is the
topology induced by the ∞-norm.

Solution to Exercise 15.3. (PS6.2) Solution by Christian Kremer.

(i) The orientation-beviour of homeomorphisms defines a map Homeo(R2) → {+,−}. To
see this, notice that Homeo(R2) is locally path-connected (for example, since it is locally
contractible) and isotopic homeomorphims have the same orientation-behaviour. (A
possible definition of the orientation behaviour either could be of homological flavor or
by passing to the one-point compactification S2. An isotopy of homeomorphisms of R2

induces an isotopy of homeomorphisms of S2.)
(ii) We know that Homeo(R2) is homotopy equivalent to Homeo0(R2). The map f 7→

(f(1, 0))/|f((1, 0))| ∈ S1 is continous and admits a section by S1 ⊆ O(1) ⊆ Homeo0(R2).
Thus, S1 is a retract of Homeo0(R2), so Homeo0(R2) can not be contractible. (For
example, the inclusion S1 → Homeo0(R2) has to induce an injection on fundamental
groups and the fundamental group of S1 is famously non-trivial.)

Solution to Exercise 15.4. (PS7.3) Solution by Christian Kremer. We indicate the construction
of the map in the picture below.
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Figure 15.3. Schematic picture of the map hi.
The first homology of M is freely generated by arcs γi around Bi. Now H1(hi)(γi) = γi+1
so that hi does not induce the identity on homology. Hence it can not be homotopic to the
identity. Using 15.2 we see that a neighbourhood basis of the identity is given by sets of the
form W (Id,K, ε) ∩ Homeo(M). Since each K is contained in a ball around 0 of radius r and
W (Id, Br(0), ε) ⊆ W (Id,K, ε), actually sets of the form W (Id, B, ε) where B is a closed ball
around the origin. For every closed ball around the origin there is an i such that hj is the identity
on this ball for j ≥ i, so the sequence (hi) converges to the identity. Since every neighbourhood
of the identity contains a map of the form hi, all of which are not homotopic to the identity, no
neighbourhood of the identity is path-connected, since a path in the space of homeomorphisms
is a homotopy (even stronger, an isotopy).

Solution to Exercise 17.1. (PS8.1) Solution by Isacco Nonino.
First proof. We first prove the result using the stable homeomorphism theorem SHn.

Let h : Tn → Tn be an orientation preserving homeomorphism. We saw in class that such
homeomorphism can be lifted to an homeomorphism h̃ : Rn → Rn such that

Rn Rn

Tn Tn

h̃

e e

h

commutes. By SHn, since h̃ is an orientation preserving homeomorphism, h̃ is stable. Let {Ui}
be open subsets of Rn such that h̃ = h̃1 ◦ · · · ◦ h̃k, where h̃i agrees with identity on Ui. Define
Vi := e(Ui), which is open in Tn. Let hi := e ◦ h̃i ◦ e−1. Clearly, hi|Vi = Id and by definition
h = e ◦ h̃ ◦ e−1 = h1 ◦ · · · ◦ hk. Therefore h is stable.

Second proof. We show the result without using SHn.
− We first suppose that h∗ : π1(Tn, x0) → π1(Tn, x0) = Id. (This is independent from the

choice of the basepoint x0; we can also assume that h preserves the basepoint x0 since
Tn is homogeneous). Now we lift the homeomorphism to the universal cover Rn as we
did before.

Rn Rn

Tn Tn

h̃

e e

h

Without loss of generality, suppose that x0 = e(0, . . . , 0) = (1, . . . , 1). Take the unit
cube In and let M := max{∥f̃(x) − x∥ | x ∈ In}. The maximum M exist since In is
compact. The identity condition on the fundamental groups implies that each integer
point on the lattice Zn ⊆ Rn is fixed by the lift h̃. This means that each unit cube
with integer vertices in Rn is mapped in exactly in the same way as In (since integer
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translations are deck transformations). This means max{∥f̃(x) − x∥ | x ∈ Rn} = M ,
i.e. h̃ is at bounded distance from the identity. Thus h̃ is stable and we conclude as in
the previous proof.

− Suppose now that the induced map on fundamental groups is not the identity. Let
A be the n × n matrix that encodes h∗. Important: A has determinant 1 since it is
invertible and has Z entries.

Claim: there exist a diffeomorphism g : Tn → Tn such that g∗ has matrix expression
A−1.
Proof of the claim: The matrix A−1 corresponds to a mapping of the integral lattice
Zn to itself (notice that in the previous point we were using that the mapping was
the identity). A−1 is the product of elementary matrices with integer entries; each
elementary matrix represent a diffeomorphism of Rn. By passing to the quotient space
over the integer lattice -the torus- we obtain a product of diffeomorphism of Tn, i.e. a
diffeomorphism g such that when lifted acts on the integral lattice by A−1. Now g ◦ h
is the identity on the fundamental group and by our previous step this means g ◦ h is
stable. Since h = g−1 ◦ (g ◦ h), it suffices to show that the diffeomorphism g is stable
itself (because product of stable is stable).

Claim: A diffeomorphism f : Tn → Tn is stable.
Proof of claim: We saw in class that every o.p. diffeomorphism of Rn is stable
(we used the smooth isotopy extension theorem there). So we can consider a smooth
structure for the torus Tn; given a diffeomorphism φ : Tn → Tn, composing it with
the atlas diffeomorphisms gives a diffeomorphism of Rn. This is stable, and hence the
original diffeomorphism is stable as well.

Now that we have this result, we deduce that h is stable as we wanted to show.

Solution to Exercise 17.2. (PS8.2) Solution by Isacco Nonino.
Step 1. Recall that Homeo(Rn) has two connected components. Moreover, the connected

component containing the identity – call it I – consists of orientation preserving homeomorphisms.
If we can prove that the space of stable homeomorphisms is both closed and open in Homeo(Rn),
then it must be one of the two connected components of Homeo(Rn). But as we saw in class,
stable homeomorphisms are isotopic to the identity, hence SHomeo(Rn) must be equal to I.

Step 2. We prove that SHomeo(Rn) is open.
− Claim: the identity has an open neighbourhood consisting of stable homeomorphisms.

To prove the claim, let C be a compact subset of Rn. By a previous exercise, W (C, ε) =
{f ∈ Homeo(Rn) | |h(x) − x| < ε, x ∈ C} is an open neighbourhood of the identity for
the compact-open topology. Let h ∈ W (C, ε). Now we apply the torus trick. Namely,
we construct a lift:

Tn Tn

Tn∖ 2Dn Tn∖Dn

Rn Rn

h̄

ĥ

α α

h

where α(Tn∖ Dn) ⊆ C. In particular, the map (̂h) is an homeomorphism Tn → Tn.
By Exercise 8.1, this homeomorphism is stable. But then going in the other direction
we also get that ĥ is stable (it is just the restriction) and hence h is stable as well.
Therefore W (C, ε) consists of stable homeomorphisms.

− Now take another homeomorphism g in Homeo(Rn). Since the translation is a continuous
map in this topological group, we can just translate the stable-open neighbourhood
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W (C, ε) of id to a open neighbourhood of g consisting of stable homeomorphisms (just
pre-compose with g).

Step 3. We prove that SHomeo(Rn) is also closed. We know that each coset of SHomeo(Rn) in
Homeo(Rn) is open: this is a general fact about topological groups. Their union is again open,
and also equals the complement of SHomeo(Rn). Hence SHomeo(Rn) is closed. This concludes
the proof.

Solution to Exercise 17.3. (PS9.1) Solution by Isacco Nonino.

(1) Let φ and ψ be the two locally collared embeddings. Let p := φ(0) and let q := ψ(0).
We proved in a previous problem that M connected n-manifold without boundary
is homogeneous. Since both embeddings are locally collared, they land in IntM , so
there is an homeomorphism h1 : M → M that satisfies h1(p) = q. Note that this new
embedded disc is still locally collared. Moreover, by Brown, locally collared implies
globally collared.

(2) Now we produce an homeomorphism h2. Namely, we start by taking φ : 2Dn → M
corresponding to the union of h1φ(Dn) and its collar. Use φ−1 : φ(2Dn) → 2Dn ⊆ Rn,
and consider the image V := φ−1(ψ(Dn) ∩ φ(Dn)), which contains 0. Produce a
homeomorphism of Rn that shrinks the radius of φ−1(φ(Dn)) = Dn ⊆ 2Dn while
stretching out the collar 2Dn∖Dn, until this Dn lies within V . Now map forward by φ
back into M . By concatenation, we obtained the desired homeomorphism h2 of M that
sends h1 ◦ φ(Dn) inside ψ(Dn), while keeping the boundary of the collared disc fixed.

(3) Consider ψ(Dn)∖ (h2 · h1(IntDn)). By the Annulus Conjecture, this is homeomorphic
to Sn−1 × I via a. Now stretch Sn−1 × 0 over Sn−1 × 1 with s and precompose with a−1.
This composition, which we will call h3, of homeomorphisms stretches the internal disc
over the entire ψ(Dn). Note that since ψ is globally collared as well, everything we do
inside this disc can be extended to an homeomorphism of M . Now define h ∈ Homeo(M)
by h := h3 · h2 · h1. By construction, h · φ(Dn) = ψ(Dn).

(4) So now we have a homeomorphism h that arranges the two images to be the same. We
want a final homeomorphism H of M such that ψ and H ◦ h ◦ ϕ are equal as maps. To
do this, we use that every orientation preserving homeomorphism of Dn is isotopic to
the identity, for n ≥ 6. This uses that orientation preserving homeomorphisms of Sn−1

are isotopic to the identity, and the Alexander trick.

Solution to Exercise 18.1. (PS9.2)

Solution to Exercise 19.1. (PS10.1) Solution by Christian Kremer. Quick outline: Arrange
ϕ(0) = ψ(0) (1). Using a collar, shrink ϕ unitil it has image inside the interior of ψ(Dn)
(2). Using the Annulus Theorem 17.1 we can blow up ϕ until ϕ(Dn) = ψ(Dn) (3). Using
the Alexander Isotopy, and the fact that all orientation-preserving homeomorphisms of Sn are
isotopic we finally arrange that ϕ and ψ are isotopic (4).

Detailed solution. First notice that Isotopy is an equivalence relation, in particular it is
transitive. We will change ϕ up to isotopy unitl it coincides with ψ. Also note that the notion
"being locally collared" is invariant under embeddings which are related by an isotopy from the
identity to another homeomorphism M → M .

(1) We want to arrange ϕ(0) = ψ(0). This follows from the following fact: If M is a
connected manifold and p, q are points in its interior, there exists an isotopy from the
identity to a self-homeomorphism of M which sends p to q. We do this by showing that
the set U of points q for which exists such an isotopy is both open and closed in the
interior of M which is connected.
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To show that it is open, let q be a point in U . Pick a chart around q such that q is
contained in the interior of the unit disc. If q′ is any other point in the interior of the
unit disc, we can find an obvious isotopy moving q to q′ as indicated in the following
picture.

Figure 19.5. Moving points inside a disc
To show that it is closed, let q be a point which does not lie in U . Then by the

argument above, the same is true for points q′ is a small disc neighbourhood of q, since
if there exists an isotopy moving p to q′ then there would also exists one moving p to q′

since as we saw above, there exists one moving q′ to q.
(2) The subspace M \Intϕ(Dn) is a manifold with boundary since ϕ is assumed to be locally

collared. Its boundary includes course ∂Dn. Attaching a collar to this, we see that we
can extend ϕ to an embedding ϕ′ : 2Dn → M . By a push-pull argument, as indicated
in the picture below, we can isotope ϕ′ relative boundary to arrange ϕ(Dn) ⊆ ψ(Dn).
We can even arrange that ϕ(Dn) maps to the interior of ψ(Dn).

Figure 19.6. Another push-pull argument
(3) By the Annulus Theorem 17.1, ψ(Dn) \ ϕ(Dn) is an annulus, i.e. there is an embedding

α : ∂(Dn) × I → M which maps homeomorphically into ψ(Dn) \ ϕ(Dn) such that
α|∂Dn×{0} is ψ|∂Dn under the identification ∂Dn = ∂Dn × {0}. We can extend this to
an embedding β : ∂Dn × [−1, 1] → M using a collar. Denote by f the homeomorphism
β|∂Dn×{1} ◦ ψ−1

∂Dn . Now we define an isotopy

Ht : M → M, x 7→


x : for x not in the image of ϕ or β;
β(v, s(1 − t

2) − t
2) : for x = β(v, s);

β(v, 2s(1 − t)) : for x = ψ(w), s = |w| + t
2 ≥ 1 and v = f( w

|w|);
ψ(v · (1 + t

2)) : for x = ψ(v) and |v| + t
2 ≤ 1.

Notice that H0 is the identity and H1 arranges the ϕ(Dn) = H1 ◦ ϕ(Dn). Of course, we
sketch what Ht is supposed to do in the following picture.

Figure 19.7. Lining up ψ and ϕ

(4) Now we are ready to do the last step. Note that ψ−1
∂Dn ◦ ϕ∂Dn defines an orientation-

preserving homeomorphism from the sphere to itself. We have already shown that such
a homeomorphism is isotopic to the identity, say via an isotopy ht. Using the Alexander
trick, we can extend this to an isotopy of Dn to itself. Define Ht = ψ ◦ ht. By the
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isotopy extension theorem, this extends to an isotopy of the identity M → M to a
self-homeomorphism carrying ψ|∂Dn to ϕ|∂Dn . At last, using the Alexander isotopy, we
can isotope ψ relative ∂Dn to ϕ.

Solution to Exercise 19.2. (PS10.2)

Solution to Exercise 19.3. (PS11.1) Solution by Isacco Nonino.
If the two locally flat embeddings f, g are locally-flat isotopic (via ht), then using the IET

we can recover an ambient isotopy Ht : Sn+2 → Sn+2 such that H0 = id and Ht · h0 = ht.
We show that H1 : Sn+2 → Sn+2 is the desired homeomorphism. First of all, notice that it
is indeed orientation preserving: since it is the "ending point" of an isotopy connecting it to
the identity, it must lie in the orientation preserving connected component of Homeo(Sn+2)!
Moreover, H1 · f = H1 · h0 = h1 = g, hence H1(f(Sn)) = g(Sn), i.e H1(K) = J .Finally, we have
that (H1 · f)−1 · g : Sn → Sn is isotopic to the identity (via the restriction of H on K), hence it
is an orientation preserving homeomorphism of Sn. Since f ,g are indeed orientation preserving,
we must have H1|K it is as well.
On the other hand, suppose we have an homeomorphism F with the said properties. We have
that F is isotopic to the identity, so there exist Ht : Sn+2 → Sn+2 such that H0 = id,H1 = F .
If we precompose the isotopy with f , we obtain Ht · f : Sn → Sn which is an isotopy between f
and F · f .
Now, consider (F ·f)−1·g : Sn → Sn. This is a well-defined orientation preserving homeomorphism
(because we know that F · f(Sn) = g(Sn) and the restriction is orientation preserving , hence
composition is again orientation preserving). Thus it is isotopic to the identity via an isotopy
ht : Sn → Sn.
Postcompose ht with H1 · f to get an isotopy H1 · fht between F · f and g. We can patch
together the two isotopies to get an isotopy between f, g. For the local flatness, the only problem
should arise when we attach the two isotopies, say at time 1/2. But we can make sure that in
small intervals [1/2 − ε], [1/2 + ε] the isotopy is constant! For times in [1 − ε, 1 + ε] the isotopy
is then constant, and hence locally flat.

Solution to Exercise 19.4. (PS11.2)
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