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 On irreducible 3-manifolds which
 are sufficiently large*

 By FRIEDHELM WALDHAUSEN

 We are mainly concerned with the questions whether any homotopy

 equivalence between compact orientable PL 3-manifolds can be induced by a

 homeomorphism, and whether homotopic homeomorphisms are also isotopic.

 Fairly complete answers are obtained for the class of manifolds which is

 indicated in the title.

 The restriction to irreducible manifolds has its main reason in the

 unproved Poincare conjecture. It has the side effect that our manifolds

 neither have handles nor are connected sums; which is very convenient, but

 only partially necessary.

 The second restriction is characteristic for the technique employed, which

 may be called an induction on dimension. Systematically, use is made of

 codimension 1 submanifolds which are "characteristic for the topology" of the

 "manifold." Following Haken, we adopt the name incompressible surface

 for such a submanifold (by this name, we will always refer to an orientable

 surface). We call a manifold sufficienty large, if it contains an incompressible
 surface. The important fact is that a sufficiently large irreducible manifold

 can be reduced to a ball, with the use of incompressible surfaces only, in the

 same way that a compact orientable 2-manifold, different from the 2-sphere,

 can be reduced to a disc by first splitting it at a non-contractible curve, if it

 is closed, and then splitting the resulting bounded 2-manifold at arcs (Haken).

 (Naturally, for 3-manifolds it takes a bit longer to get down.)

 Another (and rather immediate) consequence of this fact is that the uni-

 versal cover of such a manifold is a familiar space.

 The result concerning the existence of homeomorphisms has been known

 for surface bundles over the circle (Stallings [16], Neuwirth [9]). Partial

 results on the existence of isotopies have been announced by Giffen [3].

 I wish to thank Professor Schubert for discussions.

 0. Notation

 Up to ? 7, we work in the piecewise linear category.

 * This work was partially supported by a grant from the National Science Foundation.,
 GP5804.
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 IRREDUCIBLE 3-MANIFOLDS 57

 By a manifold we mean an orientable 3-manifold. It is compact, unless

 the contrary is admitted explicitly, or might emerge from a construction (e.g.,

 a covering); the same applies to other spaces or subspaces. It will sometimes

 be convenient to abbreviate system of submanifolds by manifold; but, in

 general, a manifold is connected.

 A surface is a connected 2-manifold. It is compact and/or orientable,

 unless the contrary is admitted explicitly.

 A surface F in the manifold M is properly embedded, i.e., F n AM= ,
 (where a denotes boundary). A surface in AM is a submanifold of AM.

 A system of surfaces in M or AM consists of finitely many, mutually

 disjoint components of the above two types.

 For F, a system of surfaces in M or AM, the symbol [&F] will denote the
 image under the boundary homomorphism of the 2-cycle represented by F

 and an orientation of F.

 I, D, E, denote line, disc, and ball, respectively; I is occasionally identified

 with the unit interval [0, 1].

 Closure and interior over more than one symbol are denoted by (a .) and

 U( ... ) denotes a regular neighborhood. General practice: Choose a

 triangulation in which all subspaces, previously mentioned in the argument,

 are subcomplexes; construct its second derived, and take the closed star of the

 object in question. Special practice: In the presence of a product structure,

 we will sometimes require that U( ... ) is in some sense compatible with the

 product structure. This will be indicated in the text.

 Let F be a surface in the manifold M. Then the manifold M', obtained

 by splitting M at F, has by definition the properties: AM' contains surfaces

 F1 and F2 which are copies of F, and identification of F1 and F2 gives a natural

 projection (M', F1 U F2) - (M, F). M' is homeomorphic to (M - U(F)), but
 we have to use both constructions.

 An isotopy

 (a) of a homeomorphism h: X-) Y is a map H: X x I-n Y such that, for

 hr = H I X x z, we have h. = h, and h.: X - Y is a homeomorphism onto Y,
 (b) of subspaces Z1, Z2 in X is an isotopy of the identity map on X, such

 that h1(Zl) = Z2,
 ( c ) of embeddings is defined via (b).

 Let F and G be surfaces in M or AM. F is parallel to G, if and only if

 there exists an embedding of F x I in M, such that F = F x 0, and G

 (&(F x I) - F x 0).
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 58 FRIEDHELM WALDHAUSEN

 Note. If F is parallel to G, then G is parallel to F. Note also that, if the
 surfaces F and G in M are parallel, then they are isotopic by an isotopy which

 is constant on AM. (Here the phrase surfaces in M, rather than surfaces in

 M or AM is essential).

 Frequently, a proof involves a sequence of constructions, each of which

 in turn involves alterations of some things. To avoid an orgy of notation in

 such cases, we often denote the altered things by the old symbols. The reader

 might adopt the point of view that such a proof proceeds by "induction on

 niceness." After having convinced ourselves that there is no obstruction to

 achieve some more niceness, we take up the same problem again, but with an

 improved induction hypothesis.

 1. Definitions and preliminaries

 (1.1) Incompressible surfaces.

 Definition. Let M be a manifold. Let F be a system of surfaces in M

 or AM. F is compressible in M in either of the following two cases.

 (a) There is a non-contractible simple closed curve k in F, and a disc D
 0x 0

 in M, D c M, such that D n F = AD = k.

 ( b ) There is a ball E in M, such that En F = aE.

 F is incompressible in M, if and only if it is not compressible in M.

 Whenever there is no doubt about the manifold, we will abbreviate incom-

 pressible in M by incompressible.

 Definition. The manifold M is irreducible, if and only if every 2-sphere

 in M is compressible. (Remember. If M is irreducible, and AM 0 , then

 either M is a ball, or else genus (aM) > 0, and hence H1(M) is infinite.)

 Definition. The manifold M is boundary-irreducible, if and only if AM

 is incompressible.

 LEMMA 1.1.2. Let M be a manifold. Let F be a system of surfaces in M

 or AM. F is incompressible in M, if and only if every component is.

 LEMMA 1.1.3. Let M be a manifold. Let F be a surface in M or AM, F

 being not a 2-sphere. F is incompressible, if and only if

 ker (w1(F) > w1(M)) = O.

 Since F is either a submanifold of AM, or a two-sided proper surface in

 M, this follows from the loop theorem.

 LEMMA 1.1.4. Let M be a manifold. Let F be a system of incompres-

 sible surfaces in M or AM. Let U(F) be a regular neighborhood of F, and
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 IRREDUCIBLE 3-MANIFOLDS 59

 M-(M - U(F)). Then

 (a) M is irreducible, if and only if M is.

 ( b ) ker (w1(M') - w1(M)) = 0, where M' is a component of M.

 This is not difficult. A proof for (a) may be found in [17], and for (b) in

 [16]. The next one is a well known corollary of the sphere theorem.

 LEMMA 1.1.5. Suppose M is irreducible, and w1(M) is not finite. Then

 M is aspherical, i.e., rj(M) = 0, for j > 2.

 LEMMA 1.1.6. Let M be an irreducible manifold.

 (a) If AM # 0, and M is not a ball, then there exists in M an incom-

 pressible surface F such that 0 # [&F] e H1(&M).

 (b) If AM = 0, then there exists in M an incompressible surface, if

 and only if either H1(M) is not finite or w1(M) is a non-trivial free product

 with amalgamation (or both).

 If F is a separating incompressible surface in M, AM= 0, then w1(M)

 is a non-trivial free product with amalgamation, w1(M) A*,B, where
 C '- w1(F), in a natural way.

 This seems to be widely known. A proof is given in [19].

 Definition 1.1.7. Let M be an irreducible manifold, which is not a ball.

 M is sufficiently large if and only if there exists an incompressible surface

 in M.

 Remark. There exist irreducible manifolds with infinite fundamental

 group, which are not sufficiently large [19].

 (1.2) Hierarchies. Let M1 be an irreducible manifold. A hierarchy for

 M1 (of length n) is by definition a sequence of triples

 Mj, F3 c Mj, U(F3) c M3 ; Mj1 = (Mj - U(Fj))

 where j ranges from 1 to n (>0), such that

 (a) Fj is an incompressible surface in Mj, U(Fj) is a regular neighbor-

 hood of Fj in Mj.

 ( b ) each component of M,+, is a ball.
 This concept (with technical differences, and with an additional condition

 on the surfaces which is inessential for our applications) has been introduced

 by Haken [7].

 In our applications, it will be convenient (yet not essential) that as many

 as possible of the Fj have non-empty boundary and do not separate the
 respective Mj. The following existence theorem gives us a hierarchy which
 automatically has these properties.
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 60 FRIEDHELM WALDHAUSEN

 THEOREM. Let M1 be an irreducible manifold with non-empty boundary.

 Then there exists a hierarchy for M1,

 Mj, Fj c Mj, U(F3) c M; MM, 1 = (M -U(F3)),

 j =1, *..,n, such that 0# [Fj] e H1(Mj), j = 1, *, n.

 This is essentially a part of a result of Haken [7, if, p. 101]. Since details

 have not yet appeared, and since we rely heavily on this theorem, a proof will

 be given in the next section. Our method of proof is slightly simpler than

 the original one; but it cannot give Haken's result. In particular, it cannot

 give an upper bound for the length of the hierarchy.

 Note. In the hierarchy, given by the theorem, every Mj is connected,

 and (by induction on (1.1.4)), every Mj is irreducible, and the inclusion

 homomorphisms w1(M*) - r1(Mj), i > j, are injections.

 (1.3) Maps. Let F be a system of surfaces in M, and U(F) a regular

 neighborhood of F. Then U(F) may be given the structure of a line bundle

 F x I, with F= F x 1/2, and Fx In&M= aFx I.

 A map f: X - M will be called transverse with respect to F, if there

 exists U(F) = F x I as above, such that f induces in f-'(U(F)) the structure

 of a line bundle, and f maps each fibre homeomorphically onto a fibre.

 PROPOSITION. Let M be an irreducible manifold, and F a system of

 incompressible surfaces in M. Let N be a manifold, and f: N- M a map.

 Then there exists a map g, homotopic to f, which is transverse with respect

 to F, and such that the system of surfaces in N, G = g-1(F), is incompres-

 sible in N. If f I AN were transverse with respect to F, then the homotopy
 from f to g may be chosen constant on AN.

 This principle has been applied to 3-manifolds by Stallings [16]. The proof

 proceeds, roughly, by sliding f along the fibres to make it transverse, and

 then, if f-1(F) is not incompressible, to simplify f 1(F) by surgery. Details

 are provided by Lemmas 1.1; 2, 3, 4a, 5 above, and by [19, Lem. 1.1].

 The same principle, applied in lower dimension, gives

 LEMMA. Let F be a surface, and k a system of simple arcs and non-

 contractible simple closed curves in F, k n aF = ak. Let G be a surface, and

 f: G o F a map. Then there is a map g, homotopic to f, which is transverse

 with respect to k, and such that g-1(k) does not contain a contractible closed

 curve. If f I aG is transverse with respect to k, then the homotopy from f to
 g may be chosen constant on aG.

 (1.4) We state theorems of Baer and Nielsen (restricted to compact

This content downloaded from 
�������������51.7.16.27 on Sun, 01 Oct 2023 19:13:20 +00:00������������� 

All use subject to https://about.jstor.org/terms



 IRREDUCIBLE 3-MANIFOLDS 61

 orientable 2-manifolds) in the form in which we use them. Proofs of (1.4.1)

 and (1.4.2) may be found in [2]. The simplest proof of (1.4.3) is analogous to

 our proof of (6.1), it uses Lemma (1.3). The closest reference to this type of

 proof seems to be [13].

 LEMMA 1.4.1. In the surface F, let k and l be either simple arcs or

 simple closed curves, such that k U aF = ak = 1 =1 neaF. Suppose k is

 homotopic to 1 by a homotopy which is constant on ak. Then there is an

 isotopic deformation of F, constant on aF, which carries k to 1.

 LEMMA 1.4.2. Let h: F - F be a homeomorphism, and H: F x In F

 a homotopy such that H I F x 0 = id, H I F x 1 = h, H(dF x I) c& F. Then
 h is isotopic to the identity. If the homotopy is constant on aF, then the

 isotopy may be chosen constant on aF.

 LEMMA 1.4.3. Let f: (G, aG) - (F, aF) be a map such that

 ker (f*: w1(G) - >w1(F)) = 0 .

 Suppose w1(G) # 0. Then there is a homotopy fi: (G, aG) (F, aF), zI,

 fO = f, such that either (a) or (b) holds.
 (a) G is an annulus, and f1(G) c aF,

 (b) fl: G -F is a covering map.
 If f I aG is locally homeomorphic, then the homotopy may be chosen so

 that f, I aG = f, I aG, for all z.

 2. Existence of hierarchies

 (Proof of Theorem 1.2)

 We need the very simplest facts of Haken's theory [6]. We refer to

 Schubert's exposition [12]. Since our definitions slightly differ, we give a

 shorthand description of the concepts which we use. Instead of normal

 decomposition, we use the term handle decomposition.

 (2.1) Let M be a manifold. A handle decomposition consists of collections

 of balls NO, NI, NII, N"'1, with union M, such that the members of each family

 are mutually disjoint, and with the additional properties below. The members

 of NO, NI, NII will be called Balls, Beams, and Plates, respectively.

 (1) NIII n (No U N' U NII) = aNIII, whence AM c N U N' U N"I

 ( 2 ) For each Beam, a fixed presentation as I x D is specified; for each

 Plate, a fixed presentation as D x I is specified.

 (3 ) For any Beam, we have

 (a) IxDnN'=IxD
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 62 FRIEDHELM WALDHAUSEN

 (b) I x Dfl N" = I x d, where d is a collection of arcs in &D;

 (d may be empty).

 (4 ) For any Plate, we have

 (a) D xInN' = e1 x I
 (b) D x I = N' e2 x I, where e1 and e2 are collections of arcs in

 &D (neither empty), such that e, U e2 = aD.

 ( 5 ) For each component of N' f NN", the induced product structures

 agree.

 (2.2) To a handle decomposition we associate a triple (X, A, C) of non-
 negative integers, which, in lexicographical ordering, will measure the

 "complexity" of the decomposition.

 (3) For a Beam, let 3 denote the number of components of d in (2.1.3);

 define 3" = max (3 - 2, 0), 3' = max (3 - 1, 0).

 Then X = H3"; Y = E3'; where the sums are over all Beams.
 (s) For a Ball, E define s as the number of components of En (NI U NII);

 (we have s > 0, unless NI = 0 = NII).
 Define = (e - 1); where the sum is over all Balls.

 (2.3) Normal surfaces. Let F be an incompressible surface in M, such

 that 0 # [&F] e Hj(&M). Consider the following operations
 (p) Let D be a disc in M, such that D n F = AD. Replace a neighbhor-

 hood of D n F in F by two copies of D. Since F is incompressible, the result

 will consist of a 2-sphere and a surface F", which again is incompressible, and

 has the same boundary as F. We regard F" as the result of the operation.

 (a) Let D be a disc in M, such that D n (F U AM) = AD, and each of

 D n F and D n AM is one arc. Replace a neighborhood of D n F in F by two
 copies of D; call the result F'. Clearly, F' is incompressible. Also, if we give

 F and F' compatible orientations, then [&F'] = [&F]. As the result of the

 operation, we will consider F", which is F', if F' is connected, and otherwise

 is a component of F', such that [&F"] # 0.

 PROPOSITION. Given a handle decomposition of M, and an incompressible

 surface F in M, such that 0 # [&F] e H1(&M), there exists an incompressible

 surface G, [&G] # 0, which may be obtained from F by operations (p) and (a)
 and by isotopic deformations, and which is a normal surface in the following

 sense.

 (1) GnN` = 0.
 (2 ) If D x I is any Plate, then Dx InG = D x r, where r is a

 collection of points in I; in particular, G nNII = 0.

 (3) If I x D is any Beam, then I x DnG = I x k, where k is a
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 IRREDUCIBLE 3-MANIFOLDS 63

 system of arcs in D, k n AD = ak.

 ( 4 ) If k, is any component of k in (3), then the end points of k, are not
 contained in the same component of d (cf. (2.1.3)), or in the same component

 of AD- d.

 ( 5 ) If k, is any component of k in (3), then the end points of k, are not
 contained in adjacent components of d (cf. (2.1.3)), and AD - d.

 ( 6 ) The intersection of G and any Ball consists of discs.

 For the proof, we refer to [12], (2.2). The main difference between normal

 decomposition, as described there, and handle decomposition, as described here,

 is that we do not require that every member of N0, N', N" have connected

 intersection with AM. But this does not affect the normalization. After this

 normalization has been carried out, we are left with a surface G, which has

 the above properties, except possibly for (5), which has no analogue in [12].

 In the situation which is forbidden by (5), there exist a Beam B, a Plate

 P, and a disc D in B, such that D n P and D n AM are one arc each, and

 I = (aD - ((D n P) U (D n AM))) is an arc which lies in G in such a way that

 G n U(l) = 1, where U(l) is a neighborhood of 1 in D. Then G is further

 simplified in a similar way as in step 9 in [12], (2.2).

 Note that, in another respect (concering G f NN), our definition of normal

 surface is much weaker than that in [12], namely, step 9 need be carried out

 only to the extent that our condition (4) is satisfied.

 PROPOSITION 2.4. Let M be a manifold with a handle decomposition of

 complexity (X, 'Y, C). Let G be a surface in M, such that 0 # [&G] e H1(aM),
 and such that G is a normal surface in the sense of (2.3). Let U(G) be a

 regular neighborhood of G. Then M' (M - U(G)) has a handle decompo-

 sition of complexity (X', I', c') < (X, I2, )
 PROOF. (A) We choose U(G) small with respect to the handle decompo-

 sition. If now N is any Ball, Beam, or Plate of M, then we define the

 components of (N- U(G)) to be Balls, Beams, or Plates of M' respectively.

 To define the product structures, we construct the same decomposition in a

 slightly different way. Construct the manifold M" by splitting M at G, i.e.,

 AM" contains two copies of G, and identifying these, we obtain M from M".

 Similarly as for M', we define a decomposition for M". Here we have natural
 product structures in the Beams and Plates, and it is easily checked that the

 axioms (2.1) hold. Finally, M" is homeomorphic to M' by a homeomorphism

 which respects the decompositions.

 (B) Let D be a disc, d a collection of arcs in AD, and k a system of arcs

 in D, such that k n AD = ak, and k n Ad = 0. Let U(k) be a regular neighbor-
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 64 FRIEDHELM WALDHAUSEN

 hood of k in D, which is small with respect to d. Then (D - U(k)) consists

 of discs D1, D2, ... . Define systems of arcs dj = d n Dj.

 Let 3 (resp. 3j) be the number of components of d (resp. dj), and define
 f" = max (3 - 2, 0), 3' = max (3 - 1, 0), and similarly 137 and i3.. We wish to

 compare 13" and 3' with g3od and Ad3d-. We do this first in the case where k

 consists of the single component k1, by distinguishing cases.

 The end points of k1 are contained in

 (1 ) different components of AD - d, then 3 = 31 + 3,2 and 13, 32 > 1,

 thus 3' > EAd; 13" > Ea3;
 (2) the same component of AD - d, then, say, 31 = 3, 13 = 0, thus 3'=

 EaJ a" =-ai
 (3) non-adjacent components of d and AD - d, then 3 + 1 =3, + 3,2

 and 31, 32 > 2, thus 3" > Ea3;
 (4 ) adjacent components of d and AD - d, then, say, 31 = 3, 13= 1, thus

 a" - Ea'3'

 (5) different components of d, then 3 + 2 = 31 + 32, and 31, &2 > 2, thus
 13" = ace

 (6) the same component of d.

 Next, we take a general system of arcs, but subject to the conditions

 (2.3.4) and (2.3.5); i.e., no component of k has both its end points in the same

 component of d or AD - d, respectively, or has its end points in adjacent

 components of d and AD - d. Instead of removing U(k) all at once, we

 remove one component after the other. We have three cases.

 (a) The only general thing which we can claim is that, because of our

 conditions on k, we never come across an arc of type (6) above. Thus all steps

 are of types (1)-(5), whence 3" > E6;'.
 ($) At least one component of k meets both d and AD - d. Then at least

 one step is of type (3) above, whence 3" > Add!.

 (a) &k c AD - d. Then all steps are of type (1) or (2) above, and at least

 one step is of type (1). Thus 3" > Add!, and 3' > Add.

 (C) Proof that (X', /', C') < (X, A, C). Case 1. G n NII 0.
 In (B) we checked the amount of complexity, which is contributed to

 (X', A', %') by those Beams of M' which come from a single Beam of M. We

 found that 3" > E3'7 without exception. Since G n NII 0 and G n aM # 0,
 one Beam at least gives rise to the situation (f8). Thus, in fact, X' < X.

 Case 2. GnNII = 0, but, Gn NI ' 0.

 Then X'- x. Since only the situation (y) can occur, and at least one

 Beam is involved, we have A' < A.
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 IRREDUCIBLE 3-MANIFOLDS 65

 Case 3. GnN'=0.

 Then X' = X and /' = A. Assume 4' =. It follows that the disc G is

 parallel to a disc in AM, which contradicts [aG] # 0.

 PROOF OF THEOREM 1.2. Let M1 be an irreducible manifold with non-

 empty boundary. Construct a handle decomposition, (2.1), for M1, e.g., from

 a triangulation of M1. Let (X1, 1, C,) be its complexity, (2.2). If aM1 consists
 of 2-spheres only, then M1 is a ball, since it is irreducible; so there is nothing

 to prove. Otherwise, there exists an incompressible surface F1 in M1 such

 that 0 # [&F1] e H1(&Ml), (1.1.6). By (2.3) we may assume, F1 is normal with

 respect to the given handle decomposition. Then, by (2.4), M2 = (M1 - U(F1))

 has a handle decomposition of complexity (x2s 2 22) <(X1 ,1 ,1). Use this handle
 decomposition to continue with the construction, and proceed inductively.

 Assume the induction step can be carried out arbitrarily often. It

 follows that we can construct an infinite sequence of triples, (Xij r~, 0j),
 1 < j < 00, such that

 (Xi, yi, 0) > (Xi+?9 ' j+l? j+) -> (0, 0, 0) -

 But such a sequence does not exist.

 3. Product line bundles

 In this section, M = F x I is the product of the orientable surface F

 which is not the 2-sphere, and the interval. p: M-e F denotes the projection

 onto the factor F. A subspace X of M is called vertical, if X = p-'(p(X)).

 PROPOSITION 3.1. Let G be a system of incompressible surfaces in M.

 Suppose aG is contained in F x 1. Then G is isotopic, by a deformation
 which is constant on AM, to a system G' such that p I G' is homeomorphic on

 each component of G'.

 COROLLARY 3.2. Each component of G is parallel to a surface in F x 1.

 Proof of (3.1) in the case where F is a disc, annulus, or 2-sphere with

 3 holes. Let H be a system of vertical discs in M, such that splitting at the

 arcs H n F x 1 would reduce F x 1 to a disc, and such that the intersection

 (H n F x 1) n G consists of the smallest possible number of points. In
 particular, we have general position at that intersection.

 Deform G by an isotopy which leaves aG fixed, so that H and G intersect

 in general position, and that, in addition, H n G is as small as possible. Then

 we have

 (a) Every component of H n G is an arc.

 (b) Define M =M - U(H)), where U(H) is a vertical regular
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 66 FRIEDHELM WALDHAUSEN

 neighborhood of H (small with respect to G), and define G =G G M. Then G

 is incompressible in M.

 ad (a) Assume there are closed curves in H n G. Then there is a disc D

 in H, such that D n G = AD. Since G is incompressible, AD bounds a disc D'
 in G. D U D' is a non-singular 2-sphere, so it bounds a ball E in M, since M

 is irreducible. E shows that there is an isotopy of G which discards (at least)

 D' n D from H n G, contrary to our assumption that H n G is minimal.

 ad (b) Assume the contrary. Then there is a disc D in M, D n G = aD,

 AD not bounding a disc in G. However AD bounds a disc in G, whence H n G
 contains a closed curve, in contradiction to (a).

 Near H deform G so that pI G n U(H) is homeomorphic on each component.
 This is possible by (a). M is a ball. Therefore by (b) each component of G is

 a disc. We claim

 (c ) p I aG is homeomorphic on each component.

 For assume there is a component D of G for which p ID is not a homeo-
 morphism. Let D be part of the component G1 of G. Any component of aG,
 intersects any component of H in at most one point. We have two cases.

 Case 1. There is a component k of G1 n H such that those components

 k, and k2 of aG1 which contain the end points of k, bound an annulus in F x 1.
 It makes sense to assume that this annulus does not contain any other com-

 ponent of aG1, which we do. Let U be a regular neighborhood of that annulus,

 and the disc in H which is bounded by k and an arc in that annulus.

 (a u n M) n G1 is a curve which bounds a disc in (a U n M). Consequently,

 being incompressible, G1 must be an annulus. Therefore G1 intersects any

 component of H in at most one arc, and it follows that D cannot have been a

 counter-example.

 Case 2. For none of the arcs in G1 n H we have Case 1. We deform G,
 in such a way that each of its boundary curves goes to that boundary curve

 of F x 1 to which it is isotopic, and then slightly into aF x I. Because of

 our assumption that we are in Case 2, we can keep p aG1 U (G1 n H) locally

 homeomorphic during this isotopy, and again it follows that D cannot have
 been a counter-example.

 By (c) we may span aG by a system of discs in M, each component of

 which is mapped homeomorphically by p. Since this new system is isotopic to

 G by a deformation of M which is constant on AM, we have proved that there

 is a deformation of G, constant on AM, which makes pIG locally homeomorphic.

 Assume then p G is locally homeomorphic, but not globally on each

 component of G. This means there is a path 1 in G with end points q1 and q2
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 such that p(q,) p(q2). As a point x travels along 1 from the upper end point
 q, to the lower end point q2, the intersection p-'(p(x)) n G generates (among
 other things) a path 1' which starts at q2 and ends at some point q3. q3 cannot

 lie in aG, since aG n F x 0 = 0. Hence q3 must lie below q2. By induction

 on this argument, we see that p-'(p(q,)) n G contains an infinite number of
 points, which is absurd.

 Proof of 3.1 in the general case, by induction on (genus F, number of

 components of aF) in lexicographical ordering. Let H be a vertical annulus

 in M, such that H n F x 1 = H = F x 1 is a non-contractible curve which

 is not parallel to a component of DF x 1, and which is disjoint to aG. H is

 incompressible. By an isotopy which is constant on AM, we deform G so that

 H and G intersect in general position, and that H n G consists of as few

 curves as possible. Then by similar arguments as in (a) and (b) in the special

 case above, we prove (a) and (b) below.

 (a) Each of the curves HnG is in H parallel to HnF x 1.

 (b) G = G n M is incompressible in M = (M - U(H)), where U(H) is
 a vertical regular neighborhood of H (which is small with respect to G).

 By (a), we may assume that G has been deformed near H in such a way

 that p G n U(H) is homeomorphic on each component.

 To make use of the induction hypothesis, we argue with M, as follows.

 We push upward and slightly into M n F x 1 those boundary curves of G

 which lie in U(H) n M. This can be done by an isotopy which always keeps

 p I a& homeomorphic on each component. We know then by (b) and the in-
 duction hypothesis that, after an isotopy of G constant on AM, we will have

 p I G homeomorphic on each component. Finally, we wish to push back aG to

 its original position. Let G, be a component of G, and assume it is G,'s turn
 to have its boundary curve k pushed into the component H1 of M f U(H). We

 have two cases.

 Case 1. So far, there is nothing of aG, in H1. Then, in pushing k into

 H1, we can keep p I G1 homeomorphic.
 Case 2. The boundary curve I of G1 is already in H1. Then there is an

 annulus G' in AM, which is bounded by 1 and k and which contains H1 n F x 1.

 We know from the corollary to the induction hypothesis, that G, is parallel to

 a surface in AM - F x 0; there is no other choice for this surface but G1.

 Tracing back G1 and G' to the time just before we started pushing, we find

 two curves in H n G bounding an annulus in G which is parallel to an annulus

 in H. But this contradicts our minimality assumption on H n G.

 Thus we see that we may assume p I G locally homeomorphic. That this
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 forces p G to be homeomorphic on each component of G, follows exactly as
 in the special case above.

 Definition 3.3. A homeomorphism h: M M is level-preserving, if and

 only if it can be written as h(x, y) = (f,(x), y), for x C F, y I. An isotopy
 is level-preserving if and only if it goes through level-preserving homeo-

 morphisms.

 LEMMA 3.4. In M, let G be a system, such that each component of G is

 either a disc which intersects aF x I in two vertical arcs, or an incompressible

 annulus which has one boundary curve in F x 0, and the other one in F x 1.

 Then there is an isotopy, constant on F x 0 U aF x I, which makes G vertical.

 This isotopy may be composed of isotopies which are either constant on AM,
 or level-preserving and constant on F x 0 U aF x I.

 PROOF. Let G1 be the first component of G. Define k, = G1 n F x 0;
 k2 = G1 n F x 1. Using the projection p: Ma F, we define k' as lying in
 F x 1 over k1. We have kfl nD(F x 1) = k2 n (F x 1) = ak- =ak2. The
 projection of G1 to F x 1 defines a homotopy from k2 to k' which is constant

 on ak2. Thus, by Baer's theorem there is an isotopy, constant on D(F x 1)

 which carries k2 to k'. We extend this isotopy to a level-preserving isotopy

 of M, which is constant on F x 0 U aF x I. Denote by G' the vertical object

 determined by k1. We have then aG' = aG1.

 Case 1. G1 is a disc. After a deformation of G, constant on AM, we may

 assume that Gi n G' consists of their common boundary and a number of simple
 closed curves in the interior, at which the intersection is transversal. Assume

 the number of these curves is minimal. Then there are no such curves, by the

 usual argument. Thus G, U G' bounds a ball, whence there is a deformation,
 constant on AM, which takes G, to G'. Splitting then M at G1, we have an

 induction.

 Case 2. G1 is an annulus. k= G1 n F x 0 is a non-contractible curve

 in F x 0. Therefore there exists k c F x 0, k nf (F x 0) = ak, which is a
 simple closed curve or arc according to whether F is closed or not, such that

 k n k, consists of one or two points, and cannot be made smaller by an isotopy

 of k. Let H be the vertical object over k. After G has been adjusted by a
 small deformation, constant on AM, G1 f H will consist of simple closed curves

 and arcs. Assume that among the arcs in G1 , H, the arc 1 has both its end
 points in F x 0; then by our choice of H, l = AH n kl, and projection of the

 disc which is split off G1 by 1, will show that AH fn k can be made empty,
 contrary to the definition of H. Thus (since AH fn k and AH l k2 have the

 same number of points), any arc in G1 n H must intersect both F x 0 and
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 F x 1. In particular, any closed curve in G1 n H is contractible in both G1

 and H, and so these can be removed in the usual way. We conclude that

 there is a deformation of G, composed of one which is constant on AM, and
 one which is level-preserving and constant on F x 0 U aF x I, which makes

 G1 n H consist of one or two vertical arcs.

 Splitting now at H (and forgetting for the moment about G - G1), we

 obtain a manifold M and a system G in M, which comes from G1. To G in M

 Case 1 applies. Thus there is in fact a deformation of M, of our special sort,

 which makes the component G1 of G vertical. Splitting then M at G1, we have

 an induction.

 LEMMA 3.5. Let h: Ma M be a homeomorphism such that

 h I (F x 0 U aF x I)

 is the identity. Then there is an isotopy, constant on AM, which makes h a

 level-preserving homeomorphism.

 PROOF. We first show h can be deformed into the identity by isotopies

 which are either constant on AM, or level-preserving and constant on

 F x O U aF x I.

 Case 1. aF # 0; Let G be a system of vertical discs such that splitting

 at p(G) will reduce F to a disc. By (3.4), we may assume h(G) = G, (and each
 component of G is mapped to itself). Further deformations of our special type

 will give us consecutively hI G = id i G, and h = id i aM, where M is
 obtained from M by splitting at G. An application of Alexander's theorem

 to the ball M will complete the proof.

 Case 2. aF = 0. Since F is not a 2-sphere, there exists in M an incom-

 pressible vertical annulus G. By (3.4), we may assume h(G) = G. Further

 deformations which are constant on AM or level-preserving and constant on

 F x 0, will give us h I G = id I G. Splitting then M at G, we reduce Case 2
 to Case 1.

 Let hT, z C I, be the isotopy obtained in the end. Clearly, we may write

 hr = fnZgnZ * * fizgiz, I e I,

 where the isotopies fjr, z e I, are constant on AM, and the gjr are level-
 preserving and constant on F x 0 U aF x I; rewriting gives

 gnz. g1r4g' ... gf-lfnrgn r g1r) ... (gl'f1lg1.)
 Taking the composition of the bracketed factors only, we obtain the required

 isotopy.
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 4. Twisted line bundles

 PROPOSITION 4.1. Let M = F x I, where F is a closed surface, different

 from the 2-sphere. Let N be a manifold with connected boundary. Suppose

 Mis a 2-sheeted cover of N. Then N is homeomorphic to a line bundle over

 a non-orientable closed surface.

 PROOF. Denote by f: M-u N the covering map, and by g: Mu M the

 covering translation. To prove the proposition, it suffices to construct a

 fibering of M which is invariant under g. This will be done in several steps.

 (4.2) There exists an incompressible annulus G1 in M, such that

 G1nFx F 0 0, GlnFx 1# 0,andG, ng(G) = 0.
 PROOF. Let G be a vertical incompressible annulus in M. The map

 f I G:G-)N has no local singularities. Therefore, looking at f(G), we find small
 isotopic deformations of G, after which the singularities of f I G will be simple
 closed double curves and simple double arcs (with transversal intersection)

 only. There are four types to be considered.

 ( 1 ) There is a disc D in G, such that D n g(G) = AD. Since G is incom-

 pressible, AD bounds a disc D' in g(G). In g(G), replace D' by a disc near D,

 "at the other side"; and do the corresponding (i.e., via g) change at G. Since

 the intersection at AD has been transversal, at least one intersection curve

 has vanished. So we assume such a D does not exist.

 ( 2 ) There is a disc D in G, such that Dfn(G U g(G)) = AD, and Dfng(G)
 is one arc k. Then there is a disc D' in g(G) such that AD' c k U g(aG). In

 g(G), replace D' by a disc near D, "at the other side"; and do the correspond-

 ing change at G. Since the intersection at k had been transversal, at least k

 has vanished. So we assume such a D does not exist.

 (3) G n g(G) consists of closed curves only, each of which is parallel
 in G to the boundary curves of G. Take a regular neighborhood U(f (G)) in

 N, and define V - f-(U(f(G))). The system (-V - aM) contains four
 annuli. These are incompressible, and1 at least two of them intersect both

 F x 0 and F x 1. Let G1 be one of the latter. Then either g(G1) n G, = 0,

 and we are through; or, g(G1) = G1. In the latter case, f(G1) is a two-sided

 Moebius strip in N. So this case cannot occur.

 (4) G n g(G) consists of arcs only, each of which intersects both F x 0

 and F x 1. In this case, we are forced to argue with f (G), and to admit

 singular things at intermediate steps. Let 1 be a double arc of f (G). There

 are two possibilities to do a cut (Umschaltung) at 1. One choice for the cut

 1 Added in proof. This may be false if F is a torus. Replace the argument in (3) by
 one involving cuts, similar to (4) below.
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 will decompose our singular annulus into two things which are either singular

 annuli or singular Moebius strips. The other cut will have as its result one such

 object. The important thing is that at any step we are free to make our choice.

 We find that we can always obtain a singular annulus or Moebius strip with non-

 contractible boundary. Let H be the end-result. H is a non-singular annulus or

 Moebius strip. f-1(H) consists accordingly of two or one annuli which are in-

 compressible and intersect both boundary components of M. In the former case,

 we take as G1 a component of f-1(H). In the latter case, g interchanges the

 sides of f'-(H), so we need only push f-1(H) slightly to one of its sides.

 (4.3) Let G, be the annulus which was constructed in (4.2). Define G2 =

 g(G,). By (3.4), there is an isotopy of M, which makes G1 U G2 vertical. We
 are careful, however, not to move G1 and G2. Instead, we use the inverse

 isotopy to deform the fibering of M. We have then induced fiberings on G1

 and G2. We proceed to make g I G1 fibre-preserving. We do this by deforming
 M near G2 in such a way that the induced deformation on G2 carries that

 fibering of G2, which is induced by the inclusion in M, to that one which is

 defined by G2 = g(G1). Finally, we achieve that there are vertical neighbor-

 hoods U(G1) and U(G2), such that g(U(G1)) = U(G2), and g I U(G1) is fibre-
 preserving. Roughly, we achieve this by removing G1 and G2 from M, and

 inserting instead U(G1) and U(G2).

 (4.4) Let M' be a component of (M - (U(G1) U U(G2))). Assume g(M') =

 M'. Let D be a vertical disc in M', such that aD is not contractible in aM', and

 g(li) n ii 0, i, j = 1, 2, where 11 and 12 are the arcs D n (U(G1) U U(G2)). By
 similar arguments as in (4.2), we find a disc D' in M', such that aD' is not

 contractible in aM', (D' LU g(D')) n (U(G1) U U(G2)) =(D U g(D)) n (U(G1) U U(G2)),

 and g(D') n D' = 0. Then, by (3.4), there is a deformation of the fibering of M',

 constant on (DM' n M), after which D' U g(D') will be vertical. And finally,
 as in (4.3), we find further deformations of the fibering of M' (constant on

 (DM' n M)) and regular neighborhoods which are vertical, such that

 g( U(D')) = U(g(D')), and g I U(D') is fibre-preserving.

 (4.5) We repeat step (4.4) as often as possible: i.e., we construct a sub-

 manifold M* in M, (the union of all those neighborhoods), such that M* is

 vertical, g(M*) = M*, and g M* is fibre-preserving, and that finally we

 have: If M' is any component of (M - M*), then either g(M') # M', or

 there is no such disc D in M' as was used in (4.4). In the latter case, M'

 must be a ball, and so again g(M') # M', since g has no fix-point. Thus,
 whenever g M' is not fibre-preserving, we may define a new fibering of

 g(M'), precisely by requiring g I M' to be fibre-preserving.
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 5. Isotopic surfaces

 LEMMA 5.1. Let M be an irreducible manifold which need not be

 compact. Let F be an incompressible (compact, closed) boundary component

 of M. In AM - F, let F' be an incompressible surface which need neither

 be closed nor compact. Suppose: if k is any closed curve in F, then some

 non-null multiple of k is homotopic to a curve in F'. Then, M is homeo-

 morphic to F x I.

 PROOF. Let r be the genus of F. Choose simple closed curves k1, *.., k2r

 in F such that ki n kj = 0, if i + j ? 1, and k5 and k5?1 intersect (transversely)
 in exactly one point, for j = 1, * *, 2r - 1. Such a system of curve is easily

 constructed from a usual "meridian-longitude-system"; the complement of

 Ukj is an open disc.

 Let 1 be the circle. By assumption there exists a map fj: 1 x I M, such
 that f5(l x 1) c F', f5(l x I) c M, and that f5(l x 0) is a non-null multiple
 of kj. The generalized loop theorem [18] gives us a non-singular annulus Gj,

 Gi n AM =aGj, which has one boundary curve in F, near kj, and the other
 boundary curve in F', such that not both its boundary curves are contractible

 in M. Since both F and F' are incompressible, G5 has in fact both its boundary
 curves non-contractible in M; whence that boundary curve in F must be iso-

 topic to kj. So we assume it is kj.

 Consider a fixed pair Gi, Gj. After a small deformation, if necessary,

 Gi f Gj will consist of mutually disjoint simple closed curves and arcs. If
 i = j + 1, and only then, there is a distinguished one among the intersection

 arcs which has one end point in F and one end point in F'. Any other inter-

 section arc has both its end points in F'. Any closed intersection curve is

 either contractible in both Gi and Gj, or non-contractible in both Gi and Gj,
 because of the incompressibility of F. We proceed to reduce the number of

 intersections by performing a cut (Umschaltung) either at a closed intersection

 curve or at a non-distinguished intersection arc. By what we said above, there

 is at each step a correct one among the two possibilities. The annuli which

 show up at intermediate steps may have singularities. But in the end we are

 left with a pair of non-singular annuli, again denoted by Gi, Gj, such that

 Gi f Gj is a distinguished intersection arc if i = j + 1, and empty otherwise.
 Next, we take up some other pair, and do with it the same things we did

 with Gi, Gj, and so on. In the course of this construction, we may be forced
 to take up several times the "same" pair. But finiteness may be seen thus: In

 the beginning, we might have normalized the Gj in such a way, that the inter-

 sections of UGj consisted of double curves and arcs, and triple points, only.
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 The pair (t, d), where t denotes the number of triple points, and d the number

 of double curves and arcs, will then be decreased, in the sense of lexico-

 graphical ordering, every time a cut is performed.

 We conclude that in the end, UGj is homeomorphic to (Ukj) x I. Taking

 regular neighborhoods, we see that (a U(F U UGj) n M) is a disc. Since F' is
 incompressible, (F' - (U(F U UGj) n F')) is a disc, too (whence in particular,
 F' is closed). So, (a U(F U UGj U F') n M) is a 2-sphere. Since M is irre-
 ducible, this 2-sphere bounds a ball in M, and the lemma follows.

 LEMMA 5.2. Let M be an irreducible manifold which need not be

 compact. Let G be a boundary surface of M which need not be compact. Let

 F be a (compact) surface in G, such that aF # 0. Suppose both F and G - F

 are incompressible. And, any arc k in F, k n aF ak, is homotopic to an

 arc k' in G, k' nF F= ak', by a homotopy which is constant on ak. Then, F

 is parallel to G - F.

 PROOF. Let k1, ... kr_ r > 0, be a system of (disjoint) arcs in F,
 F3 n aF = akj, such that splitting at the kj would reduce F to a disc. By
 assumption, there exists a singular disc fi: D - M, such that fj(DD) c G, and
 fj I fy'-1(fj(DD) n F) is a homeomorphism onto kj.

 The curve fj(DD) is essential in G modulo that normal subgroup of 7c1(G)
 which is generated by w1(G - F). Therefore the loop theorem gives us a

 non-singular disc D3 near fj(D), Di n AM= aDj, such that aDj is essential in
 G modulo that same normal subgroup. We recall that in the proof of the loop

 theorem the disc D3 is actually constructed in a very special way. This enables

 us to conclude in our present case that Di n F is either empty or is an arc
 which is isotopic in F to kj. Thus, we may assume Di n F = kJ.

 The rest is similar to the proof of (5.1). We construct new discs which

 are pairwise disjoint, and then an argument involving regular neighborhoods

 will complete the proof.

 LEMMA 5.3. Let M be an irreducible manifold. Let G be an incom-

 pressible surface in AM. Let F be an incompressible surface in M, such

 that aF c G. Suppose there is a surface H and a map f: H x I - M, such

 that f IH x 0 is a covering map onto F, and f(a(H x I) - H x O) cG.
 Then F is parallel to a surface F' in G.

 PROOF. F is not a 2-sphere. If F is a disc, then the assertion follows

 immediately from the fact that G is incompressible and M irreducible. So we

 assume, F is not a disc. Then no boundary curve of F is contractible (in

 either G or M).

 Let us look first at the special case f-'(F) n (H x I) = 0. We construct
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 the manifold M' by splitting M at F. By our assumption on f, there exists a

 lifting f ': H x I * M' of f. Since F was incompressible, M' is irreducible,
 and since no boundary curve of F was contractible, the system G' (which is

 G, split at F) is incompressible. Therefore we can apply either (5.1) or (5.2),
 and the lemma follows.

 We return to the general case. Our aim is to reduce it to the special case,

 by constructing a "homotopy" of the special sort.

 First, we may assume that aF n aG = 0. For otherwise, we enlarge G

 slightly to G" which also is incompressible; the surface F' which we are going

 to detect in G", will nevertheless be contained in G, since it cannot contain
 boundary points of G" in its interior.

 Thus, we may add to the hypotheses about f

 ( 1 ) There exists a regular neighborhood U(H x 0 U AH x I), such that

 f-'(F) n U - H x 0.

 Next, we apply our normalization procedure (1.3) to f:

 ( 2 ) By a deformation of f, constant on U, we induce a deformation of

 f I H x 1: H x 1 G, which makes this map transverse with respect to aF;
 we choose the deformation so that f-1(DF) n (H x 1 - U) will not contain a

 contractible curve, and that (in addition) the number of these curves will be

 as small as possible.

 After this deformation, fi D(H x I - U) is transverse with respect to F.
 So, another application of (1.3) gives a deformation which is constant on

 H x 1 U U, and which makes f-'(F) n (H x I - U) a system of incompressible

 surfaces in (H x I - U), and hence also in H x I.

 If this system is empty, our reduction is complete. So we assume the

 component H' exists. By (3.2), H' is parallel to a surface H" c H x 1. Let

 N be the submanifold which is bounded by H' U H". By another application

 of (3.2), it makes sense to assume that H' is "next" to H x 1, i.e. that

 Nn f-'(F) = H'; which we do. If now f I H': (H', aH') (F, aF) is
 homotopic (by a homotopy of pairs) to a covering map, then, looking at f N,

 we see that again our reduction is complete. So we assume it is not. A com-

 mutative diagram shows, ker (f | H')* = 0. Therefore, by Nielsen's theorem,

 (1.4.3), there are only two cases left:

 Case 1. H' is a disc. Then H" is a disc, too, which contradicts (2) above.

 Case 2. H' is an annulus, and f I H': (H', AH') > (F, DF) contracts;
 in particular, f(DH') is contained in one component k, of aF. We have again

 two cases, according to whether f I H": (H", AH") - (G, k) does or does not
 contract into (k, k). In the second case it follows from (1.4.3) that G is a
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 torus, that G ci f(H") and hence (since (f IH")-'(DF) = (f I H")-N(k)) that
 FnG G= k # aF, which contradicts aF ci G. The first case contradicts (2)

 above.

 PROPOSITION 5.4. Let M be an irreducible manifold. In M let F and G

 be incompressible surfaces, such that aF c F aF aG, and F n G consists of

 mutually disjoint simple closed curves, with transversal intersection at any

 curve which is not in aF. Suppose there is a surface H and a map

 f: H x In M, such that f I H x 0 is a covering map onto F, and

 f (a(Hx I) - H x 0) ci G.

 Then there is a surface H and an embedding H x I M, such that

 H x 0 FcF, (a(H x I) - x 0) = GcG

 (i.e., a small piece of F is parallel to a small piece of G), and that moreover

 F n G = WF, and either G n F = adG, or r and G are discs.
 PROOF. Case 1. The intersection curve k ci F n G is contractible in F

 or G. Then there is a disc D in G, say, which is bounded by k. D contains an

 innermost disc D', i.e., D' nF F= AD'. Since F is incompressible, there is a

 disc D" in F, such that AD" = AD'. Let F be an innermost disc in D"; so

 F nG = aF. Since G is incompressible, there is a disc G in G, such that

 a = aPF. Because of our choice of F, the 2-sphere F U G is non-singular;
 since M is irreducible, this 2-sphere bounds a ball, and the proposition follows

 in Case 1.

 Case 2. None of the intersection curves is contractible in F or G. Our

 aim is to reach a situation where we can apply (5.3); the construction of this

 situation is similar to the proof of (5.3).

 Using small deformations of f, we add to our hypotheses the following.

 ( 1 ) There is an open neighborhood of H x 1 U AH x I, the interior of

 which is disjoint to f 1(G).

 ( 2 ) For any boundary curve k of H, there exists a regular neighborhood

 U(k x 0), such that U(k x o) n ft1(G) = (U(k x o) n AH x I) U X, where

 X is either empty, or is an annulus such that x n aU(k x 0) = AX, and

 Xn (H x I) = k x 0.

 By (1) and (2), provided (2) is done carefully, there exists a regular

 neighborhood U of H x 1 U AH x I, such that f I d(H x I - U) is transverse
 with respect to G. So, by (1.3), there is a deformation of f, constant on

 U U H x 0, which makes f-1(G) n (H x I - U) a system of incompressible

 surfaces in (H x I- U). We have then ft1(G) = H x 1 U AH x I U Ufl,

 where UHj is a system of incompressible surfaces in H x I; (in fact, for any
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 U(k x 0) (cf. (2)), UHj n U(k x 0) is at most one annulus. Therefore each of
 the Hj is non-singular, and any two are disjoint; incompressibility is clear).

 We assume the component H' of UHj exists (the other case is quite
 similar, and is simpler). By (3.2), H' is parallel to H" ci H x 0; let N be the

 submanifold which is bounded by H' U H". We assume H' is "next" to H x 0,

 i.e., f-1(G) NN= H'.

 Construct the manifold M' by splitting M at G. Then a map f': No M'

 exists which is a lifting of f I N: N o M. In AM' there are two copies of
 G; denote by G' that one which contains f'(H'); G' is incompressible in M'

 (trivially).

 Because of our general position assumptions on F n G, the subspace F'

 of M' which by M' M is projected onto F, is a system of surfaces in M'.
 F' is incompressible in M'. For otherwise, there exists a disc D in M' such

 that D n F' = AD, AD not bounding a disc in F'. Since the image of AD in

 M bounds a disc in F, we find a curve in F n G, which is contractible in F,

 contrary to our assumption that we are not in Case 1.

 Let F" be that component of F' which contains f'(H"). We conclude

 that with M', G', F", f': No M', we are exactly in the hypotheses of (5.3).
 Therefore there is a surface G" ci G' which is parallel to F". If now

 G" f F' = G" n F", then the proposition is proved. Otherwise, denote by

 M" that submanifold of M' which is bounded by F" U G". Applying (3.2) to

 the system F' n M" in M", we find a component F of F' n M", which is next

 to G", and which is parallel to G ci G".

 COROLLARY 5.5. Let M be an irreducible manifold. Let F and G be

 incompressible surfaces in M. Suppose there is a homotopy from F to G,

 which is constant on aF. Then, F is isotopic to G by a deformation which

 is constant on AM.

 PROOF. By an isotopy which is constant on AM, move F so that the inter-

 section F U G consists of mutually disjoint simple closed curves, the number

 of which is as small as possible. Consider those tiny pieces F and G which

 were found in (5.4). Suppose F and G are discs, and F n G # aG. Then the
 ball which is bounded by P U G, contains part of F its interior. Pushing out
 these things across G, we reduce the intersection F n G. But this contradicts

 our minimality condition, and so this case cannot occur. Therefore there is

 an isotopic deformation of F, constant on (F - F), which takes F to G.

 Suppose F # F. Then we can push off F slightly to the other side of G,

 while keeping F n aF fixed, and again we achieve the impossible. Therefore

 F = F. We have also G = G. For, we have just seen that aG ci aM, and
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 since G n AM = aG, there is no other choice for G.

 6. Existence of homeomorphisms

 THEOREM 6.1. Let M and N be manifolds which are irreducible and

 boundary-irreducible. Suppose that M is sufficiently large, and that
 wc1(N) # 0. Let f: (N, AN) - (M, AM) be a map which induces an injection
 f*: w1(N) 7fw(M). Then there exists a homotopy fT: (N, aN) (M, aM),
 z G I, f0 = f, such that either (a) or (b) holds.

 (a) N is the product line bundle over a closed orientable surface, and

 fi(N) ci aM,
 (b) fl: N- M is a covering map.
 If f I AN is locally homeomorphic, then the homotopy may be chosen so

 that f, I aN = f0 I AN, for all z.
 Proof of (6.1) in the case AM # 0. Let R be a boundary component of

 N; R is not a 2-sphere. Let S be that boundary component of M which

 contains f (R). Since N is boundary-irreducible, it follows from ker f* = 0,

 that ker (fI R)* = 0. Therefore, by Nielsen's theorem, f I R is homotopic to
 a covering map. We perform a homotopy of f which induces such homotopies

 at all boundary components of N. We compose it with a general position

 homotopy, to make sure that f-1(aM) -aN. If f I AN was locally homeo-
 morphic in the beginning, there has been no necessity so far to alter it, since

 in what follows there will be no necessity either, the last assertion in (6.1)

 will be established.

 Choose a hierarchy for M1 = M, (cf. (1.2), theorem):

 Mj1 Fj2c--Mj U(Fj2) c-Ml I M,2+1 = (Mj -U(Fj)), j = 11 .. * n .
 So far, we proved that, for r = 1, the following holds.

 Induction hypothesis: f I f -1(aM U U3j< U(Fj)) is locally homeomorphic.

 Suppose, we have proved it for r n + 1. M]I6+4 is a ball. Let N* be a

 component of f-1(M?+). We assumed w11(N) # 0, whence N* # N. Since
 there are no covering maps onto a 2-sphere other than homeomorphisms, it

 follows from the fact that N is irreducible, that there is a homotopy of f I N*,

 constant on AN*, which will make f I N* a homeomorphism; and Case (b) of
 the theorem will follow. Thus we attempt to show that the induction step

 can be made. When we fail, it will turn out that we can prove Case (a) of

 the theorem.

 Let N' be a component of f -1(Mr). Denote by f' the restriction f I N'.
 We have f ': (N', aN') - (Mr, aMp). By the induction hypothesis, f' ' aN' is
 locally homeomorphic. By (1.3), there is a homotopy of f', constant on AN',

This content downloaded from 
�������������51.7.16.27 on Sun, 01 Oct 2023 19:13:20 +00:00������������� 

All use subject to https://about.jstor.org/terms



 78 FRIEDHELM WALDHAUSEN

 such that afterwards f' is transverse with respect to Fr, and that f '-(Fr) is

 a system of incompressible surfaces in N'. We prove easily, ker f 0.

 From this follows ker (f'I G)* 0, where G is any component of f''(F7).
 We would like to conclude that f' I G: G - F7 is homotopic to a covering map
 by a homotopy which is constant on aG. If this conclusion holds for any G,
 and for any choice of N', then the induction step follows immediately.

 Assume then that the conclusion is false for G. Remembering that G

 cannot be a 2-sphere, we find ourselves left with the following two possi-

 bilities.

 (1) Fr is a disc; G too; and the covering map af' G is not a homeo-

 morphism.

 ( 2 ) Fr is not a disc. By Nielsen's theorem (1.4.3), G is an annulus, and

 f' G: (G, aG) , (Fr, aFr) contracts to (aFT, aFr); in particular, f'(aG) is
 contained in one boundary curve of Fr.

 In both cases, there exists a simple arc 1 in G, l na G = al, with the

 properties: f'(al) is one point; f' I 1: (1, at) (Fr, f'(al)) contracts. Composing
 1, if necessary, with two suitable arcs (obtained e.g. by lifting an arc which

 joins f'(al) inside Uj<r U(Fj) to aM), we find a simple arc k in N, such
 that ak consists of two different points, p1 and P2, in AN, and such that

 f I k: (ky, ak) (M, f(ak)) contracts, (in particular f(p1) = f(p2)).
 Denote by S that boundary surface of M which contains f(pl). Using

 f (p1) twice as base point, we have an obvious inclusion homomorphism

 i*: w11(S) - z1(M). Let R, and R2 be those boundary components of N which

 contain p1 and P2. Using p1 twice as base point, we define il*: w1r(R1) - wr1(N).
 Finally, we define i2* wl1(R2) 111(N) using the path k. All these inclusion
 homomorphisms are injective. We have f*i1* = i*(f I R1)*, (by naturality),
 andf*i2* = i*(f IR2)*, (since f Ik: (k, ak) - (M, f(ak)) contracts).

 Since all three, R1, R2, Sy are closed, and since f I R1 and f I R2 are cover-
 ings, (f I R1)*(wr1(R1)) and (f i R2)*(wr1(R2)) have finite index in w1(S). Thus, by
 the above, i1*(7w1(R1)) and i2*(w1(R2)) intersect in a subgroup which has finite
 index in both.

 We now distinguish three cases.

 (a) R1 # R2. By (5.1), N is homeomorphic to R1 x I. Consider the

 covering JM of M which is associated to i*(w1(S)); denote by S a copy over S,
 for which wr1(S) 111(S) is an isomorphism. Let f: No i be a lifting of f,
 such that ](aN) n 3 # 0. Then, in fact, f(tN) c S, because f I k: (ky, ak))
 (M, f(ak)) contracted. Observing that M deformation-retracts to 3, we find
 that we have proved Case (a) of the theorem.
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 (b) R1 = R2. (k, ak) - (N, RI) does not contract into (R1, R1). Consider
 the covering N of N which is associated to ij*(w1r(R1)). Denote by R' a copy
 over R1 for which w1(R') - wc1(R,) is an isomorphism. Let k' be a copy over k,
 which originates at R'. Denote by R" that copy over R1 which contains the

 other end point of i'; R" is different from R', (and may be non-compact). That
 identification of subgroups in w11(N) along k, lifts to an identification of sub-

 groups in w1(K) along k', one of the subgroups concerned being a subgroup of
 finite index in wc1(R'). Thus, by (5.1), N is homeomorphic to R' x I. Conse-

 quently, ]No N is a 2-sheeted covering, whence, by (4.1), N is homeomorphic

 to a line bundle over a non-orientable closed surface. Since f I k: (k, ak) -
 (M, S) contracts, wc1(N) is isomorphic to a subgroup of w11(S). Since S is ori-
 entable, this is absurd.

 (c ) R1 = R2. There is a homotopy of k, fixed on ak, which sends k to

 an arc in R,. Call this arc k. f(k) defines a based loop in S, which is not con-
 tained in the subgroup (f I Rj)*(w1(RJ)). On the other hand, fl(k) is homotopic
 in M to the based loop f(k), which is contractible. Since S is incompressible,

 it follows that fl(k) is contained in any subgroup of w11(S).
 Proof of 6.1 in the case aM-=i0. By our conditions on M, there is an

 incompressible surface in F in M. Since M is closed, F has to be closed, too.

 Homotope f to make it transverse with respect to F, and to make f-1(F) a
 system of incompressible surfaces in N, (1.3). Choose the homotopy in such

 a way that in addition, the number of components of f-1(F) is as small as

 possible. Let G be a component of f-1(F) (at the present stage, we are not
 claiming that f'-(F) is non-empty). Since N is closed, G is closed, too. A

 commutative diagram shows that ker (f I G)* = 0. Since G is not a 2-sphere,

 Nielsen's theorem tells us that f I G is homotopic to a covering map. Thus we
 may assume that there is a regular neighborhood U(F), such that f I f-( U(F))
 is a covering map on each component.

 Consider then M, which is component of M - U(F); N, which is a com-

 ponent of f -`(M); and f = f I 1: No - M. Another diagram (cf. (1.1.4)) shows
 that ker.* = 0. Since f I aN is locally homeomorphic, the formerly proved
 part of the theorem shows that there is a homotopy of ]7, constant on AN,
 with two possibilities for its end result. The first possibility would result in

 a contraction into AM. This is ruled out by our minimality condition on f. So

 there is in fact a homotopy of if, constant on AN, which makes f a covering
 map.

 Definition 6.2. Let M and N be manifolds. Let A: wc1(N) - wc1(M) be a

 homomorphism. * is a homomorphism of group systems or respects the
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 peripheral structure, if and only if the following holds. For each boundary

 surface F of N, there exists a boundary surface G of M, such that

 Ar(i*(wi(F))) ci A, and A is conjugate in wc1(M) to i*(wr(G)). (Here i*. denotes
 inclusion homomorphisms. The definition does not depend on the choice of

 the i*.)

 LEMMA 6.3. Let M and N be manifolds, such that M is irreducible and

 boundary-irreducible, and has infinite fundamental group. Let 7fr: w1(N)

 7c1(M) be a homomorphism. Then there exists a map f: (N, AN) (M, AM)

 which induces A, if and only if * respects the peripheral structure.
 PROOF. One direction is obvious. We come to the other. By the usual

 argument, M is aspherical. Therefore a map f': N o M can be constructed

 which induces A. To prove the lemma, it will suffice to prove let F be a

 boundary component of N, and g. = f' I F. Then there exists a homotopy

 g,: F- fM, T e I, such that g1(F) ciaM. We construct this homotopy piecewise.
 Inspection of (6.2) reveals that g, can be defined on the 1-skeleton of F. Next,

 we define g1, compatible with g, on the 1-skeleton. The obstruction to do this
 lies in ker (w1(G) - wc1(M)), which is 0, where G is the boundary component
 involved. The obstruction to fill in the rest, lies in w2(M), which is 0, too.

 COROLLARY 6.4. Let M and N be manifolds which are irreducible and

 boundary-irreducible. Suppose M is sufficiently large; N is not homeo-

 morphic to a product line bundle over a closed surface, and w1(N) # 0. Let

 *: wc1(N) - wc1(M) be an injection which respects the peripheral structure.
 Then there exists a covering map f: No M, which induces A.

 PROOF. We apply (6.3) to obtain a map g: (N, aN) - (M, aM), with

 g* = A. From g, we obtain f by (6.1). (If in the construction of f we moved
 the base point, we move it back in the end.)

 COROLLARY 6.5. Let M and N be manifolds which are irreducible and

 boundary-irreducible. Suppose M is sufficiently large. Let A: w11(N) -+w1(M)
 be an isomorphism which respects the peripheral structure. Then there

 exists a homeomorphism f: N o M, which induces A.

 PROOF. If N is not excluded in the hypotheses of (6.4), we apply (6.4) to

 obtain a 1-sheeted covering map. If N is a product line bundle, then A-1 also
 respects the peripheral structure. Since sufficiently large depends only on

 the homotopy type, we try to apply (6.4) to <r. If this should fail, too,

 Nielsen's theorem will save the corollary.

 7. Existence of isotopies

 THEOREM 7.1. Let M be a manifold which is irreducible and sufficiently
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 large. Let h: M-u M be a homeomorphism which is homotopic to the identity

 map by the homotopy H: M x I-n M. And suppose that either (a) or (b) holds.

 (a) H(aMxI)caM.

 ( b) M is boundary-irreducible. If M is homeomorphic to a line bundle,

 then h is orientation-preserving.

 Then h is isotopic to the identity.

 If in case (a), H I AM x I is projection onto the first factor, then the
 isotopy from h to the identity may be chosern constant on aM.

 In the proof we shall consider four cases.

 Case 1. AM L 0; the homotopy is constant on AM. Choose a hierarchy
 for M1 M, (cf. (1.2), theorem)

 .ZVI Fj c- Mj, U(Fj) c- Mj, Mj +1 (Mj -U(Fj)), i = 1IS. , Xn

 By assumption, the following holds for r = 1.

 Induction hypothesis. H I (AM U Ui<r U(Fj)) x I is projection onto the
 first factor.

 As a consequence of the induction hypothesis, we have h I Mr is a homeo-
 morphism onto Mr, and h I AM, is the identity map.

 Let F be a surface which is homeomorphic to F,, and define the map

 f: F x I-n M as the restriction H I F, x I.

 LEMMA 7.2. There is a homotopy of f, constant on a(F x I), after

 which f (F x I) ci M,.

 PROOF. Assume as induction hypothesis, that f (F x I) c M8, for s < r.

 f I a(F x I) is trivially transverse with respect to F8; thus, by (1.3), there is
 a homotopy of f: F x I- 1 M,8, constant on a(F x I), which makes f-'(F8) a
 system of incompressible surfaces. Since these surfaces have to be closed,

 and since aF = 0 , (3.2) shows that f-'(F8) is empty. We finally push f(F x I)

 out of U(F8), i.e., into M8,1.
 By (7.2) we may apply (5.5) to the surfaces Fr and h(Fr) in M,; i.e., we

 can find an isotopic deformation of h I M,, constant on aMr, such that after-
 wards h(F,) = F,. Thus we assume, this holds true.

 LEMMA 7.3. There is a homotopy of f, constant on a(F x I), after

 which f (F x I) c F,.

 PROOF. At the present stage of our normalization, we have f(F x 0) ci Fa,
 f (F x 1) ci F,, and f I aF x I is "projection onto the first factor" anyway.
 Denote by fT, r e I, the homotopy which we are going to construct. Define

 fo = f, and f, I a(F x I) = fo Ia(F x 1), for all T. Since aF a 0, the
 interior of F x I admits a decomposition into open 2- and 3-cells only.
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 Therefore, the only obstructions to extending fi I a(F x I) to fi: F x Id Fry
 lie in ker (WiJ(Fr) - rW(Mr)) and Wr2(Fr), which are 0. Similarly, the obstructions
 to defining the rest of the homotopy, lie in Wr2(Mr) and Wr3(Mr), which are

 0, too.

 By (7.3) we may assume that f: F x I-n Mr is in fact a map f: F x In Fr.

 So, by Baer's theorem, h I Fr is isotopic to id I Fr by an isotopy which is
 constant on aFr. So we assume, h I Mr has been deformed (by an isotopy
 which is constant on AMr) so that h I Fr = id I F.

 Looking again at f: F x I-n Fr, we find a homotopy, constant on a(F x I),
 from f to the projection onto the first factor. In fact, there is no obstruction

 to construct this homotopy, because the two maps agree on a(F x I); Fr is

 aspherical; (F x I) admits a decomposition into open 2- and 3-cells only.

 We recall now that f was initially defined as the restriction to Fr of

 H: M x I n M. And we observe that all the deformations of f may be ex-

 tended to deformations of H I Mr x I which are constant on aMr x I. Finally,
 extending our normalizations to a neighborhood, we make

 H I(aM U Uj<r+l U(Fj)) x I

 projection onto the first factor.

 After n induction steps have been performed, h IM - M,,,) will be the
 identity map. Since M,,, is a ball, Alexander's theorem will complete the
 proof in Case 1.

 Case 2. AM =# 0; H(dM x I) c( aM. Let F be a boundary component of

 M. Consider f: F x I-) F x I, defined by f(x, y) = (H(x, y), y), for x e F,

 y e I. f I F x 0 and f I F x 1 are homeomorphisms. Therefore there is a
 homotopy of f, constant on F x U, which makes f a level-preserving homeo-

 morphism, by (6.1) and (3.5). We change H near F x I according to this

 homotpy of f. After this change, H I F x I describes the ideal isotopy of
 h I F; namely, we perform this isotopy (actually, induce it by an isotopy of
 h near F), while making HI F x I the constant homotopy. Case 2 is thus
 reduced to Case 1.

 Case 3. AM # 0; M is boundary-irreducible; if M is homeomorphic to

 a line bundle, then h is orientation-preserving. Assume, Case 3 cannot be

 reduced to Case 2. Then for some component F of aM, and for the map

 f: F x I - M, defined as H I F x I, there is no deformation (of pairs) of

 f: (F x I, F x AI) - (My AM) into (dM, aM). It follows from (6.1) that there
 is a homotopy of f, constant on F x AI, which makes f a covering map. Since

 f I F x 0 is a homeomorphism, this covering is 1- or 2-sheeted.
 In the first case, h interchanges the boundary components of M; since h
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 is homotopic to the identity map, it must be orientation-reversing.

 In the second case, we argue as follows. We know from (4.1) that M is

 homeomorphic to a line bundle over a closed non-orientable surface. We

 compose the homeomorphism h with a homeomorphism which is reflection on

 each line. Denote the composition by h'. There is a natural homotopy H'

 from h' to the identity map. What we assumed on H, implies that

 f': (Fx I,Fx al))(M, AM) ,

 defined as H' i F x I, does contract to (aM, aM). Thus, since F is all of AM,
 we deduce from Case 2 that h' is isotopic to the identity map. Whence h was

 orientation-reversing.

 To handle Case 4, we need the following lemma.

 LEMMA 7.4. In the closed irreducible manifold N, let G be an incompres-

 sible surface. Let h: N-o N be a homeomorphism, such that h(G) = G. If h

 is homotopic to the identity map, then h does not interchange the sides of G.

 PROOF. If G is non-separating, look at a closed curve which intersects G

 in one point. Since h induces the identity on H1(N), the assertion follows.

 If G is separating, then 7c1(N) A *, B in a non-trivial (and natural) way,
 where C, A, B stand for w1(G), 7rw(N1), w1(N2) respectively, N1, N2 being the
 closures of N - G, (cf. (1.1.6)). If our assertion were wrong, there would

 exist an inner automorphism of A *c B which interchanges A and B. Let a be

 an element which effects such an inner automorphism. Present a as a =

 a1. f f f -am, where aj is an element of A or B, and not both aj and aj+l belong
 to either A or B. If am C C, then m = 1, a = am, and conjugation by a cannot

 interchange A and B; so assume am n C, and am C A, say. Select b C B, b X C.
 Then

 aba-1 = a1. * -amba-1 . * m -a-' .
 But this is not an element of A [8, Satz 2, p. 340; Kor. p. 341].

 Case 4. M is closed. Let F be an incompressible surface in M. By (5.5),
 we may assume h(F) = F. Let G be a surface which is homeomorphic to F.

 Define f: G x I > M as the restriction HI F x I. A small homotopy of f,
 constant on G x AI, will give us f '(F) n U(G x AI) = G x AI, where

 U(G x AI) is a regular neighborhood of G x AI. Applying then (1.3), we find

 a homotopy of f, constant on U(G x AI), which makes f I(G x I - U(G x AI))
 transverse with respect to F, and

 f '(F)n(G x I- U(G x AI)) = GU U UGm,

 a system of incompressible surfaces in (G x I - U(G x AI)), and hence also

 in G x I. The Gj are closed, so by (3.2), each Gj is parallel to G x 0, and any
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 two are parallel. By a commutative diagram, ker (f I Gj)*- 0. Therefore,
 using Nielsen's theorem, we may assume f I Gj is a covering map for any j.
 Finally we assume, f has been deformed (by a homotopy which is constant on

 G x HI) so that it has the above properties and that, in addition, the number

 m is as small as possible.

 Any two components of G x HI U G1 U ... U G., bound a domain G x I'. If
 these components are adjacent, there is a lifting of f I G x I' to j' G x I' M,
 where M is obtained fron M by splitting at F. Applying (6.1) to all these f,

 and remembering our minimality condition on m, we find a deformation of f,

 constant on G x aI U G, U ... U G,,,, with one of the following four cases as
 its end result.

 (a) f(G x I) c F

 (b, c, d) f :(G x I, G x H U G1 U U Gm) (M, F) is locally homeo-

 morphic.

 (b) M is homeomorphic to F x L

 (c) m = 0, and (at least) one component of M is the twisted line bundle

 with F as its boundary.

 (d) m > 0, and both components of M are the twisted line bundle with
 F is its boundary.

 (In the conclusions (b, c, d), we used that f C G x 0 is a homeomorphism, and

 (4.1).)
 ad (a). In the same way as in Case 2 above, we make the homotopy

 constant on F. By (7.4), h does not interchange the sides of F. So we can

 take a regular neighborhood U(F), make h U(F) the identity map, and

 make the homotopy constant on U(F). Next, we construct a hierarchy for

 (M - U(F)), if (M - U(F)) is connected, respectively, hierarchies for the

 components of (M - U(F)) in the other case. The proof proceeds then as

 Case 1 from the beginning, with the difference only that the induction in

 (7.2) starts with M0 = M, and F0 = F.

 ad (b). There is an obvious isotopy which slides around F. After this

 has been performed, the homotopy can be made constant on F. Thus we are

 in Case (a).

 ad (c, d). We show these cannot happen.

 ad (c). Let M' and Mi" be the closures of M - F; let M' be that sub-
 manifold onto which f: G x I is a covering map. There is a 2-sheeted covering

 p: NAt M, such that p-1(M') is homeomorphic to F x I, and p-'(M") has two
 components, each of which is mapped homeomorphically by p.

 Denote by h, the homotopy of the identity map on M, defined by H.
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 There exists a homotopy h' of the identity map on N, such that p o h'=h, o p,
 Define h' = hK. The map h': N N is a lifting of the homeomorphism h; it

 has no choice but to be a homeomorphism itself. Consider now a lifting f' of

 f: G x IB M. f': G x I is a homeomorphism onto p-'(M'). Thus, if we
 denote D(p-1(M')) by F' U F", it follows that h' interchanges F' and F".

 Hence h' interchanges the components of p-1(M"). Since F" is parallel to F',

 we can deforme h' into a homeomorphism h": N-+ N, which maps F' to itself,
 and interchanges its sides. Since h" is homotopic to the identity map, this

 contradicts (7.4).

 ad (d). Make the same construction as in (c). And consider a lifting

 f': G x I- N. If f`1(p-1(Mf)) = f'-(M') has an odd number of components,
 it follows again that h' interchanges F' and F", so the same contradiction

 comes out.

 Otherwise, f '(G x AI) c F', say. Denote by N' and N" the closures of

 N - F'. Denote by a and ,3 the number of components of f''(N') and

 f'-`(N"), respectively. a + 8 is equal to the number of components of

 f-1(M"). Neither a nor f8 can be 0 unless the other is 1. Thus, repeating

 the construction of (c), we finally get our contradiction.

 As an immediate consequence of (6.5) and (7.1), we have the following.

 COROLLARY 7.5. Let M be an irreducible and boundary-irreducible

 manifold which is sufficiently large, and which is not homeomorphic to

 a line bundle. Let ,C0(M) be the quotient group of the group of auto-
 homeomorphisms of M by the subgroup of those which are isotopic to the

 identity map. The set of those automorphisms of w1,(M) which respect the
 peripheral structure is a group, and its quotient group by the subgroup of

 inner automorphisms, is naturally isomorphic to JCo(M).

 Remark. There is a long way from the above isomorphism to the actual

 calculation of ZW0(M) for a given manifold. For a few manifolds, there is an-

 other, more geometric, approach to ,C0(M), which will be indicated now.

 Let N be a compact orientable Seifert fibre space which is "big enough" in

 the (slightly more restricted) sense that there exists an incompressible surface

 in N, which is not boundary-parallel, and which receives an induced fibering
 from N. Denote by 9(N) the group of fibre-preserving homeomorphisms of

 N, and by %'(N) the subgroup of those which are isotopic to the identity

 map by fibre-preserving isotopies. And consider the natural homomorphism

 t(N)1t'(N) SoZ(N). This homomorphism is surjective if N is not one of a
 finite number of exceptions [17], (10.1). It is also infective. (This is not too
 difficult, and goes roughly as follows. There is a hierarchy for N, in which
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 86 FRIEDHELM WALDHAUSEN

 the first surfaces (and neighborhoods) receive an induced fibering from N, and
 the remaining surfaces are discs (being essentially meridian surfaces in fibre-

 neighborhoods of the exceptional fibres.) Given a fibre-preserving homeomor-

 phism of N and an isotopy from it to the identity map, we treat this isotopy

 as a homotopy, and start playing the game by which we proved (7.1), using

 the above hierarchy. The essential step is to make the homotopy constant on

 those first surfaces of the hierarchy. We achieve this by referring explicitly

 to (5.4), (instead of (5.5) in the proof of (7.1)). The small region of parallelity

 which we find this way does not contain an exceptional fibre, by [17, Lemmas

 (7.4) and (7.6)], and so the situation can be improved by a fibre-preserving

 isotopy.

 The calculation of 9?(N)/1'(N) may be considered as a (2 + s)-dimensional
 problem. It should be practicable quite generally. (Clearly, there is an exact

 sequence A - 9/9' - B > 0, where each element of A is represented by a
 homeomorphism which sends each fibre to itself, and B is a kind of braid group.)

 8. Universal covers

 Let M be a compact connected orientable PL 3-manifold, which is irre-

 ducible and sufficiently large (in the sense of (1.1.7)). Denote by Mi the

 universal cover of M. Let E be the unit ball in euclidean 3-space.

 THEOREM 8.1. There is an embedding f: Mu E, such that f(M) D E.

 Let F be an incompressible (PL) surface in M, U(F) a regular neighbor-

 hood of F, and N= (M - U(F)). Because of (1.2) it will suffice to prove

 If (8.1) holds for N (respectively, for the two components of N), then it

 holds for M, too.

 The subspace of M which projects onto F by the covering map, consists

 of a number (countable at most) of components, each of which is homeomorphic

 to the universal cover of F. We denote them by G1, G2, .... The subspace

 of M which projects onto U(F) may be written as U (Gj x I) in a natural

 way, with Gj identified with Gj x 1/2. Each component of (M - U (Gj x I))
 is homeomorphic to the universal cover of N (respectively of one of the com-

 ponents of N). We denote them by N1, N2, .... We arrange the numbering

 of the Nj and Gj, and define the N'j), in such a way that the following holds.

 N -1)=N,; Nl) n(GjxI) -GjxO; (GjxI)fnNjl+=Gjx1;
 Nfj+1' - N'j) U (Gj x I) U Nj+1 .

 Suppose, anembedding N') -Ehas been costructed, such that N 'D E.

 Then in particular, Gj x 0 is embedded in aE.
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 On the other hand, Gj x 0 is homeomorphic to a submanifold G! of the
 disc D, with Go D D. We identify D with the unit disc in the plane z = 0 in

 (another) euclidean 3-space. Let p and q be points on the z-axis with

 z-coordinates z, -1, and

 (8.2) 1/j K Zq < 0,

 and let P and Q be the cones from p and q to G!. Finally, let G! x I/2 be the

 cylinder, determined by G! and by 0 < z < 1/2. We define an embedding

 Q U (G; x I/2) Q as follows. For any straight line which contains q, we

 map the closure of its intersection with Q U (G; x I/2) linearly onto ist inter-

 section with Q.

 Using this embedding and the natural homeomorphism from P to the

 cone over Gj x 0 (with cone-point the center of E), we define an embedding

 N'i' U (Gj x [0, 1/2]) * E. Then, again, (N(i) U (Gj x [0, 1/2])) D E, and
 moreover, the closure of G6 = Gj x 1/2 in aE is a disc. In the same way
 we construct from the embedding of Nj+1 in the ball E' an embedding of
 (Gj x [1/2, 1]) U Nj+1 in E', such that the closure of Gj in aE' is a disc. If
 we use both times the same homeomorphism to G! c D (i.e., via the corre-

 spondence Gj x 0 e- Gj x 1), we find that the identification map aE D Gj e

 Gi c aE' extends to a homeomorphism of the closures of Gj. Thus, matching
 aE and aE' along these closures, we define an embedding of N'j+1' in the ball

 0

 EUE', with N'j+l' D (E U E').

 We finally map E U E' onto E by a homeomorphism h: E U E' - E with

 the properties

 (8.3) For any x C E, the distance of h(x) from aE is not less than that of

 x from aE. If x C E has distance at least 1/j from aE, or if x lies in the cone

 from the center of E to (?E - (E n E')), then h(x) = x.
 Repeating the induction step, we construct embeddings N'j) E for

 arbitrary large j. Because of (8.2) and (8.3), a limit map is defined. It is the

 required embedding.

 Remark. Of those irreducible manifolds, known to me, which have infi-

 nite fundamental group and are not sufficiently large [19], some (and possibly

 all) have a finite cover which is sufficiently large. Moreover, due to their

 fibre structure, it is easily seen directly that their universal cover is indeed

 euclidean 3-space. Thus, (8.1) is by no means best possible.

 UNIVERSITXT BONN AND

 INSTITUTE FOR ADVANCED STUDY
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