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MARK POWELL

ABSTRACT. Isurvey C.T.C. Wall’s influential papers, ‘Diffeomorphisms of 4-manifolds’
and ‘On simply-connected 4-manifolds’, published in 1964 on pages 131 — 149 of volume
39 of the Journal of the London Mathematical Society.

1. INTRODUCTION

This is a survey of C.T.C. Wall’s influential 1964 papers [Wal64a, Wal64b] on 4-
manifold topology. Wall’s papers were published consecutively on 19 pages of issue 39 of
the Journal of the London Mathematical Society.

Both papers primarily concern smooth, closed, oriented, simply-connected 4-dimensional
manifolds M, hereafter known as scosc 4-manifolds. An important invariant of such man-
ifolds is the intersection form

QMZ HQ(M) X HQ(M) — 7
(x,y) = (PD ™! (y), x).

Here PD~!(y) € H?(M;Z) is the Poincaré dual of y, which we may evaluate using the
Kronecker pairing H?(M;Z) x Hy(M) — Z on x. The intersection form is bilinear, sym-
metric, and nonsingular. The terminology ‘intersection form’ comes from the following
geometric interpretation. Any two classes x,y € Hy(M) can be represented by immer-
sions T, 7: S% 9+ M that intersect each other at finitely many transverse double points.
At each double point p € T(S?) th 7(S?), the orientation of S? induces an orientation of
the tangent space T),M. Comparing this with the given orientation of M yields a sign
ep € {£1}. Summing over all double points yields &, = Qum(z,y).

Prior to Wall’s work in [Wal64a, Wal64b], there were few theorems known in 4-manifold
topology. Early successes were as follows. Whitehead [Whi49] and Milnor [Mil58] had
proven that two closed, simply-connected 4-manifolds with isometric intersection form
are homotopy equivalent, Rokhlin [Rok52] proved that the signature of a closed, spin
4-manifold is divisible by 16, and Kervaire-Milnor applied this to obstruct embeddings
of spheres [KM61].

Wall’s contributions quickly entered the canon of core 4-manifolds knowledge (see
e.g. [Kir89, Sco05]), and surely helped inspire the advances of Cappell-Shaneson [CS71,
CS76] in the 1970s and the spectacular results of Freedman and Quinn [Fre82, FQ90] and
Donaldson [Don83, Don87] in the 1980s. Wall was awarded the prestigious 1965 Berwick
prize of the London Mathematical Society for these papers. The paper [Wal64a] has been
cited 86 times and [Wal64b] has been cited 78 times, according to Mathscinet.
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I will summarise the contents of the papers, explain Wall’s key insights, and I will
describe the various directions in which these ideas have been developed since.

1.1. Diffeomorphisms of 4-manifolds. In the first of the two articles, [Wal64a], Wall
considered isometries of Qas, i.e. f: Ho(M) = Hy(M) with

He showed how to realise isometries by diffeomorphisms F': M M ; here ‘realise’ means
that F, = f. If M is of the form N#(S? x $?), then in many cases Wall showed that
the ‘induced isomorphism’ map

Tar: mo Diff T (M) — Aut(Hao(M),Qur); F +— Fi

is surjective. Here mo Diff (M) is the mapping class group of M, consisting of isotopy
classes of orientation-preserving self-diffeomorphisms of M, and we write Aut(Hz(M ), Qnr)
for the group of isometries of Q5. Here is the precise statement of Wall’s theorem.

Theorem A ([Wal64a, Theorem 2]|). Let N be a scosc 4-manifold and suppose that Qn
is indefinite or that the rank of Ha(N) is at most 8. Set

M = N#(S* x §2).

Then Lyr is surjective. That is, every isometry of Qs s induced by a self-diffeomorphism
of M.

Recently Ruberman—Strle [RS25] extended Theorem A to remove the hypothesis that
QN be indefinite or rk Hy(N) < 8, at the expense of only realising elements in the image
of the stabilisation map Aut(Hy(N),Qn) — Aut(Hy(M),Qar) that extends an isomor-
phism by the identity on Ha(S? x $2). I will describe further extensions of Theorem A
in Section 3.

1.2. On simply-connected 4-manifolds. In the second article, [Wal64b], Wall ap-
plied [Wal64a] to improve on Whitehead’s theorem, by giving classifications of scosc
4-manifolds up to h-cobordism and up to stable diffeomorphism.

An h-cobordism (W;M,M') is a compact, smooth 5-dimensional cobordism W be-
tween M and M’ such that the inclusion maps M — W and M’ — W are both ho-
motopy equivalences. Shortly before Wall’s work, Smale [Sma61] (see also [Mil65]) had
proven that for n > 6 every n-dimensional h-cobordism is diffeomorphic to the product
M x [0,1]. This theorem formed the basis of surgery theory and its successes in the
classification of high-dimensional manifolds, e.g. [KM63, Wal62, Bar65, Wal67]. It was
unknown at the time whether 5-dimensional h-cobordisms are smoothly products, and in
fact this was shown in the 1980s to be false in general by Donaldson [Don87]. However
in 1964 Wall was able to show the following.

Theorem B ([Wal64b, Theorem 2]). Two scosc 4-manifolds with isometric intersection
forms are h-cobordant.

This was extremely useful, as it meant that once Freedman [Fre82] had established
the 5-dimensional h-cobordism theorem in the topological category, the homeomorphism
classification of scosc 4-manifolds followed immediately. Namely, two such 4-manifolds
are homeomorphic if and only if their intersection forms are isometric.
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Analysing the failure of Wall’s h-cobordisms to be products led to the discovery of
exotic pairs of 4-manifolds, i.e. 4-manifolds that are homeomorphic but not diffeomor-
phic. In particular it led to one of the constructions of exotic structures on R* [GS99,
Theorem 9.3.1].

Moreover, Wall’s h-cobordisms between scosc 4-manifolds led Matveyev [Mat96] and
Curtis-Freedman-Hsiang—Stong [CFHS96] to the celebrated cork theorem, which states
that every such h-cobordism W can be decomposed into (X X I)Ugxxs V, the union of a
product cobordism X x I and a contractible h-cobordism V. They then deduced that any
pair of such 4-manifolds M; and Ms admits a cork, namely a contractible submanifold
C C M; with an involution 7: 0C =, 9C such that My = (Ml\CO’) U, C. This implies
that all exoticness of scosc 4-manifolds can be localised to contractible submanifolds.

I must also mention Kreck’s result [Kre01], refining Wall’s, that the natural map, from
the set of diffeomorphism classes rel. boundary of smooth h-cobordisms between scosc
4-manifolds M; and My to the set of isometries between the intersection forms of Mj
and Mo, is an isomorphism. Theorem B is equivalent to the statement that each of these
sets is nonempty if and only if the other is.

Next, we say that two 4-manifolds M7 and My are stably diffeomorphic if, for some k,
we have that

(1.1) M#k(S? x S%) = My#k(S? x S?).

By mimicking Smale’s high-dimensional proof of the h-cobordism theorem as far as pos-
sible, Wall proved the following result.

Theorem C ([Wal64b, Theorem 3|). Two h-cobordant scosc 4-manifolds are stably dif-
feomorphic.

Indefinite, symmetric, nonsingular, bilinear forms are classified up to isometry by their
rank, signature, and parity [MH73]. Note that all symmetric, bilinear forms become in-
definite after orthogonal sum with Qg2 g2, which is represented by (9 §). Combining this
with Theorems B and C, we deduce that two scosc 4-manifolds are stably diffeomorphic
if and only if their intersection forms have the same rank, signature, and parity. I will
survey generalisations of this result in Section 6.

For stably diffeomorphic but not diffeomorphic 4-manifolds, how large must k& be
in (1.1)? It remains a famous open question whether there are h-cobordant scosc 4-
manifolds for which one must take £ > 1. For many examples, it has been shown that one
S? x 82 summand suffices [Auc03, Bay18, CPY19]. Recently Sungkyung Kang [Kan22]
announced examples of pairs of compact, contractible 4-manifolds (which have nonempty
boundary) where k& = 2 is needed.

Motivated by Wall’s result, topologists now study analogous questions on stable phe-
nomena for diffeomorphisms of 4-manifolds and surfaces in 4-manifolds; see for exam-
ple [AKMR15, AKM*19, KL.22, KMT22, CK23, Lin23, Gal24a, OPRW25].

1.3. Outline. Here is a summary of the content of the rest of this survey.

e Section 2: key ideas in the proof of Theorem A.
e Section 3: extensions of Theorem A and related results.
e Section 4: key ideas in the proof of Theorem B.
e Section 5: key ideas in the proof of Theorem C.
e Section 6: extensions of Theorem C and related results.
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2. CONSTRUCTING DIFFEOMORPHISMS OF 4-MANIFOLDS

To perform surgery on an embedding S* x D3 < N we remove the interior S' x D3
and glue in D? x S? in its place. An initial basic but fundamental observation is that for a
scosc 4-manifold N, performing such a surgery yields either N#(S? x S?) or N#(5%x S?),
depending on which identification of S' x S? boundary is used for gluing in D? x S2.
Here the manifold S$?%S? is the S2-bundle over S? obtained by gluing two copies of
S? x D? together using the Gluck twist G: S? x S? = 62 x S this diffeomorphism
rotates S? x {e} through angle 6 about a fixed axis, with 6 € [0, 27). Bundles over S
with fibre S? and structure group BDiff*S? are classified up to isomorphism by

[S?, BDiff 7S?%] = myBDiff 7 (S%) = 7y Diff t(S?) = 1 S0(3) = Z/2,

hence there are exactly two such bundles, with total spaces S? x S? and S?x S2.

Since N is simply-connected, every embedded circle S' C N is null-homotopic and
hence isotopic to a trivially embedded circle. Let us fix a circle v in N and a smoothly
embedded disc D in N with boundary ~. Performing surgery using a framing vy =
S1 x D3 compatible with a normal bundle of D, i.e. that extends to a stable framing of
vD, yields N#(S? x S?), while a framing incompatible with vD yields N#(S%xS?). If
Qn is odd, i.e. if there exists some 2 € Ho(N) with Qn(z,2) =1 mod 2, then a change
in the choice of disc can make either framing compatible, and indeed this is consistent
with the existence of a diffeomorphism N#(S? x S?) 2 N#(S2xS?). From now on we
will frame 77y in the compatible fashion.

Now we proceed to describe Wall’s construction of diffeomorphisms in [Wal64a]. Given
a manifold N and a submanifold P C N, let Diff p(N) denote the topological group of
diffeomorphisms that fix some neighbourhood of P pointwise. Given a manifold L, let
Emb(L, N) denote the space of smooth embeddings of L in N.

Let c: 81 x D3 — N be an embedding of the thickened circle, with im clg1x g0y =7, 80
that 7y := ¢(S! x D3) is a tubular neighbourhood of v. We have a fibration sequence

(2.1) Diffy, (N) — Diff(N) £22°% Emb(S! x D3, N).
The fibre of ¢, as shown, is Diffy,(N), the group of diffeomorphisms of N that fix 7y
pointwise. Isotopy extension and then restriction give rise to maps

m Emb(S? x D®, N) — 7o Diffy, (N) — 7o Diffg(N~c(S* x D?)).

The first map is the connecting homomorphism in the long exact sequence in homotopy
groups associated to the fibration (2.1). The idea is that we take the framed circle -, and
isotope it around in IV until it returns to its original position. The framing can a priori be
different from the original framing. An important example of such an isotopy ‘swings’ an
arc of the circle over an immersed 2-sphere @ in N. One can imagine that the arc ‘lassoes’
the sphere. More precisely, one should think of a generator of m;(25?) = m(S?) = Z,
mapped into N via the immersion corresponding to w. That is, we can decompose a
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FIGURE 1. An isotopy of v during which a sub-arc lassoes a sphere w and
then returns to its original position. Picture by Danica Kosanovié.

2-sphere into a union of arcs, all with the same two points as endpoints. This gives rise
to a loop of arcs for a sub-arc of v to be isotoped over. The rest of v stays fixed. By
general position we assume we obtain an embedded circle in N for all time.

Let w := [w]| € Ha(N) denote the homology class of w, and suppose that moreover
Qn(w,w) is even. Then the framing of the circle after its journey agrees up to isotopy
with the original framing. We can therefore obtain a loop of embeddings of S! x D3
as desired. Isotopy extension gives us a diffeomorphism of IV, that fixes 7y and that is
isotopic to the identity. However, as a diffeomorphism of Nx.c(S! x 10)3), it need not be
isotopic to the identity.

Since we have a diffeomorphism in m Diffy (N ~\c(S! x D3)) that fixes the boundary
pointwise, we may extend by the identity over D? x S?, to obtain an element of

o Diff* ((N~e(S' x D®)) U D? x §%) 2 7o Diff* (N#(S? x 52)).

As in the statement of Theorem A, let M := N#(S? x S?) and let f,: M = M be
the diffeomorphism just constructed. Let x = [S? x pt] and y = [pt xS?]. Then if
Qn(w,w) = 2s, Wall showed that f, sends

(2.2) E—E—QnEw)y; T T +w—sy; Yy,

where £ € Ho(N) C Ho(N) @ Ho(S? x S?) =2 Ho(M). This suffices to determine the
effect of the constructed diffeomorphism on homology.

Wall’s earlier impressive algebraic results from [Wal63], together with a short addi-
tional argument in [Wal64a], showed that under the hypotheses of Theorem A on N, the
group of isometries of Qs is generated by the following.

(i) Isometries of the form (2.2). In an sosc 4-manifold N, every homology class in N
can be represented by an immersed 2-sphere, so we can perform Wall’s construction
for every w € Hy(IN) with Qn(w,w) even, to obtain a diffeomorphism f,, realising
the isometry (2.2).

(ii) Isometries of the hyperbolic summand @ g2, g2, which can all be realised by diffeo-
morphisms;

(iii) In the case that Qy is odd, M = N#(S? x §?) = ]\77‘%@1[”27%&@2 and so there is a
decomposition Hy(M) = Ho(N) @ Ho(CP?) @ Hy (@2) Then we need the isometry
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(Id, — Id, Id) of @z, which can be smoothly realised via complex conjugation acting
on the CP? summand.

Thus every isometry of ();; can be smoothly realised.

In fact this does not just hold for closed M, but also whenever Hi(0M ) = 0, because
in that case the intersection form is still nonsingular, so the algebraic input from [Wal63]
continues to apply. Moreover the construction of diffeomorphisms above did not use that
M was closed. In the case of OM # (), the diffeomorphisms constructed can be assumed
to restrict to the identity on M.

3. EXTENSIONS AND IMPROVEMENTS OF THEOREM A

Recall the map Zy: mo Diff (M) — Aut(Ha(M), Q). Theorem A states that this
map is surjective for many scosc 4-manifolds. Is Zp; surjective in general? Is it injective?
What happens in the topological category? There has been tremendous progress on these
questions since Wall’s work, even though much more remains to be done. I will survey
some of this progress here.

First, as mentioned in the introduction, Ruberman—Strle [RS25] extended Wall’s result
to prove the following. Letting M = N#(S? x S?) as in Theorem A, let

S: Aut(HQ(N), QN) — Aut(Hg(M), QM)

be the stabilisation map that extends an isomorphism of Ha(N) to an isomorphism of
Ho(M) = Ho(N) @ Ho(S? x S?) by the identity on Hy(S? x S?).

Theorem 3.1 (Ruberman-Strle). Let N be a scosc 4-manifold and let M := N#(S? x
S?). Then ims C imZy;.

Wall made some preliminary observations about the non-simply-connected case in
[Wal64a, Section 5]. This was generalised by Cappell-Shaneson in [CS71], where, inspired
by Wall’s work they developed stable surgery theory for 4-manifolds (see also [FQ80]).
In the stable setting a great deal of the high dimensional theory can be reproduced. I
will return to this theme later, in Section 6.

In general, Zy; is not surjective. Examples due to Donaldson [Don90, Section VI| for

the K3 surface, and Friedman—Morgan [FM88, Theorem 6] for exotic copies of (CIP’Q#Q@Q,
show that there are isometries of (03 not realisable by any diffeomorphism. Examples
are now known to be abundant: Seiberg-Witten theory produces a set of distinguished
classes in second homology that must be preserved by any diffeomorphism, and so any
isometry of QQps that does not preserve this set cannot be realised by a diffeomorphism.
For instance, Fintushel-Stern [F'S98] showed how to modify the Seiberg-Witten invariants
using their knot surgery operation, and this leads to non-smoothly realisable isometries
on many homotopy K3 surfaces (see e.g. [Gal24b, Chapter 3]).

The map Zys is in general far from being injective. The first examples of diffeomor-
phisms acting as the identity on second homology but not isotopic to the identity were
produced by Ruberman in [Rub98, Rub99]. I will describe a variation on Ruberman’s
example next, due to Baraglia—Konno [BK20]. Let

M = K3#(S* x S%).
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Let K be a smooth, closed 4-manifold that is homeomorphic to K3 but not diffeomorphic
to it, for example arising from knot surgery [FS98]. Suppose also that

M’ = K#(S* x §?)

is diffeomorphic to M. Let ¢: M — M’ be such a diffeomorphism. Such a choice
of IC exists, and its action respects the decomposition of Hs and acts as the identity
on Hy(S% x 8?). Let r: S? x §2 — 52 x S? be the composition of symplectic Dehn
twists [Arn95, Sei08] in the spheres representing (1,1) and (1, —1) in Ha(S%x S?) = Z&Z.
We consider the diffeomorphism

(Idg, #r)o ¢ Lo (Idx #r) o ¢p: M — M.

This acts trivially on Ho(M). If the Seiberg—Witten invariants of K3 and K differ, then
it is not isotopic to the identity [BK20].

In contrast to the wild behaviour of diffeomorphisms revealed by gauge theory, in the
topological category the picture is much cleaner, and the topological mapping class group
has been entirely reduced to algebra.

Theorem 3.2. For every topological, closed, oriented, simply-connected 4-manifold M,
the map

I]\T/fp: 7o Homeo™ (M) = Aut(Hy(M),Qnr),

taking the induced isomorphism of Hao(M), is an isomorphism.

Surjectivity is due to Freedman [Fre82]. Injectivity follows from combining work of
Kreck [Kre79], Perron [Per86], and Quinn [Qui86] (the latter with a recent correction
from [GGH'23]). Thus the work of Donaldson [Don90] and Friedman-Morgan [FM88]
implies the existence of self-homeomorphisms of scosc 4-manifolds not isotopic to a dif-
feomorphism, and hence of smooth structures that are diffeomorphic but not isotopic.
Similarly, Ruberman’s diffeomorphisms are topologically but not smoothly isotopic to
the identity; they are exotic diffeomorphisms.

One can extend to simply-connected, compact 4-manifolds with nonempty boundary.
Saeki [Sae06] studied a stable version, and combining Saeki’s work with that of Per-
ron [Per86], Quinn [Qui86], Boyer [Boy86, Boy93|, and Orson-Powell [OP25] completes
the computation of the topological mapping class groups of all topological, compact,
simply-connected 4-manifolds.

The idea of using fibrations similar to (2.1) to construct diffeomorphisms has been
increasingly exploited in recent years. Budney-Gabai [BG19, BG23| used such a con-
struction to define barbell diffeomorphisms, obtaining interesting self-diffeomorphisms
of St x D3 and 3-balls in S* that are knotted rel. boundary. This has been refor-
mulated by Kosanovié¢ (and collaborators) through the grasper construction [Kos24c,
FGHK24, Kos24b, Kos24a], a families version of Habiro’s claspers. It has been very re-
cently claimed [GGH25] that one such construction gives rise to exotic diffeomorphisms
of the 4-sphere.

4. CONSTRUCTING h-COBORDISMS

Let M7 and Ms be scosc 4-manifolds with isometric intersection pairings. To obtain
an h-cobordism, one could apply Whitehead’s theorem to obtain a homotopy equivalence
f: My — My, consider this as an element in the structure set S(Ms), and then apply
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an argument inspired by surgery theory to obtain an h-cobordism. KEven though the
surgery sequence is not defined or exact in this dimension, one can still aim to produce
a b-dimensional cobordism and then surger that to an h-cobordism. In 1964 some of
the surgery technology, in particular Sullivan’s ideas for computing normal invariants,
were not yet available. But this approach was certainly known to Wall by 1970 [Wal99,
Remark after Theorem 16.5].

Instead, in 1964 Wall instead gave a direct and elementary argument, that became
a prototype for theorems classifying 4-manifolds via surgery methods. In particular
results coming from Kreck’s modified surgery theory [Kre99] use ideas directly analogous
to Wall’s, and presumably inspired by them, that bypass the homotopy classification,
instead relying on bordism theory and the algebra of Lagrangians of intersection forms
to surger a cobordism to an h-cobordism.

Let me give an outline of the key ideas in Wall’s proof. We consider

N = Ml# - M27

a scosc 4-manifold with zero signature o(N) = 0, since Qnr, = Qnr, implies o(M;) =
o(Myz) and since signature is additive. Bordism theory implies that N bounds a compact
5-manifold W, that can be assumed spin if NV is. Next, by surgery on circles and spheres
in W, one can arrange for W to be homotopy equivalent to a wedge of 2-spheres. Since
W is 5-dimensional, by general position we can represent generators for Ho(WW) by an
embedding of a boundary connected sum

V = 1k(S? x D3)p((S*x D?),
Whel“f) S%2x D3 is the D3-bundle over S? with boundary S?x.S%. Wall then checks that
WV is an h-cobordism from N to OV = #k(S? x S2)#£(5?xS?).

The h-cobordism W~V induces an isomorphism Hy(0V) 2 Hy(N). Let ac: Hy(M;) =
Hjy(M>) be the hypothesised isometry, and let

K :={(z,a(x)) | z € Ho(M;)} C Ho(My) ® Ho(Ms) = Hy(N) = Hy(OV),
the ‘diagonal’ Lagrangian of Qgy. Let
L :=ker(H2(0V) — Hy(V)).
As mentioned, both K and L are Lagrangians, meaning they are direct summands of
Hy(0V) and that K = K+ and L = L*. Here, for example,
Lt = {y € Hy(dV) | Qov(z,y) =0 for all z € L}.

Wall showed that there is an isometry of T" of (H2(0V'), Qo) such that T'(L) = K. In
terms of the later-developed formalism of surgery theory, this is related to the vanishing
of the surgery obstruction group Ls(Z).

Next, Wall applied his result on the existence of diffeomorphisms realising automor-
phisms, Theorem A from [Wal64a], to realise T' as being induced by a diffeomorphism

7: 0V = V. Cut out the interior of V from W and form the union
WV U, V.
This manifold has boundary
N = Mi# — My = (Mi~D*) U (5% x I) U (Ma~D?).
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Glue D* x I to the S3 x I part of the boundary to obtain a cobordism from M; to Mo.
Wall concludes the proof by showing that the resulting cobordism is an hA-cobordism, as
required.

5. h-COBORDISM IMPLIES STABLE DIFFEOMORPHISM

Although Wall worked with simply-connected 4-manifolds, the following generalisation
of Theorem C is now known [Law78|, with essentially the same proof as Wall’s.

Theorem 5.1. Let My and My be smooth, compact 4-manifolds with a diffeomorphism
OMy = 0Ms, and suppose that My and Ms are h-cobordant rel. boundary. Then My and
Ms are stably diffeomorphic rel. boundary.

Here is an outline of the proof, which uses ideas from Smale’s proof of the h-cobordism
theorem [Sma61, Mil65]. Let W be an h-cobordism, and consider a handle decomposition
of W. The methods of proof of the h-cobordism theorem in high dimensions allow us
to trade the handles of index 0, 1, 4, and 5 for 2- and 3-handles. So we are left with a
cobordism consisting only of 2- and 3-handles. The middle level M/, between the 2- and
3-handles is obtained by adding 2-handles to M; and also by adding 2-handles to Ms.
Since the maps M; — W and My — W are in particular injective on fundamental groups,
the 2-handles are always attached by circles that are null-homotopic, and hence are
isotopically trivial. It follows that the middle level M /; is obtained from M (respectively
M>) by taking connected sum with copies of S? x S? and S?x S2.

If there are copies of S?xS? in M, /2, we obtain an embedding of a 2-sphere in W
with odd normal Euler number. Projecting this to M; via the homotopy inverse to the
inclusion My — W and applying general position, we obtain an immersion of a 2-sphere
in M with odd normal Euler number. It follows that the universal cover of M; is not
spin, and in this case Mj#(S%xS?) = M; = (S? x §?). So we may in fact assume
that there are no copies of 522, and so the middle level is the sought for common
stabilisation of My and Ms.

As mentioned in the introduction, Theorem C can be rephrased in the following way,
using the classification of symmetric, bilinear, unimodular forms.

Theorem 5.2. Two scosc 4-manifolds My and My are stably diffeomorphic if and only
if x(M1) = x(M2), o(My) = o(Mas), and they are either both spin or both not spin.

Here x(M;) denotes the Euler characteristic, o(M;) denotes the signature of the in-
tersection form, and recall that M; is spin if and only if Qyy, is even, i.e. Qus(z,z) =0
mod 2 for all z € Hy(M;). Note that M; and My do not have to be h-cobordant to
deduce stable diffeomorphism. I will discuss generalisations of this result next, where we
will see what the minimal assumptions on a bordism are to deduce stable diffeomorphism.

6. EXTENSIONS AND IMPROVEMENTS OF THEOREMS B AND C

Theorem C was the prototype for a host of results on stable diffeomorphisms of 4-
manifolds. T already mentioned that Cappell-Shaneson [CS71] developed a stable surgery
sequence. However Kreck’s work [Kre99] on modified surgery took the idea to another
level. Kreck’s theory leads to a simplified way to approach the stable classification,
reducing it to computations of bordism groups, which can be approached via spectral
sequences. Moreover, modified surgery theory allows one to go further and attempt to
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de-stabilise, in nice cases obtaining homeomorphisms. I will present some of the results
obtained via these approaches below.

Beforehand, however, I want to mention the difference in the smooth and topological
categories from the stable point of view. Gompf [Gom84] showed that for orientable
4-manifolds, there is no difference.

Theorem 6.1 (Gompf). Two smooth, compact, oriented 4-manifolds are stably diffeo-
morphic if and only if they are stably homeomorphic.

However in the nonorientable case there can be differences. For example, Kreck [Kre84]
showed that

RPY# K3 and RPY#11(S? x 5?)

are (stably) homeomorphic but not stably diffeomorphic. I believe these were the first
published examples of closed, exotic 4-manifolds (Cappell-Shaneson’s 4-manifolds homo-
topy equivalent but not diffeomorphic to RP* [CS76] were observed slightly later [Rub84,
p. 221] to be homeomorphic to RP?). Tt is also worth remarking that one does not need
gauge theory to detect these exotica; Kreck’s obstruction is based on Rochlin’s theo-
rem, and is similar to Cappell-Shaneson’s invariant from [CS76]. Also, observe that
Kreck’s exotica do not contradict Equation (5.1), because these 4-manifolds are not even
h-cobordant.

Now let me return to Kreck’s method. I will mostly focus on the case of spin 4-
manifolds, to avoid technicalities. Kreck proved that if two closed, smooth, spin 4-
manifolds M; and M> with the same fundamental group 7 are spin bordant over the
classifying space B, then they are stably diffeomorphic. Here Bw can also be thought of
as the Eilenberg—Maclane space K (7, 1), and there are 2-connected maps ¢;: M; — Bw
classifying the universal covers. To obtain a complete stable classification one has to
factor out by the choice of spin structure and the choice of maps c;.

In the case of universal cover non-spin, the situation is similar: one uses oriented
bordism in place of spin bordism. The third case of non-spin 4-manifolds with spin
universal covering uses twisted spin bordism groups, details of which I shall omit here;
they were first worked out in [Tei92].

Kreck’s proof proceeds roughly as follows. Given a (spin) bordism over Bm, we can
surger it to an h-cobordism between M;#k(S? x $?) and Ma#k(S? x S?) for some k, and
then apply the argument in Section 5 to deduce that M7 and Ms are stably diffeomorphic.

Then, bordism groups can be computed with Atiyah—Hirzebruch spectral sequences,
or a twisted version thereof defined by Teichner [Tei92]. A sequence of recent papers
by Kasprowski, Teichner, and their collaborators connect the invariants arising from the
spectral sequences with more standard algebraic topological invariants, e.g. arising from
mo(M;) or the equivariant intersection form [KLPT17, KPT20, KT21, KPT22, KNV24,
KPT25]. See also [Deb22].

A sample result generalising Theorem C is as follows, proven by Cavicchioli-Hegenbarth
and Repovs [CH94, CHR95] in the spin case. This, and the non-spin case, follow in a
fairly straightforward way from Kreck’s bordism approach.

Theorem 6.2. Two smooth, closed, oriented 4-manifolds My and My with free funda-
mental group are stably diffeomorphic if and only if x(M1) = x(Ma), o(My) = o(Ms),
and they are either both spin or both not spin.
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Once one has a solid stable classification, one can attempt to de-stabilise, to try to
obtain homeomorphism results. This has been carried out successfully in the topologi-
cal category, notably in the work of Hambleton and Kreck [HK88, HK93a, HK93b] on
closed 4-manifolds with finite fundamental group, and later by Khan [Khal7] for some
infinite fundamental groups. As remarked upon, the proof method is a sophisticated gen-
eralisation of Wall’s method for surgering a bordism to an h-cobordism that I outlined
in Section 4. The approach was also used by Hambleton—Kreck—Teichner for classify-
ing nonorientable 4-manifolds with fundamental group of order two, and by Conway—
Powell [CP23] and Conway—Orson-Powell [COP23] for studying surfaces embedded in
5S4 whose complements have cyclic fundamental groups.

On the other hand it is possible for one stable equivalence class to contain many
manifolds. Kreck—Schafer [KS84] showed that there can be distinct closed 4-manifolds in
the same stable class, even up to homotopy equivalence. Hambleton—Nicholson [HN24]
extended this work to find arbitrarily large families of homotopy equivalence classes of
4-manifolds in the same stable class, while Conway—Crowley—Powell [CCP23] showed
that there can even be infinitely many manifolds in the same stable class, if one allows
nonempty boundary.
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