C.T.C. WALL'S 1964 ARTICLES ON 4-MANIFOLDS

MARK POWELL

ABSTRACT. I survey C.T.C. Wall's influential papers, 'Diffeomorphisms of 4-manifolds' and 'On simply-connected 4-manifolds', published in 1964 on pages 131-149 of volume 39 of the Journal of the London Mathematical Society.

1. Introduction

This is a survey of C.T.C. Wall's influential 1964 papers [Wal64a, Wal64b] on 4-manifold topology. Wall's papers were published consecutively on 19 pages of issue 39 of the Journal of the London Mathematical Society.

Both papers primarily concern smooth, closed, oriented, simply-connected 4-dimensional manifolds M, hereafter known as scosc 4-manifolds. An important invariant of such manifolds is the intersection form

$$Q_M \colon H_2(M) \times H_2(M) \to \mathbb{Z}$$

 $(x,y) \mapsto \langle PD^{-1}(y), x \rangle.$

Here $PD^{-1}(y) \in H^2(M; \mathbb{Z})$ is the Poincaré dual of y, which we may evaluate using the Kronecker pairing $H^2(M; \mathbb{Z}) \times H_2(M) \to \mathbb{Z}$ on x. The intersection form is bilinear, symmetric, and nonsingular. The terminology 'intersection form' comes from the following geometric interpretation. Any two classes $x, y \in H_2(M)$ can be represented by immersions $\overline{x}, \overline{y} \colon S^2 \hookrightarrow M$ that intersect each other at finitely many transverse double points. At each double point $p \in \overline{x}(S^2) \pitchfork \overline{y}(S^2)$, the orientation of S^2 induces an orientation of the tangent space T_pM . Comparing this with the given orientation of M yields a sign $\varepsilon_p \in \{\pm 1\}$. Summing over all double points yields $\sum_p \varepsilon_p = Q_M(x,y)$.

Prior to Wall's work in [Wal64a, Wal64b], there were few theorems known in 4-manifold topology. Early successes were as follows. Whitehead [Whi49] and Milnor [Mil58] had proven that two closed, simply-connected 4-manifolds with isometric intersection form are homotopy equivalent, Rokhlin [Rok52] proved that the signature of a closed, spin 4-manifold is divisible by 16, and Kervaire-Milnor applied this to obstruct embeddings of spheres [KM61].

Wall's contributions quickly entered the canon of core 4-manifolds knowledge (see e.g. [Kir89, Sco05]), and surely helped inspire the advances of Cappell-Shaneson [CS71, CS76] in the 1970s and the spectacular results of Freedman and Quinn [Fre82, FQ90] and Donaldson [Don83, Don87] in the 1980s. Wall was awarded the prestigious 1965 Berwick prize of the London Mathematical Society for these papers. The paper [Wal64a] has been cited 86 times and [Wal64b] has been cited 78 times, according to Mathscinet.

²⁰²⁰ Mathematics Subject Classification. 57K40, 57R35, 57R65, 57R67, 57R80. Key words and phrases. 4-manifolds, mapping class groups, h-cobordism, stable diffeomorphism.

I will summarise the contents of the papers, explain Wall's key insights, and I will describe the various directions in which these ideas have been developed since.

1.1. **Diffeomorphisms of 4-manifolds.** In the first of the two articles, [Wal64a], Wall considered isometries of Q_M , i.e. $f: H_2(M) \xrightarrow{\cong} H_2(M)$ with

$$Q_M(f(x), f(y)) = Q_M(x, y).$$

He showed how to realise isometries by diffeomorphisms $F: M \xrightarrow{\cong} M$; here 'realise' means that $F_* = f$. If M is of the form $N\#(S^2\times S^2)$, then in many cases Wall showed that the 'induced isomorphism' map

$$\mathcal{I}_M \colon \pi_0 \operatorname{Diff}^+(M) \to \operatorname{Aut}(H_2(M), Q_M); \ F \mapsto F_*$$

is surjective. Here $\pi_0 \operatorname{Diff}^+(M)$ is the mapping class group of M, consisting of isotopy classes of orientation-preserving self-diffeomorphisms of M, and we write $\operatorname{Aut}(H_2(M), Q_M)$ for the group of isometries of Q_M . Here is the precise statement of Wall's theorem.

Theorem A ([Wal64a, Theorem 2]). Let N be a scosc 4-manifold and suppose that Q_N is indefinite or that the rank of $H_2(N)$ is at most 8. Set

$$M := N \# (S^2 \times S^2).$$

Then \mathcal{I}_M is surjective. That is, every isometry of Q_M is induced by a self-diffeomorphism of M.

Recently Ruberman–Strle [RS25] extended Theorem A to remove the hypothesis that Q_N be indefinite or rk $H_2(N) \leq 8$, at the expense of only realising elements in the image of the stabilisation map $\operatorname{Aut}(H_2(N),Q_N) \to \operatorname{Aut}(H_2(M),Q_M)$ that extends an isomorphism by the identity on $H_2(S^2 \times S^2)$. I will describe further extensions of Theorem A in Section 3.

1.2. On simply-connected 4-manifolds. In the second article, [Wal64b], Wall applied [Wal64a] to improve on Whitehead's theorem, by giving classifications of scosc 4-manifolds up to h-cobordism and up to stable diffeomorphism.

An h-cobordism (W; M, M') is a compact, smooth 5-dimensional cobordism W between M and M' such that the inclusion maps $M \to W$ and $M' \to W$ are both homotopy equivalences. Shortly before Wall's work, Smale [Sma61] (see also [Mil65]) had proven that for $n \geq 6$ every n-dimensional h-cobordism is diffeomorphic to the product $M \times [0,1]$. This theorem formed the basis of surgery theory and its successes in the classification of high-dimensional manifolds, e.g. [KM63, Wal62, Bar65, Wal67]. It was unknown at the time whether 5-dimensional h-cobordisms are smoothly products, and in fact this was shown in the 1980s to be false in general by Donaldson [Don87]. However in 1964 Wall was able to show the following.

Theorem B ([Wal64b, Theorem 2]). Two scose 4-manifolds with isometric intersection forms are h-cobordant.

This was extremely useful, as it meant that once Freedman [Fre82] had established the 5-dimensional h-cobordism theorem in the topological category, the homeomorphism classification of scose 4-manifolds followed immediately. Namely, two such 4-manifolds are homeomorphic if and only if their intersection forms are isometric.

Analysing the failure of Wall's h-cobordisms to be products led to the discovery of exotic pairs of 4-manifolds, i.e. 4-manifolds that are homeomorphic but not diffeomorphic. In particular it led to one of the constructions of exotic structures on \mathbb{R}^4 [GS99, Theorem 9.3.1].

Moreover, Wall's h-cobordisms between scose 4-manifolds led Matveyev [Mat96] and Curtis-Freedman-Hsiang-Stong [CFHS96] to the celebrated cork theorem, which states that every such h-cobordism W can be decomposed into $(X \times I) \cup_{\partial X \times I} V$, the union of a product cobordism $X \times I$ and a contractible h-cobordism V. They then deduced that any pair of such 4-manifolds M_1 and M_2 admits a cork, namely a contractible submanifold $C \subseteq M_1$ with an involution $\tau \colon \partial C \xrightarrow{\cong} \partial C$ such that $M_2 \cong (M_1 \setminus \mathring{C}) \cup_{\tau} C$. This implies that all exoticness of scose 4-manifolds can be localised to contractible submanifolds.

I must also mention Kreck's result [Kre01], refining Wall's, that the natural map, from the set of diffeomorphism classes rel. boundary of smooth h-cobordisms between scosc 4-manifolds M_1 and M_2 to the set of isometries between the intersection forms of M_1 and M_2 , is an isomorphism. Theorem B is equivalent to the statement that each of these sets is nonempty if and only if the other is.

Next, we say that two 4-manifolds M_1 and M_2 are stably diffeomorphic if, for some k, we have that

$$(1.1) M_1 \# k(S^2 \times S^2) \cong M_2 \# k(S^2 \times S^2).$$

By mimicking Smale's high-dimensional proof of the h-cobordism theorem as far as possible, Wall proved the following result.

Theorem C ([Wal64b, Theorem 3]). Two h-cobordant scose 4-manifolds are stably diffeomorphic.

Indefinite, symmetric, nonsingular, bilinear forms are classified up to isometry by their rank, signature, and parity [MH73]. Note that all symmetric, bilinear forms become indefinite after orthogonal sum with $Q_{S^2\times S^2}$, which is represented by $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. Combining this with Theorems B and C, we deduce that two scosc 4-manifolds are stably diffeomorphic if and only if their intersection forms have the same rank, signature, and parity. I will survey generalisations of this result in Section 6.

For stably diffeomorphic but not diffeomorphic 4-manifolds, how large must k be in (1.1)? It remains a famous open question whether there are h-cobordant scose 4-manifolds for which one must take k > 1. For many examples, it has been shown that one $S^2 \times S^2$ summand suffices [Auc03, Bay18, CPY19]. Recently Sungkyung Kang [Kan22] announced examples of pairs of compact, contractible 4-manifolds (which have nonempty boundary) where k = 2 is needed.

Motivated by Wall's result, topologists now study analogous questions on stable phenomena for diffeomorphisms of 4-manifolds and surfaces in 4-manifolds; see for example [AKMR15, AKM+19, KL22, KMT22, CK23, Lin23, Gal24a, OPRW25].

- 1.3. Outline. Here is a summary of the content of the rest of this survey.
 - Section 2: key ideas in the proof of Theorem A.
 - Section 3: extensions of Theorem A and related results.
 - Section 4: key ideas in the proof of Theorem B.
 - Section 5: key ideas in the proof of Theorem C.
 - Section 6: extensions of Theorem C and related results.

Acknowledgements. I am grateful to the editors of the Centenary edition of the Journal of the LMS for commissioning this article, to Danny Ruberman for helpful comments on an earlier draft of this article, and to Danica Kosanović for helpful comments and for allowing me to use her illustration in Figure 1. I would also like to thank the referees for their suggestions.

2. Constructing diffeomorphisms of 4-manifolds

To perform surgery on an embedding $S^1 \times D^3 \hookrightarrow N$ we remove the interior $S^1 \times \mathring{D}^3$ and glue in $D^2 \times S^2$ in its place. An initial basic but fundamental observation is that for a scosc 4-manifold N, performing such a surgery yields either $N\#(S^2 \times S^2)$ or $N\#(S^2 \widetilde{\times} S^2)$, depending on which identification of $S^1 \times S^2$ boundary is used for gluing in $D^2 \times S^2$. Here the manifold $S^2 \widetilde{\times} S^2$ is the S^2 -bundle over S^2 obtained by gluing two copies of $S^2 \times D^2$ together using the Gluck twist $G \colon S^2 \times S^1 \xrightarrow{\cong} S^2 \times S^1$; this diffeomorphism rotates $S^2 \times \{e^{i\theta}\}$ through angle θ about a fixed axis, with $\theta \in [0, 2\pi)$. Bundles over S^2 with fibre S^2 and structure group $BDiff^+S^2$ are classified up to isomorphism by

$$[S^2, \mathrm{BDiff}^+S^2] \cong \pi_2 \mathrm{BDiff}^+(S^2) \cong \pi_1 \, \mathrm{Diff}^+(S^2) \cong \pi_1 SO(3) \cong \mathbb{Z}/2,$$

hence there are exactly two such bundles, with total spaces $S^2 \times S^2$ and $S^2 \times S^2$.

Since N is simply-connected, every embedded circle $S^1 \subseteq N$ is null-homotopic and hence isotopic to a trivially embedded circle. Let us fix a circle γ in N and a smoothly embedded disc D in N with boundary γ . Performing surgery using a framing $\overline{\nu}\gamma \cong S^1 \times D^3$ compatible with a normal bundle of D, i.e. that extends to a stable framing of νD , yields $N\#(S^2\times S^2)$, while a framing incompatible with νD yields $N\#(S^2\times S^2)$. If Q_N is odd, i.e. if there exists some $x\in H_2(N)$ with $Q_N(x,x)\equiv 1\mod 2$, then a change in the choice of disc can make either framing compatible, and indeed this is consistent with the existence of a diffeomorphism $N\#(S^2\times S^2)\cong N\#(S^2\times S^2)$. From now on we will frame $\overline{\nu}\gamma$ in the compatible fashion.

Now we proceed to describe Wall's construction of diffeomorphisms in [Wal64a]. Given a manifold N and a submanifold $P \subseteq N$, let $\operatorname{Diff}_P(N)$ denote the topological group of diffeomorphisms that fix some neighbourhood of P pointwise. Given a manifold L, let $\operatorname{Emb}(L,N)$ denote the space of smooth embeddings of L in N.

Let $c: S^1 \times D^3 \to N$ be an embedding of the thickened circle, with im $c|_{S^1 \times \{0\}} = \gamma$, so that $\overline{\nu}\gamma := c(S^1 \times D^3)$ is a tubular neighbourhood of γ . We have a fibration sequence

(2.1)
$$\operatorname{Diff}_{\overline{\nu}\gamma}(N) \to \operatorname{Diff}(N) \xrightarrow{F \mapsto F \circ c} \operatorname{Emb}(S^1 \times D^3, N).$$

The fibre of c, as shown, is $\mathrm{Diff}_{\overline{\nu}\gamma}(N)$, the group of diffeomorphisms of N that fix $\overline{\nu}\gamma$ pointwise. Isotopy extension and then restriction give rise to maps

$$\pi_1 \operatorname{Emb}(S^1 \times D^3, N) \to \pi_0 \operatorname{Diff}_{\overline{\nu}\gamma}(N) \to \pi_0 \operatorname{Diff}_{\partial}(N \setminus c(S^1 \times \mathring{D}^3)).$$

The first map is the connecting homomorphism in the long exact sequence in homotopy groups associated to the fibration (2.1). The idea is that we take the framed circle γ , and isotope it around in N until it returns to its original position. The framing can a priori be different from the original framing. An important example of such an isotopy 'swings' an arc of the circle over an immersed 2-sphere $\overline{\omega}$ in N. One can imagine that the arc 'lassoes' the sphere. More precisely, one should think of a generator of $\pi_1(\Omega S^2) \cong \pi_2(S^2) \cong \mathbb{Z}$, mapped into N via the immersion corresponding to $\overline{\omega}$. That is, we can decompose a

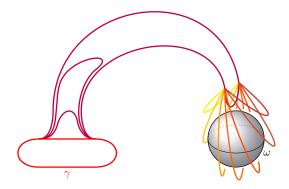


FIGURE 1. An isotopy of γ during which a sub-arc lassoes a sphere ω and then returns to its original position. Picture by Danica Kosanović.

2-sphere into a union of arcs, all with the same two points as endpoints. This gives rise to a loop of arcs for a sub-arc of γ to be isotoped over. The rest of γ stays fixed. By general position we assume we obtain an embedded circle in N for all time.

Let $\omega := [\overline{\omega}] \in H_2(N)$ denote the homology class of $\overline{\omega}$, and suppose that moreover $Q_N(\omega,\omega)$ is even. Then the framing of the circle after its journey agrees up to isotopy with the original framing. We can therefore obtain a loop of embeddings of $S^1 \times D^3$ as desired. Isotopy extension gives us a diffeomorphism of N, that fixes $\overline{\nu}\gamma$ and that is isotopic to the identity. However, as a diffeomorphism of $N \setminus c(S^1 \times \mathring{D}^3)$, it need not be isotopic to the identity.

Since we have a diffeomorphism in $\pi_0 \operatorname{Diff}_{\partial} \left(N \setminus c(S^1 \times \mathring{D}^3) \right)$ that fixes the boundary pointwise, we may extend by the identity over $D^2 \times S^2$, to obtain an element of

$$\pi_0 \operatorname{Diff}^+ ((N \setminus c(S^1 \times \mathring{D}^3)) \cup D^2 \times S^2) \cong \pi_0 \operatorname{Diff}^+ (N \# (S^2 \times S^2)).$$

As in the statement of Theorem A, let $M := N\#(S^2 \times S^2)$ and let $f_\omega \colon M \xrightarrow{\cong} M$ be the diffeomorphism just constructed. Let $x = [S^2 \times \mathrm{pt}]$ and $y = [\mathrm{pt} \times S^2]$. Then if $Q_N(\omega,\omega) = 2s$, Wall showed that f_ω sends

(2.2)
$$\xi \mapsto \xi - Q_N(\xi, \omega)y; \quad x \mapsto x + \omega - sy; \quad y \mapsto y,$$

where $\xi \in H_2(N) \subseteq H_2(N) \oplus H_2(S^2 \times S^2) \cong H_2(M)$. This suffices to determine the effect of the constructed diffeomorphism on homology.

Wall's earlier impressive algebraic results from [Wal63], together with a short additional argument in [Wal64a], showed that under the hypotheses of Theorem A on N, the group of isometries of Q_M is generated by the following.

- (i) Isometries of the form (2.2). In an sosc 4-manifold N, every homology class in N can be represented by an immersed 2-sphere, so we can perform Wall's construction for every $\omega \in H_2(N)$ with $Q_N(\omega, \omega)$ even, to obtain a diffeomorphism f_{ω} realising the isometry (2.2).
- (ii) Isometries of the hyperbolic summand $Q_{S^2 \times S^2}$, which can all be realised by diffeomorphisms;
- (iii) In the case that Q_N is odd, $M = N\#(S^2 \times S^2) \cong N\#\mathbb{CP}^2 \# \overline{\mathbb{CP}}^2$ and so there is a decomposition $H_2(M) \cong H_2(N) \oplus H_2(\mathbb{CP}^2) \oplus H_2(\overline{\mathbb{CP}}^2)$. Then we need the isometry

(Id, - Id, Id) of Q_M , which can be smoothly realised via complex conjugation acting on the \mathbb{CP}^2 summand.

Thus every isometry of Q_M can be smoothly realised.

In fact this does not just hold for closed M, but also whenever $H_1(\partial M)=0$, because in that case the intersection form is still nonsingular, so the algebraic input from [Wal63] continues to apply. Moreover the construction of diffeomorphisms above did not use that M was closed. In the case of $\partial M \neq \emptyset$, the diffeomorphisms constructed can be assumed to restrict to the identity on ∂M .

3. Extensions and improvements of Theorem A

Recall the map $\mathcal{I}_M \colon \pi_0 \operatorname{Diff}^+(M) \to \operatorname{Aut}(H_2(M), Q_M)$. Theorem A states that this map is surjective for many scose 4-manifolds. Is \mathcal{I}_M surjective in general? Is it injective? What happens in the topological category? There has been tremendous progress on these questions since Wall's work, even though much more remains to be done. I will survey some of this progress here.

First, as mentioned in the introduction, Ruberman–Strle [RS25] extended Wall's result to prove the following. Letting $M = N\#(S^2 \times S^2)$ as in Theorem A, let

$$s \colon \operatorname{Aut}(H_2(N), Q_N) \to \operatorname{Aut}(H_2(M), Q_M)$$

be the stabilisation map that extends an isomorphism of $H_2(N)$ to an isomorphism of $H_2(M) \cong H_2(N) \oplus H_2(S^2 \times S^2)$ by the identity on $H_2(S^2 \times S^2)$.

Theorem 3.1 (Ruberman–Strle). Let N be a scose 4-manifold and let $M := N\#(S^2 \times S^2)$. Then im $S \subseteq \operatorname{im} \mathcal{I}_M$.

Wall made some preliminary observations about the non-simply-connected case in [Wal64a, Section 5]. This was generalised by Cappell–Shaneson in [CS71], where, inspired by Wall's work they developed stable surgery theory for 4-manifolds (see also [FQ80]). In the stable setting a great deal of the high dimensional theory can be reproduced. I will return to this theme later, in Section 6.

In general, \mathcal{I}_M is not surjective. Examples due to Donaldson [Don90, Section VI] for the K_3 surface, and Friedman–Morgan [FM88, Theorem 6] for exotic copies of $\mathbb{CP}^2\#9\overline{\mathbb{CP}}^2$, show that there are isometries of Q_M not realisable by any diffeomorphism. Examples are now known to be abundant: Seiberg–Witten theory produces a set of distinguished classes in second homology that must be preserved by any diffeomorphism, and so any isometry of Q_M that does not preserve this set cannot be realised by a diffeomorphism. For instance, Fintushel–Stern [FS98] showed how to modify the Seiberg–Witten invariants using their knot surgery operation, and this leads to non-smoothly realisable isometries on many homotopy K_3 surfaces (see e.g. [Gal24b, Chapter 3]).

The map \mathcal{I}_M is in general far from being injective. The first examples of diffeomorphisms acting as the identity on second homology but not isotopic to the identity were produced by Ruberman in [Rub98, Rub99]. I will describe a variation on Ruberman's example next, due to Baraglia–Konno [BK20]. Let

$$M := K_3 \# (S^2 \times S^2).$$

Let K be a smooth, closed 4-manifold that is homeomorphic to K_3 but not diffeomorphic to it, for example arising from knot surgery [FS98]. Suppose also that

$$M' := \mathcal{K} \# (S^2 \times S^2)$$

is diffeomorphic to M. Let $\phi: M \to M'$ be such a diffeomorphism. Such a choice of \mathcal{K} exists, and its action respects the decomposition of H_2 and acts as the identity on $H_2(S^2 \times S^2)$. Let $r: S^2 \times S^2 \to S^2 \times S^2$ be the composition of symplectic Dehn twists [Arn95, Sei08] in the spheres representing (1,1) and (1,-1) in $H_2(S^2 \times S^2) \cong \mathbb{Z} \oplus \mathbb{Z}$. We consider the diffeomorphism

$$(\operatorname{Id}_{K_3} \# r) \circ \phi^{-1} \circ (\operatorname{Id}_{\mathcal{K}} \# r) \circ \phi \colon M \to M.$$

This acts trivially on $H_2(M)$. If the Seiberg-Witten invariants of K_3 and K differ, then it is not isotopic to the identity [BK20].

In contrast to the wild behaviour of diffeomorphisms revealed by gauge theory, in the topological category the picture is much cleaner, and the topological mapping class group has been entirely reduced to algebra.

Theorem 3.2. For every topological, closed, oriented, simply-connected 4-manifold M, the map

$$\mathcal{I}_M^{\operatorname{Top}} \colon \pi_0 \operatorname{Homeo}^+(M) \xrightarrow{\cong} \operatorname{Aut}(H_2(M), Q_M),$$

taking the induced isomorphism of $H_2(M)$, is an isomorphism.

Surjectivity is due to Freedman [Fre82]. Injectivity follows from combining work of Kreck [Kre79], Perron [Per86], and Quinn [Qui86] (the latter with a recent correction from [GGH⁺23]). Thus the work of Donaldson [Don90] and Friedman-Morgan [FM88] implies the existence of self-homeomorphisms of scose 4-manifolds not isotopic to a diffeomorphism, and hence of smooth structures that are diffeomorphic but not isotopic. Similarly, Ruberman's diffeomorphisms are topologically but not smoothly isotopic to the identity; they are exotic diffeomorphisms.

One can extend to simply-connected, compact 4-manifolds with nonempty boundary. Saeki [Sae06] studied a stable version, and combining Saeki's work with that of Perron [Per86], Quinn [Qui86], Boyer [Boy86, Boy93], and Orson-Powell [OP25] completes the computation of the topological mapping class groups of all topological, compact, simply-connected 4-manifolds.

The idea of using fibrations similar to (2.1) to construct diffeomorphisms has been increasingly exploited in recent years. Budney-Gabai [BG19, BG23] used such a construction to define barbell diffeomorphisms, obtaining interesting self-diffeomorphisms of $S^1 \times D^3$ and 3-balls in S^4 that are knotted rel. boundary. This has been reformulated by Kosanović (and collaborators) through the grasper construction [Kos24c, FGHK24, Kos24b, Kos24a], a families version of Habiro's claspers. It has been very recently claimed [GGH25] that one such construction gives rise to exotic diffeomorphisms of the 4-sphere.

4. Constructing h-cobordisms

Let M_1 and M_2 be scose 4-manifolds with isometric intersection pairings. To obtain an h-cobordism, one could apply Whitehead's theorem to obtain a homotopy equivalence $f: M_1 \to M_2$, consider this as an element in the structure set $\mathcal{S}(M_2)$, and then apply an argument inspired by surgery theory to obtain an h-cobordism. Even though the surgery sequence is not defined or exact in this dimension, one can still aim to produce a 5-dimensional cobordism and then surger that to an h-cobordism. In 1964 some of the surgery technology, in particular Sullivan's ideas for computing normal invariants, were not yet available. But this approach was certainly known to Wall by 1970 [Wal99, Remark after Theorem 16.5].

Instead, in 1964 Wall instead gave a direct and elementary argument, that became a prototype for theorems classifying 4-manifolds via surgery methods. In particular results coming from Kreck's modified surgery theory [Kre99] use ideas directly analogous to Wall's, and presumably inspired by them, that bypass the homotopy classification, instead relying on bordism theory and the algebra of Lagrangians of intersection forms to surger a cobordism to an h-cobordism.

Let me give an outline of the key ideas in Wall's proof. We consider

$$N := M_1 \# - M_2$$

a scose 4-manifold with zero signature $\sigma(N)=0$, since $Q_{M_1}\cong Q_{M_2}$ implies $\sigma(M_1)=\sigma(M_2)$ and since signature is additive. Bordism theory implies that N bounds a compact 5-manifold W, that can be assumed spin if N is. Next, by surgery on circles and spheres in W, one can arrange for W to be homotopy equivalent to a wedge of 2-spheres. Since W is 5-dimensional, by general position we can represent generators for $H_2(W)$ by an embedding of a boundary connected sum

$$V := \sharp k(S^2 \times D^3) \sharp \ell(S^2 \widetilde{\times} D^3),$$

where $S^2 \widetilde{\times} D^3$ is the D^3 -bundle over S^2 with boundary $S^2 \widetilde{\times} S^2$. Wall then checks that $W \setminus \mathring{V}$ is an h-cobordism from N to $\partial V \cong \#k(S^2 \times S^2) \#\ell(S^2 \widetilde{\times} S^2)$.

The h-cobordism $W \setminus \mathring{V}$ induces an isomorphism $H_2(\partial V) \cong H_2(N)$. Let $\alpha \colon H_2(M_1) \xrightarrow{\cong} H_2(M_2)$ be the hypothesised isometry, and let

$$K := \{(x, \alpha(x)) \mid x \in H_2(M_1)\} \subseteq H_2(M_1) \oplus H_2(M_2) \cong H_2(N) \cong H_2(\partial V),$$

the 'diagonal' Lagrangian of $Q_{\partial V}$. Let

$$L := \ker(H_2(\partial V) \to H_2(V)).$$

As mentioned, both K and L are Lagrangians, meaning they are direct summands of $H_2(\partial V)$ and that $K = K^{\perp}$ and $L = L^{\perp}$. Here, for example,

$$L^{\perp} := \{ y \in H_2(\partial V) \mid Q_{\partial V}(x, y) = 0 \text{ for all } x \in L \}.$$

Wall showed that there is an isometry of T of $(H_2(\partial V), Q_{\partial V})$ such that T(L) = K. In terms of the later-developed formalism of surgery theory, this is related to the vanishing of the surgery obstruction group $L_5(\mathbb{Z})$.

Next, Wall applied his result on the existence of diffeomorphisms realising automorphisms, Theorem A from [Wal64a], to realise T as being induced by a diffeomorphism $\tau \colon \partial V \xrightarrow{\cong} \partial V$. Cut out the interior of V from W and form the union

$$W \setminus \mathring{V} \cup_{\tau} V$$
.

This manifold has boundary

$$N = M_1 \# - M_2 \cong (M_1 \setminus \mathring{D}^4) \cup (S^3 \times I) \cup (M_2 \setminus \mathring{D}^4).$$

Glue $D^4 \times I$ to the $S^3 \times I$ part of the boundary to obtain a cobordism from M_1 to M_2 . Wall concludes the proof by showing that the resulting cobordism is an h-cobordism, as required.

5. h-cobordism implies stable diffeomorphism

Although Wall worked with simply-connected 4-manifolds, the following generalisation of Theorem C is now known [Law78], with essentially the same proof as Wall's.

Theorem 5.1. Let M_1 and M_2 be smooth, compact 4-manifolds with a diffeomorphism $\partial M_1 \cong \partial M_2$, and suppose that M_1 and M_2 are h-cobordant rel. boundary. Then M_1 and M_2 are stably diffeomorphic rel. boundary.

Here is an outline of the proof, which uses ideas from Smale's proof of the h-cobordism theorem [Sma61, Mil65]. Let W be an h-cobordism, and consider a handle decomposition of W. The methods of proof of the h-cobordism theorem in high dimensions allow us to trade the handles of index 0, 1, 4, and 5 for 2- and 3-handles. So we are left with a cobordism consisting only of 2- and 3-handles. The middle level $M_{1/2}$ between the 2- and 3-handles is obtained by adding 2-handles to M_1 and also by adding 2-handles to M_2 . Since the maps $M_1 \to W$ and $M_2 \to W$ are in particular injective on fundamental groups, the 2-handles are always attached by circles that are null-homotopic, and hence are isotopically trivial. It follows that the middle level $M_{1/2}$ is obtained from M_1 (respectively M_2) by taking connected sum with copies of $S^2 \times S^2$ and $S^2 \times S^2$.

If there are copies of $S^2 \times S^2$ in $M_{1/2}$, we obtain an embedding of a 2-sphere in W with odd normal Euler number. Projecting this to M_1 via the homotopy inverse to the inclusion $M_1 \to W$ and applying general position, we obtain an immersion of a 2-sphere in M_1 with odd normal Euler number. It follows that the universal cover of M_1 is not spin, and in this case $M_1 \# (S^2 \times S^2) \cong M_1 \cong (S^2 \times S^2)$. So we may in fact assume that there are no copies of $S^2 \times S^2$, and so the middle level is the sought for common stabilisation of M_1 and M_2 .

As mentioned in the introduction, Theorem C can be rephrased in the following way, using the classification of symmetric, bilinear, unimodular forms.

Theorem 5.2. Two scose 4-manifolds M_1 and M_2 are stably diffeomorphic if and only if $\chi(M_1) = \chi(M_2)$, $\sigma(M_1) = \sigma(M_2)$, and they are either both spin or both not spin.

Here $\chi(M_i)$ denotes the Euler characteristic, $\sigma(M_i)$ denotes the signature of the intersection form, and recall that M_i is spin if and only if Q_{M_i} is even, i.e. $Q_{M_i}(x,x) \equiv 0$ mod 2 for all $x \in H_2(M_i)$. Note that M_1 and M_2 do not have to be h-cobordant to deduce stable diffeomorphism. I will discuss generalisations of this result next, where we will see what the minimal assumptions on a bordism are to deduce stable diffeomorphism.

6. Extensions and improvements of Theorems B and C

Theorem C was the prototype for a host of results on stable diffeomorphisms of 4-manifolds. I already mentioned that Cappell–Shaneson [CS71] developed a stable surgery sequence. However Kreck's work [Kre99] on modified surgery took the idea to another level. Kreck's theory leads to a simplified way to approach the stable classification, reducing it to computations of bordism groups, which can be approached via spectral sequences. Moreover, modified surgery theory allows one to go further and attempt to

de-stabilise, in nice cases obtaining homeomorphisms. I will present some of the results obtained via these approaches below.

Beforehand, however, I want to mention the difference in the smooth and topological categories from the stable point of view. Gompf [Gom84] showed that for orientable 4-manifolds, there is no difference.

Theorem 6.1 (Gompf). Two smooth, compact, oriented 4-manifolds are stably diffeomorphic if and only if they are stably homeomorphic.

However in the nonorientable case there can be differences. For example, Kreck [Kre84] showed that

$$\mathbb{RP}^4 \# K_3$$
 and $\mathbb{RP}^4 \# 11(S^2 \times S^2)$

are (stably) homeomorphic but not stably diffeomorphic. I believe these were the first published examples of closed, exotic 4-manifolds (Cappell–Shaneson's 4-manifolds homotopy equivalent but not diffeomorphic to \mathbb{RP}^4 [CS76] were observed slightly later [Rub84, p. 221] to be homeomorphic to \mathbb{RP}^4). It is also worth remarking that one does not need gauge theory to detect these exotica; Kreck's obstruction is based on Rochlin's theorem, and is similar to Cappell–Shaneson's invariant from [CS76]. Also, observe that Kreck's exotica do not contradict Equation (5.1), because these 4-manifolds are not even h-cobordant.

Now let me return to Kreck's method. I will mostly focus on the case of spin 4-manifolds, to avoid technicalities. Kreck proved that if two closed, smooth, spin 4-manifolds M_1 and M_2 with the same fundamental group π are spin bordant over the classifying space $B\pi$, then they are stably diffeomorphic. Here $B\pi$ can also be thought of as the Eilenberg-Maclane space $K(\pi,1)$, and there are 2-connected maps $c_i \colon M_i \to B\pi$ classifying the universal covers. To obtain a complete stable classification one has to factor out by the choice of spin structure and the choice of maps c_i .

In the case of universal cover non-spin, the situation is similar: one uses oriented bordism in place of spin bordism. The third case of non-spin 4-manifolds with spin universal covering uses twisted spin bordism groups, details of which I shall omit here; they were first worked out in [Tei92].

Kreck's proof proceeds roughly as follows. Given a (spin) bordism over $B\pi$, we can surger it to an h-cobordism between $M_1\#k(S^2\times S^2)$ and $M_2\#k(S^2\times S^2)$ for some k, and then apply the argument in Section 5 to deduce that M_1 and M_2 are stably diffeomorphic.

Then, bordism groups can be computed with Atiyah–Hirzebruch spectral sequences, or a twisted version thereof defined by Teichner [Tei92]. A sequence of recent papers by Kasprowski, Teichner, and their collaborators connect the invariants arising from the spectral sequences with more standard algebraic topological invariants, e.g. arising from $\pi_2(M_i)$ or the equivariant intersection form [KLPT17, KPT20, KT21, KPT22, KNV24, KPT25]. See also [Deb22].

A sample result generalising Theorem C is as follows, proven by Cavicchioli-Hegenbarth and Repovš [CH94, CHR95] in the spin case. This, and the non-spin case, follow in a fairly straightforward way from Kreck's bordism approach.

Theorem 6.2. Two smooth, closed, oriented 4-manifolds M_1 and M_2 with free fundamental group are stably diffeomorphic if and only if $\chi(M_1) = \chi(M_2)$, $\sigma(M_1) = \sigma(M_2)$, and they are either both spin or both not spin.

Once one has a solid stable classification, one can attempt to de-stabilise, to try to obtain homeomorphism results. This has been carried out successfully in the topological category, notably in the work of Hambleton and Kreck [HK88, HK93a, HK93b] on closed 4-manifolds with finite fundamental group, and later by Khan [Kha17] for some infinite fundamental groups. As remarked upon, the proof method is a sophisticated generalisation of Wall's method for surgering a bordism to an h-cobordism that I outlined in Section 4. The approach was also used by Hambleton–Kreck–Teichner for classifying nonorientable 4-manifolds with fundamental group of order two, and by Conway–Powell [CP23] and Conway–Orson–Powell [COP23] for studying surfaces embedded in S^4 whose complements have cyclic fundamental groups.

On the other hand it is possible for one stable equivalence class to contain many manifolds. Kreck–Schafer [KS84] showed that there can be distinct closed 4-manifolds in the same stable class, even up to homotopy equivalence. Hambleton–Nicholson [HN24] extended this work to find arbitrarily large families of homotopy equivalence classes of 4-manifolds in the same stable class, while Conway–Crowley–Powell [CCP23] showed that there can even be infinitely many manifolds in the same stable class, if one allows nonempty boundary.

References

- [AKM⁺19] Dave Auckly, Hee Jung Kim, Paul Melvin, Daniel Ruberman, and Hannah Schwartz. Isotopy of surfaces in 4-manifolds after a single stabilization. *Adv. Math.*, 341:609–615, 2019.
- [AKMR15] Dave Auckly, Hee Jung Kim, Paul Melvin, and Daniel Ruberman. Stable isotopy in four dimensions. J. Lond. Math. Soc. (2), 91(2):439–463, 2015.
- [Arn95] Vladimir I. Arnold. Some remarks on symplectic monodromy of Milnor fibrations. In *The Floer memorial volume*, pages 99–103. Basel: Birkhäuser, 1995.
- [Auc03] David Auckly. Families of four-dimensional manifolds that become mutually diffeomorphic after one stabilization. In *Proceedings of the Pacific Institute for the Mathematical Sciences Workshop "Invariants of Three-Manifolds" (Calgary, AB, 1999)*, volume 127, pages 277–298, 2003.
- [Bar65] Dennis Barden. Simply connected five-manifolds. Ann. Math. (2), 82:365–385, 1965.
- [Bay18] R. İnanç Baykur. Dissolving knot surgered 4-manifolds by classical cobordism arguments. J. Knot Theory Ramifications, 27(5):1871001, 6, 2018.
- [BG19] Ryan Budney and David Gabai. Knotted 3-balls in S^4 . Preprint, available at arXiv:1912.09029, 2019.
- [BG23] Ryan Budney and David Gabai. On the automorphism groups of hyperbolic manifolds. Preprint, available at arXiv:2303.05010, 2023.
- [BK20] David Baraglia and Hokuto Konno. A gluing formula for families Seiberg-Witten invariants. Geom. Topol., 24(3):1381–1456, 2020.
- [Boy86] Steven Boyer. Simply-connected 4-manifolds with a given boundary. *Trans. Amer. Math. Soc.*, 298(1):331–357, 1986.
- [Boy93] Steven Boyer. Realization of simply-connected 4-manifolds with a given boundary. *Comment. Math. Helv.*, 68(1):20–47, 1993.
- [CCP23] Anthony Conway, Diarmuid Crowley, and Mark Powell. Infinite homotopy stable class for 4-manifolds with boundary. Pac. J. Math., 325(2):209–237, 2023.
- [CFHS96] Cynthia L. Curtis, Michael H. Freedman, Wu-Chung Hsiang, and Richard Stong. A decomposition theorem for h-cobordant smooth simply-connected compact 4-manifolds. Invent. Math., 123(2):343–348, 1996.
- [CH94] Alberto Cavicchioli and Friedrich Hegenbarth. On 4-manifolds with free fundamental group. Forum Math., 6(4):415–429, 1994.
- [CHR95] Alberto Cavicchioli, Friedrich Hegenbarth, and Dušan Repovš. On the stable classification of certain 4-manifolds. Bull. Aust. Math. Soc., 52(3):385–398, 1995.

- [CK23] Jae Choon Cha and Byeorhi Kim. Light bulb smoothing for topological surfaces in 4-manifolds. Preprint, arXiv:2303.12857 [math.GT], 2023.
- [COP23] Anthony Conway, Patrick Orson, and Mark Powell. Unknotting nonorientable surfaces. Preprint, arXiv:2306.12305 [math.GT], 2023.
- [CP23] Anthony Conway and Mark Powell. Embedded surfaces with infinite cyclic knot group. Geom. Topol., 27(2):739–821, 2023.
- [CPY19] Hakho Choi, Jongil Park, and Ki-Heon Yun. On dissolving knot surgery 4-manifolds under a \mathbb{CP}^2 -connected sum. Asian J. Math., 23(5):735–748, 2019.
- [CS71] Sylvain E. Cappell and Julius L. Shaneson. On four dimensional surgery and applications. Comment. Math. Helv., 46:500–528, 1971.
- [CS76] Sylvain E. Cappell and Julius L. Shaneson. Some new four-manifolds. Ann. Math. (2), 104:61–72, 1976.
- [Deb22] Arun Debray. Stable diffeomorphism classification of some unorientable 4-manifolds. *Bull. Lond. Math. Soc.*, 54(6):2219–2231, 2022.
- [Don83] Simon K. Donaldson. An application of gauge theory to four-dimensional topology. J. Differential Geom., 18(2):279–315, 1983.
- [Don87] Simon K. Donaldson. Irrationality and the h-cobordism conjecture. J. Differential Geom., 26(1):141–168, 1987.
- [Don90] Simon K. Donaldson. Polynomial invariants for smooth four-manifolds. *Topology*, 29(3):257–315, 1990.
- [FGHK24] Eduardo Fernández, David T. Gay, Daniel Hartman, and Danica Kosanović. Grasper families of spheres in $S^2 \times D^2$ and barbell diffeomorphisms of $S^1 \times S^2 \times I$. Preprint, arXiv:2412.07467 [math.GT], 2024.
- [FM88] Robert Friedman and John W. Morgan. On the diffeomorphism types of certain algebraic surfaces. I. J. Differ. Geom., 27(2):297–369, 1988.
- [FQ80] Michael Freedman and Frank Quinn. A quick proof of the 4-dimensional stable surgery theorem. Comment. Math. Helv., 55(4):668-671, 1980.
- [FQ90] Michael Freedman and Frank Quinn. Topology of 4-manifolds, volume 39 of Princeton Mathematical Series. Princeton University Press, 1990.
- [Fre82] Michael Freedman. The topology of four-dimensional manifolds. J. Differential Geom., 17(3):357–453, 1982.
- [FS98] Ronald Fintushel and Ronald J. Stern. Constructions of smooth 4-manifolds. Doc. Math., Extra Volume ICM:443-452, 1998.
- [Gal24a] Daniel A. P. Galvin. The Casson-Sullivan invariant for homeomorphisms of 4-manifolds. Preprint, arXiv:2405.07928 [math.GT], 2024.
- [Gal24b] Daniel A. P. Galvin. Non-smoothable homeomorphisms of 4-manifolds. 2024. PhD Thesis, University of Glasgow, United Kingdom, available at https://theses.gla.ac.uk/84595.
- [GGH⁺23] David Gabai, David T. Gay, Daniel Hartman, Vyacheslav Krushkal, and Mark Powell. Pseudo-isotopies of simply connected 4-manifolds. Preprint, arXiv:2311.11196 [math.GT], 2023.
- [GGH25] David Gabai, David T. Gay, and Daniel Hartman. Pseudo-Isotopy and Diffeomorphisms of the 4-Sphere I: Loops of Spheres. Preprint, arXiv:2505.12088 [math.GT], 2025.
- [Gom84] Robert E. Gompf. Stable diffeomorphism of compact 4-manifolds. Topology Appl., 18:115–120, 1984.
- [GS99] Robert Gompf and Andras Stipsicz. 4-manifolds and Kirby calculus, volume 20 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 1999.
- [HK88] Ian Hambleton and Matthias Kreck. On the classification of topological 4-manifolds with finite fundamental group. *Math. Ann.*, 280(1):85–104, 1988.
- [HK93a] Ian Hambleton and Matthias Kreck. Cancellation, elliptic surfaces and the topology of certain four-manifolds. J. Reine Angew. Math., 444:79–100, 1993.
- [HK93b] Ian Hambleton and Matthias Kreck. Cancellation of hyperbolic forms and topological fourmanifolds. J. Reine Angew. Math., 443:21–47, 1993.
- [HN24] Ian Hambleton and John Nicholson. Four-manifolds, two-complexes and the quadratic bias invariant. Preprint, arXiv:2412.15089 [math.GT], 2024.

- [Kan22] Sungkyung Kang. One stabilization is not enough for contractible 4-manifolds. Preprint, arXiv:2210.07510 [math.GT], 2022.
- [Kha17] Qayum Khan. Cancellation for 4-manifolds with virtually abelian fundamental group. Topology Appl., 220:14–30, 2017.
- [Kir89] Robion C. Kirby. The topology of 4-manifolds, volume 1374 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1989.
- [KL22] Hokuto Konno and Jianfeng Lin. Homological instability for moduli spaces of smooth 4-manifolds. Preprint, arXiv:2211.03043 [math.GT], 2022.
- [KLPT17] Daniel Kasprowski, Markus Land, Mark Powell, and Peter Teichner. Stable classification of 4-manifolds with 3-manifold fundamental groups. J. Topol., 10(3):827–881, 2017.
- [KM61] Michel A. Kervaire and John W. Milnor. On 2-spheres in 4-manifolds. Proceedings of the National Academy of Sciences, 47(10):1651–1657, 1961.
- [KM63] Michel A. Kervaire and John W. Milnor. Groups of homotopy spheres. I. Ann. of Math. (2), 77:504–537, 1963.
- [KMT22] Hokuto Konno, Anubhav Mukherjee, and Masaki Taniguchi. Exotic codimension-1 submanifolds in 4-manifolds and stabilizations. Preprint, arXiv:2210.05029 [math.GT], 2022.
- [KNV24] Daniel Kasprowski, John Nicholson, and Simona Veselá. Stable equivalence relations on 4-manifolds. Preprint, arXiv:2405.06637 [math.GT], 2024.
- [Kos24a] Danica Kosanović. Diffeomorphisms of 4-manifolds from graspers. Preprint, arXiv:2405.05822 [math.GT], 2024.
- [Kos24b] Danica Kosanović. On fundamental groups of spaces of framed embeddings of a circle in a 4-manifold. Preprint, arXiv:2407.06923 [math.GT], 2024.
- [Kos24c] Danica Kosanović. On homotopy groups of spaces of embeddings of an arc or a circle: the Dax invariant. *Trans. Am. Math. Soc.*, 377(2):775–805, 2024.
- [KPT20] Daniel Kasprowski, Mark Powell, and Peter Teichner. Algebraic criteria for stable diffeomorphism of spin 4-manifolds. Preprint, arXiv:2006.06127 [math.GT], 2020.
- [KPT22] Daniel Kasprowski, Mark Powell, and Peter Teichner. Four-manifolds up to connected sum with complex projective planes. Am. J. Math., 144(1):75–118, 2022.
- [KPT25] Daniel Kasprowski, Mark Powell, and Peter Teichner. The Kervaire-Milnor invariant in the stable classification of spin 4-manifolds. *Tunis. J. Math.*, 7(2):417–436, 2025.
- [Kre79] Matthias Kreck. Isotopy classes of diffeomorphisms of (k-1)-connected almost-parallelizable 2k-manifolds. In Algebraic topology, Aarhus 1978 (Proc. Sympos., Univ. Aarhus), volume 763 of Lecture Notes in Math., pages 643–663. Springer, Berlin, 1979.
- [Kre84] Matthias Kreck. Some closed 4-manifolds with exotic differentiable structure. Algebraic topology, Proc. Conf., Aarhus 1982, Lect. Notes Math. 1051, 246-262 (1984)., 1984.
- [Kre99] Matthias Kreck. Surgery and duality. Ann. Math. (2), 149(3):707–754, 1999.
- [Kre01] Matthias Kreck. h-cobordisms between 1-connected 4-manifolds. Geom. Topol., 5:1–6, 2001.
- [KS84] Matthias Kreck and James A. Schafer. Classification and stable classification of manifolds: some examples. *Comment. Math. Helv.*, 59:12–38, 1984.
- [KT21] Daniel Kasprowski and Peter Teichner. CP²-stable classification of 4-manifolds with finite fundamental group. Pac. J. Math., 310(2):355−373, 2021.
- [Law78] Terry Lawson. Decomposing 5-manifolds as doubles. Houston J. Math., 4(1):81–84, 1978.
- [Lin23] Jianfeng Lin. Isotopy of the Dehn twist on K 3 # K 3 after a single stabilization. Geom. Topol., $27(5):1987-2012,\ 2023.$
- [Mat96] Rostislav Matveyev. A decomposition of smooth simply-connected h-cobordant 4-manifolds. J. Differ. Geom., 44(3):571–582, 1996.
- [MH73] John W. Milnor and Dale H. Husemoller. Symmetric bilinear forms, volume 73 of Ergeb. Math. Grenzgeb. Springer-Verlag, Berlin, 1973.
- [Mil58] John Milnor. On simply connected 4-manifolds. In Symposium internacional de topología algebraica, pages 122–128. Universidad Nacional Autónoma de México and UNESCO, Mexico City, 1958.
- [Mil65] John W. Milnor. Lectures on the h-cobordism theorem. Princeton University Press, Princeton, N.J., 1965. Notes by L. Siebenmann and J. Sondow.

- [OP25] Patrick Orson and Mark Powell. Mapping class groups of simply connected 4-manifolds with boundary. J. Differential Geom., 131(1):199–275, 2025.
- [OPRW25] Patrick Orson, Mark Powell, and Oscar Randal-Williams. Smoothing topological pseudo-isotopies of 4-manifolds. Preprint, arXiv:2507.16984 [math.GT], 2025.
- [Per86] Bernard Perron. Pseudo-isotopies et isotopies en dimension quatre dans la catégorie topologique. *Topology*, 25(4):381–397, 1986.
- [Qui86] Frank Quinn. Isotopy of 4-manifolds. J. Differential Geom., 24(3):343-372, 1986.
- [Rok52] Vladimir A. Rokhlin. New results in the theory of four-dimensional manifolds. *Doklady Akad. Nauk SSSR (N.S.)*, 84:221–224, 1952.
- [RS25] Daniel Ruberman and Săso Strle. Wall's stable realization for diffeomorphisms of definite 4-manifolds. *Indiana Univ. Math. J.*, 74(1):225–231, 2025.
- [Rub84] Daniel Ruberman. Invariant knots of free involutions of S^4 . Topology Appl., 18(2-3):217–224, 1984.
- [Rub98] Daniel Ruberman. An obstruction to smooth isotopy in dimension 4. Math. Res. Lett., 5(6):743–758, 1998.
- [Rub99] Daniel Ruberman. A polynomial invariant of diffeomorphisms of 4-manifolds. In Proceedings of the Kirbyfest, Berkeley, CA, USA, June 22–26, 1998, pages 473–488. Warwick: University of Warwick, Institute of Mathematics, 1999.
- [Sae06] Osamu Saeki. Stable mapping class groups of 4-manifolds with boundary. *Trans. Amer. Math. Soc.*, 358(5):2091–2104, 2006.
- [Sco05] Alexandru Scorpan. The wild world of 4-manifolds. American Mathematical Society, Providence, RI, 2005.
- [Sei08] Paul Seidel. Lectures on four-dimensional Dehn twists. In Symplectic 4-manifolds and algebraic surfaces. Lectures given at the C.I.M.E. summer school, Cetraro, Italy, September 2-10, 2003, pages 231–267. Berlin: Springer; Florence: Fondazione C.I.M.E, 2008.
- [Sma61] Stephen Smale. Generalized Poincaré's conjecture in dimensions greater than four. Ann. of Math. (2), 74:391–406, 1961.
- [Tei92] Peter Teichner. Topological four-manifolds with finite fundamental group. Shaker Verlag, 1992. PhD Thesis, University of Mainz, Germany.
- [Wal62] C. Terence C. Wall. Classification of (n-1)-connected 2n-manifolds. Ann. Math. (2), 75:163–189, 1962.
- [Wal63] C. Terence C. Wall. On the orthogonal groups of unimodular quadratic forms. II. J. Reine Angew. Math., 213:122–136, 1963.
- [Wal64a] C. Terence C. Wall. Diffeomorphisms of 4-manifolds. J. Lond. Math. Soc., 39(1):131–140, 1964.
- [Wal64b] C. Terence C. Wall. On simply-connected 4-manifolds. J. London Math. Soc., 39(1):141–149, 1964.
- [Wal67] C. Terence C. Wall. Classification problems in differential topology. VI: Classification of (s-1)-connected (2s+1)-manifolds. Topology, 6:273–296, 1967.
- [Wal99] C. Terence C. Wall. Surgery on compact manifolds, volume 69 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, second edition, 1999. Edited and with a foreword by A. A. Ranicki.
- [Whi49] J. Henry C. Whitehead. On simply connected, 4-dimensional polyhedra. Comment. Math. Helv., 22:48–92, 1949.

School of Mathematics and Statistics, University of Glasgow, University Place, Glasgow, G12 8QQ, United Kingdom

 $Email\ address: {\tt mark.powell@glasgow.ac.uk}$