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1 | INTRODUCTION

This is a survey of C. T. C. Wall’s influential 1964 papers [87, 88] on 4-manifold topology.
Wall’s papers were published consecutively on 19 pp. of issue 39 of the Journal of the London
Mathematical Society.

Both papers primarily concern smooth, closed, oriented, simply-connected 4-dimensional
manifolds M, hereafter known as scosc 4-manifolds. An important invariant of such manifolds
is the intersection form

Qp : Hy(M) x Hy(M) — Z

(x,y) = (PD7 (), x).

Here, PD~!(y) € H?*(M; Z) is the Poincaré dual of y, which we may evaluate using the Kronecker
pairing H*(M; Z) x H,(M) — Z on x. The intersection form is bilinear, symmetric, and nonsin-
gular. The terminology ‘intersection form’ comes from the following geometric interpretation.
Any two classes x,y € H,(M) can be represented by immersions X,y : S? & M that intersect
each other at finitely many transverse double points. At each double point p € x(52) th y(S?), the
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20f15 | POWELL

orientation of S? induces an orientation of the tangent space T ,M. Comparing this with the given
orientation of M yields asigne,, € {+1}. Summing over all double points yields D pEp = Qu(x, ).

Prior to Wall’s work in [87, 83], there were few theorems known in 4-manifold topology. Early
successes were as follows. Whitehead [91] and Milnor [67] had proven that two closed, simply-
connected 4-manifolds with isometric intersection form are homotopy equivalent, Rokhlin [75]
(see [38, pp. 17-21] for a French translation from Russian) proved that the signature of a closed,
smooth, spin 4-manifold is divisible by 16, and Kervaire-Milnor applied this to obstruct smooth
embeddings of spheres [51].

Wall’s contributions quickly entered the canon of core 4-manifolds knowledge (see, e.g., [53,
81]), and surely helped inspire the advances of Cappell-Shaneson [14, 15] in the 1970s and the
spectacular results of Freedman and Quinn [30, 33] and Donaldson [25, 26] in the 1980s. Wall was
awarded the prestigious 1965 Berwick prize of the London Mathematical Society for these papers.
The paper [87] has been cited 86 times and [88] has been cited 78 times, according to Mathscinet.

I will summarise the contents of the papers, explain Wall’s key insights, and I will describe the
various directions in which these ideas have been developed since.

1.1 | Diffeomorphisms of 4-manifolds

In the first of the two articles, [87], Wall considered isometries of Q,,, thatis, f : H,(M) >H »(M)
with

Qu(f(x), fF(3) = Qu(x, y).

He showed how to realise isometries by diffeomorphisms F : M = M; here ‘realise’ means that
F, = f. If M is of the form N#(S? x S?), then in many cases Wall showed that the ‘induced
isomorphism’ map

1, : 7, Diff "(M) - Aut(H,(M),Q,,); F+~ F,
is surjective. Here, 7, Diff*(M) is the mapping class group of M, consisting of isotopy classes of
orientation-preserving self-diffeomorphisms of M, and we write Aut(H,(M), Q;,) for the group of

isometries of Q,,. Here is the precise statement of Wall’s theorem.

Theorem A [87, Theorem 2]. Let N be a scosc 4-manifold and suppose that Q) is indefinite or that
the rank of H,(N) is at most 8. Set

M = N#(S? x S?).
Then, 1, is surjective. That is, every isometry of Q,, is induced by a self-diffeomorphism of M.
Recently, Ruberman-Strle [79] extended Theorem A to remove the hypothesis that Q, be
indefinite or rk H,(N) < 8, at the expense of only realising elements in the image of the stabil-

isation map Aut(H,(N), Qy) — Aut(H,(M), Q,,) that extends an isomorphism by the identity on
H,(S? x S?). 1 will describe further extensions of Theorem A in Section 3.
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1.2 | On simply-connected 4-manifolds

In the second article, [88], Wall applied [87] to improve on Whitehead’s theorem, by giving
classifications of scosc 4-manifolds up to h-cobordism and up to stable diffeomorphism.

An h-cobordism (W;M,M’") is a compact, smooth 5-dimensional cobordism W between M
and M’ such that the inclusion maps M — W and M’ — W are both homotopy equivalences.
Shortly before Wall’s work, Smale [83] (see also [68]) had proven that for n > 6 every n-
dimensional h-cobordism is diffeomorphic to the product M X [0, 1]. This theorem formed the
basis of surgery theory and its successes in the classification of high-dimensional manifolds, for
example, [8, 52, 85, 89]. It was unknown at the time whether five-dimensional h-cobordisms are
smoothly products, and in fact this was shown in the 1980s to be false in general by Donaldson [26].
However in 1964 Wall was able to show the following.

Theorem B [83, Theorem 2]. Two scosc 4-manifolds with isometric intersection forms are
h-cobordant.

This was extremely useful, as it meant that once Freedman [30] had established the 5-
dimensional h-cobordism theorem in the topological category, the homeomorphism classification
of scosc 4-manifolds followed immediately. Namely, two such 4-manifolds are homeomorphic if
and only if their intersection forms are isometric.

Analysing the failure of Wall’s h-cobordisms to be products led to the discovery of exotic pairs
of 4-manifolds, that is, 4-manifolds that are homeomorphic but not diffeomorphic. In particular,
it led to one of the constructions of exotic structures on R* [37, Theorem 9.3.1].

Moreover, Wall’s h-cobordisms between scosc 4-manifolds led Matveyev [66] and Curtis—
Freedman-Hsiang-Stong [23] to the celebrated cork theorem, which states that every such
h-cobordism W can be decomposed into (X X I) Usx,; V, the union of a product cobordism X x I
and a contractible h-cobordism V. They then deduced that any pair of such 4-manifolds M; and

M, admits a cork [1], namely a contractible submanifold C C M, with an involution 7 : 4C — 4C
such that M, = (M;\C) U, C. This implies that all exoticness of scosc 4-manifolds can be localised
to contractible submanifolds.

I must also mention Kreck’s result [62], refining Wall’s, that the natural map, from the set of
diffeomorphism classes rel. boundary of smooth h-cobordisms between scosc 4-manifolds M, and
M, to the set of isometries between the intersection forms of M; and M,, is an isomorphism.
Theorem B is equivalent to the statement that each of these sets is nonempty if and only if the
other is.

Next, we say that two 4-manifolds M; and M, are stably diffeomorphic if, for some k, we have
that

M, #k(S? x S?) = M, #k(S* x 5%). 1.1

By mimicking Smale’s high-dimensional proof of the h-cobordism theorem as far as possible, Wall
proved the following result.

Theorem C [88, Theorem 3]. Two h-cobordant scosc 4-manifolds are stably diffeomorphic.
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Indefinite, symmetric, nonsingular, bilinear forms are classified up to isometry by their rank,
signature, and parity [69]. Note that all symmetric, bilinear forms become indefinite after orthog-
onal sum with Qg2s2, which is represented by (¢ | ). Combining this withB and C, we deduce
that two scosc 4-manifolds are stably diffeomorphic if and only if their intersection forms have
the same rank, signature, and parity. I will survey generalisations of this result in Section 6.

For stably diffeomorphic but not diffeomorphic 4-manifolds, how large must k be in (1.1)? It
remains a famous open question whether there are h-cobordant scosc 4-manifolds for which one
must take k > 1. For many examples, it has been shown that one S? x S? summand suffices [3,
9, 19]. Recently, Sungkyung Kang [43] announced examples of pairs of compact, contractible 4-
manifolds (which have nonempty boundary) where k = 2 is needed.

Motivated by Wall’s result, topologists now study analogous questions on stable phenomena
for diffeomorphisms of 4-manifolds and surfaces in 4-manifolds; see, for example, [4, 5, 18, 35, 54,
55, 65, 72].

1.3 | Outline

Here is a summary of the content of the rest of this survey.

* Section 2: key ideas in the proof of Theorem A.
* Section 3: extensions of Theorem A and related results.
* Section 4: key ideas in the proof of Theorem B.
* Section 5: key ideas in the proof of Theorem C.
* Section 6: extensions of Theorem C and related results.

2 | CONSTRUCTING DIFFEOMORPHISMS OF 4-MANIFOLDS

To perform surgery on an embedding S* x D*> & N, we remove the interior S* x D? and glue in
D? x S? in its place. An initial basic but fundamental observation is that for a scosc 4-manifold
N, performing such a surgery yields either N#(S? x S?) or N#(5?XS?), depending on which
identification of S! x S? boundary is used for gluing in D? X S. Here, the manifold S?XS? is
the S2-bundle over S? obtained by gluing two copies of S? x D? together using the Gluck twist

G: S2xS! = S2 xS this diffeomorphism rotates S? x {e'} through angle 8 about a fixed axis,
with 6 € [0, 27r). Bundles over S? with fibre S? and structure group BDiff*S? are classified up to
isomorphism by

[S?, BDiff*5%] = 7,BDiff*(5?) & 7, Diff*(5?) &~ 7,S0(3) = 7/2,

hence there are exactly two such bundles, with total spaces S? x S? and S?XS?.

Since N is simply-connected, every embedded circle S' C N is null-homotopic and hence iso-
topic to a trivially embedded circle. Let us fix a circle y in N and a smoothly embedded disc D in
N with boundary y. Performing surgery using a framing vy = S' x D3 compatible with a normal
bundle of D, that is, that extends to a stable framing of vD, yields N#(S? x S?), while a framing
incompatible with vD yields N#(S?XS?). If Q is odd, that is, if there exists some x € H,(N) with
Qn(x,x) =1 mod 2, then a change in the choice of disc can make either framing compatible,
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FIGURE 1 Anisotopy of y during which a sub-arc lassoes a sphere w and then returns to its original
position. Picture by Danica Kosanovic.

and indeed this is consistent with the existence of a diffeomorphism N#(S? x S?) > N#(5?XS?).
From now on, we will frame vy in the compatible fashion.

Now, we proceed to describe Wall’s construction of diffeomorphisms in [87]. Given a mani-
fold N and a submanifold P C N, let Diff,(IN) denote the topological group of diffeomorphisms
that fix some neighbourhood of P pointwise. Given a manifold L, let Emb(L, N) denote the space
of smooth embeddings of L in N.

Letc: S* X D¥ — N be an embedding of the thickened circle, with im ¢|1,p; = 7,50 that vy :=
c(S' x D?) is a tubular neighbourhood of y. We have a fibration sequence

Diff;, (N) — Diff(N) —— Emb(S' x D%, N). 1)

The fibre of ¢, as shown, is Diff5, (N), the group of diffeomorphisms of N that fix vy pointwise.
Isotopy extension and then restriction give rise to maps

7 Emb(S' x D*,N) — 7, Diffy, (N) — 7, Diff 5(N\c(S" % D?)).

The first map is the connecting homomorphism in the long exact sequence in homotopy groups
associated with the fibration (2.1). The idea is that we take the framed circle y, and isotope it
around in N until it returns to its original position. The framing can a priori be different from the
original framing. An important example of such an isotopy ‘swings’ an arc of the circle over an
immersed 2-sphere w in N. One can imagine that the arc ‘lassoes’ the sphere, as shown in Figure 1.
More precisely, one should think of a generator of 7, (QS?) = 7,(S?) = Z, mapped into N via the
immersion corresponding to w. That is, we can decompose a 2-sphere into a union of arcs, all with
the same two points as endpoints. This gives rise to a loop of arcs for a sub-arc of y to be isotoped
over. The rest of y stays fixed. By general position we assume we obtain an embedded circle in N
for all time.

Let w := [w] € H,(N) denote the homology class of w, and suppose that moreover Qy(w, w)
is even. Then, the framing of the circle after its journey agrees up to isotopy with the original
framing. We can therefore obtain a loop of embeddings of S' x D3 as desired. Isotopy extension
gives us a diffeomorphism of N, that fixes vy and that is isotopic to the identity. However, as a
diffeomorphism of N\c(S! x D?), it need not be isotopic to the identity.
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Since we have a diffeomorphism in 7z, Diff 5 (N\c(S! x 153)) that fixes the boundary pointwise,
we may extend by the identity over D? x S2, to obtain an element of

7o DIff* ((IN\e(S* x D*)) U D? X §?) = 7y Diff*(N#(S* X S2)).

As in the statement of Theorem A, let M := N#(S* x S?) and let f,: M =, M be the diffeomor-
phism just constructed. Let x = [S? x pt] and y = [pt xS?]. Then, if Qy(w, @) = 2s, Wall showed
that f, sends

- E—0Qn 0y x> x+w—sy; Yy, (2.2)

where £ € H,(N) C H,(N) @ H,(S? x S?) = H,(M). This suffices to determine the effect of the
constructed diffeomorphism on homology.

Wall’s earlier impressive algebraic results from [86], together with a short additional argument
in [87], showed that under the hypotheses of Theorem A on N, the group of isometries of Q,, is
generated by the following.

(i) Isometries of the form (2.2). In an sosc 4-manifold N, every homology class in N can be
represented by an immersed 2-sphere, so we can perform Wall’s construction for every w €
H,(N) with Qun(w, w) even, to obtain a diffeomorphism f,, realising the isometry (2.2).

(ii) Isometries of the hyperbolic summand Qg22, which can all be realised by diffeomorphisms;

(iii) In the case that Qy is odd, M = N#(S? x §?) N#CP2#CP and so there is a decompo-
sition H,(M) = H,(N) @ H,(CP?) & HZ(WZ). Then, we need the isometry (Id, — Id, Id) of
Q,» which can be smoothly realised via complex conjugation acting on the CP? summand.

Thus, every isometry of Q,, can be smoothly realised.

In fact this does not just hold for closed M, but also whenever H;(dM) = 0, because in that
case the intersection form is still nonsingular, so the algebraic input from [86] continues to
apply. Moreover, the construction of diffeomorphisms above did not use that M was closed. In
the case of M # @, the diffeomorphisms constructed can be assumed to restrict to the identity
on oM.

3 | EXTENSIONS AND IMPROVEMENTS OF THEOREM A

Recall the map 7, : 7, Diff*(M) — Aut(H,(M), Q,,). Theorem A states that this map is surjec-
tive for many scosc 4-manifolds. Is 7,, surjective in general? Is it injective? What happens in the
topological category? There has been tremendous progress on these questions since Wall’s work,
even though much more remains to be done. I will survey some of this progress here.

First, as mentioned in the introduction, Ruberman-Strle [79] extended Wall’s result to prove
the following. Letting M = N#(S? x S?) as in Theorem A, let

s Aut(H,(N),Qy) — Aut(H,(M), Qy,)

be the stabilisation map that extends an isomorphism of H,(N) to an isomorphism of H,(M) =
H,(N) @ H,(S? x S?) by the identity on H,(S? x S?).
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Theorem 3.1 (Ruberman-Strle). Let N be a scosc 4-manifold and let M := N#(S? X S?). Then,
ims Cim7,,.

Wall made some preliminary observations about the non-simply-connected case in [87, Sec-
tion 5]. This was generalised by Cappell-Shaneson in [14], where, inspired by Wall’s work they
developed stable surgery theory for 4-manifolds (see also [32]). In the stable setting, a great deal
of the high-dimensional theory can be reproduced. I will return to this theme later, in Section 6.

In general, T,, is not surjective. Examples due to Donaldson [27, Section VI] for the K; sur-

face, and Friedman-Morgan [31, Theorem 6] for exotic copies of CP2#9@2, show that there are
isometries of Q,; not realisable by any diffeomorphism. Examples are now known to be abundant:
Seiberg-Witten theory produces a set of distinguished classes in second homology that must be
preserved by any diffeomorphism, and so any isometry of Q,, that does not preserve this set cannot
be realised by a diffeomorphism. For instance, Donaldson’s argument for the K; surface extends to
any homotopy K surface using work of Morgan-Szabé [70], as explained in [6, Remark 7.7]. One
elegant construction of homotopy K, surfaces proceeds via Fintushel and Stern’s knot surgery
operation [29].

The map I,, isin general far from being injective. The first examples of diffeomorphisms acting
as the identity on second homology but not isotopic to the identity were produced by Ruberman
in [77, 78]. I will describe a variation on Ruberman’s example next, due to Baraglia—Konno [7].
Let

M = K;#(S* x S%).

Let K be a smooth, closed 4-manifold that is homeomorphic to K5 but not diffeomorphic to it, for
example, arising from knot surgery [29]. Suppose also that

M’ 1= K#(S* x S?)
is diffeomorphic to M. Let ¢ : M — M’ be such a diffeomorphism. Such a choice of K exists, and
its action respects the decomposition of H, and acts as the identity on H,(S? X S?). Letr : §? X
5?2 — S? x S? be the composition of symplectic Dehn twists [2, 82] in the spheres representing (1,1)
and (1,—1) in H,(S? X S?) = Z @ Z. We consider the diffeomorphism
(Idg, #r)o¢ ™" o(Id #r)op: M — M.

This acts trivially on H,(M). If the Seiberg-Witten invariants of K; and K differ, then it is not
isotopic to the identity [7].

In contrast to the wild behaviour of diffeomorphisms revealed by gauge theory, in the topo-

logical category the picture is much cleaner, and the topological mapping class group has been
entirely reduced to algebra.

Theorem 3.2. For every topological, closed, oriented, simply-connected 4-manifold M, the map
Top . + =
1, : myHomeo™ (M) — Aut(H,(M),Qy),

taking the induced isomorphism of H,(M), is an isomorphism.
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Surjectivity is due to Freedman [30]. Injectivity follows from combining work of Kreck [59],
Perron [73], and Quinn [74] (the latter with a recent correction from [34]). Thus, the work of Don-
aldson [27] and Friedman-Morgan [31] implies the existence of self-homeomorphisms of scosc
4-manifolds not isotopic to a diffeomorphism, and hence of smooth structures that are diffeomor-
phic but not isotopic. Similarly, Ruberman’s diffeomorphisms are topologically but not smoothly
isotopic to the identity; they are exotic diffeomorphisms.

One can extend to simply-connected, compact 4-manifolds with nonempty boundary.
Saeki [80] studied a stable version, and combining Saeki’s work with that of Perron [73],
Quinn [74], Boyer [10, 11], and Orson-Powell [71] completes the computation of the topological
mapping class groups of all topological, compact, simply-connected 4-manifolds.

The idea of using fibrations similar to (2.1) to construct diffeomorphisms has been increasingly
exploited in recent years. Budney-Gabai [12, 13] used such a construction to define barbell dif-
feomorphisms, obtaining interesting self-diffeomorphisms of S! x D3, and 3-balls in S* that are
knotted rel. boundary. This has been reformulated by Kosanovi¢ and collaborators [28, 56-58],
through a families version of Habiro’s claspers. It remains an interesting question to determine
precisely which of these give rise to nontrivial diffeomorphisms.

4 | CONSTRUCTING h-COBORDISMS

Let M, and M, be scosc 4-manifolds with isometric intersection pairings. To obtain an h-
cobordism, one could apply Whitehead’s theorem to obtain a homotopy equivalence f : M; —
M,, consider this as an element in the structure set S(M,), and then apply an argument inspired
by surgery theory to obtain an h-cobordism. Even though the surgery sequence is not defined or
exact in this dimension, one can still aim to produce a 5-dimensional cobordism and then surger
that to an h-cobordism. In 1964, some of the surgery technology, in particular Sullivan’s ideas for
computing normal invariants, were not yet available. But this approach was certainly known to
Wall by 1970 [90, Remark after Theorem 16.5].

Instead, in 1964 Wall instead gave a direct and elementary argument, that became a pro-
totype for theorems classifying 4-manifolds via surgery methods. In particular, results coming
from Kreck’s modified surgery theory [61] use ideas directly analogous to Wall’s, and presumably
inspired by them, that bypass the homotopy classification, instead relying on bordism theory and
the algebra of Lagrangians of intersection forms to surger a cobordism to an h-cobordism.

Let me give an outline of the key ideas in Wall’s proof. We consider

N := M, #—M,,

a scosc 4-manifold with zero signature o(N) = 0, since Qu, = Qp, implies o(M;) = o(M,) and
since signature is additive. Bordism theory implies that N bounds a compact 5-manifold W, that
can be assumed spin if N is. Next, by surgery on circles and spheres in W, one can arrange for W
to be homotopy equivalent to a wedge of 2-spheres. Since W is 5-dimensional, by general position
we can represent generators for H,(W) by an embedding of a boundary connected sum

V = hk(S? x D>)EA(S2XD?),

where $2XD? is the D*-bundle over S? with boundary $2XS2. Wall then checked that W\V is an
h-cobordism from N to 9V = #k(S? X S2)#£(S*XS?).
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The h-cobordism W\V induces an isomorphism H,(8V) = H,(N). Leta : H,(M,) 5 H,(M,)
be the hypothesised isometry, and let

K :={(x,a(x)) | x € Hy(M,)} € Hy,(M,) ® H,(M,) = H,(N) = H,(dV),
the ‘diagonal’ Lagrangian of Q. Let
L :=ker(H,(0V) — H,(V)).

As mentioned, both K and L are Lagrangians, meaning they are direct summands of H,(dV) and
that K = K* and L = L*. Here, for example,

Lt :={y € H,(OV) | Qsy(x,y) =0forallx € L}.

Wall showed that there is an isometry of T of (H,(dV), Q) such that T(L) = K. In terms of
the later-developed formalism of surgery theory, this is related to the vanishing of the surgery
obstruction group Ls(Z).

Next, Wall applied his result on the existence of diffeomorphisms realising automorphisms,

Theorem A from [87], to realise T as being induced by a diffeomorphism 7 : 6V = V. Cut out
the interior of V from W and form the union

WA\V U, V.
This manifold has boundary
N = M # — M, = (M;\D*) U (8> x I) U (M, \D*).

Glue D* x I to the S® x T part of the boundary to obtain a cobordism from M; to M,. Wall
concluded the proof by showing that the resulting cobordism is an h-cobordism, as required.

5 | h-COBORDISM IMPLIES STABLE DIFFEOMORPHISM

Although Wall worked with simply-connected 4-manifolds, the following generalisation of
Theorem C is now known [64], with essentially the same proof as Wall’s.

Theorem 5.1. Let M, and M, be smooth, compact 4-manifolds with a diffeomorphism oM, =
0M,, and suppose that M, and M, are h-cobordant rel. boundary. Then, M, and M, are stably
diffeomorphic rel. boundary.

Here is an outline of the proof, which uses ideas from Smale’s proof of the h-cobordism theo-
rem [68, 83]. Let W be an h-cobordism, and consider a handle decomposition of W. The methods
of proof of the h-cobordism theorem in high dimensions allow us to trade the handles of index 0, 1,
4, and 5 for 2- and 3-handles. So, we are left with a cobordism consisting only of 2- and 3-handles.
The middle level M, /, between the 2- and 3-handles is obtained by adding 2-handles to M; and also
by adding 2-handles to M,. Since the maps M; — W and M, — W are in particular injective on
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fundamental groups, the 2-handles are always attached by circles that are null-homotopic,
and hence are isotopically trivial. It follows that the middle level M, , is obtained from M,
(respectively M,) by taking connected sum with copies of S? x S? and S?>XS2.

If there are copies of S°XS? in M /,, we obtain an embedding of a 2-sphere in W with odd
normal Euler number. Projecting this to M, via the homotopy inverse to the inclusion M; - W
and applying general position, we obtain an immersion of a 2-sphere in M; with odd normal Euler
number. It follows that the universal cover of M, is not spin, and in this case M, #(S?>XS?) =~ M, =
(52 x S?). So, we may in fact assume that there are no copies of S?XS?, and so the middle level is
the sought for common stabilisation of M; and M,.

As mentioned in the introduction, Theorem C can be rephrased in the following way, using the
classification of symmetric, bilinear, unimodular forms.

Theorem 5.2. Two scosc 4-manifolds M, and M, are stably diffeomorphic if and only if y(M,) =
x(M,), o(M,) = o(M,), and they are either both spin or both not spin.

Here, y(M;) denotes the Euler characteristic, o(M;) denotes the signature of the intersection
form, and recall that M; is spin if and only if Qum, is even, i.e. QMi(x, x)=0 mod 2 for all x €
H,(M;). Note that M; and M, do not have to be h-cobordant to deduce stable diffeomorphism. I
will discuss generalisations of this result next, where we will see what the minimal assumptions
on a bordism are to deduce stable diffeomorphism.

6 | EXTENSIONS AND IMPROVEMENTS OF THEOREMS B AND C

Theorem C was the prototype for a host of results on stable diffeomorphisms of 4-manifolds. I
already mentioned that Cappell-Shaneson [14] developed a stable surgery sequence. However,
Kreck’s work [61] on modified surgery took the idea to another level. Kreck’s theory leads to a sim-
plified way to approach the stable classification, reducing it to computations of bordism groups,
which can be approached via spectral sequences. Moreover, modified surgery theory allows one
to go further and attempt to de-stabilise, in nice cases obtaining homeomorphisms. I will present
some of the results obtained via these approaches below.

Beforehand, however, I want to mention the difference in the smooth and topological categories
from the stable point of view. Gompf [36] showed that for orientable 4-manifolds, there is no
difference.

Theorem 6.1 (Gompf). Two smooth, compact, oriented 4-manifolds are stably diffeomorphic if and
only if they are stably homeomorphic.

However in the nonorientable case there can be differences. For example, Kreck [60] showed
that

RP*#K, and RP*#11(S* x S?)

are (stably) homeomorphic but not stably diffeomorphic. I believe that these were the first
published examples of closed, exotic 4-manifolds (Cappell-Shaneson’s 4-manifolds homotopy
equivalent but not diffeomorphic to RP* [15] were observed slightly later [76, p. 221] to be home-
omorphic to RP*). It is also worth remarking that one does not need gauge theory to detect these
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exotica; Kreck’s obstruction is based on Rochlin’s theorem, and is similar to Cappell-Shaneson’s
invariant from [15]. Also, observe that Kreck’s exotica do not contradict Theorem 5.1, because these
4-manifolds are not even h-cobordant.

Now, let me return to Kreck’s method. I will mostly focus on the case of spin 4-manifolds,
to avoid technicalities. Kreck proved that if two closed, smooth, spin 4-manifolds M; and M,
with the same fundamental group 7 are spin bordant over the classifying space Bz, then they are
stably diffeomorphic. Here, Bz can also be thought of as the Eilenberg-Maclane space K(7, 1),
and there are 2-connected maps ¢; : M; — B classifying the universal covers. To obtain a com-
plete stable classification one, has to factor out by the choice of spin structure and the choice of
maps ;.

In the case of universal cover non-spin, the situation is similar: one uses oriented bordism
in place of spin bordism. The third case of non-spin 4-manifolds with spin universal covering
uses twisted spin bordism groups, details of which I shall omit here; they were first worked out
in [84].

Kreck’s proof proceeds roughly as follows. Given a (spin) bordism over Bz, we can surger it
to an h-cobordism between M, #k(S? x S?) and M,#k(S? x S?) for some k, and then apply the
argument in Section 5 to deduce that M, and M, are stably diffeomorphic.

Then, bordism groups can be computed with Atiyah-Hirzebruch spectral sequences, or a
twisted version thereof defined by Teichner [84]. A sequence of recent papers by Kasprowski,
Teichner, and their collaborators connect the invariants arising from the spectral sequences
with more standard algebraic topological invariants, for example, arising from 7,(M;) or the
equivariant intersection form [44-49]. See also [24].

A sample result generalising Theorem C is as follows, proven by Cavicchioli-Hegenbarth and
Repovs [16, 17] in the spin case. This, and the non-spin case, follow in a fairly straightforward way
from Kreck’s bordism approach.

Theorem 6.2. Two smooth, closed, oriented 4-manifolds M, and M, with free fundamental group
are stably diffeomorphic if and only if y(M;) = x(M,), o(M,) = c(M,), and they are either both
spin or both not spin.

Once one has a solid stable classification, one can attempt to de-stabilise, to try to obtain home-
omorphism results. This has been carried out successfully in the topological category, notably in
the work of Hambleton and Kreck [39-41] on closed 4-manifolds with finite fundamental group,
and later by Khan [50] for some infinite fundamental groups. As remarked upon, the proof method
is a sophisticated generalisation of Wall’s method for surgering a bordism to an h-cobordism that
I outlined in Section 4. The approach was also used by Hambleton-Kreck-Teichner for classify-
ing nonorientable 4-manifolds with fundamental group of order two, and by Conway-Powell [21]
and Conway-Orson-Powell [22] for studying surfaces embedded in S* whose complements have
cyclic fundamental groups.

On the other hand, it is possible for one stable equivalence class to contain many manifolds.
Kreck-Schafer [63] showed that there can be distinct closed 4-manifolds in the same stable class,
even up to homotopy equivalence. Hambleton-Nicholson [42] extended this work to find arbitrar-
ily large families of homotopy equivalence classes of 4-manifolds in the same stable class, while
Conway-Crowley-Powell [20] showed that there can even be infinitely many manifolds in the
same stable class, if one allows nonempty boundary.

8518017 SUOULLIOD 3ANE1D 3ot [dde 8y} Aq psuenob a1 Sajole YO ‘8N J0'Sa|n1 1o Aeiq1T3UIIUO A8|IM UO (SUOTHPUOO-PUR-SWLSYWIO0 A8 | 1M AReg Ul Uo//SdiIL) SUORIPUOD Pue suwLe | 84} 88S *[9202/T0/.0] uo Areiqiauliuo A8|im ‘Mobse|o JO AisAIuN AQ 7880, SWII/ZTTT 0T/I0p/L0D A8 ]I AReiq1jeul|uo'd0syIewpuO //SAy WoJj pspeojumod ‘T ‘920z ‘0SL.69vT



12 0f 15 | POWELL

ACKNOWLEDGEMENTS

I am grateful to the editors of the Centenary edition of the Journal of the LMS for commissioning
this article, to Danny Ruberman for helpful comments on an earlier draft of this article, and to
Danica Kosanovi¢ for helpful comments and for allowing me to use her illustration in Figure 1. 1
would also like to thank the referees for their suggestions.

JOURNAL INFORMATION

The Journal of the London Mathematical Society is wholly owned and managed by the London
Mathematical Society, a not-for-profit Charity registered with the UK Charity Commission.
All surplus income from its publishing programme is used to support mathematicians and
mathematics research in the form of research grants, conference grants, prizes, initiatives for
early career researchers and the promotion of mathematics.

ORCID
Mark Powell © https://orcid.org/0000-0002-4086-8758

REFERENCES

1. S. Akbulut, A fake compact contractible 4-manifold, J. Differ. Geom. 33 (1991), no. 2, 335-356.

2. V. L. Arnold, Some remarks on symplectic monodromy of Milnor fibrations, The Floer memorial volume,
Birkhduser, Basel, 1995, pp. 99-103.

3. D. Auckly, Families of four-dimensional manifolds that become mutually diffeomorphic after one stabilization,
Proceedings of the Pacific Institute for the Mathematical Sciences Workshop “Invariants of Three-Manifolds”
(Calgary, AB, 1999), vol. 127, 2003, pp. 277-298.

4. D. Auckly, H. J. Kim, P. Melvin, and D. Ruberman, Stable isotopy in four dimensions, J. Lond. Math. Soc. (2) 91
(2015), no. 2, 439-463.

5. D. Auckly, H. J. Kim, P. Melvin, D. Ruberman, and H. Schwartz, Isotopy of surfaces in 4-manifolds after a single
stabilization, Adv. Math. 341 (2019), 609-615.

6. D. Baraglia, Obstructions to smooth group actions on 4-manifolds from families Seiberg-Witten theory, Adv.
Math. 354 (2019), 106730.

7. D.Baraglia and H. Konno, A gluing formula for families Seiberg-Witten invariants, Geom. Topol. 24 (2020), no.
3, 1381-1456.

8. D. Barden, Simply connected five-manifolds, Ann. Math. (2) 82 (1965), 365-385.

9. R. 1. Baykur, Dissolving knot surgered 4-manifolds by classical cobordism arguments, J. Knot Theory Ramif. 27
(2018), no. 5, 1871001.

10. S. Boyer, Simply-connected 4-manifolds with a given boundary, Trans. Amer. Math. Soc. 298 (1986), no. 1, 331-
357.

11. S. Boyer, Realization of simply-connected 4-manifolds with a given boundary, Comment. Math. Helv. 68 (1993),
no. 1, 20-47.

12. R. Budney and D. Gabai, Knotted 3-balls in S*, arXiv:1912.09029, 2019.

13. R.Budney and D. Gabai, On the automorphism groups of hyperbolic manifolds, Int. Math. Res. Not. 2025 (2025),
no. 7, 28.

14. S. E. Cappell and J. L. Shaneson, On four-dimensional surgery and applications, Comment. Math. Helv. 46
(1971), 500-528.

15. S. E. Cappell and J. L. Shaneson, Some new four-manifolds, Ann. Math. (2) 104 (1976), 61-72.

16. A. Cavicchioli and F. Hegenbarth, On 4-manifolds with free fundamental group, Forum Math. 6 (1994), no. 4,
415-429.

17. A. Cavicchioli, F. Hegenbarth, and D. Repovs, On the stable classification of certain 4-manifolds, Bull. Aust.
Math. Soc. 52 (1995), no. 3, 385-398.

18. J. C. Cha and B. Kim, Light bulb smoothing for topological surfaces in 4-manifolds, 2023, arXiv:2303.12857
[math.GT].

8518017 SUOULLIOD 3ANE1D 3ot [dde 8y} Aq psuenob a1 Sajole YO ‘8N J0'Sa|n1 1o Aeiq1T3UIIUO A8|IM UO (SUOTHPUOO-PUR-SWLSYWIO0 A8 | 1M AReg Ul Uo//SdiIL) SUORIPUOD Pue suwLe | 84} 88S *[9202/T0/.0] uo Areiqiauliuo A8|im ‘Mobse|o JO AisAIuN AQ 7880, SWII/ZTTT 0T/I0p/L0D A8 ]I AReiq1jeul|uo'd0syIewpuO //SAy WoJj pspeojumod ‘T ‘920z ‘0SL.69vT


https://orcid.org/0000-0002-4086-8758
https://orcid.org/0000-0002-4086-8758

C.T.C. WALL’S 1964 ARTICLES ON 4-MANIFOLDS 13 0f 15

19.

20.

21.

22.
23.

24.

25.

26.

27.

28.

29.

30.
31.

32.

33.

34.

35.

36.
37.

38.

39.

40.

41.

42.

43.
44.

45.

46.

47.

H. Choi, J. Park, and K.-H. Yun, On dissolving knot surgery 4-manifolds under a CP*-connected sum, Asian J.
Math. 23 (2019), no. 5, 735-748.

A. Conway, D. Crowley, and M. Powell, Infinite homotopy stable class for 4-manifolds with boundary, Pac. J.
Math. 325 (2023), no. 2, 209-237.

A. Conway and M. Powell, Embedded surfaces with infinite cyclic knot group, Geom. Topol. 27 (2023), no. 2,
739-821.

A. Conway, P. Orson, and M. Powell, Unknotting nonorientable surfaces, 2023, arXiv:2306.12305 [math.GT].
C. L. Curtis, M. H. Freedman, W.-C. Hsiang, and R. Stong, A decomposition theorem for h-cobordant smooth
simply-connected compact 4-manifolds, Invent. Math. 123 (1996), no. 2, 343-348.

A. Debray, Stable diffeomorphism classification of some unorientable 4-manifolds, Bull. Lond. Math. Soc. 54
(2022), no. 6, 2219-2231.

S. K. Donaldson, An application of gauge theory to four-dimensional topology, J. Differ. Geom. 18 (1983), no. 2,
279-315.

S. K. Donaldson, Irrationality and the h-cobordism conjecture, J. Differ. Geom. 26 (1987), no. 1, 141-168.

S. K. Donaldson, Polynomial invariants for smooth four-manifolds, Topology. 29 (1990), no. 3, 257-315.

E. Fernandez, D. T. Gay, D. Hartman, and D. Kosanovi¢, Grasper families of spheres in S*xD? and barbell
diffeomorphisms of S'xS>xI, 2024, arXiv:2412.07467 [math.GT].

R. Fintushel and R. J. Stern, Constructions of smooth 4-manifolds, Doc. Math. Extra Volume ICM, 1998, pp.
443-452.

M. Freedman, The topology of four-dimensional manifolds, J. Differ. Geom. 17 (1982), no. 3, 357-453.

R. Friedman and J. W. Morgan, On the diffeomorphism types of certain algebraic surfaces. I, J. Differ. Geom. 27
(1988), no. 2, 297-369.

M. Freedman and F. Quinn, A quick proof of the 4-dimensional stable surgery theorem, Comment. Math. Helv.
55 (1980), no. 4, 668-671.

M. Freedman and F. Quinn, Topology of 4-manifolds, Princeton Mathematical Series, vol. 39, Princeton
University Press, 1990.

D. Gabai, D. T. Gay, D. Hartman, V. Krushkal, and M. Powell, Pseudo-isotopies of simply connected 4-manifolds,
2023, arXiv:2311.11196 [math.GT].

D. A. P. Galvin, The Casson-Sullivan invariant for homeomorphisms of 4-manifolds, 2024, arXiv:2405.07928
[math.GT].

R. E. Gompf, Stable diffeomorphism of compact 4-manifolds, Topol. Appl. 18 (1984), 115-120.

R. Gompfand A. Stipsicz, 4-manifolds and Kirby calculus, Graduate Studies in Mathematics, vol. 20, American
Mathematical Society, Providence, RI, 1999.

L. Guillou and A. Marin, eds., A la recherche de la topologie perdue. 1: Du coté de chez Rohlin. 2: Le coté de
Casson, Prog. Math., vol. 62, Birkhduser, Cham, 1986.

1. Hambleton and M. Kreck, On the classification of topological 4-manifolds with finite fundamental group,
Math. Ann. 280 (1988), no. 1, 85-104.

I. Hambleton and M. Kreck, Cancellation, elliptic surfaces and the topology of certain four-manifolds, J. Reine
Angew. Math. 444 (1993), 79-100.

I. Hambleton and M. Kreck, Cancellation of hyperbolic forms and topological four-manifolds, J. Reine Angew.
Math. 443 (1993), 21-47.

I. Hambleton and J. Nicholson, Four-manifolds, two-complexes and the quadratic bias invariant, 2024,
arXiv:2412.15089 [math.GT].

S. Kang, Orne stabilization is not enough for contractible 4-manifolds, 2022, arXiv:2210.07510 [math.GT].

D. Kasprowski, M. Land, M. Powell, and P. Teichner, Stable classification of 4-manifolds with 3-manifold
fundamental groups, J. Topol. 10 (2017), no. 3, 827-881.

D. Kasprowski, J. Nicholson, and S. Vesel4, Stable equivalence relations on 4-manifolds, Proc. Lond. Math. Soc.
(3) 131 (2025), no. 5, €70101.

D. Kasprowski, M. Powell, and P. Teichner, Algebraic criteria for stable diffeomorphism of spin 4-manifolds,
Mem. Amer. Math. Soc. 312 (2025), no. 1579, v+98.

D. Kasprowski, M. Powell, and P. Teichner, Four-manifolds up to connected sum with complex projective planes,
Am. J. Math. 144 (2022), no. 1, 75-118.

85UBD1 7 SUOLLIWOD BAIEa1D) 3|ceotidde aup Aq peuLenob a2 Saolle O '8N JO S3|n1 0} ARG BUIIUO 481 UO (SUORIPUOD-pU.-SLLLB}LLIOD" A3 | 1M AR 1 pUUO//SAIL) SUOHPUOD PUe SLLIS L 3U 89S *[9202/T0/20] Uo Ateiqiauliuo AB|1M ‘MmoBselo JO A1sieaiun Aq y8E0. Swl/ZTTT OT/I0pAL0D 8| 1M Akeq Ul |U000SUIeLPUO /SNy W14 papeojumoq ‘T ‘9202 ‘05.L69¢T



14 of 15 | POWELL

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.
75.

76.
77.
78.

D. Kasprowski, M. Powell, and P. Teichner, The Kervaire-Milnor invariant in the stable classification of spin
4-manifolds, Tunis. J. Math. 7 (2025), no. 2, 417-436.

D. Kasprowski and P. Teichner, CP2-stable classification of 4-manifolds with finite fundamental group, Pac. J.
Math. 310 (2021), no. 2, 355-373.

Q. Khan, Cancellation for 4-manifolds with virtually abelian fundamental group, Topol. Appl. 220 (2017), 14-30.
M. A. Kervaire and J. W. Milnor, On 2-spheres in 4-manifolds, Proc. Natl. Acad. Sci. 47 (1961), no. 10, 1651-1657.
M. A. Kervaire and J. W. Milnor, Groups of homotopy spheres I, Ann. Math. (2) 77 (1963), 504-537.

R. C. Kirby, The topology of 4-manifolds, Lecture Notes in Mathematics, vol. 1374, Springer-Verlag, Berlin, 1989.
H. Konno and J. Lin, Homological instability for moduli spaces of smooth 4-manifolds, 2022, arXiv:2211.03043
[math.GT].

H. Konno, A. Mukherjee, and M. Taniguchi, Exotic codimension-1 submanifolds in 4-manifolds and
stabilizations, 2022, arXiv:2210.05029 [math.GT].

D. Kosanovi¢, On fundamental groups of spaces of framed embeddings of a circle in a 4-manifold, Topology Appl.
377 (2026), Paper No. 109658.

D. Kosanovi¢, On homotopy groups of spaces of embeddings of an arc or a circle: the Dax invariant, Trans. Am.
Math. Soc. 377 (2024), no. 2, 775-805.

D. Kosanovi¢, Diffeomorphisms of 4-manifolds from graspers, Proc. Lond. Math. Soc. (3) 131 (2025), no. 1, 36.
M. Kreck, Isotopy classes of diffeomorphisms of (k — 1)-connected almost-parallelizable 2k-manifolds, Algebraic
topology, Aarhus 1978 (Proc. Sympos., Univ. Aarhus), Lecture Notes in Math., vol. 763, Springer, Berlin, 1979,
pp. 643-663.

M. Kreck, Some closed 4-manifolds with exotic differentiable structure, Algebraic topology, Proc. Conf., Aarhus
1982, Lect. Notes Math., vol. 1051, 1984, pp. 246-262.

M. Kreck, Surgery and duality, Ann. Math. (2) 149 (1999), no. 3, 707-754.

M. Kreck, h-cobordisms between 1-connected 4-manifolds, Geom. Topol. 5 (2001), 1-6.

M. Kreck and J. A. Schafer, Classification and stable classification of manifolds: some examples, Comment.
Math. Helv. 59 (1984), 12-38.

T. Lawson, Decomposing 5-manifolds as doubles, Houston J. Math. 4 (1978), no. 1, 81-84.

J. Lin, Isotopy of the Dehn twist on K 3 # K 3 after a single stabilization, Geom. Topol. 27 (2023), no. 5, 1987-2012.
R. Matveyev, A decomposition of smooth simply-connected h-cobordant 4-manifolds, J. Differ. Geom. 44 (1996),
no. 3, 571-582.

J. Milnor, On simply connected 4-manifolds, Symposium internacional de topologia algebraica, Universidad
Nacional Auténoma de México and UNESCO, Mexico City, 1958, pp. 122-128.

J. W. Milnor, Lectures on the h-cobordism theorem, Princeton University Press, Princeton, NJ, 1965. Notes by L.
Siebenmann and J. Sondow.

J. W. Milnor and D. H. Husemoller, Symmetric bilinear forms, Ergeb. Math. Grenzgeb., vol. 73, Springer-Verlag,
Berlin, 1973.

J. W. Morgan and Z. Szab6, Homotopy K3 surfaces and mod 2 Seiberg-Witten invariants, Math. Res. Lett. 4
(1997), no. 1, 17-21.

P. Orson and M. Powell, Mapping class groups of simply connected 4-manifolds with boundary, J. Differ. Geom.
131 (2025), no. 1, 199-275.

P. Orson, M. Powell, and O. Randal-Williams, Smoothing topological pseudo-isotopies of 4-manifolds, 2025,
arXiv:2507.16984 [math.GT].

B. Perron, Pseudo-isotopies et isotopies en dimension quatre dans la catégorie topologique, Topology. 25 (1986),
no. 4, 381-397.

F. Quinn, Isotopy of 4-manifolds, J. Differ. Geom. 24 (1986), no. 3, 343-372.

V. A. Rokhlin, New results in the theory of four-dimensional manifolds, Doklady Akad. Nauk SSSR. 84 (1952),
221-224.

D. Ruberman, Invariant knots of free involutions of S*, Topol. Appl. 18 (1984), no. 2-3, 217-224.

D. Ruberman, An obstruction to smooth isotopy in dimension 4, Math. Res. Lett. 5 (1998), no. 6, 743-758.

D. Ruberman, A polynomial invariant of diffeomorphisms of 4-manifolds, Proceedings of the Kirbyfest,
Berkeley, CA, USA, June 22-26, 1998, Institute of Mathematics, University of Warwick, Warwick, 1999, pp.
473-488.

8518017 SUOULLIOD 3ANE1D 3ot [dde 8y} Aq psuenob a1 Sajole YO ‘8N J0'Sa|n1 1o Aeiq1T3UIIUO A8|IM UO (SUOTHPUOO-PUR-SWLSYWIO0 A8 | 1M AReg Ul Uo//SdiIL) SUORIPUOD Pue suwLe | 84} 88S *[9202/T0/.0] uo Areiqiauliuo A8|im ‘Mobse|o JO AisAIuN AQ 7880, SWII/ZTTT 0T/I0p/L0D A8 ]I AReiq1jeul|uo'd0syIewpuO //SAy WoJj pspeojumod ‘T ‘920z ‘0SL.69vT



C.T.C. WALL’S 1964 ARTICLES ON 4-MANIFOLDS 150f 15

79.

80.

81.
82.

83.
84.

85.
86.

87.
88.
89.

90.

91

D. Ruberman and S. Strle, Wall’s stable realization for diffeomorphisms of definite 4-manifolds, Indiana Univ.
Math. J. 74 (2025), no. 1, 225-231.

O. Saeki, Stable mapping class groups of 4-manifolds with boundary, Trans. Amer. Math. Soc. 358 (2006), no. 5,
2091-2104.

A. Scorpan, The wild world of 4-manifolds, American Mathematical Society, Providence, RI, 2005.

P. Seidel, Lectures on four-dimensional Dehn twists, Symplectic 4-manifolds and algebraic surfaces. Lectures
given at the C.LLM.E. summer school, Cetraro, Italy, September 2-10, 2003, Springer, Berlin, 2008, pp. 231-267.
S. Smale, Generalized Poincaré’s conjecture in dimensions greater than four, Ann. Math. (2) 74 (1961), 391-406.
P. Teichner, Topological four-manifolds with finite fundamental group, Ph.D. thesis, Shaker Verlag, University
of Mainz, Germany, 1992.

C. T. C. Wall, Classification of (n — 1)-connected 2n-manifolds. Ann. Math. (2) 75 (1962), 163-189.

C. T. C. Wall, On the orthogonal groups of unimodular quadratic forms II, J. Reine Angew. Math. 213 (1963),
122-136.

C. T. C. Wall, Diffeomorphisms of 4-manifolds, J. Lond. Math. Soc. 39 (1964), no. 1, 131-140.

C. T. C. Wall, On simply-connected 4-manifolds, J. Lond. Math. Soc. 39 (1964), no. 1, 141-149.

C. T. C. Wall, Classification problems in differential topology VI: classification of (s — 1)-connected (2s +
1)-manifolds, Topol. 6 (1967), 273-296.

C.T. C. Wall, Surgery on compact manifolds, Mathematical Surveys and Monographs, 2nd ed., vol. 69, American
Mathematical Society, Providence, RI, 1999. Edited and with a foreword by A. A. Ranicki.

J. H. C. Whitehead, On simply connected, 4-dimensional polyhedra Comment. Math. Helv. 22 (1949), 48-92.

dny) suonipuoD pue swie L 8ur8s *[9202/10/.0] uo Areiqiauluo A)im ‘Mofise|o JO AisieAIuN AQ ¥8E0L SWIIZTTT OT/I0P/W00" &3] i AReiq 1 Ul UOd0SUFRLIPUO|//Sd1Y WOy papeojumoq ‘T 9202 ‘05LL697T

Ry A

-pue:

35U8017 SUOWILLOD 3A1ER.1D 3|t |dde au Ag pauenob ake sajoilie YO ‘asn JO Sajnu Joj Akeiqiautjuo A3|1Mm uo



	C.T.C. Wall’s 1964 articles on 4-manifolds
	Abstract
	1 | INTRODUCTION
	1.1 | Diffeomorphisms of 4-manifolds
	1.2 | On simply-connected 4-manifolds
	1.3 | Outline

	2 | CONSTRUCTING DIFFEOMORPHISMS OF 4-MANIFOLDS
	3 | EXTENSIONS AND IMPROVEMENTS OF THEOREM A
	4 | CONSTRUCTING -COBORDISMS
	5 | -COBORDISM IMPLIES STABLE DIFFEOMORPHISM
	6 | EXTENSIONS AND IMPROVEMENTS OF THEOREMS B AND C
	ACKNOWLEDGEMENTS
	JOURNAL INFORMATION
	ORCID
	REFERENCES


