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1 INTRODUCTION

This is a survey of C. T. C. Wall’s influential 1964 papers [87, 88] on 4-manifold topology.
Wall’s papers were published consecutively on 19 pp. of issue 39 of the Journal of the London
Mathematical Society.
Both papers primarily concern smooth, closed, oriented, simply-connected 4-dimensional

manifolds 𝑀, hereafter known as scosc 4-manifolds. An important invariant of such manifolds
is the intersection form

𝑄𝑀 ∶ 𝐻2(𝑀) × 𝐻2(𝑀) → ℤ

(𝑥, 𝑦) ↦ ⟨PD−1(𝑦), 𝑥⟩.

Here, PD−1(𝑦) ∈ 𝐻2(𝑀;ℤ) is the Poincaré dual of 𝑦, which we may evaluate using the Kronecker
pairing 𝐻2(𝑀;ℤ) × 𝐻2(𝑀) → ℤ on 𝑥. The intersection form is bilinear, symmetric, and nonsin-
gular. The terminology ‘intersection form’ comes from the following geometric interpretation.
Any two classes 𝑥, 𝑦 ∈ 𝐻2(𝑀) can be represented by immersions 𝑥, 𝑦∶ 𝑆2 ↬ 𝑀 that intersect
each other at finitely many transverse double points. At each double point 𝑝 ∈ 𝑥(𝑆2) ⋔ 𝑦(𝑆2), the
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orientation of 𝑆2 induces an orientation of the tangent space 𝑇𝑝𝑀. Comparing this with the given
orientation of𝑀 yields a sign 𝜀𝑝 ∈ {±1}. Summing over all double points yields

∑
𝑝 𝜀𝑝 = 𝑄𝑀(𝑥, 𝑦).

Prior to Wall’s work in [87, 88], there were few theorems known in 4-manifold topology. Early
successes were as follows. Whitehead [91] and Milnor [67] had proven that two closed, simply-
connected 4-manifolds with isometric intersection form are homotopy equivalent, Rokhlin [75]
(see [38, pp. 17–21] for a French translation from Russian) proved that the signature of a closed,
smooth, spin 4-manifold is divisible by 16, and Kervaire–Milnor applied this to obstruct smooth
embeddings of spheres [51].
Wall’s contributions quickly entered the canon of core 4-manifolds knowledge (see, e.g., [53,

81]), and surely helped inspire the advances of Cappell–Shaneson [14, 15] in the 1970s and the
spectacular results of Freedman and Quinn [30, 33] and Donaldson [25, 26] in the 1980s. Wall was
awarded the prestigious 1965 Berwick prize of the LondonMathematical Society for these papers.
The paper [87] has been cited 86 times and [88] has been cited 78 times, according to Mathscinet.
I will summarise the contents of the papers, explain Wall’s key insights, and I will describe the

various directions in which these ideas have been developed since.

1.1 Diffeomorphisms of 4-manifolds

In the first of the two articles, [87],Wall considered isometries of𝑄𝑀 , that is,𝑓∶ 𝐻2(𝑀)
≅
�→ 𝐻2(𝑀)

with

𝑄𝑀(𝑓(𝑥), 𝑓(𝑦)) = 𝑄𝑀(𝑥, 𝑦).

He showed how to realise isometries by diffeomorphisms 𝐹∶ 𝑀
≅
�→ 𝑀; here ‘realise’ means that

𝐹∗ = 𝑓. If 𝑀 is of the form 𝑁#(𝑆2 × 𝑆2), then in many cases Wall showed that the ‘induced
isomorphism’ map

𝑀 ∶ 𝜋0 Dif f
+(𝑀) → Aut(𝐻2(𝑀), 𝑄𝑀); 𝐹 ↦ 𝐹∗

is surjective. Here, 𝜋0 Dif f+(𝑀) is the mapping class group of𝑀, consisting of isotopy classes of
orientation-preserving self-diffeomorphisms of𝑀, and we writeAut(𝐻2(𝑀), 𝑄𝑀) for the group of
isometries of 𝑄𝑀 . Here is the precise statement of Wall’s theorem.

TheoremA [87, Theorem 2]. Let𝑁 be a scosc 4-manifold and suppose that 𝑄𝑁 is indefinite or that
the rank of𝐻2(𝑁) is at most 8. Set

𝑀 ∶= 𝑁#(𝑆2 × 𝑆2).

Then, 𝑀 is surjective. That is, every isometry of 𝑄𝑀 is induced by a self-diffeomorphism of𝑀.

Recently, Ruberman–Strle [79] extended Theorem A to remove the hypothesis that 𝑄𝑁 be
indefinite or rk𝐻2(𝑁) ⩽ 8, at the expense of only realising elements in the image of the stabil-
isation mapAut(𝐻2(𝑁), 𝑄𝑁) → Aut(𝐻2(𝑀), 𝑄𝑀) that extends an isomorphism by the identity on
𝐻2(𝑆

2 × 𝑆2). I will describe further extensions of Theorem A in Section 3.
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1.2 On simply-connected 4-manifolds

In the second article, [88], Wall applied [87] to improve on Whitehead’s theorem, by giving
classifications of scosc 4-manifolds up to ℎ-cobordism and up to stable diffeomorphism.
An ℎ-cobordism (𝑊;𝑀,𝑀′) is a compact, smooth 5-dimensional cobordism 𝑊 between 𝑀

and 𝑀′ such that the inclusion maps 𝑀 →𝑊 and 𝑀′ → 𝑊 are both homotopy equivalences.
Shortly before Wall’s work, Smale [83] (see also [68]) had proven that for 𝑛 ⩾ 6 every 𝑛-
dimensional ℎ-cobordism is diffeomorphic to the product 𝑀 × [0, 1]. This theorem formed the
basis of surgery theory and its successes in the classification of high-dimensional manifolds, for
example, [8, 52, 85, 89]. It was unknown at the time whether five-dimensional ℎ-cobordisms are
smoothly products, and in fact thiswas shown in the 1980s to be false in general byDonaldson [26].
However in 1964 Wall was able to show the following.

Theorem B [88, Theorem 2]. Two scosc 4-manifolds with isometric intersection forms are
ℎ-cobordant.

This was extremely useful, as it meant that once Freedman [30] had established the 5-
dimensional ℎ-cobordism theorem in the topological category, the homeomorphism classification
of scosc 4-manifolds followed immediately. Namely, two such 4-manifolds are homeomorphic if
and only if their intersection forms are isometric.
Analysing the failure of Wall’s ℎ-cobordisms to be products led to the discovery of exotic pairs

of 4-manifolds, that is, 4-manifolds that are homeomorphic but not diffeomorphic. In particular,
it led to one of the constructions of exotic structures on ℝ4 [37, Theorem 9.3.1].
Moreover, Wall’s ℎ-cobordisms between scosc 4-manifolds led Matveyev [66] and Curtis–

Freedman–Hsiang–Stong [23] to the celebrated cork theorem, which states that every such
ℎ-cobordism𝑊 can be decomposed into (𝑋 × 𝐼) ∪𝜕𝑋×𝐼 𝑉, the union of a product cobordism𝑋 × 𝐼

and a contractible ℎ-cobordism 𝑉. They then deduced that any pair of such 4-manifolds𝑀1 and
𝑀2 admits a cork [1], namely a contractible submanifold 𝐶 ⊆ 𝑀1 with an involution 𝜏∶ 𝜕𝐶

≅
�→ 𝜕𝐶

such that𝑀2 ≅ (𝑀1⧵𝐶̊) ∪𝜏 𝐶. This implies that all exoticness of scosc 4-manifolds can be localised
to contractible submanifolds.
I must also mention Kreck’s result [62], refining Wall’s, that the natural map, from the set of

diffeomorphism classes rel. boundary of smooth ℎ-cobordisms between scosc 4-manifolds𝑀1 and
𝑀2 to the set of isometries between the intersection forms of 𝑀1 and 𝑀2, is an isomorphism.
Theorem B is equivalent to the statement that each of these sets is nonempty if and only if the
other is.
Next, we say that two 4-manifolds𝑀1 and𝑀2 are stably diffeomorphic if, for some 𝑘, we have

that

𝑀1#𝑘(𝑆
2 × 𝑆2) ≅ 𝑀2#𝑘(𝑆

2 × 𝑆2). (1.1)

Bymimicking Smale’s high-dimensional proof of the ℎ-cobordism theorem as far as possible,Wall
proved the following result.

Theorem C [88, Theorem 3]. Two ℎ-cobordant scosc 4-manifolds are stably diffeomorphic.
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4 of 15 POWELL

Indefinite, symmetric, nonsingular, bilinear forms are classified up to isometry by their rank,
signature, and parity [69]. Note that all symmetric, bilinear forms become indefinite after orthog-
onal sum with 𝑄𝑆2×𝑆2 , which is represented by

(
0 1
1 0

)
. Combining this withB and C, we deduce

that two scosc 4-manifolds are stably diffeomorphic if and only if their intersection forms have
the same rank, signature, and parity. I will survey generalisations of this result in Section 6.
For stably diffeomorphic but not diffeomorphic 4-manifolds, how large must 𝑘 be in (1.1)? It

remains a famous open question whether there are ℎ-cobordant scosc 4-manifolds for which one
must take 𝑘 > 1. For many examples, it has been shown that one 𝑆2 × 𝑆2 summand suffices [3,
9, 19]. Recently, Sungkyung Kang [43] announced examples of pairs of compact, contractible 4-
manifolds (which have nonempty boundary) where 𝑘 = 2 is needed.
Motivated by Wall’s result, topologists now study analogous questions on stable phenomena

for diffeomorphisms of 4-manifolds and surfaces in 4-manifolds; see, for example, [4, 5, 18, 35, 54,
55, 65, 72].

1.3 Outline

Here is a summary of the content of the rest of this survey.

∙ Section 2: key ideas in the proof of Theorem A.
∙ Section 3: extensions of Theorem A and related results.
∙ Section 4: key ideas in the proof of Theorem B.
∙ Section 5: key ideas in the proof of Theorem C.
∙ Section 6: extensions of Theorem C and related results.

2 CONSTRUCTING DIFFEOMORPHISMS OF 4-MANIFOLDS

To perform surgery on an embedding 𝑆1 × 𝐷3 ↪ 𝑁, we remove the interior 𝑆1 × 𝐷̊3 and glue in
𝐷2 × 𝑆2 in its place. An initial basic but fundamental observation is that for a scosc 4-manifold
𝑁, performing such a surgery yields either 𝑁#(𝑆2 × 𝑆2) or 𝑁#(𝑆2×̃𝑆2), depending on which
identification of 𝑆1 × 𝑆2 boundary is used for gluing in 𝐷2 × 𝑆2. Here, the manifold 𝑆2×̃𝑆2 is
the 𝑆2-bundle over 𝑆2 obtained by gluing two copies of 𝑆2 × 𝐷2 together using the Gluck twist
𝐺∶ 𝑆2 × 𝑆1

≅
�→ 𝑆2 × 𝑆1; this diffeomorphism rotates 𝑆2 × {ei𝜃} through angle 𝜃 about a fixed axis,

with 𝜃 ∈ [0, 2𝜋). Bundles over 𝑆2 with fibre 𝑆2 and structure group BDif f+𝑆2 are classified up to
isomorphism by

[𝑆2, BDif f+𝑆2] ≅ 𝜋2BDif f
+(𝑆2) ≅ 𝜋1 Dif f

+(𝑆2) ≅ 𝜋1𝑆𝑂(3) ≅ ℤ∕2,

hence there are exactly two such bundles, with total spaces 𝑆2 × 𝑆2 and 𝑆2×̃𝑆2.
Since 𝑁 is simply-connected, every embedded circle 𝑆1 ⊆ 𝑁 is null-homotopic and hence iso-

topic to a trivially embedded circle. Let us fix a circle 𝛾 in 𝑁 and a smoothly embedded disc 𝐷 in
𝑁 with boundary 𝛾. Performing surgery using a framing 𝜈𝛾 ≅ 𝑆1 × 𝐷3 compatible with a normal
bundle of 𝐷, that is, that extends to a stable framing of 𝜈𝐷, yields 𝑁#(𝑆2 × 𝑆2), while a framing
incompatible with 𝜈𝐷 yields𝑁#(𝑆2×̃𝑆2). If𝑄𝑁 is odd, that is, if there exists some 𝑥 ∈ 𝐻2(𝑁)with
𝑄𝑁(𝑥, 𝑥) ≡ 1 mod 2, then a change in the choice of disc can make either framing compatible,
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C.T.C. WALL’S 1964 ARTICLES ON 4-MANIFOLDS 5 of 15

F IGURE 1 An isotopy of 𝛾 during which a sub-arc lassoes a sphere 𝜔 and then returns to its original
position. Picture by Danica Kosanović.

and indeed this is consistent with the existence of a diffeomorphism 𝑁#(𝑆2 × 𝑆2) ≅ 𝑁#(𝑆2×̃𝑆2).
From now on, we will frame 𝜈𝛾 in the compatible fashion.
Now, we proceed to describe Wall’s construction of diffeomorphisms in [87]. Given a mani-

fold 𝑁 and a submanifold 𝑃 ⊆ 𝑁, let Dif f𝑃(𝑁) denote the topological group of diffeomorphisms
that fix some neighbourhood of 𝑃 pointwise. Given a manifold 𝐿, let Emb(𝐿,𝑁) denote the space
of smooth embeddings of 𝐿 in 𝑁.
Let 𝑐∶ 𝑆1 × 𝐷3 → 𝑁 be an embedding of the thickened circle,with im 𝑐|𝑆1×{0} = 𝛾, so that 𝜈𝛾 ∶=

𝑐(𝑆1 × 𝐷3) is a tubular neighbourhood of 𝛾. We have a fibration sequence

Dif f 𝜈𝛾(𝑁) → Dif f (𝑁)
𝐹↦𝐹◦𝑐
�������→ Emb(𝑆1 × 𝐷3,𝑁). (2.1)

The fibre of 𝑐, as shown, is Dif f 𝜈𝛾(𝑁), the group of diffeomorphisms of 𝑁 that fix 𝜈𝛾 pointwise.
Isotopy extension and then restriction give rise to maps

𝜋1 Emb(𝑆
1 × 𝐷3,𝑁) → 𝜋0 Dif f 𝜈𝛾(𝑁) → 𝜋0 Dif f 𝜕(𝑁⧵𝑐(𝑆

1 × 𝐷̊3)).

The first map is the connecting homomorphism in the long exact sequence in homotopy groups
associated with the fibration (2.1). The idea is that we take the framed circle 𝛾, and isotope it
around in𝑁 until it returns to its original position. The framing can a priori be different from the
original framing. An important example of such an isotopy ‘swings’ an arc of the circle over an
immersed 2-sphere𝜔 in𝑁. One can imagine that the arc ‘lassoes’ the sphere, as shown in Figure 1.
More precisely, one should think of a generator of 𝜋1(Ω𝑆2) ≅ 𝜋2(𝑆2) ≅ ℤ, mapped into 𝑁 via the
immersion corresponding to𝜔. That is, we can decompose a 2-sphere into a union of arcs, all with
the same two points as endpoints. This gives rise to a loop of arcs for a sub-arc of 𝛾 to be isotoped
over. The rest of 𝛾 stays fixed. By general position we assume we obtain an embedded circle in 𝑁
for all time.
Let 𝜔 ∶= [𝜔] ∈ 𝐻2(𝑁) denote the homology class of 𝜔, and suppose that moreover 𝑄𝑁(𝜔, 𝜔)

is even. Then, the framing of the circle after its journey agrees up to isotopy with the original
framing. We can therefore obtain a loop of embeddings of 𝑆1 × 𝐷3 as desired. Isotopy extension
gives us a diffeomorphism of 𝑁, that fixes 𝜈𝛾 and that is isotopic to the identity. However, as a
diffeomorphism of 𝑁⧵𝑐(𝑆1 × 𝐷̊3), it need not be isotopic to the identity.
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6 of 15 POWELL

Since we have a diffeomorphism in𝜋0 Dif f 𝜕
(
𝑁⧵𝑐(𝑆1 × 𝐷̊3)

)
that fixes the boundary pointwise,

we may extend by the identity over 𝐷2 × 𝑆2, to obtain an element of

𝜋0 Dif f
+
(
(𝑁⧵𝑐(𝑆1 × 𝐷̊3)) ∪ 𝐷2 × 𝑆2

)
≅ 𝜋0 Dif f

+(𝑁#(𝑆2 × 𝑆2)).

As in the statement of Theorem A, let𝑀 ∶= 𝑁#(𝑆2 × 𝑆2) and let 𝑓𝜔 ∶ 𝑀
≅
�→ 𝑀 be the diffeomor-

phism just constructed. Let 𝑥 = [𝑆2 × pt] and 𝑦 = [pt ×𝑆2]. Then, if 𝑄𝑁(𝜔, 𝜔) = 2𝑠, Wall showed
that 𝑓𝜔 sends

𝜉 ↦ 𝜉 − 𝑄𝑁(𝜉, 𝜔)𝑦; 𝑥 ↦ 𝑥 + 𝜔 − 𝑠𝑦; 𝑦 ↦ 𝑦, (2.2)

where 𝜉 ∈ 𝐻2(𝑁) ⊆ 𝐻2(𝑁) ⊕ 𝐻2(𝑆
2 × 𝑆2) ≅ 𝐻2(𝑀). This suffices to determine the effect of the

constructed diffeomorphism on homology.
Wall’s earlier impressive algebraic results from [86], together with a short additional argument

in [87], showed that under the hypotheses of Theorem A on 𝑁, the group of isometries of 𝑄𝑀 is
generated by the following.

(i) Isometries of the form (2.2). In an sosc 4-manifold 𝑁, every homology class in 𝑁 can be
represented by an immersed 2-sphere, so we can perform Wall’s construction for every 𝜔 ∈
𝐻2(𝑁) with 𝑄𝑁(𝜔, 𝜔) even, to obtain a diffeomorphism 𝑓𝜔 realising the isometry (2.2).

(ii) Isometries of the hyperbolic summand𝑄𝑆2×𝑆2 , which can all be realised by diffeomorphisms;
(iii) In the case that 𝑄𝑁 is odd, 𝑀 = 𝑁#(𝑆2 × 𝑆2) ≅ 𝑁#ℂℙ2#ℂℙ

2
and so there is a decompo-

sition 𝐻2(𝑀) ≅ 𝐻2(𝑁) ⊕ 𝐻2(ℂℙ
2) ⊕ 𝐻2(ℂℙ

2
). Then, we need the isometry (Id, − Id, Id) of

𝑄𝑀 , which can be smoothly realised via complex conjugation acting on the ℂℙ2 summand.

Thus, every isometry of 𝑄𝑀 can be smoothly realised.
In fact this does not just hold for closed 𝑀, but also whenever 𝐻1(𝜕𝑀) = 0, because in that

case the intersection form is still nonsingular, so the algebraic input from [86] continues to
apply. Moreover, the construction of diffeomorphisms above did not use that 𝑀 was closed. In
the case of 𝜕𝑀 ≠ ∅, the diffeomorphisms constructed can be assumed to restrict to the identity
on 𝜕𝑀.

3 EXTENSIONS AND IMPROVEMENTS OF THEOREMA

Recall the map 𝑀 ∶ 𝜋0 Dif f
+(𝑀) → Aut(𝐻2(𝑀), 𝑄𝑀). Theorem A states that this map is surjec-

tive for many scosc 4-manifolds. Is 𝑀 surjective in general? Is it injective? What happens in the
topological category? There has been tremendous progress on these questions since Wall’s work,
even though much more remains to be done. I will survey some of this progress here.
First, as mentioned in the introduction, Ruberman–Strle [79] extended Wall’s result to prove

the following. Letting𝑀 = 𝑁#(𝑆2 × 𝑆2) as in Theorem A, let

𝑠 ∶ Aut(𝐻2(𝑁), 𝑄𝑁) → Aut(𝐻2(𝑀), 𝑄𝑀)

be the stabilisation map that extends an isomorphism of 𝐻2(𝑁) to an isomorphism of 𝐻2(𝑀) ≅
𝐻2(𝑁) ⊕ 𝐻2(𝑆

2 × 𝑆2) by the identity on𝐻2(𝑆2 × 𝑆2).
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C.T.C. WALL’S 1964 ARTICLES ON 4-MANIFOLDS 7 of 15

Theorem 3.1 (Ruberman–Strle). Let 𝑁 be a scosc 4-manifold and let 𝑀 ∶= 𝑁#(𝑆2 × 𝑆2). Then,
im 𝑠 ⊆ im𝑀 .

Wall made some preliminary observations about the non-simply-connected case in [87, Sec-
tion 5]. This was generalised by Cappell–Shaneson in [14], where, inspired by Wall’s work they
developed stable surgery theory for 4-manifolds (see also [32]). In the stable setting, a great deal
of the high-dimensional theory can be reproduced. I will return to this theme later, in Section 6.
In general, 𝑀 is not surjective. Examples due to Donaldson [27, Section VI] for the 𝐾3 sur-

face, and Friedman–Morgan [31, Theorem 6] for exotic copies of ℂℙ2#9ℂℙ
2
, show that there are

isometries of𝑄𝑀 not realisable by any diffeomorphism. Examples are now known to be abundant:
Seiberg–Witten theory produces a set of distinguished classes in second homology that must be
preserved by any diffeomorphism, and so any isometry of𝑄𝑀 that does not preserve this set cannot
be realised by a diffeomorphism. For instance, Donaldson’s argument for the𝐾3 surface extends to
any homotopy 𝐾3 surface using work of Morgan–Szabó [70], as explained in [6, Remark 7.7]. One
elegant construction of homotopy 𝐾3 surfaces proceeds via Fintushel and Stern’s knot surgery
operation [29].
Themap 𝑀 is in general far from being injective. The first examples of diffeomorphisms acting

as the identity on second homology but not isotopic to the identity were produced by Ruberman
in [77, 78]. I will describe a variation on Ruberman’s example next, due to Baraglia–Konno [7].
Let

𝑀 ∶= 𝐾3#(𝑆
2 × 𝑆2).

Let be a smooth, closed 4-manifold that is homeomorphic to 𝐾3 but not diffeomorphic to it, for
example, arising from knot surgery [29]. Suppose also that

𝑀′ ∶= #(𝑆2 × 𝑆2)

is diffeomorphic to𝑀. Let 𝜙∶ 𝑀 → 𝑀′ be such a diffeomorphism. Such a choice of exists, and
its action respects the decomposition of 𝐻2 and acts as the identity on 𝐻2(𝑆2 × 𝑆2). Let 𝑟∶ 𝑆2 ×
𝑆2 → 𝑆2 × 𝑆2 be the composition of symplectic Dehn twists [2, 82] in the spheres representing (1,1)
and (1, −1) in𝐻2(𝑆2 × 𝑆2) ≅ ℤ ⊕ ℤ. We consider the diffeomorphism

(Id𝐾3 #𝑟)◦𝜙
−1◦(Id #𝑟)◦𝜙∶ 𝑀 → 𝑀.

This acts trivially on 𝐻2(𝑀). If the Seiberg–Witten invariants of 𝐾3 and  differ, then it is not
isotopic to the identity [7].
In contrast to the wild behaviour of diffeomorphisms revealed by gauge theory, in the topo-

logical category the picture is much cleaner, and the topological mapping class group has been
entirely reduced to algebra.

Theorem 3.2. For every topological, closed, oriented, simply-connected 4-manifold𝑀, the map


Top
𝑀

∶ 𝜋0 Homeo
+(𝑀)

≅
�→ Aut(𝐻2(𝑀), 𝑄𝑀),

taking the induced isomorphism of𝐻2(𝑀), is an isomorphism.
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8 of 15 POWELL

Surjectivity is due to Freedman [30]. Injectivity follows from combining work of Kreck [59],
Perron [73], and Quinn [74] (the latter with a recent correction from [34]). Thus, the work of Don-
aldson [27] and Friedman–Morgan [31] implies the existence of self-homeomorphisms of scosc
4-manifolds not isotopic to a diffeomorphism, and hence of smooth structures that are diffeomor-
phic but not isotopic. Similarly, Ruberman’s diffeomorphisms are topologically but not smoothly
isotopic to the identity; they are exotic diffeomorphisms.
One can extend to simply-connected, compact 4-manifolds with nonempty boundary.

Saeki [80] studied a stable version, and combining Saeki’s work with that of Perron [73],
Quinn [74], Boyer [10, 11], and Orson–Powell [71] completes the computation of the topological
mapping class groups of all topological, compact, simply-connected 4-manifolds.
The idea of using fibrations similar to (2.1) to construct diffeomorphisms has been increasingly

exploited in recent years. Budney–Gabai [12, 13] used such a construction to define barbell dif-
feomorphisms, obtaining interesting self-diffeomorphisms of 𝑆1 × 𝐷3, and 3-balls in 𝑆4 that are
knotted rel. boundary. This has been reformulated by Kosanović and collaborators [28, 56–58],
through a families version of Habiro’s claspers. It remains an interesting question to determine
precisely which of these give rise to nontrivial diffeomorphisms.

4 CONSTRUCTING 𝒉-COBORDISMS

Let 𝑀1 and 𝑀2 be scosc 4-manifolds with isometric intersection pairings. To obtain an ℎ-
cobordism, one could apply Whitehead’s theorem to obtain a homotopy equivalence 𝑓∶ 𝑀1 →

𝑀2, consider this as an element in the structure set (𝑀2), and then apply an argument inspired
by surgery theory to obtain an ℎ-cobordism. Even though the surgery sequence is not defined or
exact in this dimension, one can still aim to produce a 5-dimensional cobordism and then surger
that to an ℎ-cobordism. In 1964, some of the surgery technology, in particular Sullivan’s ideas for
computing normal invariants, were not yet available. But this approach was certainly known to
Wall by 1970 [90, Remark after Theorem 16.5].
Instead, in 1964 Wall instead gave a direct and elementary argument, that became a pro-

totype for theorems classifying 4-manifolds via surgery methods. In particular, results coming
from Kreck’s modified surgery theory [61] use ideas directly analogous to Wall’s, and presumably
inspired by them, that bypass the homotopy classification, instead relying on bordism theory and
the algebra of Lagrangians of intersection forms to surger a cobordism to an ℎ-cobordism.
Let me give an outline of the key ideas in Wall’s proof. We consider

𝑁 ∶= 𝑀1# −𝑀2,

a scosc 4-manifold with zero signature 𝜎(𝑁) = 0, since 𝑄𝑀1
≅ 𝑄𝑀2

implies 𝜎(𝑀1) = 𝜎(𝑀2) and
since signature is additive. Bordism theory implies that 𝑁 bounds a compact 5-manifold𝑊, that
can be assumed spin if𝑁 is. Next, by surgery on circles and spheres in𝑊, one can arrange for𝑊
to be homotopy equivalent to a wedge of 2-spheres. Since𝑊 is 5-dimensional, by general position
we can represent generators for𝐻2(𝑊) by an embedding of a boundary connected sum

𝑉 ∶= ♮𝑘(𝑆2 × 𝐷3)♮𝓁(𝑆2×̃𝐷3),

where 𝑆2×̃𝐷3 is the 𝐷3-bundle over 𝑆2 with boundary 𝑆2×̃𝑆2. Wall then checked that𝑊⧵𝑉̊ is an
ℎ-cobordism from 𝑁 to 𝜕𝑉 ≅ #𝑘(𝑆2 × 𝑆2)#𝓁(𝑆2×̃𝑆2).
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C.T.C. WALL’S 1964 ARTICLES ON 4-MANIFOLDS 9 of 15

The ℎ-cobordism𝑊⧵𝑉̊ induces an isomorphism𝐻2(𝜕𝑉) ≅ 𝐻2(𝑁). Let 𝛼∶ 𝐻2(𝑀1)
≅
�→ 𝐻2(𝑀2)

be the hypothesised isometry, and let

𝐾 ∶= {(𝑥, 𝛼(𝑥)) ∣ 𝑥 ∈ 𝐻2(𝑀1)} ⊆ 𝐻2(𝑀1) ⊕ 𝐻2(𝑀2) ≅ 𝐻2(𝑁) ≅ 𝐻2(𝜕𝑉),

the ‘diagonal’ Lagrangian of 𝑄𝜕𝑉 . Let

𝐿 ∶= ker(𝐻2(𝜕𝑉) → 𝐻2(𝑉)).

As mentioned, both 𝐾 and 𝐿 are Lagrangians, meaning they are direct summands of𝐻2(𝜕𝑉) and
that 𝐾 = 𝐾⟂ and 𝐿 = 𝐿⟂. Here, for example,

𝐿⟂ ∶=
{
𝑦 ∈ 𝐻2(𝜕𝑉) ∣ 𝑄𝜕𝑉(𝑥, 𝑦) = 0 for all 𝑥 ∈ 𝐿

}
.

Wall showed that there is an isometry of 𝑇 of (𝐻2(𝜕𝑉), 𝑄𝜕𝑉) such that 𝑇(𝐿) = 𝐾. In terms of
the later-developed formalism of surgery theory, this is related to the vanishing of the surgery
obstruction group 𝐿5(ℤ).
Next, Wall applied his result on the existence of diffeomorphisms realising automorphisms,

Theorem A from [87], to realise 𝑇 as being induced by a diffeomorphism 𝜏∶ 𝜕𝑉
≅
�→ 𝜕𝑉. Cut out

the interior of 𝑉 from𝑊 and form the union

𝑊⧵𝑉̊ ∪𝜏 𝑉.

This manifold has boundary

𝑁 = 𝑀1# −𝑀2 ≅ (𝑀1⧵𝐷̊
4) ∪ (𝑆3 × 𝐼) ∪ (𝑀2⧵𝐷̊

4).

Glue 𝐷4 × 𝐼 to the 𝑆3 × 𝐼 part of the boundary to obtain a cobordism from 𝑀1 to 𝑀2. Wall
concluded the proof by showing that the resulting cobordism is an ℎ-cobordism, as required.

5 𝒉-COBORDISM IMPLIES STABLE DIFFEOMORPHISM

Although Wall worked with simply-connected 4-manifolds, the following generalisation of
Theorem C is now known [64], with essentially the same proof as Wall’s.

Theorem 5.1. Let 𝑀1 and 𝑀2 be smooth, compact 4-manifolds with a diffeomorphism 𝜕𝑀1 ≅

𝜕𝑀2, and suppose that 𝑀1 and 𝑀2 are ℎ-cobordant rel. boundary. Then, 𝑀1 and 𝑀2 are stably
diffeomorphic rel. boundary.

Here is an outline of the proof, which uses ideas from Smale’s proof of the ℎ-cobordism theo-
rem [68, 83]. Let𝑊 be an ℎ-cobordism, and consider a handle decomposition of𝑊. The methods
of proof of the ℎ-cobordism theorem in high dimensions allow us to trade the handles of index 0, 1,
4, and 5 for 2- and 3-handles. So, we are left with a cobordism consisting only of 2- and 3-handles.
Themiddle level𝑀1∕2 between the 2- and 3-handles is obtained by adding 2-handles to𝑀1 and also
by adding 2-handles to𝑀2. Since the maps𝑀1 → 𝑊 and𝑀2 → 𝑊 are in particular injective on
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10 of 15 POWELL

fundamental groups, the 2-handles are always attached by circles that are null-homotopic,
and hence are isotopically trivial. It follows that the middle level 𝑀1∕2 is obtained from 𝑀1

(respectively𝑀2) by taking connected sum with copies of 𝑆2 × 𝑆2 and 𝑆2×̃𝑆2.
If there are copies of 𝑆2×̃𝑆2 in 𝑀1∕2, we obtain an embedding of a 2-sphere in 𝑊 with odd

normal Euler number. Projecting this to𝑀1 via the homotopy inverse to the inclusion𝑀1 → 𝑊

and applying general position, we obtain an immersion of a 2-sphere in𝑀1 with odd normal Euler
number. It follows that the universal cover of𝑀1 is not spin, and in this case𝑀1#(𝑆

2×̃𝑆2) ≅ 𝑀1 ≅

(𝑆2 × 𝑆2). So, we may in fact assume that there are no copies of 𝑆2×̃𝑆2, and so the middle level is
the sought for common stabilisation of𝑀1 and𝑀2.
As mentioned in the introduction, Theorem C can be rephrased in the following way, using the

classification of symmetric, bilinear, unimodular forms.

Theorem 5.2. Two scosc 4-manifolds𝑀1 and𝑀2 are stably diffeomorphic if and only if 𝜒(𝑀1) =

𝜒(𝑀2), 𝜎(𝑀1) = 𝜎(𝑀2), and they are either both spin or both not spin.

Here, 𝜒(𝑀𝑖) denotes the Euler characteristic, 𝜎(𝑀𝑖) denotes the signature of the intersection
form, and recall that 𝑀𝑖 is spin if and only if 𝑄𝑀𝑖

is even, i.e. 𝑄𝑀𝑖
(𝑥, 𝑥) ≡ 0 mod 2 for all 𝑥 ∈

𝐻2(𝑀𝑖). Note that𝑀1 and𝑀2 do not have to be ℎ-cobordant to deduce stable diffeomorphism. I
will discuss generalisations of this result next, where we will see what the minimal assumptions
on a bordism are to deduce stable diffeomorphism.

6 EXTENSIONS AND IMPROVEMENTS OF THEOREMS B AND C

Theorem C was the prototype for a host of results on stable diffeomorphisms of 4-manifolds. I
already mentioned that Cappell–Shaneson [14] developed a stable surgery sequence. However,
Kreck’s work [61] onmodified surgery took the idea to another level. Kreck’s theory leads to a sim-
plified way to approach the stable classification, reducing it to computations of bordism groups,
which can be approached via spectral sequences. Moreover, modified surgery theory allows one
to go further and attempt to de-stabilise, in nice cases obtaining homeomorphisms. I will present
some of the results obtained via these approaches below.
Beforehand, however, I want tomention the difference in the smooth and topological categories

from the stable point of view. Gompf [36] showed that for orientable 4-manifolds, there is no
difference.

Theorem6.1 (Gompf). Two smooth, compact, oriented 4-manifolds are stably diffeomorphic if and
only if they are stably homeomorphic.

However in the nonorientable case there can be differences. For example, Kreck [60] showed
that

ℝℙ4#𝐾3 and ℝℙ4#11(𝑆2 × 𝑆2)

are (stably) homeomorphic but not stably diffeomorphic. I believe that these were the first
published examples of closed, exotic 4-manifolds (Cappell–Shaneson’s 4-manifolds homotopy
equivalent but not diffeomorphic to ℝℙ4 [15] were observed slightly later [76, p. 221] to be home-
omorphic to ℝℙ4). It is also worth remarking that one does not need gauge theory to detect these
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exotica; Kreck’s obstruction is based on Rochlin’s theorem, and is similar to Cappell–Shaneson’s
invariant from [15]. Also, observe thatKreck’s exotica do not contradict Theorem5.1, because these
4-manifolds are not even ℎ-cobordant.
Now, let me return to Kreck’s method. I will mostly focus on the case of spin 4-manifolds,

to avoid technicalities. Kreck proved that if two closed, smooth, spin 4-manifolds 𝑀1 and 𝑀2

with the same fundamental group 𝜋 are spin bordant over the classifying space 𝐵𝜋, then they are
stably diffeomorphic. Here, 𝐵𝜋 can also be thought of as the Eilenberg–Maclane space 𝐾(𝜋, 1),
and there are 2-connected maps 𝑐𝑖 ∶ 𝑀𝑖 → 𝐵𝜋 classifying the universal covers. To obtain a com-
plete stable classification one, has to factor out by the choice of spin structure and the choice of
maps 𝑐𝑖 .
In the case of universal cover non-spin, the situation is similar: one uses oriented bordism

in place of spin bordism. The third case of non-spin 4-manifolds with spin universal covering
uses twisted spin bordism groups, details of which I shall omit here; they were first worked out
in [84].
Kreck’s proof proceeds roughly as follows. Given a (spin) bordism over 𝐵𝜋, we can surger it

to an ℎ-cobordism between 𝑀1#𝑘(𝑆
2 × 𝑆2) and 𝑀2#𝑘(𝑆

2 × 𝑆2) for some 𝑘, and then apply the
argument in Section 5 to deduce that𝑀1 and𝑀2 are stably diffeomorphic.
Then, bordism groups can be computed with Atiyah–Hirzebruch spectral sequences, or a

twisted version thereof defined by Teichner [84]. A sequence of recent papers by Kasprowski,
Teichner, and their collaborators connect the invariants arising from the spectral sequences
with more standard algebraic topological invariants, for example, arising from 𝜋2(𝑀𝑖) or the
equivariant intersection form [44–49]. See also [24].
A sample result generalising Theorem C is as follows, proven by Cavicchioli–Hegenbarth and

Repovš [16, 17] in the spin case. This, and the non-spin case, follow in a fairly straightforward way
from Kreck’s bordism approach.

Theorem 6.2. Two smooth, closed, oriented 4-manifolds𝑀1 and𝑀2 with free fundamental group
are stably diffeomorphic if and only if 𝜒(𝑀1) = 𝜒(𝑀2), 𝜎(𝑀1) = 𝜎(𝑀2), and they are either both
spin or both not spin.

Once one has a solid stable classification, one can attempt to de-stabilise, to try to obtain home-
omorphism results. This has been carried out successfully in the topological category, notably in
the work of Hambleton and Kreck [39–41] on closed 4-manifolds with finite fundamental group,
and later byKhan [50] for some infinite fundamental groups. As remarkedupon, the proofmethod
is a sophisticated generalisation of Wall’s method for surgering a bordism to an ℎ-cobordism that
I outlined in Section 4. The approach was also used by Hambleton–Kreck–Teichner for classify-
ing nonorientable 4-manifolds with fundamental group of order two, and by Conway–Powell [21]
and Conway–Orson–Powell [22] for studying surfaces embedded in 𝑆4 whose complements have
cyclic fundamental groups.
On the other hand, it is possible for one stable equivalence class to contain many manifolds.

Kreck–Schafer [63] showed that there can be distinct closed 4-manifolds in the same stable class,
even up to homotopy equivalence. Hambleton–Nicholson [42] extended this work to find arbitrar-
ily large families of homotopy equivalence classes of 4-manifolds in the same stable class, while
Conway–Crowley–Powell [20] showed that there can even be infinitely many manifolds in the
same stable class, if one allows nonempty boundary.
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