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1. Introduction

These are the notes for a series of lectures I delivered on 26th, 27th, and 28th March
2024 in Warsaw, at the Department of Mathematics of the University of Warsaw and
at IMPAN. The aim of these lectures is to explain the computation of the (topological)

The lecture series and my stay in Warsaw was funded by the Thematic Research Program “Topological
field theories and algebraic invariants of links” within the IDUB Program at the University of Warsaw.
I was partially supported by EPSRC New Investigator grant EP/T028335/2 and EPSRC New Horizons
grant EP/V04821X/2.
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mapping class groups of compact simply-connected 4-manifolds, focussing for simplicity
on the closed case.

I will also consider the case of nonempty boundary, and I will compare with the smooth
category in various ways. There will be some applications to surfaces.

We have a good understanding of the mapping class groups of compact, simply-connected
4-manifolds, which I will present in detail. I will discuss what is known beyond that, in
less detail. I will mention open problems and future research directions, of which there
are many. I hope that this motivates understanding the simply-connected case in detail:
the ideas I try to impart have been generalised and applied to many problems on mapping
class groups, and I believe there are many more such possibilities.

Definition 1.1. Let X be a closed, topological 4-manifold. We write Homeo(X) for

the homeomorphism group of X, the topological group of homeomorphisms f : X
∼=−→

X and we write Homeo+(X) for the topological group of orientation preserving (o.p.)

homeomorphisms f : X
∼=−→ X

Multiplication is via composition, and the topology is the compact-open topology. The
connected components of this group, π0(Homeo(X)) is the mapping class group of X. The
o.p. mapping class group of X is π0(Homeo+(X)).

The main theorem I want to discuss is a computation of the mapping class groups of
closed, simply-connected 4-manifolds, in the sense of reducing it to algebra. Henceforth
for brevity I will write 1-connected for simply-connected. Note that this implies path
connected as well.

Theorem 1.2 (Freedman, Kreck, Perron, Quinn). Let X be a closed, 1-connected topo-
logical 4-manifold. Then

π0(Homeo+(X)
∼=−→ Aut(H2(X), λX)

f 7→ f∗

is an isomorphism of groups.

The references are [Fre82Fre82, Kre79Kre79, Per86Per86, Qui86Qui86]. Freedman proved surjectivity. The
precise attributions for the injectivity will be dealt with later; see also [GGH+23GGH+23].

Here,

λX : H2(X)×H2(X) → Z
(x, y) 7→ ⟨PD−1(y), x⟩

is the intersection pairing of X, and an automorphism in Aut(H2(X), λX) is an isomor-
phism φ : H2(X) → H2(X) such that λX(φ(x), φ(y)) = λX(x, y) ∈ Z for all x, y ∈ H2(X).

Throughout, X will be assumed to be a topological manifold. If it is explicitly stated
then we may, and often will, endow X with a smooth structure, but this is not the default
assumption.

Here is a summary of what these notes will aim to cover.

(i) Explain the proof of injectivity in Theorem 1.21.2 in some detail. A key concept will
be pseudo-isotopies. They will allow us to break the proof of injectivity into two
distinct steps.

(ii) Generalise to the case of nonempty boundary.
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(iii) Compare with smooth mapping class groups: exotic diffeomorphisms, exotic pseudo-
isotopies, non-smoothable homeomorphisms, corks for diffeomorphisms.

(iv) Give applications to surfaces in 4-manifolds.
(v) Mention generalisations to non-simply connected 4-manifolds, both known and pos-

sible future extensions.

Acknowledgements. I am extremely grateful to the organisers of the Simons semester
in Warsaw for the invitation and the opportunity to speak. I am equally grateful to the
audience, who persisted with a marathon of 8 lectures in 3 days.

Some of the text and the pictures in this write up were lifted from [OP22OP22] and [GGH+23GGH+23],
and I thank my coauthors for their forbearance. It seemed inefficient to create new inferior
versions.

Much of my understanding of this topic is due to conversations with many excellent
collaborators and PhD students, and so I would like to take the opportunity to thank (in
alphabetical order by surname) Anthony Conway, Michelle Daher, David Gabai, Daniel
Galvin, David Gay, Daniel Hartman, Daniel Kasprowski, Slava Krushkal, Andrew Lobb,
Anubhav Mukherjee, Weizhe Niu, Isacco Nonino, Patrick Orson, Brendan Owens, Arunima
Ray, Oliver Singh, Peter Teichner, and Terrin Warren.

These notes are based on the work of many mathematicians, but most strongly on the
visionary ideas of Matthias Kreck and Frank Quinn.

2. Examples

In the upcoming examples, we use Theorem 1.21.2 to compute π0(Homeo+(X)), and then
deduce π0(Homeo(X)) as a consequence. A unimodular, symmetric, bilinear form (Zn, L)
is called a lattice, and the groups of symmetries of a lattice is called its orthogonal group.

In general by considering the action of a homeomorphism on H4(X) ∼= Z to define a
homomorphism to Z/2, we have an exact sequence

0 → π0Homeo+(X) → π0Homeo(X) → Z/2.

Example 2.1. Let X = S4. Then since H2(S
4) = 0, we have that Aut(H2(S

4), λX) =
{Id}, and so π0(Homeo+(S4)) = {[Id]} by Theorem 1.21.2. Since S4 admits an orientation-
reversing homeomorphism, we have that π0(Homeo(S4)) ∼= Z/2 = {[Id], [R]}, where
R : S4 → S4 is a reflection.

Example 2.2. Let X = #nCP 2 be a connected sum of canonically oriented complex
projective planes. This has H2(X) ∼= Zn and λX represented by the size n identity
matrix. The automorphism groups of this form, or in other words the orthogonal group
of this lattice, which is isomorphic to π0Homeo+(X), fits into a short exact sequence

{0} → (Z/2)n → Aut(Zn, Id) → Σn → {1}.
The sequence splits, so we have a semi-direct product, and the symmetric group Σn acts
on (Z/2)n by permuting the coordinates. It is known as the signed permutation group, or
the Coxeter group of type Bn. Its order is 2

n · n!. Since the signature is nonzero, there is
no orientation reversing homeomorphism, so π0Homeo(X) = π0Homeo+(X).

Example 2.3. Let X = S2 × S2. Then H2(X) ∼= Z2, and the intersection form is
hyperbolic, represented by ( 0 1

1 0 ). So π0Homeo+(X) ∼= Aut(Z2, H) ∼= Z/2 × Z/2. The
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isometries here are straightforward to compute by hand. Generators are given by
(−1 0

0 −1

)
and ( 0 1

1 0 ). Let R : S2 → S2 be a reflection. Then R × Id is an orientation reversing
homeomorphism of order two. It follows that we have a split short exact sequence

0 → π0Homeo+(X) → π0Homeo(X) → Z/2 → 0.

The sequence splits, so we have that π0Homeo(X) ∼= (Z/2 × Z/2) ⋊ Z/2. By computing
the orders of elements using the action on H2 and H4, I computed that the action in the
semi-direct product is such that this group is isomorphic to D8, the dihedral group of
order 8.

Example 2.4. Let X = E8 be the E8 manifold. It is built by plumbing D2-bundles over
S2 with Euler number 2 together according to the E8 Dynkin diagram, and then capping
off the boundary with a contractible 4-manifold, who existence was proven by Freedman.
The intersection form is the E8 lattice. Its automorphism group is the Weyl or Coxeter
group of type E8. This is a famous group, whose order is 4! · 6! · 8!.

In general, Wall gave explicit generators for automorphism groups of unimodular lattices
AutλX [Wal63Wal63].

3. Applications

3.1. A Dehn twist. Recall the K3 surface, which is a famous smooth, close, 1-connected
4-manifold. It generates the 4-dimensional smooth spin cobordism group, for example. It
is given by

{[x, y, z, w] ∈ CP 3 | x4 + y4 + z4 + w4 = 0}.
There are several other descriptions. We let X := K3#K3, and consider the connected
sum sphere S3 ⊆ X. Let U ∼= S3 × [0, 1] be a neighbourhood of this S3. Let ρθ : S

3 → S3

be rotation of S3 through an angle θ about a fixed axis. Define

Φ: S3 × [0, 1] → S3 × [0, 1]

(x, t) 7→ (R2πt(x), t).

Define

f : X → X

x 7→

{
Φ(x) x ∈ U

x x /∈ U.

This is called Dehn twist on S3 ⊆ X. Then f∗ = IdX : H2(X) → H2(X), so f is topologi-
cally isotopic to the identity. However Kronheimer and Mrowka [KM20KM20] proved that f is
not smoothly isotopic to the identity of X.

3.2. Topological unknotting. Let f : S2 → S4 be a 2-knot, and suppose that

π1(S
4∖f(S2)) ∼= Z.

That is, the knot group is the same as that of the un-2-knot U . The normal bundle νf
is trivial, homeomorphic to S2 ×D2. We have a homeomorphism g : νf → νU such that
g|f(S2) sends f(S

2) to U .
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Theorem 3.1 (Freedman-Quinn [FQ90FQ90]). The homeomorphism g can be extended to a
homeomorphism ĝ : S4 → S4.

The theorem above is a highly nontrivial input, of course. However there is still the
question of whether we can obtain an ambient isotopy. By Example 2.12.1 we have that
π0Homeo+(S4) = {[Id]}, so ĝ is isotopic to IdS4 . This gives an ambient isotopy from
ĝ ◦ f(S2) = U to IdS4 ◦f(S2) = f(S2). We deduce that every 2-knot with knot group Z is
topologically unknotted.

4. Pseudo-isotopy

How do we prove that π0Homeo+(X) ∼= Aut(H2(X),AutλX)? A key concept in the
proof will be pseudo-isotopy. This notion enables us to break down the problem into two
distinct steps, whose proofs are very different in character.

An analogy with manifold classification is in order. To prove that two 1-connected
n-manifolds, n ≥ 4, are homeomorphic, the standard method is as follows: first prove
that the manifolds are h-cobordant; this uses surgery theoretic methods. Recall that an
h-cobordism between two n-manifolds M and N , with a homeomorphism ∂M ∼= ∂N is
a cobordism (W ;M,N), namely an (n+ 1)-manifold with boundary M ∪ (∂M × I) ∪N ,
such that the inclusion maps M → W and N → W are both homotopy equivalences.

Then, we apply the h-cobordism theorem (Smale, Kirby-Siebenmann, Freedman-Quinn),
which says that h-cobordant n-manifolds are homeomorphic, provided n ≥ 4. Its proof
uses Morse theory.

To prove that two homeomorphisms are isotopic, there are two analogous steps. First,
we prove that they are pseudo-isotopic. This uses surgery theory. Then we apply a result,
proven using Cerf theory (1-parameter Morse theory) which says that pseudo-isotopic
homeomorphisms are isotopic. So pseudo-isotopy is to classifying homeomorphisms of 4-
manifolds up to isotopy as h-cobordism is to classifying 4-manifolds up to homeomorphism.

Let CAT ∈ {Diff,Top} and let X4 be a compact CAT 4-manifold.

Definition 4.1 (Pseudo-Isotopy). A CAT pseudo-isotopy (PI) ofX is a CAT isomorphism

(i.e. a diffeomorphism or a homeomorphism) F : X × I
∼=−→ X × I with F |⊏ = Id, where

⊏:= (X × {0}) ∪ (∂X × I).
We say that F |X×{1} is (CAT) pseudo-isotopic to IdX .

Remark 4.2. For f : X
∼=−→ X a CAT isomorphism, we have that

isotopic to Id ⇒ pseudo-isotopic to Id ⇒ homotopic to Id ⇒ f∗ = IdH2(X) .

We will see that for X closed and 1-connected, all of these implications can be reversed.
We briefly justify the first two implications. Let ft : X → X be an isotopy. Then

F : X × I → X × I sending (x, t) 7→ (ft(x), t) is a pseudo-isotopy. On the other hand,
given a pseudo-isotopy F : X× I → X× I from f = F |X×{1} to Id, we obtain a homotopy
pr1 ◦F : X × I → X, which gives a homotopy from f to Id.

Definition 4.3. We say that f, g : X
∼=−→ X with f |∂X = g|∂X = Id∂X are CAT pseudo-

isotopic if and only if g−1 ◦ f : X → X is pseudo-isotopic to IdX .

Note that if f and g are pseudo-isotopic then there is a CAT isomorphism F : X × I →
X × I with F |X×{0} = f and F |X×{1} = g.
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Definition 4.4. We write

π̃0Homeo+(X) := {f : X
∼=−→ X}/pseudo-isotopy.

We can factor the map f 7→ f∗ from Theorem 1.21.2 as

π0Homeo+(X)
φ1−→ π̃0Homeo+(X)

φ2−→ π0 hAut
+(X)

φ3−→ Aut(H2(X), λX).

The plan for the proof of Theorem 1.21.2 will be to show that φ1 and φ3◦φ2 are isomorphisms.
See Cochran-Habegger [CH90CH90] for the computation of π0 hAut

+(X) for X a closed,
1-connected 4-manifold.

Surjectivity of φ1 is obvious. The refined version of Freedman’s classification of closed,
1-connected 4-manifolds includes the following statement.

Theorem 4.5 (Freedman [Fre82Fre82]). For every automorphism θ ∈ Aut(H2(X), λX), there
exists a homeomorphism f : X → X with f∗ = θ.

Thus φ3 ◦ φ2 and indeed φ3 ◦ φ2 ◦ φ1 is surjective. We will focus on injectivity, and
indeed establishing injectivity will be the main goal of these notes. First, we will show
that

φ3 ◦ φ2 : π̃0Homeo+(X) → Aut(H2(X), λX)

is injective. This is due to Kreck [Kre79Kre79] and Quinn [Qui86Qui86]. Note that φ3 ◦ φ2 is simply
the map that sends a homeomorphism f to the induced map on homology f∗ : H2(X) →
H2(X).

So, let f : X
∼=−→ X be a homeomorphism with f∗ = Id. We consider the mapping

torus Tf := X × [0, 1]/(x, 0) ∼ (f(x), 1). We think of a homeomorphic space to this, as
follows. Let X1 and X2 be two copies of X, and consider f as a map f : X1 → X2. Let
Id: X1 → X2 be the identity map of X. Then

Tf
∼=

X1 × [0, 1] ⊔X2 × [0, 1]

(x1, 1) ∼ (f(x1), 1), (x, 0) ∼ (Id(x), 0)
.
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The aim is to find an h-cobordism (V ;X1 × I,X2 × I), relative to the boundary X1 ×
{0, 1}, from X1×I to X2×I, with the gluing indicated. That is V must be a 6-dimensional
manifold with boundary ∂V = Tf , and being an h-cobordism means that the inclusion
maps X1 × I → V and X2 × I → V are both homotopy equivalences. The h-cobordism
theorem for 1-connected manifolds of dimension at least 5 is due to Smale and Kirby-
Siebenmann [Sma62Sma62,KS77KS77]; see also [Mil65Mil65]. It says that h-cobordism are homeomorphic
to products, and we may use a given identification of one end of the two cobordisms.

Theorem 4.6 (h-cobordism theorem). There is a homeomorphism

(G, Id, g) : (V ;X1 × I,X2 × I)
∼=−→ (X1 × I × I;X1 × I,X1 × I)

relative to the identity map on X1 × I and some homeomorphism g : X2 × I → X1 × I.

Then g : X2 × I
∼=−→ X1 × I is a pseudo-isotopy. Because of our initial choice of gluing,

i.e. the fact that we took the mapping torus Tf , it is a pseudo-isotopy from f to Id. So if
we can find the h-cobordism V , we will have proven that f is pseudo-isotopic to IdX , and
hence will have proven that φ3 ◦ φ2 is injective. This will be the goal of the next three
sections.

5. Bundles

In this section we recall some basic bundle theory for topological manifolds. Let X be
a topological manifold. Recall that

{smooth vector bundles on X of rank n}/ ∼=↔ [X,BO(n)].

Here BO(n) is the classifying space for smooth vector bundles, which can be modelled by
the Grassmannian Grn(R∞) of n-dimensional subspaces of R∞. We have inclusions

BO(n) ↪→ BO(n+ 1) ↪→ · · ·

with colimit BO := colimn→∞BO(n). Then [X,BO] is in one to one correspondence with
stable vector bundles on X.

For the analogue of this in the topological category we define

Top(n) = {f : Rn ∼=−→ Rn | f(0) = 0}.

There is an associated classifying space BTop(n), with colimn→∞BTop(n) =: BTop, such
that

{Rn fibre bundles on X}/ ∼=↔ [X,BTop(n)]

and such that [X,BTop] is in one to one correspondence with stable Rn-fibre bundles on
X.

In particular, if dimX = d, there is a topological tangent bundle τX ∈ [X,BTop(d)]. For
N large we can embedX in Rd+N , and there is a normal bundle bundle νX ∈ [X,BTop(N)]
such that τX⊕νX is null-homotopic, i.e. this is isomorphism to the trivial fibre bundle Rd+N

on X. We consider the stable normal bundle of X, νX ∈ [X,BTop]. This is independent
of the choice of embedding of X into Euclidean space.

For oriented vector bundles, we can use the oriented Grassmannian BSO(n) and its
stable version BSO. The topological analogue is BSTop(n) and BSTop. Finally, just as
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vector bundles have spin structures, topological Rn-bundles have topological spin struc-
tures, and there is a fibration BTopSpin → BTop. A topological spin structure on a stable
Rn-bundle corresponds to a lift X → BTopSpin of the classifying map X → BTop.

The main references for this theory are Milnor’s papers, where he defined microbun-
dles [Mil64Mil64,Mil61Mil61], and Kister’s paper, where he showed that microbundles are fibre bun-
dles [Kis64Kis64]. In view of Kister’s theorem, we have only talked about the conceptually
easier notion of Rn-fibre bundles.

6. Modified surgery

To obtain an h-cobordism (V ;X1 × I,X2 × I) with boundary Tf , I will use the method
of modified surgery, which is due to Kreck [Kre99Kre99]. The proof that I am presenting is
modelled on that in [Kre79Kre79], although that paper was written before the terminology of
modified surgery had been solidified. Hence we use the terminology from [Kre99Kre99].

Theorem 6.1. Let X be a compact n-manifold and let νX : X → BTop be the stable
normal bundle. For any k ≥ 0 there exist (B, ξ, νX), with ξ : B → BTop a fibration, such
that νX factors as

B

X BTop

ξ
νX

νX

where ξ is (k + 1)-coconnected and νX is (k + 1)-connected.

Here ξ is (k+1)-coconnected means that πi(ξ) is an isomorphism for i > k+1 and πk+1(ξ)
is injective. Dually, νX being (k+ 1)-connected means that πi(νX) is an isomorphism for
i < k + 1, i.e. for i ≤ k, and πk+1(νX) is surjective. The factorisation in the theorem is
called the Moore-Postnikov factorisation of νX [Bau77Bau77,Rob72Rob72]

Definition 6.2. The fibration (B, ξ) is called the normal k type of X, and a lift of νX
along ξ, νX : X → B, is called a normal k-smoothing.

GivenX, the normal k-type (B, ξ) is well-defined up to fibre homotopy equivalence. The
relevance of the normal k-type to the classification of homeomorphisms is the following
key theorem from [Kre99Kre99].

Theorem 6.3 (Kreck). Let M and M ′ be compact, oriented n-manifold with ∂M ∼= ∂M ′.
Suppose that n ≥ 4, and n = 2k or n = 2k + 1. Suppose that M and M ′ have the same
normal k-types. Let ν : M → B and ν ′ : M ′ → B be normal k-smoothings that are bordant
over (B, ξ). That is, we assume there is a bordism (Wn+1;M,M ′) rel. ∂M ∼= ∂M ′ and a
lift νW : W → B of νW : W → BTop that restricts to ν and ν ′ on M and M ′ respectively.
There is a surgery obstruction

θ(W, νW ) ∈ Ls
n+1(Zπ1(B))

(or in Ls
n+1(Zπ1(B), S) if n + 1 = 6 or 14) such that (W, νW ) is bordant rel. ∂W over

(B, ξ) to an s-cobordism if and only if θ(W, νW ) = 0.

The strategy of the proof is to perform a sequence of surgeries on framed, embedded
spheres, in order to kill the relative homotopy groups πi(B,W ) for i = 0, 1, . . . , k. This
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done, it can be proven using Poincaré duality that we have an s-cobordism. The bundle
data is needed in order to make sure we can find spheres with trivial normal bundles for
surgery when we need to. In the odd case n = 2k+1, there is an obstruction to killing πk+1.
This takes the form of the equivariant intersection form of the B-bordism. This is an ele-
ment θ(W, νW ) ∈ Ls

n+1(Zπ1(B)). It is represented by a nonsingular, (−1)k+1-Hermitian,
sesquilinear pairing on a based, f.g. free Z[π1(B)]-module, with values in Z[π1(B)], together
with a quadratic refinement µ : Z[π1(B)]/g ∼ (−1)k+1g−1. The S in Ls

n+1(Zπ1(B), S) in-
dicates a modified quadratic refinement. For us, the key fact will be that Ls

6(Z) ∼= Z/2,
generated by a form with Arf invariant 1, and that Ls

6(Z, S) = 0. As a result there is no
surgery obstruction for the cobordism, and we have the following corollary.

Corollary 6.4. Let n = 5, so k = 2, and suppose (M,ν) and (M ′, ν ′) are 1-connected and
are bordant over their common normal 2-type (B, ξ). Then M and M ′ are h-cobordant
rel. boundary.

7. Proof of the existence of a pseudo-isotopy

For simply-connected manifold, h- and s-cobordism agree, so it is enough to find an
h-cobordism. We will apply Corollary 6.46.4 with

• X a closed, 1-connected, spin 4-manifold, with two copies X1 and X2 as above;
• M := X1 × I;
• M ′ := X2 × I;
• the identification f ⊔ Id between their boundaries;
• (B, ξ) the normal 2-type of X.

I will restrict to the spin case here. The argument in the non-spin case is similar, so
one learns the main ideas from just considering the spin case, and we avoid too much
repetition.

Example 7.1. We determine the normal 2-type for a closed, 1-connected, spin topological
4-manifold X. Recall that H2(X) ∼= Zm for some m. Let K :=

∏mCP∞. A choice of
identification H2(X) ∼= Zm determines (up to homotopy) a map η : X → K. A choice of
spin structure determines a lift s : X → BTopSpin of νX . The combination of these two
maps gives a diagram:

BTopSpin×K

X BTop .

ξνX

νX

Here ξ : BTopSpin×K → BTop is given by projection to the first factor then the standard
map BTopSpin → BTop. We leave it to the reader to check that νX is 3-connected and
that ξ is 3-coconnected.

We have the same normal 2-type for X × I:

BTopSpin×K

X × I BTop .

ξ
νX×I

νX×I
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We take two copies of X×I, as above, and glue them using f⊔Id to obtain the mapping
torus Tf . On each copy of X × I we have the normal 2-smoothing η × s : X × I → B =
K × BTopSpin. When we glue with Id on X × {0}, the two maps are clearly compatible.
However, we also have that s ◦ f : X × {1} → X × {1} is homotopic to s, because X is
1-connected and so has a unique spin structure. In addition, η ◦ f ∼ η : X × {1} → K,
because f induces the identity on H2(X). We can insert the resulting homotopy between
(η × s) ◦ f and η × s into a collar on X × {1} in one of the copies of X × I, to obtain a
map

νTf
: Tf → B

that restricts to the given normal 2-smoothings on each copy of X×I. It remains to prove
that (Tf , νTf

) is B-null-bordant. Once this is done, we can apply Corollary 6.46.4 to obtain
the desired h-cobordism. We have a bordism group Ω5(B, ξ), which can be identified with

ΩTopSpin
5 (K).

Proposition 7.2. ΩTopSpin
5 (K) = 0.

Proof. To compute this, we recall that bordism groups give rise to a generalised homology
theory. These satisfy the same axioms as ordinary homology, except that the generalised

homology groups of a point need not be concentrated in degree zero. In fact, for ΩTopSpin
∗

we have ΩTopSpin
q

∼= Z, Z/2, Z/2, 0, Z, 0 for q = 0, 1, 2, 3, 4, 5 respectively. There is an

Atiyah-Hirzebruch spectral sequence (AHSS) computing ΩTopSpin
5 (K):

E2
p,q = Hp(K; ΩTopSpin

q ) ⇒ ΩTopSpin
p+q (K).

Here are the relevant terms on the E2 page of the AHSS. Since the coefficients vanish
for q = 3, 5, we have zeros in those rows. Since the homology of

∏mCP∞ vanishes in
odd degree, the columns with p odd have only zeros. The remaining relevant terms for
computing with the p+q = 5 anti-diagonal are shown. (The diagram comes from [OP22OP22].)

0

1

2

3

4

5

q

0 1 2 3 4 5 6 p

0 0 0 H6(K;Z)

0 0 H4(K;Z/2) 0

0 H2(K;Z/2) 0 0

0 0 0 0 0 0 0

0 0 0

0 0 0 0 0 0 0

d 6,0
2

d 4,1
2
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We have to show that homology of the sequenceH6(K;Z) → H4(K;Z/2) → H2(K;Z/2)
vanishes at the central term. Then we will see that E3

4,1 = 0, and the proposition will
follow.

The following computation come from [OP22OP22]. Choose any basis ⟨y1, . . . , ym⟩ of π2(X).
Recall that in the definition of (B, ξ) there is a reference map η : X → K that is an
isomorphism on π2. Thus ⟨y1, . . . , ym⟩ determines a basis ⟨η∗(y1), . . . , η∗(ym)⟩ of π2(K).
Write e0i ∪ e2i ∪ e4i ∪ · · · for the standard cell structure of the ith CP∞ factor of

∏m
i=1CP∞.

Choose a homotopy equivalence g : K ≃
∏m

i=1CP∞, such that g∗(k∗(yk)) = [e2i ]. Write
xi ∈ H2(

∏m
i=1CP∞;Z/2) for the class that is Z/2-dual of [e2i ]. There are isomorphisms of

graded algebras

(Z/2)[x1, . . . , xm] H∗(
∏m

i=1CP∞;Z/2) H∗(K;Z/2),
∼= ∼=

f∗

where the first isomorphism is given by the Künneth theorem. In an abuse of notation, we
will refer to the images of the xi in H∗(K;Z/2) by the same name. Thus, we have bases

H2(K;Z/2) ∼= ⟨xi | 1 ≤ i ≤ m⟩,
H4(K;Z/2) ∼= ⟨xi ∪ xj | 1 ≤ i ≤ j ≤ m⟩,
H6(K;Z/2) ∼= ⟨xi ∪ xj ∪ xk | 1 ≤ i ≤ j ≤ k ≤ m⟩.

By a theorem of Teichner [Tei92Tei92,Tei97Tei97], the differentials d4,12 is the Hom-dual to the map
xi 7→ Sq2(xi) = xi ∪ xi. Writing (−)∗ for the dual as a Z/2-vector space, we see that

d4,12 ([xi ∪ xj ]
∗)(xk) = [xi ∪ xj ]

∗(xk ∪ xk) =

{
1 if i = j = k
0 otherwise.

In particular, this shows ker(d4,12 ) has basis ⟨[xi ∪ xj ]
∗ | 1 ≤ i < j ≤ m⟩. Teichner also

showed that the differential d6,02 is reduction modulo 2 followed by the dual to the map
Sq2. The Cartan formula shows

Sq2(xi ∪ xj) = Sq0(xi) ∪ Sq2(xj) + Sq1(xi) ∪ Sq1(xj) + Sq2(xi) ∪ Sq1(xj)

= xi ∪ xj ∪ xj + xi ∪ xi ∪ xj .

Using this, we have

(Sq2)∗([xi ∪ xj ∪ xk]
∗)(xr ∪ xs) = [xi ∪ xj ∪ xk]

∗(xr ∪ xs ∪ xs + xr ∪ xr ∪ xs).

By inspection, for 1 ≤ i < j ≤ m and 1 ≤ r ≤ s ≤ m, we see that (Sq2)∗([xi ∪ xj ∪
xj ]

∗), projects nontrivially to the span of [xr ∪ xs]
∗ if and only if (i, j) = (r, s). Thus

(Sq2)∗([xi ∪ xj ∪ xj ]
∗) = [xi ∪ xj ]

∗. From this we can conclude that Im(d6,02 ) = ker(d4,12 ),

so that E4,1
3 = 0. Hence the r+ s = 5 line dies already on the E3 page and it follows that

ΩTopSpin
5 (K) = 0, as desired. □

This completes our discussion of the proof that if X is a closed, 1-connected, 4-manifold
and f : X → X is an o.p. homeomorphism with f∗ = IdH2(X), then f is pseudo-isotopic to
IdX .

Remark 7.3.
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(1) The non-spin case is proved similarly. The main difference is that the d2-differentials
are twisted by the second Steifel-Whitney class, w2. e.g. the differentialH4(K;Z/2) →
H2(K;Z/2) is dual to the map H2(K;Z/2) → H4(K;Z/2) given by x 7→ Sq2(x)+
w2 ∪ x. This changes the computation of the differentials, but the outcome, that
the relevant bordism group vanishes, is the same. Details can be found in [Kre79Kre79]
or [OP22OP22].

(2) The entire proof works smoothly. Indeed, if X and f : X → X are smooth, then
under the same hypotheses f is smoothly pseudo-isotopic to the identity. What
emphatically does not work smoothly is the upcoming pseudo-isotopy implies iso-
topy theorem.

(3) In work with Orson [OP22OP22], we extended the above method to the case of compact
1-connected 4-manifolds with nonempty boundary. I will outline the main result
of this work at the end of these notes.

(4) In work with Kreck and Orson, in progress, we extend this to the case of funda-
mental group Fn, the free group on rank n.

(5) In both of the last two items, there are extra obstructions beyond the intersection
form. For example, let X = S1 × S3. Then we can perform a Dehn twist on the
non-separating S3. This acts trivially on π1 and π2, but is not pseudo-isotopic to
the identity. So it is certainly not enough to consider the automorphisms of the
intersection pairing. There is another very interesting invariant due to Stong and
Wang [SW00SW00].

(6) What is the classification for other fundamental groups? For example, for finite
cyclic fundamental group Z/n?

(7) Let X = X ′#S2 × S2, and suppose that H1(X;Z/2) ̸= 0. Then Daniel Galvin
proved that there is a homeomorphism of X that is not pseudo-isotopic to any
diffeomorphism. He did this by realising the Casson-Sullivan invariant.

(8) Let X = (T 2 × S2)#k(S2 × S2) (for some k that is hard to specify explicitly).
Then in work with Orson, we found a diffeomorphism of X that is topologicially
pseudo-isotopic to the identity but is not smoothly pseudo-isotopic. If we stabilise
by more copies of S2 × S2, it will never become smoothly isotopic to the identity.

(9) In the last two items, we implicitly considered the map

π̃0(Diff+(X)) → π̃0(Homeo+(X)).

There exist choices for X such that this map is neither injective nor surjective.
For the failure of both injectivity and surjectivity, the results use a version of the
Kirby-Siebenmann obstruction. The classical Kirby-Siebenmann obstruction is an
element of H4(X, ∂X;Z/2), which for 4-manifolds is Z/2, and it obstructs the exis-
tence of a smooth structure on X [FQ90FQ90]. The different versions are all smoothing
obstructions, but the Kirby-Siebenmann class appears in different guises depend-
ing on whether it is obstructing the smoothing of manifolds, homeomorphisms, or
isotopies. In all cases, because it is defined in a highly non-explicit manner, it is
nontrivial to evaluate.

(10) Krannich-Kupers [KK24KK24] showed that there are examples of closed 4-manifolds
X, with a diffeomorphism f : X → X, such that f is homotopic but not pseudo-
isotopic to Id.
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8. Pseudo-isotopy implies isotopy

Recall that we consider the composition

π0Homeo+(X) → π̃0Homeo+(X) → Aut(H2(X), λX).

We have shown that the second map is an isomorphism. We know the first map is sur-
jective. The next theorem implies that the first map is injective, so it will complete our
main aim, to show that

π0Homeo+(X)
∼=−→ Aut(H2(X), λX).

Theorem 8.1 (Perron [Per86Per86], Quinn [Qui86Qui86], Gabai-Gay-Hartman-Krushkal-P [GGH+23GGH+23],
Gabai [Gab22Gab22]). Let X be a 1-connected, compact 4-manifold, let f : X → X be a homeo-
mophism with f |∂X = IdX . Then f is topologically isotopic to the identity. In fact, every
pseudo-isotopy F : X × I → X × I is isotopic to the identity rel. ⊏.

Moreover, if X, f , and F are smooth, then f is stably smoothly isotopic to the identity.

The first paragraph is due to Perron [Per86Per86] and Quinn [Qui86Qui86], with a correction to
Quinn’s proof in [GGH+23GGH+23]. It is worth noting that Perron’s proof uses Quinn’s earlier
work in [Qui82Qui82] heavily.

The second paragraph is due to Quinn [Qui86Qui86], again with a correction in [GGH+23GGH+23].
Gabai [Gab22Gab22] gave an alternative proof of the second paragraph.

Here we say that f is smoothly stably isotopic to Id if there exists k such that, extending
by the identity on #kS2 × S2, f#Id: X#kS2 × S2 → X#kS2 × S2 is smoothly isotopic
to the identity.

In particular, the first conclusion implies the injectivity we seek. I will attempt to
explain the proof that every pseudo-isotopy F : X × I → X × I is isotopic to the identity
rel. ⊏. First, let me give some context for this result.

The first result along these lines was the following, in high dimensions.

Theorem 8.2 (Cerf [Cer70Cer70]). Let X be a smooth compact n-manifold, with n ≥ 5. Let
f : X → X be a diffeomorphism with f |∂X = Id∂X and such that f is pseudo-isotopic to
IdX . Then f is smoothly isotopic to IdX .

Perron [Per86Per86] and Quinn [Qui86Qui86] were attempting to adapt Cerf’s result to dimension
4. The fact that the conclusion was a topological isotopy, and not a smooth one, was
inevitable, given the following result.

Theorem 8.3 (Ruberman [Rub98Rub98]). There exists a smooth, closed, 1-connected 4-manifold
X with an infinitely generated subgroup of

ker
(
π0(Diff+(X)) → π0(Homeo+(X))

)
.

For non-trivial fundamental group, there is no analogue of Theorem 8.18.1, and the fol-
lowing result shows that this is not possible.

Theorem 8.4 (Budney-Gabai [BG19BG19]). There exists a subgroup Z∞ ≤ π0(Homeo+(S1 ×
S3)), which maps trivially to π̃0(Homeo(S1 × S3)) ∼= Z/2.

This is somewhat expected, given the prior work of Hatcher-Wagoner-Igusa [HW73HW73,
Igu84Igu84]. In dimensions at least 6, they obtained an exact sequence as follows, where P(X)
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denotes the space of pseudo-isotopies of X. So π0(P(X)) is pseudo-isotopies up to isotopy
rel. ⊏. The Hatcher-Wagoner-Igusa sequence is:

K3(Zπ1(X)) → Wh1(π1(X);Z/2× π2(X)) → π0(P(X)) → Wh2(π1(X)) → 0.

I will not define the terms here. The terms other than π0(P(X)) are algebraic obstruction
groups, related to K-theory.

Work of Singh [Sin21Sin21] and Igusa [Igu21Igu21] has made some progress towards understanding
how much of this sequence holds in dimension 4, but there is a long way to go.

9. Cerf theory

Now we begin the proof of Theorem 8.18.1. Recall that this theorem is analogous to the
h-cobordism theorem. Whereas the h-cobordism theorem uses Morse theory, this uses
Cerf theory, which is essentially the 1-parameter Morse theory.

In this proof we are going to restrict to the case that X is closed and smooth, and
F : X × I → X × I is smooth pseudo-isotopy. One still learns most of the exciting ideas
behind the proof from the smooth input – topological output version. This is not a
necessary assumption; the theorem is true as stated. It is just to make the exposition
manageable for these notes.

So let X be a smooth, closed, 1-connected 4-manifold, and let F : X × I → X × I be
a smooth pseudo-isotopy. We have two Morse functions on X × I without critical points.
First,

g0 := pr2 : X × I → I

given by projection to the second coordinate. Next,

g1 := pr2 ◦F : X × I → I

also has no critical points.
Recall that a Morse function g : X×I → R is a smooth function such that every critical

point p ∈ X × I, the Hessian matrix of second partial derivatives is nondegenerate (this
condition is coordinate independent). Near a critical point we have coordinates (x1, . . . , x5
and h ∈ {0, . . . , 5} such that

g(x) = g(p)− x21 − · · · − x2h + x2h+1 + · · ·x25.

Here h is the index of the critical point.
Next, any two Morse functions on a manifold, so in particular onX×I, can be connected

by a 1-parameter path of generalised Morse functions

gt : X × I → R.

This is a smooth path of functions, such that for each t ∈ I, either gt is a Morse function,
or gt is a Morse function everywhere except possibly at one critical point p, which is
a birth/death type singularity. At p we have coordinates (x1, . . . , x5) such that in the
coordinates

gt(x) = g(p) + x31 − x22 − · · · − x2h + x2h+1 + · · ·x25.
In a 1-parameter family near p, we can assume that gt+s has the form

gt+s(x) = g(p) + x31 ± sx1 − x22 − · · · − x2h + x2h+1 + · · ·x25.
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Figure 1. A generic Cerf graphic. I label the critical lines with the indices
of the corresponding critical points.

Then ±s is negative we see two Morse critical points, and when ±s is positive there are
no critical points in the coordinate neighbourhood.

There is a corresponding 1-parameter family of gradient-like vector fields (glvf) ξt on
X×I, for t ∈ [0, 1], such that ξt is a glvf for gt. Using the glvf, we obtain, for each t where
gt is Morse, a handle decomposition of X × I, where each critical point of index h gives
rise to an h-handle. Trajectories of ξt between handles of index (h+ 1) and h correspond
to attaching data, namely intersections of the attaching sphere of the index (h+1)-handle
with the belt sphere of the index h handle. Trajectories of ξt between two index h handles
can occur at isolated t-values, and correspond to handle slides.

Some of the data of gt can be presented in a Cerf graphic, as shown in Figure 11.
Here we plot with two axes, t ∈ [0, 1], and the interval I in which our generalised Morse
functions gt take values. For each t ∈ [0, 1], we consider all the critical points of gt, namely
Pt := {pi | Dgt(pi) = 0}. Then we plot the critical values gt(Pt) at t. Doing this for
every t ∈ [0, 1] gives rise to the Cerf graphic. One cannot recover the Morse function
from the Cerf graphic, but it turns out to contain some useful information that makes it
easier to describe the qualitative features of our family gt, and to describe the key features
deformations that we wish gt to undergo.

We can assume, generically, that two critical points have the same critical value at
isolated value of t, and that in this case the critical lines in the Cerf graphic intersect
transversely. Important data that is not shown in the graphic is the trajectories between
critical points. We will not indicate this data in the Cerf graphic, although one is free to
invent schema to do so.
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Whenever we change (gt, ξt), we speak of a deformation of the family. Our aim will be
to deform (gt, ξt), without changing (gi, ξi) for i = 0, 1, to a family with no critical points,
i.e. one with empty Cerf graphic. Why is this our aim?

Given a glvf without critical points, we can integrate it in order to start with X × {0},
and flow it along the integral curves to obtain a self-homeomorphism of X × I. There is
also a topological version of this, which we will not investigate.

If we integrate ξ0, we obtain a homeomorphism ofX×I isotopic to IdX×I . If we integrate
ξ1, we obtain a homeomorphism of X×I isotopic to F : X×I → X×I. Moreover, if ξt has
no critical points, then for each t we obtain a homeomorphism Ft : X × I → X × I, with
F0 = Id and F1 = F . Since ξt depends continuously on t, we obtain an isotopy between
Id and F , as desired. It follows that it suffices to deform (gt, ξt) rel. t = 0, 1 to a family
with no critical points, as asserted.

The first step is contained in the following proposition.

Proposition 9.1 (Cerf, Hatcher-Wagoner). For X with π1(X) = {1}, there exists a
deformation of (gt, ξt) to a family with a nested eye graphic.

Here, a nested eye graphic is one of the form shown in the next figure. All births come
first, one at a time, and they are all births of cancelling index 2 and 3 pairs of critical
points. There are no rearrangements of critical values, and no handle slides, i.e. there are
no 2/2 and no 3/3 trajectories. The births and deaths are independent, meaning that at
each birth time and each death time, there are no trajectories that go either from or to
the birth or death point, from or to another critical point. Each circle in the figure is
called an eye.

The procedure to arrange the nested eye graphic is somewhat complicated, involving
a careful use of codimension 2 singularities. These deformation are to generalised Morse
functions as generalised Morse functions are to ordinary Morse functions. The procedure
works in all dimensions at least 4. Here we are going to quote it and not attempt to justify
it.

tb tf tw td

middle middle level

Figure 2. A nested eye Cerf graphic. Each loop is called an eye. The
middle-middle level is also indicated, as well as the birth time tb, the death
time td, the finger move time tf and the Whitney move time tw. (Picture
from [GGH+23GGH+23].)

Figure 22 shows a nested eye Cerf graphic, and it indicates the times at which births and
deaths appear. The additional labels will be explained carefully in the next section.
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10. The middle-middle level

In the proof of the h-cobordism theorem, for 5-dimensional h-cobordisms, we put a
Morse function f : W → I on our h-cobordism W , and then perform handle trading to
arrange that there are only 2- and 3-handles. We then consider the middle level f−1(1/2),
in which we see two sets of mutually disjointly embedded 2-spheres. The first, A1, . . . , Ak,
are the ascending spheres of the index 2 critical points. In handle language, they are the
belt spheres of the 2-handles. The second set of mutually disjointly embedded 2-spheres,
B1, . . . , Bk, are the descending spheres of the index 3 critical points, or the attaching
spheres of the 3-handles. After some handle sliding we may assume that the intersection
numbers of these spheres are Ai · Bj = δij ∈ Z, since W is an h-cobordism. The goal
of the proof is to arrange by an isotopy that the geometric intersection numbers of these
spheres agrees with the algebraic intersection numbers. Then we can cancel the critical
points in 2-3 pairs, to obtain a cobordism with no critical points, which is hence a product.
The proof of the pseudo-isotopy theorem is analogous to this, but one level of complexity
higher.

We also consider the middle level, g−1
t (1/2), for each t. It turns out that the data of

the pseudo-isotopy can be captured in the middle-middle level, which is the inverse image

M := g−1
1/2(1/2).

This is the inverse image of the central point shown in Figure 22. This is a 4-manifold
diffeomorphic to X#k(S2 × S2), where k is the number of 2-3 pairs.

Right after the birth time tb, in the middle level g−1
tb+ε(1/2)

∼= X#k(S2 × S2), we see

the ascending 2-spheres A1, . . . , Ak of the index 2-critical points, of the form {pt} × S2

in each of the S2 × S2 summands. We also see the descending spheres B1, . . . , Bk of the
index 3 critical points, of the form S2×{pt} in each of the S2×S2 summands. Note that
Ai and Bj intersect in exactly δij points, so the critical points are in cancelling position.

The situation is the same just before the death time, in g−1
td−ε(1/2)

∼= X#k(S2 × S2).

In between, looking at the ascending and descending spheres in g−1
t (1/2), for t ∈ [tb +

ε, td−ε], we can assume that the {Ai} stay fixed, and the {Bj} move around by an isotopy,
while staying pairwise disjoint and embedded. During this motion extra intersections
between the {Ai} and the {Bj} can appear, and later disappear. At the start and end we
know that the spheres are in cancelling position.

We can also assume that all the extra intersections are created first, and at the same
time tf , by finger moves; see Figure 33.

Then the extra intersections are all removed simultaneously by Whitney moves, at the
time tw. A Whitney move is guided by a Whitney disc W ; see Figure 44.

Also, after a finger move there is a finger-move Whitney disc V , with the property that
performing a Whitney move on that finger-move disc V undoes the finger move. In the
middle-middle level, we see two collections of discs, the Whitney discs {Wℓ}, that guide
the Whitney moves that will happen at time t = tw. After the Whitney move the {Ai}
and the {Bj} are in cancelling position. We also see the finger-move discs {Vm}, which
have the property that reversing time leads to Whitney moves using them. These Whitney
moves also remove all excess intersections between the {Ai} and {Bj}.
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Figure 3. A finger move.

Figure 4. The Whitney move goes from left to right, and the finger move
reverses it, going from right to left.

All of the important data about the pseudo-isotopy can now be captured by the spheres
{Ai} and {Bj} in the middle-middle level, which intersect in δij times algebraically, to-
gether with the two collections of Whitney discs {Vm} and {Wℓ}. Each of these collections
have mutually pairwise disjoint interiors, and has the property that using them for Whit-
ney moves places the {Ai} and {Bj} in cancelling position.

We will prove the following proposition in the next three sections.

Proposition 10.1. We can perform a deformation to remove/cancel the innermost eye.

In order to be able to remove the innermost eye, it suffices that there is a unique
trajectory between the index 3 and the index 2 critical point corresponding to that eye.
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Figure 5. A Cerf graphic with one eye, together with schematics of the
spheres in the middle levels at different time values. In the schematic,
spheres are represented by circles. The key data is contained in the middle-
middle level, where we see finger and Whitney discs that guide the pseudo-
isotopy in the past and future respectively. The Whitney discs and the
finger discs shown are distinct. First, W1 and V1 pair up the double points
in a different way. Secondly, the Whitney discs V2 and W2 are assumed to
have the same boundary (although this need not be the case, a priori), but
thei union represent a nontrivial element in π2(M). This is supposed to be
indicated by the small red sphere.

That is, the critical points must be in cancelling position the entire time interval for which
they exist. Then we can perform a 1-parameter families worth of cancellations, to entirely
remove the eye.

Note that the proposition implies the theorem, because we inductively close the eyes,
always working on the innermost eye in the Cerf graphic. With this in mind, from now
on to simplify the exposition we pretend that k = 1, i.e. that the Cerf graphic consists of
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a single eye. If we can remove this eye, we will be able to apply the same argument to
remove the eyes one at a time, in the general case.

With k = 1, we set A := A1 and B := B1 to be the spheres in the middle-middle
level M . We still have two families of discs {Vm} and {Wℓ}. We write V :=

⋃
{Vm} and

W :=
⋃
{Wℓ}. The goal is to arrange, by a deformation of the family, for a particular

configuration of the finger and Whitney discs, which will enable us to remove them, and
whence arrange that the critical points be in cancelling position the entire time interval
for which they exist.

11. Geometric moves and Quinn’s embedded arc criterion

We need introduce some geometric moves, that we will use in the proof of Proposi-
tion 10.110.1, and we discuss Quinn’s arc condition. First, we construct some dual spheres.

11.1. Dual spheres. Directly after the birth time, A∪B are in standard position. Their
normal bundles are trivial. We may therefore consider another sphere A′ pushed-off from
A using a nonvanishing section of its normal bundle. Note that A′ intersects B at precisely
one point, is framed and embedded, and is disjoint from A.

As the family evolves, at tf several finger moves of B through A occur. We may assume
by general position that the arcs guiding all the finger moves are disjoint from A′. After
the finger moves, allow A′ to move, via isotopy extension, so that it remains geometrically
dual to B, i.e. intersects B in exactly one point. We also keep A′ disjoint from all finger
discs V . In the middle-middle level M , call the resulting sphere DB

A,V . The notation D
stands for dual, the superscript is to remind us that it is a dual sphere to B, and the
subscripts tell us that the dual sphere is disjoint from A ∪ V . We do not control the
intersections of DB

A,V with W , other than arranging that any such intersections in M are
transverse.

By a similar construction we can obtain a dual sphere DA
B,V ⊆ M . By starting near

the death time and going backwards in time, we obtain similar dual spheres DB
A,W and

DAB,W , that are disjoint from W but may intersect V transversely. I will make copious
use of these dual spheres later.

11.2. Embedded arc criterion. Recall that we consider a 1-parameter family whose
Cerf graphic consists of a single eye, the data of which is captured in the middle level by
two framed, embedded algebraically dual spheres A and B, together with two collections
V and W of Whitney discs leading to geometrically dual A and B.

The next major simplification we seek to make to our 1-parameter family (gt, ξt) con-
cerns the boundary arcs of the discs V and W on A and on B. That is, we consider

Γ :=
⋃
m

∂Vm ∪
⋃
ℓ

Wℓ ⊆ A ∪B.

The restrictions Γ∩A and Γ∩B consist of an immersed arc and a collection of immersed
circles in a 2-sphere, A and B respectively.

Proposition 11.1 (Quinn’s embedded arc condition). There exists a deformation to that
Γ ∩A and Γ ∩B each consist of an embedded arc, with no circles.
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Figure 6. The construction of the dual sphere DB
A,V ⊆ M . Start with

a push off of A, and consider its image in M using the isotopy extension
theorem to keep it dual to B and disjoint from A ∪ V .

A B

Figure 7. A somewhat generic picture of a possible configuration of
boundary arcs of V ∪W , on the left on A, and on the right on B. What
is not generic is that the arc and the circles on A are embedded. I drew it
like this to show some basic configurations. In all likelihood, the situation
will be more like that shown on B, with multiple intersections between
the boundaries of the A and B discs. Note that ∂V ∩ A and ∂W ∩ B are
both collections of embedded arcs. The failure to be embedded comes from
considering ∂V ∩B and ∂W ∩B simultaneously (and in general, the same
would hold when considering ∂V ∩A and ∂W ∩A simultaneously).
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To achieve this, we will use the sum square move, which we introduce in the next section.
It is a way of modifying either a pair of discs in W , or a pair of discs in V . The sum
square move done to a pair of discs in W has the following effect on the intersection of
the boundaries with A.

The effect on the intersection of ∂W with B is similar.
We can also perform a push of an arc as shown in the next picture, when an intersection

between an arc of ∂V ∩ A and an arc of ∂W ∩ B is the closest such intersection to the
preimage on A of an intersection point A∩B. The same move can be done on B, of course.

Given the ability to make these somewhat drastic changes, although we will not elab-
orate, it should be plausible that some combinatorial argument exists to arrange the
boundaries of the discs into a pleasant configuration. The details are in [Qui86Qui86].

11.3. The sum square move. In this section I explain Quinn’s sum square move [Qui86Qui86,
Section 4.2], which can be used to modify finger or Whitney disc configurations by a
deformation of the pseudo-isotopy. The description I give is similar to that in [GGH+23GGH+23].
The data for the move is a framed embedded square S in the middle-middle level, with
interior disjoint from the spheres A and B, and from the discs V . The square has two
edges on the V discs, denoted W1 and W2 in Figure 88, one edge on A, and one on B. New
W discs are obtained by cutting W1,W2 along the boundary edges of the sum square S,
and gluing in two parallel copies of S. The effect of the move on the boundaries of the
discs, on A and B spheres, was illustrated above.

Figure 88 is a 3-dimensional model for the sum square. Here A,W1, V2, and a neighbour-
hood of the arc of ∂S in B are pictured in the “present”, R3×{0} ⊆ R3×R. The rest of B
extends into the past and the future. The framing of S along its boundary is determined
in the 3-dimensional model by a non-vanishing vector field on ∂S which is normal to S
and tangent to A,B and the V discs; this framing has to admit an extension over S for
the move to give rise to embedded V discs.

Given the boundary data ∂S, the challenge is to find a framed, embedded S with interior
disjoint from A∪B ∪W . (If the sum square is used to modify V discs then the interior of
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B

A

W1

W2S

Figure 8. The sum square move. (Picture from [GGH+23GGH+23]).

S must be disjoint from V .) For this we make use of the dual sphere DA
B,W and also the

Whitney spheres that I will introduce in the next section.
To justify that the sum square move arises via a deformation of the pseudo-isotopy,

we consider how the Whitney discs are deformed. The key intermediate step is shown in
Figure 99.

Figure 9. The intermediate step in the deformation associated to a sum
square move. The two Whitney discs on the left of Figure 88 have been
deformed into the green singular Whitney umbrella. Afterwards, the sin-
gularity resolves and they become the discs on the right of Figure 88.

Before and after this step, we have two Whitney moves, on one pair of discs beforehand
shown on the left of Figure 88, which get deformed closer together, and on a different pair
of discs shown on the right of Figure 88 afterwards. At the moment of transfer between
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the two discs, we have a singular Whitney umbrella, and the family performs a kind of
singular double-Whitney move guided by the umbrella.

11.4. Whitney spheres. We recall a construction of the Whitney sphere SVm associ-
ated with a finger move disc Vm. These spheres have appeared in different guises in
the literature, cf. [Qui86Qui86, Section 4.3], [FQ90FQ90, Section 3.1, Ex. (2)], [COP20COP20, Section 4.2],
[ST19ST19, Section 2]. We use the terminology and the description from [ST19ST19] and [GGH+23GGH+23].

The description is given in R3 × R where A and the finger disc Vm are in R3 × {0},
and B is represented as (arc ⊆ R3)×[−1, 1]; see Figure 1010. The Whitney sphere is drawn
red, and consists of two discs, Di ⊆ R3 × {i}, i = −1, 1, joined by an annulus (circle
⊆ R3)×[−1, 1]. Each Di is constructed using two copies of the finger move disc Vm, so
overall the Whitney sphere contains four pushed-off copies of Vm. The Whitney sphere is
framed and embedded and can be assumed to lie in an arbitrarily small neighbourhood of
Vm.

Vm
A

B

t = −1 −1 < t < 0 t = 0 0 < t < 1 t = 1

D−1 D1

Figure 10. A description of the Whitney sphere SVm in R3 ×R. (Picture
from [GGH+23GGH+23]).

There is a similar construction of a sphere SWℓ
associated with each disc Wℓ.

12. Algebraically cancelling finger-Whitney intersections

Let us assume that Quinn’s embedded arc condition has been arranged. The configu-
ration in M is as shown in Figure 1111, for the case of 4 extra intersection points in M .

The next step is to arrange that for each m and for each ℓ, the following algebraic count
of transverse intersections vanishes:

V̊m · W̊ℓ = 0.

This is not at all clear. In his original proof, Quinn employed an idea (that he credited to
Igusa, based on a preprint apparently circulated by Igusa in the early 1980s, but which I

A

B

W1 W2

V1 V2

SV2
SV1

Figure 11. Finger and Whitney discs with boundaries forming an arc in
A and in B. Whitney spheres corresponding to the finger move discs are
also shown. (Picture from [GGH+23GGH+23]).
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have not seen), called disc replacement [Qui86Qui86, Section 4.5]. Unfortunately the proposed
proof of disc replacement is flawed. The proof does not use the simply-connected hypoth-
esis, nor the fact that the embedded arc condition holds. Therefore the same argument,
if correct, would lead to a contradiction with the Hatcher-Wagoner-Igusa sequence.

It is still possible that the disc replacement lemma holds, and it is a very interesting open
question. In work with Gabai, Gay, Hartman, and Krushkal, we were able to provide an
alternative argument, that I will explain here [GGH+23GGH+23]. In that paper we also explained
the problem with the disc replacement proof carefully.

Example 12.1. It can certainly happen in examples that the algebraic intersection Vm·Wℓ

is nonzero. Start with a trivial pseudo-isotopy of S4 whose Cerf graphic is empty. Deform
this pseudo-isotopy by creating a single 2, 3-handle eye with no finger or Whitney moves.
Deform this family of generalised Morse functions further to one where the spheres A,B
undergo a single finger move and a single Whitney move. The finger and Whitney discs
are standard and satisfy Quinn’s arc condition, as shown in the 3-dimensional slice in
Figure 1212.

A

B

V

W

SW

Figure 12. The data of finger and Whitney discs in the middle-middle
level determining a potentially nontrivial pseudo-isotopy of S4. (Picture
from [GGH+23GGH+23].)

Recall the construction of Whitney spheres from Section 11.411.4. Consider the Whitney

sphere SW ; it is disjoint from W and intersects V in a single point. Consider a disc W̃
whose boundary is identical to ∂W and whose interior is a slight displacement of that of
W , tubed into SW . Now we consider a new pseudo-isotopy of S4 determined by the pair

(V, W̃ ). It gives rise to a self-diffeomorphism f of S4. Since V intersects W̃ in a point,
there is no immediate way to smoothly trivialise this pseudo-isotopy.

Conjecture 12.2. The diffeomorphism f : S4 → S4 is not smoothly isotopic to the iden-
tity.

Hence it would be extremely interesting to know whether the disc replacement lemma
holds. We suspect that a proof would need to use the 1-connected hypothesis, and the

embedded arc condition, and possibly also could use, when trying to replace W with W̃ ,

that the interiors of W and W̃ are disjoint and W ∪ W̃ = 0 ∈ π2(M).

Now we start to show how to arrange V̊m · W̊ℓ = 0, for every m, ℓ. We will make use
of the Alexander trick, so the proof becomes inherently topological at this stage. Given
the previous example and conjecture, this is perhaps not surprising. The Whitney spheres
SVm have algebraic intersection numbers with the Whitney discs Wℓ of the pattern shown
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in Figure 1111. By tubing the SVm together judiciously, we can construct an algebraically
dual collection of embedded spheres Eℓ for the discs {Wℓ}, i.e.

Wℓ · Eq = δℓq ∈ Z
for all ℓ, q. Note that the Eℓ are disjoint from all the discs V =

⋃
m Vm, and they all have

trivial normal bundles.
Next, if V̊m · W̊ℓ = amℓ ̸= 0, tube the disc Vm into −a ·Eℓ, where a ·Eℓ means a disjoint

parallel copies of the sphere. Doing this for all pairs m, ℓ yields a new collection of discs
V ′
m, with the property that V ′

m ·Wℓ = 0 for all m, ℓ.
Now we want to replace Vm with V ′

m for all m. At this point Quinn appealed to the
replacement criterion. Instead, we use a method called factorisation. Shortly after the
finger move time tf , but before t = 1/2, we use the discs {V ′

m} as Whitney discs, and then
shortley thereafter we undo these moves via finger moves. Then we proceed as before, using
the original Whitney discs {Wℓ} at time tw. This is a new family that can be obtained
from the original by a deformation, because the Whitney-then-finger move sequence using
the same set of discs can be deformed to a constant family, with no moves occurring at
all. We denote the new family by

V · V ′ · V ′ ·W,

where Whitney discs have a bar on them. In the centre of this, between V ′ and V ′,
the spheres A and B are in cancelling position. We can therefore deform to a new family
where the spheres cancel, and then shortly thereafter reappear. We obtain two consecutive
eyes. The first eye has finger-Whitney data V · V ′. The second eye has finger-Whitney
data V ′ ·W .

Consecutive eyes correspond to a composition of homeomorphisms. Hence we can deal
with the two eyes separately. First, we observe that the finger-Whitney data V · V ′ in
the left hand eye is entirely local to the extra S2 × S2 summand. This corresponds to
a homemorphism of X that is supported on a 4-ball D4 ⊆ X. By the Alexander coning
trick, such a homeomorphism is isotopic to the identity. It therefore remains to consider
the family with data V ′ ·W . We have effectively replaced the collection of finger discs V
by the collection V ′, which by construction has the advantage that V̊ ′

m · W̊ℓ = 0 for all
m, ℓ.

As mentioned above, the use of the Alexander trick was one of the places where we
made use of the topological category.

13. Completion of the pseudo-isotopy implies isotopy proof

The proof is nearly over at this stage. Given that V̊ ′
m · W̊ℓ = 0 for each ℓ,m, we choose

immersed Whitney discs in M pairing up the double points. A priori these discs can
intersect A ∪ B ∪ V ′ ∪W . We use the dual spheres DA

B,V ′ , etc, to clean them up so they
miss these other surfaces, but potentially gain more self-intersections. Then we apply the
disc embedding theorem of Freedman to obtain topologically embedded Whitney discs.
The argument is from [Qui86Qui86, Section 4.6]; Quinn’s argument here is rather subtle.

The disc embedding theorem was the main result behind Freedman’s Fields medal work
on the classification of topological 4-manifolds. It enables us, under favourable conditions,
to find locally flat embedded discs to use for Whitney moves. I was part of a team to
create a book on this incredible proof [BKK+21BKK+21]. Interested readers wanting to know more
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Figure 13. Factorising the family into two consecutive eyes, by introduc-
ing a cancelling sequence of operations given by a collection of Whitney
moves using the discs V ′, that are straight away undone by finger moves
using the same set of discs V ′. Then the family is split into two eyes. In
the result, the first eye has finger-Whitney data V ·V ′. The second eye has
finger-Whitney data V ′ ·W .

about the disc embedding theorem are recommended to consult it. See also the original
sources [Fre82Fre82,FQ90FQ90], of course.

Using the Whitney discs arising from the disc embedding theorem, we can perform
isotopies of the W discs, which correspond to deformations of the family (gt, ξt), to arrange
that the interiors of all V ′ and W discs are pairwise disjointly embedded. This done, we
can deform the family to one where A ⋔ B ⊆ M is a single point. This indicates that the
A and B sphere intersect in a single point for all time, which implies that one can perform
cancellation consistently for all time t with tb ≤ t ≤ td, which has the effect of removing
the entire eye from the Cerf graphic.

Here are some details on the end of the proof.

Proposition 13.1. There exists an isotopy of the discs V ′ in the complement in M of
A ∪B that makes the interiors of the discs V ′ and W disjoint.

Proof. Start with spheres {Gm} made from sums of the Whitney spheres SWℓ
, that are an

algebraically dual collection to the V ′
m, and disjoint from A∪B ∪W . These may intersect

the V ′
m in extra geometric points, because every time there is a Wℓ, V

′
m intersection there

is a cancelling pair of SWℓ
, V ′

m intersection points.
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We want to make the {Gm} into geometric duals for the V ′
m. Choose Whitney discs ∆

pairing up the extra intersections, in the complement of A∪B. This can be done because A
and B have dual spheres DA

B,V and DB
A,V , for example, so A∪B is π1-negligible. However

∆ could still intersect V ′∪W . Where ∆ intersections V ′, push ∆ down to A, and tube the
new intersections with A into DA

B,V ′ . Where ∆ intersects W , push W off ∆ by performing

a finger move of W through V ′. This creates extra W , V ′ intersections, of course. We
can now do the immersed Whitney move using the discs ∆. We have now made Gm into
geometric duals for the {V ′

m}.
Now choose immersed Whitney discs {Lp} pairing up the V̊ ′

m ⋔ W̊ℓ intersections. Use

DA
B,W and DB

A,W to make the {L̊p} miss A∪B∪W . Use the {Gm} to make the {L̊p} miss

V ′. So the interiors of the Lp miss A∪B ∪V ∪W . The {Lp} have algebraic duals coming

from Clifford tori. By essentially the argument we just used to make the {L̊p} disjoint
from A ∪ B ∪ V ∪W , we have that M∖(A ∪ B ∪ V ∪W ) is 1-connected. So by the disc
embedding theorem we can replace the {Lp} with disjointly embedded, framed discs that
we can use as Whitney discs to guide the desired isotopy of V ′. □

14. A Cork Theorem for diffeomorphisms

In the smooth category, we cannot entirely simplify a pseudo-isotopy. Nonetheless, it
is interesting to analysing its structure. We know from Theorem 8.18.1 that if f : X → X
is pseudo-isotopy to Id then it is also stably smoothly isotopic to Id. We say that f is
1-stably isotopic to Id if f becomes isotopic to Id after connected summing with one copy
of S2 × S2, i.e. if f#IdS2×S2 is smoothly isotopic to IdX#S2×S2 .

Theorem 14.1 (Krushkal, Mukherjee, P, Warren). Let f : X → X be a diffeomorphism
of a 1-connected, compact smooth 4-manifold X, and suppose that f is 1-stably isotopic to
Id. Then there exists a contracible submanifold U1 ⊆ X such that f is smoothly isotopic
to f ′, where f ′ is supported on U .

We call the submanifold U1 a diff-cork. Using this theorem we can construct new
nontrivial diffeomorphisms on contractible 4-manifolds.

Sketch of proof. Let me give a brief sketch of the proof. It is inspired by the original cork
theorem [CFHS96CFHS96,Mat96Mat96,Kir96Kir96]. The hypothesis that f is 1-stably isotopic to the identity
implies, by a result of Gabai [Gab22Gab22], that there is a pseudo-isotopy of f to the identity
with a Cerf graphic having one eye. Arrange further than Quinn’s embedded arc condition
holds. We consider

Q := ν(A ∪B ∪ V ∪W ) ⊆ M.

We have that Q ≃ S2 ∨ S2 ∨
∨k S1. The S1 factors correspond to extra intersections

between the interior of V and the interior of W . There is a handle decomposition of M ,
built on Q, with a collection of 2-handles Y such that each 2-handle is attached to one free
generator of π1(Q). Consider Q′ given by Q∪ Y , thickened in the 5-dimensional direction
(recall that M ⊆ (X × I)1/2 is the middle level of X × I with respect to (g1/2, ξ1/2).
Now we have a 3-handle going up, in X × I, with respect to ξ1/2, corresponding to the
3-handle with attaching sphere B. Turning the cobordism upside down, we have a 3-
handle attached to A (the upside down 2-handle). Taking the union of Q′ with these
two 3-handles, attached to Q′ along push-offs to the boundary of A and B, we obtain a
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contractible sub-cobordism U in X × I. Moreover the critical points cancel algebraically,
so U is a contractible h-cobordism.

We can use the fact that U contains all the critical points, and all the trajectories
between them, for all possible time values t, to isotope F to a diffeomorphism that is
supported in U . The intersection U1 := U ∩ (X × {1}) is contractible, because U is con-
tractible and is an h-cobordism. Hence f can be isotoped to a diffeomorphism supported
in U1. □

Example 14.2. I want to briefly give an example of a 1-stably isotopic diffeomorphisms,
to which the cork theorem in the previous section applies. The original such examples
were due to Ruberman [Rub98Rub98]. I will present an example due to Baraglia-Konno [BK20BK20].
Let X := K3#S2 × S2. Let K be a smooth, closed 4-manifold that is homeomorphic to
K3 but not diffeomorphic to it, for example arising from knot surgery. Suppose also that
X ′ := K#S2×S2 ∼= X. Let ϕ : X → X ′ be such a diffeomorphism. I claim that a choice of
K exists such that a diffeomorphism with this property exists, and its action respects the
decomposition of H2 and acts as the identity on H2(S

2×S2). Let r : S2×S2 → S2×S2 be
the composition of symplectic Dehn twists in the spheres representing (1, 1) and (1,−1)
in H2(S

2 × S2) ∼= Z⊕ Z. We consider the diffeomorphism

(IdK3 #r) ◦ ϕ−1 ◦ (IdK #r) ◦ ϕ : X → X.

This acts trivially on H2(X), and so is topologically isotopic to the identity. It turns out
to be 1-stably isotopic to IdX , but we will not have time to explain it here.

15. Mapping class groups of 1-connected 4-manifolds with boundary

The pseudo-isotopy theorem of Perron and Quinn works just as well for 1-connected
compact 4-manifolds with boundary. However the pseudo-isotopy classification is more
subtle. In joint work with Orson, I figured out the details of this. Our work builds on im-
portant work of Saeki in this direction, who studied the analogous stable smooth mapping
class group for smooth 1-connected 4-manifolds with connected nonempty boundary. The
following description follows that in [OP22OP22].

When ∂X = ∅, we have seen that if two o.p. homeomorphisms of X induce the
same isometry of the intersection form then they are isotopic. When X has nonempty
boundary, we need to consider a refinement of Aut(H2(X), λX) to capture the algebraic
data of a homeomorphism. A map f ∈ Homeo+(X, ∂X) determines a homomorphism
∆f : H2(X, ∂X) → H2(X) called a variation, defined by [x] 7→ [x − f(x)]. Using that
X has Poincaré-Lefschetz duality, Saeki [Sae06Sae06] showed that ∆f satisfies an additional
condition, making it what we call a Poincaré variation. There is a binary operation on
the set of Poincaré variations, together with which they form a group V(H2(X), λX). The
map f 7→ f∗ factors through this group via homomorphisms:

π0Homeo+(X, ∂X)
f 7→∆f−−−−→ V(H2(X), λX)

∆ 7→Id−∆◦j−−−−−−−→ Aut(H2(X), λX),

where j : H2(X) → H2(X, ∂X) is the quotient map. In general ∆f contains more infor-
mation than f∗, although if ∂X is a QHS3 or a QH(S1 × S2) then the second map is an
isomorphism. Saeki [Sae06Sae06] used V(H2(X), λX) to describe the smooth stable mapping
class group for simply connected 4-manifolds with nonempty, connected boundary.
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Example 15.1. Let X be a 1-connected 4-manifold with boundary T 3 = S1
1 × S1

2 × S1
3 ,

the 3-torus. For example, such a 4-manifold arises by adding 0-framed 2-handles to D4

along the Borromean rings. Rotating the S1
1 direction yields a loop of diffeomorphism in

π1Diff+(T 3). We can apply this in a collar neighbourhood of ∂X to obtain a generalised

Dehn twist f : X
∼=−→ X. Since f is supported in ∂X × I, it acts trivially on H2(X).

However, the curve S1
2 bounds a nontrivial relative homology class x2 ∈ H2(X, ∂X).

The difference x − f(x) is the image under the injection H2(T
3) ↣ H2(X) of the class

[S1
1 × S1

2 ] ∈ H2(T
3). Hence the variation ∆f is nontrivial, and thus f is not isotopic rel.

boundary to the identity. In contract, note that if the boundary is permitted to move in
an isotopy, then f is isotopic to the identity.

When ∂X has more than one connected component and X admits a spin structure,
there is a further invariant that does not appear in the closed case nor when the boundary
is connected. For f ∈ Homeo+(X, ∂X) we may compare a topological spin structure s on
X with the induced spin structure f∗s. The two agree on ∂X because f fixes the boundary
pointwise. There is a free, transitive action of H1(X, ∂X;Z/2) on the set of isomorphism
classes of spin structures onX that agree on ∂X, and we denote by Θ(f) ∈ H1(X, ∂X;Z/2)
the class representing the difference between s and f∗s.

Example 15.2. Let X := S3 × I, and let f : X → X be the Dehn twist that we intro-
duced earlier in the context of the connected sum sphere in K3#K3. This diffeomorphism
necessarily acts trivially on H2(X) = 0, has trivial Poincaré variation for the same reason.
However, f is not (pseudo-) isotopic rel. boundary to IdX , because it acts nontrivially on
the relative spin structures of X (of which there are two).

In joint work with Orson, we showed that these invariants describe the entire topological
mapping class group.

Theorem 15.3. Let (X, ∂X) be a compact, simply connected, oriented, topological 4-
manifold.

(i) When X is spin, the map f 7→ (Θ(f),∆f ) induces a group isomorphism

π0Homeo+(X, ∂X)
∼=−→ H1(X, ∂X;Z/2)× V(H2(X), λX).

(ii) When X is not spin, the map f 7→ ∆f induces a group isomorphism

π0Homeo+(X, ∂X)
∼=−→ V(H2(X), λX).

If the boundary is nonempty, then the + is superfluous: every homeomorphism that
acts as the identity on the boundary is o.p. In order to state the result for the case of
empty and nonempty boundary simultaneously, we leave the + in the notation.

In Example 15.115.1 we gave an example of a nontrivial diffeomorphism that acts trivially
on H2(X), i.e. that lies in the Torelli subgroup of the mapping class group of X. The
question then arose whether all the elements of the Torelli group can be smoothly realised.

Theorem 15.4 (Galvin-Ladu [GL23GL23]). There exists a 1-connected, smooth, compact 4-

manifold X (which they construct explicitly) together with a homeomorphism f : X
∼=−→ X

in the Torelli subgroup of π0(Homeo+(X, ∂X)) that is not topologically isotopic to any
diffeomorphism of X.
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This is in contrast to the closed case, when every element of the Torelli subgroup is
isotopic to the identity, hence is certainly isotopic to a diffeomorphism.

16. Simple spines for knot traces

Here is another application. Let X be a compact 4-manifold with X ≃ S2. Let F0, F1

be two locally flat embedded, oriented 2-spheres in X that represent the same generator
of H2(X) ∼= Z. These 2-spheres are called spines of X.

Definition 16.1. A spine Fi of X is called simple if π1(X∖Fi) is abelian.

Theorem 16.2 (Orson-P. [OP24OP24]). If F0 and F1 are simple spines in X, then F0 and F1

are ambiently isotopic.

To prove this theorem, first we used modified surgery to show that there is a home-
omorphism G : X → X of X to itself, restricting to Id∂X , sending F0 to F1. Then we
applied our work on mapping class groups of manifolds with boundary, given above, to
obtain an isotopy of G to the identity, which has the result of isotoping F1 to F0. In this
case we use the following corollary of the result for mapping class groups of 1-connected
4-manifolds with boundary from the previous section.

Corollary 16.3. Let X be a compact, simply connected 4-manifold such that ∂X has the
rational homology of either S3 or S1 × S2. Let G : X → X be a homeomorphism that
restricts to the identity on ∂X and is such that G∗ = Id: H2(X) → H2(X). Then G is
topologically isotopic rel. boundary to the identity map of X.

Simple spines have boundaries with the required homology, and the homeomorphism
we constructed, by virtue of sending one spine to another, has to induce the identity on
H2(X). So the corollary applies to give us the desired isotopy.
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