
Symmetries of simply-connected four-manifolds,
especially algebraic surfaces

*by Steven H. Weintraub

In [WI] we investigated cyclic group actions on closed highly-

connected 4k-manifolds, k > 1. For k = 1, that paper yielded a

construction of actions of cyclic groups lin on simply-connected

4-manifolds with homology sphere boundaries, the action being free

on the boundary, a not terribly striking result. However, at that

time, over a decade ago, technology in dimension 4 was not

sufficient to close off the boundary. Since then there has been

great progress in dimension 4. Kwasik and Vogel [KV2] (and

also Ruberman (unpublished» proved that, for n = 2, any free

lin-action on a homology 3-sphere extends to an action on a

contractible 4 manifold with exactly one fixed point. Combining

this result with [WI], as they observed, immediately yields 1/2

actions on closed 4-manifolds. There are in general not locally

smoothable [KVI]. This result was generalized by Edmonds [EI]

to the case of arbitrary prime n, thereby obtaining actions of

these cyclic groups. In fact, he replaced the plumbing method of

[WI] by a linking method, which has technical advantages in

dimension 4, and so was able to show that every simply-connected

4-manifold Mhas an action of the cyclic group lin, for n = 2 or

n a prime greater than 3, with isolated fixed points, and further-

more that this action may be constructed to be locally smooth if

either n is odd or n = 2 and the Kirby-Siebenmann invariant of

* Partially supported by the N.S.F. and the DFG Schwerpunkt-
programm "Komplexe Mannigfaltigkeiten".
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Mis zero. This latter condition had been shown to be necessary by

[KVI]. These actions are all trivial on homology, and the structure

of such actions (when semi-free) is described by [WI]. Thus in this

situation, i.e., actions which are trivial on homology and have

isolated fixed points, the si tuat ion is reasonab1y

well-understood. (Note that the above discussion all takes place

in the topological category).

In section 1 of this paper we use some relatively simple

constructions in algebraic geometry to produce examples of

algebraic actions of a product of cyclic groups G = I/n
1

x I/nz on

simply-connected algebraic surfaces (theorem 1.5). As they are

algebraic, they are a fortiori smooth. We further investigate the

restrictions of these actions to various cyclic subgroups of G

(Corollaries 1.8, 1.10, and 1.11). We see that we obtain a rich

collection of actions, all of which are non-trivial on homology

and which have a variety of fixed-point sets, sometimes with

algebraic curves as components, sometimes with only isolated

points. We make no pretense of classification, and indeed the

richness of the structure of these examples, and of others that

may be similarly constructed (remarks 1.7 and 1.14) show that even

a topological classification of actions, without the restriction

that they be trivial on homology, will be no mean feat.

The existence of topological actions on Mwhich are non-trivial on

V = Hz (M .z) 1eads to obvi ous quest ions about automorphi sms of V.

Since V admits a non-singular symmetric bilinear form : V0 V I,

the intersection form on M, these also raise questions about

automorphisms of We discuss these questions, again presenting

some examp1es , insect ion 2. (A wealth of information, from a

different viewpoint, is obtained in [A], which we commend to the

reader) .

We close this introduction by noting that section 1 takes place in

the algebraic and section 2 in the topological category, so what
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is referred to as an algebraic curve (resp. algebraic surface) in

section 1 is referred to as a Riemann surface (resp. 4-manifold)

in section 2.

Section 1. Construction of algebraic actions.

We begin by constructing some algebraic surfaces:

Definition 1.1 For non-negative integers gl' g let M be an
2 91,9 2

algebraic surface constructed as follows: let C
9 i

be a

hyperelliptic algebraic curve of genus gi with hyperelliptic

involution ji

let C x C
91 92

having fixed points Pi,I, ... ,Pi. 29.+2' for i • 1,2.,
be the product of these two curves blown up at the---(29

1+2)
(2g2+2) points (p • x p .). let J be the 1if't to Cx C

I, 2, 9
1

9
2

of the product involution j = jl x j2 on C xC. Then M is
91

defined to be the quotient

Theorem 1.2 M is a non-singular algebraic surface with the
9
1,92

following properties:

1) M is simply-connected
9
1,

9
2

2) The homology of M is torsion-free
9
1,

9
2

3) The index of M is 1= -(2g +2)(2g +2)
91,9 2 I 2

4) The rank of H (M ) is III + 4g g +2
291,92 12

5) The intersection form on M is an even form
9 1,9 2

if gl and g2 are both odd; otherwise it is an odd form.
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Proof. Except perhaps for part 5), this is well-known

(cf. [K, section 6]).

We describe the construction a bit more carefully, and then

outline the proof.

Recall what it means to blow up a point: We blow up a;2 at the

origin. For any z + 0 in a;2 let [z] denote the line it generates.

Then z [z] gives a;2_{O} the structure of a bundle over pI with

fiber a;1_{O}. Fill in the O-section to get a bundle B over E = pl.

Then B is the blow-up, and the self-intersection number of E (i.e.

the Euler class of B) is -1.

Note that any smooth action of any group on a;2 fixing 0 lifts

to B, as the differential of the action of any element is a linear

map, so takes subspaces to subspaces, and any relation between

group elements is also a relation between their differentials.

Now consider our case. Let E = Ek k be the blow up of
I' 2

P x P . Then J gives a map on E, which is the trivial map,I,k l 2,k2
as the differential of j at this fixed point is multiplication by

-1, which leaves every linear subspace invariant. Then the

quotient is still smooth at (the image of) EI but in the quotient

E has self-intersection number -2.

To prove part 1), note that 1£ (M ) = 1£ (Q) where Q = C x C /J.
I 9

1,92
I 9

1
9
2

Observe that Q is the union of a C -bundle over (C -{p *})/j
9
2

9
1

I, I

pl-{2g +2 points} with a neighborhood of 2g +2 copies of C /j = pI
I I 9

2
2

and then apply van Kampen's theorem. Then part 2) is immediate.

Given this, we may compute homology with rational coefficients. The--map J acts trivially on H(C xC), and parts 3) and 4)
2 9

1
9
2---obviously hold for C xC, hence for M as well. Part 5) can

91 9
2

9
1,92

be proved by writing down an explicit basis for H (M )
2 9

1,92

consisting of immersed 2-spheres and then geometrically calculating
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intersection numbers (though there should be a better way); as this

is quite lengthy we shall omit it.

Now we construct actions on these surfaces:

Notation For a cyclic group lin, let T,R, and A denote the

following indecomposable I[I/n]-modules:

1) T = I with I/n acting trivially

2) R = I[I/n], the group ring

3) Ac R the augmentation ideal

Over I these modules have rank 1, n, and n-I respectively.

Matrix representatives for the action of a generator of I/n are

given by the companion matrices of the polynomials x-I, xn_I, and

(xn-I)/(x-I) respectively.

Notation If C is a curve with hyperelliptic involution j, we call

the fixed points of j the w-points of C. (If C has genus at least 2,

these are the Weierstrass points of C.)

Lemma 1.3 Under the following conditions, there is a hyperelliptic

curve C of genus g admitting a semi-free algebraic action of lin,

commuti ng wi th the hypere11 ipt ic i nvo1ut ion, with the propert ies

stated:

Case 0) 2g + 2 = kn, k even. The action has 4 fixed points, none

of which is a w-point. The induced action on Hi(C) is

(k-2)R@2A.

Case 1) 2g + 2 =kn+I, k and n necessarily both odd. The action
has 3 fixed points, one of which is a w-point. The induced

action on Hi (C) is (k-I)ReA.

Case 2) 2g + 2 = kn+2, n odd (and so k even). The action has 2

fixed points, both of which are w-points. The induced action
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Proof. In each case we exhibit C explicitly. We then verify the

properties claimed in case 1); the others are similar and omitted.

Case 0): C is given by y2 (1-x")(3-x").··«k-1)-x") and the
(2-x")(4-x") ... (k-x")

action of a generator of lIn is Y7Y.

Case 1): C is given by l (I-x") (2-x") ... (k-x") and the action of

a generator of lIn is x 7 y 7 y.

Case 2): C is given by l = x(I-x")." (k-x") and the action of a

generator of lIn is x 7 y 7

Analysis of case 1): The fixed points are x = y = a w-point,

and x = 0, y = ± Vk!, two non-w-points. Observe that our claim about

the action on homology is consistent with the Lefschetz fixed point

formula, as the trace of the action of a non-trivial element on HI

is -1, and there are 1-( 1)+1=3 fixed points. Indeed, if n is a

prime and k = 1, by theorem 2.1 below this already gives the claim.

In general we prove the claim by writing down a lIn invariant set of

branch cuts and cycles for the given curve.

We illustrate in the case n 3, k = 3, which is entirely typical.

See figure I. Note that a; and b
j
are closed curves which lift to

closed curves in C, and the arcs b; are branch cuts so also lift

to closed curves in C. We denote the lifts by the same letters.

Clearly rotation by sends a to a mod 3. But a +a +a = 0,
j ;+1 I 2 3

as it is homologous to a curve bounding a disc around the lift of

each of 3 branch points in C, so the action here is exactly A.

The action on (b
i
) and (b;) gives 2R. To see that all these

closed curves are non-zero, and indeed form a basis of

H
1(C;I),

one can explicitly write down the intersection matrix

of these curves, using figure I, and verify that it is unimodular.
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b'
2

Figure I

(It is no accident that the trivial representation T never appears
in these actions [A, proposition 3.3]).

We record a lemma for future use:

Lemma 1.4 Let 9 = E GL2(C) .

Blow up c2 at 0 to B, and let 9 be the lift of 9 to an action on B.

Let E be the inverse image of O.

If 1 1 r
1
1 r

2
1 1, 9 has two fixed points on B, contained in E.

If 1 = r
l
1 rz' 9 fixes e , the fiber over a point in E, and an

additional isolated point in E.

If 1 1 r
1
= r

2
, 9 fixes E.

Proof. The action of 9 on B-E is the same as that of 9 on CZ_{O},

and the action of 9 on E is induced by the action of 9 on lines in

c2• The lemma follows immediately.

Notation. We let W denote the subgroup of H (M :Z) of rankz 9
1,92

(29
1+2)(2g/2)

generated by the clases (E* *), each of which is a

!pI arising as the image in M of a bloWing of a point PI * x Pz *.. ,

In the statement below we denote by (mo"" ,m
3
) the representation

moT @ m
lR 1

e m
2Rz @ m

3R
of z/n

1
x z/nz' where R

i
is the regul ar
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representation of the i-th factor, the other factor acting trivially

(i • 1,2), T the one-dimensional trivial representation, and R the
regular representation of this group.

Theorem 1.5 Suppose that, for i • 1 and 2, the equation 2g; + 2 •

k;n;+ e
j

, e; .. 0,1, or 2, holds, with k; and n; satisfying the

parity conditions of lemma 1.3.

Then an algebraic surface M as in definition 1.1
9
1,9Z

admits an

algebraic action of l/n1 x z/nz with the following properties:

Fixed point set

ez • ° 8 isolated points 6 isolated points

ez .. 1 6 isolated points

e
z
• 2

4 isolated points

6 isolated points

8 isolated points

Induced action on W

ez .. ° (0,0,0,k
1kz)

e
z
• 1

ez • °

(O,0,kz,k1kz)

(1, k
1
,kz' k1kz)

(0,0,kz,k1kz)

(2, k1' 2kz' k1kz)

(4,2k
1,2kz,k1kz)

'" C x C /j is a
91 92

decomposes into

Q
9
1,92

H (M ;l [1])
2 91'9Z 2

H
2
(Q ;l [tl> eWeZ [t]. Then, by [CR, 23,12, 23.13, and 25.12]

9
1,92

the functor "e Z [t]" gives an isomorphism between lattices of

l/n 1 x z/n
2
over z and over Z [t]. (Of course, the action on the

Remark 1.6 Note that the information given in the theorem determines

Hz(M ; I as aI/nIX lin. representation space, and hence, if
9
1,92

•

n1n2 odd, H
2(M

;Z). This is because
9
1,92

1/2-homology manifold, and so
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first summand is immediate from 1.3 and the Kunneth formula.)

Proof. Given e = 0,1, or 2,
--- i

we have an act ion +. of lin. on C
1 1 9

j

given by case e. of lemma 1.3.,
This gives a product action + = + x +2 on C x C commuting with

I 91 92

j x j . We must show that + lifts to an action on C xC. The
I 2 91 92

only possible difficulty than can arise is when a point p, blown up

to a pi E, is the fixed set of a non-trivial subgroup of l/n1 x l/n2.
But here, by the proof of theorem 1.2, the action lifts as well.

Finally, as j acts trivially on E, commutes with j, thus giving an

action t on M ,as claimed.
9
1,92

Now we investigate the action. There are 6 cases; we do one and

leave the others for the reader. We consider the case e
1
= e

2
= 1.

Denote the w-points of C by P , ... ,Pk and the fixed points
91 0 1"1

of l/n
l
by ro• po,r

1,r2
, and similarly for C , with p replaced

92

by q and r by s.

The action of t on Wis the same as that of + on {Pax qb}' The

point {p x q} is fixed, giving T; the points {p x qb' b '" D}
000

give k
2
R
2
; the points {Pax Qo' a '" o} give k

1
R
1
; the points

{Pax Qh' a,b '" D} give klk2R.

A fixed point for t not on a fl arising via a blow-up is the image

of a fixed point of , not on such a fl. There are 8 of these,

{rax Sb' (a,b) '" (D,O)} and they are identified in pairs by j,

giving 4 fixed points on M .
9
1,92

A fixed point for t lying on such a fl must lie on an invariant

fl. As we have just seen, there is exactly one of these, arising

from the blow-up of rox so' and in the obvious coordinate system

there the elements of l/n1 x »». act as Diag(rl,r2) , where r
1

(resp. r
2
) runs over all nl-st (resp. n

2-nd)
roots of unity. By

,...--........,
lemma 1.4, this gives 2 fixed points in C x C and hence 2 in

91 92
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Remark 1.7 By beginning with even more special curves than in

lemma 1.3, we may find actions of the dihedral group 02n' For

example, in case 0) the curve l = (2-xn)/(l-2xn) also has the

automorphism (x,y) -t (l/x,l/y), and in case 2) the curve l =

x(2-xn)(1-2xn) also has the automorphism (x.y) -t (1/x,y/xn+1) .

Then the construction in theorem 1.5 goes through unchanged,

producing exampl es of M with act ions of 02 x l/n29
1,92

n
1

(or

vice-versa) or 02 x D .n
1

2n2

The coarse analysis in the proof of his theorem does not reveal

the true nature of these actions. To see it more closely, we

investigate the action of cycl ic subgroups G = ?L/n contained in

?L/n
1
x ?L/n

2
• We restrict ourselves to n odd so that, by remark 1.6,

we may have both a convenient and a definitive statement.

Corollary 1.8 Let n = n
1
and let G be included in ?L/n{ ?L/n

2
as

the first factor. Then G acts semi-freely on M with the
9
1,92

following properties:

The fixed point set is 2 copies of C .
9
2

The induced action on H2 is

2T (t) 4g2A (t) (4k
1
g2 + 2k

l-492)R

e
1

The fixed point set is C u !pI U 2g +2 isolated
9
Z

z

points.

The induced action on Hz is

(2gz+4) T (t) 2gzA @ (4k
Jg z + 2k

J-2gz)R

2 The fixed point set is (2 copies of !p
J
) u 4g

2+4

isolated points

The induced action on Hz is

(4gz+6) T (t) (4k
Jg 2
+2k

J)R
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Remark 1.9 We obtain such an action for any value of g2'

Proof. Again, we consider a single case, e
1
= 1.

We take homology with coefficients in Z nl. Then, by remark 1.6,

H2(M ) = H2(Q) It) W, where Q = C x C /J. By the Kunneth
91,92

9
1

9
2

formula and the consequent fact that j acts trivially on H2(Q) , we

obtain, by lemma 1.3,

H2(Q) = 2T It) «k
1-1)R

$ A)(292).
As for W, following the notation in the proof of 1.5, the (2g2+2)
copies of 1P

1 arising from blowing up the fiber over Po are left

fixed, while the points p , ... ,p are moved freely, hence so are
1 k

1
n

the k
1n(2g2+2) copies of 1P

1 in the fibers over them, giving

W= (292+2)T $ k
1(292+2)R. Again, by remark 1.6, this gives the

representation on integral homology as well.

Now for the fixed points. The fixed-point set of V is again the

image of the fixed point set of i. Since the action on the second

coordinate is trivial, this latter comes from "fibers" over the 3

fixed points r ,r ,r . To be more precise, the fibers over r
1
and

012

r are each a copy of C , and j (r) = r, so these two fi bers2 92 1 2

have image one copy of C i n the quotient, which is fixed. This
92

gives one component of the fixed point set in M • On the
9
1,92

other hand, r is left fixed, and the quotient of the fiber over
o

it inC x C by j is C I j
91 92 92

contains (292+ 2) w-points. Each

1P 1 in M .However, this fiber
9
1,92

is blown up to 1P 1• At each point

a generator of z/n acts locally like Diag(l,exp(-21ti/n», so by

lemma 1.4, we obtain an extra isolated fixed point on the 1P
1

--arising from the blow-up of this point in C xC, and these all
91 92

have distinct images in M so we obtain also 1P
1 u 292+ 2

91.92

isolated fixed points in M ,as claimed.
9
1,92
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Corollary 1.10 Let n = n
1

= n
2

and let G be included in

Iln
1
x I/n

2
as the di agonal. Then G acts semi -freely on M

9
1,92

with the following properties:

e
1
= 0: The fixed point set is 8 isolated points.

The induced action on H
2
is

6 T (i) (2k
1k 2n

- (2k
1+2k)R

e
1

1: The fixed point set is 11'1 U 4 isolated points.

The induced action on H
2
is

4 T (i) 2k
1k 2nR

e
1

2: The fixed point set is (2 copies of 11'1) u 4 isolated

points.

The induced action on H
2
is

6 T (i) (2k
1k2n

+ (2k
1+

2k
2»R

Proof. Again we consider the case e
1
(= e

2
) = 1.

We again take homology with coefficients in and note that the

representation we obtain is also the representation over I.

We have H (M ) = H, (Q) (i) W. from theorem 1.5 it is immediate
2 9

1,92
2

that W= T (i) (k
1
+ k

2+
k
1k2n)R.

As in the last corollary, using lemma 1.3,

H
2
(Q) = 2 T (i) (k

1-I)R
(i) A) 0 «k

2-I)R
(i) A).

Then, using the facts that A 0 R = (n-l)R and A@ A = T (i) (n-2)R

the claim about the homology follows.

Now for the fixed-point set. As in the proof of the theorem, the

only candidates for fixed points are {rax Sb' (a,b) + (0,0)) and

the blow-up of r x s . The first of these is a set of 8 points in
o 0-C xC, identified in pairs by j , giving 4 isolated points. As

91 92

for rox so' in the obvious local coordinate system there a
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generator of lin acts by since

these two diagonal entries are the same, by lemma 1.4 the entire-blown-up pl in C x C is fixed as is its image in M ,
9
1

9
Z

9
1,9Z

giving the fixed-point set claimed.

Corollary 1.11 Let n = n
1

• nz and let G be included in

l/n1 x l/nz as the subgroup generated by the element (I,m), where

mand n are relatively prime. In any case the representation of G

on Hz(M ) is the same as in corollary 1.10.
9
1,9 Z

If e
1
= 0, then for any mthe fixed-point set is 8 points.

If e
1
= 1, then for m, l(n) the fixed-point set is 6 points.

If e
1
= 2, then for m• ± l(n) the fixed-point set is 8 points.

Proof. Again take e
1

• 1. The proof is exactly the same as that

of the preceding corollary, except at the end we find a generator

of lin acting by Diag(exp since these two

diagonal entries are distinct, by lemma 1.4 we obtain two isolated

fixed points instead of a fixed pl.

is properly elliptic,

classification of algebraic surfaces

fit in as follows: M is pZ blown up at
0,9

is by definition a Kummer

theIn

[BPV, VI.l] our examples

Remark. 1.12

4g + 5 points, so is rational. M
1,1

surface and is hence K3. M for g > 1
1,9

and M for g ,g 2 is of general type.
9
1,9 Z

1 Z

Remark. 1.13 Let Aut(M) denote the group of algebraic (biregular)

automorphisms of the algebra surface M. For a general K3 surface

M, Aut(M) may be infinite, but for a Kummer surface Aut(M) is

always finite [PS, section 7]. It is a theorem of Painleve that

for a surface Mof general type, Aut(M) is always finite. In

our case, from Hirzebruch's index theorem [BPV, 1.3.1] we may
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calculate that M has chern number = 4(g1- 1) (g2-1).
9
1,92

Miyaoka 's inequality [BPV, VI I. 4] states that for a surface of

general type, 3c2 , so that is a good parameter to choose.

Our examples of groups acting on M were easy to construct,
9
1,92

and their orders grow (asymptotically) linearly with There are

not known group actions on families of surfaces of general type

where the order of the group grows like for any 6 > O. (Of

course, if we were just interested in this latter question we

could take product actions on giving non-simply

connected examples with the same rate of growth.)

Remark. 1.14 The reader wi 11 undoubtedly have noticed that we

never used any special property of hyperelliptic curves, and that

we could produce entirely analogous examples ,beginning with

m-gonal curves, i.e. curves of the form ym = f{x). We leave this

as a final exercise for the reader.

Section 2. Automorphisms of lattices and of forms.

In this section p will always denote a prime.

By [CR,34.31] the following is a complete list of indecomposable

integral representations of Zip:

1) T, of rank 1

2) R, of rank p

3) A, of rank p-l (Note that A is isomorph1c to the ring of

algebraic integers in o(exp(2wijp).

For each non-principal ideal class in o{exp(2wi/p» (assuming

there are any):
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4) I, a representative of that class, of rank p-l

5) I @AR, of rank p

However, the representations that can arise from group actions are

much more specialized. Taking the special cases of the union of

[W2, theorem 1.6 and following remark] and [HR, proposition 10]

which are relevant to us here, we have

Theorem 2.1 Let zjp act smoothly or simplicially in an orientation

-preserving way on X, where X is either a Riemann surface (d 1)

or a simply-connected 4-manifold (d = 2). Then as a representation

space of Zjp, Hd(X:Z) is isomorphic to tT (f) aA (f) rR for some

non-negative integers t,a,r. Furthermore, if d = 1 then t and r

are even, and if p 2 then a is also even. If d = 2 and p is odd

then a is even.

Kwasik and Schultz show in [KS] that this theorem continues to hold

for locally linear actions, but not for topological ones. (They

remark there that this latter fact had earlier been shown by

Ruberman and Weinberger.)

Let V be a free z-module as above equipped with a non-singular

symmetri c bil inear form rp invari ant under the action of zjp. (We

are thinking of V as H2{Xil), X a simply-connected 4-manifold with

a Zjp-action, and rp the intersection form on V.) There is no

reason to expect that the above splitting on V need be an

orthogonal splitting with respect to cp, and indeed it need not

be. Here are two examples (see also [HR, example 8]):

Example 2.2 ([W2, proposition 1.7]) Let V= (1)2P-2, P odd, and

let cp be the bilinear form whose matrix H = (h.. ) is given by:
1J

a) h. if i t- j, 1 s i,j P + 1
1, j

b) h.. = if (i-j) = ± 1
1.J

c) h. = 2 for i = 1, ... ,p
'tl
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d) h =2 fori=p+I, ... ,2p-2i,i
e) hi'" 0 otherwise.

,J

Let zip act on V by permuting the first p coordinates cyclically,

so V splits as R Ql (p-2)T. Then" is a non-singular form on V,

invariant under the action of zip, but V has no ,,-orthogonal

splitting. (" is an even form of index 0).

Proof. The form" is non-singular as det(H) " 1 [W2, 1.7] and is

clearly invariant. However, V cannot admit any ,,-orthogonal

splitting as both Rand (p-2)T are odd-dimensional and hence

cannot admit a non-singular even form. To compute the index of ",

note that -1 is an eigenvalue of H of multipl icity p-l. On the

other hand, by making a change-of-basis (over 0) involving only

the first p rows, we obtain a matrix H' similar to Hwhose lower

right hand corner (of size (p-2) x (p-2» is identical to that of

H, is orthogonal to the upper left-hand corner, and is positive

definite, so H has at least p-2, and hence p-I positive

eigenvalues.

Here is a smaller (indeed, minimal) example with a more

interesting form:

Example 2.3 Let V " (Z)p+l,p congruent to 1 modulo 4, and let lP

be the bilinear form whose matrix H• (h..) is given by:
lJ

a) h. i ,,1 if i '" j, 1 S t , j S P
1,

b) h = 0 for 1 sis pi,j
c) h = h " (p+I)/2 for 1 S S Pi,p+l p+l,i
d) h 1 1" (p2+3p+4)/4P+ ,P+

Let zip act on V by permuting the first p coordinates

cyclically, so V splits as RQl T. Then" is a non-singular form on

V, invarlant under the act ion of zip, but V has no ,,-orthogona1

splitting. (" is a form of index I-p).
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Proof. It is easy to check that det(H} s -1, so is

non-singular and obviously invariant. If p =1 (8), then is an

even form, so V cannot spl it (as above). If p !5 5 (8), one can

check that cannot represent ± 1 on the space of vectors

invariant under zip (vectors of the form (x, ... x,y}) so V cannot

split here either. To compute the index of note that -1 is

again an eigenvalue of H of multiplicity p-I, and then the

remaining 2 eigenvalues must have opposite signs.

We also have the following illuminating theorem, proved (indepen-

dently) in [E2, proposition 2.4] and [A, proposition 4.3 and theorem

4.14] :

Theorem 2.4 let zip act in an orientation-preserving way on a

simply-connected 4-manifold X, with fixed-point set F and induced

action on H
2(X}

given by tT <t> aA <t> rR. If the action is free,

then t = 0 and a = 2. Otherwise, a = H1(F}.

This theorem points out that we made a mistake in [W2, theorem

2.4] where we claimed to construct actions with isolated fixed

points where the induced action on homology had a + O. (The error

is on page 270 where we claim, in effect, to construct copies of

A <t> T. In fact the extension is non-trivial, so we have

constructed copies of R.) However, the proof of this theorem does

show that if is an even, unimodul ar form on V = tT <t> rR

invariant under zip, it may be realized by an action on a manifold-

With-boundary, and hence, by [El, 3.1], by an (definitely not smooth,

in general) action on a closed 4-manifold.

Since we are interested in realizing actions which are non-trivial

on homology, it is in any case natural to ask what their effect on

homology can possibly be.



364

This is clearly equivalent to the following question: let :V@V I

be a non-singular symmetric bilinear form on a free z-Iatt tce V.

What is the automorphism group and in particular what are its

finite subgroups?

odd (even) if (a-b)/4 is

basis {e.}. let E be the
1 a.b

by (e +...+e b)/2. Then the
1 a+
a non-singular symmetric

lattice spanned by {e. + e.} and
1 J

restriction of the above form to Ea,b is

bilinear form with index a-b. This form is

First, a construction:

lemma 2.5 let a-b III 0 (4), a,b O. let lRa+b have the bil inear

form given by the matrix Diag(l, ... ,l,-l, ... ,-l) with a l's and b

-1' s, with respect to the standard

odd (even).

Proof. Exactly the same as in [S,V.1.4] for the case E = E
a a ,o

We denote the form by Ea,b' Note that ! x ! (! the symmetrica b
group) operates on E

a.b
by permuting coordinates, leaving

invariant, and any cyclic subgroup theorem operates as the

representation tT @ rR for some t and r, so can be realized by an

action on a simply-connected 4-manifold. For example, E
3
, 19 is the

intersection form of the Kummer surface, so this has an action of

1/19.

Definition 2.6 let Auto(Ea) = (!.x !b) x (1/2)(a+b- ll c Aut(Ea)
consist of the automorphisms generated by the above permutations and

by changing the signs of any even number of basis vectors e;.

In general this subgroup is far from being the full automorphism

group. The following automorphism groups are known ([S, V. 2.3]):

Auto(E16
) = Aut(E

16
) . Also, Aut(Ea(f) Ea) = (Aut(Ea) (f) Aut(Ea» x 1/2,

with 1/2 acting by switching the copies. However, Auto(Ea) ;

Aut(E ), and indeed, [Aut(E) : Aut (Ea)] = 33.5.a a 0
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We conclude with an example to show that the "extra" automorphism of

order 5 of E
8
gives the representation 2A. (For order 3 we get 4A).

This example was shown to us by M. Kneser.

Example 2.7 Let IRs have the usual inner product, given by the

identity matrix in the standard basis (e.). Let liS operate on IRS by
1

cyclically permuting coordinates.

Let A4 = (v = E IS I v1+ ...+vs = 0).

Note that A
4
is a lattice in IRs and the action of liS on A

4
is

exactly the representation A. Let A be the dual lattice of A,

A# = (w = E IRs I E I for all v = E A).
1 1 1 1 1

Note that [A' : A] = 5 and that A'iA is generated

either by w = (115, 115, 115, 115, -4/5)
o

or by woo = (2/5, 215, 2/5, -3/5, -3/5)

Let w = (w,w ). If denotes here orthogonal direct sum,
o 00

let E be the lattice in IRs IRs generated by A
4

A
4
and w.

Let be the obvious inner product on E.

Then A
4

A
4

C E c A: A: ' and [A: A: A4 A4] 25.

Further, [E : A
4

A
4
] = [A: A: : E] = 5.

Let E' be the dual lattice of E.

Note that = 2 E I, so E' E and hence E' = E.

Clearly is positive definite, and indeed even, so E must be

isomorphic to E
8
• Also, as a 1/5 representation space E is

isomorphic to 2A (as E 00 is clearly isomorphic to 2A 0 C).

This example raises the possibility that the Kummer surface, say,

has an action of 1/5 real izing 14T 2A, or 6T <B 4A, as the

induced action on H
2
• We do not know whether such an act ion

exists.
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